1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the parser class for .ll files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/AsmParser/LLParser.h"
14#include "llvm/ADT/APSInt.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/ScopeExit.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/AsmParser/LLToken.h"
20#include "llvm/AsmParser/SlotMapping.h"
21#include "llvm/BinaryFormat/Dwarf.h"
22#include "llvm/IR/Argument.h"
23#include "llvm/IR/AutoUpgrade.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Comdat.h"
27#include "llvm/IR/ConstantRange.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DebugInfoMetadata.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalIFunc.h"
33#include "llvm/IR/GlobalObject.h"
34#include "llvm/IR/InlineAsm.h"
35#include "llvm/IR/InstIterator.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/IR/Module.h"
42#include "llvm/IR/Operator.h"
43#include "llvm/IR/Value.h"
44#include "llvm/IR/ValueSymbolTable.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/ModRef.h"
49#include "llvm/Support/SaveAndRestore.h"
50#include "llvm/Support/raw_ostream.h"
51#include <algorithm>
52#include <cassert>
53#include <cstring>
54#include <optional>
55#include <vector>
56
57using namespace llvm;
58
59static cl::opt<bool> AllowIncompleteIR(
60 "allow-incomplete-ir", cl::init(Val: false), cl::Hidden,
61 cl::desc(
62 "Allow incomplete IR on a best effort basis (references to unknown "
63 "metadata will be dropped)"));
64
65extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
66extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
67extern bool WriteNewDbgInfoFormatToBitcode;
68extern cl::opt<bool> WriteNewDbgInfoFormat;
69
70static std::string getTypeString(Type *T) {
71 std::string Result;
72 raw_string_ostream Tmp(Result);
73 Tmp << *T;
74 return Tmp.str();
75}
76
77// Whatever debug info format we parsed, we should convert to the expected debug
78// info format immediately afterwards.
79bool LLParser::finalizeDebugInfoFormat(Module *M) {
80 // We should have already returned an error if we observed both intrinsics and
81 // records in this IR.
82 assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) &&
83 "Mixed debug intrinsics/records seen without a parsing error?");
84 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
85 UseNewDbgInfoFormat = SeenNewDbgInfoFormat;
86 WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat;
87 WriteNewDbgInfoFormat = SeenNewDbgInfoFormat;
88 } else if (M) {
89 M->setIsNewDbgInfoFormat(false);
90 }
91 return false;
92}
93
94/// Run: module ::= toplevelentity*
95bool LLParser::Run(bool UpgradeDebugInfo,
96 DataLayoutCallbackTy DataLayoutCallback) {
97 // Prime the lexer.
98 Lex.Lex();
99
100 if (Context.shouldDiscardValueNames())
101 return error(
102 L: Lex.getLoc(),
103 Msg: "Can't read textual IR with a Context that discards named Values");
104
105 if (M) {
106 if (parseTargetDefinitions(DataLayoutCallback))
107 return true;
108 }
109
110 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
111 validateEndOfIndex() || finalizeDebugInfoFormat(M);
112}
113
114bool LLParser::parseStandaloneConstantValue(Constant *&C,
115 const SlotMapping *Slots) {
116 restoreParsingState(Slots);
117 Lex.Lex();
118
119 Type *Ty = nullptr;
120 if (parseType(Result&: Ty) || parseConstantValue(Ty, C))
121 return true;
122 if (Lex.getKind() != lltok::Eof)
123 return error(L: Lex.getLoc(), Msg: "expected end of string");
124 return false;
125}
126
127bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
128 const SlotMapping *Slots) {
129 restoreParsingState(Slots);
130 Lex.Lex();
131
132 Read = 0;
133 SMLoc Start = Lex.getLoc();
134 Ty = nullptr;
135 if (parseType(Result&: Ty))
136 return true;
137 SMLoc End = Lex.getLoc();
138 Read = End.getPointer() - Start.getPointer();
139
140 return false;
141}
142
143void LLParser::restoreParsingState(const SlotMapping *Slots) {
144 if (!Slots)
145 return;
146 NumberedVals = Slots->GlobalValues;
147 NumberedMetadata = Slots->MetadataNodes;
148 for (const auto &I : Slots->NamedTypes)
149 NamedTypes.insert(
150 KV: std::make_pair(x: I.getKey(), y: std::make_pair(x: I.second, y: LocTy())));
151 for (const auto &I : Slots->Types)
152 NumberedTypes.insert(
153 x: std::make_pair(x: I.first, y: std::make_pair(x: I.second, y: LocTy())));
154}
155
156static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
157 // White-list intrinsics that are safe to drop.
158 if (!isa<DbgInfoIntrinsic>(Val: II) &&
159 II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
160 return;
161
162 SmallVector<MetadataAsValue *> MVs;
163 for (Value *V : II->args())
164 if (auto *MV = dyn_cast<MetadataAsValue>(Val: V))
165 if (auto *MD = dyn_cast<MDNode>(Val: MV->getMetadata()))
166 if (MD->isTemporary())
167 MVs.push_back(Elt: MV);
168
169 if (!MVs.empty()) {
170 assert(II->use_empty() && "Cannot have uses");
171 II->eraseFromParent();
172
173 // Also remove no longer used MetadataAsValue wrappers.
174 for (MetadataAsValue *MV : MVs)
175 if (MV->use_empty())
176 delete MV;
177 }
178}
179
180void LLParser::dropUnknownMetadataReferences() {
181 auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
182 for (Function &F : *M) {
183 F.eraseMetadataIf(Pred);
184 for (Instruction &I : make_early_inc_range(Range: instructions(F))) {
185 I.eraseMetadataIf(Pred);
186
187 if (auto *II = dyn_cast<IntrinsicInst>(Val: &I))
188 dropIntrinsicWithUnknownMetadataArgument(II);
189 }
190 }
191
192 for (GlobalVariable &GV : M->globals())
193 GV.eraseMetadataIf(Pred);
194
195 for (const auto &[ID, Info] : make_early_inc_range(Range&: ForwardRefMDNodes)) {
196 // Check whether there is only a single use left, which would be in our
197 // own NumberedMetadata.
198 if (Info.first->getNumTemporaryUses() == 1) {
199 NumberedMetadata.erase(x: ID);
200 ForwardRefMDNodes.erase(x: ID);
201 }
202 }
203}
204
205/// validateEndOfModule - Do final validity and basic correctness checks at the
206/// end of the module.
207bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
208 if (!M)
209 return false;
210 // Handle any function attribute group forward references.
211 for (const auto &RAG : ForwardRefAttrGroups) {
212 Value *V = RAG.first;
213 const std::vector<unsigned> &Attrs = RAG.second;
214 AttrBuilder B(Context);
215
216 for (const auto &Attr : Attrs) {
217 auto R = NumberedAttrBuilders.find(x: Attr);
218 if (R != NumberedAttrBuilders.end())
219 B.merge(B: R->second);
220 }
221
222 if (Function *Fn = dyn_cast<Function>(Val: V)) {
223 AttributeList AS = Fn->getAttributes();
224 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
225 AS = AS.removeFnAttributes(C&: Context);
226
227 FnAttrs.merge(B);
228
229 // If the alignment was parsed as an attribute, move to the alignment
230 // field.
231 if (MaybeAlign A = FnAttrs.getAlignment()) {
232 Fn->setAlignment(*A);
233 FnAttrs.removeAttribute(Attribute::Alignment);
234 }
235
236 AS = AS.addFnAttributes(C&: Context, B: FnAttrs);
237 Fn->setAttributes(AS);
238 } else if (CallInst *CI = dyn_cast<CallInst>(Val: V)) {
239 AttributeList AS = CI->getAttributes();
240 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
241 AS = AS.removeFnAttributes(C&: Context);
242 FnAttrs.merge(B);
243 AS = AS.addFnAttributes(C&: Context, B: FnAttrs);
244 CI->setAttributes(AS);
245 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Val: V)) {
246 AttributeList AS = II->getAttributes();
247 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
248 AS = AS.removeFnAttributes(C&: Context);
249 FnAttrs.merge(B);
250 AS = AS.addFnAttributes(C&: Context, B: FnAttrs);
251 II->setAttributes(AS);
252 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Val: V)) {
253 AttributeList AS = CBI->getAttributes();
254 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
255 AS = AS.removeFnAttributes(C&: Context);
256 FnAttrs.merge(B);
257 AS = AS.addFnAttributes(C&: Context, B: FnAttrs);
258 CBI->setAttributes(AS);
259 } else if (auto *GV = dyn_cast<GlobalVariable>(Val: V)) {
260 AttrBuilder Attrs(M->getContext(), GV->getAttributes());
261 Attrs.merge(B);
262 GV->setAttributes(AttributeSet::get(C&: Context,B: Attrs));
263 } else {
264 llvm_unreachable("invalid object with forward attribute group reference");
265 }
266 }
267
268 // If there are entries in ForwardRefBlockAddresses at this point, the
269 // function was never defined.
270 if (!ForwardRefBlockAddresses.empty())
271 return error(L: ForwardRefBlockAddresses.begin()->first.Loc,
272 Msg: "expected function name in blockaddress");
273
274 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
275 GlobalValue *FwdRef) {
276 GlobalValue *GV = nullptr;
277 if (GVRef.Kind == ValID::t_GlobalName) {
278 GV = M->getNamedValue(Name: GVRef.StrVal);
279 } else {
280 GV = NumberedVals.get(ID: GVRef.UIntVal);
281 }
282
283 if (!GV)
284 return error(L: GVRef.Loc, Msg: "unknown function '" + GVRef.StrVal +
285 "' referenced by dso_local_equivalent");
286
287 if (!GV->getValueType()->isFunctionTy())
288 return error(L: GVRef.Loc,
289 Msg: "expected a function, alias to function, or ifunc "
290 "in dso_local_equivalent");
291
292 auto *Equiv = DSOLocalEquivalent::get(GV);
293 FwdRef->replaceAllUsesWith(V: Equiv);
294 FwdRef->eraseFromParent();
295 return false;
296 };
297
298 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
299 // point, they are references after the function was defined. Resolve those
300 // now.
301 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
302 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
303 return true;
304 }
305 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
306 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
307 return true;
308 }
309 ForwardRefDSOLocalEquivalentIDs.clear();
310 ForwardRefDSOLocalEquivalentNames.clear();
311
312 for (const auto &NT : NumberedTypes)
313 if (NT.second.second.isValid())
314 return error(L: NT.second.second,
315 Msg: "use of undefined type '%" + Twine(NT.first) + "'");
316
317 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
318 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
319 if (I->second.second.isValid())
320 return error(L: I->second.second,
321 Msg: "use of undefined type named '" + I->getKey() + "'");
322
323 if (!ForwardRefComdats.empty())
324 return error(L: ForwardRefComdats.begin()->second,
325 Msg: "use of undefined comdat '$" +
326 ForwardRefComdats.begin()->first + "'");
327
328 for (const auto &[Name, Info] : make_early_inc_range(Range&: ForwardRefVals)) {
329 if (StringRef(Name).starts_with(Prefix: "llvm.")) {
330 Intrinsic::ID IID = Function::lookupIntrinsicID(Name);
331 if (IID == Intrinsic::not_intrinsic)
332 // Don't do anything for unknown intrinsics.
333 continue;
334
335 // Automatically create declarations for intrinsics. Intrinsics can only
336 // be called directly, so the call function type directly determines the
337 // declaration function type.
338 //
339 // Additionally, automatically add the required mangling suffix to the
340 // intrinsic name. This means that we may replace a single forward
341 // declaration with multiple functions here.
342 for (Use &U : make_early_inc_range(Range: Info.first->uses())) {
343 auto *CB = dyn_cast<CallBase>(Val: U.getUser());
344 if (!CB || !CB->isCallee(U: &U))
345 return error(L: Info.second, Msg: "intrinsic can only be used as callee");
346
347 SmallVector<Type *> OverloadTys;
348 if (!Intrinsic::getIntrinsicSignature(IID, FT: CB->getFunctionType(),
349 ArgTys&: OverloadTys))
350 return error(L: Info.second, Msg: "invalid intrinsic signature");
351
352 U.set(Intrinsic::getDeclaration(M, id: IID, Tys: OverloadTys));
353 }
354
355 Info.first->eraseFromParent();
356 ForwardRefVals.erase(x: Name);
357 continue;
358 }
359
360 // If incomplete IR is allowed, also add declarations for
361 // non-intrinsics.
362 if (!AllowIncompleteIR)
363 continue;
364
365 auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
366 FunctionType *FTy = nullptr;
367 for (Use &U : V->uses()) {
368 auto *CB = dyn_cast<CallBase>(Val: U.getUser());
369 if (!CB || !CB->isCallee(U: &U) || (FTy && FTy != CB->getFunctionType()))
370 return nullptr;
371 FTy = CB->getFunctionType();
372 }
373 return FTy;
374 };
375
376 // First check whether this global is only used in calls with the same
377 // type, in which case we'll insert a function. Otherwise, fall back to
378 // using a dummy i8 type.
379 Type *Ty = GetCommonFunctionType(Info.first);
380 if (!Ty)
381 Ty = Type::getInt8Ty(C&: Context);
382
383 GlobalValue *GV;
384 if (auto *FTy = dyn_cast<FunctionType>(Val: Ty))
385 GV = Function::Create(Ty: FTy, Linkage: GlobalValue::ExternalLinkage, N: Name, M);
386 else
387 GV = new GlobalVariable(*M, Ty, /*isConstant*/ false,
388 GlobalValue::ExternalLinkage,
389 /*Initializer*/ nullptr, Name);
390 Info.first->replaceAllUsesWith(V: GV);
391 Info.first->eraseFromParent();
392 ForwardRefVals.erase(x: Name);
393 }
394
395 if (!ForwardRefVals.empty())
396 return error(L: ForwardRefVals.begin()->second.second,
397 Msg: "use of undefined value '@" + ForwardRefVals.begin()->first +
398 "'");
399
400 if (!ForwardRefValIDs.empty())
401 return error(L: ForwardRefValIDs.begin()->second.second,
402 Msg: "use of undefined value '@" +
403 Twine(ForwardRefValIDs.begin()->first) + "'");
404
405 if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
406 dropUnknownMetadataReferences();
407
408 if (!ForwardRefMDNodes.empty())
409 return error(L: ForwardRefMDNodes.begin()->second.second,
410 Msg: "use of undefined metadata '!" +
411 Twine(ForwardRefMDNodes.begin()->first) + "'");
412
413 // Resolve metadata cycles.
414 for (auto &N : NumberedMetadata) {
415 if (N.second && !N.second->isResolved())
416 N.second->resolveCycles();
417 }
418
419 for (auto *Inst : InstsWithTBAATag) {
420 MDNode *MD = Inst->getMetadata(KindID: LLVMContext::MD_tbaa);
421 // With incomplete IR, the tbaa metadata may have been dropped.
422 if (!AllowIncompleteIR)
423 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
424 if (MD) {
425 auto *UpgradedMD = UpgradeTBAANode(TBAANode&: *MD);
426 if (MD != UpgradedMD)
427 Inst->setMetadata(KindID: LLVMContext::MD_tbaa, Node: UpgradedMD);
428 }
429 }
430
431 // Look for intrinsic functions and CallInst that need to be upgraded. We use
432 // make_early_inc_range here because we may remove some functions.
433 for (Function &F : llvm::make_early_inc_range(Range&: *M))
434 UpgradeCallsToIntrinsic(F: &F);
435
436 if (UpgradeDebugInfo)
437 llvm::UpgradeDebugInfo(M&: *M);
438
439 UpgradeModuleFlags(M&: *M);
440 UpgradeSectionAttributes(M&: *M);
441
442 if (!Slots)
443 return false;
444 // Initialize the slot mapping.
445 // Because by this point we've parsed and validated everything, we can "steal"
446 // the mapping from LLParser as it doesn't need it anymore.
447 Slots->GlobalValues = std::move(NumberedVals);
448 Slots->MetadataNodes = std::move(NumberedMetadata);
449 for (const auto &I : NamedTypes)
450 Slots->NamedTypes.insert(KV: std::make_pair(x: I.getKey(), y: I.second.first));
451 for (const auto &I : NumberedTypes)
452 Slots->Types.insert(x: std::make_pair(x: I.first, y: I.second.first));
453
454 return false;
455}
456
457/// Do final validity and basic correctness checks at the end of the index.
458bool LLParser::validateEndOfIndex() {
459 if (!Index)
460 return false;
461
462 if (!ForwardRefValueInfos.empty())
463 return error(L: ForwardRefValueInfos.begin()->second.front().second,
464 Msg: "use of undefined summary '^" +
465 Twine(ForwardRefValueInfos.begin()->first) + "'");
466
467 if (!ForwardRefAliasees.empty())
468 return error(L: ForwardRefAliasees.begin()->second.front().second,
469 Msg: "use of undefined summary '^" +
470 Twine(ForwardRefAliasees.begin()->first) + "'");
471
472 if (!ForwardRefTypeIds.empty())
473 return error(L: ForwardRefTypeIds.begin()->second.front().second,
474 Msg: "use of undefined type id summary '^" +
475 Twine(ForwardRefTypeIds.begin()->first) + "'");
476
477 return false;
478}
479
480//===----------------------------------------------------------------------===//
481// Top-Level Entities
482//===----------------------------------------------------------------------===//
483
484bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
485 // Delay parsing of the data layout string until the target triple is known.
486 // Then, pass both the the target triple and the tentative data layout string
487 // to DataLayoutCallback, allowing to override the DL string.
488 // This enables importing modules with invalid DL strings.
489 std::string TentativeDLStr = M->getDataLayoutStr();
490 LocTy DLStrLoc;
491
492 bool Done = false;
493 while (!Done) {
494 switch (Lex.getKind()) {
495 case lltok::kw_target:
496 if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
497 return true;
498 break;
499 case lltok::kw_source_filename:
500 if (parseSourceFileName())
501 return true;
502 break;
503 default:
504 Done = true;
505 }
506 }
507 // Run the override callback to potentially change the data layout string, and
508 // parse the data layout string.
509 if (auto LayoutOverride =
510 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
511 TentativeDLStr = *LayoutOverride;
512 DLStrLoc = {};
513 }
514 Expected<DataLayout> MaybeDL = DataLayout::parse(LayoutDescription: TentativeDLStr);
515 if (!MaybeDL)
516 return error(L: DLStrLoc, Msg: toString(E: MaybeDL.takeError()));
517 M->setDataLayout(MaybeDL.get());
518 return false;
519}
520
521bool LLParser::parseTopLevelEntities() {
522 // If there is no Module, then parse just the summary index entries.
523 if (!M) {
524 while (true) {
525 switch (Lex.getKind()) {
526 case lltok::Eof:
527 return false;
528 case lltok::SummaryID:
529 if (parseSummaryEntry())
530 return true;
531 break;
532 case lltok::kw_source_filename:
533 if (parseSourceFileName())
534 return true;
535 break;
536 default:
537 // Skip everything else
538 Lex.Lex();
539 }
540 }
541 }
542 while (true) {
543 switch (Lex.getKind()) {
544 default:
545 return tokError(Msg: "expected top-level entity");
546 case lltok::Eof: return false;
547 case lltok::kw_declare:
548 if (parseDeclare())
549 return true;
550 break;
551 case lltok::kw_define:
552 if (parseDefine())
553 return true;
554 break;
555 case lltok::kw_module:
556 if (parseModuleAsm())
557 return true;
558 break;
559 case lltok::LocalVarID:
560 if (parseUnnamedType())
561 return true;
562 break;
563 case lltok::LocalVar:
564 if (parseNamedType())
565 return true;
566 break;
567 case lltok::GlobalID:
568 if (parseUnnamedGlobal())
569 return true;
570 break;
571 case lltok::GlobalVar:
572 if (parseNamedGlobal())
573 return true;
574 break;
575 case lltok::ComdatVar: if (parseComdat()) return true; break;
576 case lltok::exclaim:
577 if (parseStandaloneMetadata())
578 return true;
579 break;
580 case lltok::SummaryID:
581 if (parseSummaryEntry())
582 return true;
583 break;
584 case lltok::MetadataVar:
585 if (parseNamedMetadata())
586 return true;
587 break;
588 case lltok::kw_attributes:
589 if (parseUnnamedAttrGrp())
590 return true;
591 break;
592 case lltok::kw_uselistorder:
593 if (parseUseListOrder())
594 return true;
595 break;
596 case lltok::kw_uselistorder_bb:
597 if (parseUseListOrderBB())
598 return true;
599 break;
600 }
601 }
602}
603
604/// toplevelentity
605/// ::= 'module' 'asm' STRINGCONSTANT
606bool LLParser::parseModuleAsm() {
607 assert(Lex.getKind() == lltok::kw_module);
608 Lex.Lex();
609
610 std::string AsmStr;
611 if (parseToken(T: lltok::kw_asm, ErrMsg: "expected 'module asm'") ||
612 parseStringConstant(Result&: AsmStr))
613 return true;
614
615 M->appendModuleInlineAsm(Asm: AsmStr);
616 return false;
617}
618
619/// toplevelentity
620/// ::= 'target' 'triple' '=' STRINGCONSTANT
621/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
622bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
623 LocTy &DLStrLoc) {
624 assert(Lex.getKind() == lltok::kw_target);
625 std::string Str;
626 switch (Lex.Lex()) {
627 default:
628 return tokError(Msg: "unknown target property");
629 case lltok::kw_triple:
630 Lex.Lex();
631 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after target triple") ||
632 parseStringConstant(Result&: Str))
633 return true;
634 M->setTargetTriple(Str);
635 return false;
636 case lltok::kw_datalayout:
637 Lex.Lex();
638 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after target datalayout"))
639 return true;
640 DLStrLoc = Lex.getLoc();
641 if (parseStringConstant(Result&: TentativeDLStr))
642 return true;
643 return false;
644 }
645}
646
647/// toplevelentity
648/// ::= 'source_filename' '=' STRINGCONSTANT
649bool LLParser::parseSourceFileName() {
650 assert(Lex.getKind() == lltok::kw_source_filename);
651 Lex.Lex();
652 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after source_filename") ||
653 parseStringConstant(Result&: SourceFileName))
654 return true;
655 if (M)
656 M->setSourceFileName(SourceFileName);
657 return false;
658}
659
660/// parseUnnamedType:
661/// ::= LocalVarID '=' 'type' type
662bool LLParser::parseUnnamedType() {
663 LocTy TypeLoc = Lex.getLoc();
664 unsigned TypeID = Lex.getUIntVal();
665 Lex.Lex(); // eat LocalVarID;
666
667 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after name") ||
668 parseToken(T: lltok::kw_type, ErrMsg: "expected 'type' after '='"))
669 return true;
670
671 Type *Result = nullptr;
672 if (parseStructDefinition(TypeLoc, Name: "", Entry&: NumberedTypes[TypeID], ResultTy&: Result))
673 return true;
674
675 if (!isa<StructType>(Val: Result)) {
676 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
677 if (Entry.first)
678 return error(L: TypeLoc, Msg: "non-struct types may not be recursive");
679 Entry.first = Result;
680 Entry.second = SMLoc();
681 }
682
683 return false;
684}
685
686/// toplevelentity
687/// ::= LocalVar '=' 'type' type
688bool LLParser::parseNamedType() {
689 std::string Name = Lex.getStrVal();
690 LocTy NameLoc = Lex.getLoc();
691 Lex.Lex(); // eat LocalVar.
692
693 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after name") ||
694 parseToken(T: lltok::kw_type, ErrMsg: "expected 'type' after name"))
695 return true;
696
697 Type *Result = nullptr;
698 if (parseStructDefinition(TypeLoc: NameLoc, Name, Entry&: NamedTypes[Name], ResultTy&: Result))
699 return true;
700
701 if (!isa<StructType>(Val: Result)) {
702 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
703 if (Entry.first)
704 return error(L: NameLoc, Msg: "non-struct types may not be recursive");
705 Entry.first = Result;
706 Entry.second = SMLoc();
707 }
708
709 return false;
710}
711
712/// toplevelentity
713/// ::= 'declare' FunctionHeader
714bool LLParser::parseDeclare() {
715 assert(Lex.getKind() == lltok::kw_declare);
716 Lex.Lex();
717
718 std::vector<std::pair<unsigned, MDNode *>> MDs;
719 while (Lex.getKind() == lltok::MetadataVar) {
720 unsigned MDK;
721 MDNode *N;
722 if (parseMetadataAttachment(Kind&: MDK, MD&: N))
723 return true;
724 MDs.push_back(x: {MDK, N});
725 }
726
727 Function *F;
728 unsigned FunctionNumber = -1;
729 SmallVector<unsigned> UnnamedArgNums;
730 if (parseFunctionHeader(Fn&: F, IsDefine: false, FunctionNumber, UnnamedArgNums))
731 return true;
732 for (auto &MD : MDs)
733 F->addMetadata(KindID: MD.first, MD&: *MD.second);
734 return false;
735}
736
737/// toplevelentity
738/// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
739bool LLParser::parseDefine() {
740 assert(Lex.getKind() == lltok::kw_define);
741 Lex.Lex();
742
743 Function *F;
744 unsigned FunctionNumber = -1;
745 SmallVector<unsigned> UnnamedArgNums;
746 return parseFunctionHeader(Fn&: F, IsDefine: true, FunctionNumber, UnnamedArgNums) ||
747 parseOptionalFunctionMetadata(F&: *F) ||
748 parseFunctionBody(Fn&: *F, FunctionNumber, UnnamedArgNums);
749}
750
751/// parseGlobalType
752/// ::= 'constant'
753/// ::= 'global'
754bool LLParser::parseGlobalType(bool &IsConstant) {
755 if (Lex.getKind() == lltok::kw_constant)
756 IsConstant = true;
757 else if (Lex.getKind() == lltok::kw_global)
758 IsConstant = false;
759 else {
760 IsConstant = false;
761 return tokError(Msg: "expected 'global' or 'constant'");
762 }
763 Lex.Lex();
764 return false;
765}
766
767bool LLParser::parseOptionalUnnamedAddr(
768 GlobalVariable::UnnamedAddr &UnnamedAddr) {
769 if (EatIfPresent(T: lltok::kw_unnamed_addr))
770 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
771 else if (EatIfPresent(T: lltok::kw_local_unnamed_addr))
772 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
773 else
774 UnnamedAddr = GlobalValue::UnnamedAddr::None;
775 return false;
776}
777
778/// parseUnnamedGlobal:
779/// OptionalVisibility (ALIAS | IFUNC) ...
780/// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
781/// OptionalDLLStorageClass
782/// ... -> global variable
783/// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
784/// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
785/// OptionalVisibility
786/// OptionalDLLStorageClass
787/// ... -> global variable
788bool LLParser::parseUnnamedGlobal() {
789 unsigned VarID;
790 std::string Name;
791 LocTy NameLoc = Lex.getLoc();
792
793 // Handle the GlobalID form.
794 if (Lex.getKind() == lltok::GlobalID) {
795 VarID = Lex.getUIntVal();
796 if (checkValueID(L: NameLoc, Kind: "global", Prefix: "@", NextID: NumberedVals.getNext(), ID: VarID))
797 return true;
798
799 Lex.Lex(); // eat GlobalID;
800 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after name"))
801 return true;
802 } else {
803 VarID = NumberedVals.getNext();
804 }
805
806 bool HasLinkage;
807 unsigned Linkage, Visibility, DLLStorageClass;
808 bool DSOLocal;
809 GlobalVariable::ThreadLocalMode TLM;
810 GlobalVariable::UnnamedAddr UnnamedAddr;
811 if (parseOptionalLinkage(Res&: Linkage, HasLinkage, Visibility, DLLStorageClass,
812 DSOLocal) ||
813 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
814 return true;
815
816 switch (Lex.getKind()) {
817 default:
818 return parseGlobal(Name, NameID: VarID, NameLoc, Linkage, HasLinkage, Visibility,
819 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
820 case lltok::kw_alias:
821 case lltok::kw_ifunc:
822 return parseAliasOrIFunc(Name, NameID: VarID, NameLoc, L: Linkage, Visibility,
823 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
824 }
825}
826
827/// parseNamedGlobal:
828/// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
829/// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
830/// OptionalVisibility OptionalDLLStorageClass
831/// ... -> global variable
832bool LLParser::parseNamedGlobal() {
833 assert(Lex.getKind() == lltok::GlobalVar);
834 LocTy NameLoc = Lex.getLoc();
835 std::string Name = Lex.getStrVal();
836 Lex.Lex();
837
838 bool HasLinkage;
839 unsigned Linkage, Visibility, DLLStorageClass;
840 bool DSOLocal;
841 GlobalVariable::ThreadLocalMode TLM;
842 GlobalVariable::UnnamedAddr UnnamedAddr;
843 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' in global variable") ||
844 parseOptionalLinkage(Res&: Linkage, HasLinkage, Visibility, DLLStorageClass,
845 DSOLocal) ||
846 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
847 return true;
848
849 switch (Lex.getKind()) {
850 default:
851 return parseGlobal(Name, NameID: -1, NameLoc, Linkage, HasLinkage, Visibility,
852 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
853 case lltok::kw_alias:
854 case lltok::kw_ifunc:
855 return parseAliasOrIFunc(Name, NameID: -1, NameLoc, L: Linkage, Visibility,
856 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
857 }
858}
859
860bool LLParser::parseComdat() {
861 assert(Lex.getKind() == lltok::ComdatVar);
862 std::string Name = Lex.getStrVal();
863 LocTy NameLoc = Lex.getLoc();
864 Lex.Lex();
865
866 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here"))
867 return true;
868
869 if (parseToken(T: lltok::kw_comdat, ErrMsg: "expected comdat keyword"))
870 return tokError(Msg: "expected comdat type");
871
872 Comdat::SelectionKind SK;
873 switch (Lex.getKind()) {
874 default:
875 return tokError(Msg: "unknown selection kind");
876 case lltok::kw_any:
877 SK = Comdat::Any;
878 break;
879 case lltok::kw_exactmatch:
880 SK = Comdat::ExactMatch;
881 break;
882 case lltok::kw_largest:
883 SK = Comdat::Largest;
884 break;
885 case lltok::kw_nodeduplicate:
886 SK = Comdat::NoDeduplicate;
887 break;
888 case lltok::kw_samesize:
889 SK = Comdat::SameSize;
890 break;
891 }
892 Lex.Lex();
893
894 // See if the comdat was forward referenced, if so, use the comdat.
895 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
896 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Key: Name);
897 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(x: Name))
898 return error(L: NameLoc, Msg: "redefinition of comdat '$" + Name + "'");
899
900 Comdat *C;
901 if (I != ComdatSymTab.end())
902 C = &I->second;
903 else
904 C = M->getOrInsertComdat(Name);
905 C->setSelectionKind(SK);
906
907 return false;
908}
909
910// MDString:
911// ::= '!' STRINGCONSTANT
912bool LLParser::parseMDString(MDString *&Result) {
913 std::string Str;
914 if (parseStringConstant(Result&: Str))
915 return true;
916 Result = MDString::get(Context, Str);
917 return false;
918}
919
920// MDNode:
921// ::= '!' MDNodeNumber
922bool LLParser::parseMDNodeID(MDNode *&Result) {
923 // !{ ..., !42, ... }
924 LocTy IDLoc = Lex.getLoc();
925 unsigned MID = 0;
926 if (parseUInt32(Val&: MID))
927 return true;
928
929 // If not a forward reference, just return it now.
930 if (NumberedMetadata.count(x: MID)) {
931 Result = NumberedMetadata[MID];
932 return false;
933 }
934
935 // Otherwise, create MDNode forward reference.
936 auto &FwdRef = ForwardRefMDNodes[MID];
937 FwdRef = std::make_pair(x: MDTuple::getTemporary(Context, MDs: std::nullopt), y&: IDLoc);
938
939 Result = FwdRef.first.get();
940 NumberedMetadata[MID].reset(MD: Result);
941 return false;
942}
943
944/// parseNamedMetadata:
945/// !foo = !{ !1, !2 }
946bool LLParser::parseNamedMetadata() {
947 assert(Lex.getKind() == lltok::MetadataVar);
948 std::string Name = Lex.getStrVal();
949 Lex.Lex();
950
951 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here") ||
952 parseToken(T: lltok::exclaim, ErrMsg: "Expected '!' here") ||
953 parseToken(T: lltok::lbrace, ErrMsg: "Expected '{' here"))
954 return true;
955
956 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
957 if (Lex.getKind() != lltok::rbrace)
958 do {
959 MDNode *N = nullptr;
960 // parse DIExpressions inline as a special case. They are still MDNodes,
961 // so they can still appear in named metadata. Remove this logic if they
962 // become plain Metadata.
963 if (Lex.getKind() == lltok::MetadataVar &&
964 Lex.getStrVal() == "DIExpression") {
965 if (parseDIExpression(Result&: N, /*IsDistinct=*/false))
966 return true;
967 // DIArgLists should only appear inline in a function, as they may
968 // contain LocalAsMetadata arguments which require a function context.
969 } else if (Lex.getKind() == lltok::MetadataVar &&
970 Lex.getStrVal() == "DIArgList") {
971 return tokError(Msg: "found DIArgList outside of function");
972 } else if (parseToken(T: lltok::exclaim, ErrMsg: "Expected '!' here") ||
973 parseMDNodeID(Result&: N)) {
974 return true;
975 }
976 NMD->addOperand(M: N);
977 } while (EatIfPresent(T: lltok::comma));
978
979 return parseToken(T: lltok::rbrace, ErrMsg: "expected end of metadata node");
980}
981
982/// parseStandaloneMetadata:
983/// !42 = !{...}
984bool LLParser::parseStandaloneMetadata() {
985 assert(Lex.getKind() == lltok::exclaim);
986 Lex.Lex();
987 unsigned MetadataID = 0;
988
989 MDNode *Init;
990 if (parseUInt32(Val&: MetadataID) || parseToken(T: lltok::equal, ErrMsg: "expected '=' here"))
991 return true;
992
993 // Detect common error, from old metadata syntax.
994 if (Lex.getKind() == lltok::Type)
995 return tokError(Msg: "unexpected type in metadata definition");
996
997 bool IsDistinct = EatIfPresent(T: lltok::kw_distinct);
998 if (Lex.getKind() == lltok::MetadataVar) {
999 if (parseSpecializedMDNode(N&: Init, IsDistinct))
1000 return true;
1001 } else if (parseToken(T: lltok::exclaim, ErrMsg: "Expected '!' here") ||
1002 parseMDTuple(MD&: Init, IsDistinct))
1003 return true;
1004
1005 // See if this was forward referenced, if so, handle it.
1006 auto FI = ForwardRefMDNodes.find(x: MetadataID);
1007 if (FI != ForwardRefMDNodes.end()) {
1008 auto *ToReplace = FI->second.first.get();
1009 // DIAssignID has its own special forward-reference "replacement" for
1010 // attachments (the temporary attachments are never actually attached).
1011 if (isa<DIAssignID>(Val: Init)) {
1012 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
1013 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
1014 "Inst unexpectedly already has DIAssignID attachment");
1015 Inst->setMetadata(KindID: LLVMContext::MD_DIAssignID, Node: Init);
1016 }
1017 }
1018
1019 ToReplace->replaceAllUsesWith(MD: Init);
1020 ForwardRefMDNodes.erase(position: FI);
1021
1022 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
1023 } else {
1024 if (NumberedMetadata.count(x: MetadataID))
1025 return tokError(Msg: "Metadata id is already used");
1026 NumberedMetadata[MetadataID].reset(MD: Init);
1027 }
1028
1029 return false;
1030}
1031
1032// Skips a single module summary entry.
1033bool LLParser::skipModuleSummaryEntry() {
1034 // Each module summary entry consists of a tag for the entry
1035 // type, followed by a colon, then the fields which may be surrounded by
1036 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
1037 // support is in place we will look for the tokens corresponding to the
1038 // expected tags.
1039 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
1040 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
1041 Lex.getKind() != lltok::kw_blockcount)
1042 return tokError(
1043 Msg: "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
1044 "start of summary entry");
1045 if (Lex.getKind() == lltok::kw_flags)
1046 return parseSummaryIndexFlags();
1047 if (Lex.getKind() == lltok::kw_blockcount)
1048 return parseBlockCount();
1049 Lex.Lex();
1050 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' at start of summary entry") ||
1051 parseToken(T: lltok::lparen, ErrMsg: "expected '(' at start of summary entry"))
1052 return true;
1053 // Now walk through the parenthesized entry, until the number of open
1054 // parentheses goes back down to 0 (the first '(' was parsed above).
1055 unsigned NumOpenParen = 1;
1056 do {
1057 switch (Lex.getKind()) {
1058 case lltok::lparen:
1059 NumOpenParen++;
1060 break;
1061 case lltok::rparen:
1062 NumOpenParen--;
1063 break;
1064 case lltok::Eof:
1065 return tokError(Msg: "found end of file while parsing summary entry");
1066 default:
1067 // Skip everything in between parentheses.
1068 break;
1069 }
1070 Lex.Lex();
1071 } while (NumOpenParen > 0);
1072 return false;
1073}
1074
1075/// SummaryEntry
1076/// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
1077bool LLParser::parseSummaryEntry() {
1078 assert(Lex.getKind() == lltok::SummaryID);
1079 unsigned SummaryID = Lex.getUIntVal();
1080
1081 // For summary entries, colons should be treated as distinct tokens,
1082 // not an indication of the end of a label token.
1083 Lex.setIgnoreColonInIdentifiers(true);
1084
1085 Lex.Lex();
1086 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here"))
1087 return true;
1088
1089 // If we don't have an index object, skip the summary entry.
1090 if (!Index)
1091 return skipModuleSummaryEntry();
1092
1093 bool result = false;
1094 switch (Lex.getKind()) {
1095 case lltok::kw_gv:
1096 result = parseGVEntry(ID: SummaryID);
1097 break;
1098 case lltok::kw_module:
1099 result = parseModuleEntry(ID: SummaryID);
1100 break;
1101 case lltok::kw_typeid:
1102 result = parseTypeIdEntry(ID: SummaryID);
1103 break;
1104 case lltok::kw_typeidCompatibleVTable:
1105 result = parseTypeIdCompatibleVtableEntry(ID: SummaryID);
1106 break;
1107 case lltok::kw_flags:
1108 result = parseSummaryIndexFlags();
1109 break;
1110 case lltok::kw_blockcount:
1111 result = parseBlockCount();
1112 break;
1113 default:
1114 result = error(L: Lex.getLoc(), Msg: "unexpected summary kind");
1115 break;
1116 }
1117 Lex.setIgnoreColonInIdentifiers(false);
1118 return result;
1119}
1120
1121static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1122 return !GlobalValue::isLocalLinkage(Linkage: (GlobalValue::LinkageTypes)L) ||
1123 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1124}
1125static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1126 return !GlobalValue::isLocalLinkage(Linkage: (GlobalValue::LinkageTypes)L) ||
1127 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1128}
1129
1130// If there was an explicit dso_local, update GV. In the absence of an explicit
1131// dso_local we keep the default value.
1132static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1133 if (DSOLocal)
1134 GV.setDSOLocal(true);
1135}
1136
1137/// parseAliasOrIFunc:
1138/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1139/// OptionalVisibility OptionalDLLStorageClass
1140/// OptionalThreadLocal OptionalUnnamedAddr
1141/// 'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1142///
1143/// AliaseeOrResolver
1144/// ::= TypeAndValue
1145///
1146/// SymbolAttrs
1147/// ::= ',' 'partition' StringConstant
1148///
1149/// Everything through OptionalUnnamedAddr has already been parsed.
1150///
1151bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID,
1152 LocTy NameLoc, unsigned L, unsigned Visibility,
1153 unsigned DLLStorageClass, bool DSOLocal,
1154 GlobalVariable::ThreadLocalMode TLM,
1155 GlobalVariable::UnnamedAddr UnnamedAddr) {
1156 bool IsAlias;
1157 if (Lex.getKind() == lltok::kw_alias)
1158 IsAlias = true;
1159 else if (Lex.getKind() == lltok::kw_ifunc)
1160 IsAlias = false;
1161 else
1162 llvm_unreachable("Not an alias or ifunc!");
1163 Lex.Lex();
1164
1165 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1166
1167 if(IsAlias && !GlobalAlias::isValidLinkage(L: Linkage))
1168 return error(L: NameLoc, Msg: "invalid linkage type for alias");
1169
1170 if (!isValidVisibilityForLinkage(V: Visibility, L))
1171 return error(L: NameLoc,
1172 Msg: "symbol with local linkage must have default visibility");
1173
1174 if (!isValidDLLStorageClassForLinkage(S: DLLStorageClass, L))
1175 return error(L: NameLoc,
1176 Msg: "symbol with local linkage cannot have a DLL storage class");
1177
1178 Type *Ty;
1179 LocTy ExplicitTypeLoc = Lex.getLoc();
1180 if (parseType(Result&: Ty) ||
1181 parseToken(T: lltok::comma, ErrMsg: "expected comma after alias or ifunc's type"))
1182 return true;
1183
1184 Constant *Aliasee;
1185 LocTy AliaseeLoc = Lex.getLoc();
1186 if (Lex.getKind() != lltok::kw_bitcast &&
1187 Lex.getKind() != lltok::kw_getelementptr &&
1188 Lex.getKind() != lltok::kw_addrspacecast &&
1189 Lex.getKind() != lltok::kw_inttoptr) {
1190 if (parseGlobalTypeAndValue(V&: Aliasee))
1191 return true;
1192 } else {
1193 // The bitcast dest type is not present, it is implied by the dest type.
1194 ValID ID;
1195 if (parseValID(ID, /*PFS=*/nullptr))
1196 return true;
1197 if (ID.Kind != ValID::t_Constant)
1198 return error(L: AliaseeLoc, Msg: "invalid aliasee");
1199 Aliasee = ID.ConstantVal;
1200 }
1201
1202 Type *AliaseeType = Aliasee->getType();
1203 auto *PTy = dyn_cast<PointerType>(Val: AliaseeType);
1204 if (!PTy)
1205 return error(L: AliaseeLoc, Msg: "An alias or ifunc must have pointer type");
1206 unsigned AddrSpace = PTy->getAddressSpace();
1207
1208 GlobalValue *GVal = nullptr;
1209
1210 // See if the alias was forward referenced, if so, prepare to replace the
1211 // forward reference.
1212 if (!Name.empty()) {
1213 auto I = ForwardRefVals.find(x: Name);
1214 if (I != ForwardRefVals.end()) {
1215 GVal = I->second.first;
1216 ForwardRefVals.erase(x: Name);
1217 } else if (M->getNamedValue(Name)) {
1218 return error(L: NameLoc, Msg: "redefinition of global '@" + Name + "'");
1219 }
1220 } else {
1221 auto I = ForwardRefValIDs.find(x: NameID);
1222 if (I != ForwardRefValIDs.end()) {
1223 GVal = I->second.first;
1224 ForwardRefValIDs.erase(position: I);
1225 }
1226 }
1227
1228 // Okay, create the alias/ifunc but do not insert it into the module yet.
1229 std::unique_ptr<GlobalAlias> GA;
1230 std::unique_ptr<GlobalIFunc> GI;
1231 GlobalValue *GV;
1232 if (IsAlias) {
1233 GA.reset(p: GlobalAlias::create(Ty, AddressSpace: AddrSpace,
1234 Linkage: (GlobalValue::LinkageTypes)Linkage, Name,
1235 Aliasee, /*Parent*/ nullptr));
1236 GV = GA.get();
1237 } else {
1238 GI.reset(p: GlobalIFunc::create(Ty, AddressSpace: AddrSpace,
1239 Linkage: (GlobalValue::LinkageTypes)Linkage, Name,
1240 Resolver: Aliasee, /*Parent*/ nullptr));
1241 GV = GI.get();
1242 }
1243 GV->setThreadLocalMode(TLM);
1244 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1245 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1246 GV->setUnnamedAddr(UnnamedAddr);
1247 maybeSetDSOLocal(DSOLocal, GV&: *GV);
1248
1249 // At this point we've parsed everything except for the IndirectSymbolAttrs.
1250 // Now parse them if there are any.
1251 while (Lex.getKind() == lltok::comma) {
1252 Lex.Lex();
1253
1254 if (Lex.getKind() == lltok::kw_partition) {
1255 Lex.Lex();
1256 GV->setPartition(Lex.getStrVal());
1257 if (parseToken(T: lltok::StringConstant, ErrMsg: "expected partition string"))
1258 return true;
1259 } else {
1260 return tokError(Msg: "unknown alias or ifunc property!");
1261 }
1262 }
1263
1264 if (Name.empty())
1265 NumberedVals.add(ID: NameID, V: GV);
1266
1267 if (GVal) {
1268 // Verify that types agree.
1269 if (GVal->getType() != GV->getType())
1270 return error(
1271 L: ExplicitTypeLoc,
1272 Msg: "forward reference and definition of alias have different types");
1273
1274 // If they agree, just RAUW the old value with the alias and remove the
1275 // forward ref info.
1276 GVal->replaceAllUsesWith(V: GV);
1277 GVal->eraseFromParent();
1278 }
1279
1280 // Insert into the module, we know its name won't collide now.
1281 if (IsAlias)
1282 M->insertAlias(Alias: GA.release());
1283 else
1284 M->insertIFunc(IFunc: GI.release());
1285 assert(GV->getName() == Name && "Should not be a name conflict!");
1286
1287 return false;
1288}
1289
1290static bool isSanitizer(lltok::Kind Kind) {
1291 switch (Kind) {
1292 case lltok::kw_no_sanitize_address:
1293 case lltok::kw_no_sanitize_hwaddress:
1294 case lltok::kw_sanitize_memtag:
1295 case lltok::kw_sanitize_address_dyninit:
1296 return true;
1297 default:
1298 return false;
1299 }
1300}
1301
1302bool LLParser::parseSanitizer(GlobalVariable *GV) {
1303 using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1304 SanitizerMetadata Meta;
1305 if (GV->hasSanitizerMetadata())
1306 Meta = GV->getSanitizerMetadata();
1307
1308 switch (Lex.getKind()) {
1309 case lltok::kw_no_sanitize_address:
1310 Meta.NoAddress = true;
1311 break;
1312 case lltok::kw_no_sanitize_hwaddress:
1313 Meta.NoHWAddress = true;
1314 break;
1315 case lltok::kw_sanitize_memtag:
1316 Meta.Memtag = true;
1317 break;
1318 case lltok::kw_sanitize_address_dyninit:
1319 Meta.IsDynInit = true;
1320 break;
1321 default:
1322 return tokError(Msg: "non-sanitizer token passed to LLParser::parseSanitizer()");
1323 }
1324 GV->setSanitizerMetadata(Meta);
1325 Lex.Lex();
1326 return false;
1327}
1328
1329/// parseGlobal
1330/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1331/// OptionalVisibility OptionalDLLStorageClass
1332/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1333/// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1334/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1335/// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1336/// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1337/// Const OptionalAttrs
1338///
1339/// Everything up to and including OptionalUnnamedAddr has been parsed
1340/// already.
1341///
1342bool LLParser::parseGlobal(const std::string &Name, unsigned NameID,
1343 LocTy NameLoc, unsigned Linkage, bool HasLinkage,
1344 unsigned Visibility, unsigned DLLStorageClass,
1345 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1346 GlobalVariable::UnnamedAddr UnnamedAddr) {
1347 if (!isValidVisibilityForLinkage(V: Visibility, L: Linkage))
1348 return error(L: NameLoc,
1349 Msg: "symbol with local linkage must have default visibility");
1350
1351 if (!isValidDLLStorageClassForLinkage(S: DLLStorageClass, L: Linkage))
1352 return error(L: NameLoc,
1353 Msg: "symbol with local linkage cannot have a DLL storage class");
1354
1355 unsigned AddrSpace;
1356 bool IsConstant, IsExternallyInitialized;
1357 LocTy IsExternallyInitializedLoc;
1358 LocTy TyLoc;
1359
1360 Type *Ty = nullptr;
1361 if (parseOptionalAddrSpace(AddrSpace) ||
1362 parseOptionalToken(T: lltok::kw_externally_initialized,
1363 Present&: IsExternallyInitialized,
1364 Loc: &IsExternallyInitializedLoc) ||
1365 parseGlobalType(IsConstant) || parseType(Result&: Ty, Loc&: TyLoc))
1366 return true;
1367
1368 // If the linkage is specified and is external, then no initializer is
1369 // present.
1370 Constant *Init = nullptr;
1371 if (!HasLinkage ||
1372 !GlobalValue::isValidDeclarationLinkage(
1373 Linkage: (GlobalValue::LinkageTypes)Linkage)) {
1374 if (parseGlobalValue(Ty, C&: Init))
1375 return true;
1376 }
1377
1378 if (Ty->isFunctionTy() || !PointerType::isValidElementType(ElemTy: Ty))
1379 return error(L: TyLoc, Msg: "invalid type for global variable");
1380
1381 GlobalValue *GVal = nullptr;
1382
1383 // See if the global was forward referenced, if so, use the global.
1384 if (!Name.empty()) {
1385 auto I = ForwardRefVals.find(x: Name);
1386 if (I != ForwardRefVals.end()) {
1387 GVal = I->second.first;
1388 ForwardRefVals.erase(position: I);
1389 } else if (M->getNamedValue(Name)) {
1390 return error(L: NameLoc, Msg: "redefinition of global '@" + Name + "'");
1391 }
1392 } else {
1393 // Handle @"", where a name is syntactically specified, but semantically
1394 // missing.
1395 if (NameID == (unsigned)-1)
1396 NameID = NumberedVals.getNext();
1397
1398 auto I = ForwardRefValIDs.find(x: NameID);
1399 if (I != ForwardRefValIDs.end()) {
1400 GVal = I->second.first;
1401 ForwardRefValIDs.erase(position: I);
1402 }
1403 }
1404
1405 GlobalVariable *GV = new GlobalVariable(
1406 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1407 GlobalVariable::NotThreadLocal, AddrSpace);
1408
1409 if (Name.empty())
1410 NumberedVals.add(ID: NameID, V: GV);
1411
1412 // Set the parsed properties on the global.
1413 if (Init)
1414 GV->setInitializer(Init);
1415 GV->setConstant(IsConstant);
1416 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1417 maybeSetDSOLocal(DSOLocal, GV&: *GV);
1418 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1419 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1420 GV->setExternallyInitialized(IsExternallyInitialized);
1421 GV->setThreadLocalMode(TLM);
1422 GV->setUnnamedAddr(UnnamedAddr);
1423
1424 if (GVal) {
1425 if (GVal->getAddressSpace() != AddrSpace)
1426 return error(
1427 L: TyLoc,
1428 Msg: "forward reference and definition of global have different types");
1429
1430 GVal->replaceAllUsesWith(V: GV);
1431 GVal->eraseFromParent();
1432 }
1433
1434 // parse attributes on the global.
1435 while (Lex.getKind() == lltok::comma) {
1436 Lex.Lex();
1437
1438 if (Lex.getKind() == lltok::kw_section) {
1439 Lex.Lex();
1440 GV->setSection(Lex.getStrVal());
1441 if (parseToken(T: lltok::StringConstant, ErrMsg: "expected global section string"))
1442 return true;
1443 } else if (Lex.getKind() == lltok::kw_partition) {
1444 Lex.Lex();
1445 GV->setPartition(Lex.getStrVal());
1446 if (parseToken(T: lltok::StringConstant, ErrMsg: "expected partition string"))
1447 return true;
1448 } else if (Lex.getKind() == lltok::kw_align) {
1449 MaybeAlign Alignment;
1450 if (parseOptionalAlignment(Alignment))
1451 return true;
1452 if (Alignment)
1453 GV->setAlignment(*Alignment);
1454 } else if (Lex.getKind() == lltok::kw_code_model) {
1455 CodeModel::Model CodeModel;
1456 if (parseOptionalCodeModel(model&: CodeModel))
1457 return true;
1458 GV->setCodeModel(CodeModel);
1459 } else if (Lex.getKind() == lltok::MetadataVar) {
1460 if (parseGlobalObjectMetadataAttachment(GO&: *GV))
1461 return true;
1462 } else if (isSanitizer(Kind: Lex.getKind())) {
1463 if (parseSanitizer(GV))
1464 return true;
1465 } else {
1466 Comdat *C;
1467 if (parseOptionalComdat(GlobalName: Name, C))
1468 return true;
1469 if (C)
1470 GV->setComdat(C);
1471 else
1472 return tokError(Msg: "unknown global variable property!");
1473 }
1474 }
1475
1476 AttrBuilder Attrs(M->getContext());
1477 LocTy BuiltinLoc;
1478 std::vector<unsigned> FwdRefAttrGrps;
1479 if (parseFnAttributeValuePairs(B&: Attrs, FwdRefAttrGrps, inAttrGrp: false, BuiltinLoc))
1480 return true;
1481 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1482 GV->setAttributes(AttributeSet::get(C&: Context, B: Attrs));
1483 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1484 }
1485
1486 return false;
1487}
1488
1489/// parseUnnamedAttrGrp
1490/// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1491bool LLParser::parseUnnamedAttrGrp() {
1492 assert(Lex.getKind() == lltok::kw_attributes);
1493 LocTy AttrGrpLoc = Lex.getLoc();
1494 Lex.Lex();
1495
1496 if (Lex.getKind() != lltok::AttrGrpID)
1497 return tokError(Msg: "expected attribute group id");
1498
1499 unsigned VarID = Lex.getUIntVal();
1500 std::vector<unsigned> unused;
1501 LocTy BuiltinLoc;
1502 Lex.Lex();
1503
1504 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here") ||
1505 parseToken(T: lltok::lbrace, ErrMsg: "expected '{' here"))
1506 return true;
1507
1508 auto R = NumberedAttrBuilders.find(x: VarID);
1509 if (R == NumberedAttrBuilders.end())
1510 R = NumberedAttrBuilders.emplace(args&: VarID, args: AttrBuilder(M->getContext())).first;
1511
1512 if (parseFnAttributeValuePairs(B&: R->second, FwdRefAttrGrps&: unused, inAttrGrp: true, BuiltinLoc) ||
1513 parseToken(T: lltok::rbrace, ErrMsg: "expected end of attribute group"))
1514 return true;
1515
1516 if (!R->second.hasAttributes())
1517 return error(L: AttrGrpLoc, Msg: "attribute group has no attributes");
1518
1519 return false;
1520}
1521
1522static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1523 switch (Kind) {
1524#define GET_ATTR_NAMES
1525#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1526 case lltok::kw_##DISPLAY_NAME: \
1527 return Attribute::ENUM_NAME;
1528#include "llvm/IR/Attributes.inc"
1529 default:
1530 return Attribute::None;
1531 }
1532}
1533
1534bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1535 bool InAttrGroup) {
1536 if (Attribute::isTypeAttrKind(Kind: Attr))
1537 return parseRequiredTypeAttr(B, AttrToken: Lex.getKind(), AttrKind: Attr);
1538
1539 switch (Attr) {
1540 case Attribute::Alignment: {
1541 MaybeAlign Alignment;
1542 if (InAttrGroup) {
1543 uint32_t Value = 0;
1544 Lex.Lex();
1545 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here") || parseUInt32(Val&: Value))
1546 return true;
1547 Alignment = Align(Value);
1548 } else {
1549 if (parseOptionalAlignment(Alignment, AllowParens: true))
1550 return true;
1551 }
1552 B.addAlignmentAttr(Align: Alignment);
1553 return false;
1554 }
1555 case Attribute::StackAlignment: {
1556 unsigned Alignment;
1557 if (InAttrGroup) {
1558 Lex.Lex();
1559 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' here") ||
1560 parseUInt32(Val&: Alignment))
1561 return true;
1562 } else {
1563 if (parseOptionalStackAlignment(Alignment))
1564 return true;
1565 }
1566 B.addStackAlignmentAttr(Align: Alignment);
1567 return false;
1568 }
1569 case Attribute::AllocSize: {
1570 unsigned ElemSizeArg;
1571 std::optional<unsigned> NumElemsArg;
1572 if (parseAllocSizeArguments(BaseSizeArg&: ElemSizeArg, HowManyArg&: NumElemsArg))
1573 return true;
1574 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1575 return false;
1576 }
1577 case Attribute::VScaleRange: {
1578 unsigned MinValue, MaxValue;
1579 if (parseVScaleRangeArguments(MinValue, MaxValue))
1580 return true;
1581 B.addVScaleRangeAttr(MinValue,
1582 MaxValue: MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1583 return false;
1584 }
1585 case Attribute::Dereferenceable: {
1586 uint64_t Bytes;
1587 if (parseOptionalDerefAttrBytes(lltok::AttrKind: kw_dereferenceable, Bytes))
1588 return true;
1589 B.addDereferenceableAttr(Bytes);
1590 return false;
1591 }
1592 case Attribute::DereferenceableOrNull: {
1593 uint64_t Bytes;
1594 if (parseOptionalDerefAttrBytes(lltok::AttrKind: kw_dereferenceable_or_null, Bytes))
1595 return true;
1596 B.addDereferenceableOrNullAttr(Bytes);
1597 return false;
1598 }
1599 case Attribute::UWTable: {
1600 UWTableKind Kind;
1601 if (parseOptionalUWTableKind(Kind))
1602 return true;
1603 B.addUWTableAttr(Kind);
1604 return false;
1605 }
1606 case Attribute::AllocKind: {
1607 AllocFnKind Kind = AllocFnKind::Unknown;
1608 if (parseAllocKind(Kind))
1609 return true;
1610 B.addAllocKindAttr(Kind);
1611 return false;
1612 }
1613 case Attribute::Memory: {
1614 std::optional<MemoryEffects> ME = parseMemoryAttr();
1615 if (!ME)
1616 return true;
1617 B.addMemoryAttr(ME: *ME);
1618 return false;
1619 }
1620 case Attribute::NoFPClass: {
1621 if (FPClassTest NoFPClass =
1622 static_cast<FPClassTest>(parseNoFPClassAttr())) {
1623 B.addNoFPClassAttr(NoFPClassMask: NoFPClass);
1624 return false;
1625 }
1626
1627 return true;
1628 }
1629 case Attribute::Range:
1630 return parseRangeAttr(B);
1631 default:
1632 B.addAttribute(Val: Attr);
1633 Lex.Lex();
1634 return false;
1635 }
1636}
1637
1638static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1639 switch (Kind) {
1640 case lltok::kw_readnone:
1641 ME &= MemoryEffects::none();
1642 return true;
1643 case lltok::kw_readonly:
1644 ME &= MemoryEffects::readOnly();
1645 return true;
1646 case lltok::kw_writeonly:
1647 ME &= MemoryEffects::writeOnly();
1648 return true;
1649 case lltok::kw_argmemonly:
1650 ME &= MemoryEffects::argMemOnly();
1651 return true;
1652 case lltok::kw_inaccessiblememonly:
1653 ME &= MemoryEffects::inaccessibleMemOnly();
1654 return true;
1655 case lltok::kw_inaccessiblemem_or_argmemonly:
1656 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1657 return true;
1658 default:
1659 return false;
1660 }
1661}
1662
1663/// parseFnAttributeValuePairs
1664/// ::= <attr> | <attr> '=' <value>
1665bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1666 std::vector<unsigned> &FwdRefAttrGrps,
1667 bool InAttrGrp, LocTy &BuiltinLoc) {
1668 bool HaveError = false;
1669
1670 B.clear();
1671
1672 MemoryEffects ME = MemoryEffects::unknown();
1673 while (true) {
1674 lltok::Kind Token = Lex.getKind();
1675 if (Token == lltok::rbrace)
1676 break; // Finished.
1677
1678 if (Token == lltok::StringConstant) {
1679 if (parseStringAttribute(B))
1680 return true;
1681 continue;
1682 }
1683
1684 if (Token == lltok::AttrGrpID) {
1685 // Allow a function to reference an attribute group:
1686 //
1687 // define void @foo() #1 { ... }
1688 if (InAttrGrp) {
1689 HaveError |= error(
1690 L: Lex.getLoc(),
1691 Msg: "cannot have an attribute group reference in an attribute group");
1692 } else {
1693 // Save the reference to the attribute group. We'll fill it in later.
1694 FwdRefAttrGrps.push_back(x: Lex.getUIntVal());
1695 }
1696 Lex.Lex();
1697 continue;
1698 }
1699
1700 SMLoc Loc = Lex.getLoc();
1701 if (Token == lltok::kw_builtin)
1702 BuiltinLoc = Loc;
1703
1704 if (upgradeMemoryAttr(ME, Kind: Token)) {
1705 Lex.Lex();
1706 continue;
1707 }
1708
1709 Attribute::AttrKind Attr = tokenToAttribute(Kind: Token);
1710 if (Attr == Attribute::None) {
1711 if (!InAttrGrp)
1712 break;
1713 return error(L: Lex.getLoc(), Msg: "unterminated attribute group");
1714 }
1715
1716 if (parseEnumAttribute(Attr, B, InAttrGroup: InAttrGrp))
1717 return true;
1718
1719 // As a hack, we allow function alignment to be initially parsed as an
1720 // attribute on a function declaration/definition or added to an attribute
1721 // group and later moved to the alignment field.
1722 if (!Attribute::canUseAsFnAttr(Kind: Attr) && Attr != Attribute::Alignment)
1723 HaveError |= error(L: Loc, Msg: "this attribute does not apply to functions");
1724 }
1725
1726 if (ME != MemoryEffects::unknown())
1727 B.addMemoryAttr(ME);
1728 return HaveError;
1729}
1730
1731//===----------------------------------------------------------------------===//
1732// GlobalValue Reference/Resolution Routines.
1733//===----------------------------------------------------------------------===//
1734
1735static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1736 // The used global type does not matter. We will later RAUW it with a
1737 // global/function of the correct type.
1738 return new GlobalVariable(*M, Type::getInt8Ty(C&: M->getContext()), false,
1739 GlobalValue::ExternalWeakLinkage, nullptr, "",
1740 nullptr, GlobalVariable::NotThreadLocal,
1741 PTy->getAddressSpace());
1742}
1743
1744Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1745 Value *Val) {
1746 Type *ValTy = Val->getType();
1747 if (ValTy == Ty)
1748 return Val;
1749 if (Ty->isLabelTy())
1750 error(L: Loc, Msg: "'" + Name + "' is not a basic block");
1751 else
1752 error(L: Loc, Msg: "'" + Name + "' defined with type '" +
1753 getTypeString(T: Val->getType()) + "' but expected '" +
1754 getTypeString(T: Ty) + "'");
1755 return nullptr;
1756}
1757
1758/// getGlobalVal - Get a value with the specified name or ID, creating a
1759/// forward reference record if needed. This can return null if the value
1760/// exists but does not have the right type.
1761GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1762 LocTy Loc) {
1763 PointerType *PTy = dyn_cast<PointerType>(Val: Ty);
1764 if (!PTy) {
1765 error(L: Loc, Msg: "global variable reference must have pointer type");
1766 return nullptr;
1767 }
1768
1769 // Look this name up in the normal function symbol table.
1770 GlobalValue *Val =
1771 cast_or_null<GlobalValue>(Val: M->getValueSymbolTable().lookup(Name));
1772
1773 // If this is a forward reference for the value, see if we already created a
1774 // forward ref record.
1775 if (!Val) {
1776 auto I = ForwardRefVals.find(x: Name);
1777 if (I != ForwardRefVals.end())
1778 Val = I->second.first;
1779 }
1780
1781 // If we have the value in the symbol table or fwd-ref table, return it.
1782 if (Val)
1783 return cast_or_null<GlobalValue>(
1784 Val: checkValidVariableType(Loc, Name: "@" + Name, Ty, Val));
1785
1786 // Otherwise, create a new forward reference for this value and remember it.
1787 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1788 ForwardRefVals[Name] = std::make_pair(x&: FwdVal, y&: Loc);
1789 return FwdVal;
1790}
1791
1792GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1793 PointerType *PTy = dyn_cast<PointerType>(Val: Ty);
1794 if (!PTy) {
1795 error(L: Loc, Msg: "global variable reference must have pointer type");
1796 return nullptr;
1797 }
1798
1799 GlobalValue *Val = NumberedVals.get(ID);
1800
1801 // If this is a forward reference for the value, see if we already created a
1802 // forward ref record.
1803 if (!Val) {
1804 auto I = ForwardRefValIDs.find(x: ID);
1805 if (I != ForwardRefValIDs.end())
1806 Val = I->second.first;
1807 }
1808
1809 // If we have the value in the symbol table or fwd-ref table, return it.
1810 if (Val)
1811 return cast_or_null<GlobalValue>(
1812 Val: checkValidVariableType(Loc, Name: "@" + Twine(ID), Ty, Val));
1813
1814 // Otherwise, create a new forward reference for this value and remember it.
1815 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1816 ForwardRefValIDs[ID] = std::make_pair(x&: FwdVal, y&: Loc);
1817 return FwdVal;
1818}
1819
1820//===----------------------------------------------------------------------===//
1821// Comdat Reference/Resolution Routines.
1822//===----------------------------------------------------------------------===//
1823
1824Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1825 // Look this name up in the comdat symbol table.
1826 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1827 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Key: Name);
1828 if (I != ComdatSymTab.end())
1829 return &I->second;
1830
1831 // Otherwise, create a new forward reference for this value and remember it.
1832 Comdat *C = M->getOrInsertComdat(Name);
1833 ForwardRefComdats[Name] = Loc;
1834 return C;
1835}
1836
1837//===----------------------------------------------------------------------===//
1838// Helper Routines.
1839//===----------------------------------------------------------------------===//
1840
1841/// parseToken - If the current token has the specified kind, eat it and return
1842/// success. Otherwise, emit the specified error and return failure.
1843bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1844 if (Lex.getKind() != T)
1845 return tokError(Msg: ErrMsg);
1846 Lex.Lex();
1847 return false;
1848}
1849
1850/// parseStringConstant
1851/// ::= StringConstant
1852bool LLParser::parseStringConstant(std::string &Result) {
1853 if (Lex.getKind() != lltok::StringConstant)
1854 return tokError(Msg: "expected string constant");
1855 Result = Lex.getStrVal();
1856 Lex.Lex();
1857 return false;
1858}
1859
1860/// parseUInt32
1861/// ::= uint32
1862bool LLParser::parseUInt32(uint32_t &Val) {
1863 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1864 return tokError(Msg: "expected integer");
1865 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(Limit: 0xFFFFFFFFULL+1);
1866 if (Val64 != unsigned(Val64))
1867 return tokError(Msg: "expected 32-bit integer (too large)");
1868 Val = Val64;
1869 Lex.Lex();
1870 return false;
1871}
1872
1873/// parseUInt64
1874/// ::= uint64
1875bool LLParser::parseUInt64(uint64_t &Val) {
1876 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1877 return tokError(Msg: "expected integer");
1878 Val = Lex.getAPSIntVal().getLimitedValue();
1879 Lex.Lex();
1880 return false;
1881}
1882
1883/// parseTLSModel
1884/// := 'localdynamic'
1885/// := 'initialexec'
1886/// := 'localexec'
1887bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1888 switch (Lex.getKind()) {
1889 default:
1890 return tokError(Msg: "expected localdynamic, initialexec or localexec");
1891 case lltok::kw_localdynamic:
1892 TLM = GlobalVariable::LocalDynamicTLSModel;
1893 break;
1894 case lltok::kw_initialexec:
1895 TLM = GlobalVariable::InitialExecTLSModel;
1896 break;
1897 case lltok::kw_localexec:
1898 TLM = GlobalVariable::LocalExecTLSModel;
1899 break;
1900 }
1901
1902 Lex.Lex();
1903 return false;
1904}
1905
1906/// parseOptionalThreadLocal
1907/// := /*empty*/
1908/// := 'thread_local'
1909/// := 'thread_local' '(' tlsmodel ')'
1910bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1911 TLM = GlobalVariable::NotThreadLocal;
1912 if (!EatIfPresent(T: lltok::kw_thread_local))
1913 return false;
1914
1915 TLM = GlobalVariable::GeneralDynamicTLSModel;
1916 if (Lex.getKind() == lltok::lparen) {
1917 Lex.Lex();
1918 return parseTLSModel(TLM) ||
1919 parseToken(T: lltok::rparen, ErrMsg: "expected ')' after thread local model");
1920 }
1921 return false;
1922}
1923
1924/// parseOptionalAddrSpace
1925/// := /*empty*/
1926/// := 'addrspace' '(' uint32 ')'
1927bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1928 AddrSpace = DefaultAS;
1929 if (!EatIfPresent(T: lltok::kw_addrspace))
1930 return false;
1931
1932 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1933 if (Lex.getKind() == lltok::StringConstant) {
1934 auto AddrSpaceStr = Lex.getStrVal();
1935 if (AddrSpaceStr == "A") {
1936 AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1937 } else if (AddrSpaceStr == "G") {
1938 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1939 } else if (AddrSpaceStr == "P") {
1940 AddrSpace = M->getDataLayout().getProgramAddressSpace();
1941 } else {
1942 return tokError(Msg: "invalid symbolic addrspace '" + AddrSpaceStr + "'");
1943 }
1944 Lex.Lex();
1945 return false;
1946 }
1947 if (Lex.getKind() != lltok::APSInt)
1948 return tokError(Msg: "expected integer or string constant");
1949 SMLoc Loc = Lex.getLoc();
1950 if (parseUInt32(Val&: AddrSpace))
1951 return true;
1952 if (!isUInt<24>(x: AddrSpace))
1953 return error(L: Loc, Msg: "invalid address space, must be a 24-bit integer");
1954 return false;
1955 };
1956
1957 return parseToken(T: lltok::lparen, ErrMsg: "expected '(' in address space") ||
1958 ParseAddrspaceValue(AddrSpace) ||
1959 parseToken(T: lltok::rparen, ErrMsg: "expected ')' in address space");
1960}
1961
1962/// parseStringAttribute
1963/// := StringConstant
1964/// := StringConstant '=' StringConstant
1965bool LLParser::parseStringAttribute(AttrBuilder &B) {
1966 std::string Attr = Lex.getStrVal();
1967 Lex.Lex();
1968 std::string Val;
1969 if (EatIfPresent(T: lltok::equal) && parseStringConstant(Result&: Val))
1970 return true;
1971 B.addAttribute(A: Attr, V: Val);
1972 return false;
1973}
1974
1975/// Parse a potentially empty list of parameter or return attributes.
1976bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1977 bool HaveError = false;
1978
1979 B.clear();
1980
1981 while (true) {
1982 lltok::Kind Token = Lex.getKind();
1983 if (Token == lltok::StringConstant) {
1984 if (parseStringAttribute(B))
1985 return true;
1986 continue;
1987 }
1988
1989 SMLoc Loc = Lex.getLoc();
1990 Attribute::AttrKind Attr = tokenToAttribute(Kind: Token);
1991 if (Attr == Attribute::None)
1992 return HaveError;
1993
1994 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1995 return true;
1996
1997 if (IsParam && !Attribute::canUseAsParamAttr(Kind: Attr))
1998 HaveError |= error(L: Loc, Msg: "this attribute does not apply to parameters");
1999 if (!IsParam && !Attribute::canUseAsRetAttr(Kind: Attr))
2000 HaveError |= error(L: Loc, Msg: "this attribute does not apply to return values");
2001 }
2002}
2003
2004static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
2005 HasLinkage = true;
2006 switch (Kind) {
2007 default:
2008 HasLinkage = false;
2009 return GlobalValue::ExternalLinkage;
2010 case lltok::kw_private:
2011 return GlobalValue::PrivateLinkage;
2012 case lltok::kw_internal:
2013 return GlobalValue::InternalLinkage;
2014 case lltok::kw_weak:
2015 return GlobalValue::WeakAnyLinkage;
2016 case lltok::kw_weak_odr:
2017 return GlobalValue::WeakODRLinkage;
2018 case lltok::kw_linkonce:
2019 return GlobalValue::LinkOnceAnyLinkage;
2020 case lltok::kw_linkonce_odr:
2021 return GlobalValue::LinkOnceODRLinkage;
2022 case lltok::kw_available_externally:
2023 return GlobalValue::AvailableExternallyLinkage;
2024 case lltok::kw_appending:
2025 return GlobalValue::AppendingLinkage;
2026 case lltok::kw_common:
2027 return GlobalValue::CommonLinkage;
2028 case lltok::kw_extern_weak:
2029 return GlobalValue::ExternalWeakLinkage;
2030 case lltok::kw_external:
2031 return GlobalValue::ExternalLinkage;
2032 }
2033}
2034
2035/// parseOptionalLinkage
2036/// ::= /*empty*/
2037/// ::= 'private'
2038/// ::= 'internal'
2039/// ::= 'weak'
2040/// ::= 'weak_odr'
2041/// ::= 'linkonce'
2042/// ::= 'linkonce_odr'
2043/// ::= 'available_externally'
2044/// ::= 'appending'
2045/// ::= 'common'
2046/// ::= 'extern_weak'
2047/// ::= 'external'
2048bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2049 unsigned &Visibility,
2050 unsigned &DLLStorageClass, bool &DSOLocal) {
2051 Res = parseOptionalLinkageAux(Kind: Lex.getKind(), HasLinkage);
2052 if (HasLinkage)
2053 Lex.Lex();
2054 parseOptionalDSOLocal(DSOLocal);
2055 parseOptionalVisibility(Res&: Visibility);
2056 parseOptionalDLLStorageClass(Res&: DLLStorageClass);
2057
2058 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2059 return error(L: Lex.getLoc(), Msg: "dso_location and DLL-StorageClass mismatch");
2060 }
2061
2062 return false;
2063}
2064
2065void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2066 switch (Lex.getKind()) {
2067 default:
2068 DSOLocal = false;
2069 break;
2070 case lltok::kw_dso_local:
2071 DSOLocal = true;
2072 Lex.Lex();
2073 break;
2074 case lltok::kw_dso_preemptable:
2075 DSOLocal = false;
2076 Lex.Lex();
2077 break;
2078 }
2079}
2080
2081/// parseOptionalVisibility
2082/// ::= /*empty*/
2083/// ::= 'default'
2084/// ::= 'hidden'
2085/// ::= 'protected'
2086///
2087void LLParser::parseOptionalVisibility(unsigned &Res) {
2088 switch (Lex.getKind()) {
2089 default:
2090 Res = GlobalValue::DefaultVisibility;
2091 return;
2092 case lltok::kw_default:
2093 Res = GlobalValue::DefaultVisibility;
2094 break;
2095 case lltok::kw_hidden:
2096 Res = GlobalValue::HiddenVisibility;
2097 break;
2098 case lltok::kw_protected:
2099 Res = GlobalValue::ProtectedVisibility;
2100 break;
2101 }
2102 Lex.Lex();
2103}
2104
2105bool LLParser::parseOptionalImportType(lltok::Kind Kind,
2106 GlobalValueSummary::ImportKind &Res) {
2107 switch (Kind) {
2108 default:
2109 return tokError(Msg: "unknown import kind. Expect definition or declaration.");
2110 case lltok::kw_definition:
2111 Res = GlobalValueSummary::Definition;
2112 return false;
2113 case lltok::kw_declaration:
2114 Res = GlobalValueSummary::Declaration;
2115 return false;
2116 }
2117}
2118
2119/// parseOptionalDLLStorageClass
2120/// ::= /*empty*/
2121/// ::= 'dllimport'
2122/// ::= 'dllexport'
2123///
2124void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2125 switch (Lex.getKind()) {
2126 default:
2127 Res = GlobalValue::DefaultStorageClass;
2128 return;
2129 case lltok::kw_dllimport:
2130 Res = GlobalValue::DLLImportStorageClass;
2131 break;
2132 case lltok::kw_dllexport:
2133 Res = GlobalValue::DLLExportStorageClass;
2134 break;
2135 }
2136 Lex.Lex();
2137}
2138
2139/// parseOptionalCallingConv
2140/// ::= /*empty*/
2141/// ::= 'ccc'
2142/// ::= 'fastcc'
2143/// ::= 'intel_ocl_bicc'
2144/// ::= 'coldcc'
2145/// ::= 'cfguard_checkcc'
2146/// ::= 'x86_stdcallcc'
2147/// ::= 'x86_fastcallcc'
2148/// ::= 'x86_thiscallcc'
2149/// ::= 'x86_vectorcallcc'
2150/// ::= 'arm_apcscc'
2151/// ::= 'arm_aapcscc'
2152/// ::= 'arm_aapcs_vfpcc'
2153/// ::= 'aarch64_vector_pcs'
2154/// ::= 'aarch64_sve_vector_pcs'
2155/// ::= 'aarch64_sme_preservemost_from_x0'
2156/// ::= 'aarch64_sme_preservemost_from_x2'
2157/// ::= 'msp430_intrcc'
2158/// ::= 'avr_intrcc'
2159/// ::= 'avr_signalcc'
2160/// ::= 'ptx_kernel'
2161/// ::= 'ptx_device'
2162/// ::= 'spir_func'
2163/// ::= 'spir_kernel'
2164/// ::= 'x86_64_sysvcc'
2165/// ::= 'win64cc'
2166/// ::= 'anyregcc'
2167/// ::= 'preserve_mostcc'
2168/// ::= 'preserve_allcc'
2169/// ::= 'preserve_nonecc'
2170/// ::= 'ghccc'
2171/// ::= 'swiftcc'
2172/// ::= 'swifttailcc'
2173/// ::= 'x86_intrcc'
2174/// ::= 'hhvmcc'
2175/// ::= 'hhvm_ccc'
2176/// ::= 'cxx_fast_tlscc'
2177/// ::= 'amdgpu_vs'
2178/// ::= 'amdgpu_ls'
2179/// ::= 'amdgpu_hs'
2180/// ::= 'amdgpu_es'
2181/// ::= 'amdgpu_gs'
2182/// ::= 'amdgpu_ps'
2183/// ::= 'amdgpu_cs'
2184/// ::= 'amdgpu_cs_chain'
2185/// ::= 'amdgpu_cs_chain_preserve'
2186/// ::= 'amdgpu_kernel'
2187/// ::= 'tailcc'
2188/// ::= 'm68k_rtdcc'
2189/// ::= 'graalcc'
2190/// ::= 'riscv_vector_cc'
2191/// ::= 'cc' UINT
2192///
2193bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2194 switch (Lex.getKind()) {
2195 default: CC = CallingConv::C; return false;
2196 case lltok::kw_ccc: CC = CallingConv::C; break;
2197 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
2198 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
2199 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2200 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
2201 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2202 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
2203 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2204 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2205 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
2206 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
2207 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2208 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2209 case lltok::kw_aarch64_sve_vector_pcs:
2210 CC = CallingConv::AArch64_SVE_VectorCall;
2211 break;
2212 case lltok::kw_aarch64_sme_preservemost_from_x0:
2213 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2214 break;
2215 case lltok::kw_aarch64_sme_preservemost_from_x2:
2216 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2217 break;
2218 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
2219 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
2220 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
2221 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
2222 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
2223 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
2224 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
2225 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2226 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
2227 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
2228 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
2229 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2230 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2231 case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break;
2232 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
2233 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
2234 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
2235 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
2236 case lltok::kw_hhvmcc:
2237 CC = CallingConv::DUMMY_HHVM;
2238 break;
2239 case lltok::kw_hhvm_ccc:
2240 CC = CallingConv::DUMMY_HHVM_C;
2241 break;
2242 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2243 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
2244 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
2245 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
2246 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
2247 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2248 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2249 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2250 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2251 case lltok::kw_amdgpu_cs_chain:
2252 CC = CallingConv::AMDGPU_CS_Chain;
2253 break;
2254 case lltok::kw_amdgpu_cs_chain_preserve:
2255 CC = CallingConv::AMDGPU_CS_ChainPreserve;
2256 break;
2257 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2258 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2259 case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break;
2260 case lltok::kw_graalcc: CC = CallingConv::GRAAL; break;
2261 case lltok::kw_riscv_vector_cc:
2262 CC = CallingConv::RISCV_VectorCall;
2263 break;
2264 case lltok::kw_cc: {
2265 Lex.Lex();
2266 return parseUInt32(Val&: CC);
2267 }
2268 }
2269
2270 Lex.Lex();
2271 return false;
2272}
2273
2274/// parseMetadataAttachment
2275/// ::= !dbg !42
2276bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2277 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2278
2279 std::string Name = Lex.getStrVal();
2280 Kind = M->getMDKindID(Name);
2281 Lex.Lex();
2282
2283 return parseMDNode(N&: MD);
2284}
2285
2286/// parseInstructionMetadata
2287/// ::= !dbg !42 (',' !dbg !57)*
2288bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2289 do {
2290 if (Lex.getKind() != lltok::MetadataVar)
2291 return tokError(Msg: "expected metadata after comma");
2292
2293 unsigned MDK;
2294 MDNode *N;
2295 if (parseMetadataAttachment(Kind&: MDK, MD&: N))
2296 return true;
2297
2298 if (MDK == LLVMContext::MD_DIAssignID)
2299 TempDIAssignIDAttachments[N].push_back(Elt: &Inst);
2300 else
2301 Inst.setMetadata(KindID: MDK, Node: N);
2302
2303 if (MDK == LLVMContext::MD_tbaa)
2304 InstsWithTBAATag.push_back(Elt: &Inst);
2305
2306 // If this is the end of the list, we're done.
2307 } while (EatIfPresent(T: lltok::comma));
2308 return false;
2309}
2310
2311/// parseGlobalObjectMetadataAttachment
2312/// ::= !dbg !57
2313bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2314 unsigned MDK;
2315 MDNode *N;
2316 if (parseMetadataAttachment(Kind&: MDK, MD&: N))
2317 return true;
2318
2319 GO.addMetadata(KindID: MDK, MD&: *N);
2320 return false;
2321}
2322
2323/// parseOptionalFunctionMetadata
2324/// ::= (!dbg !57)*
2325bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2326 while (Lex.getKind() == lltok::MetadataVar)
2327 if (parseGlobalObjectMetadataAttachment(GO&: F))
2328 return true;
2329 return false;
2330}
2331
2332/// parseOptionalAlignment
2333/// ::= /* empty */
2334/// ::= 'align' 4
2335bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2336 Alignment = std::nullopt;
2337 if (!EatIfPresent(T: lltok::kw_align))
2338 return false;
2339 LocTy AlignLoc = Lex.getLoc();
2340 uint64_t Value = 0;
2341
2342 LocTy ParenLoc = Lex.getLoc();
2343 bool HaveParens = false;
2344 if (AllowParens) {
2345 if (EatIfPresent(T: lltok::lparen))
2346 HaveParens = true;
2347 }
2348
2349 if (parseUInt64(Val&: Value))
2350 return true;
2351
2352 if (HaveParens && !EatIfPresent(T: lltok::rparen))
2353 return error(L: ParenLoc, Msg: "expected ')'");
2354
2355 if (!isPowerOf2_64(Value))
2356 return error(L: AlignLoc, Msg: "alignment is not a power of two");
2357 if (Value > Value::MaximumAlignment)
2358 return error(L: AlignLoc, Msg: "huge alignments are not supported yet");
2359 Alignment = Align(Value);
2360 return false;
2361}
2362
2363/// parseOptionalCodeModel
2364/// ::= /* empty */
2365/// ::= 'code_model' "large"
2366bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2367 Lex.Lex();
2368 auto StrVal = Lex.getStrVal();
2369 auto ErrMsg = "expected global code model string";
2370 if (StrVal == "tiny")
2371 model = CodeModel::Tiny;
2372 else if (StrVal == "small")
2373 model = CodeModel::Small;
2374 else if (StrVal == "kernel")
2375 model = CodeModel::Kernel;
2376 else if (StrVal == "medium")
2377 model = CodeModel::Medium;
2378 else if (StrVal == "large")
2379 model = CodeModel::Large;
2380 else
2381 return tokError(Msg: ErrMsg);
2382 if (parseToken(T: lltok::StringConstant, ErrMsg))
2383 return true;
2384 return false;
2385}
2386
2387/// parseOptionalDerefAttrBytes
2388/// ::= /* empty */
2389/// ::= AttrKind '(' 4 ')'
2390///
2391/// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2392bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2393 uint64_t &Bytes) {
2394 assert((AttrKind == lltok::kw_dereferenceable ||
2395 AttrKind == lltok::kw_dereferenceable_or_null) &&
2396 "contract!");
2397
2398 Bytes = 0;
2399 if (!EatIfPresent(T: AttrKind))
2400 return false;
2401 LocTy ParenLoc = Lex.getLoc();
2402 if (!EatIfPresent(T: lltok::lparen))
2403 return error(L: ParenLoc, Msg: "expected '('");
2404 LocTy DerefLoc = Lex.getLoc();
2405 if (parseUInt64(Val&: Bytes))
2406 return true;
2407 ParenLoc = Lex.getLoc();
2408 if (!EatIfPresent(T: lltok::rparen))
2409 return error(L: ParenLoc, Msg: "expected ')'");
2410 if (!Bytes)
2411 return error(L: DerefLoc, Msg: "dereferenceable bytes must be non-zero");
2412 return false;
2413}
2414
2415bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2416 Lex.Lex();
2417 Kind = UWTableKind::Default;
2418 if (!EatIfPresent(T: lltok::lparen))
2419 return false;
2420 LocTy KindLoc = Lex.getLoc();
2421 if (Lex.getKind() == lltok::kw_sync)
2422 Kind = UWTableKind::Sync;
2423 else if (Lex.getKind() == lltok::kw_async)
2424 Kind = UWTableKind::Async;
2425 else
2426 return error(L: KindLoc, Msg: "expected unwind table kind");
2427 Lex.Lex();
2428 return parseToken(T: lltok::rparen, ErrMsg: "expected ')'");
2429}
2430
2431bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2432 Lex.Lex();
2433 LocTy ParenLoc = Lex.getLoc();
2434 if (!EatIfPresent(T: lltok::lparen))
2435 return error(L: ParenLoc, Msg: "expected '('");
2436 LocTy KindLoc = Lex.getLoc();
2437 std::string Arg;
2438 if (parseStringConstant(Result&: Arg))
2439 return error(L: KindLoc, Msg: "expected allockind value");
2440 for (StringRef A : llvm::split(Str: Arg, Separator: ",")) {
2441 if (A == "alloc") {
2442 Kind |= AllocFnKind::Alloc;
2443 } else if (A == "realloc") {
2444 Kind |= AllocFnKind::Realloc;
2445 } else if (A == "free") {
2446 Kind |= AllocFnKind::Free;
2447 } else if (A == "uninitialized") {
2448 Kind |= AllocFnKind::Uninitialized;
2449 } else if (A == "zeroed") {
2450 Kind |= AllocFnKind::Zeroed;
2451 } else if (A == "aligned") {
2452 Kind |= AllocFnKind::Aligned;
2453 } else {
2454 return error(L: KindLoc, Msg: Twine("unknown allockind ") + A);
2455 }
2456 }
2457 ParenLoc = Lex.getLoc();
2458 if (!EatIfPresent(T: lltok::rparen))
2459 return error(L: ParenLoc, Msg: "expected ')'");
2460 if (Kind == AllocFnKind::Unknown)
2461 return error(L: KindLoc, Msg: "expected allockind value");
2462 return false;
2463}
2464
2465static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2466 switch (Tok) {
2467 case lltok::kw_argmem:
2468 return IRMemLocation::ArgMem;
2469 case lltok::kw_inaccessiblemem:
2470 return IRMemLocation::InaccessibleMem;
2471 default:
2472 return std::nullopt;
2473 }
2474}
2475
2476static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2477 switch (Tok) {
2478 case lltok::kw_none:
2479 return ModRefInfo::NoModRef;
2480 case lltok::kw_read:
2481 return ModRefInfo::Ref;
2482 case lltok::kw_write:
2483 return ModRefInfo::Mod;
2484 case lltok::kw_readwrite:
2485 return ModRefInfo::ModRef;
2486 default:
2487 return std::nullopt;
2488 }
2489}
2490
2491std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2492 MemoryEffects ME = MemoryEffects::none();
2493
2494 // We use syntax like memory(argmem: read), so the colon should not be
2495 // interpreted as a label terminator.
2496 Lex.setIgnoreColonInIdentifiers(true);
2497 auto _ = make_scope_exit(F: [&] { Lex.setIgnoreColonInIdentifiers(false); });
2498
2499 Lex.Lex();
2500 if (!EatIfPresent(T: lltok::lparen)) {
2501 tokError(Msg: "expected '('");
2502 return std::nullopt;
2503 }
2504
2505 bool SeenLoc = false;
2506 do {
2507 std::optional<IRMemLocation> Loc = keywordToLoc(Tok: Lex.getKind());
2508 if (Loc) {
2509 Lex.Lex();
2510 if (!EatIfPresent(T: lltok::colon)) {
2511 tokError(Msg: "expected ':' after location");
2512 return std::nullopt;
2513 }
2514 }
2515
2516 std::optional<ModRefInfo> MR = keywordToModRef(Tok: Lex.getKind());
2517 if (!MR) {
2518 if (!Loc)
2519 tokError(Msg: "expected memory location (argmem, inaccessiblemem) "
2520 "or access kind (none, read, write, readwrite)");
2521 else
2522 tokError(Msg: "expected access kind (none, read, write, readwrite)");
2523 return std::nullopt;
2524 }
2525
2526 Lex.Lex();
2527 if (Loc) {
2528 SeenLoc = true;
2529 ME = ME.getWithModRef(Loc: *Loc, MR: *MR);
2530 } else {
2531 if (SeenLoc) {
2532 tokError(Msg: "default access kind must be specified first");
2533 return std::nullopt;
2534 }
2535 ME = MemoryEffects(*MR);
2536 }
2537
2538 if (EatIfPresent(T: lltok::rparen))
2539 return ME;
2540 } while (EatIfPresent(T: lltok::comma));
2541
2542 tokError(Msg: "unterminated memory attribute");
2543 return std::nullopt;
2544}
2545
2546static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2547 switch (Tok) {
2548 case lltok::kw_all:
2549 return fcAllFlags;
2550 case lltok::kw_nan:
2551 return fcNan;
2552 case lltok::kw_snan:
2553 return fcSNan;
2554 case lltok::kw_qnan:
2555 return fcQNan;
2556 case lltok::kw_inf:
2557 return fcInf;
2558 case lltok::kw_ninf:
2559 return fcNegInf;
2560 case lltok::kw_pinf:
2561 return fcPosInf;
2562 case lltok::kw_norm:
2563 return fcNormal;
2564 case lltok::kw_nnorm:
2565 return fcNegNormal;
2566 case lltok::kw_pnorm:
2567 return fcPosNormal;
2568 case lltok::kw_sub:
2569 return fcSubnormal;
2570 case lltok::kw_nsub:
2571 return fcNegSubnormal;
2572 case lltok::kw_psub:
2573 return fcPosSubnormal;
2574 case lltok::kw_zero:
2575 return fcZero;
2576 case lltok::kw_nzero:
2577 return fcNegZero;
2578 case lltok::kw_pzero:
2579 return fcPosZero;
2580 default:
2581 return 0;
2582 }
2583}
2584
2585unsigned LLParser::parseNoFPClassAttr() {
2586 unsigned Mask = fcNone;
2587
2588 Lex.Lex();
2589 if (!EatIfPresent(T: lltok::lparen)) {
2590 tokError(Msg: "expected '('");
2591 return 0;
2592 }
2593
2594 do {
2595 uint64_t Value = 0;
2596 unsigned TestMask = keywordToFPClassTest(Tok: Lex.getKind());
2597 if (TestMask != 0) {
2598 Mask |= TestMask;
2599 // TODO: Disallow overlapping masks to avoid copy paste errors
2600 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2601 !parseUInt64(Val&: Value)) {
2602 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2603 error(L: Lex.getLoc(), Msg: "invalid mask value for 'nofpclass'");
2604 return 0;
2605 }
2606
2607 if (!EatIfPresent(T: lltok::rparen)) {
2608 error(L: Lex.getLoc(), Msg: "expected ')'");
2609 return 0;
2610 }
2611
2612 return Value;
2613 } else {
2614 error(L: Lex.getLoc(), Msg: "expected nofpclass test mask");
2615 return 0;
2616 }
2617
2618 Lex.Lex();
2619 if (EatIfPresent(T: lltok::rparen))
2620 return Mask;
2621 } while (1);
2622
2623 llvm_unreachable("unterminated nofpclass attribute");
2624}
2625
2626/// parseOptionalCommaAlign
2627/// ::=
2628/// ::= ',' align 4
2629///
2630/// This returns with AteExtraComma set to true if it ate an excess comma at the
2631/// end.
2632bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2633 bool &AteExtraComma) {
2634 AteExtraComma = false;
2635 while (EatIfPresent(T: lltok::comma)) {
2636 // Metadata at the end is an early exit.
2637 if (Lex.getKind() == lltok::MetadataVar) {
2638 AteExtraComma = true;
2639 return false;
2640 }
2641
2642 if (Lex.getKind() != lltok::kw_align)
2643 return error(L: Lex.getLoc(), Msg: "expected metadata or 'align'");
2644
2645 if (parseOptionalAlignment(Alignment))
2646 return true;
2647 }
2648
2649 return false;
2650}
2651
2652/// parseOptionalCommaAddrSpace
2653/// ::=
2654/// ::= ',' addrspace(1)
2655///
2656/// This returns with AteExtraComma set to true if it ate an excess comma at the
2657/// end.
2658bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2659 bool &AteExtraComma) {
2660 AteExtraComma = false;
2661 while (EatIfPresent(T: lltok::comma)) {
2662 // Metadata at the end is an early exit.
2663 if (Lex.getKind() == lltok::MetadataVar) {
2664 AteExtraComma = true;
2665 return false;
2666 }
2667
2668 Loc = Lex.getLoc();
2669 if (Lex.getKind() != lltok::kw_addrspace)
2670 return error(L: Lex.getLoc(), Msg: "expected metadata or 'addrspace'");
2671
2672 if (parseOptionalAddrSpace(AddrSpace))
2673 return true;
2674 }
2675
2676 return false;
2677}
2678
2679bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2680 std::optional<unsigned> &HowManyArg) {
2681 Lex.Lex();
2682
2683 auto StartParen = Lex.getLoc();
2684 if (!EatIfPresent(T: lltok::lparen))
2685 return error(L: StartParen, Msg: "expected '('");
2686
2687 if (parseUInt32(Val&: BaseSizeArg))
2688 return true;
2689
2690 if (EatIfPresent(T: lltok::comma)) {
2691 auto HowManyAt = Lex.getLoc();
2692 unsigned HowMany;
2693 if (parseUInt32(Val&: HowMany))
2694 return true;
2695 if (HowMany == BaseSizeArg)
2696 return error(L: HowManyAt,
2697 Msg: "'allocsize' indices can't refer to the same parameter");
2698 HowManyArg = HowMany;
2699 } else
2700 HowManyArg = std::nullopt;
2701
2702 auto EndParen = Lex.getLoc();
2703 if (!EatIfPresent(T: lltok::rparen))
2704 return error(L: EndParen, Msg: "expected ')'");
2705 return false;
2706}
2707
2708bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2709 unsigned &MaxValue) {
2710 Lex.Lex();
2711
2712 auto StartParen = Lex.getLoc();
2713 if (!EatIfPresent(T: lltok::lparen))
2714 return error(L: StartParen, Msg: "expected '('");
2715
2716 if (parseUInt32(Val&: MinValue))
2717 return true;
2718
2719 if (EatIfPresent(T: lltok::comma)) {
2720 if (parseUInt32(Val&: MaxValue))
2721 return true;
2722 } else
2723 MaxValue = MinValue;
2724
2725 auto EndParen = Lex.getLoc();
2726 if (!EatIfPresent(T: lltok::rparen))
2727 return error(L: EndParen, Msg: "expected ')'");
2728 return false;
2729}
2730
2731/// parseScopeAndOrdering
2732/// if isAtomic: ::= SyncScope? AtomicOrdering
2733/// else: ::=
2734///
2735/// This sets Scope and Ordering to the parsed values.
2736bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2737 AtomicOrdering &Ordering) {
2738 if (!IsAtomic)
2739 return false;
2740
2741 return parseScope(SSID) || parseOrdering(Ordering);
2742}
2743
2744/// parseScope
2745/// ::= syncscope("singlethread" | "<target scope>")?
2746///
2747/// This sets synchronization scope ID to the ID of the parsed value.
2748bool LLParser::parseScope(SyncScope::ID &SSID) {
2749 SSID = SyncScope::System;
2750 if (EatIfPresent(T: lltok::kw_syncscope)) {
2751 auto StartParenAt = Lex.getLoc();
2752 if (!EatIfPresent(T: lltok::lparen))
2753 return error(L: StartParenAt, Msg: "Expected '(' in syncscope");
2754
2755 std::string SSN;
2756 auto SSNAt = Lex.getLoc();
2757 if (parseStringConstant(Result&: SSN))
2758 return error(L: SSNAt, Msg: "Expected synchronization scope name");
2759
2760 auto EndParenAt = Lex.getLoc();
2761 if (!EatIfPresent(T: lltok::rparen))
2762 return error(L: EndParenAt, Msg: "Expected ')' in syncscope");
2763
2764 SSID = Context.getOrInsertSyncScopeID(SSN);
2765 }
2766
2767 return false;
2768}
2769
2770/// parseOrdering
2771/// ::= AtomicOrdering
2772///
2773/// This sets Ordering to the parsed value.
2774bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2775 switch (Lex.getKind()) {
2776 default:
2777 return tokError(Msg: "Expected ordering on atomic instruction");
2778 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2779 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2780 // Not specified yet:
2781 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2782 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2783 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2784 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2785 case lltok::kw_seq_cst:
2786 Ordering = AtomicOrdering::SequentiallyConsistent;
2787 break;
2788 }
2789 Lex.Lex();
2790 return false;
2791}
2792
2793/// parseOptionalStackAlignment
2794/// ::= /* empty */
2795/// ::= 'alignstack' '(' 4 ')'
2796bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2797 Alignment = 0;
2798 if (!EatIfPresent(T: lltok::kw_alignstack))
2799 return false;
2800 LocTy ParenLoc = Lex.getLoc();
2801 if (!EatIfPresent(T: lltok::lparen))
2802 return error(L: ParenLoc, Msg: "expected '('");
2803 LocTy AlignLoc = Lex.getLoc();
2804 if (parseUInt32(Val&: Alignment))
2805 return true;
2806 ParenLoc = Lex.getLoc();
2807 if (!EatIfPresent(T: lltok::rparen))
2808 return error(L: ParenLoc, Msg: "expected ')'");
2809 if (!isPowerOf2_32(Value: Alignment))
2810 return error(L: AlignLoc, Msg: "stack alignment is not a power of two");
2811 return false;
2812}
2813
2814/// parseIndexList - This parses the index list for an insert/extractvalue
2815/// instruction. This sets AteExtraComma in the case where we eat an extra
2816/// comma at the end of the line and find that it is followed by metadata.
2817/// Clients that don't allow metadata can call the version of this function that
2818/// only takes one argument.
2819///
2820/// parseIndexList
2821/// ::= (',' uint32)+
2822///
2823bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2824 bool &AteExtraComma) {
2825 AteExtraComma = false;
2826
2827 if (Lex.getKind() != lltok::comma)
2828 return tokError(Msg: "expected ',' as start of index list");
2829
2830 while (EatIfPresent(T: lltok::comma)) {
2831 if (Lex.getKind() == lltok::MetadataVar) {
2832 if (Indices.empty())
2833 return tokError(Msg: "expected index");
2834 AteExtraComma = true;
2835 return false;
2836 }
2837 unsigned Idx = 0;
2838 if (parseUInt32(Val&: Idx))
2839 return true;
2840 Indices.push_back(Elt: Idx);
2841 }
2842
2843 return false;
2844}
2845
2846//===----------------------------------------------------------------------===//
2847// Type Parsing.
2848//===----------------------------------------------------------------------===//
2849
2850/// parseType - parse a type.
2851bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2852 SMLoc TypeLoc = Lex.getLoc();
2853 switch (Lex.getKind()) {
2854 default:
2855 return tokError(Msg);
2856 case lltok::Type:
2857 // Type ::= 'float' | 'void' (etc)
2858 Result = Lex.getTyVal();
2859 Lex.Lex();
2860
2861 // Handle "ptr" opaque pointer type.
2862 //
2863 // Type ::= ptr ('addrspace' '(' uint32 ')')?
2864 if (Result->isPointerTy()) {
2865 unsigned AddrSpace;
2866 if (parseOptionalAddrSpace(AddrSpace))
2867 return true;
2868 Result = PointerType::get(C&: getContext(), AddressSpace: AddrSpace);
2869
2870 // Give a nice error for 'ptr*'.
2871 if (Lex.getKind() == lltok::star)
2872 return tokError(Msg: "ptr* is invalid - use ptr instead");
2873
2874 // Fall through to parsing the type suffixes only if this 'ptr' is a
2875 // function return. Otherwise, return success, implicitly rejecting other
2876 // suffixes.
2877 if (Lex.getKind() != lltok::lparen)
2878 return false;
2879 }
2880 break;
2881 case lltok::kw_target: {
2882 // Type ::= TargetExtType
2883 if (parseTargetExtType(Result))
2884 return true;
2885 break;
2886 }
2887 case lltok::lbrace:
2888 // Type ::= StructType
2889 if (parseAnonStructType(Result, Packed: false))
2890 return true;
2891 break;
2892 case lltok::lsquare:
2893 // Type ::= '[' ... ']'
2894 Lex.Lex(); // eat the lsquare.
2895 if (parseArrayVectorType(Result, IsVector: false))
2896 return true;
2897 break;
2898 case lltok::less: // Either vector or packed struct.
2899 // Type ::= '<' ... '>'
2900 Lex.Lex();
2901 if (Lex.getKind() == lltok::lbrace) {
2902 if (parseAnonStructType(Result, Packed: true) ||
2903 parseToken(T: lltok::greater, ErrMsg: "expected '>' at end of packed struct"))
2904 return true;
2905 } else if (parseArrayVectorType(Result, IsVector: true))
2906 return true;
2907 break;
2908 case lltok::LocalVar: {
2909 // Type ::= %foo
2910 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2911
2912 // If the type hasn't been defined yet, create a forward definition and
2913 // remember where that forward def'n was seen (in case it never is defined).
2914 if (!Entry.first) {
2915 Entry.first = StructType::create(Context, Name: Lex.getStrVal());
2916 Entry.second = Lex.getLoc();
2917 }
2918 Result = Entry.first;
2919 Lex.Lex();
2920 break;
2921 }
2922
2923 case lltok::LocalVarID: {
2924 // Type ::= %4
2925 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2926
2927 // If the type hasn't been defined yet, create a forward definition and
2928 // remember where that forward def'n was seen (in case it never is defined).
2929 if (!Entry.first) {
2930 Entry.first = StructType::create(Context);
2931 Entry.second = Lex.getLoc();
2932 }
2933 Result = Entry.first;
2934 Lex.Lex();
2935 break;
2936 }
2937 }
2938
2939 // parse the type suffixes.
2940 while (true) {
2941 switch (Lex.getKind()) {
2942 // End of type.
2943 default:
2944 if (!AllowVoid && Result->isVoidTy())
2945 return error(L: TypeLoc, Msg: "void type only allowed for function results");
2946 return false;
2947
2948 // Type ::= Type '*'
2949 case lltok::star:
2950 if (Result->isLabelTy())
2951 return tokError(Msg: "basic block pointers are invalid");
2952 if (Result->isVoidTy())
2953 return tokError(Msg: "pointers to void are invalid - use i8* instead");
2954 if (!PointerType::isValidElementType(ElemTy: Result))
2955 return tokError(Msg: "pointer to this type is invalid");
2956 Result = PointerType::getUnqual(ElementType: Result);
2957 Lex.Lex();
2958 break;
2959
2960 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2961 case lltok::kw_addrspace: {
2962 if (Result->isLabelTy())
2963 return tokError(Msg: "basic block pointers are invalid");
2964 if (Result->isVoidTy())
2965 return tokError(Msg: "pointers to void are invalid; use i8* instead");
2966 if (!PointerType::isValidElementType(ElemTy: Result))
2967 return tokError(Msg: "pointer to this type is invalid");
2968 unsigned AddrSpace;
2969 if (parseOptionalAddrSpace(AddrSpace) ||
2970 parseToken(T: lltok::star, ErrMsg: "expected '*' in address space"))
2971 return true;
2972
2973 Result = PointerType::get(ElementType: Result, AddressSpace: AddrSpace);
2974 break;
2975 }
2976
2977 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2978 case lltok::lparen:
2979 if (parseFunctionType(Result))
2980 return true;
2981 break;
2982 }
2983 }
2984}
2985
2986/// parseParameterList
2987/// ::= '(' ')'
2988/// ::= '(' Arg (',' Arg)* ')'
2989/// Arg
2990/// ::= Type OptionalAttributes Value OptionalAttributes
2991bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2992 PerFunctionState &PFS, bool IsMustTailCall,
2993 bool InVarArgsFunc) {
2994 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in call"))
2995 return true;
2996
2997 while (Lex.getKind() != lltok::rparen) {
2998 // If this isn't the first argument, we need a comma.
2999 if (!ArgList.empty() &&
3000 parseToken(T: lltok::comma, ErrMsg: "expected ',' in argument list"))
3001 return true;
3002
3003 // parse an ellipsis if this is a musttail call in a variadic function.
3004 if (Lex.getKind() == lltok::dotdotdot) {
3005 const char *Msg = "unexpected ellipsis in argument list for ";
3006 if (!IsMustTailCall)
3007 return tokError(Msg: Twine(Msg) + "non-musttail call");
3008 if (!InVarArgsFunc)
3009 return tokError(Msg: Twine(Msg) + "musttail call in non-varargs function");
3010 Lex.Lex(); // Lex the '...', it is purely for readability.
3011 return parseToken(T: lltok::rparen, ErrMsg: "expected ')' at end of argument list");
3012 }
3013
3014 // parse the argument.
3015 LocTy ArgLoc;
3016 Type *ArgTy = nullptr;
3017 Value *V;
3018 if (parseType(Result&: ArgTy, Loc&: ArgLoc))
3019 return true;
3020
3021 AttrBuilder ArgAttrs(M->getContext());
3022
3023 if (ArgTy->isMetadataTy()) {
3024 if (parseMetadataAsValue(V, PFS))
3025 return true;
3026 } else {
3027 // Otherwise, handle normal operands.
3028 if (parseOptionalParamAttrs(B&: ArgAttrs) || parseValue(Ty: ArgTy, V, PFS))
3029 return true;
3030 }
3031 ArgList.push_back(Elt: ParamInfo(
3032 ArgLoc, V, AttributeSet::get(C&: V->getContext(), B: ArgAttrs)));
3033 }
3034
3035 if (IsMustTailCall && InVarArgsFunc)
3036 return tokError(Msg: "expected '...' at end of argument list for musttail call "
3037 "in varargs function");
3038
3039 Lex.Lex(); // Lex the ')'.
3040 return false;
3041}
3042
3043/// parseRequiredTypeAttr
3044/// ::= attrname(<ty>)
3045bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
3046 Attribute::AttrKind AttrKind) {
3047 Type *Ty = nullptr;
3048 if (!EatIfPresent(T: AttrToken))
3049 return true;
3050 if (!EatIfPresent(T: lltok::lparen))
3051 return error(L: Lex.getLoc(), Msg: "expected '('");
3052 if (parseType(Result&: Ty))
3053 return true;
3054 if (!EatIfPresent(T: lltok::rparen))
3055 return error(L: Lex.getLoc(), Msg: "expected ')'");
3056
3057 B.addTypeAttr(Kind: AttrKind, Ty);
3058 return false;
3059}
3060
3061/// parseRangeAttr
3062/// ::= range(<ty> <n>,<n>)
3063bool LLParser::parseRangeAttr(AttrBuilder &B) {
3064 Lex.Lex();
3065
3066 APInt Lower;
3067 APInt Upper;
3068 Type *Ty = nullptr;
3069 LocTy TyLoc;
3070
3071 auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) {
3072 if (Lex.getKind() != lltok::APSInt)
3073 return tokError(Msg: "expected integer");
3074 if (Lex.getAPSIntVal().getBitWidth() > BitWidth)
3075 return tokError(
3076 Msg: "integer is too large for the bit width of specified type");
3077 Val = Lex.getAPSIntVal().extend(width: BitWidth);
3078 Lex.Lex();
3079 return false;
3080 };
3081
3082 if (parseToken(T: lltok::lparen, ErrMsg: "expected '('") || parseType(Result&: Ty, Loc&: TyLoc))
3083 return true;
3084 if (!Ty->isIntegerTy())
3085 return error(L: TyLoc, Msg: "the range must have integer type!");
3086
3087 unsigned BitWidth = Ty->getPrimitiveSizeInBits();
3088
3089 if (ParseAPSInt(BitWidth, Lower) ||
3090 parseToken(T: lltok::comma, ErrMsg: "expected ','") || ParseAPSInt(BitWidth, Upper))
3091 return true;
3092 if (Lower == Upper)
3093 return tokError(Msg: "the range should not represent the full or empty set!");
3094
3095 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')'"))
3096 return true;
3097
3098 B.addRangeAttr(CR: ConstantRange(Lower, Upper));
3099 return false;
3100}
3101
3102/// parseOptionalOperandBundles
3103/// ::= /*empty*/
3104/// ::= '[' OperandBundle [, OperandBundle ]* ']'
3105///
3106/// OperandBundle
3107/// ::= bundle-tag '(' ')'
3108/// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
3109///
3110/// bundle-tag ::= String Constant
3111bool LLParser::parseOptionalOperandBundles(
3112 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
3113 LocTy BeginLoc = Lex.getLoc();
3114 if (!EatIfPresent(T: lltok::lsquare))
3115 return false;
3116
3117 while (Lex.getKind() != lltok::rsquare) {
3118 // If this isn't the first operand bundle, we need a comma.
3119 if (!BundleList.empty() &&
3120 parseToken(T: lltok::comma, ErrMsg: "expected ',' in input list"))
3121 return true;
3122
3123 std::string Tag;
3124 if (parseStringConstant(Result&: Tag))
3125 return true;
3126
3127 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in operand bundle"))
3128 return true;
3129
3130 std::vector<Value *> Inputs;
3131 while (Lex.getKind() != lltok::rparen) {
3132 // If this isn't the first input, we need a comma.
3133 if (!Inputs.empty() &&
3134 parseToken(T: lltok::comma, ErrMsg: "expected ',' in input list"))
3135 return true;
3136
3137 Type *Ty = nullptr;
3138 Value *Input = nullptr;
3139 if (parseType(Result&: Ty) || parseValue(Ty, V&: Input, PFS))
3140 return true;
3141 Inputs.push_back(x: Input);
3142 }
3143
3144 BundleList.emplace_back(Args: std::move(Tag), Args: std::move(Inputs));
3145
3146 Lex.Lex(); // Lex the ')'.
3147 }
3148
3149 if (BundleList.empty())
3150 return error(L: BeginLoc, Msg: "operand bundle set must not be empty");
3151
3152 Lex.Lex(); // Lex the ']'.
3153 return false;
3154}
3155
3156bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3157 unsigned NextID, unsigned ID) const {
3158 if (ID < NextID)
3159 return error(L: Loc, Msg: Kind + " expected to be numbered '" + Prefix +
3160 Twine(NextID) + "' or greater");
3161
3162 return false;
3163}
3164
3165/// parseArgumentList - parse the argument list for a function type or function
3166/// prototype.
3167/// ::= '(' ArgTypeListI ')'
3168/// ArgTypeListI
3169/// ::= /*empty*/
3170/// ::= '...'
3171/// ::= ArgTypeList ',' '...'
3172/// ::= ArgType (',' ArgType)*
3173///
3174bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3175 SmallVectorImpl<unsigned> &UnnamedArgNums,
3176 bool &IsVarArg) {
3177 unsigned CurValID = 0;
3178 IsVarArg = false;
3179 assert(Lex.getKind() == lltok::lparen);
3180 Lex.Lex(); // eat the (.
3181
3182 if (Lex.getKind() != lltok::rparen) {
3183 do {
3184 // Handle ... at end of arg list.
3185 if (EatIfPresent(T: lltok::dotdotdot)) {
3186 IsVarArg = true;
3187 break;
3188 }
3189
3190 // Otherwise must be an argument type.
3191 LocTy TypeLoc = Lex.getLoc();
3192 Type *ArgTy = nullptr;
3193 AttrBuilder Attrs(M->getContext());
3194 if (parseType(Result&: ArgTy) || parseOptionalParamAttrs(B&: Attrs))
3195 return true;
3196
3197 if (ArgTy->isVoidTy())
3198 return error(L: TypeLoc, Msg: "argument can not have void type");
3199
3200 std::string Name;
3201 if (Lex.getKind() == lltok::LocalVar) {
3202 Name = Lex.getStrVal();
3203 Lex.Lex();
3204 } else {
3205 unsigned ArgID;
3206 if (Lex.getKind() == lltok::LocalVarID) {
3207 ArgID = Lex.getUIntVal();
3208 if (checkValueID(Loc: TypeLoc, Kind: "argument", Prefix: "%", NextID: CurValID, ID: ArgID))
3209 return true;
3210 Lex.Lex();
3211 } else {
3212 ArgID = CurValID;
3213 }
3214 UnnamedArgNums.push_back(Elt: ArgID);
3215 CurValID = ArgID + 1;
3216 }
3217
3218 if (!ArgTy->isFirstClassType())
3219 return error(L: TypeLoc, Msg: "invalid type for function argument");
3220
3221 ArgList.emplace_back(Args&: TypeLoc, Args&: ArgTy,
3222 Args: AttributeSet::get(C&: ArgTy->getContext(), B: Attrs),
3223 Args: std::move(Name));
3224 } while (EatIfPresent(T: lltok::comma));
3225 }
3226
3227 return parseToken(T: lltok::rparen, ErrMsg: "expected ')' at end of argument list");
3228}
3229
3230/// parseFunctionType
3231/// ::= Type ArgumentList OptionalAttrs
3232bool LLParser::parseFunctionType(Type *&Result) {
3233 assert(Lex.getKind() == lltok::lparen);
3234
3235 if (!FunctionType::isValidReturnType(RetTy: Result))
3236 return tokError(Msg: "invalid function return type");
3237
3238 SmallVector<ArgInfo, 8> ArgList;
3239 bool IsVarArg;
3240 SmallVector<unsigned> UnnamedArgNums;
3241 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3242 return true;
3243
3244 // Reject names on the arguments lists.
3245 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3246 if (!ArgList[i].Name.empty())
3247 return error(L: ArgList[i].Loc, Msg: "argument name invalid in function type");
3248 if (ArgList[i].Attrs.hasAttributes())
3249 return error(L: ArgList[i].Loc,
3250 Msg: "argument attributes invalid in function type");
3251 }
3252
3253 SmallVector<Type*, 16> ArgListTy;
3254 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3255 ArgListTy.push_back(Elt: ArgList[i].Ty);
3256
3257 Result = FunctionType::get(Result, Params: ArgListTy, isVarArg: IsVarArg);
3258 return false;
3259}
3260
3261/// parseAnonStructType - parse an anonymous struct type, which is inlined into
3262/// other structs.
3263bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3264 SmallVector<Type*, 8> Elts;
3265 if (parseStructBody(Body&: Elts))
3266 return true;
3267
3268 Result = StructType::get(Context, Elements: Elts, isPacked: Packed);
3269 return false;
3270}
3271
3272/// parseStructDefinition - parse a struct in a 'type' definition.
3273bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3274 std::pair<Type *, LocTy> &Entry,
3275 Type *&ResultTy) {
3276 // If the type was already defined, diagnose the redefinition.
3277 if (Entry.first && !Entry.second.isValid())
3278 return error(L: TypeLoc, Msg: "redefinition of type");
3279
3280 // If we have opaque, just return without filling in the definition for the
3281 // struct. This counts as a definition as far as the .ll file goes.
3282 if (EatIfPresent(T: lltok::kw_opaque)) {
3283 // This type is being defined, so clear the location to indicate this.
3284 Entry.second = SMLoc();
3285
3286 // If this type number has never been uttered, create it.
3287 if (!Entry.first)
3288 Entry.first = StructType::create(Context, Name);
3289 ResultTy = Entry.first;
3290 return false;
3291 }
3292
3293 // If the type starts with '<', then it is either a packed struct or a vector.
3294 bool isPacked = EatIfPresent(T: lltok::less);
3295
3296 // If we don't have a struct, then we have a random type alias, which we
3297 // accept for compatibility with old files. These types are not allowed to be
3298 // forward referenced and not allowed to be recursive.
3299 if (Lex.getKind() != lltok::lbrace) {
3300 if (Entry.first)
3301 return error(L: TypeLoc, Msg: "forward references to non-struct type");
3302
3303 ResultTy = nullptr;
3304 if (isPacked)
3305 return parseArrayVectorType(Result&: ResultTy, IsVector: true);
3306 return parseType(Result&: ResultTy);
3307 }
3308
3309 // This type is being defined, so clear the location to indicate this.
3310 Entry.second = SMLoc();
3311
3312 // If this type number has never been uttered, create it.
3313 if (!Entry.first)
3314 Entry.first = StructType::create(Context, Name);
3315
3316 StructType *STy = cast<StructType>(Val: Entry.first);
3317
3318 SmallVector<Type*, 8> Body;
3319 if (parseStructBody(Body) ||
3320 (isPacked && parseToken(T: lltok::greater, ErrMsg: "expected '>' in packed struct")))
3321 return true;
3322
3323 STy->setBody(Elements: Body, isPacked);
3324 ResultTy = STy;
3325 return false;
3326}
3327
3328/// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
3329/// StructType
3330/// ::= '{' '}'
3331/// ::= '{' Type (',' Type)* '}'
3332/// ::= '<' '{' '}' '>'
3333/// ::= '<' '{' Type (',' Type)* '}' '>'
3334bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3335 assert(Lex.getKind() == lltok::lbrace);
3336 Lex.Lex(); // Consume the '{'
3337
3338 // Handle the empty struct.
3339 if (EatIfPresent(T: lltok::rbrace))
3340 return false;
3341
3342 LocTy EltTyLoc = Lex.getLoc();
3343 Type *Ty = nullptr;
3344 if (parseType(Result&: Ty))
3345 return true;
3346 Body.push_back(Elt: Ty);
3347
3348 if (!StructType::isValidElementType(ElemTy: Ty))
3349 return error(L: EltTyLoc, Msg: "invalid element type for struct");
3350
3351 while (EatIfPresent(T: lltok::comma)) {
3352 EltTyLoc = Lex.getLoc();
3353 if (parseType(Result&: Ty))
3354 return true;
3355
3356 if (!StructType::isValidElementType(ElemTy: Ty))
3357 return error(L: EltTyLoc, Msg: "invalid element type for struct");
3358
3359 Body.push_back(Elt: Ty);
3360 }
3361
3362 return parseToken(T: lltok::rbrace, ErrMsg: "expected '}' at end of struct");
3363}
3364
3365/// parseArrayVectorType - parse an array or vector type, assuming the first
3366/// token has already been consumed.
3367/// Type
3368/// ::= '[' APSINTVAL 'x' Types ']'
3369/// ::= '<' APSINTVAL 'x' Types '>'
3370/// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3371bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3372 bool Scalable = false;
3373
3374 if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3375 Lex.Lex(); // consume the 'vscale'
3376 if (parseToken(T: lltok::kw_x, ErrMsg: "expected 'x' after vscale"))
3377 return true;
3378
3379 Scalable = true;
3380 }
3381
3382 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3383 Lex.getAPSIntVal().getBitWidth() > 64)
3384 return tokError(Msg: "expected number in address space");
3385
3386 LocTy SizeLoc = Lex.getLoc();
3387 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3388 Lex.Lex();
3389
3390 if (parseToken(T: lltok::kw_x, ErrMsg: "expected 'x' after element count"))
3391 return true;
3392
3393 LocTy TypeLoc = Lex.getLoc();
3394 Type *EltTy = nullptr;
3395 if (parseType(Result&: EltTy))
3396 return true;
3397
3398 if (parseToken(T: IsVector ? lltok::greater : lltok::rsquare,
3399 ErrMsg: "expected end of sequential type"))
3400 return true;
3401
3402 if (IsVector) {
3403 if (Size == 0)
3404 return error(L: SizeLoc, Msg: "zero element vector is illegal");
3405 if ((unsigned)Size != Size)
3406 return error(L: SizeLoc, Msg: "size too large for vector");
3407 if (!VectorType::isValidElementType(ElemTy: EltTy))
3408 return error(L: TypeLoc, Msg: "invalid vector element type");
3409 Result = VectorType::get(ElementType: EltTy, NumElements: unsigned(Size), Scalable);
3410 } else {
3411 if (!ArrayType::isValidElementType(ElemTy: EltTy))
3412 return error(L: TypeLoc, Msg: "invalid array element type");
3413 Result = ArrayType::get(ElementType: EltTy, NumElements: Size);
3414 }
3415 return false;
3416}
3417
3418/// parseTargetExtType - handle target extension type syntax
3419/// TargetExtType
3420/// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3421///
3422/// TargetExtTypeParams
3423/// ::= /*empty*/
3424/// ::= ',' Type TargetExtTypeParams
3425///
3426/// TargetExtIntParams
3427/// ::= /*empty*/
3428/// ::= ',' uint32 TargetExtIntParams
3429bool LLParser::parseTargetExtType(Type *&Result) {
3430 Lex.Lex(); // Eat the 'target' keyword.
3431
3432 // Get the mandatory type name.
3433 std::string TypeName;
3434 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in target extension type") ||
3435 parseStringConstant(Result&: TypeName))
3436 return true;
3437
3438 // Parse all of the integer and type parameters at the same time; the use of
3439 // SeenInt will allow us to catch cases where type parameters follow integer
3440 // parameters.
3441 SmallVector<Type *> TypeParams;
3442 SmallVector<unsigned> IntParams;
3443 bool SeenInt = false;
3444 while (Lex.getKind() == lltok::comma) {
3445 Lex.Lex(); // Eat the comma.
3446
3447 if (Lex.getKind() == lltok::APSInt) {
3448 SeenInt = true;
3449 unsigned IntVal;
3450 if (parseUInt32(Val&: IntVal))
3451 return true;
3452 IntParams.push_back(Elt: IntVal);
3453 } else if (SeenInt) {
3454 // The only other kind of parameter we support is type parameters, which
3455 // must precede the integer parameters. This is therefore an error.
3456 return tokError(Msg: "expected uint32 param");
3457 } else {
3458 Type *TypeParam;
3459 if (parseType(Result&: TypeParam, /*AllowVoid=*/true))
3460 return true;
3461 TypeParams.push_back(Elt: TypeParam);
3462 }
3463 }
3464
3465 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in target extension type"))
3466 return true;
3467
3468 Result = TargetExtType::get(Context, Name: TypeName, Types: TypeParams, Ints: IntParams);
3469 return false;
3470}
3471
3472//===----------------------------------------------------------------------===//
3473// Function Semantic Analysis.
3474//===----------------------------------------------------------------------===//
3475
3476LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3477 int functionNumber,
3478 ArrayRef<unsigned> UnnamedArgNums)
3479 : P(p), F(f), FunctionNumber(functionNumber) {
3480
3481 // Insert unnamed arguments into the NumberedVals list.
3482 auto It = UnnamedArgNums.begin();
3483 for (Argument &A : F.args()) {
3484 if (!A.hasName()) {
3485 unsigned ArgNum = *It++;
3486 NumberedVals.add(ID: ArgNum, V: &A);
3487 }
3488 }
3489}
3490
3491LLParser::PerFunctionState::~PerFunctionState() {
3492 // If there were any forward referenced non-basicblock values, delete them.
3493
3494 for (const auto &P : ForwardRefVals) {
3495 if (isa<BasicBlock>(Val: P.second.first))
3496 continue;
3497 P.second.first->replaceAllUsesWith(
3498 V: UndefValue::get(T: P.second.first->getType()));
3499 P.second.first->deleteValue();
3500 }
3501
3502 for (const auto &P : ForwardRefValIDs) {
3503 if (isa<BasicBlock>(Val: P.second.first))
3504 continue;
3505 P.second.first->replaceAllUsesWith(
3506 V: UndefValue::get(T: P.second.first->getType()));
3507 P.second.first->deleteValue();
3508 }
3509}
3510
3511bool LLParser::PerFunctionState::finishFunction() {
3512 if (!ForwardRefVals.empty())
3513 return P.error(L: ForwardRefVals.begin()->second.second,
3514 Msg: "use of undefined value '%" + ForwardRefVals.begin()->first +
3515 "'");
3516 if (!ForwardRefValIDs.empty())
3517 return P.error(L: ForwardRefValIDs.begin()->second.second,
3518 Msg: "use of undefined value '%" +
3519 Twine(ForwardRefValIDs.begin()->first) + "'");
3520 return false;
3521}
3522
3523/// getVal - Get a value with the specified name or ID, creating a
3524/// forward reference record if needed. This can return null if the value
3525/// exists but does not have the right type.
3526Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3527 LocTy Loc) {
3528 // Look this name up in the normal function symbol table.
3529 Value *Val = F.getValueSymbolTable()->lookup(Name);
3530
3531 // If this is a forward reference for the value, see if we already created a
3532 // forward ref record.
3533 if (!Val) {
3534 auto I = ForwardRefVals.find(x: Name);
3535 if (I != ForwardRefVals.end())
3536 Val = I->second.first;
3537 }
3538
3539 // If we have the value in the symbol table or fwd-ref table, return it.
3540 if (Val)
3541 return P.checkValidVariableType(Loc, Name: "%" + Name, Ty, Val);
3542
3543 // Don't make placeholders with invalid type.
3544 if (!Ty->isFirstClassType()) {
3545 P.error(L: Loc, Msg: "invalid use of a non-first-class type");
3546 return nullptr;
3547 }
3548
3549 // Otherwise, create a new forward reference for this value and remember it.
3550 Value *FwdVal;
3551 if (Ty->isLabelTy()) {
3552 FwdVal = BasicBlock::Create(Context&: F.getContext(), Name, Parent: &F);
3553 } else {
3554 FwdVal = new Argument(Ty, Name);
3555 }
3556 if (FwdVal->getName() != Name) {
3557 P.error(L: Loc, Msg: "name is too long which can result in name collisions, "
3558 "consider making the name shorter or "
3559 "increasing -non-global-value-max-name-size");
3560 return nullptr;
3561 }
3562
3563 ForwardRefVals[Name] = std::make_pair(x&: FwdVal, y&: Loc);
3564 return FwdVal;
3565}
3566
3567Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3568 // Look this name up in the normal function symbol table.
3569 Value *Val = NumberedVals.get(ID);
3570
3571 // If this is a forward reference for the value, see if we already created a
3572 // forward ref record.
3573 if (!Val) {
3574 auto I = ForwardRefValIDs.find(x: ID);
3575 if (I != ForwardRefValIDs.end())
3576 Val = I->second.first;
3577 }
3578
3579 // If we have the value in the symbol table or fwd-ref table, return it.
3580 if (Val)
3581 return P.checkValidVariableType(Loc, Name: "%" + Twine(ID), Ty, Val);
3582
3583 if (!Ty->isFirstClassType()) {
3584 P.error(L: Loc, Msg: "invalid use of a non-first-class type");
3585 return nullptr;
3586 }
3587
3588 // Otherwise, create a new forward reference for this value and remember it.
3589 Value *FwdVal;
3590 if (Ty->isLabelTy()) {
3591 FwdVal = BasicBlock::Create(Context&: F.getContext(), Name: "", Parent: &F);
3592 } else {
3593 FwdVal = new Argument(Ty);
3594 }
3595
3596 ForwardRefValIDs[ID] = std::make_pair(x&: FwdVal, y&: Loc);
3597 return FwdVal;
3598}
3599
3600/// setInstName - After an instruction is parsed and inserted into its
3601/// basic block, this installs its name.
3602bool LLParser::PerFunctionState::setInstName(int NameID,
3603 const std::string &NameStr,
3604 LocTy NameLoc, Instruction *Inst) {
3605 // If this instruction has void type, it cannot have a name or ID specified.
3606 if (Inst->getType()->isVoidTy()) {
3607 if (NameID != -1 || !NameStr.empty())
3608 return P.error(L: NameLoc, Msg: "instructions returning void cannot have a name");
3609 return false;
3610 }
3611
3612 // If this was a numbered instruction, verify that the instruction is the
3613 // expected value and resolve any forward references.
3614 if (NameStr.empty()) {
3615 // If neither a name nor an ID was specified, just use the next ID.
3616 if (NameID == -1)
3617 NameID = NumberedVals.getNext();
3618
3619 if (P.checkValueID(Loc: NameLoc, Kind: "instruction", Prefix: "%", NextID: NumberedVals.getNext(),
3620 ID: NameID))
3621 return true;
3622
3623 auto FI = ForwardRefValIDs.find(x: NameID);
3624 if (FI != ForwardRefValIDs.end()) {
3625 Value *Sentinel = FI->second.first;
3626 if (Sentinel->getType() != Inst->getType())
3627 return P.error(L: NameLoc, Msg: "instruction forward referenced with type '" +
3628 getTypeString(T: FI->second.first->getType()) +
3629 "'");
3630
3631 Sentinel->replaceAllUsesWith(V: Inst);
3632 Sentinel->deleteValue();
3633 ForwardRefValIDs.erase(position: FI);
3634 }
3635
3636 NumberedVals.add(ID: NameID, V: Inst);
3637 return false;
3638 }
3639
3640 // Otherwise, the instruction had a name. Resolve forward refs and set it.
3641 auto FI = ForwardRefVals.find(x: NameStr);
3642 if (FI != ForwardRefVals.end()) {
3643 Value *Sentinel = FI->second.first;
3644 if (Sentinel->getType() != Inst->getType())
3645 return P.error(L: NameLoc, Msg: "instruction forward referenced with type '" +
3646 getTypeString(T: FI->second.first->getType()) +
3647 "'");
3648
3649 Sentinel->replaceAllUsesWith(V: Inst);
3650 Sentinel->deleteValue();
3651 ForwardRefVals.erase(position: FI);
3652 }
3653
3654 // Set the name on the instruction.
3655 Inst->setName(NameStr);
3656
3657 if (Inst->getName() != NameStr)
3658 return P.error(L: NameLoc, Msg: "multiple definition of local value named '" +
3659 NameStr + "'");
3660 return false;
3661}
3662
3663/// getBB - Get a basic block with the specified name or ID, creating a
3664/// forward reference record if needed.
3665BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3666 LocTy Loc) {
3667 return dyn_cast_or_null<BasicBlock>(
3668 Val: getVal(Name, Ty: Type::getLabelTy(C&: F.getContext()), Loc));
3669}
3670
3671BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3672 return dyn_cast_or_null<BasicBlock>(
3673 Val: getVal(ID, Ty: Type::getLabelTy(C&: F.getContext()), Loc));
3674}
3675
3676/// defineBB - Define the specified basic block, which is either named or
3677/// unnamed. If there is an error, this returns null otherwise it returns
3678/// the block being defined.
3679BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3680 int NameID, LocTy Loc) {
3681 BasicBlock *BB;
3682 if (Name.empty()) {
3683 if (NameID != -1) {
3684 if (P.checkValueID(Loc, Kind: "label", Prefix: "", NextID: NumberedVals.getNext(), ID: NameID))
3685 return nullptr;
3686 } else {
3687 NameID = NumberedVals.getNext();
3688 }
3689 BB = getBB(ID: NameID, Loc);
3690 if (!BB) {
3691 P.error(L: Loc, Msg: "unable to create block numbered '" + Twine(NameID) + "'");
3692 return nullptr;
3693 }
3694 } else {
3695 BB = getBB(Name, Loc);
3696 if (!BB) {
3697 P.error(L: Loc, Msg: "unable to create block named '" + Name + "'");
3698 return nullptr;
3699 }
3700 }
3701
3702 // Move the block to the end of the function. Forward ref'd blocks are
3703 // inserted wherever they happen to be referenced.
3704 F.splice(ToIt: F.end(), FromF: &F, FromIt: BB->getIterator());
3705
3706 // Remove the block from forward ref sets.
3707 if (Name.empty()) {
3708 ForwardRefValIDs.erase(x: NameID);
3709 NumberedVals.add(ID: NameID, V: BB);
3710 } else {
3711 // BB forward references are already in the function symbol table.
3712 ForwardRefVals.erase(x: Name);
3713 }
3714
3715 return BB;
3716}
3717
3718//===----------------------------------------------------------------------===//
3719// Constants.
3720//===----------------------------------------------------------------------===//
3721
3722/// parseValID - parse an abstract value that doesn't necessarily have a
3723/// type implied. For example, if we parse "4" we don't know what integer type
3724/// it has. The value will later be combined with its type and checked for
3725/// basic correctness. PFS is used to convert function-local operands of
3726/// metadata (since metadata operands are not just parsed here but also
3727/// converted to values). PFS can be null when we are not parsing metadata
3728/// values inside a function.
3729bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3730 ID.Loc = Lex.getLoc();
3731 switch (Lex.getKind()) {
3732 default:
3733 return tokError(Msg: "expected value token");
3734 case lltok::GlobalID: // @42
3735 ID.UIntVal = Lex.getUIntVal();
3736 ID.Kind = ValID::t_GlobalID;
3737 break;
3738 case lltok::GlobalVar: // @foo
3739 ID.StrVal = Lex.getStrVal();
3740 ID.Kind = ValID::t_GlobalName;
3741 break;
3742 case lltok::LocalVarID: // %42
3743 ID.UIntVal = Lex.getUIntVal();
3744 ID.Kind = ValID::t_LocalID;
3745 break;
3746 case lltok::LocalVar: // %foo
3747 ID.StrVal = Lex.getStrVal();
3748 ID.Kind = ValID::t_LocalName;
3749 break;
3750 case lltok::APSInt:
3751 ID.APSIntVal = Lex.getAPSIntVal();
3752 ID.Kind = ValID::t_APSInt;
3753 break;
3754 case lltok::APFloat:
3755 ID.APFloatVal = Lex.getAPFloatVal();
3756 ID.Kind = ValID::t_APFloat;
3757 break;
3758 case lltok::kw_true:
3759 ID.ConstantVal = ConstantInt::getTrue(Context);
3760 ID.Kind = ValID::t_Constant;
3761 break;
3762 case lltok::kw_false:
3763 ID.ConstantVal = ConstantInt::getFalse(Context);
3764 ID.Kind = ValID::t_Constant;
3765 break;
3766 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3767 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3768 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3769 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3770 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3771
3772 case lltok::lbrace: {
3773 // ValID ::= '{' ConstVector '}'
3774 Lex.Lex();
3775 SmallVector<Constant*, 16> Elts;
3776 if (parseGlobalValueVector(Elts) ||
3777 parseToken(T: lltok::rbrace, ErrMsg: "expected end of struct constant"))
3778 return true;
3779
3780 ID.ConstantStructElts = std::make_unique<Constant *[]>(num: Elts.size());
3781 ID.UIntVal = Elts.size();
3782 memcpy(dest: ID.ConstantStructElts.get(), src: Elts.data(),
3783 n: Elts.size() * sizeof(Elts[0]));
3784 ID.Kind = ValID::t_ConstantStruct;
3785 return false;
3786 }
3787 case lltok::less: {
3788 // ValID ::= '<' ConstVector '>' --> Vector.
3789 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3790 Lex.Lex();
3791 bool isPackedStruct = EatIfPresent(T: lltok::lbrace);
3792
3793 SmallVector<Constant*, 16> Elts;
3794 LocTy FirstEltLoc = Lex.getLoc();
3795 if (parseGlobalValueVector(Elts) ||
3796 (isPackedStruct &&
3797 parseToken(T: lltok::rbrace, ErrMsg: "expected end of packed struct")) ||
3798 parseToken(T: lltok::greater, ErrMsg: "expected end of constant"))
3799 return true;
3800
3801 if (isPackedStruct) {
3802 ID.ConstantStructElts = std::make_unique<Constant *[]>(num: Elts.size());
3803 memcpy(dest: ID.ConstantStructElts.get(), src: Elts.data(),
3804 n: Elts.size() * sizeof(Elts[0]));
3805 ID.UIntVal = Elts.size();
3806 ID.Kind = ValID::t_PackedConstantStruct;
3807 return false;
3808 }
3809
3810 if (Elts.empty())
3811 return error(L: ID.Loc, Msg: "constant vector must not be empty");
3812
3813 if (!Elts[0]->getType()->isIntegerTy() &&
3814 !Elts[0]->getType()->isFloatingPointTy() &&
3815 !Elts[0]->getType()->isPointerTy())
3816 return error(
3817 L: FirstEltLoc,
3818 Msg: "vector elements must have integer, pointer or floating point type");
3819
3820 // Verify that all the vector elements have the same type.
3821 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3822 if (Elts[i]->getType() != Elts[0]->getType())
3823 return error(L: FirstEltLoc, Msg: "vector element #" + Twine(i) +
3824 " is not of type '" +
3825 getTypeString(T: Elts[0]->getType()));
3826
3827 ID.ConstantVal = ConstantVector::get(V: Elts);
3828 ID.Kind = ValID::t_Constant;
3829 return false;
3830 }
3831 case lltok::lsquare: { // Array Constant
3832 Lex.Lex();
3833 SmallVector<Constant*, 16> Elts;
3834 LocTy FirstEltLoc = Lex.getLoc();
3835 if (parseGlobalValueVector(Elts) ||
3836 parseToken(T: lltok::rsquare, ErrMsg: "expected end of array constant"))
3837 return true;
3838
3839 // Handle empty element.
3840 if (Elts.empty()) {
3841 // Use undef instead of an array because it's inconvenient to determine
3842 // the element type at this point, there being no elements to examine.
3843 ID.Kind = ValID::t_EmptyArray;
3844 return false;
3845 }
3846
3847 if (!Elts[0]->getType()->isFirstClassType())
3848 return error(L: FirstEltLoc, Msg: "invalid array element type: " +
3849 getTypeString(T: Elts[0]->getType()));
3850
3851 ArrayType *ATy = ArrayType::get(ElementType: Elts[0]->getType(), NumElements: Elts.size());
3852
3853 // Verify all elements are correct type!
3854 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3855 if (Elts[i]->getType() != Elts[0]->getType())
3856 return error(L: FirstEltLoc, Msg: "array element #" + Twine(i) +
3857 " is not of type '" +
3858 getTypeString(T: Elts[0]->getType()));
3859 }
3860
3861 ID.ConstantVal = ConstantArray::get(T: ATy, V: Elts);
3862 ID.Kind = ValID::t_Constant;
3863 return false;
3864 }
3865 case lltok::kw_c: // c "foo"
3866 Lex.Lex();
3867 ID.ConstantVal = ConstantDataArray::getString(Context, Initializer: Lex.getStrVal(),
3868 AddNull: false);
3869 if (parseToken(T: lltok::StringConstant, ErrMsg: "expected string"))
3870 return true;
3871 ID.Kind = ValID::t_Constant;
3872 return false;
3873
3874 case lltok::kw_asm: {
3875 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3876 // STRINGCONSTANT
3877 bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3878 Lex.Lex();
3879 if (parseOptionalToken(T: lltok::kw_sideeffect, Present&: HasSideEffect) ||
3880 parseOptionalToken(T: lltok::kw_alignstack, Present&: AlignStack) ||
3881 parseOptionalToken(T: lltok::kw_inteldialect, Present&: AsmDialect) ||
3882 parseOptionalToken(T: lltok::kw_unwind, Present&: CanThrow) ||
3883 parseStringConstant(Result&: ID.StrVal) ||
3884 parseToken(T: lltok::comma, ErrMsg: "expected comma in inline asm expression") ||
3885 parseToken(T: lltok::StringConstant, ErrMsg: "expected constraint string"))
3886 return true;
3887 ID.StrVal2 = Lex.getStrVal();
3888 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3889 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3890 ID.Kind = ValID::t_InlineAsm;
3891 return false;
3892 }
3893
3894 case lltok::kw_blockaddress: {
3895 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3896 Lex.Lex();
3897
3898 ValID Fn, Label;
3899
3900 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in block address expression") ||
3901 parseValID(ID&: Fn, PFS) ||
3902 parseToken(T: lltok::comma,
3903 ErrMsg: "expected comma in block address expression") ||
3904 parseValID(ID&: Label, PFS) ||
3905 parseToken(T: lltok::rparen, ErrMsg: "expected ')' in block address expression"))
3906 return true;
3907
3908 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3909 return error(L: Fn.Loc, Msg: "expected function name in blockaddress");
3910 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3911 return error(L: Label.Loc, Msg: "expected basic block name in blockaddress");
3912
3913 // Try to find the function (but skip it if it's forward-referenced).
3914 GlobalValue *GV = nullptr;
3915 if (Fn.Kind == ValID::t_GlobalID) {
3916 GV = NumberedVals.get(ID: Fn.UIntVal);
3917 } else if (!ForwardRefVals.count(x: Fn.StrVal)) {
3918 GV = M->getNamedValue(Name: Fn.StrVal);
3919 }
3920 Function *F = nullptr;
3921 if (GV) {
3922 // Confirm that it's actually a function with a definition.
3923 if (!isa<Function>(Val: GV))
3924 return error(L: Fn.Loc, Msg: "expected function name in blockaddress");
3925 F = cast<Function>(Val: GV);
3926 if (F->isDeclaration())
3927 return error(L: Fn.Loc, Msg: "cannot take blockaddress inside a declaration");
3928 }
3929
3930 if (!F) {
3931 // Make a global variable as a placeholder for this reference.
3932 GlobalValue *&FwdRef =
3933 ForwardRefBlockAddresses.insert(x: std::make_pair(
3934 x: std::move(Fn),
3935 y: std::map<ValID, GlobalValue *>()))
3936 .first->second.insert(x: std::make_pair(x: std::move(Label), y: nullptr))
3937 .first->second;
3938 if (!FwdRef) {
3939 unsigned FwdDeclAS;
3940 if (ExpectedTy) {
3941 // If we know the type that the blockaddress is being assigned to,
3942 // we can use the address space of that type.
3943 if (!ExpectedTy->isPointerTy())
3944 return error(L: ID.Loc,
3945 Msg: "type of blockaddress must be a pointer and not '" +
3946 getTypeString(T: ExpectedTy) + "'");
3947 FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3948 } else if (PFS) {
3949 // Otherwise, we default the address space of the current function.
3950 FwdDeclAS = PFS->getFunction().getAddressSpace();
3951 } else {
3952 llvm_unreachable("Unknown address space for blockaddress");
3953 }
3954 FwdRef = new GlobalVariable(
3955 *M, Type::getInt8Ty(C&: Context), false, GlobalValue::InternalLinkage,
3956 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3957 }
3958
3959 ID.ConstantVal = FwdRef;
3960 ID.Kind = ValID::t_Constant;
3961 return false;
3962 }
3963
3964 // We found the function; now find the basic block. Don't use PFS, since we
3965 // might be inside a constant expression.
3966 BasicBlock *BB;
3967 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3968 if (Label.Kind == ValID::t_LocalID)
3969 BB = BlockAddressPFS->getBB(ID: Label.UIntVal, Loc: Label.Loc);
3970 else
3971 BB = BlockAddressPFS->getBB(Name: Label.StrVal, Loc: Label.Loc);
3972 if (!BB)
3973 return error(L: Label.Loc, Msg: "referenced value is not a basic block");
3974 } else {
3975 if (Label.Kind == ValID::t_LocalID)
3976 return error(L: Label.Loc, Msg: "cannot take address of numeric label after "
3977 "the function is defined");
3978 BB = dyn_cast_or_null<BasicBlock>(
3979 Val: F->getValueSymbolTable()->lookup(Name: Label.StrVal));
3980 if (!BB)
3981 return error(L: Label.Loc, Msg: "referenced value is not a basic block");
3982 }
3983
3984 ID.ConstantVal = BlockAddress::get(F, BB);
3985 ID.Kind = ValID::t_Constant;
3986 return false;
3987 }
3988
3989 case lltok::kw_dso_local_equivalent: {
3990 // ValID ::= 'dso_local_equivalent' @foo
3991 Lex.Lex();
3992
3993 ValID Fn;
3994
3995 if (parseValID(ID&: Fn, PFS))
3996 return true;
3997
3998 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3999 return error(L: Fn.Loc,
4000 Msg: "expected global value name in dso_local_equivalent");
4001
4002 // Try to find the function (but skip it if it's forward-referenced).
4003 GlobalValue *GV = nullptr;
4004 if (Fn.Kind == ValID::t_GlobalID) {
4005 GV = NumberedVals.get(ID: Fn.UIntVal);
4006 } else if (!ForwardRefVals.count(x: Fn.StrVal)) {
4007 GV = M->getNamedValue(Name: Fn.StrVal);
4008 }
4009
4010 if (!GV) {
4011 // Make a placeholder global variable as a placeholder for this reference.
4012 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
4013 ? ForwardRefDSOLocalEquivalentIDs
4014 : ForwardRefDSOLocalEquivalentNames;
4015 GlobalValue *&FwdRef = FwdRefMap.try_emplace(k: Fn, args: nullptr).first->second;
4016 if (!FwdRef) {
4017 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(C&: Context), false,
4018 GlobalValue::InternalLinkage, nullptr, "",
4019 nullptr, GlobalValue::NotThreadLocal);
4020 }
4021
4022 ID.ConstantVal = FwdRef;
4023 ID.Kind = ValID::t_Constant;
4024 return false;
4025 }
4026
4027 if (!GV->getValueType()->isFunctionTy())
4028 return error(L: Fn.Loc, Msg: "expected a function, alias to function, or ifunc "
4029 "in dso_local_equivalent");
4030
4031 ID.ConstantVal = DSOLocalEquivalent::get(GV);
4032 ID.Kind = ValID::t_Constant;
4033 return false;
4034 }
4035
4036 case lltok::kw_no_cfi: {
4037 // ValID ::= 'no_cfi' @foo
4038 Lex.Lex();
4039
4040 if (parseValID(ID, PFS))
4041 return true;
4042
4043 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
4044 return error(L: ID.Loc, Msg: "expected global value name in no_cfi");
4045
4046 ID.NoCFI = true;
4047 return false;
4048 }
4049
4050 case lltok::kw_trunc:
4051 case lltok::kw_bitcast:
4052 case lltok::kw_addrspacecast:
4053 case lltok::kw_inttoptr:
4054 case lltok::kw_ptrtoint: {
4055 unsigned Opc = Lex.getUIntVal();
4056 Type *DestTy = nullptr;
4057 Constant *SrcVal;
4058 Lex.Lex();
4059 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' after constantexpr cast") ||
4060 parseGlobalTypeAndValue(V&: SrcVal) ||
4061 parseToken(T: lltok::kw_to, ErrMsg: "expected 'to' in constantexpr cast") ||
4062 parseType(Result&: DestTy) ||
4063 parseToken(T: lltok::rparen, ErrMsg: "expected ')' at end of constantexpr cast"))
4064 return true;
4065 if (!CastInst::castIsValid(op: (Instruction::CastOps)Opc, S: SrcVal, DstTy: DestTy))
4066 return error(L: ID.Loc, Msg: "invalid cast opcode for cast from '" +
4067 getTypeString(T: SrcVal->getType()) + "' to '" +
4068 getTypeString(T: DestTy) + "'");
4069 ID.ConstantVal = ConstantExpr::getCast(ops: (Instruction::CastOps)Opc,
4070 C: SrcVal, Ty: DestTy);
4071 ID.Kind = ValID::t_Constant;
4072 return false;
4073 }
4074 case lltok::kw_extractvalue:
4075 return error(L: ID.Loc, Msg: "extractvalue constexprs are no longer supported");
4076 case lltok::kw_insertvalue:
4077 return error(L: ID.Loc, Msg: "insertvalue constexprs are no longer supported");
4078 case lltok::kw_udiv:
4079 return error(L: ID.Loc, Msg: "udiv constexprs are no longer supported");
4080 case lltok::kw_sdiv:
4081 return error(L: ID.Loc, Msg: "sdiv constexprs are no longer supported");
4082 case lltok::kw_urem:
4083 return error(L: ID.Loc, Msg: "urem constexprs are no longer supported");
4084 case lltok::kw_srem:
4085 return error(L: ID.Loc, Msg: "srem constexprs are no longer supported");
4086 case lltok::kw_fadd:
4087 return error(L: ID.Loc, Msg: "fadd constexprs are no longer supported");
4088 case lltok::kw_fsub:
4089 return error(L: ID.Loc, Msg: "fsub constexprs are no longer supported");
4090 case lltok::kw_fmul:
4091 return error(L: ID.Loc, Msg: "fmul constexprs are no longer supported");
4092 case lltok::kw_fdiv:
4093 return error(L: ID.Loc, Msg: "fdiv constexprs are no longer supported");
4094 case lltok::kw_frem:
4095 return error(L: ID.Loc, Msg: "frem constexprs are no longer supported");
4096 case lltok::kw_and:
4097 return error(L: ID.Loc, Msg: "and constexprs are no longer supported");
4098 case lltok::kw_or:
4099 return error(L: ID.Loc, Msg: "or constexprs are no longer supported");
4100 case lltok::kw_lshr:
4101 return error(L: ID.Loc, Msg: "lshr constexprs are no longer supported");
4102 case lltok::kw_ashr:
4103 return error(L: ID.Loc, Msg: "ashr constexprs are no longer supported");
4104 case lltok::kw_fneg:
4105 return error(L: ID.Loc, Msg: "fneg constexprs are no longer supported");
4106 case lltok::kw_select:
4107 return error(L: ID.Loc, Msg: "select constexprs are no longer supported");
4108 case lltok::kw_zext:
4109 return error(L: ID.Loc, Msg: "zext constexprs are no longer supported");
4110 case lltok::kw_sext:
4111 return error(L: ID.Loc, Msg: "sext constexprs are no longer supported");
4112 case lltok::kw_fptrunc:
4113 return error(L: ID.Loc, Msg: "fptrunc constexprs are no longer supported");
4114 case lltok::kw_fpext:
4115 return error(L: ID.Loc, Msg: "fpext constexprs are no longer supported");
4116 case lltok::kw_uitofp:
4117 return error(L: ID.Loc, Msg: "uitofp constexprs are no longer supported");
4118 case lltok::kw_sitofp:
4119 return error(L: ID.Loc, Msg: "sitofp constexprs are no longer supported");
4120 case lltok::kw_fptoui:
4121 return error(L: ID.Loc, Msg: "fptoui constexprs are no longer supported");
4122 case lltok::kw_fptosi:
4123 return error(L: ID.Loc, Msg: "fptosi constexprs are no longer supported");
4124 case lltok::kw_icmp:
4125 case lltok::kw_fcmp: {
4126 unsigned PredVal, Opc = Lex.getUIntVal();
4127 Constant *Val0, *Val1;
4128 Lex.Lex();
4129 if (parseCmpPredicate(P&: PredVal, Opc) ||
4130 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in compare constantexpr") ||
4131 parseGlobalTypeAndValue(V&: Val0) ||
4132 parseToken(T: lltok::comma, ErrMsg: "expected comma in compare constantexpr") ||
4133 parseGlobalTypeAndValue(V&: Val1) ||
4134 parseToken(T: lltok::rparen, ErrMsg: "expected ')' in compare constantexpr"))
4135 return true;
4136
4137 if (Val0->getType() != Val1->getType())
4138 return error(L: ID.Loc, Msg: "compare operands must have the same type");
4139
4140 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
4141
4142 if (Opc == Instruction::FCmp) {
4143 if (!Val0->getType()->isFPOrFPVectorTy())
4144 return error(L: ID.Loc, Msg: "fcmp requires floating point operands");
4145 ID.ConstantVal = ConstantExpr::getFCmp(pred: Pred, LHS: Val0, RHS: Val1);
4146 } else {
4147 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
4148 if (!Val0->getType()->isIntOrIntVectorTy() &&
4149 !Val0->getType()->isPtrOrPtrVectorTy())
4150 return error(L: ID.Loc, Msg: "icmp requires pointer or integer operands");
4151 ID.ConstantVal = ConstantExpr::getICmp(pred: Pred, LHS: Val0, RHS: Val1);
4152 }
4153 ID.Kind = ValID::t_Constant;
4154 return false;
4155 }
4156
4157 // Binary Operators.
4158 case lltok::kw_add:
4159 case lltok::kw_sub:
4160 case lltok::kw_mul:
4161 case lltok::kw_shl:
4162 case lltok::kw_xor: {
4163 bool NUW = false;
4164 bool NSW = false;
4165 unsigned Opc = Lex.getUIntVal();
4166 Constant *Val0, *Val1;
4167 Lex.Lex();
4168 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4169 Opc == Instruction::Mul || Opc == Instruction::Shl) {
4170 if (EatIfPresent(T: lltok::kw_nuw))
4171 NUW = true;
4172 if (EatIfPresent(T: lltok::kw_nsw)) {
4173 NSW = true;
4174 if (EatIfPresent(T: lltok::kw_nuw))
4175 NUW = true;
4176 }
4177 }
4178 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in binary constantexpr") ||
4179 parseGlobalTypeAndValue(V&: Val0) ||
4180 parseToken(T: lltok::comma, ErrMsg: "expected comma in binary constantexpr") ||
4181 parseGlobalTypeAndValue(V&: Val1) ||
4182 parseToken(T: lltok::rparen, ErrMsg: "expected ')' in binary constantexpr"))
4183 return true;
4184 if (Val0->getType() != Val1->getType())
4185 return error(L: ID.Loc, Msg: "operands of constexpr must have same type");
4186 // Check that the type is valid for the operator.
4187 if (!Val0->getType()->isIntOrIntVectorTy())
4188 return error(L: ID.Loc,
4189 Msg: "constexpr requires integer or integer vector operands");
4190 unsigned Flags = 0;
4191 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4192 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
4193 ID.ConstantVal = ConstantExpr::get(Opcode: Opc, C1: Val0, C2: Val1, Flags);
4194 ID.Kind = ValID::t_Constant;
4195 return false;
4196 }
4197
4198 case lltok::kw_splat: {
4199 Lex.Lex();
4200 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' after vector splat"))
4201 return true;
4202 Constant *C;
4203 if (parseGlobalTypeAndValue(V&: C))
4204 return true;
4205 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' at end of vector splat"))
4206 return true;
4207
4208 ID.ConstantVal = C;
4209 ID.Kind = ValID::t_ConstantSplat;
4210 return false;
4211 }
4212
4213 case lltok::kw_getelementptr:
4214 case lltok::kw_shufflevector:
4215 case lltok::kw_insertelement:
4216 case lltok::kw_extractelement: {
4217 unsigned Opc = Lex.getUIntVal();
4218 SmallVector<Constant*, 16> Elts;
4219 bool InBounds = false;
4220 bool HasInRange = false;
4221 APSInt InRangeStart;
4222 APSInt InRangeEnd;
4223 Type *Ty;
4224 Lex.Lex();
4225
4226 if (Opc == Instruction::GetElementPtr) {
4227 InBounds = EatIfPresent(T: lltok::kw_inbounds);
4228 if (EatIfPresent(T: lltok::kw_inrange)) {
4229 if (parseToken(T: lltok::lparen, ErrMsg: "expected '('"))
4230 return true;
4231 if (Lex.getKind() != lltok::APSInt)
4232 return tokError(Msg: "expected integer");
4233 InRangeStart = Lex.getAPSIntVal();
4234 Lex.Lex();
4235 if (parseToken(T: lltok::comma, ErrMsg: "expected ','"))
4236 return true;
4237 if (Lex.getKind() != lltok::APSInt)
4238 return tokError(Msg: "expected integer");
4239 InRangeEnd = Lex.getAPSIntVal();
4240 Lex.Lex();
4241 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')'"))
4242 return true;
4243 HasInRange = true;
4244 }
4245 }
4246
4247 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in constantexpr"))
4248 return true;
4249
4250 if (Opc == Instruction::GetElementPtr) {
4251 if (parseType(Result&: Ty) ||
4252 parseToken(T: lltok::comma, ErrMsg: "expected comma after getelementptr's type"))
4253 return true;
4254 }
4255
4256 if (parseGlobalValueVector(Elts) ||
4257 parseToken(T: lltok::rparen, ErrMsg: "expected ')' in constantexpr"))
4258 return true;
4259
4260 if (Opc == Instruction::GetElementPtr) {
4261 if (Elts.size() == 0 ||
4262 !Elts[0]->getType()->isPtrOrPtrVectorTy())
4263 return error(L: ID.Loc, Msg: "base of getelementptr must be a pointer");
4264
4265 Type *BaseType = Elts[0]->getType();
4266 std::optional<ConstantRange> InRange;
4267 if (HasInRange) {
4268 unsigned IndexWidth =
4269 M->getDataLayout().getIndexTypeSizeInBits(Ty: BaseType);
4270 InRangeStart = InRangeStart.extOrTrunc(width: IndexWidth);
4271 InRangeEnd = InRangeEnd.extOrTrunc(width: IndexWidth);
4272 if (InRangeStart.sge(RHS: InRangeEnd))
4273 return error(L: ID.Loc, Msg: "expected end to be larger than start");
4274 InRange = ConstantRange::getNonEmpty(Lower: InRangeStart, Upper: InRangeEnd);
4275 }
4276
4277 unsigned GEPWidth =
4278 BaseType->isVectorTy()
4279 ? cast<FixedVectorType>(Val: BaseType)->getNumElements()
4280 : 0;
4281
4282 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4283 for (Constant *Val : Indices) {
4284 Type *ValTy = Val->getType();
4285 if (!ValTy->isIntOrIntVectorTy())
4286 return error(L: ID.Loc, Msg: "getelementptr index must be an integer");
4287 if (auto *ValVTy = dyn_cast<VectorType>(Val: ValTy)) {
4288 unsigned ValNumEl = cast<FixedVectorType>(Val: ValVTy)->getNumElements();
4289 if (GEPWidth && (ValNumEl != GEPWidth))
4290 return error(
4291 L: ID.Loc,
4292 Msg: "getelementptr vector index has a wrong number of elements");
4293 // GEPWidth may have been unknown because the base is a scalar,
4294 // but it is known now.
4295 GEPWidth = ValNumEl;
4296 }
4297 }
4298
4299 SmallPtrSet<Type*, 4> Visited;
4300 if (!Indices.empty() && !Ty->isSized(Visited: &Visited))
4301 return error(L: ID.Loc, Msg: "base element of getelementptr must be sized");
4302
4303 if (!GetElementPtrInst::getIndexedType(Ty, IdxList: Indices))
4304 return error(L: ID.Loc, Msg: "invalid getelementptr indices");
4305
4306 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, C: Elts[0], IdxList: Indices,
4307 InBounds, InRange);
4308 } else if (Opc == Instruction::ShuffleVector) {
4309 if (Elts.size() != 3)
4310 return error(L: ID.Loc, Msg: "expected three operands to shufflevector");
4311 if (!ShuffleVectorInst::isValidOperands(V1: Elts[0], V2: Elts[1], Mask: Elts[2]))
4312 return error(L: ID.Loc, Msg: "invalid operands to shufflevector");
4313 SmallVector<int, 16> Mask;
4314 ShuffleVectorInst::getShuffleMask(Mask: cast<Constant>(Val: Elts[2]), Result&: Mask);
4315 ID.ConstantVal = ConstantExpr::getShuffleVector(V1: Elts[0], V2: Elts[1], Mask);
4316 } else if (Opc == Instruction::ExtractElement) {
4317 if (Elts.size() != 2)
4318 return error(L: ID.Loc, Msg: "expected two operands to extractelement");
4319 if (!ExtractElementInst::isValidOperands(Vec: Elts[0], Idx: Elts[1]))
4320 return error(L: ID.Loc, Msg: "invalid extractelement operands");
4321 ID.ConstantVal = ConstantExpr::getExtractElement(Vec: Elts[0], Idx: Elts[1]);
4322 } else {
4323 assert(Opc == Instruction::InsertElement && "Unknown opcode");
4324 if (Elts.size() != 3)
4325 return error(L: ID.Loc, Msg: "expected three operands to insertelement");
4326 if (!InsertElementInst::isValidOperands(Vec: Elts[0], NewElt: Elts[1], Idx: Elts[2]))
4327 return error(L: ID.Loc, Msg: "invalid insertelement operands");
4328 ID.ConstantVal =
4329 ConstantExpr::getInsertElement(Vec: Elts[0], Elt: Elts[1],Idx: Elts[2]);
4330 }
4331
4332 ID.Kind = ValID::t_Constant;
4333 return false;
4334 }
4335 }
4336
4337 Lex.Lex();
4338 return false;
4339}
4340
4341/// parseGlobalValue - parse a global value with the specified type.
4342bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4343 C = nullptr;
4344 ValID ID;
4345 Value *V = nullptr;
4346 bool Parsed = parseValID(ID, /*PFS=*/nullptr, ExpectedTy: Ty) ||
4347 convertValIDToValue(Ty, ID, V, PFS: nullptr);
4348 if (V && !(C = dyn_cast<Constant>(Val: V)))
4349 return error(L: ID.Loc, Msg: "global values must be constants");
4350 return Parsed;
4351}
4352
4353bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4354 Type *Ty = nullptr;
4355 return parseType(Result&: Ty) || parseGlobalValue(Ty, C&: V);
4356}
4357
4358bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4359 C = nullptr;
4360
4361 LocTy KwLoc = Lex.getLoc();
4362 if (!EatIfPresent(T: lltok::kw_comdat))
4363 return false;
4364
4365 if (EatIfPresent(T: lltok::lparen)) {
4366 if (Lex.getKind() != lltok::ComdatVar)
4367 return tokError(Msg: "expected comdat variable");
4368 C = getComdat(Name: Lex.getStrVal(), Loc: Lex.getLoc());
4369 Lex.Lex();
4370 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' after comdat var"))
4371 return true;
4372 } else {
4373 if (GlobalName.empty())
4374 return tokError(Msg: "comdat cannot be unnamed");
4375 C = getComdat(Name: std::string(GlobalName), Loc: KwLoc);
4376 }
4377
4378 return false;
4379}
4380
4381/// parseGlobalValueVector
4382/// ::= /*empty*/
4383/// ::= TypeAndValue (',' TypeAndValue)*
4384bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
4385 // Empty list.
4386 if (Lex.getKind() == lltok::rbrace ||
4387 Lex.getKind() == lltok::rsquare ||
4388 Lex.getKind() == lltok::greater ||
4389 Lex.getKind() == lltok::rparen)
4390 return false;
4391
4392 do {
4393 // Let the caller deal with inrange.
4394 if (Lex.getKind() == lltok::kw_inrange)
4395 return false;
4396
4397 Constant *C;
4398 if (parseGlobalTypeAndValue(V&: C))
4399 return true;
4400 Elts.push_back(Elt: C);
4401 } while (EatIfPresent(T: lltok::comma));
4402
4403 return false;
4404}
4405
4406bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4407 SmallVector<Metadata *, 16> Elts;
4408 if (parseMDNodeVector(Elts))
4409 return true;
4410
4411 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4412 return false;
4413}
4414
4415/// MDNode:
4416/// ::= !{ ... }
4417/// ::= !7
4418/// ::= !DILocation(...)
4419bool LLParser::parseMDNode(MDNode *&N) {
4420 if (Lex.getKind() == lltok::MetadataVar)
4421 return parseSpecializedMDNode(N);
4422
4423 return parseToken(T: lltok::exclaim, ErrMsg: "expected '!' here") || parseMDNodeTail(N);
4424}
4425
4426bool LLParser::parseMDNodeTail(MDNode *&N) {
4427 // !{ ... }
4428 if (Lex.getKind() == lltok::lbrace)
4429 return parseMDTuple(MD&: N);
4430
4431 // !42
4432 return parseMDNodeID(Result&: N);
4433}
4434
4435namespace {
4436
4437/// Structure to represent an optional metadata field.
4438template <class FieldTy> struct MDFieldImpl {
4439 typedef MDFieldImpl ImplTy;
4440 FieldTy Val;
4441 bool Seen;
4442
4443 void assign(FieldTy Val) {
4444 Seen = true;
4445 this->Val = std::move(Val);
4446 }
4447
4448 explicit MDFieldImpl(FieldTy Default)
4449 : Val(std::move(Default)), Seen(false) {}
4450};
4451
4452/// Structure to represent an optional metadata field that
4453/// can be of either type (A or B) and encapsulates the
4454/// MD<typeofA>Field and MD<typeofB>Field structs, so not
4455/// to reimplement the specifics for representing each Field.
4456template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4457 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4458 FieldTypeA A;
4459 FieldTypeB B;
4460 bool Seen;
4461
4462 enum {
4463 IsInvalid = 0,
4464 IsTypeA = 1,
4465 IsTypeB = 2
4466 } WhatIs;
4467
4468 void assign(FieldTypeA A) {
4469 Seen = true;
4470 this->A = std::move(A);
4471 WhatIs = IsTypeA;
4472 }
4473
4474 void assign(FieldTypeB B) {
4475 Seen = true;
4476 this->B = std::move(B);
4477 WhatIs = IsTypeB;
4478 }
4479
4480 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4481 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4482 WhatIs(IsInvalid) {}
4483};
4484
4485struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4486 uint64_t Max;
4487
4488 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4489 : ImplTy(Default), Max(Max) {}
4490};
4491
4492struct LineField : public MDUnsignedField {
4493 LineField() : MDUnsignedField(0, UINT32_MAX) {}
4494};
4495
4496struct ColumnField : public MDUnsignedField {
4497 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4498};
4499
4500struct DwarfTagField : public MDUnsignedField {
4501 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4502 DwarfTagField(dwarf::Tag DefaultTag)
4503 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4504};
4505
4506struct DwarfMacinfoTypeField : public MDUnsignedField {
4507 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4508 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4509 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4510};
4511
4512struct DwarfAttEncodingField : public MDUnsignedField {
4513 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4514};
4515
4516struct DwarfVirtualityField : public MDUnsignedField {
4517 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4518};
4519
4520struct DwarfLangField : public MDUnsignedField {
4521 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4522};
4523
4524struct DwarfCCField : public MDUnsignedField {
4525 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4526};
4527
4528struct EmissionKindField : public MDUnsignedField {
4529 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4530};
4531
4532struct NameTableKindField : public MDUnsignedField {
4533 NameTableKindField()
4534 : MDUnsignedField(
4535 0, (unsigned)
4536 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4537};
4538
4539struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4540 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4541};
4542
4543struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4544 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4545};
4546
4547struct MDAPSIntField : public MDFieldImpl<APSInt> {
4548 MDAPSIntField() : ImplTy(APSInt()) {}
4549};
4550
4551struct MDSignedField : public MDFieldImpl<int64_t> {
4552 int64_t Min = INT64_MIN;
4553 int64_t Max = INT64_MAX;
4554
4555 MDSignedField(int64_t Default = 0)
4556 : ImplTy(Default) {}
4557 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4558 : ImplTy(Default), Min(Min), Max(Max) {}
4559};
4560
4561struct MDBoolField : public MDFieldImpl<bool> {
4562 MDBoolField(bool Default = false) : ImplTy(Default) {}
4563};
4564
4565struct MDField : public MDFieldImpl<Metadata *> {
4566 bool AllowNull;
4567
4568 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4569};
4570
4571struct MDStringField : public MDFieldImpl<MDString *> {
4572 bool AllowEmpty;
4573 MDStringField(bool AllowEmpty = true)
4574 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4575};
4576
4577struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4578 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4579};
4580
4581struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4582 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4583};
4584
4585struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4586 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4587 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4588
4589 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4590 bool AllowNull = true)
4591 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4592
4593 bool isMDSignedField() const { return WhatIs == IsTypeA; }
4594 bool isMDField() const { return WhatIs == IsTypeB; }
4595 int64_t getMDSignedValue() const {
4596 assert(isMDSignedField() && "Wrong field type");
4597 return A.Val;
4598 }
4599 Metadata *getMDFieldValue() const {
4600 assert(isMDField() && "Wrong field type");
4601 return B.Val;
4602 }
4603};
4604
4605} // end anonymous namespace
4606
4607namespace llvm {
4608
4609template <>
4610bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4611 if (Lex.getKind() != lltok::APSInt)
4612 return tokError(Msg: "expected integer");
4613
4614 Result.assign(Val: Lex.getAPSIntVal());
4615 Lex.Lex();
4616 return false;
4617}
4618
4619template <>
4620bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4621 MDUnsignedField &Result) {
4622 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4623 return tokError(Msg: "expected unsigned integer");
4624
4625 auto &U = Lex.getAPSIntVal();
4626 if (U.ugt(RHS: Result.Max))
4627 return tokError(Msg: "value for '" + Name + "' too large, limit is " +
4628 Twine(Result.Max));
4629 Result.assign(Val: U.getZExtValue());
4630 assert(Result.Val <= Result.Max && "Expected value in range");
4631 Lex.Lex();
4632 return false;
4633}
4634
4635template <>
4636bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4637 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4638}
4639template <>
4640bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4641 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4642}
4643
4644template <>
4645bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4646 if (Lex.getKind() == lltok::APSInt)
4647 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4648
4649 if (Lex.getKind() != lltok::DwarfTag)
4650 return tokError(Msg: "expected DWARF tag");
4651
4652 unsigned Tag = dwarf::getTag(TagString: Lex.getStrVal());
4653 if (Tag == dwarf::DW_TAG_invalid)
4654 return tokError(Msg: "invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4655 assert(Tag <= Result.Max && "Expected valid DWARF tag");
4656
4657 Result.assign(Val: Tag);
4658 Lex.Lex();
4659 return false;
4660}
4661
4662template <>
4663bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4664 DwarfMacinfoTypeField &Result) {
4665 if (Lex.getKind() == lltok::APSInt)
4666 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4667
4668 if (Lex.getKind() != lltok::DwarfMacinfo)
4669 return tokError(Msg: "expected DWARF macinfo type");
4670
4671 unsigned Macinfo = dwarf::getMacinfo(MacinfoString: Lex.getStrVal());
4672 if (Macinfo == dwarf::DW_MACINFO_invalid)
4673 return tokError(Msg: "invalid DWARF macinfo type" + Twine(" '") +
4674 Lex.getStrVal() + "'");
4675 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4676
4677 Result.assign(Val: Macinfo);
4678 Lex.Lex();
4679 return false;
4680}
4681
4682template <>
4683bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4684 DwarfVirtualityField &Result) {
4685 if (Lex.getKind() == lltok::APSInt)
4686 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4687
4688 if (Lex.getKind() != lltok::DwarfVirtuality)
4689 return tokError(Msg: "expected DWARF virtuality code");
4690
4691 unsigned Virtuality = dwarf::getVirtuality(VirtualityString: Lex.getStrVal());
4692 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4693 return tokError(Msg: "invalid DWARF virtuality code" + Twine(" '") +
4694 Lex.getStrVal() + "'");
4695 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4696 Result.assign(Val: Virtuality);
4697 Lex.Lex();
4698 return false;
4699}
4700
4701template <>
4702bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4703 if (Lex.getKind() == lltok::APSInt)
4704 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4705
4706 if (Lex.getKind() != lltok::DwarfLang)
4707 return tokError(Msg: "expected DWARF language");
4708
4709 unsigned Lang = dwarf::getLanguage(LanguageString: Lex.getStrVal());
4710 if (!Lang)
4711 return tokError(Msg: "invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4712 "'");
4713 assert(Lang <= Result.Max && "Expected valid DWARF language");
4714 Result.assign(Val: Lang);
4715 Lex.Lex();
4716 return false;
4717}
4718
4719template <>
4720bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4721 if (Lex.getKind() == lltok::APSInt)
4722 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4723
4724 if (Lex.getKind() != lltok::DwarfCC)
4725 return tokError(Msg: "expected DWARF calling convention");
4726
4727 unsigned CC = dwarf::getCallingConvention(LanguageString: Lex.getStrVal());
4728 if (!CC)
4729 return tokError(Msg: "invalid DWARF calling convention" + Twine(" '") +
4730 Lex.getStrVal() + "'");
4731 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4732 Result.assign(Val: CC);
4733 Lex.Lex();
4734 return false;
4735}
4736
4737template <>
4738bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4739 EmissionKindField &Result) {
4740 if (Lex.getKind() == lltok::APSInt)
4741 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4742
4743 if (Lex.getKind() != lltok::EmissionKind)
4744 return tokError(Msg: "expected emission kind");
4745
4746 auto Kind = DICompileUnit::getEmissionKind(Str: Lex.getStrVal());
4747 if (!Kind)
4748 return tokError(Msg: "invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4749 "'");
4750 assert(*Kind <= Result.Max && "Expected valid emission kind");
4751 Result.assign(Val: *Kind);
4752 Lex.Lex();
4753 return false;
4754}
4755
4756template <>
4757bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4758 NameTableKindField &Result) {
4759 if (Lex.getKind() == lltok::APSInt)
4760 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4761
4762 if (Lex.getKind() != lltok::NameTableKind)
4763 return tokError(Msg: "expected nameTable kind");
4764
4765 auto Kind = DICompileUnit::getNameTableKind(Str: Lex.getStrVal());
4766 if (!Kind)
4767 return tokError(Msg: "invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4768 "'");
4769 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4770 Result.assign(Val: (unsigned)*Kind);
4771 Lex.Lex();
4772 return false;
4773}
4774
4775template <>
4776bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4777 DwarfAttEncodingField &Result) {
4778 if (Lex.getKind() == lltok::APSInt)
4779 return parseMDField(Loc, Name, Result&: static_cast<MDUnsignedField &>(Result));
4780
4781 if (Lex.getKind() != lltok::DwarfAttEncoding)
4782 return tokError(Msg: "expected DWARF type attribute encoding");
4783
4784 unsigned Encoding = dwarf::getAttributeEncoding(EncodingString: Lex.getStrVal());
4785 if (!Encoding)
4786 return tokError(Msg: "invalid DWARF type attribute encoding" + Twine(" '") +
4787 Lex.getStrVal() + "'");
4788 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4789 Result.assign(Val: Encoding);
4790 Lex.Lex();
4791 return false;
4792}
4793
4794/// DIFlagField
4795/// ::= uint32
4796/// ::= DIFlagVector
4797/// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4798template <>
4799bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4800
4801 // parser for a single flag.
4802 auto parseFlag = [&](DINode::DIFlags &Val) {
4803 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4804 uint32_t TempVal = static_cast<uint32_t>(Val);
4805 bool Res = parseUInt32(Val&: TempVal);
4806 Val = static_cast<DINode::DIFlags>(TempVal);
4807 return Res;
4808 }
4809
4810 if (Lex.getKind() != lltok::DIFlag)
4811 return tokError(Msg: "expected debug info flag");
4812
4813 Val = DINode::getFlag(Flag: Lex.getStrVal());
4814 if (!Val)
4815 return tokError(Msg: Twine("invalid debug info flag '") + Lex.getStrVal() +
4816 "'");
4817 Lex.Lex();
4818 return false;
4819 };
4820
4821 // parse the flags and combine them together.
4822 DINode::DIFlags Combined = DINode::FlagZero;
4823 do {
4824 DINode::DIFlags Val;
4825 if (parseFlag(Val))
4826 return true;
4827 Combined |= Val;
4828 } while (EatIfPresent(T: lltok::bar));
4829
4830 Result.assign(Val: Combined);
4831 return false;
4832}
4833
4834/// DISPFlagField
4835/// ::= uint32
4836/// ::= DISPFlagVector
4837/// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4838template <>
4839bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4840
4841 // parser for a single flag.
4842 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4843 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4844 uint32_t TempVal = static_cast<uint32_t>(Val);
4845 bool Res = parseUInt32(Val&: TempVal);
4846 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4847 return Res;
4848 }
4849
4850 if (Lex.getKind() != lltok::DISPFlag)
4851 return tokError(Msg: "expected debug info flag");
4852
4853 Val = DISubprogram::getFlag(Flag: Lex.getStrVal());
4854 if (!Val)
4855 return tokError(Msg: Twine("invalid subprogram debug info flag '") +
4856 Lex.getStrVal() + "'");
4857 Lex.Lex();
4858 return false;
4859 };
4860
4861 // parse the flags and combine them together.
4862 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4863 do {
4864 DISubprogram::DISPFlags Val;
4865 if (parseFlag(Val))
4866 return true;
4867 Combined |= Val;
4868 } while (EatIfPresent(T: lltok::bar));
4869
4870 Result.assign(Val: Combined);
4871 return false;
4872}
4873
4874template <>
4875bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4876 if (Lex.getKind() != lltok::APSInt)
4877 return tokError(Msg: "expected signed integer");
4878
4879 auto &S = Lex.getAPSIntVal();
4880 if (S < Result.Min)
4881 return tokError(Msg: "value for '" + Name + "' too small, limit is " +
4882 Twine(Result.Min));
4883 if (S > Result.Max)
4884 return tokError(Msg: "value for '" + Name + "' too large, limit is " +
4885 Twine(Result.Max));
4886 Result.assign(Val: S.getExtValue());
4887 assert(Result.Val >= Result.Min && "Expected value in range");
4888 assert(Result.Val <= Result.Max && "Expected value in range");
4889 Lex.Lex();
4890 return false;
4891}
4892
4893template <>
4894bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4895 switch (Lex.getKind()) {
4896 default:
4897 return tokError(Msg: "expected 'true' or 'false'");
4898 case lltok::kw_true:
4899 Result.assign(Val: true);
4900 break;
4901 case lltok::kw_false:
4902 Result.assign(Val: false);
4903 break;
4904 }
4905 Lex.Lex();
4906 return false;
4907}
4908
4909template <>
4910bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4911 if (Lex.getKind() == lltok::kw_null) {
4912 if (!Result.AllowNull)
4913 return tokError(Msg: "'" + Name + "' cannot be null");
4914 Lex.Lex();
4915 Result.assign(Val: nullptr);
4916 return false;
4917 }
4918
4919 Metadata *MD;
4920 if (parseMetadata(MD, PFS: nullptr))
4921 return true;
4922
4923 Result.assign(Val: MD);
4924 return false;
4925}
4926
4927template <>
4928bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4929 MDSignedOrMDField &Result) {
4930 // Try to parse a signed int.
4931 if (Lex.getKind() == lltok::APSInt) {
4932 MDSignedField Res = Result.A;
4933 if (!parseMDField(Loc, Name, Result&: Res)) {
4934 Result.assign(A: Res);
4935 return false;
4936 }
4937 return true;
4938 }
4939
4940 // Otherwise, try to parse as an MDField.
4941 MDField Res = Result.B;
4942 if (!parseMDField(Loc, Name, Result&: Res)) {
4943 Result.assign(B: Res);
4944 return false;
4945 }
4946
4947 return true;
4948}
4949
4950template <>
4951bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4952 LocTy ValueLoc = Lex.getLoc();
4953 std::string S;
4954 if (parseStringConstant(Result&: S))
4955 return true;
4956
4957 if (!Result.AllowEmpty && S.empty())
4958 return error(L: ValueLoc, Msg: "'" + Name + "' cannot be empty");
4959
4960 Result.assign(Val: S.empty() ? nullptr : MDString::get(Context, Str: S));
4961 return false;
4962}
4963
4964template <>
4965bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4966 SmallVector<Metadata *, 4> MDs;
4967 if (parseMDNodeVector(Elts&: MDs))
4968 return true;
4969
4970 Result.assign(Val: std::move(MDs));
4971 return false;
4972}
4973
4974template <>
4975bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4976 ChecksumKindField &Result) {
4977 std::optional<DIFile::ChecksumKind> CSKind =
4978 DIFile::getChecksumKind(CSKindStr: Lex.getStrVal());
4979
4980 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4981 return tokError(Msg: "invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4982 "'");
4983
4984 Result.assign(Val: *CSKind);
4985 Lex.Lex();
4986 return false;
4987}
4988
4989} // end namespace llvm
4990
4991template <class ParserTy>
4992bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4993 do {
4994 if (Lex.getKind() != lltok::LabelStr)
4995 return tokError(Msg: "expected field label here");
4996
4997 if (ParseField())
4998 return true;
4999 } while (EatIfPresent(T: lltok::comma));
5000
5001 return false;
5002}
5003
5004template <class ParserTy>
5005bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
5006 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5007 Lex.Lex();
5008
5009 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
5010 return true;
5011 if (Lex.getKind() != lltok::rparen)
5012 if (parseMDFieldsImplBody(ParseField))
5013 return true;
5014
5015 ClosingLoc = Lex.getLoc();
5016 return parseToken(T: lltok::rparen, ErrMsg: "expected ')' here");
5017}
5018
5019template <class FieldTy>
5020bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
5021 if (Result.Seen)
5022 return tokError(Msg: "field '" + Name + "' cannot be specified more than once");
5023
5024 LocTy Loc = Lex.getLoc();
5025 Lex.Lex();
5026 return parseMDField(Loc, Name, Result);
5027}
5028
5029bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
5030 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5031
5032#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
5033 if (Lex.getStrVal() == #CLASS) \
5034 return parse##CLASS(N, IsDistinct);
5035#include "llvm/IR/Metadata.def"
5036
5037 return tokError(Msg: "expected metadata type");
5038}
5039
5040#define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
5041#define NOP_FIELD(NAME, TYPE, INIT)
5042#define REQUIRE_FIELD(NAME, TYPE, INIT) \
5043 if (!NAME.Seen) \
5044 return error(ClosingLoc, "missing required field '" #NAME "'");
5045#define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
5046 if (Lex.getStrVal() == #NAME) \
5047 return parseMDField(#NAME, NAME);
5048#define PARSE_MD_FIELDS() \
5049 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
5050 do { \
5051 LocTy ClosingLoc; \
5052 if (parseMDFieldsImpl( \
5053 [&]() -> bool { \
5054 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
5055 return tokError(Twine("invalid field '") + Lex.getStrVal() + \
5056 "'"); \
5057 }, \
5058 ClosingLoc)) \
5059 return true; \
5060 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
5061 } while (false)
5062#define GET_OR_DISTINCT(CLASS, ARGS) \
5063 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
5064
5065/// parseDILocationFields:
5066/// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
5067/// isImplicitCode: true)
5068bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
5069#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5070 OPTIONAL(line, LineField, ); \
5071 OPTIONAL(column, ColumnField, ); \
5072 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5073 OPTIONAL(inlinedAt, MDField, ); \
5074 OPTIONAL(isImplicitCode, MDBoolField, (false));
5075 PARSE_MD_FIELDS();
5076#undef VISIT_MD_FIELDS
5077
5078 Result =
5079 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
5080 inlinedAt.Val, isImplicitCode.Val));
5081 return false;
5082}
5083
5084/// parseDIAssignID:
5085/// ::= distinct !DIAssignID()
5086bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
5087 if (!IsDistinct)
5088 return Lex.Error(Msg: "missing 'distinct', required for !DIAssignID()");
5089
5090 Lex.Lex();
5091
5092 // Now eat the parens.
5093 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
5094 return true;
5095 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
5096 return true;
5097
5098 Result = DIAssignID::getDistinct(Context);
5099 return false;
5100}
5101
5102/// parseGenericDINode:
5103/// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
5104bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
5105#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5106 REQUIRED(tag, DwarfTagField, ); \
5107 OPTIONAL(header, MDStringField, ); \
5108 OPTIONAL(operands, MDFieldList, );
5109 PARSE_MD_FIELDS();
5110#undef VISIT_MD_FIELDS
5111
5112 Result = GET_OR_DISTINCT(GenericDINode,
5113 (Context, tag.Val, header.Val, operands.Val));
5114 return false;
5115}
5116
5117/// parseDISubrange:
5118/// ::= !DISubrange(count: 30, lowerBound: 2)
5119/// ::= !DISubrange(count: !node, lowerBound: 2)
5120/// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
5121bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
5122#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5123 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
5124 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5125 OPTIONAL(upperBound, MDSignedOrMDField, ); \
5126 OPTIONAL(stride, MDSignedOrMDField, );
5127 PARSE_MD_FIELDS();
5128#undef VISIT_MD_FIELDS
5129
5130 Metadata *Count = nullptr;
5131 Metadata *LowerBound = nullptr;
5132 Metadata *UpperBound = nullptr;
5133 Metadata *Stride = nullptr;
5134
5135 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5136 if (Bound.isMDSignedField())
5137 return ConstantAsMetadata::get(C: ConstantInt::getSigned(
5138 Ty: Type::getInt64Ty(C&: Context), V: Bound.getMDSignedValue()));
5139 if (Bound.isMDField())
5140 return Bound.getMDFieldValue();
5141 return nullptr;
5142 };
5143
5144 Count = convToMetadata(count);
5145 LowerBound = convToMetadata(lowerBound);
5146 UpperBound = convToMetadata(upperBound);
5147 Stride = convToMetadata(stride);
5148
5149 Result = GET_OR_DISTINCT(DISubrange,
5150 (Context, Count, LowerBound, UpperBound, Stride));
5151
5152 return false;
5153}
5154
5155/// parseDIGenericSubrange:
5156/// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5157/// !node3)
5158bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5159#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5160 OPTIONAL(count, MDSignedOrMDField, ); \
5161 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5162 OPTIONAL(upperBound, MDSignedOrMDField, ); \
5163 OPTIONAL(stride, MDSignedOrMDField, );
5164 PARSE_MD_FIELDS();
5165#undef VISIT_MD_FIELDS
5166
5167 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5168 if (Bound.isMDSignedField())
5169 return DIExpression::get(
5170 Context, Elements: {dwarf::DW_OP_consts,
5171 static_cast<uint64_t>(Bound.getMDSignedValue())});
5172 if (Bound.isMDField())
5173 return Bound.getMDFieldValue();
5174 return nullptr;
5175 };
5176
5177 Metadata *Count = ConvToMetadata(count);
5178 Metadata *LowerBound = ConvToMetadata(lowerBound);
5179 Metadata *UpperBound = ConvToMetadata(upperBound);
5180 Metadata *Stride = ConvToMetadata(stride);
5181
5182 Result = GET_OR_DISTINCT(DIGenericSubrange,
5183 (Context, Count, LowerBound, UpperBound, Stride));
5184
5185 return false;
5186}
5187
5188/// parseDIEnumerator:
5189/// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
5190bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5191#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5192 REQUIRED(name, MDStringField, ); \
5193 REQUIRED(value, MDAPSIntField, ); \
5194 OPTIONAL(isUnsigned, MDBoolField, (false));
5195 PARSE_MD_FIELDS();
5196#undef VISIT_MD_FIELDS
5197
5198 if (isUnsigned.Val && value.Val.isNegative())
5199 return tokError(Msg: "unsigned enumerator with negative value");
5200
5201 APSInt Value(value.Val);
5202 // Add a leading zero so that unsigned values with the msb set are not
5203 // mistaken for negative values when used for signed enumerators.
5204 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5205 Value = Value.zext(width: Value.getBitWidth() + 1);
5206
5207 Result =
5208 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5209
5210 return false;
5211}
5212
5213/// parseDIBasicType:
5214/// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5215/// encoding: DW_ATE_encoding, flags: 0)
5216bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5217#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5218 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
5219 OPTIONAL(name, MDStringField, ); \
5220 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5221 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5222 OPTIONAL(encoding, DwarfAttEncodingField, ); \
5223 OPTIONAL(flags, DIFlagField, );
5224 PARSE_MD_FIELDS();
5225#undef VISIT_MD_FIELDS
5226
5227 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5228 align.Val, encoding.Val, flags.Val));
5229 return false;
5230}
5231
5232/// parseDIStringType:
5233/// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
5234bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5235#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5236 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
5237 OPTIONAL(name, MDStringField, ); \
5238 OPTIONAL(stringLength, MDField, ); \
5239 OPTIONAL(stringLengthExpression, MDField, ); \
5240 OPTIONAL(stringLocationExpression, MDField, ); \
5241 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5242 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5243 OPTIONAL(encoding, DwarfAttEncodingField, );
5244 PARSE_MD_FIELDS();
5245#undef VISIT_MD_FIELDS
5246
5247 Result = GET_OR_DISTINCT(
5248 DIStringType,
5249 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5250 stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5251 return false;
5252}
5253
5254/// parseDIDerivedType:
5255/// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5256/// line: 7, scope: !1, baseType: !2, size: 32,
5257/// align: 32, offset: 0, flags: 0, extraData: !3,
5258/// dwarfAddressSpace: 3, ptrAuthKey: 1,
5259/// ptrAuthIsAddressDiscriminated: true,
5260/// ptrAuthExtraDiscriminator: 0x1234,
5261/// ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1
5262/// )
5263bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5264#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5265 REQUIRED(tag, DwarfTagField, ); \
5266 OPTIONAL(name, MDStringField, ); \
5267 OPTIONAL(file, MDField, ); \
5268 OPTIONAL(line, LineField, ); \
5269 OPTIONAL(scope, MDField, ); \
5270 REQUIRED(baseType, MDField, ); \
5271 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5272 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5273 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5274 OPTIONAL(flags, DIFlagField, ); \
5275 OPTIONAL(extraData, MDField, ); \
5276 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \
5277 OPTIONAL(annotations, MDField, ); \
5278 OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7)); \
5279 OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, ); \
5280 OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff)); \
5281 OPTIONAL(ptrAuthIsaPointer, MDBoolField, ); \
5282 OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, );
5283 PARSE_MD_FIELDS();
5284#undef VISIT_MD_FIELDS
5285
5286 std::optional<unsigned> DWARFAddressSpace;
5287 if (dwarfAddressSpace.Val != UINT32_MAX)
5288 DWARFAddressSpace = dwarfAddressSpace.Val;
5289 std::optional<DIDerivedType::PtrAuthData> PtrAuthData;
5290 if (ptrAuthKey.Val)
5291 PtrAuthData.emplace(
5292 args: (unsigned)ptrAuthKey.Val, args&: ptrAuthIsAddressDiscriminated.Val,
5293 args: (unsigned)ptrAuthExtraDiscriminator.Val, args&: ptrAuthIsaPointer.Val,
5294 args&: ptrAuthAuthenticatesNullValues.Val);
5295
5296 Result = GET_OR_DISTINCT(DIDerivedType,
5297 (Context, tag.Val, name.Val, file.Val, line.Val,
5298 scope.Val, baseType.Val, size.Val, align.Val,
5299 offset.Val, DWARFAddressSpace, PtrAuthData,
5300 flags.Val, extraData.Val, annotations.Val));
5301 return false;
5302}
5303
5304bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5305#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5306 REQUIRED(tag, DwarfTagField, ); \
5307 OPTIONAL(name, MDStringField, ); \
5308 OPTIONAL(file, MDField, ); \
5309 OPTIONAL(line, LineField, ); \
5310 OPTIONAL(scope, MDField, ); \
5311 OPTIONAL(baseType, MDField, ); \
5312 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5313 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5314 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5315 OPTIONAL(flags, DIFlagField, ); \
5316 OPTIONAL(elements, MDField, ); \
5317 OPTIONAL(runtimeLang, DwarfLangField, ); \
5318 OPTIONAL(vtableHolder, MDField, ); \
5319 OPTIONAL(templateParams, MDField, ); \
5320 OPTIONAL(identifier, MDStringField, ); \
5321 OPTIONAL(discriminator, MDField, ); \
5322 OPTIONAL(dataLocation, MDField, ); \
5323 OPTIONAL(associated, MDField, ); \
5324 OPTIONAL(allocated, MDField, ); \
5325 OPTIONAL(rank, MDSignedOrMDField, ); \
5326 OPTIONAL(annotations, MDField, );
5327 PARSE_MD_FIELDS();
5328#undef VISIT_MD_FIELDS
5329
5330 Metadata *Rank = nullptr;
5331 if (rank.isMDSignedField())
5332 Rank = ConstantAsMetadata::get(C: ConstantInt::getSigned(
5333 Ty: Type::getInt64Ty(C&: Context), V: rank.getMDSignedValue()));
5334 else if (rank.isMDField())
5335 Rank = rank.getMDFieldValue();
5336
5337 // If this has an identifier try to build an ODR type.
5338 if (identifier.Val)
5339 if (auto *CT = DICompositeType::buildODRType(
5340 Context, Identifier&: *identifier.Val, Tag: tag.Val, Name: name.Val, File: file.Val, Line: line.Val,
5341 Scope: scope.Val, BaseType: baseType.Val, SizeInBits: size.Val, AlignInBits: align.Val, OffsetInBits: offset.Val, Flags: flags.Val,
5342 Elements: elements.Val, RuntimeLang: runtimeLang.Val, VTableHolder: vtableHolder.Val, TemplateParams: templateParams.Val,
5343 Discriminator: discriminator.Val, DataLocation: dataLocation.Val, Associated: associated.Val, Allocated: allocated.Val,
5344 Rank, Annotations: annotations.Val)) {
5345 Result = CT;
5346 return false;
5347 }
5348
5349 // Create a new node, and save it in the context if it belongs in the type
5350 // map.
5351 Result = GET_OR_DISTINCT(
5352 DICompositeType,
5353 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5354 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5355 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5356 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5357 annotations.Val));
5358 return false;
5359}
5360
5361bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5362#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5363 OPTIONAL(flags, DIFlagField, ); \
5364 OPTIONAL(cc, DwarfCCField, ); \
5365 REQUIRED(types, MDField, );
5366 PARSE_MD_FIELDS();
5367#undef VISIT_MD_FIELDS
5368
5369 Result = GET_OR_DISTINCT(DISubroutineType,
5370 (Context, flags.Val, cc.Val, types.Val));
5371 return false;
5372}
5373
5374/// parseDIFileType:
5375/// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5376/// checksumkind: CSK_MD5,
5377/// checksum: "000102030405060708090a0b0c0d0e0f",
5378/// source: "source file contents")
5379bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5380 // The default constructed value for checksumkind is required, but will never
5381 // be used, as the parser checks if the field was actually Seen before using
5382 // the Val.
5383#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5384 REQUIRED(filename, MDStringField, ); \
5385 REQUIRED(directory, MDStringField, ); \
5386 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
5387 OPTIONAL(checksum, MDStringField, ); \
5388 OPTIONAL(source, MDStringField, );
5389 PARSE_MD_FIELDS();
5390#undef VISIT_MD_FIELDS
5391
5392 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5393 if (checksumkind.Seen && checksum.Seen)
5394 OptChecksum.emplace(args&: checksumkind.Val, args&: checksum.Val);
5395 else if (checksumkind.Seen || checksum.Seen)
5396 return Lex.Error(Msg: "'checksumkind' and 'checksum' must be provided together");
5397
5398 MDString *Source = nullptr;
5399 if (source.Seen)
5400 Source = source.Val;
5401 Result = GET_OR_DISTINCT(
5402 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5403 return false;
5404}
5405
5406/// parseDICompileUnit:
5407/// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5408/// isOptimized: true, flags: "-O2", runtimeVersion: 1,
5409/// splitDebugFilename: "abc.debug",
5410/// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5411/// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5412/// sysroot: "/", sdk: "MacOSX.sdk")
5413bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5414 if (!IsDistinct)
5415 return Lex.Error(Msg: "missing 'distinct', required for !DICompileUnit");
5416
5417#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5418 REQUIRED(language, DwarfLangField, ); \
5419 REQUIRED(file, MDField, (/* AllowNull */ false)); \
5420 OPTIONAL(producer, MDStringField, ); \
5421 OPTIONAL(isOptimized, MDBoolField, ); \
5422 OPTIONAL(flags, MDStringField, ); \
5423 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
5424 OPTIONAL(splitDebugFilename, MDStringField, ); \
5425 OPTIONAL(emissionKind, EmissionKindField, ); \
5426 OPTIONAL(enums, MDField, ); \
5427 OPTIONAL(retainedTypes, MDField, ); \
5428 OPTIONAL(globals, MDField, ); \
5429 OPTIONAL(imports, MDField, ); \
5430 OPTIONAL(macros, MDField, ); \
5431 OPTIONAL(dwoId, MDUnsignedField, ); \
5432 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
5433 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
5434 OPTIONAL(nameTableKind, NameTableKindField, ); \
5435 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
5436 OPTIONAL(sysroot, MDStringField, ); \
5437 OPTIONAL(sdk, MDStringField, );
5438 PARSE_MD_FIELDS();
5439#undef VISIT_MD_FIELDS
5440
5441 Result = DICompileUnit::getDistinct(
5442 Context, SourceLanguage: language.Val, File: file.Val, Producer: producer.Val, IsOptimized: isOptimized.Val, Flags: flags.Val,
5443 RuntimeVersion: runtimeVersion.Val, SplitDebugFilename: splitDebugFilename.Val, EmissionKind: emissionKind.Val, EnumTypes: enums.Val,
5444 RetainedTypes: retainedTypes.Val, GlobalVariables: globals.Val, ImportedEntities: imports.Val, Macros: macros.Val, DWOId: dwoId.Val,
5445 SplitDebugInlining: splitDebugInlining.Val, DebugInfoForProfiling: debugInfoForProfiling.Val, NameTableKind: nameTableKind.Val,
5446 RangesBaseAddress: rangesBaseAddress.Val, SysRoot: sysroot.Val, SDK: sdk.Val);
5447 return false;
5448}
5449
5450/// parseDISubprogram:
5451/// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5452/// file: !1, line: 7, type: !2, isLocal: false,
5453/// isDefinition: true, scopeLine: 8, containingType: !3,
5454/// virtuality: DW_VIRTUALTIY_pure_virtual,
5455/// virtualIndex: 10, thisAdjustment: 4, flags: 11,
5456/// spFlags: 10, isOptimized: false, templateParams: !4,
5457/// declaration: !5, retainedNodes: !6, thrownTypes: !7,
5458/// annotations: !8)
5459bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5460 auto Loc = Lex.getLoc();
5461#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5462 OPTIONAL(scope, MDField, ); \
5463 OPTIONAL(name, MDStringField, ); \
5464 OPTIONAL(linkageName, MDStringField, ); \
5465 OPTIONAL(file, MDField, ); \
5466 OPTIONAL(line, LineField, ); \
5467 OPTIONAL(type, MDField, ); \
5468 OPTIONAL(isLocal, MDBoolField, ); \
5469 OPTIONAL(isDefinition, MDBoolField, (true)); \
5470 OPTIONAL(scopeLine, LineField, ); \
5471 OPTIONAL(containingType, MDField, ); \
5472 OPTIONAL(virtuality, DwarfVirtualityField, ); \
5473 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
5474 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
5475 OPTIONAL(flags, DIFlagField, ); \
5476 OPTIONAL(spFlags, DISPFlagField, ); \
5477 OPTIONAL(isOptimized, MDBoolField, ); \
5478 OPTIONAL(unit, MDField, ); \
5479 OPTIONAL(templateParams, MDField, ); \
5480 OPTIONAL(declaration, MDField, ); \
5481 OPTIONAL(retainedNodes, MDField, ); \
5482 OPTIONAL(thrownTypes, MDField, ); \
5483 OPTIONAL(annotations, MDField, ); \
5484 OPTIONAL(targetFuncName, MDStringField, );
5485 PARSE_MD_FIELDS();
5486#undef VISIT_MD_FIELDS
5487
5488 // An explicit spFlags field takes precedence over individual fields in
5489 // older IR versions.
5490 DISubprogram::DISPFlags SPFlags =
5491 spFlags.Seen ? spFlags.Val
5492 : DISubprogram::toSPFlags(IsLocalToUnit: isLocal.Val, IsDefinition: isDefinition.Val,
5493 IsOptimized: isOptimized.Val, Virtuality: virtuality.Val);
5494 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5495 return Lex.Error(
5496 ErrorLoc: Loc,
5497 Msg: "missing 'distinct', required for !DISubprogram that is a Definition");
5498 Result = GET_OR_DISTINCT(
5499 DISubprogram,
5500 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5501 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5502 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5503 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5504 targetFuncName.Val));
5505 return false;
5506}
5507
5508/// parseDILexicalBlock:
5509/// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5510bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5511#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5512 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5513 OPTIONAL(file, MDField, ); \
5514 OPTIONAL(line, LineField, ); \
5515 OPTIONAL(column, ColumnField, );
5516 PARSE_MD_FIELDS();
5517#undef VISIT_MD_FIELDS
5518
5519 Result = GET_OR_DISTINCT(
5520 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5521 return false;
5522}
5523
5524/// parseDILexicalBlockFile:
5525/// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5526bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5527#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5528 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5529 OPTIONAL(file, MDField, ); \
5530 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5531 PARSE_MD_FIELDS();
5532#undef VISIT_MD_FIELDS
5533
5534 Result = GET_OR_DISTINCT(DILexicalBlockFile,
5535 (Context, scope.Val, file.Val, discriminator.Val));
5536 return false;
5537}
5538
5539/// parseDICommonBlock:
5540/// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5541bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5542#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5543 REQUIRED(scope, MDField, ); \
5544 OPTIONAL(declaration, MDField, ); \
5545 OPTIONAL(name, MDStringField, ); \
5546 OPTIONAL(file, MDField, ); \
5547 OPTIONAL(line, LineField, );
5548 PARSE_MD_FIELDS();
5549#undef VISIT_MD_FIELDS
5550
5551 Result = GET_OR_DISTINCT(DICommonBlock,
5552 (Context, scope.Val, declaration.Val, name.Val,
5553 file.Val, line.Val));
5554 return false;
5555}
5556
5557/// parseDINamespace:
5558/// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5559bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5560#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5561 REQUIRED(scope, MDField, ); \
5562 OPTIONAL(name, MDStringField, ); \
5563 OPTIONAL(exportSymbols, MDBoolField, );
5564 PARSE_MD_FIELDS();
5565#undef VISIT_MD_FIELDS
5566
5567 Result = GET_OR_DISTINCT(DINamespace,
5568 (Context, scope.Val, name.Val, exportSymbols.Val));
5569 return false;
5570}
5571
5572/// parseDIMacro:
5573/// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5574/// "SomeValue")
5575bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5576#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5577 REQUIRED(type, DwarfMacinfoTypeField, ); \
5578 OPTIONAL(line, LineField, ); \
5579 REQUIRED(name, MDStringField, ); \
5580 OPTIONAL(value, MDStringField, );
5581 PARSE_MD_FIELDS();
5582#undef VISIT_MD_FIELDS
5583
5584 Result = GET_OR_DISTINCT(DIMacro,
5585 (Context, type.Val, line.Val, name.Val, value.Val));
5586 return false;
5587}
5588
5589/// parseDIMacroFile:
5590/// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5591bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5592#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5593 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
5594 OPTIONAL(line, LineField, ); \
5595 REQUIRED(file, MDField, ); \
5596 OPTIONAL(nodes, MDField, );
5597 PARSE_MD_FIELDS();
5598#undef VISIT_MD_FIELDS
5599
5600 Result = GET_OR_DISTINCT(DIMacroFile,
5601 (Context, type.Val, line.Val, file.Val, nodes.Val));
5602 return false;
5603}
5604
5605/// parseDIModule:
5606/// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5607/// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5608/// file: !1, line: 4, isDecl: false)
5609bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5610#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5611 REQUIRED(scope, MDField, ); \
5612 REQUIRED(name, MDStringField, ); \
5613 OPTIONAL(configMacros, MDStringField, ); \
5614 OPTIONAL(includePath, MDStringField, ); \
5615 OPTIONAL(apinotes, MDStringField, ); \
5616 OPTIONAL(file, MDField, ); \
5617 OPTIONAL(line, LineField, ); \
5618 OPTIONAL(isDecl, MDBoolField, );
5619 PARSE_MD_FIELDS();
5620#undef VISIT_MD_FIELDS
5621
5622 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5623 configMacros.Val, includePath.Val,
5624 apinotes.Val, line.Val, isDecl.Val));
5625 return false;
5626}
5627
5628/// parseDITemplateTypeParameter:
5629/// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5630bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5631#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5632 OPTIONAL(name, MDStringField, ); \
5633 REQUIRED(type, MDField, ); \
5634 OPTIONAL(defaulted, MDBoolField, );
5635 PARSE_MD_FIELDS();
5636#undef VISIT_MD_FIELDS
5637
5638 Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5639 (Context, name.Val, type.Val, defaulted.Val));
5640 return false;
5641}
5642
5643/// parseDITemplateValueParameter:
5644/// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5645/// name: "V", type: !1, defaulted: false,
5646/// value: i32 7)
5647bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5648#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5649 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
5650 OPTIONAL(name, MDStringField, ); \
5651 OPTIONAL(type, MDField, ); \
5652 OPTIONAL(defaulted, MDBoolField, ); \
5653 REQUIRED(value, MDField, );
5654
5655 PARSE_MD_FIELDS();
5656#undef VISIT_MD_FIELDS
5657
5658 Result = GET_OR_DISTINCT(
5659 DITemplateValueParameter,
5660 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5661 return false;
5662}
5663
5664/// parseDIGlobalVariable:
5665/// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5666/// file: !1, line: 7, type: !2, isLocal: false,
5667/// isDefinition: true, templateParams: !3,
5668/// declaration: !4, align: 8)
5669bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5670#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5671 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \
5672 OPTIONAL(scope, MDField, ); \
5673 OPTIONAL(linkageName, MDStringField, ); \
5674 OPTIONAL(file, MDField, ); \
5675 OPTIONAL(line, LineField, ); \
5676 OPTIONAL(type, MDField, ); \
5677 OPTIONAL(isLocal, MDBoolField, ); \
5678 OPTIONAL(isDefinition, MDBoolField, (true)); \
5679 OPTIONAL(templateParams, MDField, ); \
5680 OPTIONAL(declaration, MDField, ); \
5681 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5682 OPTIONAL(annotations, MDField, );
5683 PARSE_MD_FIELDS();
5684#undef VISIT_MD_FIELDS
5685
5686 Result =
5687 GET_OR_DISTINCT(DIGlobalVariable,
5688 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5689 line.Val, type.Val, isLocal.Val, isDefinition.Val,
5690 declaration.Val, templateParams.Val, align.Val,
5691 annotations.Val));
5692 return false;
5693}
5694
5695/// parseDILocalVariable:
5696/// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5697/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5698/// align: 8)
5699/// ::= !DILocalVariable(scope: !0, name: "foo",
5700/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5701/// align: 8)
5702bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5703#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5704 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5705 OPTIONAL(name, MDStringField, ); \
5706 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
5707 OPTIONAL(file, MDField, ); \
5708 OPTIONAL(line, LineField, ); \
5709 OPTIONAL(type, MDField, ); \
5710 OPTIONAL(flags, DIFlagField, ); \
5711 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5712 OPTIONAL(annotations, MDField, );
5713 PARSE_MD_FIELDS();
5714#undef VISIT_MD_FIELDS
5715
5716 Result = GET_OR_DISTINCT(DILocalVariable,
5717 (Context, scope.Val, name.Val, file.Val, line.Val,
5718 type.Val, arg.Val, flags.Val, align.Val,
5719 annotations.Val));
5720 return false;
5721}
5722
5723/// parseDILabel:
5724/// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5725bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5726#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5727 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5728 REQUIRED(name, MDStringField, ); \
5729 REQUIRED(file, MDField, ); \
5730 REQUIRED(line, LineField, );
5731 PARSE_MD_FIELDS();
5732#undef VISIT_MD_FIELDS
5733
5734 Result = GET_OR_DISTINCT(DILabel,
5735 (Context, scope.Val, name.Val, file.Val, line.Val));
5736 return false;
5737}
5738
5739/// parseDIExpression:
5740/// ::= !DIExpression(0, 7, -1)
5741bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5742 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5743 Lex.Lex();
5744
5745 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
5746 return true;
5747
5748 SmallVector<uint64_t, 8> Elements;
5749 if (Lex.getKind() != lltok::rparen)
5750 do {
5751 if (Lex.getKind() == lltok::DwarfOp) {
5752 if (unsigned Op = dwarf::getOperationEncoding(OperationEncodingString: Lex.getStrVal())) {
5753 Lex.Lex();
5754 Elements.push_back(Elt: Op);
5755 continue;
5756 }
5757 return tokError(Msg: Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5758 }
5759
5760 if (Lex.getKind() == lltok::DwarfAttEncoding) {
5761 if (unsigned Op = dwarf::getAttributeEncoding(EncodingString: Lex.getStrVal())) {
5762 Lex.Lex();
5763 Elements.push_back(Elt: Op);
5764 continue;
5765 }
5766 return tokError(Msg: Twine("invalid DWARF attribute encoding '") +
5767 Lex.getStrVal() + "'");
5768 }
5769
5770 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5771 return tokError(Msg: "expected unsigned integer");
5772
5773 auto &U = Lex.getAPSIntVal();
5774 if (U.ugt(UINT64_MAX))
5775 return tokError(Msg: "element too large, limit is " + Twine(UINT64_MAX));
5776 Elements.push_back(Elt: U.getZExtValue());
5777 Lex.Lex();
5778 } while (EatIfPresent(T: lltok::comma));
5779
5780 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
5781 return true;
5782
5783 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5784 return false;
5785}
5786
5787/// ParseDIArgList:
5788/// ::= !DIArgList(i32 7, i64 %0)
5789bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5790 assert(PFS && "Expected valid function state");
5791 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5792 Lex.Lex();
5793
5794 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
5795 return true;
5796
5797 SmallVector<ValueAsMetadata *, 4> Args;
5798 if (Lex.getKind() != lltok::rparen)
5799 do {
5800 Metadata *MD;
5801 if (parseValueAsMetadata(MD, TypeMsg: "expected value-as-metadata operand", PFS))
5802 return true;
5803 Args.push_back(Elt: dyn_cast<ValueAsMetadata>(Val: MD));
5804 } while (EatIfPresent(T: lltok::comma));
5805
5806 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
5807 return true;
5808
5809 MD = DIArgList::get(Context, Args);
5810 return false;
5811}
5812
5813/// parseDIGlobalVariableExpression:
5814/// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5815bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5816 bool IsDistinct) {
5817#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5818 REQUIRED(var, MDField, ); \
5819 REQUIRED(expr, MDField, );
5820 PARSE_MD_FIELDS();
5821#undef VISIT_MD_FIELDS
5822
5823 Result =
5824 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5825 return false;
5826}
5827
5828/// parseDIObjCProperty:
5829/// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5830/// getter: "getFoo", attributes: 7, type: !2)
5831bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5832#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5833 OPTIONAL(name, MDStringField, ); \
5834 OPTIONAL(file, MDField, ); \
5835 OPTIONAL(line, LineField, ); \
5836 OPTIONAL(setter, MDStringField, ); \
5837 OPTIONAL(getter, MDStringField, ); \
5838 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5839 OPTIONAL(type, MDField, );
5840 PARSE_MD_FIELDS();
5841#undef VISIT_MD_FIELDS
5842
5843 Result = GET_OR_DISTINCT(DIObjCProperty,
5844 (Context, name.Val, file.Val, line.Val, setter.Val,
5845 getter.Val, attributes.Val, type.Val));
5846 return false;
5847}
5848
5849/// parseDIImportedEntity:
5850/// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5851/// line: 7, name: "foo", elements: !2)
5852bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5853#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5854 REQUIRED(tag, DwarfTagField, ); \
5855 REQUIRED(scope, MDField, ); \
5856 OPTIONAL(entity, MDField, ); \
5857 OPTIONAL(file, MDField, ); \
5858 OPTIONAL(line, LineField, ); \
5859 OPTIONAL(name, MDStringField, ); \
5860 OPTIONAL(elements, MDField, );
5861 PARSE_MD_FIELDS();
5862#undef VISIT_MD_FIELDS
5863
5864 Result = GET_OR_DISTINCT(DIImportedEntity,
5865 (Context, tag.Val, scope.Val, entity.Val, file.Val,
5866 line.Val, name.Val, elements.Val));
5867 return false;
5868}
5869
5870#undef PARSE_MD_FIELD
5871#undef NOP_FIELD
5872#undef REQUIRE_FIELD
5873#undef DECLARE_FIELD
5874
5875/// parseMetadataAsValue
5876/// ::= metadata i32 %local
5877/// ::= metadata i32 @global
5878/// ::= metadata i32 7
5879/// ::= metadata !0
5880/// ::= metadata !{...}
5881/// ::= metadata !"string"
5882bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5883 // Note: the type 'metadata' has already been parsed.
5884 Metadata *MD;
5885 if (parseMetadata(MD, PFS: &PFS))
5886 return true;
5887
5888 V = MetadataAsValue::get(Context, MD);
5889 return false;
5890}
5891
5892/// parseValueAsMetadata
5893/// ::= i32 %local
5894/// ::= i32 @global
5895/// ::= i32 7
5896bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5897 PerFunctionState *PFS) {
5898 Type *Ty;
5899 LocTy Loc;
5900 if (parseType(Result&: Ty, Msg: TypeMsg, Loc))
5901 return true;
5902 if (Ty->isMetadataTy())
5903 return error(L: Loc, Msg: "invalid metadata-value-metadata roundtrip");
5904
5905 Value *V;
5906 if (parseValue(Ty, V, PFS))
5907 return true;
5908
5909 MD = ValueAsMetadata::get(V);
5910 return false;
5911}
5912
5913/// parseMetadata
5914/// ::= i32 %local
5915/// ::= i32 @global
5916/// ::= i32 7
5917/// ::= !42
5918/// ::= !{...}
5919/// ::= !"string"
5920/// ::= !DILocation(...)
5921bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5922 if (Lex.getKind() == lltok::MetadataVar) {
5923 // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5924 // so parsing this requires a Function State.
5925 if (Lex.getStrVal() == "DIArgList") {
5926 Metadata *AL;
5927 if (parseDIArgList(MD&: AL, PFS))
5928 return true;
5929 MD = AL;
5930 return false;
5931 }
5932 MDNode *N;
5933 if (parseSpecializedMDNode(N)) {
5934 return true;
5935 }
5936 MD = N;
5937 return false;
5938 }
5939
5940 // ValueAsMetadata:
5941 // <type> <value>
5942 if (Lex.getKind() != lltok::exclaim)
5943 return parseValueAsMetadata(MD, TypeMsg: "expected metadata operand", PFS);
5944
5945 // '!'.
5946 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5947 Lex.Lex();
5948
5949 // MDString:
5950 // ::= '!' STRINGCONSTANT
5951 if (Lex.getKind() == lltok::StringConstant) {
5952 MDString *S;
5953 if (parseMDString(Result&: S))
5954 return true;
5955 MD = S;
5956 return false;
5957 }
5958
5959 // MDNode:
5960 // !{ ... }
5961 // !7
5962 MDNode *N;
5963 if (parseMDNodeTail(N))
5964 return true;
5965 MD = N;
5966 return false;
5967}
5968
5969//===----------------------------------------------------------------------===//
5970// Function Parsing.
5971//===----------------------------------------------------------------------===//
5972
5973bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5974 PerFunctionState *PFS) {
5975 if (Ty->isFunctionTy())
5976 return error(L: ID.Loc, Msg: "functions are not values, refer to them as pointers");
5977
5978 switch (ID.Kind) {
5979 case ValID::t_LocalID:
5980 if (!PFS)
5981 return error(L: ID.Loc, Msg: "invalid use of function-local name");
5982 V = PFS->getVal(ID: ID.UIntVal, Ty, Loc: ID.Loc);
5983 return V == nullptr;
5984 case ValID::t_LocalName:
5985 if (!PFS)
5986 return error(L: ID.Loc, Msg: "invalid use of function-local name");
5987 V = PFS->getVal(Name: ID.StrVal, Ty, Loc: ID.Loc);
5988 return V == nullptr;
5989 case ValID::t_InlineAsm: {
5990 if (!ID.FTy)
5991 return error(L: ID.Loc, Msg: "invalid type for inline asm constraint string");
5992 if (Error Err = InlineAsm::verify(Ty: ID.FTy, Constraints: ID.StrVal2))
5993 return error(L: ID.Loc, Msg: toString(E: std::move(Err)));
5994 V = InlineAsm::get(
5995 Ty: ID.FTy, AsmString: ID.StrVal, Constraints: ID.StrVal2, hasSideEffects: ID.UIntVal & 1, isAlignStack: (ID.UIntVal >> 1) & 1,
5996 asmDialect: InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), canThrow: (ID.UIntVal >> 3) & 1);
5997 return false;
5998 }
5999 case ValID::t_GlobalName:
6000 V = getGlobalVal(Name: ID.StrVal, Ty, Loc: ID.Loc);
6001 if (V && ID.NoCFI)
6002 V = NoCFIValue::get(GV: cast<GlobalValue>(Val: V));
6003 return V == nullptr;
6004 case ValID::t_GlobalID:
6005 V = getGlobalVal(ID: ID.UIntVal, Ty, Loc: ID.Loc);
6006 if (V && ID.NoCFI)
6007 V = NoCFIValue::get(GV: cast<GlobalValue>(Val: V));
6008 return V == nullptr;
6009 case ValID::t_APSInt:
6010 if (!Ty->isIntegerTy())
6011 return error(L: ID.Loc, Msg: "integer constant must have integer type");
6012 ID.APSIntVal = ID.APSIntVal.extOrTrunc(width: Ty->getPrimitiveSizeInBits());
6013 V = ConstantInt::get(Context, V: ID.APSIntVal);
6014 return false;
6015 case ValID::t_APFloat:
6016 if (!Ty->isFloatingPointTy() ||
6017 !ConstantFP::isValueValidForType(Ty, V: ID.APFloatVal))
6018 return error(L: ID.Loc, Msg: "floating point constant invalid for type");
6019
6020 // The lexer has no type info, so builds all half, bfloat, float, and double
6021 // FP constants as double. Fix this here. Long double does not need this.
6022 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
6023 // Check for signaling before potentially converting and losing that info.
6024 bool IsSNAN = ID.APFloatVal.isSignaling();
6025 bool Ignored;
6026 if (Ty->isHalfTy())
6027 ID.APFloatVal.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven,
6028 losesInfo: &Ignored);
6029 else if (Ty->isBFloatTy())
6030 ID.APFloatVal.convert(ToSemantics: APFloat::BFloat(), RM: APFloat::rmNearestTiesToEven,
6031 losesInfo: &Ignored);
6032 else if (Ty->isFloatTy())
6033 ID.APFloatVal.convert(ToSemantics: APFloat::IEEEsingle(), RM: APFloat::rmNearestTiesToEven,
6034 losesInfo: &Ignored);
6035 if (IsSNAN) {
6036 // The convert call above may quiet an SNaN, so manufacture another
6037 // SNaN. The bitcast works because the payload (significand) parameter
6038 // is truncated to fit.
6039 APInt Payload = ID.APFloatVal.bitcastToAPInt();
6040 ID.APFloatVal = APFloat::getSNaN(Sem: ID.APFloatVal.getSemantics(),
6041 Negative: ID.APFloatVal.isNegative(), payload: &Payload);
6042 }
6043 }
6044 V = ConstantFP::get(Context, V: ID.APFloatVal);
6045
6046 if (V->getType() != Ty)
6047 return error(L: ID.Loc, Msg: "floating point constant does not have type '" +
6048 getTypeString(T: Ty) + "'");
6049
6050 return false;
6051 case ValID::t_Null:
6052 if (!Ty->isPointerTy())
6053 return error(L: ID.Loc, Msg: "null must be a pointer type");
6054 V = ConstantPointerNull::get(T: cast<PointerType>(Val: Ty));
6055 return false;
6056 case ValID::t_Undef:
6057 // FIXME: LabelTy should not be a first-class type.
6058 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6059 return error(L: ID.Loc, Msg: "invalid type for undef constant");
6060 V = UndefValue::get(T: Ty);
6061 return false;
6062 case ValID::t_EmptyArray:
6063 if (!Ty->isArrayTy() || cast<ArrayType>(Val: Ty)->getNumElements() != 0)
6064 return error(L: ID.Loc, Msg: "invalid empty array initializer");
6065 V = UndefValue::get(T: Ty);
6066 return false;
6067 case ValID::t_Zero:
6068 // FIXME: LabelTy should not be a first-class type.
6069 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6070 return error(L: ID.Loc, Msg: "invalid type for null constant");
6071 if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty))
6072 if (!TETy->hasProperty(Prop: TargetExtType::HasZeroInit))
6073 return error(L: ID.Loc, Msg: "invalid type for null constant");
6074 V = Constant::getNullValue(Ty);
6075 return false;
6076 case ValID::t_None:
6077 if (!Ty->isTokenTy())
6078 return error(L: ID.Loc, Msg: "invalid type for none constant");
6079 V = Constant::getNullValue(Ty);
6080 return false;
6081 case ValID::t_Poison:
6082 // FIXME: LabelTy should not be a first-class type.
6083 if (!Ty->isFirstClassType() || Ty->isLabelTy())
6084 return error(L: ID.Loc, Msg: "invalid type for poison constant");
6085 V = PoisonValue::get(T: Ty);
6086 return false;
6087 case ValID::t_Constant:
6088 if (ID.ConstantVal->getType() != Ty)
6089 return error(L: ID.Loc, Msg: "constant expression type mismatch: got type '" +
6090 getTypeString(T: ID.ConstantVal->getType()) +
6091 "' but expected '" + getTypeString(T: Ty) + "'");
6092 V = ID.ConstantVal;
6093 return false;
6094 case ValID::t_ConstantSplat:
6095 if (!Ty->isVectorTy())
6096 return error(L: ID.Loc, Msg: "vector constant must have vector type");
6097 if (ID.ConstantVal->getType() != Ty->getScalarType())
6098 return error(L: ID.Loc, Msg: "constant expression type mismatch: got type '" +
6099 getTypeString(T: ID.ConstantVal->getType()) +
6100 "' but expected '" +
6101 getTypeString(T: Ty->getScalarType()) + "'");
6102 V = ConstantVector::getSplat(EC: cast<VectorType>(Val: Ty)->getElementCount(),
6103 Elt: ID.ConstantVal);
6104 return false;
6105 case ValID::t_ConstantStruct:
6106 case ValID::t_PackedConstantStruct:
6107 if (StructType *ST = dyn_cast<StructType>(Val: Ty)) {
6108 if (ST->getNumElements() != ID.UIntVal)
6109 return error(L: ID.Loc,
6110 Msg: "initializer with struct type has wrong # elements");
6111 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
6112 return error(L: ID.Loc, Msg: "packed'ness of initializer and type don't match");
6113
6114 // Verify that the elements are compatible with the structtype.
6115 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
6116 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(N: i))
6117 return error(
6118 L: ID.Loc,
6119 Msg: "element " + Twine(i) +
6120 " of struct initializer doesn't match struct element type");
6121
6122 V = ConstantStruct::get(
6123 T: ST, V: ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
6124 } else
6125 return error(L: ID.Loc, Msg: "constant expression type mismatch");
6126 return false;
6127 }
6128 llvm_unreachable("Invalid ValID");
6129}
6130
6131bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
6132 C = nullptr;
6133 ValID ID;
6134 auto Loc = Lex.getLoc();
6135 if (parseValID(ID, /*PFS=*/nullptr))
6136 return true;
6137 switch (ID.Kind) {
6138 case ValID::t_APSInt:
6139 case ValID::t_APFloat:
6140 case ValID::t_Undef:
6141 case ValID::t_Constant:
6142 case ValID::t_ConstantSplat:
6143 case ValID::t_ConstantStruct:
6144 case ValID::t_PackedConstantStruct: {
6145 Value *V;
6146 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
6147 return true;
6148 assert(isa<Constant>(V) && "Expected a constant value");
6149 C = cast<Constant>(Val: V);
6150 return false;
6151 }
6152 case ValID::t_Null:
6153 C = Constant::getNullValue(Ty);
6154 return false;
6155 default:
6156 return error(L: Loc, Msg: "expected a constant value");
6157 }
6158}
6159
6160bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
6161 V = nullptr;
6162 ValID ID;
6163 return parseValID(ID, PFS, ExpectedTy: Ty) ||
6164 convertValIDToValue(Ty, ID, V, PFS);
6165}
6166
6167bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
6168 Type *Ty = nullptr;
6169 return parseType(Result&: Ty) || parseValue(Ty, V, PFS);
6170}
6171
6172bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6173 PerFunctionState &PFS) {
6174 Value *V;
6175 Loc = Lex.getLoc();
6176 if (parseTypeAndValue(V, PFS))
6177 return true;
6178 if (!isa<BasicBlock>(Val: V))
6179 return error(L: Loc, Msg: "expected a basic block");
6180 BB = cast<BasicBlock>(Val: V);
6181 return false;
6182}
6183
6184bool isOldDbgFormatIntrinsic(StringRef Name) {
6185 // Exit early for the common (non-debug-intrinsic) case.
6186 // We can make this the only check when we begin supporting all "llvm.dbg"
6187 // intrinsics in the new debug info format.
6188 if (!Name.starts_with(Prefix: "llvm.dbg."))
6189 return false;
6190 Intrinsic::ID FnID = Function::lookupIntrinsicID(Name);
6191 return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value ||
6192 FnID == Intrinsic::dbg_assign;
6193}
6194
6195/// FunctionHeader
6196/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6197/// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6198/// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6199/// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
6200bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6201 unsigned &FunctionNumber,
6202 SmallVectorImpl<unsigned> &UnnamedArgNums) {
6203 // parse the linkage.
6204 LocTy LinkageLoc = Lex.getLoc();
6205 unsigned Linkage;
6206 unsigned Visibility;
6207 unsigned DLLStorageClass;
6208 bool DSOLocal;
6209 AttrBuilder RetAttrs(M->getContext());
6210 unsigned CC;
6211 bool HasLinkage;
6212 Type *RetType = nullptr;
6213 LocTy RetTypeLoc = Lex.getLoc();
6214 if (parseOptionalLinkage(Res&: Linkage, HasLinkage, Visibility, DLLStorageClass,
6215 DSOLocal) ||
6216 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(B&: RetAttrs) ||
6217 parseType(Result&: RetType, Loc&: RetTypeLoc, AllowVoid: true /*void allowed*/))
6218 return true;
6219
6220 // Verify that the linkage is ok.
6221 switch ((GlobalValue::LinkageTypes)Linkage) {
6222 case GlobalValue::ExternalLinkage:
6223 break; // always ok.
6224 case GlobalValue::ExternalWeakLinkage:
6225 if (IsDefine)
6226 return error(L: LinkageLoc, Msg: "invalid linkage for function definition");
6227 break;
6228 case GlobalValue::PrivateLinkage:
6229 case GlobalValue::InternalLinkage:
6230 case GlobalValue::AvailableExternallyLinkage:
6231 case GlobalValue::LinkOnceAnyLinkage:
6232 case GlobalValue::LinkOnceODRLinkage:
6233 case GlobalValue::WeakAnyLinkage:
6234 case GlobalValue::WeakODRLinkage:
6235 if (!IsDefine)
6236 return error(L: LinkageLoc, Msg: "invalid linkage for function declaration");
6237 break;
6238 case GlobalValue::AppendingLinkage:
6239 case GlobalValue::CommonLinkage:
6240 return error(L: LinkageLoc, Msg: "invalid function linkage type");
6241 }
6242
6243 if (!isValidVisibilityForLinkage(V: Visibility, L: Linkage))
6244 return error(L: LinkageLoc,
6245 Msg: "symbol with local linkage must have default visibility");
6246
6247 if (!isValidDLLStorageClassForLinkage(S: DLLStorageClass, L: Linkage))
6248 return error(L: LinkageLoc,
6249 Msg: "symbol with local linkage cannot have a DLL storage class");
6250
6251 if (!FunctionType::isValidReturnType(RetTy: RetType))
6252 return error(L: RetTypeLoc, Msg: "invalid function return type");
6253
6254 LocTy NameLoc = Lex.getLoc();
6255
6256 std::string FunctionName;
6257 if (Lex.getKind() == lltok::GlobalVar) {
6258 FunctionName = Lex.getStrVal();
6259 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
6260 FunctionNumber = Lex.getUIntVal();
6261 if (checkValueID(Loc: NameLoc, Kind: "function", Prefix: "@", NextID: NumberedVals.getNext(),
6262 ID: FunctionNumber))
6263 return true;
6264 } else {
6265 return tokError(Msg: "expected function name");
6266 }
6267
6268 Lex.Lex();
6269
6270 if (Lex.getKind() != lltok::lparen)
6271 return tokError(Msg: "expected '(' in function argument list");
6272
6273 SmallVector<ArgInfo, 8> ArgList;
6274 bool IsVarArg;
6275 AttrBuilder FuncAttrs(M->getContext());
6276 std::vector<unsigned> FwdRefAttrGrps;
6277 LocTy BuiltinLoc;
6278 std::string Section;
6279 std::string Partition;
6280 MaybeAlign Alignment;
6281 std::string GC;
6282 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6283 unsigned AddrSpace = 0;
6284 Constant *Prefix = nullptr;
6285 Constant *Prologue = nullptr;
6286 Constant *PersonalityFn = nullptr;
6287 Comdat *C;
6288
6289 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6290 parseOptionalUnnamedAddr(UnnamedAddr) ||
6291 parseOptionalProgramAddrSpace(AddrSpace) ||
6292 parseFnAttributeValuePairs(B&: FuncAttrs, FwdRefAttrGrps, InAttrGrp: false,
6293 BuiltinLoc) ||
6294 (EatIfPresent(T: lltok::kw_section) && parseStringConstant(Result&: Section)) ||
6295 (EatIfPresent(T: lltok::kw_partition) && parseStringConstant(Result&: Partition)) ||
6296 parseOptionalComdat(GlobalName: FunctionName, C) ||
6297 parseOptionalAlignment(Alignment) ||
6298 (EatIfPresent(T: lltok::kw_gc) && parseStringConstant(Result&: GC)) ||
6299 (EatIfPresent(T: lltok::kw_prefix) && parseGlobalTypeAndValue(V&: Prefix)) ||
6300 (EatIfPresent(T: lltok::kw_prologue) && parseGlobalTypeAndValue(V&: Prologue)) ||
6301 (EatIfPresent(T: lltok::kw_personality) &&
6302 parseGlobalTypeAndValue(V&: PersonalityFn)))
6303 return true;
6304
6305 if (FuncAttrs.contains(Attribute::Builtin))
6306 return error(L: BuiltinLoc, Msg: "'builtin' attribute not valid on function");
6307
6308 // If the alignment was parsed as an attribute, move to the alignment field.
6309 if (MaybeAlign A = FuncAttrs.getAlignment()) {
6310 Alignment = A;
6311 FuncAttrs.removeAttribute(Attribute::Alignment);
6312 }
6313
6314 // Okay, if we got here, the function is syntactically valid. Convert types
6315 // and do semantic checks.
6316 std::vector<Type*> ParamTypeList;
6317 SmallVector<AttributeSet, 8> Attrs;
6318
6319 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6320 ParamTypeList.push_back(x: ArgList[i].Ty);
6321 Attrs.push_back(Elt: ArgList[i].Attrs);
6322 }
6323
6324 AttributeList PAL =
6325 AttributeList::get(C&: Context, FnAttrs: AttributeSet::get(C&: Context, B: FuncAttrs),
6326 RetAttrs: AttributeSet::get(C&: Context, B: RetAttrs), ArgAttrs: Attrs);
6327
6328 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6329 return error(L: RetTypeLoc, Msg: "functions with 'sret' argument must return void");
6330
6331 FunctionType *FT = FunctionType::get(Result: RetType, Params: ParamTypeList, isVarArg: IsVarArg);
6332 PointerType *PFT = PointerType::get(ElementType: FT, AddressSpace: AddrSpace);
6333
6334 Fn = nullptr;
6335 GlobalValue *FwdFn = nullptr;
6336 if (!FunctionName.empty()) {
6337 // If this was a definition of a forward reference, remove the definition
6338 // from the forward reference table and fill in the forward ref.
6339 auto FRVI = ForwardRefVals.find(x: FunctionName);
6340 if (FRVI != ForwardRefVals.end()) {
6341 FwdFn = FRVI->second.first;
6342 if (FwdFn->getType() != PFT)
6343 return error(L: FRVI->second.second,
6344 Msg: "invalid forward reference to "
6345 "function '" +
6346 FunctionName +
6347 "' with wrong type: "
6348 "expected '" +
6349 getTypeString(T: PFT) + "' but was '" +
6350 getTypeString(T: FwdFn->getType()) + "'");
6351 ForwardRefVals.erase(position: FRVI);
6352 } else if ((Fn = M->getFunction(Name: FunctionName))) {
6353 // Reject redefinitions.
6354 return error(L: NameLoc,
6355 Msg: "invalid redefinition of function '" + FunctionName + "'");
6356 } else if (M->getNamedValue(Name: FunctionName)) {
6357 return error(L: NameLoc, Msg: "redefinition of function '@" + FunctionName + "'");
6358 }
6359
6360 } else {
6361 // Handle @"", where a name is syntactically specified, but semantically
6362 // missing.
6363 if (FunctionNumber == (unsigned)-1)
6364 FunctionNumber = NumberedVals.getNext();
6365
6366 // If this is a definition of a forward referenced function, make sure the
6367 // types agree.
6368 auto I = ForwardRefValIDs.find(x: FunctionNumber);
6369 if (I != ForwardRefValIDs.end()) {
6370 FwdFn = I->second.first;
6371 if (FwdFn->getType() != PFT)
6372 return error(L: NameLoc, Msg: "type of definition and forward reference of '@" +
6373 Twine(FunctionNumber) +
6374 "' disagree: "
6375 "expected '" +
6376 getTypeString(T: PFT) + "' but was '" +
6377 getTypeString(T: FwdFn->getType()) + "'");
6378 ForwardRefValIDs.erase(position: I);
6379 }
6380 }
6381
6382 Fn = Function::Create(Ty: FT, Linkage: GlobalValue::ExternalLinkage, AddrSpace,
6383 N: FunctionName, M);
6384
6385 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6386
6387 if (FunctionName.empty())
6388 NumberedVals.add(ID: FunctionNumber, V: Fn);
6389
6390 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6391 maybeSetDSOLocal(DSOLocal, GV&: *Fn);
6392 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6393 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6394 Fn->setCallingConv(CC);
6395 Fn->setAttributes(PAL);
6396 Fn->setUnnamedAddr(UnnamedAddr);
6397 if (Alignment)
6398 Fn->setAlignment(*Alignment);
6399 Fn->setSection(Section);
6400 Fn->setPartition(Partition);
6401 Fn->setComdat(C);
6402 Fn->setPersonalityFn(PersonalityFn);
6403 if (!GC.empty()) Fn->setGC(GC);
6404 Fn->setPrefixData(Prefix);
6405 Fn->setPrologueData(Prologue);
6406 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6407
6408 // Add all of the arguments we parsed to the function.
6409 Function::arg_iterator ArgIt = Fn->arg_begin();
6410 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6411 // If the argument has a name, insert it into the argument symbol table.
6412 if (ArgList[i].Name.empty()) continue;
6413
6414 // Set the name, if it conflicted, it will be auto-renamed.
6415 ArgIt->setName(ArgList[i].Name);
6416
6417 if (ArgIt->getName() != ArgList[i].Name)
6418 return error(L: ArgList[i].Loc,
6419 Msg: "redefinition of argument '%" + ArgList[i].Name + "'");
6420 }
6421
6422 if (FwdFn) {
6423 FwdFn->replaceAllUsesWith(V: Fn);
6424 FwdFn->eraseFromParent();
6425 }
6426
6427 if (IsDefine)
6428 return false;
6429
6430 // Check the declaration has no block address forward references.
6431 ValID ID;
6432 if (FunctionName.empty()) {
6433 ID.Kind = ValID::t_GlobalID;
6434 ID.UIntVal = FunctionNumber;
6435 } else {
6436 ID.Kind = ValID::t_GlobalName;
6437 ID.StrVal = FunctionName;
6438 }
6439 auto Blocks = ForwardRefBlockAddresses.find(x: ID);
6440 if (Blocks != ForwardRefBlockAddresses.end())
6441 return error(L: Blocks->first.Loc,
6442 Msg: "cannot take blockaddress inside a declaration");
6443 return false;
6444}
6445
6446bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6447 ValID ID;
6448 if (FunctionNumber == -1) {
6449 ID.Kind = ValID::t_GlobalName;
6450 ID.StrVal = std::string(F.getName());
6451 } else {
6452 ID.Kind = ValID::t_GlobalID;
6453 ID.UIntVal = FunctionNumber;
6454 }
6455
6456 auto Blocks = P.ForwardRefBlockAddresses.find(x: ID);
6457 if (Blocks == P.ForwardRefBlockAddresses.end())
6458 return false;
6459
6460 for (const auto &I : Blocks->second) {
6461 const ValID &BBID = I.first;
6462 GlobalValue *GV = I.second;
6463
6464 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6465 "Expected local id or name");
6466 BasicBlock *BB;
6467 if (BBID.Kind == ValID::t_LocalName)
6468 BB = getBB(Name: BBID.StrVal, Loc: BBID.Loc);
6469 else
6470 BB = getBB(ID: BBID.UIntVal, Loc: BBID.Loc);
6471 if (!BB)
6472 return P.error(L: BBID.Loc, Msg: "referenced value is not a basic block");
6473
6474 Value *ResolvedVal = BlockAddress::get(F: &F, BB);
6475 ResolvedVal = P.checkValidVariableType(Loc: BBID.Loc, Name: BBID.StrVal, Ty: GV->getType(),
6476 Val: ResolvedVal);
6477 if (!ResolvedVal)
6478 return true;
6479 GV->replaceAllUsesWith(V: ResolvedVal);
6480 GV->eraseFromParent();
6481 }
6482
6483 P.ForwardRefBlockAddresses.erase(position: Blocks);
6484 return false;
6485}
6486
6487/// parseFunctionBody
6488/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
6489bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber,
6490 ArrayRef<unsigned> UnnamedArgNums) {
6491 if (Lex.getKind() != lltok::lbrace)
6492 return tokError(Msg: "expected '{' in function body");
6493 Lex.Lex(); // eat the {.
6494
6495 PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6496
6497 // Resolve block addresses and allow basic blocks to be forward-declared
6498 // within this function.
6499 if (PFS.resolveForwardRefBlockAddresses())
6500 return true;
6501 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6502
6503 // We need at least one basic block.
6504 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6505 return tokError(Msg: "function body requires at least one basic block");
6506
6507 while (Lex.getKind() != lltok::rbrace &&
6508 Lex.getKind() != lltok::kw_uselistorder)
6509 if (parseBasicBlock(PFS))
6510 return true;
6511
6512 while (Lex.getKind() != lltok::rbrace)
6513 if (parseUseListOrder(PFS: &PFS))
6514 return true;
6515
6516 // Eat the }.
6517 Lex.Lex();
6518
6519 // Verify function is ok.
6520 return PFS.finishFunction();
6521}
6522
6523/// parseBasicBlock
6524/// ::= (LabelStr|LabelID)? Instruction*
6525bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6526 // If this basic block starts out with a name, remember it.
6527 std::string Name;
6528 int NameID = -1;
6529 LocTy NameLoc = Lex.getLoc();
6530 if (Lex.getKind() == lltok::LabelStr) {
6531 Name = Lex.getStrVal();
6532 Lex.Lex();
6533 } else if (Lex.getKind() == lltok::LabelID) {
6534 NameID = Lex.getUIntVal();
6535 Lex.Lex();
6536 }
6537
6538 BasicBlock *BB = PFS.defineBB(Name, NameID, Loc: NameLoc);
6539 if (!BB)
6540 return true;
6541
6542 std::string NameStr;
6543
6544 // Parse the instructions and debug values in this block until we get a
6545 // terminator.
6546 Instruction *Inst;
6547 auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); };
6548 using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>;
6549 SmallVector<DbgRecordPtr> TrailingDbgRecord;
6550 do {
6551 // Handle debug records first - there should always be an instruction
6552 // following the debug records, i.e. they cannot appear after the block
6553 // terminator.
6554 while (Lex.getKind() == lltok::hash) {
6555 if (SeenOldDbgInfoFormat)
6556 return error(L: Lex.getLoc(), Msg: "debug record should not appear in a module "
6557 "containing debug info intrinsics");
6558 if (!SeenNewDbgInfoFormat)
6559 M->setNewDbgInfoFormatFlag(true);
6560 SeenNewDbgInfoFormat = true;
6561 Lex.Lex();
6562
6563 DbgRecord *DR;
6564 if (parseDebugRecord(DR, PFS))
6565 return true;
6566 TrailingDbgRecord.emplace_back(Args&: DR, Args&: DeleteDbgRecord);
6567 }
6568
6569 // This instruction may have three possibilities for a name: a) none
6570 // specified, b) name specified "%foo =", c) number specified: "%4 =".
6571 LocTy NameLoc = Lex.getLoc();
6572 int NameID = -1;
6573 NameStr = "";
6574
6575 if (Lex.getKind() == lltok::LocalVarID) {
6576 NameID = Lex.getUIntVal();
6577 Lex.Lex();
6578 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after instruction id"))
6579 return true;
6580 } else if (Lex.getKind() == lltok::LocalVar) {
6581 NameStr = Lex.getStrVal();
6582 Lex.Lex();
6583 if (parseToken(T: lltok::equal, ErrMsg: "expected '=' after instruction name"))
6584 return true;
6585 }
6586
6587 switch (parseInstruction(Inst, BB, PFS)) {
6588 default:
6589 llvm_unreachable("Unknown parseInstruction result!");
6590 case InstError: return true;
6591 case InstNormal:
6592 Inst->insertInto(ParentBB: BB, It: BB->end());
6593
6594 // With a normal result, we check to see if the instruction is followed by
6595 // a comma and metadata.
6596 if (EatIfPresent(T: lltok::comma))
6597 if (parseInstructionMetadata(Inst&: *Inst))
6598 return true;
6599 break;
6600 case InstExtraComma:
6601 Inst->insertInto(ParentBB: BB, It: BB->end());
6602
6603 // If the instruction parser ate an extra comma at the end of it, it
6604 // *must* be followed by metadata.
6605 if (parseInstructionMetadata(Inst&: *Inst))
6606 return true;
6607 break;
6608 }
6609
6610 // Set the name on the instruction.
6611 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6612 return true;
6613
6614 // Attach any preceding debug values to this instruction.
6615 for (DbgRecordPtr &DR : TrailingDbgRecord)
6616 BB->insertDbgRecordBefore(DR: DR.release(), Here: Inst->getIterator());
6617 TrailingDbgRecord.clear();
6618 } while (!Inst->isTerminator());
6619
6620 assert(TrailingDbgRecord.empty() &&
6621 "All debug values should have been attached to an instruction.");
6622
6623 return false;
6624}
6625
6626/// parseDebugRecord
6627/// ::= #dbg_label '(' MDNode ')'
6628/// ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ','
6629/// (MDNode ',' Metadata ',' Metadata ',')? MDNode ')'
6630bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) {
6631 using RecordKind = DbgRecord::Kind;
6632 using LocType = DbgVariableRecord::LocationType;
6633 LocTy DVRLoc = Lex.getLoc();
6634 if (Lex.getKind() != lltok::DbgRecordType)
6635 return error(L: DVRLoc, Msg: "expected debug record type here");
6636 RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal())
6637 .Case(S: "declare", Value: RecordKind::ValueKind)
6638 .Case(S: "value", Value: RecordKind::ValueKind)
6639 .Case(S: "assign", Value: RecordKind::ValueKind)
6640 .Case(S: "label", Value: RecordKind::LabelKind);
6641
6642 // Parsing labels is trivial; parse here and early exit, otherwise go into the
6643 // full DbgVariableRecord processing stage.
6644 if (RecordType == RecordKind::LabelKind) {
6645 Lex.Lex();
6646 if (parseToken(T: lltok::lparen, ErrMsg: "Expected '(' here"))
6647 return true;
6648 MDNode *Label;
6649 if (parseMDNode(N&: Label))
6650 return true;
6651 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6652 return true;
6653 MDNode *DbgLoc;
6654 if (parseMDNode(N&: DbgLoc))
6655 return true;
6656 if (parseToken(T: lltok::rparen, ErrMsg: "Expected ')' here"))
6657 return true;
6658 DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DL: DbgLoc);
6659 return false;
6660 }
6661
6662 LocType ValueType = StringSwitch<LocType>(Lex.getStrVal())
6663 .Case(S: "declare", Value: LocType::Declare)
6664 .Case(S: "value", Value: LocType::Value)
6665 .Case(S: "assign", Value: LocType::Assign);
6666
6667 Lex.Lex();
6668 if (parseToken(T: lltok::lparen, ErrMsg: "Expected '(' here"))
6669 return true;
6670
6671 // Parse Value field.
6672 Metadata *ValLocMD;
6673 if (parseMetadata(MD&: ValLocMD, PFS: &PFS))
6674 return true;
6675 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6676 return true;
6677
6678 // Parse Variable field.
6679 MDNode *Variable;
6680 if (parseMDNode(N&: Variable))
6681 return true;
6682 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6683 return true;
6684
6685 // Parse Expression field.
6686 MDNode *Expression;
6687 if (parseMDNode(N&: Expression))
6688 return true;
6689 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6690 return true;
6691
6692 // Parse additional fields for #dbg_assign.
6693 MDNode *AssignID = nullptr;
6694 Metadata *AddressLocation = nullptr;
6695 MDNode *AddressExpression = nullptr;
6696 if (ValueType == LocType::Assign) {
6697 // Parse DIAssignID.
6698 if (parseMDNode(N&: AssignID))
6699 return true;
6700 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6701 return true;
6702
6703 // Parse address ValueAsMetadata.
6704 if (parseMetadata(MD&: AddressLocation, PFS: &PFS))
6705 return true;
6706 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6707 return true;
6708
6709 // Parse address DIExpression.
6710 if (parseMDNode(N&: AddressExpression))
6711 return true;
6712 if (parseToken(T: lltok::comma, ErrMsg: "Expected ',' here"))
6713 return true;
6714 }
6715
6716 /// Parse DILocation.
6717 MDNode *DebugLoc;
6718 if (parseMDNode(N&: DebugLoc))
6719 return true;
6720
6721 if (parseToken(T: lltok::rparen, ErrMsg: "Expected ')' here"))
6722 return true;
6723 DR = DbgVariableRecord::createUnresolvedDbgVariableRecord(
6724 Type: ValueType, Val: ValLocMD, Variable, Expression, AssignID, Address: AddressLocation,
6725 AddressExpression, DI: DebugLoc);
6726 return false;
6727}
6728//===----------------------------------------------------------------------===//
6729// Instruction Parsing.
6730//===----------------------------------------------------------------------===//
6731
6732/// parseInstruction - parse one of the many different instructions.
6733///
6734int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6735 PerFunctionState &PFS) {
6736 lltok::Kind Token = Lex.getKind();
6737 if (Token == lltok::Eof)
6738 return tokError(Msg: "found end of file when expecting more instructions");
6739 LocTy Loc = Lex.getLoc();
6740 unsigned KeywordVal = Lex.getUIntVal();
6741 Lex.Lex(); // Eat the keyword.
6742
6743 switch (Token) {
6744 default:
6745 return error(L: Loc, Msg: "expected instruction opcode");
6746 // Terminator Instructions.
6747 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6748 case lltok::kw_ret:
6749 return parseRet(Inst, BB, PFS);
6750 case lltok::kw_br:
6751 return parseBr(Inst, PFS);
6752 case lltok::kw_switch:
6753 return parseSwitch(Inst, PFS);
6754 case lltok::kw_indirectbr:
6755 return parseIndirectBr(Inst, PFS);
6756 case lltok::kw_invoke:
6757 return parseInvoke(Inst, PFS);
6758 case lltok::kw_resume:
6759 return parseResume(Inst, PFS);
6760 case lltok::kw_cleanupret:
6761 return parseCleanupRet(Inst, PFS);
6762 case lltok::kw_catchret:
6763 return parseCatchRet(Inst, PFS);
6764 case lltok::kw_catchswitch:
6765 return parseCatchSwitch(Inst, PFS);
6766 case lltok::kw_catchpad:
6767 return parseCatchPad(Inst, PFS);
6768 case lltok::kw_cleanuppad:
6769 return parseCleanupPad(Inst, PFS);
6770 case lltok::kw_callbr:
6771 return parseCallBr(Inst, PFS);
6772 // Unary Operators.
6773 case lltok::kw_fneg: {
6774 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6775 int Res = parseUnaryOp(Inst, PFS, Opc: KeywordVal, /*IsFP*/ true);
6776 if (Res != 0)
6777 return Res;
6778 if (FMF.any())
6779 Inst->setFastMathFlags(FMF);
6780 return false;
6781 }
6782 // Binary Operators.
6783 case lltok::kw_add:
6784 case lltok::kw_sub:
6785 case lltok::kw_mul:
6786 case lltok::kw_shl: {
6787 bool NUW = EatIfPresent(T: lltok::kw_nuw);
6788 bool NSW = EatIfPresent(T: lltok::kw_nsw);
6789 if (!NUW) NUW = EatIfPresent(T: lltok::kw_nuw);
6790
6791 if (parseArithmetic(Inst, PFS, Opc: KeywordVal, /*IsFP*/ false))
6792 return true;
6793
6794 if (NUW) cast<BinaryOperator>(Val: Inst)->setHasNoUnsignedWrap(true);
6795 if (NSW) cast<BinaryOperator>(Val: Inst)->setHasNoSignedWrap(true);
6796 return false;
6797 }
6798 case lltok::kw_fadd:
6799 case lltok::kw_fsub:
6800 case lltok::kw_fmul:
6801 case lltok::kw_fdiv:
6802 case lltok::kw_frem: {
6803 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6804 int Res = parseArithmetic(Inst, PFS, Opc: KeywordVal, /*IsFP*/ true);
6805 if (Res != 0)
6806 return Res;
6807 if (FMF.any())
6808 Inst->setFastMathFlags(FMF);
6809 return 0;
6810 }
6811
6812 case lltok::kw_sdiv:
6813 case lltok::kw_udiv:
6814 case lltok::kw_lshr:
6815 case lltok::kw_ashr: {
6816 bool Exact = EatIfPresent(T: lltok::kw_exact);
6817
6818 if (parseArithmetic(Inst, PFS, Opc: KeywordVal, /*IsFP*/ false))
6819 return true;
6820 if (Exact) cast<BinaryOperator>(Val: Inst)->setIsExact(true);
6821 return false;
6822 }
6823
6824 case lltok::kw_urem:
6825 case lltok::kw_srem:
6826 return parseArithmetic(Inst, PFS, Opc: KeywordVal,
6827 /*IsFP*/ false);
6828 case lltok::kw_or: {
6829 bool Disjoint = EatIfPresent(T: lltok::kw_disjoint);
6830 if (parseLogical(Inst, PFS, Opc: KeywordVal))
6831 return true;
6832 if (Disjoint)
6833 cast<PossiblyDisjointInst>(Val: Inst)->setIsDisjoint(true);
6834 return false;
6835 }
6836 case lltok::kw_and:
6837 case lltok::kw_xor:
6838 return parseLogical(Inst, PFS, Opc: KeywordVal);
6839 case lltok::kw_icmp:
6840 return parseCompare(Inst, PFS, Opc: KeywordVal);
6841 case lltok::kw_fcmp: {
6842 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6843 int Res = parseCompare(Inst, PFS, Opc: KeywordVal);
6844 if (Res != 0)
6845 return Res;
6846 if (FMF.any())
6847 Inst->setFastMathFlags(FMF);
6848 return 0;
6849 }
6850
6851 // Casts.
6852 case lltok::kw_uitofp:
6853 case lltok::kw_zext: {
6854 bool NonNeg = EatIfPresent(T: lltok::kw_nneg);
6855 bool Res = parseCast(Inst, PFS, Opc: KeywordVal);
6856 if (Res != 0)
6857 return Res;
6858 if (NonNeg)
6859 Inst->setNonNeg();
6860 return 0;
6861 }
6862 case lltok::kw_trunc: {
6863 bool NUW = EatIfPresent(T: lltok::kw_nuw);
6864 bool NSW = EatIfPresent(T: lltok::kw_nsw);
6865 if (!NUW)
6866 NUW = EatIfPresent(T: lltok::kw_nuw);
6867 if (parseCast(Inst, PFS, Opc: KeywordVal))
6868 return true;
6869 if (NUW)
6870 cast<TruncInst>(Val: Inst)->setHasNoUnsignedWrap(true);
6871 if (NSW)
6872 cast<TruncInst>(Val: Inst)->setHasNoSignedWrap(true);
6873 return false;
6874 }
6875 case lltok::kw_sext:
6876 case lltok::kw_fptrunc:
6877 case lltok::kw_fpext:
6878 case lltok::kw_bitcast:
6879 case lltok::kw_addrspacecast:
6880 case lltok::kw_sitofp:
6881 case lltok::kw_fptoui:
6882 case lltok::kw_fptosi:
6883 case lltok::kw_inttoptr:
6884 case lltok::kw_ptrtoint:
6885 return parseCast(Inst, PFS, Opc: KeywordVal);
6886 // Other.
6887 case lltok::kw_select: {
6888 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6889 int Res = parseSelect(Inst, PFS);
6890 if (Res != 0)
6891 return Res;
6892 if (FMF.any()) {
6893 if (!isa<FPMathOperator>(Val: Inst))
6894 return error(L: Loc, Msg: "fast-math-flags specified for select without "
6895 "floating-point scalar or vector return type");
6896 Inst->setFastMathFlags(FMF);
6897 }
6898 return 0;
6899 }
6900 case lltok::kw_va_arg:
6901 return parseVAArg(Inst, PFS);
6902 case lltok::kw_extractelement:
6903 return parseExtractElement(Inst, PFS);
6904 case lltok::kw_insertelement:
6905 return parseInsertElement(Inst, PFS);
6906 case lltok::kw_shufflevector:
6907 return parseShuffleVector(Inst, PFS);
6908 case lltok::kw_phi: {
6909 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6910 int Res = parsePHI(Inst, PFS);
6911 if (Res != 0)
6912 return Res;
6913 if (FMF.any()) {
6914 if (!isa<FPMathOperator>(Val: Inst))
6915 return error(L: Loc, Msg: "fast-math-flags specified for phi without "
6916 "floating-point scalar or vector return type");
6917 Inst->setFastMathFlags(FMF);
6918 }
6919 return 0;
6920 }
6921 case lltok::kw_landingpad:
6922 return parseLandingPad(Inst, PFS);
6923 case lltok::kw_freeze:
6924 return parseFreeze(I&: Inst, PFS);
6925 // Call.
6926 case lltok::kw_call:
6927 return parseCall(Inst, PFS, TCK: CallInst::TCK_None);
6928 case lltok::kw_tail:
6929 return parseCall(Inst, PFS, TCK: CallInst::TCK_Tail);
6930 case lltok::kw_musttail:
6931 return parseCall(Inst, PFS, TCK: CallInst::TCK_MustTail);
6932 case lltok::kw_notail:
6933 return parseCall(Inst, PFS, TCK: CallInst::TCK_NoTail);
6934 // Memory.
6935 case lltok::kw_alloca:
6936 return parseAlloc(Inst, PFS);
6937 case lltok::kw_load:
6938 return parseLoad(Inst, PFS);
6939 case lltok::kw_store:
6940 return parseStore(Inst, PFS);
6941 case lltok::kw_cmpxchg:
6942 return parseCmpXchg(Inst, PFS);
6943 case lltok::kw_atomicrmw:
6944 return parseAtomicRMW(Inst, PFS);
6945 case lltok::kw_fence:
6946 return parseFence(Inst, PFS);
6947 case lltok::kw_getelementptr:
6948 return parseGetElementPtr(Inst, PFS);
6949 case lltok::kw_extractvalue:
6950 return parseExtractValue(Inst, PFS);
6951 case lltok::kw_insertvalue:
6952 return parseInsertValue(Inst, PFS);
6953 }
6954}
6955
6956/// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6957bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6958 if (Opc == Instruction::FCmp) {
6959 switch (Lex.getKind()) {
6960 default:
6961 return tokError(Msg: "expected fcmp predicate (e.g. 'oeq')");
6962 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6963 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6964 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6965 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6966 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6967 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6968 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6969 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6970 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6971 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6972 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6973 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6974 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6975 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6976 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6977 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6978 }
6979 } else {
6980 switch (Lex.getKind()) {
6981 default:
6982 return tokError(Msg: "expected icmp predicate (e.g. 'eq')");
6983 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
6984 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
6985 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6986 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6987 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6988 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6989 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6990 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6991 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6992 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6993 }
6994 }
6995 Lex.Lex();
6996 return false;
6997}
6998
6999//===----------------------------------------------------------------------===//
7000// Terminator Instructions.
7001//===----------------------------------------------------------------------===//
7002
7003/// parseRet - parse a return instruction.
7004/// ::= 'ret' void (',' !dbg, !1)*
7005/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
7006bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
7007 PerFunctionState &PFS) {
7008 SMLoc TypeLoc = Lex.getLoc();
7009 Type *Ty = nullptr;
7010 if (parseType(Result&: Ty, AllowVoid: true /*void allowed*/))
7011 return true;
7012
7013 Type *ResType = PFS.getFunction().getReturnType();
7014
7015 if (Ty->isVoidTy()) {
7016 if (!ResType->isVoidTy())
7017 return error(L: TypeLoc, Msg: "value doesn't match function result type '" +
7018 getTypeString(T: ResType) + "'");
7019
7020 Inst = ReturnInst::Create(C&: Context);
7021 return false;
7022 }
7023
7024 Value *RV;
7025 if (parseValue(Ty, V&: RV, PFS))
7026 return true;
7027
7028 if (ResType != RV->getType())
7029 return error(L: TypeLoc, Msg: "value doesn't match function result type '" +
7030 getTypeString(T: ResType) + "'");
7031
7032 Inst = ReturnInst::Create(C&: Context, retVal: RV);
7033 return false;
7034}
7035
7036/// parseBr
7037/// ::= 'br' TypeAndValue
7038/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7039bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
7040 LocTy Loc, Loc2;
7041 Value *Op0;
7042 BasicBlock *Op1, *Op2;
7043 if (parseTypeAndValue(V&: Op0, Loc, PFS))
7044 return true;
7045
7046 if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: Op0)) {
7047 Inst = BranchInst::Create(IfTrue: BB);
7048 return false;
7049 }
7050
7051 if (Op0->getType() != Type::getInt1Ty(C&: Context))
7052 return error(L: Loc, Msg: "branch condition must have 'i1' type");
7053
7054 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' after branch condition") ||
7055 parseTypeAndBasicBlock(BB&: Op1, Loc, PFS) ||
7056 parseToken(T: lltok::comma, ErrMsg: "expected ',' after true destination") ||
7057 parseTypeAndBasicBlock(BB&: Op2, Loc&: Loc2, PFS))
7058 return true;
7059
7060 Inst = BranchInst::Create(IfTrue: Op1, IfFalse: Op2, Cond: Op0);
7061 return false;
7062}
7063
7064/// parseSwitch
7065/// Instruction
7066/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
7067/// JumpTable
7068/// ::= (TypeAndValue ',' TypeAndValue)*
7069bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7070 LocTy CondLoc, BBLoc;
7071 Value *Cond;
7072 BasicBlock *DefaultBB;
7073 if (parseTypeAndValue(V&: Cond, Loc&: CondLoc, PFS) ||
7074 parseToken(T: lltok::comma, ErrMsg: "expected ',' after switch condition") ||
7075 parseTypeAndBasicBlock(BB&: DefaultBB, Loc&: BBLoc, PFS) ||
7076 parseToken(T: lltok::lsquare, ErrMsg: "expected '[' with switch table"))
7077 return true;
7078
7079 if (!Cond->getType()->isIntegerTy())
7080 return error(L: CondLoc, Msg: "switch condition must have integer type");
7081
7082 // parse the jump table pairs.
7083 SmallPtrSet<Value*, 32> SeenCases;
7084 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
7085 while (Lex.getKind() != lltok::rsquare) {
7086 Value *Constant;
7087 BasicBlock *DestBB;
7088
7089 if (parseTypeAndValue(V&: Constant, Loc&: CondLoc, PFS) ||
7090 parseToken(T: lltok::comma, ErrMsg: "expected ',' after case value") ||
7091 parseTypeAndBasicBlock(BB&: DestBB, PFS))
7092 return true;
7093
7094 if (!SeenCases.insert(Ptr: Constant).second)
7095 return error(L: CondLoc, Msg: "duplicate case value in switch");
7096 if (!isa<ConstantInt>(Val: Constant))
7097 return error(L: CondLoc, Msg: "case value is not a constant integer");
7098
7099 Table.push_back(Elt: std::make_pair(x: cast<ConstantInt>(Val: Constant), y&: DestBB));
7100 }
7101
7102 Lex.Lex(); // Eat the ']'.
7103
7104 SwitchInst *SI = SwitchInst::Create(Value: Cond, Default: DefaultBB, NumCases: Table.size());
7105 for (unsigned i = 0, e = Table.size(); i != e; ++i)
7106 SI->addCase(OnVal: Table[i].first, Dest: Table[i].second);
7107 Inst = SI;
7108 return false;
7109}
7110
7111/// parseIndirectBr
7112/// Instruction
7113/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
7114bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
7115 LocTy AddrLoc;
7116 Value *Address;
7117 if (parseTypeAndValue(V&: Address, Loc&: AddrLoc, PFS) ||
7118 parseToken(T: lltok::comma, ErrMsg: "expected ',' after indirectbr address") ||
7119 parseToken(T: lltok::lsquare, ErrMsg: "expected '[' with indirectbr"))
7120 return true;
7121
7122 if (!Address->getType()->isPointerTy())
7123 return error(L: AddrLoc, Msg: "indirectbr address must have pointer type");
7124
7125 // parse the destination list.
7126 SmallVector<BasicBlock*, 16> DestList;
7127
7128 if (Lex.getKind() != lltok::rsquare) {
7129 BasicBlock *DestBB;
7130 if (parseTypeAndBasicBlock(BB&: DestBB, PFS))
7131 return true;
7132 DestList.push_back(Elt: DestBB);
7133
7134 while (EatIfPresent(T: lltok::comma)) {
7135 if (parseTypeAndBasicBlock(BB&: DestBB, PFS))
7136 return true;
7137 DestList.push_back(Elt: DestBB);
7138 }
7139 }
7140
7141 if (parseToken(T: lltok::rsquare, ErrMsg: "expected ']' at end of block list"))
7142 return true;
7143
7144 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests: DestList.size());
7145 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
7146 IBI->addDestination(Dest: DestList[i]);
7147 Inst = IBI;
7148 return false;
7149}
7150
7151// If RetType is a non-function pointer type, then this is the short syntax
7152// for the call, which means that RetType is just the return type. Infer the
7153// rest of the function argument types from the arguments that are present.
7154bool LLParser::resolveFunctionType(Type *RetType,
7155 const SmallVector<ParamInfo, 16> &ArgList,
7156 FunctionType *&FuncTy) {
7157 FuncTy = dyn_cast<FunctionType>(Val: RetType);
7158 if (!FuncTy) {
7159 // Pull out the types of all of the arguments...
7160 std::vector<Type*> ParamTypes;
7161 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7162 ParamTypes.push_back(x: ArgList[i].V->getType());
7163
7164 if (!FunctionType::isValidReturnType(RetTy: RetType))
7165 return true;
7166
7167 FuncTy = FunctionType::get(Result: RetType, Params: ParamTypes, isVarArg: false);
7168 }
7169 return false;
7170}
7171
7172/// parseInvoke
7173/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
7174/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
7175bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
7176 LocTy CallLoc = Lex.getLoc();
7177 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7178 std::vector<unsigned> FwdRefAttrGrps;
7179 LocTy NoBuiltinLoc;
7180 unsigned CC;
7181 unsigned InvokeAddrSpace;
7182 Type *RetType = nullptr;
7183 LocTy RetTypeLoc;
7184 ValID CalleeID;
7185 SmallVector<ParamInfo, 16> ArgList;
7186 SmallVector<OperandBundleDef, 2> BundleList;
7187
7188 BasicBlock *NormalBB, *UnwindBB;
7189 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(B&: RetAttrs) ||
7190 parseOptionalProgramAddrSpace(AddrSpace&: InvokeAddrSpace) ||
7191 parseType(Result&: RetType, Loc&: RetTypeLoc, AllowVoid: true /*void allowed*/) ||
7192 parseValID(ID&: CalleeID, PFS: &PFS) || parseParameterList(ArgList, PFS) ||
7193 parseFnAttributeValuePairs(B&: FnAttrs, FwdRefAttrGrps, InAttrGrp: false,
7194 BuiltinLoc&: NoBuiltinLoc) ||
7195 parseOptionalOperandBundles(BundleList, PFS) ||
7196 parseToken(T: lltok::kw_to, ErrMsg: "expected 'to' in invoke") ||
7197 parseTypeAndBasicBlock(BB&: NormalBB, PFS) ||
7198 parseToken(T: lltok::kw_unwind, ErrMsg: "expected 'unwind' in invoke") ||
7199 parseTypeAndBasicBlock(BB&: UnwindBB, PFS))
7200 return true;
7201
7202 // If RetType is a non-function pointer type, then this is the short syntax
7203 // for the call, which means that RetType is just the return type. Infer the
7204 // rest of the function argument types from the arguments that are present.
7205 FunctionType *Ty;
7206 if (resolveFunctionType(RetType, ArgList, FuncTy&: Ty))
7207 return error(L: RetTypeLoc, Msg: "Invalid result type for LLVM function");
7208
7209 CalleeID.FTy = Ty;
7210
7211 // Look up the callee.
7212 Value *Callee;
7213 if (convertValIDToValue(Ty: PointerType::get(ElementType: Ty, AddressSpace: InvokeAddrSpace), ID&: CalleeID,
7214 V&: Callee, PFS: &PFS))
7215 return true;
7216
7217 // Set up the Attribute for the function.
7218 SmallVector<Value *, 8> Args;
7219 SmallVector<AttributeSet, 8> ArgAttrs;
7220
7221 // Loop through FunctionType's arguments and ensure they are specified
7222 // correctly. Also, gather any parameter attributes.
7223 FunctionType::param_iterator I = Ty->param_begin();
7224 FunctionType::param_iterator E = Ty->param_end();
7225 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7226 Type *ExpectedTy = nullptr;
7227 if (I != E) {
7228 ExpectedTy = *I++;
7229 } else if (!Ty->isVarArg()) {
7230 return error(L: ArgList[i].Loc, Msg: "too many arguments specified");
7231 }
7232
7233 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7234 return error(L: ArgList[i].Loc, Msg: "argument is not of expected type '" +
7235 getTypeString(T: ExpectedTy) + "'");
7236 Args.push_back(Elt: ArgList[i].V);
7237 ArgAttrs.push_back(Elt: ArgList[i].Attrs);
7238 }
7239
7240 if (I != E)
7241 return error(L: CallLoc, Msg: "not enough parameters specified for call");
7242
7243 // Finish off the Attribute and check them
7244 AttributeList PAL =
7245 AttributeList::get(C&: Context, FnAttrs: AttributeSet::get(C&: Context, B: FnAttrs),
7246 RetAttrs: AttributeSet::get(C&: Context, B: RetAttrs), ArgAttrs);
7247
7248 InvokeInst *II =
7249 InvokeInst::Create(Ty, Func: Callee, IfNormal: NormalBB, IfException: UnwindBB, Args, Bundles: BundleList);
7250 II->setCallingConv(CC);
7251 II->setAttributes(PAL);
7252 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
7253 Inst = II;
7254 return false;
7255}
7256
7257/// parseResume
7258/// ::= 'resume' TypeAndValue
7259bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
7260 Value *Exn; LocTy ExnLoc;
7261 if (parseTypeAndValue(V&: Exn, Loc&: ExnLoc, PFS))
7262 return true;
7263
7264 ResumeInst *RI = ResumeInst::Create(Exn);
7265 Inst = RI;
7266 return false;
7267}
7268
7269bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
7270 PerFunctionState &PFS) {
7271 if (parseToken(T: lltok::lsquare, ErrMsg: "expected '[' in catchpad/cleanuppad"))
7272 return true;
7273
7274 while (Lex.getKind() != lltok::rsquare) {
7275 // If this isn't the first argument, we need a comma.
7276 if (!Args.empty() &&
7277 parseToken(T: lltok::comma, ErrMsg: "expected ',' in argument list"))
7278 return true;
7279
7280 // parse the argument.
7281 LocTy ArgLoc;
7282 Type *ArgTy = nullptr;
7283 if (parseType(Result&: ArgTy, Loc&: ArgLoc))
7284 return true;
7285
7286 Value *V;
7287 if (ArgTy->isMetadataTy()) {
7288 if (parseMetadataAsValue(V, PFS))
7289 return true;
7290 } else {
7291 if (parseValue(Ty: ArgTy, V, PFS))
7292 return true;
7293 }
7294 Args.push_back(Elt: V);
7295 }
7296
7297 Lex.Lex(); // Lex the ']'.
7298 return false;
7299}
7300
7301/// parseCleanupRet
7302/// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
7303bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
7304 Value *CleanupPad = nullptr;
7305
7306 if (parseToken(T: lltok::kw_from, ErrMsg: "expected 'from' after cleanupret"))
7307 return true;
7308
7309 if (parseValue(Ty: Type::getTokenTy(C&: Context), V&: CleanupPad, PFS))
7310 return true;
7311
7312 if (parseToken(T: lltok::kw_unwind, ErrMsg: "expected 'unwind' in cleanupret"))
7313 return true;
7314
7315 BasicBlock *UnwindBB = nullptr;
7316 if (Lex.getKind() == lltok::kw_to) {
7317 Lex.Lex();
7318 if (parseToken(T: lltok::kw_caller, ErrMsg: "expected 'caller' in cleanupret"))
7319 return true;
7320 } else {
7321 if (parseTypeAndBasicBlock(BB&: UnwindBB, PFS)) {
7322 return true;
7323 }
7324 }
7325
7326 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7327 return false;
7328}
7329
7330/// parseCatchRet
7331/// ::= 'catchret' from Parent Value 'to' TypeAndValue
7332bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7333 Value *CatchPad = nullptr;
7334
7335 if (parseToken(T: lltok::kw_from, ErrMsg: "expected 'from' after catchret"))
7336 return true;
7337
7338 if (parseValue(Ty: Type::getTokenTy(C&: Context), V&: CatchPad, PFS))
7339 return true;
7340
7341 BasicBlock *BB;
7342 if (parseToken(T: lltok::kw_to, ErrMsg: "expected 'to' in catchret") ||
7343 parseTypeAndBasicBlock(BB, PFS))
7344 return true;
7345
7346 Inst = CatchReturnInst::Create(CatchPad, BB);
7347 return false;
7348}
7349
7350/// parseCatchSwitch
7351/// ::= 'catchswitch' within Parent
7352bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7353 Value *ParentPad;
7354
7355 if (parseToken(T: lltok::kw_within, ErrMsg: "expected 'within' after catchswitch"))
7356 return true;
7357
7358 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7359 Lex.getKind() != lltok::LocalVarID)
7360 return tokError(Msg: "expected scope value for catchswitch");
7361
7362 if (parseValue(Ty: Type::getTokenTy(C&: Context), V&: ParentPad, PFS))
7363 return true;
7364
7365 if (parseToken(T: lltok::lsquare, ErrMsg: "expected '[' with catchswitch labels"))
7366 return true;
7367
7368 SmallVector<BasicBlock *, 32> Table;
7369 do {
7370 BasicBlock *DestBB;
7371 if (parseTypeAndBasicBlock(BB&: DestBB, PFS))
7372 return true;
7373 Table.push_back(Elt: DestBB);
7374 } while (EatIfPresent(T: lltok::comma));
7375
7376 if (parseToken(T: lltok::rsquare, ErrMsg: "expected ']' after catchswitch labels"))
7377 return true;
7378
7379 if (parseToken(T: lltok::kw_unwind, ErrMsg: "expected 'unwind' after catchswitch scope"))
7380 return true;
7381
7382 BasicBlock *UnwindBB = nullptr;
7383 if (EatIfPresent(T: lltok::kw_to)) {
7384 if (parseToken(T: lltok::kw_caller, ErrMsg: "expected 'caller' in catchswitch"))
7385 return true;
7386 } else {
7387 if (parseTypeAndBasicBlock(BB&: UnwindBB, PFS))
7388 return true;
7389 }
7390
7391 auto *CatchSwitch =
7392 CatchSwitchInst::Create(ParentPad, UnwindDest: UnwindBB, NumHandlers: Table.size());
7393 for (BasicBlock *DestBB : Table)
7394 CatchSwitch->addHandler(Dest: DestBB);
7395 Inst = CatchSwitch;
7396 return false;
7397}
7398
7399/// parseCatchPad
7400/// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
7401bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7402 Value *CatchSwitch = nullptr;
7403
7404 if (parseToken(T: lltok::kw_within, ErrMsg: "expected 'within' after catchpad"))
7405 return true;
7406
7407 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7408 return tokError(Msg: "expected scope value for catchpad");
7409
7410 if (parseValue(Ty: Type::getTokenTy(C&: Context), V&: CatchSwitch, PFS))
7411 return true;
7412
7413 SmallVector<Value *, 8> Args;
7414 if (parseExceptionArgs(Args, PFS))
7415 return true;
7416
7417 Inst = CatchPadInst::Create(CatchSwitch, Args);
7418 return false;
7419}
7420
7421/// parseCleanupPad
7422/// ::= 'cleanuppad' within Parent ParamList
7423bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7424 Value *ParentPad = nullptr;
7425
7426 if (parseToken(T: lltok::kw_within, ErrMsg: "expected 'within' after cleanuppad"))
7427 return true;
7428
7429 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7430 Lex.getKind() != lltok::LocalVarID)
7431 return tokError(Msg: "expected scope value for cleanuppad");
7432
7433 if (parseValue(Ty: Type::getTokenTy(C&: Context), V&: ParentPad, PFS))
7434 return true;
7435
7436 SmallVector<Value *, 8> Args;
7437 if (parseExceptionArgs(Args, PFS))
7438 return true;
7439
7440 Inst = CleanupPadInst::Create(ParentPad, Args);
7441 return false;
7442}
7443
7444//===----------------------------------------------------------------------===//
7445// Unary Operators.
7446//===----------------------------------------------------------------------===//
7447
7448/// parseUnaryOp
7449/// ::= UnaryOp TypeAndValue ',' Value
7450///
7451/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7452/// operand is allowed.
7453bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7454 unsigned Opc, bool IsFP) {
7455 LocTy Loc; Value *LHS;
7456 if (parseTypeAndValue(V&: LHS, Loc, PFS))
7457 return true;
7458
7459 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7460 : LHS->getType()->isIntOrIntVectorTy();
7461
7462 if (!Valid)
7463 return error(L: Loc, Msg: "invalid operand type for instruction");
7464
7465 Inst = UnaryOperator::Create(Op: (Instruction::UnaryOps)Opc, S: LHS);
7466 return false;
7467}
7468
7469/// parseCallBr
7470/// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7471/// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7472/// '[' LabelList ']'
7473bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7474 LocTy CallLoc = Lex.getLoc();
7475 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7476 std::vector<unsigned> FwdRefAttrGrps;
7477 LocTy NoBuiltinLoc;
7478 unsigned CC;
7479 Type *RetType = nullptr;
7480 LocTy RetTypeLoc;
7481 ValID CalleeID;
7482 SmallVector<ParamInfo, 16> ArgList;
7483 SmallVector<OperandBundleDef, 2> BundleList;
7484
7485 BasicBlock *DefaultDest;
7486 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(B&: RetAttrs) ||
7487 parseType(Result&: RetType, Loc&: RetTypeLoc, AllowVoid: true /*void allowed*/) ||
7488 parseValID(ID&: CalleeID, PFS: &PFS) || parseParameterList(ArgList, PFS) ||
7489 parseFnAttributeValuePairs(B&: FnAttrs, FwdRefAttrGrps, InAttrGrp: false,
7490 BuiltinLoc&: NoBuiltinLoc) ||
7491 parseOptionalOperandBundles(BundleList, PFS) ||
7492 parseToken(T: lltok::kw_to, ErrMsg: "expected 'to' in callbr") ||
7493 parseTypeAndBasicBlock(BB&: DefaultDest, PFS) ||
7494 parseToken(T: lltok::lsquare, ErrMsg: "expected '[' in callbr"))
7495 return true;
7496
7497 // parse the destination list.
7498 SmallVector<BasicBlock *, 16> IndirectDests;
7499
7500 if (Lex.getKind() != lltok::rsquare) {
7501 BasicBlock *DestBB;
7502 if (parseTypeAndBasicBlock(BB&: DestBB, PFS))
7503 return true;
7504 IndirectDests.push_back(Elt: DestBB);
7505
7506 while (EatIfPresent(T: lltok::comma)) {
7507 if (parseTypeAndBasicBlock(BB&: DestBB, PFS))
7508 return true;
7509 IndirectDests.push_back(Elt: DestBB);
7510 }
7511 }
7512
7513 if (parseToken(T: lltok::rsquare, ErrMsg: "expected ']' at end of block list"))
7514 return true;
7515
7516 // If RetType is a non-function pointer type, then this is the short syntax
7517 // for the call, which means that RetType is just the return type. Infer the
7518 // rest of the function argument types from the arguments that are present.
7519 FunctionType *Ty;
7520 if (resolveFunctionType(RetType, ArgList, FuncTy&: Ty))
7521 return error(L: RetTypeLoc, Msg: "Invalid result type for LLVM function");
7522
7523 CalleeID.FTy = Ty;
7524
7525 // Look up the callee.
7526 Value *Callee;
7527 if (convertValIDToValue(Ty: PointerType::getUnqual(ElementType: Ty), ID&: CalleeID, V&: Callee, PFS: &PFS))
7528 return true;
7529
7530 // Set up the Attribute for the function.
7531 SmallVector<Value *, 8> Args;
7532 SmallVector<AttributeSet, 8> ArgAttrs;
7533
7534 // Loop through FunctionType's arguments and ensure they are specified
7535 // correctly. Also, gather any parameter attributes.
7536 FunctionType::param_iterator I = Ty->param_begin();
7537 FunctionType::param_iterator E = Ty->param_end();
7538 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7539 Type *ExpectedTy = nullptr;
7540 if (I != E) {
7541 ExpectedTy = *I++;
7542 } else if (!Ty->isVarArg()) {
7543 return error(L: ArgList[i].Loc, Msg: "too many arguments specified");
7544 }
7545
7546 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7547 return error(L: ArgList[i].Loc, Msg: "argument is not of expected type '" +
7548 getTypeString(T: ExpectedTy) + "'");
7549 Args.push_back(Elt: ArgList[i].V);
7550 ArgAttrs.push_back(Elt: ArgList[i].Attrs);
7551 }
7552
7553 if (I != E)
7554 return error(L: CallLoc, Msg: "not enough parameters specified for call");
7555
7556 // Finish off the Attribute and check them
7557 AttributeList PAL =
7558 AttributeList::get(C&: Context, FnAttrs: AttributeSet::get(C&: Context, B: FnAttrs),
7559 RetAttrs: AttributeSet::get(C&: Context, B: RetAttrs), ArgAttrs);
7560
7561 CallBrInst *CBI =
7562 CallBrInst::Create(Ty, Func: Callee, DefaultDest, IndirectDests, Args,
7563 Bundles: BundleList);
7564 CBI->setCallingConv(CC);
7565 CBI->setAttributes(PAL);
7566 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7567 Inst = CBI;
7568 return false;
7569}
7570
7571//===----------------------------------------------------------------------===//
7572// Binary Operators.
7573//===----------------------------------------------------------------------===//
7574
7575/// parseArithmetic
7576/// ::= ArithmeticOps TypeAndValue ',' Value
7577///
7578/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7579/// operand is allowed.
7580bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7581 unsigned Opc, bool IsFP) {
7582 LocTy Loc; Value *LHS, *RHS;
7583 if (parseTypeAndValue(V&: LHS, Loc, PFS) ||
7584 parseToken(T: lltok::comma, ErrMsg: "expected ',' in arithmetic operation") ||
7585 parseValue(Ty: LHS->getType(), V&: RHS, PFS))
7586 return true;
7587
7588 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7589 : LHS->getType()->isIntOrIntVectorTy();
7590
7591 if (!Valid)
7592 return error(L: Loc, Msg: "invalid operand type for instruction");
7593
7594 Inst = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS);
7595 return false;
7596}
7597
7598/// parseLogical
7599/// ::= ArithmeticOps TypeAndValue ',' Value {
7600bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7601 unsigned Opc) {
7602 LocTy Loc; Value *LHS, *RHS;
7603 if (parseTypeAndValue(V&: LHS, Loc, PFS) ||
7604 parseToken(T: lltok::comma, ErrMsg: "expected ',' in logical operation") ||
7605 parseValue(Ty: LHS->getType(), V&: RHS, PFS))
7606 return true;
7607
7608 if (!LHS->getType()->isIntOrIntVectorTy())
7609 return error(L: Loc,
7610 Msg: "instruction requires integer or integer vector operands");
7611
7612 Inst = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS);
7613 return false;
7614}
7615
7616/// parseCompare
7617/// ::= 'icmp' IPredicates TypeAndValue ',' Value
7618/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
7619bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7620 unsigned Opc) {
7621 // parse the integer/fp comparison predicate.
7622 LocTy Loc;
7623 unsigned Pred;
7624 Value *LHS, *RHS;
7625 if (parseCmpPredicate(P&: Pred, Opc) || parseTypeAndValue(V&: LHS, Loc, PFS) ||
7626 parseToken(T: lltok::comma, ErrMsg: "expected ',' after compare value") ||
7627 parseValue(Ty: LHS->getType(), V&: RHS, PFS))
7628 return true;
7629
7630 if (Opc == Instruction::FCmp) {
7631 if (!LHS->getType()->isFPOrFPVectorTy())
7632 return error(L: Loc, Msg: "fcmp requires floating point operands");
7633 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7634 } else {
7635 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7636 if (!LHS->getType()->isIntOrIntVectorTy() &&
7637 !LHS->getType()->isPtrOrPtrVectorTy())
7638 return error(L: Loc, Msg: "icmp requires integer operands");
7639 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7640 }
7641 return false;
7642}
7643
7644//===----------------------------------------------------------------------===//
7645// Other Instructions.
7646//===----------------------------------------------------------------------===//
7647
7648/// parseCast
7649/// ::= CastOpc TypeAndValue 'to' Type
7650bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7651 unsigned Opc) {
7652 LocTy Loc;
7653 Value *Op;
7654 Type *DestTy = nullptr;
7655 if (parseTypeAndValue(V&: Op, Loc, PFS) ||
7656 parseToken(T: lltok::kw_to, ErrMsg: "expected 'to' after cast value") ||
7657 parseType(Result&: DestTy))
7658 return true;
7659
7660 if (!CastInst::castIsValid(op: (Instruction::CastOps)Opc, S: Op, DstTy: DestTy)) {
7661 CastInst::castIsValid(op: (Instruction::CastOps)Opc, S: Op, DstTy: DestTy);
7662 return error(L: Loc, Msg: "invalid cast opcode for cast from '" +
7663 getTypeString(T: Op->getType()) + "' to '" +
7664 getTypeString(T: DestTy) + "'");
7665 }
7666 Inst = CastInst::Create((Instruction::CastOps)Opc, S: Op, Ty: DestTy);
7667 return false;
7668}
7669
7670/// parseSelect
7671/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7672bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7673 LocTy Loc;
7674 Value *Op0, *Op1, *Op2;
7675 if (parseTypeAndValue(V&: Op0, Loc, PFS) ||
7676 parseToken(T: lltok::comma, ErrMsg: "expected ',' after select condition") ||
7677 parseTypeAndValue(V&: Op1, PFS) ||
7678 parseToken(T: lltok::comma, ErrMsg: "expected ',' after select value") ||
7679 parseTypeAndValue(V&: Op2, PFS))
7680 return true;
7681
7682 if (const char *Reason = SelectInst::areInvalidOperands(Cond: Op0, True: Op1, False: Op2))
7683 return error(L: Loc, Msg: Reason);
7684
7685 Inst = SelectInst::Create(C: Op0, S1: Op1, S2: Op2);
7686 return false;
7687}
7688
7689/// parseVAArg
7690/// ::= 'va_arg' TypeAndValue ',' Type
7691bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7692 Value *Op;
7693 Type *EltTy = nullptr;
7694 LocTy TypeLoc;
7695 if (parseTypeAndValue(V&: Op, PFS) ||
7696 parseToken(T: lltok::comma, ErrMsg: "expected ',' after vaarg operand") ||
7697 parseType(Result&: EltTy, Loc&: TypeLoc))
7698 return true;
7699
7700 if (!EltTy->isFirstClassType())
7701 return error(L: TypeLoc, Msg: "va_arg requires operand with first class type");
7702
7703 Inst = new VAArgInst(Op, EltTy);
7704 return false;
7705}
7706
7707/// parseExtractElement
7708/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
7709bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7710 LocTy Loc;
7711 Value *Op0, *Op1;
7712 if (parseTypeAndValue(V&: Op0, Loc, PFS) ||
7713 parseToken(T: lltok::comma, ErrMsg: "expected ',' after extract value") ||
7714 parseTypeAndValue(V&: Op1, PFS))
7715 return true;
7716
7717 if (!ExtractElementInst::isValidOperands(Vec: Op0, Idx: Op1))
7718 return error(L: Loc, Msg: "invalid extractelement operands");
7719
7720 Inst = ExtractElementInst::Create(Vec: Op0, Idx: Op1);
7721 return false;
7722}
7723
7724/// parseInsertElement
7725/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7726bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7727 LocTy Loc;
7728 Value *Op0, *Op1, *Op2;
7729 if (parseTypeAndValue(V&: Op0, Loc, PFS) ||
7730 parseToken(T: lltok::comma, ErrMsg: "expected ',' after insertelement value") ||
7731 parseTypeAndValue(V&: Op1, PFS) ||
7732 parseToken(T: lltok::comma, ErrMsg: "expected ',' after insertelement value") ||
7733 parseTypeAndValue(V&: Op2, PFS))
7734 return true;
7735
7736 if (!InsertElementInst::isValidOperands(Vec: Op0, NewElt: Op1, Idx: Op2))
7737 return error(L: Loc, Msg: "invalid insertelement operands");
7738
7739 Inst = InsertElementInst::Create(Vec: Op0, NewElt: Op1, Idx: Op2);
7740 return false;
7741}
7742
7743/// parseShuffleVector
7744/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7745bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7746 LocTy Loc;
7747 Value *Op0, *Op1, *Op2;
7748 if (parseTypeAndValue(V&: Op0, Loc, PFS) ||
7749 parseToken(T: lltok::comma, ErrMsg: "expected ',' after shuffle mask") ||
7750 parseTypeAndValue(V&: Op1, PFS) ||
7751 parseToken(T: lltok::comma, ErrMsg: "expected ',' after shuffle value") ||
7752 parseTypeAndValue(V&: Op2, PFS))
7753 return true;
7754
7755 if (!ShuffleVectorInst::isValidOperands(V1: Op0, V2: Op1, Mask: Op2))
7756 return error(L: Loc, Msg: "invalid shufflevector operands");
7757
7758 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7759 return false;
7760}
7761
7762/// parsePHI
7763/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7764int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7765 Type *Ty = nullptr; LocTy TypeLoc;
7766 Value *Op0, *Op1;
7767
7768 if (parseType(Result&: Ty, Loc&: TypeLoc))
7769 return true;
7770
7771 if (!Ty->isFirstClassType())
7772 return error(L: TypeLoc, Msg: "phi node must have first class type");
7773
7774 bool First = true;
7775 bool AteExtraComma = false;
7776 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7777
7778 while (true) {
7779 if (First) {
7780 if (Lex.getKind() != lltok::lsquare)
7781 break;
7782 First = false;
7783 } else if (!EatIfPresent(T: lltok::comma))
7784 break;
7785
7786 if (Lex.getKind() == lltok::MetadataVar) {
7787 AteExtraComma = true;
7788 break;
7789 }
7790
7791 if (parseToken(T: lltok::lsquare, ErrMsg: "expected '[' in phi value list") ||
7792 parseValue(Ty, V&: Op0, PFS) ||
7793 parseToken(T: lltok::comma, ErrMsg: "expected ',' after insertelement value") ||
7794 parseValue(Ty: Type::getLabelTy(C&: Context), V&: Op1, PFS) ||
7795 parseToken(T: lltok::rsquare, ErrMsg: "expected ']' in phi value list"))
7796 return true;
7797
7798 PHIVals.push_back(Elt: std::make_pair(x&: Op0, y: cast<BasicBlock>(Val: Op1)));
7799 }
7800
7801 PHINode *PN = PHINode::Create(Ty, NumReservedValues: PHIVals.size());
7802 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7803 PN->addIncoming(V: PHIVals[i].first, BB: PHIVals[i].second);
7804 Inst = PN;
7805 return AteExtraComma ? InstExtraComma : InstNormal;
7806}
7807
7808/// parseLandingPad
7809/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7810/// Clause
7811/// ::= 'catch' TypeAndValue
7812/// ::= 'filter'
7813/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7814bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7815 Type *Ty = nullptr; LocTy TyLoc;
7816
7817 if (parseType(Result&: Ty, Loc&: TyLoc))
7818 return true;
7819
7820 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(RetTy: Ty, NumReservedClauses: 0));
7821 LP->setCleanup(EatIfPresent(T: lltok::kw_cleanup));
7822
7823 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7824 LandingPadInst::ClauseType CT;
7825 if (EatIfPresent(T: lltok::kw_catch))
7826 CT = LandingPadInst::Catch;
7827 else if (EatIfPresent(T: lltok::kw_filter))
7828 CT = LandingPadInst::Filter;
7829 else
7830 return tokError(Msg: "expected 'catch' or 'filter' clause type");
7831
7832 Value *V;
7833 LocTy VLoc;
7834 if (parseTypeAndValue(V, Loc&: VLoc, PFS))
7835 return true;
7836
7837 // A 'catch' type expects a non-array constant. A filter clause expects an
7838 // array constant.
7839 if (CT == LandingPadInst::Catch) {
7840 if (isa<ArrayType>(Val: V->getType()))
7841 error(L: VLoc, Msg: "'catch' clause has an invalid type");
7842 } else {
7843 if (!isa<ArrayType>(Val: V->getType()))
7844 error(L: VLoc, Msg: "'filter' clause has an invalid type");
7845 }
7846
7847 Constant *CV = dyn_cast<Constant>(Val: V);
7848 if (!CV)
7849 return error(L: VLoc, Msg: "clause argument must be a constant");
7850 LP->addClause(ClauseVal: CV);
7851 }
7852
7853 Inst = LP.release();
7854 return false;
7855}
7856
7857/// parseFreeze
7858/// ::= 'freeze' Type Value
7859bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7860 LocTy Loc;
7861 Value *Op;
7862 if (parseTypeAndValue(V&: Op, Loc, PFS))
7863 return true;
7864
7865 Inst = new FreezeInst(Op);
7866 return false;
7867}
7868
7869/// parseCall
7870/// ::= 'call' OptionalFastMathFlags OptionalCallingConv
7871/// OptionalAttrs Type Value ParameterList OptionalAttrs
7872/// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7873/// OptionalAttrs Type Value ParameterList OptionalAttrs
7874/// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7875/// OptionalAttrs Type Value ParameterList OptionalAttrs
7876/// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
7877/// OptionalAttrs Type Value ParameterList OptionalAttrs
7878bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7879 CallInst::TailCallKind TCK) {
7880 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7881 std::vector<unsigned> FwdRefAttrGrps;
7882 LocTy BuiltinLoc;
7883 unsigned CallAddrSpace;
7884 unsigned CC;
7885 Type *RetType = nullptr;
7886 LocTy RetTypeLoc;
7887 ValID CalleeID;
7888 SmallVector<ParamInfo, 16> ArgList;
7889 SmallVector<OperandBundleDef, 2> BundleList;
7890 LocTy CallLoc = Lex.getLoc();
7891
7892 if (TCK != CallInst::TCK_None &&
7893 parseToken(T: lltok::kw_call,
7894 ErrMsg: "expected 'tail call', 'musttail call', or 'notail call'"))
7895 return true;
7896
7897 FastMathFlags FMF = EatFastMathFlagsIfPresent();
7898
7899 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(B&: RetAttrs) ||
7900 parseOptionalProgramAddrSpace(AddrSpace&: CallAddrSpace) ||
7901 parseType(Result&: RetType, Loc&: RetTypeLoc, AllowVoid: true /*void allowed*/) ||
7902 parseValID(ID&: CalleeID, PFS: &PFS) ||
7903 parseParameterList(ArgList, PFS, IsMustTailCall: TCK == CallInst::TCK_MustTail,
7904 InVarArgsFunc: PFS.getFunction().isVarArg()) ||
7905 parseFnAttributeValuePairs(B&: FnAttrs, FwdRefAttrGrps, InAttrGrp: false, BuiltinLoc) ||
7906 parseOptionalOperandBundles(BundleList, PFS))
7907 return true;
7908
7909 // If RetType is a non-function pointer type, then this is the short syntax
7910 // for the call, which means that RetType is just the return type. Infer the
7911 // rest of the function argument types from the arguments that are present.
7912 FunctionType *Ty;
7913 if (resolveFunctionType(RetType, ArgList, FuncTy&: Ty))
7914 return error(L: RetTypeLoc, Msg: "Invalid result type for LLVM function");
7915
7916 CalleeID.FTy = Ty;
7917
7918 // Look up the callee.
7919 Value *Callee;
7920 if (convertValIDToValue(Ty: PointerType::get(ElementType: Ty, AddressSpace: CallAddrSpace), ID&: CalleeID, V&: Callee,
7921 PFS: &PFS))
7922 return true;
7923
7924 // Set up the Attribute for the function.
7925 SmallVector<AttributeSet, 8> Attrs;
7926
7927 SmallVector<Value*, 8> Args;
7928
7929 // Loop through FunctionType's arguments and ensure they are specified
7930 // correctly. Also, gather any parameter attributes.
7931 FunctionType::param_iterator I = Ty->param_begin();
7932 FunctionType::param_iterator E = Ty->param_end();
7933 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7934 Type *ExpectedTy = nullptr;
7935 if (I != E) {
7936 ExpectedTy = *I++;
7937 } else if (!Ty->isVarArg()) {
7938 return error(L: ArgList[i].Loc, Msg: "too many arguments specified");
7939 }
7940
7941 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7942 return error(L: ArgList[i].Loc, Msg: "argument is not of expected type '" +
7943 getTypeString(T: ExpectedTy) + "'");
7944 Args.push_back(Elt: ArgList[i].V);
7945 Attrs.push_back(Elt: ArgList[i].Attrs);
7946 }
7947
7948 if (I != E)
7949 return error(L: CallLoc, Msg: "not enough parameters specified for call");
7950
7951 // Finish off the Attribute and check them
7952 AttributeList PAL =
7953 AttributeList::get(C&: Context, FnAttrs: AttributeSet::get(C&: Context, B: FnAttrs),
7954 RetAttrs: AttributeSet::get(C&: Context, B: RetAttrs), ArgAttrs: Attrs);
7955
7956 CallInst *CI = CallInst::Create(Ty, Func: Callee, Args, Bundles: BundleList);
7957 CI->setTailCallKind(TCK);
7958 CI->setCallingConv(CC);
7959 if (FMF.any()) {
7960 if (!isa<FPMathOperator>(Val: CI)) {
7961 CI->deleteValue();
7962 return error(L: CallLoc, Msg: "fast-math-flags specified for call without "
7963 "floating-point scalar or vector return type");
7964 }
7965 CI->setFastMathFlags(FMF);
7966 }
7967
7968 if (CalleeID.Kind == ValID::t_GlobalName &&
7969 isOldDbgFormatIntrinsic(Name: CalleeID.StrVal)) {
7970 if (SeenNewDbgInfoFormat) {
7971 CI->deleteValue();
7972 return error(L: CallLoc, Msg: "llvm.dbg intrinsic should not appear in a module "
7973 "using non-intrinsic debug info");
7974 }
7975 if (!SeenOldDbgInfoFormat)
7976 M->setNewDbgInfoFormatFlag(false);
7977 SeenOldDbgInfoFormat = true;
7978 }
7979 CI->setAttributes(PAL);
7980 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7981 Inst = CI;
7982 return false;
7983}
7984
7985//===----------------------------------------------------------------------===//
7986// Memory Instructions.
7987//===----------------------------------------------------------------------===//
7988
7989/// parseAlloc
7990/// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7991/// (',' 'align' i32)? (',', 'addrspace(n))?
7992int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7993 Value *Size = nullptr;
7994 LocTy SizeLoc, TyLoc, ASLoc;
7995 MaybeAlign Alignment;
7996 unsigned AddrSpace = 0;
7997 Type *Ty = nullptr;
7998
7999 bool IsInAlloca = EatIfPresent(T: lltok::kw_inalloca);
8000 bool IsSwiftError = EatIfPresent(T: lltok::kw_swifterror);
8001
8002 if (parseType(Result&: Ty, Loc&: TyLoc))
8003 return true;
8004
8005 if (Ty->isFunctionTy() || !PointerType::isValidElementType(ElemTy: Ty))
8006 return error(L: TyLoc, Msg: "invalid type for alloca");
8007
8008 bool AteExtraComma = false;
8009 if (EatIfPresent(T: lltok::comma)) {
8010 if (Lex.getKind() == lltok::kw_align) {
8011 if (parseOptionalAlignment(Alignment))
8012 return true;
8013 if (parseOptionalCommaAddrSpace(AddrSpace, Loc&: ASLoc, AteExtraComma))
8014 return true;
8015 } else if (Lex.getKind() == lltok::kw_addrspace) {
8016 ASLoc = Lex.getLoc();
8017 if (parseOptionalAddrSpace(AddrSpace))
8018 return true;
8019 } else if (Lex.getKind() == lltok::MetadataVar) {
8020 AteExtraComma = true;
8021 } else {
8022 if (parseTypeAndValue(V&: Size, Loc&: SizeLoc, PFS))
8023 return true;
8024 if (EatIfPresent(T: lltok::comma)) {
8025 if (Lex.getKind() == lltok::kw_align) {
8026 if (parseOptionalAlignment(Alignment))
8027 return true;
8028 if (parseOptionalCommaAddrSpace(AddrSpace, Loc&: ASLoc, AteExtraComma))
8029 return true;
8030 } else if (Lex.getKind() == lltok::kw_addrspace) {
8031 ASLoc = Lex.getLoc();
8032 if (parseOptionalAddrSpace(AddrSpace))
8033 return true;
8034 } else if (Lex.getKind() == lltok::MetadataVar) {
8035 AteExtraComma = true;
8036 }
8037 }
8038 }
8039 }
8040
8041 if (Size && !Size->getType()->isIntegerTy())
8042 return error(L: SizeLoc, Msg: "element count must have integer type");
8043
8044 SmallPtrSet<Type *, 4> Visited;
8045 if (!Alignment && !Ty->isSized(Visited: &Visited))
8046 return error(L: TyLoc, Msg: "Cannot allocate unsized type");
8047 if (!Alignment)
8048 Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
8049 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
8050 AI->setUsedWithInAlloca(IsInAlloca);
8051 AI->setSwiftError(IsSwiftError);
8052 Inst = AI;
8053 return AteExtraComma ? InstExtraComma : InstNormal;
8054}
8055
8056/// parseLoad
8057/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
8058/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
8059/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
8060int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
8061 Value *Val; LocTy Loc;
8062 MaybeAlign Alignment;
8063 bool AteExtraComma = false;
8064 bool isAtomic = false;
8065 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8066 SyncScope::ID SSID = SyncScope::System;
8067
8068 if (Lex.getKind() == lltok::kw_atomic) {
8069 isAtomic = true;
8070 Lex.Lex();
8071 }
8072
8073 bool isVolatile = false;
8074 if (Lex.getKind() == lltok::kw_volatile) {
8075 isVolatile = true;
8076 Lex.Lex();
8077 }
8078
8079 Type *Ty;
8080 LocTy ExplicitTypeLoc = Lex.getLoc();
8081 if (parseType(Result&: Ty) ||
8082 parseToken(T: lltok::comma, ErrMsg: "expected comma after load's type") ||
8083 parseTypeAndValue(V&: Val, Loc, PFS) ||
8084 parseScopeAndOrdering(IsAtomic: isAtomic, SSID, Ordering) ||
8085 parseOptionalCommaAlign(Alignment, AteExtraComma))
8086 return true;
8087
8088 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
8089 return error(L: Loc, Msg: "load operand must be a pointer to a first class type");
8090 if (isAtomic && !Alignment)
8091 return error(L: Loc, Msg: "atomic load must have explicit non-zero alignment");
8092 if (Ordering == AtomicOrdering::Release ||
8093 Ordering == AtomicOrdering::AcquireRelease)
8094 return error(L: Loc, Msg: "atomic load cannot use Release ordering");
8095
8096 SmallPtrSet<Type *, 4> Visited;
8097 if (!Alignment && !Ty->isSized(Visited: &Visited))
8098 return error(L: ExplicitTypeLoc, Msg: "loading unsized types is not allowed");
8099 if (!Alignment)
8100 Alignment = M->getDataLayout().getABITypeAlign(Ty);
8101 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
8102 return AteExtraComma ? InstExtraComma : InstNormal;
8103}
8104
8105/// parseStore
8106
8107/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
8108/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
8109/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
8110int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
8111 Value *Val, *Ptr; LocTy Loc, PtrLoc;
8112 MaybeAlign Alignment;
8113 bool AteExtraComma = false;
8114 bool isAtomic = false;
8115 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8116 SyncScope::ID SSID = SyncScope::System;
8117
8118 if (Lex.getKind() == lltok::kw_atomic) {
8119 isAtomic = true;
8120 Lex.Lex();
8121 }
8122
8123 bool isVolatile = false;
8124 if (Lex.getKind() == lltok::kw_volatile) {
8125 isVolatile = true;
8126 Lex.Lex();
8127 }
8128
8129 if (parseTypeAndValue(V&: Val, Loc, PFS) ||
8130 parseToken(T: lltok::comma, ErrMsg: "expected ',' after store operand") ||
8131 parseTypeAndValue(V&: Ptr, Loc&: PtrLoc, PFS) ||
8132 parseScopeAndOrdering(IsAtomic: isAtomic, SSID, Ordering) ||
8133 parseOptionalCommaAlign(Alignment, AteExtraComma))
8134 return true;
8135
8136 if (!Ptr->getType()->isPointerTy())
8137 return error(L: PtrLoc, Msg: "store operand must be a pointer");
8138 if (!Val->getType()->isFirstClassType())
8139 return error(L: Loc, Msg: "store operand must be a first class value");
8140 if (isAtomic && !Alignment)
8141 return error(L: Loc, Msg: "atomic store must have explicit non-zero alignment");
8142 if (Ordering == AtomicOrdering::Acquire ||
8143 Ordering == AtomicOrdering::AcquireRelease)
8144 return error(L: Loc, Msg: "atomic store cannot use Acquire ordering");
8145 SmallPtrSet<Type *, 4> Visited;
8146 if (!Alignment && !Val->getType()->isSized(Visited: &Visited))
8147 return error(L: Loc, Msg: "storing unsized types is not allowed");
8148 if (!Alignment)
8149 Alignment = M->getDataLayout().getABITypeAlign(Ty: Val->getType());
8150
8151 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
8152 return AteExtraComma ? InstExtraComma : InstNormal;
8153}
8154
8155/// parseCmpXchg
8156/// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
8157/// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
8158/// 'Align'?
8159int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
8160 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
8161 bool AteExtraComma = false;
8162 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
8163 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
8164 SyncScope::ID SSID = SyncScope::System;
8165 bool isVolatile = false;
8166 bool isWeak = false;
8167 MaybeAlign Alignment;
8168
8169 if (EatIfPresent(T: lltok::kw_weak))
8170 isWeak = true;
8171
8172 if (EatIfPresent(T: lltok::kw_volatile))
8173 isVolatile = true;
8174
8175 if (parseTypeAndValue(V&: Ptr, Loc&: PtrLoc, PFS) ||
8176 parseToken(T: lltok::comma, ErrMsg: "expected ',' after cmpxchg address") ||
8177 parseTypeAndValue(V&: Cmp, Loc&: CmpLoc, PFS) ||
8178 parseToken(T: lltok::comma, ErrMsg: "expected ',' after cmpxchg cmp operand") ||
8179 parseTypeAndValue(V&: New, Loc&: NewLoc, PFS) ||
8180 parseScopeAndOrdering(IsAtomic: true /*Always atomic*/, SSID, Ordering&: SuccessOrdering) ||
8181 parseOrdering(Ordering&: FailureOrdering) ||
8182 parseOptionalCommaAlign(Alignment, AteExtraComma))
8183 return true;
8184
8185 if (!AtomicCmpXchgInst::isValidSuccessOrdering(Ordering: SuccessOrdering))
8186 return tokError(Msg: "invalid cmpxchg success ordering");
8187 if (!AtomicCmpXchgInst::isValidFailureOrdering(Ordering: FailureOrdering))
8188 return tokError(Msg: "invalid cmpxchg failure ordering");
8189 if (!Ptr->getType()->isPointerTy())
8190 return error(L: PtrLoc, Msg: "cmpxchg operand must be a pointer");
8191 if (Cmp->getType() != New->getType())
8192 return error(L: NewLoc, Msg: "compare value and new value type do not match");
8193 if (!New->getType()->isFirstClassType())
8194 return error(L: NewLoc, Msg: "cmpxchg operand must be a first class value");
8195
8196 const Align DefaultAlignment(
8197 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
8198 Ty: Cmp->getType()));
8199
8200 AtomicCmpXchgInst *CXI =
8201 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(u: DefaultAlignment),
8202 SuccessOrdering, FailureOrdering, SSID);
8203 CXI->setVolatile(isVolatile);
8204 CXI->setWeak(isWeak);
8205
8206 Inst = CXI;
8207 return AteExtraComma ? InstExtraComma : InstNormal;
8208}
8209
8210/// parseAtomicRMW
8211/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
8212/// 'singlethread'? AtomicOrdering
8213int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
8214 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
8215 bool AteExtraComma = false;
8216 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8217 SyncScope::ID SSID = SyncScope::System;
8218 bool isVolatile = false;
8219 bool IsFP = false;
8220 AtomicRMWInst::BinOp Operation;
8221 MaybeAlign Alignment;
8222
8223 if (EatIfPresent(T: lltok::kw_volatile))
8224 isVolatile = true;
8225
8226 switch (Lex.getKind()) {
8227 default:
8228 return tokError(Msg: "expected binary operation in atomicrmw");
8229 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
8230 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
8231 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
8232 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
8233 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
8234 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
8235 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
8236 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
8237 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
8238 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
8239 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
8240 case lltok::kw_uinc_wrap:
8241 Operation = AtomicRMWInst::UIncWrap;
8242 break;
8243 case lltok::kw_udec_wrap:
8244 Operation = AtomicRMWInst::UDecWrap;
8245 break;
8246 case lltok::kw_fadd:
8247 Operation = AtomicRMWInst::FAdd;
8248 IsFP = true;
8249 break;
8250 case lltok::kw_fsub:
8251 Operation = AtomicRMWInst::FSub;
8252 IsFP = true;
8253 break;
8254 case lltok::kw_fmax:
8255 Operation = AtomicRMWInst::FMax;
8256 IsFP = true;
8257 break;
8258 case lltok::kw_fmin:
8259 Operation = AtomicRMWInst::FMin;
8260 IsFP = true;
8261 break;
8262 }
8263 Lex.Lex(); // Eat the operation.
8264
8265 if (parseTypeAndValue(V&: Ptr, Loc&: PtrLoc, PFS) ||
8266 parseToken(T: lltok::comma, ErrMsg: "expected ',' after atomicrmw address") ||
8267 parseTypeAndValue(V&: Val, Loc&: ValLoc, PFS) ||
8268 parseScopeAndOrdering(IsAtomic: true /*Always atomic*/, SSID, Ordering) ||
8269 parseOptionalCommaAlign(Alignment, AteExtraComma))
8270 return true;
8271
8272 if (Ordering == AtomicOrdering::Unordered)
8273 return tokError(Msg: "atomicrmw cannot be unordered");
8274 if (!Ptr->getType()->isPointerTy())
8275 return error(L: PtrLoc, Msg: "atomicrmw operand must be a pointer");
8276 if (Val->getType()->isScalableTy())
8277 return error(L: ValLoc, Msg: "atomicrmw operand may not be scalable");
8278
8279 if (Operation == AtomicRMWInst::Xchg) {
8280 if (!Val->getType()->isIntegerTy() &&
8281 !Val->getType()->isFloatingPointTy() &&
8282 !Val->getType()->isPointerTy()) {
8283 return error(
8284 L: ValLoc,
8285 Msg: "atomicrmw " + AtomicRMWInst::getOperationName(Op: Operation) +
8286 " operand must be an integer, floating point, or pointer type");
8287 }
8288 } else if (IsFP) {
8289 if (!Val->getType()->isFPOrFPVectorTy()) {
8290 return error(L: ValLoc, Msg: "atomicrmw " +
8291 AtomicRMWInst::getOperationName(Op: Operation) +
8292 " operand must be a floating point type");
8293 }
8294 } else {
8295 if (!Val->getType()->isIntegerTy()) {
8296 return error(L: ValLoc, Msg: "atomicrmw " +
8297 AtomicRMWInst::getOperationName(Op: Operation) +
8298 " operand must be an integer");
8299 }
8300 }
8301
8302 unsigned Size =
8303 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
8304 Ty: Val->getType());
8305 if (Size < 8 || (Size & (Size - 1)))
8306 return error(L: ValLoc, Msg: "atomicrmw operand must be power-of-two byte-sized"
8307 " integer");
8308 const Align DefaultAlignment(
8309 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
8310 Ty: Val->getType()));
8311 AtomicRMWInst *RMWI =
8312 new AtomicRMWInst(Operation, Ptr, Val,
8313 Alignment.value_or(u: DefaultAlignment), Ordering, SSID);
8314 RMWI->setVolatile(isVolatile);
8315 Inst = RMWI;
8316 return AteExtraComma ? InstExtraComma : InstNormal;
8317}
8318
8319/// parseFence
8320/// ::= 'fence' 'singlethread'? AtomicOrdering
8321int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
8322 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8323 SyncScope::ID SSID = SyncScope::System;
8324 if (parseScopeAndOrdering(IsAtomic: true /*Always atomic*/, SSID, Ordering))
8325 return true;
8326
8327 if (Ordering == AtomicOrdering::Unordered)
8328 return tokError(Msg: "fence cannot be unordered");
8329 if (Ordering == AtomicOrdering::Monotonic)
8330 return tokError(Msg: "fence cannot be monotonic");
8331
8332 Inst = new FenceInst(Context, Ordering, SSID);
8333 return InstNormal;
8334}
8335
8336/// parseGetElementPtr
8337/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
8338int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
8339 Value *Ptr = nullptr;
8340 Value *Val = nullptr;
8341 LocTy Loc, EltLoc;
8342
8343 bool InBounds = EatIfPresent(T: lltok::kw_inbounds);
8344
8345 Type *Ty = nullptr;
8346 if (parseType(Result&: Ty) ||
8347 parseToken(T: lltok::comma, ErrMsg: "expected comma after getelementptr's type") ||
8348 parseTypeAndValue(V&: Ptr, Loc, PFS))
8349 return true;
8350
8351 Type *BaseType = Ptr->getType();
8352 PointerType *BasePointerType = dyn_cast<PointerType>(Val: BaseType->getScalarType());
8353 if (!BasePointerType)
8354 return error(L: Loc, Msg: "base of getelementptr must be a pointer");
8355
8356 SmallVector<Value*, 16> Indices;
8357 bool AteExtraComma = false;
8358 // GEP returns a vector of pointers if at least one of parameters is a vector.
8359 // All vector parameters should have the same vector width.
8360 ElementCount GEPWidth = BaseType->isVectorTy()
8361 ? cast<VectorType>(Val: BaseType)->getElementCount()
8362 : ElementCount::getFixed(MinVal: 0);
8363
8364 while (EatIfPresent(T: lltok::comma)) {
8365 if (Lex.getKind() == lltok::MetadataVar) {
8366 AteExtraComma = true;
8367 break;
8368 }
8369 if (parseTypeAndValue(V&: Val, Loc&: EltLoc, PFS))
8370 return true;
8371 if (!Val->getType()->isIntOrIntVectorTy())
8372 return error(L: EltLoc, Msg: "getelementptr index must be an integer");
8373
8374 if (auto *ValVTy = dyn_cast<VectorType>(Val: Val->getType())) {
8375 ElementCount ValNumEl = ValVTy->getElementCount();
8376 if (GEPWidth != ElementCount::getFixed(MinVal: 0) && GEPWidth != ValNumEl)
8377 return error(
8378 L: EltLoc,
8379 Msg: "getelementptr vector index has a wrong number of elements");
8380 GEPWidth = ValNumEl;
8381 }
8382 Indices.push_back(Elt: Val);
8383 }
8384
8385 SmallPtrSet<Type*, 4> Visited;
8386 if (!Indices.empty() && !Ty->isSized(Visited: &Visited))
8387 return error(L: Loc, Msg: "base element of getelementptr must be sized");
8388
8389 auto *STy = dyn_cast<StructType>(Val: Ty);
8390 if (STy && STy->containsScalableVectorType())
8391 return error(L: Loc, Msg: "getelementptr cannot target structure that contains "
8392 "scalable vector type");
8393
8394 if (!GetElementPtrInst::getIndexedType(Ty, IdxList: Indices))
8395 return error(L: Loc, Msg: "invalid getelementptr indices");
8396 Inst = GetElementPtrInst::Create(PointeeType: Ty, Ptr, IdxList: Indices);
8397 if (InBounds)
8398 cast<GetElementPtrInst>(Val: Inst)->setIsInBounds(true);
8399 return AteExtraComma ? InstExtraComma : InstNormal;
8400}
8401
8402/// parseExtractValue
8403/// ::= 'extractvalue' TypeAndValue (',' uint32)+
8404int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8405 Value *Val; LocTy Loc;
8406 SmallVector<unsigned, 4> Indices;
8407 bool AteExtraComma;
8408 if (parseTypeAndValue(V&: Val, Loc, PFS) ||
8409 parseIndexList(Indices, AteExtraComma))
8410 return true;
8411
8412 if (!Val->getType()->isAggregateType())
8413 return error(L: Loc, Msg: "extractvalue operand must be aggregate type");
8414
8415 if (!ExtractValueInst::getIndexedType(Agg: Val->getType(), Idxs: Indices))
8416 return error(L: Loc, Msg: "invalid indices for extractvalue");
8417 Inst = ExtractValueInst::Create(Agg: Val, Idxs: Indices);
8418 return AteExtraComma ? InstExtraComma : InstNormal;
8419}
8420
8421/// parseInsertValue
8422/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
8423int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8424 Value *Val0, *Val1; LocTy Loc0, Loc1;
8425 SmallVector<unsigned, 4> Indices;
8426 bool AteExtraComma;
8427 if (parseTypeAndValue(V&: Val0, Loc&: Loc0, PFS) ||
8428 parseToken(T: lltok::comma, ErrMsg: "expected comma after insertvalue operand") ||
8429 parseTypeAndValue(V&: Val1, Loc&: Loc1, PFS) ||
8430 parseIndexList(Indices, AteExtraComma))
8431 return true;
8432
8433 if (!Val0->getType()->isAggregateType())
8434 return error(L: Loc0, Msg: "insertvalue operand must be aggregate type");
8435
8436 Type *IndexedType = ExtractValueInst::getIndexedType(Agg: Val0->getType(), Idxs: Indices);
8437 if (!IndexedType)
8438 return error(L: Loc0, Msg: "invalid indices for insertvalue");
8439 if (IndexedType != Val1->getType())
8440 return error(L: Loc1, Msg: "insertvalue operand and field disagree in type: '" +
8441 getTypeString(T: Val1->getType()) + "' instead of '" +
8442 getTypeString(T: IndexedType) + "'");
8443 Inst = InsertValueInst::Create(Agg: Val0, Val: Val1, Idxs: Indices);
8444 return AteExtraComma ? InstExtraComma : InstNormal;
8445}
8446
8447//===----------------------------------------------------------------------===//
8448// Embedded metadata.
8449//===----------------------------------------------------------------------===//
8450
8451/// parseMDNodeVector
8452/// ::= { Element (',' Element)* }
8453/// Element
8454/// ::= 'null' | Metadata
8455bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8456 if (parseToken(T: lltok::lbrace, ErrMsg: "expected '{' here"))
8457 return true;
8458
8459 // Check for an empty list.
8460 if (EatIfPresent(T: lltok::rbrace))
8461 return false;
8462
8463 do {
8464 if (EatIfPresent(T: lltok::kw_null)) {
8465 Elts.push_back(Elt: nullptr);
8466 continue;
8467 }
8468
8469 Metadata *MD;
8470 if (parseMetadata(MD, PFS: nullptr))
8471 return true;
8472 Elts.push_back(Elt: MD);
8473 } while (EatIfPresent(T: lltok::comma));
8474
8475 return parseToken(T: lltok::rbrace, ErrMsg: "expected end of metadata node");
8476}
8477
8478//===----------------------------------------------------------------------===//
8479// Use-list order directives.
8480//===----------------------------------------------------------------------===//
8481bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8482 SMLoc Loc) {
8483 if (V->use_empty())
8484 return error(L: Loc, Msg: "value has no uses");
8485
8486 unsigned NumUses = 0;
8487 SmallDenseMap<const Use *, unsigned, 16> Order;
8488 for (const Use &U : V->uses()) {
8489 if (++NumUses > Indexes.size())
8490 break;
8491 Order[&U] = Indexes[NumUses - 1];
8492 }
8493 if (NumUses < 2)
8494 return error(L: Loc, Msg: "value only has one use");
8495 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8496 return error(L: Loc,
8497 Msg: "wrong number of indexes, expected " + Twine(V->getNumUses()));
8498
8499 V->sortUseList(Cmp: [&](const Use &L, const Use &R) {
8500 return Order.lookup(Val: &L) < Order.lookup(Val: &R);
8501 });
8502 return false;
8503}
8504
8505/// parseUseListOrderIndexes
8506/// ::= '{' uint32 (',' uint32)+ '}'
8507bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8508 SMLoc Loc = Lex.getLoc();
8509 if (parseToken(T: lltok::lbrace, ErrMsg: "expected '{' here"))
8510 return true;
8511 if (Lex.getKind() == lltok::rbrace)
8512 return Lex.Error(Msg: "expected non-empty list of uselistorder indexes");
8513
8514 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
8515 // indexes should be distinct numbers in the range [0, size-1], and should
8516 // not be in order.
8517 unsigned Offset = 0;
8518 unsigned Max = 0;
8519 bool IsOrdered = true;
8520 assert(Indexes.empty() && "Expected empty order vector");
8521 do {
8522 unsigned Index;
8523 if (parseUInt32(Val&: Index))
8524 return true;
8525
8526 // Update consistency checks.
8527 Offset += Index - Indexes.size();
8528 Max = std::max(a: Max, b: Index);
8529 IsOrdered &= Index == Indexes.size();
8530
8531 Indexes.push_back(Elt: Index);
8532 } while (EatIfPresent(T: lltok::comma));
8533
8534 if (parseToken(T: lltok::rbrace, ErrMsg: "expected '}' here"))
8535 return true;
8536
8537 if (Indexes.size() < 2)
8538 return error(L: Loc, Msg: "expected >= 2 uselistorder indexes");
8539 if (Offset != 0 || Max >= Indexes.size())
8540 return error(L: Loc,
8541 Msg: "expected distinct uselistorder indexes in range [0, size)");
8542 if (IsOrdered)
8543 return error(L: Loc, Msg: "expected uselistorder indexes to change the order");
8544
8545 return false;
8546}
8547
8548/// parseUseListOrder
8549/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8550bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8551 SMLoc Loc = Lex.getLoc();
8552 if (parseToken(T: lltok::kw_uselistorder, ErrMsg: "expected uselistorder directive"))
8553 return true;
8554
8555 Value *V;
8556 SmallVector<unsigned, 16> Indexes;
8557 if (parseTypeAndValue(V, PFS) ||
8558 parseToken(T: lltok::comma, ErrMsg: "expected comma in uselistorder directive") ||
8559 parseUseListOrderIndexes(Indexes))
8560 return true;
8561
8562 return sortUseListOrder(V, Indexes, Loc);
8563}
8564
8565/// parseUseListOrderBB
8566/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8567bool LLParser::parseUseListOrderBB() {
8568 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8569 SMLoc Loc = Lex.getLoc();
8570 Lex.Lex();
8571
8572 ValID Fn, Label;
8573 SmallVector<unsigned, 16> Indexes;
8574 if (parseValID(ID&: Fn, /*PFS=*/nullptr) ||
8575 parseToken(T: lltok::comma, ErrMsg: "expected comma in uselistorder_bb directive") ||
8576 parseValID(ID&: Label, /*PFS=*/nullptr) ||
8577 parseToken(T: lltok::comma, ErrMsg: "expected comma in uselistorder_bb directive") ||
8578 parseUseListOrderIndexes(Indexes))
8579 return true;
8580
8581 // Check the function.
8582 GlobalValue *GV;
8583 if (Fn.Kind == ValID::t_GlobalName)
8584 GV = M->getNamedValue(Name: Fn.StrVal);
8585 else if (Fn.Kind == ValID::t_GlobalID)
8586 GV = NumberedVals.get(ID: Fn.UIntVal);
8587 else
8588 return error(L: Fn.Loc, Msg: "expected function name in uselistorder_bb");
8589 if (!GV)
8590 return error(L: Fn.Loc,
8591 Msg: "invalid function forward reference in uselistorder_bb");
8592 auto *F = dyn_cast<Function>(Val: GV);
8593 if (!F)
8594 return error(L: Fn.Loc, Msg: "expected function name in uselistorder_bb");
8595 if (F->isDeclaration())
8596 return error(L: Fn.Loc, Msg: "invalid declaration in uselistorder_bb");
8597
8598 // Check the basic block.
8599 if (Label.Kind == ValID::t_LocalID)
8600 return error(L: Label.Loc, Msg: "invalid numeric label in uselistorder_bb");
8601 if (Label.Kind != ValID::t_LocalName)
8602 return error(L: Label.Loc, Msg: "expected basic block name in uselistorder_bb");
8603 Value *V = F->getValueSymbolTable()->lookup(Name: Label.StrVal);
8604 if (!V)
8605 return error(L: Label.Loc, Msg: "invalid basic block in uselistorder_bb");
8606 if (!isa<BasicBlock>(Val: V))
8607 return error(L: Label.Loc, Msg: "expected basic block in uselistorder_bb");
8608
8609 return sortUseListOrder(V, Indexes, Loc);
8610}
8611
8612/// ModuleEntry
8613/// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8614/// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8615bool LLParser::parseModuleEntry(unsigned ID) {
8616 assert(Lex.getKind() == lltok::kw_module);
8617 Lex.Lex();
8618
8619 std::string Path;
8620 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8621 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8622 parseToken(T: lltok::kw_path, ErrMsg: "expected 'path' here") ||
8623 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8624 parseStringConstant(Result&: Path) ||
8625 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8626 parseToken(T: lltok::kw_hash, ErrMsg: "expected 'hash' here") ||
8627 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8628 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
8629 return true;
8630
8631 ModuleHash Hash;
8632 if (parseUInt32(Val&: Hash[0]) || parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8633 parseUInt32(Val&: Hash[1]) || parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8634 parseUInt32(Val&: Hash[2]) || parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8635 parseUInt32(Val&: Hash[3]) || parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8636 parseUInt32(Val&: Hash[4]))
8637 return true;
8638
8639 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here") ||
8640 parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8641 return true;
8642
8643 auto ModuleEntry = Index->addModule(ModPath: Path, Hash);
8644 ModuleIdMap[ID] = ModuleEntry->first();
8645
8646 return false;
8647}
8648
8649/// TypeIdEntry
8650/// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8651bool LLParser::parseTypeIdEntry(unsigned ID) {
8652 assert(Lex.getKind() == lltok::kw_typeid);
8653 Lex.Lex();
8654
8655 std::string Name;
8656 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8657 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8658 parseToken(T: lltok::kw_name, ErrMsg: "expected 'name' here") ||
8659 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8660 parseStringConstant(Result&: Name))
8661 return true;
8662
8663 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(TypeId: Name);
8664 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8665 parseTypeIdSummary(TIS) || parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8666 return true;
8667
8668 // Check if this ID was forward referenced, and if so, update the
8669 // corresponding GUIDs.
8670 auto FwdRefTIDs = ForwardRefTypeIds.find(x: ID);
8671 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8672 for (auto TIDRef : FwdRefTIDs->second) {
8673 assert(!*TIDRef.first &&
8674 "Forward referenced type id GUID expected to be 0");
8675 *TIDRef.first = GlobalValue::getGUID(GlobalName: Name);
8676 }
8677 ForwardRefTypeIds.erase(position: FwdRefTIDs);
8678 }
8679
8680 return false;
8681}
8682
8683/// TypeIdSummary
8684/// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8685bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8686 if (parseToken(T: lltok::kw_summary, ErrMsg: "expected 'summary' here") ||
8687 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8688 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8689 parseTypeTestResolution(TTRes&: TIS.TTRes))
8690 return true;
8691
8692 if (EatIfPresent(T: lltok::comma)) {
8693 // Expect optional wpdResolutions field
8694 if (parseOptionalWpdResolutions(WPDResMap&: TIS.WPDRes))
8695 return true;
8696 }
8697
8698 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8699 return true;
8700
8701 return false;
8702}
8703
8704static ValueInfo EmptyVI =
8705 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8706
8707/// TypeIdCompatibleVtableEntry
8708/// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8709/// TypeIdCompatibleVtableInfo
8710/// ')'
8711bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8712 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8713 Lex.Lex();
8714
8715 std::string Name;
8716 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8717 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8718 parseToken(T: lltok::kw_name, ErrMsg: "expected 'name' here") ||
8719 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8720 parseStringConstant(Result&: Name))
8721 return true;
8722
8723 TypeIdCompatibleVtableInfo &TI =
8724 Index->getOrInsertTypeIdCompatibleVtableSummary(TypeId: Name);
8725 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8726 parseToken(T: lltok::kw_summary, ErrMsg: "expected 'summary' here") ||
8727 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8728 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
8729 return true;
8730
8731 IdToIndexMapType IdToIndexMap;
8732 // parse each call edge
8733 do {
8734 uint64_t Offset;
8735 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8736 parseToken(T: lltok::kw_offset, ErrMsg: "expected 'offset' here") ||
8737 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") || parseUInt64(Val&: Offset) ||
8738 parseToken(T: lltok::comma, ErrMsg: "expected ',' here"))
8739 return true;
8740
8741 LocTy Loc = Lex.getLoc();
8742 unsigned GVId;
8743 ValueInfo VI;
8744 if (parseGVReference(VI, GVId))
8745 return true;
8746
8747 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8748 // forward reference. We will save the location of the ValueInfo needing an
8749 // update, but can only do so once the std::vector is finalized.
8750 if (VI == EmptyVI)
8751 IdToIndexMap[GVId].push_back(x: std::make_pair(x: TI.size(), y&: Loc));
8752 TI.push_back(x: {Offset, VI});
8753
8754 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in call"))
8755 return true;
8756 } while (EatIfPresent(T: lltok::comma));
8757
8758 // Now that the TI vector is finalized, it is safe to save the locations
8759 // of any forward GV references that need updating later.
8760 for (auto I : IdToIndexMap) {
8761 auto &Infos = ForwardRefValueInfos[I.first];
8762 for (auto P : I.second) {
8763 assert(TI[P.first].VTableVI == EmptyVI &&
8764 "Forward referenced ValueInfo expected to be empty");
8765 Infos.emplace_back(args: &TI[P.first].VTableVI, args&: P.second);
8766 }
8767 }
8768
8769 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here") ||
8770 parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8771 return true;
8772
8773 // Check if this ID was forward referenced, and if so, update the
8774 // corresponding GUIDs.
8775 auto FwdRefTIDs = ForwardRefTypeIds.find(x: ID);
8776 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8777 for (auto TIDRef : FwdRefTIDs->second) {
8778 assert(!*TIDRef.first &&
8779 "Forward referenced type id GUID expected to be 0");
8780 *TIDRef.first = GlobalValue::getGUID(GlobalName: Name);
8781 }
8782 ForwardRefTypeIds.erase(position: FwdRefTIDs);
8783 }
8784
8785 return false;
8786}
8787
8788/// TypeTestResolution
8789/// ::= 'typeTestRes' ':' '(' 'kind' ':'
8790/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8791/// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8792/// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8793/// [',' 'inlinesBits' ':' UInt64]? ')'
8794bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8795 if (parseToken(T: lltok::kw_typeTestRes, ErrMsg: "expected 'typeTestRes' here") ||
8796 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8797 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8798 parseToken(T: lltok::kw_kind, ErrMsg: "expected 'kind' here") ||
8799 parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
8800 return true;
8801
8802 switch (Lex.getKind()) {
8803 case lltok::kw_unknown:
8804 TTRes.TheKind = TypeTestResolution::Unknown;
8805 break;
8806 case lltok::kw_unsat:
8807 TTRes.TheKind = TypeTestResolution::Unsat;
8808 break;
8809 case lltok::kw_byteArray:
8810 TTRes.TheKind = TypeTestResolution::ByteArray;
8811 break;
8812 case lltok::kw_inline:
8813 TTRes.TheKind = TypeTestResolution::Inline;
8814 break;
8815 case lltok::kw_single:
8816 TTRes.TheKind = TypeTestResolution::Single;
8817 break;
8818 case lltok::kw_allOnes:
8819 TTRes.TheKind = TypeTestResolution::AllOnes;
8820 break;
8821 default:
8822 return error(L: Lex.getLoc(), Msg: "unexpected TypeTestResolution kind");
8823 }
8824 Lex.Lex();
8825
8826 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8827 parseToken(T: lltok::kw_sizeM1BitWidth, ErrMsg: "expected 'sizeM1BitWidth' here") ||
8828 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8829 parseUInt32(Val&: TTRes.SizeM1BitWidth))
8830 return true;
8831
8832 // parse optional fields
8833 while (EatIfPresent(T: lltok::comma)) {
8834 switch (Lex.getKind()) {
8835 case lltok::kw_alignLog2:
8836 Lex.Lex();
8837 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
8838 parseUInt64(Val&: TTRes.AlignLog2))
8839 return true;
8840 break;
8841 case lltok::kw_sizeM1:
8842 Lex.Lex();
8843 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseUInt64(Val&: TTRes.SizeM1))
8844 return true;
8845 break;
8846 case lltok::kw_bitMask: {
8847 unsigned Val;
8848 Lex.Lex();
8849 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseUInt32(Val))
8850 return true;
8851 assert(Val <= 0xff);
8852 TTRes.BitMask = (uint8_t)Val;
8853 break;
8854 }
8855 case lltok::kw_inlineBits:
8856 Lex.Lex();
8857 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
8858 parseUInt64(Val&: TTRes.InlineBits))
8859 return true;
8860 break;
8861 default:
8862 return error(L: Lex.getLoc(), Msg: "expected optional TypeTestResolution field");
8863 }
8864 }
8865
8866 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8867 return true;
8868
8869 return false;
8870}
8871
8872/// OptionalWpdResolutions
8873/// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8874/// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8875bool LLParser::parseOptionalWpdResolutions(
8876 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8877 if (parseToken(T: lltok::kw_wpdResolutions, ErrMsg: "expected 'wpdResolutions' here") ||
8878 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8879 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
8880 return true;
8881
8882 do {
8883 uint64_t Offset;
8884 WholeProgramDevirtResolution WPDRes;
8885 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8886 parseToken(T: lltok::kw_offset, ErrMsg: "expected 'offset' here") ||
8887 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") || parseUInt64(Val&: Offset) ||
8888 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") || parseWpdRes(WPDRes) ||
8889 parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8890 return true;
8891 WPDResMap[Offset] = WPDRes;
8892 } while (EatIfPresent(T: lltok::comma));
8893
8894 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8895 return true;
8896
8897 return false;
8898}
8899
8900/// WpdRes
8901/// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8902/// [',' OptionalResByArg]? ')'
8903/// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8904/// ',' 'singleImplName' ':' STRINGCONSTANT ','
8905/// [',' OptionalResByArg]? ')'
8906/// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8907/// [',' OptionalResByArg]? ')'
8908bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8909 if (parseToken(T: lltok::kw_wpdRes, ErrMsg: "expected 'wpdRes' here") ||
8910 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8911 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8912 parseToken(T: lltok::kw_kind, ErrMsg: "expected 'kind' here") ||
8913 parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
8914 return true;
8915
8916 switch (Lex.getKind()) {
8917 case lltok::kw_indir:
8918 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8919 break;
8920 case lltok::kw_singleImpl:
8921 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8922 break;
8923 case lltok::kw_branchFunnel:
8924 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8925 break;
8926 default:
8927 return error(L: Lex.getLoc(), Msg: "unexpected WholeProgramDevirtResolution kind");
8928 }
8929 Lex.Lex();
8930
8931 // parse optional fields
8932 while (EatIfPresent(T: lltok::comma)) {
8933 switch (Lex.getKind()) {
8934 case lltok::kw_singleImplName:
8935 Lex.Lex();
8936 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8937 parseStringConstant(Result&: WPDRes.SingleImplName))
8938 return true;
8939 break;
8940 case lltok::kw_resByArg:
8941 if (parseOptionalResByArg(ResByArg&: WPDRes.ResByArg))
8942 return true;
8943 break;
8944 default:
8945 return error(L: Lex.getLoc(),
8946 Msg: "expected optional WholeProgramDevirtResolution field");
8947 }
8948 }
8949
8950 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
8951 return true;
8952
8953 return false;
8954}
8955
8956/// OptionalResByArg
8957/// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8958/// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8959/// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8960/// 'virtualConstProp' )
8961/// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8962/// [',' 'bit' ':' UInt32]? ')'
8963bool LLParser::parseOptionalResByArg(
8964 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8965 &ResByArg) {
8966 if (parseToken(T: lltok::kw_resByArg, ErrMsg: "expected 'resByArg' here") ||
8967 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8968 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
8969 return true;
8970
8971 do {
8972 std::vector<uint64_t> Args;
8973 if (parseArgs(Args) || parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
8974 parseToken(T: lltok::kw_byArg, ErrMsg: "expected 'byArg here") ||
8975 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
8976 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
8977 parseToken(T: lltok::kw_kind, ErrMsg: "expected 'kind' here") ||
8978 parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
8979 return true;
8980
8981 WholeProgramDevirtResolution::ByArg ByArg;
8982 switch (Lex.getKind()) {
8983 case lltok::kw_indir:
8984 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8985 break;
8986 case lltok::kw_uniformRetVal:
8987 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8988 break;
8989 case lltok::kw_uniqueRetVal:
8990 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8991 break;
8992 case lltok::kw_virtualConstProp:
8993 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8994 break;
8995 default:
8996 return error(L: Lex.getLoc(),
8997 Msg: "unexpected WholeProgramDevirtResolution::ByArg kind");
8998 }
8999 Lex.Lex();
9000
9001 // parse optional fields
9002 while (EatIfPresent(T: lltok::comma)) {
9003 switch (Lex.getKind()) {
9004 case lltok::kw_info:
9005 Lex.Lex();
9006 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9007 parseUInt64(Val&: ByArg.Info))
9008 return true;
9009 break;
9010 case lltok::kw_byte:
9011 Lex.Lex();
9012 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9013 parseUInt32(Val&: ByArg.Byte))
9014 return true;
9015 break;
9016 case lltok::kw_bit:
9017 Lex.Lex();
9018 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9019 parseUInt32(Val&: ByArg.Bit))
9020 return true;
9021 break;
9022 default:
9023 return error(L: Lex.getLoc(),
9024 Msg: "expected optional whole program devirt field");
9025 }
9026 }
9027
9028 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9029 return true;
9030
9031 ResByArg[Args] = ByArg;
9032 } while (EatIfPresent(T: lltok::comma));
9033
9034 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9035 return true;
9036
9037 return false;
9038}
9039
9040/// OptionalResByArg
9041/// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
9042bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
9043 if (parseToken(T: lltok::kw_args, ErrMsg: "expected 'args' here") ||
9044 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9045 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
9046 return true;
9047
9048 do {
9049 uint64_t Val;
9050 if (parseUInt64(Val))
9051 return true;
9052 Args.push_back(x: Val);
9053 } while (EatIfPresent(T: lltok::comma));
9054
9055 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9056 return true;
9057
9058 return false;
9059}
9060
9061static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
9062
9063static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
9064 bool ReadOnly = Fwd->isReadOnly();
9065 bool WriteOnly = Fwd->isWriteOnly();
9066 assert(!(ReadOnly && WriteOnly));
9067 *Fwd = Resolved;
9068 if (ReadOnly)
9069 Fwd->setReadOnly();
9070 if (WriteOnly)
9071 Fwd->setWriteOnly();
9072}
9073
9074/// Stores the given Name/GUID and associated summary into the Index.
9075/// Also updates any forward references to the associated entry ID.
9076bool LLParser::addGlobalValueToIndex(
9077 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
9078 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
9079 // First create the ValueInfo utilizing the Name or GUID.
9080 ValueInfo VI;
9081 if (GUID != 0) {
9082 assert(Name.empty());
9083 VI = Index->getOrInsertValueInfo(GUID);
9084 } else {
9085 assert(!Name.empty());
9086 if (M) {
9087 auto *GV = M->getNamedValue(Name);
9088 if (!GV)
9089 return error(L: Loc, Msg: "Reference to undefined global \"" + Name + "\"");
9090
9091 VI = Index->getOrInsertValueInfo(GV);
9092 } else {
9093 assert(
9094 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
9095 "Need a source_filename to compute GUID for local");
9096 GUID = GlobalValue::getGUID(
9097 GlobalName: GlobalValue::getGlobalIdentifier(Name, Linkage, FileName: SourceFileName));
9098 VI = Index->getOrInsertValueInfo(GUID, Name: Index->saveString(String: Name));
9099 }
9100 }
9101
9102 // Resolve forward references from calls/refs
9103 auto FwdRefVIs = ForwardRefValueInfos.find(x: ID);
9104 if (FwdRefVIs != ForwardRefValueInfos.end()) {
9105 for (auto VIRef : FwdRefVIs->second) {
9106 assert(VIRef.first->getRef() == FwdVIRef &&
9107 "Forward referenced ValueInfo expected to be empty");
9108 resolveFwdRef(Fwd: VIRef.first, Resolved&: VI);
9109 }
9110 ForwardRefValueInfos.erase(position: FwdRefVIs);
9111 }
9112
9113 // Resolve forward references from aliases
9114 auto FwdRefAliasees = ForwardRefAliasees.find(x: ID);
9115 if (FwdRefAliasees != ForwardRefAliasees.end()) {
9116 for (auto AliaseeRef : FwdRefAliasees->second) {
9117 assert(!AliaseeRef.first->hasAliasee() &&
9118 "Forward referencing alias already has aliasee");
9119 assert(Summary && "Aliasee must be a definition");
9120 AliaseeRef.first->setAliasee(AliaseeVI&: VI, Aliasee: Summary.get());
9121 }
9122 ForwardRefAliasees.erase(position: FwdRefAliasees);
9123 }
9124
9125 // Add the summary if one was provided.
9126 if (Summary)
9127 Index->addGlobalValueSummary(VI, Summary: std::move(Summary));
9128
9129 // Save the associated ValueInfo for use in later references by ID.
9130 if (ID == NumberedValueInfos.size())
9131 NumberedValueInfos.push_back(x: VI);
9132 else {
9133 // Handle non-continuous numbers (to make test simplification easier).
9134 if (ID > NumberedValueInfos.size())
9135 NumberedValueInfos.resize(new_size: ID + 1);
9136 NumberedValueInfos[ID] = VI;
9137 }
9138
9139 return false;
9140}
9141
9142/// parseSummaryIndexFlags
9143/// ::= 'flags' ':' UInt64
9144bool LLParser::parseSummaryIndexFlags() {
9145 assert(Lex.getKind() == lltok::kw_flags);
9146 Lex.Lex();
9147
9148 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
9149 return true;
9150 uint64_t Flags;
9151 if (parseUInt64(Val&: Flags))
9152 return true;
9153 if (Index)
9154 Index->setFlags(Flags);
9155 return false;
9156}
9157
9158/// parseBlockCount
9159/// ::= 'blockcount' ':' UInt64
9160bool LLParser::parseBlockCount() {
9161 assert(Lex.getKind() == lltok::kw_blockcount);
9162 Lex.Lex();
9163
9164 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
9165 return true;
9166 uint64_t BlockCount;
9167 if (parseUInt64(Val&: BlockCount))
9168 return true;
9169 if (Index)
9170 Index->setBlockCount(BlockCount);
9171 return false;
9172}
9173
9174/// parseGVEntry
9175/// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
9176/// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
9177/// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
9178bool LLParser::parseGVEntry(unsigned ID) {
9179 assert(Lex.getKind() == lltok::kw_gv);
9180 Lex.Lex();
9181
9182 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9183 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
9184 return true;
9185
9186 LocTy Loc = Lex.getLoc();
9187 std::string Name;
9188 GlobalValue::GUID GUID = 0;
9189 switch (Lex.getKind()) {
9190 case lltok::kw_name:
9191 Lex.Lex();
9192 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9193 parseStringConstant(Result&: Name))
9194 return true;
9195 // Can't create GUID/ValueInfo until we have the linkage.
9196 break;
9197 case lltok::kw_guid:
9198 Lex.Lex();
9199 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") || parseUInt64(Val&: GUID))
9200 return true;
9201 break;
9202 default:
9203 return error(L: Lex.getLoc(), Msg: "expected name or guid tag");
9204 }
9205
9206 if (!EatIfPresent(T: lltok::comma)) {
9207 // No summaries. Wrap up.
9208 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9209 return true;
9210 // This was created for a call to an external or indirect target.
9211 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
9212 // created for indirect calls with VP. A Name with no GUID came from
9213 // an external definition. We pass ExternalLinkage since that is only
9214 // used when the GUID must be computed from Name, and in that case
9215 // the symbol must have external linkage.
9216 return addGlobalValueToIndex(Name, GUID, Linkage: GlobalValue::ExternalLinkage, ID,
9217 Summary: nullptr, Loc);
9218 }
9219
9220 // Have a list of summaries
9221 if (parseToken(T: lltok::kw_summaries, ErrMsg: "expected 'summaries' here") ||
9222 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9223 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
9224 return true;
9225 do {
9226 switch (Lex.getKind()) {
9227 case lltok::kw_function:
9228 if (parseFunctionSummary(Name, GUID, ID))
9229 return true;
9230 break;
9231 case lltok::kw_variable:
9232 if (parseVariableSummary(Name, GUID, ID))
9233 return true;
9234 break;
9235 case lltok::kw_alias:
9236 if (parseAliasSummary(Name, GUID, ID))
9237 return true;
9238 break;
9239 default:
9240 return error(L: Lex.getLoc(), Msg: "expected summary type");
9241 }
9242 } while (EatIfPresent(T: lltok::comma));
9243
9244 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here") ||
9245 parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9246 return true;
9247
9248 return false;
9249}
9250
9251/// FunctionSummary
9252/// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9253/// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
9254/// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
9255/// [',' OptionalRefs]? ')'
9256bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
9257 unsigned ID) {
9258 LocTy Loc = Lex.getLoc();
9259 assert(Lex.getKind() == lltok::kw_function);
9260 Lex.Lex();
9261
9262 StringRef ModulePath;
9263 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9264 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9265 /*NotEligibleToImport=*/false,
9266 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9267 GlobalValueSummary::Definition);
9268 unsigned InstCount;
9269 std::vector<FunctionSummary::EdgeTy> Calls;
9270 FunctionSummary::TypeIdInfo TypeIdInfo;
9271 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
9272 std::vector<ValueInfo> Refs;
9273 std::vector<CallsiteInfo> Callsites;
9274 std::vector<AllocInfo> Allocs;
9275 // Default is all-zeros (conservative values).
9276 FunctionSummary::FFlags FFlags = {};
9277 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9278 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
9279 parseModuleReference(ModulePath) ||
9280 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") || parseGVFlags(GVFlags) ||
9281 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9282 parseToken(T: lltok::kw_insts, ErrMsg: "expected 'insts' here") ||
9283 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") || parseUInt32(Val&: InstCount))
9284 return true;
9285
9286 // parse optional fields
9287 while (EatIfPresent(T: lltok::comma)) {
9288 switch (Lex.getKind()) {
9289 case lltok::kw_funcFlags:
9290 if (parseOptionalFFlags(FFlags))
9291 return true;
9292 break;
9293 case lltok::kw_calls:
9294 if (parseOptionalCalls(Calls))
9295 return true;
9296 break;
9297 case lltok::kw_typeIdInfo:
9298 if (parseOptionalTypeIdInfo(TypeIdInfo))
9299 return true;
9300 break;
9301 case lltok::kw_refs:
9302 if (parseOptionalRefs(Refs))
9303 return true;
9304 break;
9305 case lltok::kw_params:
9306 if (parseOptionalParamAccesses(Params&: ParamAccesses))
9307 return true;
9308 break;
9309 case lltok::kw_allocs:
9310 if (parseOptionalAllocs(Allocs))
9311 return true;
9312 break;
9313 case lltok::kw_callsites:
9314 if (parseOptionalCallsites(Callsites))
9315 return true;
9316 break;
9317 default:
9318 return error(L: Lex.getLoc(), Msg: "expected optional function summary field");
9319 }
9320 }
9321
9322 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9323 return true;
9324
9325 auto FS = std::make_unique<FunctionSummary>(
9326 args&: GVFlags, args&: InstCount, args&: FFlags, /*EntryCount=*/args: 0, args: std::move(Refs),
9327 args: std::move(Calls), args: std::move(TypeIdInfo.TypeTests),
9328 args: std::move(TypeIdInfo.TypeTestAssumeVCalls),
9329 args: std::move(TypeIdInfo.TypeCheckedLoadVCalls),
9330 args: std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
9331 args: std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
9332 args: std::move(ParamAccesses), args: std::move(Callsites), args: std::move(Allocs));
9333
9334 FS->setModulePath(ModulePath);
9335
9336 return addGlobalValueToIndex(Name, GUID,
9337 Linkage: (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9338 Summary: std::move(FS), Loc);
9339}
9340
9341/// VariableSummary
9342/// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9343/// [',' OptionalRefs]? ')'
9344bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9345 unsigned ID) {
9346 LocTy Loc = Lex.getLoc();
9347 assert(Lex.getKind() == lltok::kw_variable);
9348 Lex.Lex();
9349
9350 StringRef ModulePath;
9351 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9352 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9353 /*NotEligibleToImport=*/false,
9354 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9355 GlobalValueSummary::Definition);
9356 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9357 /* WriteOnly */ false,
9358 /* Constant */ false,
9359 GlobalObject::VCallVisibilityPublic);
9360 std::vector<ValueInfo> Refs;
9361 VTableFuncList VTableFuncs;
9362 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9363 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
9364 parseModuleReference(ModulePath) ||
9365 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") || parseGVFlags(GVFlags) ||
9366 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9367 parseGVarFlags(GVarFlags))
9368 return true;
9369
9370 // parse optional fields
9371 while (EatIfPresent(T: lltok::comma)) {
9372 switch (Lex.getKind()) {
9373 case lltok::kw_vTableFuncs:
9374 if (parseOptionalVTableFuncs(VTableFuncs))
9375 return true;
9376 break;
9377 case lltok::kw_refs:
9378 if (parseOptionalRefs(Refs))
9379 return true;
9380 break;
9381 default:
9382 return error(L: Lex.getLoc(), Msg: "expected optional variable summary field");
9383 }
9384 }
9385
9386 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9387 return true;
9388
9389 auto GS =
9390 std::make_unique<GlobalVarSummary>(args&: GVFlags, args&: GVarFlags, args: std::move(Refs));
9391
9392 GS->setModulePath(ModulePath);
9393 GS->setVTableFuncs(std::move(VTableFuncs));
9394
9395 return addGlobalValueToIndex(Name, GUID,
9396 Linkage: (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9397 Summary: std::move(GS), Loc);
9398}
9399
9400/// AliasSummary
9401/// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9402/// 'aliasee' ':' GVReference ')'
9403bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9404 unsigned ID) {
9405 assert(Lex.getKind() == lltok::kw_alias);
9406 LocTy Loc = Lex.getLoc();
9407 Lex.Lex();
9408
9409 StringRef ModulePath;
9410 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9411 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9412 /*NotEligibleToImport=*/false,
9413 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9414 GlobalValueSummary::Definition);
9415 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9416 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
9417 parseModuleReference(ModulePath) ||
9418 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") || parseGVFlags(GVFlags) ||
9419 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9420 parseToken(T: lltok::kw_aliasee, ErrMsg: "expected 'aliasee' here") ||
9421 parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
9422 return true;
9423
9424 ValueInfo AliaseeVI;
9425 unsigned GVId;
9426 if (parseGVReference(VI&: AliaseeVI, GVId))
9427 return true;
9428
9429 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9430 return true;
9431
9432 auto AS = std::make_unique<AliasSummary>(args&: GVFlags);
9433
9434 AS->setModulePath(ModulePath);
9435
9436 // Record forward reference if the aliasee is not parsed yet.
9437 if (AliaseeVI.getRef() == FwdVIRef) {
9438 ForwardRefAliasees[GVId].emplace_back(args: AS.get(), args&: Loc);
9439 } else {
9440 auto Summary = Index->findSummaryInModule(VI: AliaseeVI, ModuleId: ModulePath);
9441 assert(Summary && "Aliasee must be a definition");
9442 AS->setAliasee(AliaseeVI, Aliasee: Summary);
9443 }
9444
9445 return addGlobalValueToIndex(Name, GUID,
9446 Linkage: (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9447 Summary: std::move(AS), Loc);
9448}
9449
9450/// Flag
9451/// ::= [0|1]
9452bool LLParser::parseFlag(unsigned &Val) {
9453 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9454 return tokError(Msg: "expected integer");
9455 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9456 Lex.Lex();
9457 return false;
9458}
9459
9460/// OptionalFFlags
9461/// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9462/// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9463/// [',' 'returnDoesNotAlias' ':' Flag]? ')'
9464/// [',' 'noInline' ':' Flag]? ')'
9465/// [',' 'alwaysInline' ':' Flag]? ')'
9466/// [',' 'noUnwind' ':' Flag]? ')'
9467/// [',' 'mayThrow' ':' Flag]? ')'
9468/// [',' 'hasUnknownCall' ':' Flag]? ')'
9469/// [',' 'mustBeUnreachable' ':' Flag]? ')'
9470
9471bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9472 assert(Lex.getKind() == lltok::kw_funcFlags);
9473 Lex.Lex();
9474
9475 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in funcFlags") ||
9476 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in funcFlags"))
9477 return true;
9478
9479 do {
9480 unsigned Val = 0;
9481 switch (Lex.getKind()) {
9482 case lltok::kw_readNone:
9483 Lex.Lex();
9484 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9485 return true;
9486 FFlags.ReadNone = Val;
9487 break;
9488 case lltok::kw_readOnly:
9489 Lex.Lex();
9490 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9491 return true;
9492 FFlags.ReadOnly = Val;
9493 break;
9494 case lltok::kw_noRecurse:
9495 Lex.Lex();
9496 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9497 return true;
9498 FFlags.NoRecurse = Val;
9499 break;
9500 case lltok::kw_returnDoesNotAlias:
9501 Lex.Lex();
9502 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9503 return true;
9504 FFlags.ReturnDoesNotAlias = Val;
9505 break;
9506 case lltok::kw_noInline:
9507 Lex.Lex();
9508 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9509 return true;
9510 FFlags.NoInline = Val;
9511 break;
9512 case lltok::kw_alwaysInline:
9513 Lex.Lex();
9514 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9515 return true;
9516 FFlags.AlwaysInline = Val;
9517 break;
9518 case lltok::kw_noUnwind:
9519 Lex.Lex();
9520 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9521 return true;
9522 FFlags.NoUnwind = Val;
9523 break;
9524 case lltok::kw_mayThrow:
9525 Lex.Lex();
9526 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9527 return true;
9528 FFlags.MayThrow = Val;
9529 break;
9530 case lltok::kw_hasUnknownCall:
9531 Lex.Lex();
9532 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9533 return true;
9534 FFlags.HasUnknownCall = Val;
9535 break;
9536 case lltok::kw_mustBeUnreachable:
9537 Lex.Lex();
9538 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val))
9539 return true;
9540 FFlags.MustBeUnreachable = Val;
9541 break;
9542 default:
9543 return error(L: Lex.getLoc(), Msg: "expected function flag type");
9544 }
9545 } while (EatIfPresent(T: lltok::comma));
9546
9547 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in funcFlags"))
9548 return true;
9549
9550 return false;
9551}
9552
9553/// OptionalCalls
9554/// := 'calls' ':' '(' Call [',' Call]* ')'
9555/// Call ::= '(' 'callee' ':' GVReference
9556/// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9557/// [ ',' 'tail' ]? ')'
9558bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9559 assert(Lex.getKind() == lltok::kw_calls);
9560 Lex.Lex();
9561
9562 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in calls") ||
9563 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in calls"))
9564 return true;
9565
9566 IdToIndexMapType IdToIndexMap;
9567 // parse each call edge
9568 do {
9569 ValueInfo VI;
9570 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in call") ||
9571 parseToken(T: lltok::kw_callee, ErrMsg: "expected 'callee' in call") ||
9572 parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
9573 return true;
9574
9575 LocTy Loc = Lex.getLoc();
9576 unsigned GVId;
9577 if (parseGVReference(VI, GVId))
9578 return true;
9579
9580 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9581 unsigned RelBF = 0;
9582 unsigned HasTailCall = false;
9583
9584 // parse optional fields
9585 while (EatIfPresent(T: lltok::comma)) {
9586 switch (Lex.getKind()) {
9587 case lltok::kw_hotness:
9588 Lex.Lex();
9589 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseHotness(Hotness))
9590 return true;
9591 break;
9592 case lltok::kw_relbf:
9593 Lex.Lex();
9594 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseUInt32(Val&: RelBF))
9595 return true;
9596 break;
9597 case lltok::kw_tail:
9598 Lex.Lex();
9599 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val&: HasTailCall))
9600 return true;
9601 break;
9602 default:
9603 return error(L: Lex.getLoc(), Msg: "expected hotness, relbf, or tail");
9604 }
9605 }
9606 if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9607 return tokError(Msg: "Expected only one of hotness or relbf");
9608 // Keep track of the Call array index needing a forward reference.
9609 // We will save the location of the ValueInfo needing an update, but
9610 // can only do so once the std::vector is finalized.
9611 if (VI.getRef() == FwdVIRef)
9612 IdToIndexMap[GVId].push_back(x: std::make_pair(x: Calls.size(), y&: Loc));
9613 Calls.push_back(
9614 x: FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9615
9616 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in call"))
9617 return true;
9618 } while (EatIfPresent(T: lltok::comma));
9619
9620 // Now that the Calls vector is finalized, it is safe to save the locations
9621 // of any forward GV references that need updating later.
9622 for (auto I : IdToIndexMap) {
9623 auto &Infos = ForwardRefValueInfos[I.first];
9624 for (auto P : I.second) {
9625 assert(Calls[P.first].first.getRef() == FwdVIRef &&
9626 "Forward referenced ValueInfo expected to be empty");
9627 Infos.emplace_back(args: &Calls[P.first].first, args&: P.second);
9628 }
9629 }
9630
9631 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in calls"))
9632 return true;
9633
9634 return false;
9635}
9636
9637/// Hotness
9638/// := ('unknown'|'cold'|'none'|'hot'|'critical')
9639bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9640 switch (Lex.getKind()) {
9641 case lltok::kw_unknown:
9642 Hotness = CalleeInfo::HotnessType::Unknown;
9643 break;
9644 case lltok::kw_cold:
9645 Hotness = CalleeInfo::HotnessType::Cold;
9646 break;
9647 case lltok::kw_none:
9648 Hotness = CalleeInfo::HotnessType::None;
9649 break;
9650 case lltok::kw_hot:
9651 Hotness = CalleeInfo::HotnessType::Hot;
9652 break;
9653 case lltok::kw_critical:
9654 Hotness = CalleeInfo::HotnessType::Critical;
9655 break;
9656 default:
9657 return error(L: Lex.getLoc(), Msg: "invalid call edge hotness");
9658 }
9659 Lex.Lex();
9660 return false;
9661}
9662
9663/// OptionalVTableFuncs
9664/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9665/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9666bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9667 assert(Lex.getKind() == lltok::kw_vTableFuncs);
9668 Lex.Lex();
9669
9670 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in vTableFuncs") ||
9671 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in vTableFuncs"))
9672 return true;
9673
9674 IdToIndexMapType IdToIndexMap;
9675 // parse each virtual function pair
9676 do {
9677 ValueInfo VI;
9678 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in vTableFunc") ||
9679 parseToken(T: lltok::kw_virtFunc, ErrMsg: "expected 'callee' in vTableFunc") ||
9680 parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
9681 return true;
9682
9683 LocTy Loc = Lex.getLoc();
9684 unsigned GVId;
9685 if (parseGVReference(VI, GVId))
9686 return true;
9687
9688 uint64_t Offset;
9689 if (parseToken(T: lltok::comma, ErrMsg: "expected comma") ||
9690 parseToken(T: lltok::kw_offset, ErrMsg: "expected offset") ||
9691 parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseUInt64(Val&: Offset))
9692 return true;
9693
9694 // Keep track of the VTableFuncs array index needing a forward reference.
9695 // We will save the location of the ValueInfo needing an update, but
9696 // can only do so once the std::vector is finalized.
9697 if (VI == EmptyVI)
9698 IdToIndexMap[GVId].push_back(x: std::make_pair(x: VTableFuncs.size(), y&: Loc));
9699 VTableFuncs.push_back(x: {VI, Offset});
9700
9701 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in vTableFunc"))
9702 return true;
9703 } while (EatIfPresent(T: lltok::comma));
9704
9705 // Now that the VTableFuncs vector is finalized, it is safe to save the
9706 // locations of any forward GV references that need updating later.
9707 for (auto I : IdToIndexMap) {
9708 auto &Infos = ForwardRefValueInfos[I.first];
9709 for (auto P : I.second) {
9710 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9711 "Forward referenced ValueInfo expected to be empty");
9712 Infos.emplace_back(args: &VTableFuncs[P.first].FuncVI, args&: P.second);
9713 }
9714 }
9715
9716 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in vTableFuncs"))
9717 return true;
9718
9719 return false;
9720}
9721
9722/// ParamNo := 'param' ':' UInt64
9723bool LLParser::parseParamNo(uint64_t &ParamNo) {
9724 if (parseToken(T: lltok::kw_param, ErrMsg: "expected 'param' here") ||
9725 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") || parseUInt64(Val&: ParamNo))
9726 return true;
9727 return false;
9728}
9729
9730/// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9731bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9732 APSInt Lower;
9733 APSInt Upper;
9734 auto ParseAPSInt = [&](APSInt &Val) {
9735 if (Lex.getKind() != lltok::APSInt)
9736 return tokError(Msg: "expected integer");
9737 Val = Lex.getAPSIntVal();
9738 Val = Val.extOrTrunc(width: FunctionSummary::ParamAccess::RangeWidth);
9739 Val.setIsSigned(true);
9740 Lex.Lex();
9741 return false;
9742 };
9743 if (parseToken(T: lltok::kw_offset, ErrMsg: "expected 'offset' here") ||
9744 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9745 parseToken(T: lltok::lsquare, ErrMsg: "expected '[' here") || ParseAPSInt(Lower) ||
9746 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") || ParseAPSInt(Upper) ||
9747 parseToken(T: lltok::rsquare, ErrMsg: "expected ']' here"))
9748 return true;
9749
9750 ++Upper;
9751 Range =
9752 (Lower == Upper && !Lower.isMaxValue())
9753 ? ConstantRange::getEmpty(BitWidth: FunctionSummary::ParamAccess::RangeWidth)
9754 : ConstantRange(Lower, Upper);
9755
9756 return false;
9757}
9758
9759/// ParamAccessCall
9760/// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9761bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9762 IdLocListType &IdLocList) {
9763 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
9764 parseToken(T: lltok::kw_callee, ErrMsg: "expected 'callee' here") ||
9765 parseToken(T: lltok::colon, ErrMsg: "expected ':' here"))
9766 return true;
9767
9768 unsigned GVId;
9769 ValueInfo VI;
9770 LocTy Loc = Lex.getLoc();
9771 if (parseGVReference(VI, GVId))
9772 return true;
9773
9774 Call.Callee = VI;
9775 IdLocList.emplace_back(args&: GVId, args&: Loc);
9776
9777 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9778 parseParamNo(ParamNo&: Call.ParamNo) ||
9779 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9780 parseParamAccessOffset(Range&: Call.Offsets))
9781 return true;
9782
9783 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9784 return true;
9785
9786 return false;
9787}
9788
9789/// ParamAccess
9790/// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9791/// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9792bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9793 IdLocListType &IdLocList) {
9794 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
9795 parseParamNo(ParamNo&: Param.ParamNo) ||
9796 parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
9797 parseParamAccessOffset(Range&: Param.Use))
9798 return true;
9799
9800 if (EatIfPresent(T: lltok::comma)) {
9801 if (parseToken(T: lltok::kw_calls, ErrMsg: "expected 'calls' here") ||
9802 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9803 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
9804 return true;
9805 do {
9806 FunctionSummary::ParamAccess::Call Call;
9807 if (parseParamAccessCall(Call, IdLocList))
9808 return true;
9809 Param.Calls.push_back(x: Call);
9810 } while (EatIfPresent(T: lltok::comma));
9811
9812 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9813 return true;
9814 }
9815
9816 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9817 return true;
9818
9819 return false;
9820}
9821
9822/// OptionalParamAccesses
9823/// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9824bool LLParser::parseOptionalParamAccesses(
9825 std::vector<FunctionSummary::ParamAccess> &Params) {
9826 assert(Lex.getKind() == lltok::kw_params);
9827 Lex.Lex();
9828
9829 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9830 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
9831 return true;
9832
9833 IdLocListType VContexts;
9834 size_t CallsNum = 0;
9835 do {
9836 FunctionSummary::ParamAccess ParamAccess;
9837 if (parseParamAccess(Param&: ParamAccess, IdLocList&: VContexts))
9838 return true;
9839 CallsNum += ParamAccess.Calls.size();
9840 assert(VContexts.size() == CallsNum);
9841 (void)CallsNum;
9842 Params.emplace_back(args: std::move(ParamAccess));
9843 } while (EatIfPresent(T: lltok::comma));
9844
9845 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
9846 return true;
9847
9848 // Now that the Params is finalized, it is safe to save the locations
9849 // of any forward GV references that need updating later.
9850 IdLocListType::const_iterator ItContext = VContexts.begin();
9851 for (auto &PA : Params) {
9852 for (auto &C : PA.Calls) {
9853 if (C.Callee.getRef() == FwdVIRef)
9854 ForwardRefValueInfos[ItContext->first].emplace_back(args: &C.Callee,
9855 args: ItContext->second);
9856 ++ItContext;
9857 }
9858 }
9859 assert(ItContext == VContexts.end());
9860
9861 return false;
9862}
9863
9864/// OptionalRefs
9865/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9866bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9867 assert(Lex.getKind() == lltok::kw_refs);
9868 Lex.Lex();
9869
9870 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in refs") ||
9871 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in refs"))
9872 return true;
9873
9874 struct ValueContext {
9875 ValueInfo VI;
9876 unsigned GVId;
9877 LocTy Loc;
9878 };
9879 std::vector<ValueContext> VContexts;
9880 // parse each ref edge
9881 do {
9882 ValueContext VC;
9883 VC.Loc = Lex.getLoc();
9884 if (parseGVReference(VI&: VC.VI, GVId&: VC.GVId))
9885 return true;
9886 VContexts.push_back(x: VC);
9887 } while (EatIfPresent(T: lltok::comma));
9888
9889 // Sort value contexts so that ones with writeonly
9890 // and readonly ValueInfo are at the end of VContexts vector.
9891 // See FunctionSummary::specialRefCounts()
9892 llvm::sort(C&: VContexts, Comp: [](const ValueContext &VC1, const ValueContext &VC2) {
9893 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9894 });
9895
9896 IdToIndexMapType IdToIndexMap;
9897 for (auto &VC : VContexts) {
9898 // Keep track of the Refs array index needing a forward reference.
9899 // We will save the location of the ValueInfo needing an update, but
9900 // can only do so once the std::vector is finalized.
9901 if (VC.VI.getRef() == FwdVIRef)
9902 IdToIndexMap[VC.GVId].push_back(x: std::make_pair(x: Refs.size(), y&: VC.Loc));
9903 Refs.push_back(x: VC.VI);
9904 }
9905
9906 // Now that the Refs vector is finalized, it is safe to save the locations
9907 // of any forward GV references that need updating later.
9908 for (auto I : IdToIndexMap) {
9909 auto &Infos = ForwardRefValueInfos[I.first];
9910 for (auto P : I.second) {
9911 assert(Refs[P.first].getRef() == FwdVIRef &&
9912 "Forward referenced ValueInfo expected to be empty");
9913 Infos.emplace_back(args: &Refs[P.first], args&: P.second);
9914 }
9915 }
9916
9917 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in refs"))
9918 return true;
9919
9920 return false;
9921}
9922
9923/// OptionalTypeIdInfo
9924/// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9925/// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
9926/// [',' TypeCheckedLoadConstVCalls]? ')'
9927bool LLParser::parseOptionalTypeIdInfo(
9928 FunctionSummary::TypeIdInfo &TypeIdInfo) {
9929 assert(Lex.getKind() == lltok::kw_typeIdInfo);
9930 Lex.Lex();
9931
9932 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9933 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in typeIdInfo"))
9934 return true;
9935
9936 do {
9937 switch (Lex.getKind()) {
9938 case lltok::kw_typeTests:
9939 if (parseTypeTests(TypeTests&: TypeIdInfo.TypeTests))
9940 return true;
9941 break;
9942 case lltok::kw_typeTestAssumeVCalls:
9943 if (parseVFuncIdList(Kind: lltok::kw_typeTestAssumeVCalls,
9944 VFuncIdList&: TypeIdInfo.TypeTestAssumeVCalls))
9945 return true;
9946 break;
9947 case lltok::kw_typeCheckedLoadVCalls:
9948 if (parseVFuncIdList(Kind: lltok::kw_typeCheckedLoadVCalls,
9949 VFuncIdList&: TypeIdInfo.TypeCheckedLoadVCalls))
9950 return true;
9951 break;
9952 case lltok::kw_typeTestAssumeConstVCalls:
9953 if (parseConstVCallList(Kind: lltok::kw_typeTestAssumeConstVCalls,
9954 ConstVCallList&: TypeIdInfo.TypeTestAssumeConstVCalls))
9955 return true;
9956 break;
9957 case lltok::kw_typeCheckedLoadConstVCalls:
9958 if (parseConstVCallList(Kind: lltok::kw_typeCheckedLoadConstVCalls,
9959 ConstVCallList&: TypeIdInfo.TypeCheckedLoadConstVCalls))
9960 return true;
9961 break;
9962 default:
9963 return error(L: Lex.getLoc(), Msg: "invalid typeIdInfo list type");
9964 }
9965 } while (EatIfPresent(T: lltok::comma));
9966
9967 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in typeIdInfo"))
9968 return true;
9969
9970 return false;
9971}
9972
9973/// TypeTests
9974/// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9975/// [',' (SummaryID | UInt64)]* ')'
9976bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9977 assert(Lex.getKind() == lltok::kw_typeTests);
9978 Lex.Lex();
9979
9980 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
9981 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in typeIdInfo"))
9982 return true;
9983
9984 IdToIndexMapType IdToIndexMap;
9985 do {
9986 GlobalValue::GUID GUID = 0;
9987 if (Lex.getKind() == lltok::SummaryID) {
9988 unsigned ID = Lex.getUIntVal();
9989 LocTy Loc = Lex.getLoc();
9990 // Keep track of the TypeTests array index needing a forward reference.
9991 // We will save the location of the GUID needing an update, but
9992 // can only do so once the std::vector is finalized.
9993 IdToIndexMap[ID].push_back(x: std::make_pair(x: TypeTests.size(), y&: Loc));
9994 Lex.Lex();
9995 } else if (parseUInt64(Val&: GUID))
9996 return true;
9997 TypeTests.push_back(x: GUID);
9998 } while (EatIfPresent(T: lltok::comma));
9999
10000 // Now that the TypeTests vector is finalized, it is safe to save the
10001 // locations of any forward GV references that need updating later.
10002 for (auto I : IdToIndexMap) {
10003 auto &Ids = ForwardRefTypeIds[I.first];
10004 for (auto P : I.second) {
10005 assert(TypeTests[P.first] == 0 &&
10006 "Forward referenced type id GUID expected to be 0");
10007 Ids.emplace_back(args: &TypeTests[P.first], args&: P.second);
10008 }
10009 }
10010
10011 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in typeIdInfo"))
10012 return true;
10013
10014 return false;
10015}
10016
10017/// VFuncIdList
10018/// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
10019bool LLParser::parseVFuncIdList(
10020 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
10021 assert(Lex.getKind() == Kind);
10022 Lex.Lex();
10023
10024 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10025 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
10026 return true;
10027
10028 IdToIndexMapType IdToIndexMap;
10029 do {
10030 FunctionSummary::VFuncId VFuncId;
10031 if (parseVFuncId(VFuncId, IdToIndexMap, Index: VFuncIdList.size()))
10032 return true;
10033 VFuncIdList.push_back(x: VFuncId);
10034 } while (EatIfPresent(T: lltok::comma));
10035
10036 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
10037 return true;
10038
10039 // Now that the VFuncIdList vector is finalized, it is safe to save the
10040 // locations of any forward GV references that need updating later.
10041 for (auto I : IdToIndexMap) {
10042 auto &Ids = ForwardRefTypeIds[I.first];
10043 for (auto P : I.second) {
10044 assert(VFuncIdList[P.first].GUID == 0 &&
10045 "Forward referenced type id GUID expected to be 0");
10046 Ids.emplace_back(args: &VFuncIdList[P.first].GUID, args&: P.second);
10047 }
10048 }
10049
10050 return false;
10051}
10052
10053/// ConstVCallList
10054/// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
10055bool LLParser::parseConstVCallList(
10056 lltok::Kind Kind,
10057 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
10058 assert(Lex.getKind() == Kind);
10059 Lex.Lex();
10060
10061 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10062 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
10063 return true;
10064
10065 IdToIndexMapType IdToIndexMap;
10066 do {
10067 FunctionSummary::ConstVCall ConstVCall;
10068 if (parseConstVCall(ConstVCall, IdToIndexMap, Index: ConstVCallList.size()))
10069 return true;
10070 ConstVCallList.push_back(x: ConstVCall);
10071 } while (EatIfPresent(T: lltok::comma));
10072
10073 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
10074 return true;
10075
10076 // Now that the ConstVCallList vector is finalized, it is safe to save the
10077 // locations of any forward GV references that need updating later.
10078 for (auto I : IdToIndexMap) {
10079 auto &Ids = ForwardRefTypeIds[I.first];
10080 for (auto P : I.second) {
10081 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
10082 "Forward referenced type id GUID expected to be 0");
10083 Ids.emplace_back(args: &ConstVCallList[P.first].VFunc.GUID, args&: P.second);
10084 }
10085 }
10086
10087 return false;
10088}
10089
10090/// ConstVCall
10091/// ::= '(' VFuncId ',' Args ')'
10092bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
10093 IdToIndexMapType &IdToIndexMap, unsigned Index) {
10094 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' here") ||
10095 parseVFuncId(VFuncId&: ConstVCall.VFunc, IdToIndexMap, Index))
10096 return true;
10097
10098 if (EatIfPresent(T: lltok::comma))
10099 if (parseArgs(Args&: ConstVCall.Args))
10100 return true;
10101
10102 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
10103 return true;
10104
10105 return false;
10106}
10107
10108/// VFuncId
10109/// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
10110/// 'offset' ':' UInt64 ')'
10111bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
10112 IdToIndexMapType &IdToIndexMap, unsigned Index) {
10113 assert(Lex.getKind() == lltok::kw_vFuncId);
10114 Lex.Lex();
10115
10116 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10117 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
10118 return true;
10119
10120 if (Lex.getKind() == lltok::SummaryID) {
10121 VFuncId.GUID = 0;
10122 unsigned ID = Lex.getUIntVal();
10123 LocTy Loc = Lex.getLoc();
10124 // Keep track of the array index needing a forward reference.
10125 // We will save the location of the GUID needing an update, but
10126 // can only do so once the caller's std::vector is finalized.
10127 IdToIndexMap[ID].push_back(x: std::make_pair(x&: Index, y&: Loc));
10128 Lex.Lex();
10129 } else if (parseToken(T: lltok::kw_guid, ErrMsg: "expected 'guid' here") ||
10130 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10131 parseUInt64(Val&: VFuncId.GUID))
10132 return true;
10133
10134 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' here") ||
10135 parseToken(T: lltok::kw_offset, ErrMsg: "expected 'offset' here") ||
10136 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10137 parseUInt64(Val&: VFuncId.Offset) ||
10138 parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
10139 return true;
10140
10141 return false;
10142}
10143
10144/// GVFlags
10145/// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
10146/// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
10147/// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
10148/// 'canAutoHide' ':' Flag ',' ')'
10149bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
10150 assert(Lex.getKind() == lltok::kw_flags);
10151 Lex.Lex();
10152
10153 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10154 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
10155 return true;
10156
10157 do {
10158 unsigned Flag = 0;
10159 switch (Lex.getKind()) {
10160 case lltok::kw_linkage:
10161 Lex.Lex();
10162 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10163 return true;
10164 bool HasLinkage;
10165 GVFlags.Linkage = parseOptionalLinkageAux(Kind: Lex.getKind(), HasLinkage);
10166 assert(HasLinkage && "Linkage not optional in summary entry");
10167 Lex.Lex();
10168 break;
10169 case lltok::kw_visibility:
10170 Lex.Lex();
10171 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10172 return true;
10173 parseOptionalVisibility(Res&: Flag);
10174 GVFlags.Visibility = Flag;
10175 break;
10176 case lltok::kw_notEligibleToImport:
10177 Lex.Lex();
10178 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val&: Flag))
10179 return true;
10180 GVFlags.NotEligibleToImport = Flag;
10181 break;
10182 case lltok::kw_live:
10183 Lex.Lex();
10184 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val&: Flag))
10185 return true;
10186 GVFlags.Live = Flag;
10187 break;
10188 case lltok::kw_dsoLocal:
10189 Lex.Lex();
10190 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val&: Flag))
10191 return true;
10192 GVFlags.DSOLocal = Flag;
10193 break;
10194 case lltok::kw_canAutoHide:
10195 Lex.Lex();
10196 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'") || parseFlag(Val&: Flag))
10197 return true;
10198 GVFlags.CanAutoHide = Flag;
10199 break;
10200 case lltok::kw_importType:
10201 Lex.Lex();
10202 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10203 return true;
10204 GlobalValueSummary::ImportKind IK;
10205 if (parseOptionalImportType(Kind: Lex.getKind(), Res&: IK))
10206 return true;
10207 GVFlags.ImportType = static_cast<unsigned>(IK);
10208 Lex.Lex();
10209 break;
10210 default:
10211 return error(L: Lex.getLoc(), Msg: "expected gv flag type");
10212 }
10213 } while (EatIfPresent(T: lltok::comma));
10214
10215 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' here"))
10216 return true;
10217
10218 return false;
10219}
10220
10221/// GVarFlags
10222/// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
10223/// ',' 'writeonly' ':' Flag
10224/// ',' 'constant' ':' Flag ')'
10225bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
10226 assert(Lex.getKind() == lltok::kw_varFlags);
10227 Lex.Lex();
10228
10229 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10230 parseToken(T: lltok::lparen, ErrMsg: "expected '(' here"))
10231 return true;
10232
10233 auto ParseRest = [this](unsigned int &Val) {
10234 Lex.Lex();
10235 if (parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10236 return true;
10237 return parseFlag(Val);
10238 };
10239
10240 do {
10241 unsigned Flag = 0;
10242 switch (Lex.getKind()) {
10243 case lltok::kw_readonly:
10244 if (ParseRest(Flag))
10245 return true;
10246 GVarFlags.MaybeReadOnly = Flag;
10247 break;
10248 case lltok::kw_writeonly:
10249 if (ParseRest(Flag))
10250 return true;
10251 GVarFlags.MaybeWriteOnly = Flag;
10252 break;
10253 case lltok::kw_constant:
10254 if (ParseRest(Flag))
10255 return true;
10256 GVarFlags.Constant = Flag;
10257 break;
10258 case lltok::kw_vcall_visibility:
10259 if (ParseRest(Flag))
10260 return true;
10261 GVarFlags.VCallVisibility = Flag;
10262 break;
10263 default:
10264 return error(L: Lex.getLoc(), Msg: "expected gvar flag type");
10265 }
10266 } while (EatIfPresent(T: lltok::comma));
10267 return parseToken(T: lltok::rparen, ErrMsg: "expected ')' here");
10268}
10269
10270/// ModuleReference
10271/// ::= 'module' ':' UInt
10272bool LLParser::parseModuleReference(StringRef &ModulePath) {
10273 // parse module id.
10274 if (parseToken(T: lltok::kw_module, ErrMsg: "expected 'module' here") ||
10275 parseToken(T: lltok::colon, ErrMsg: "expected ':' here") ||
10276 parseToken(T: lltok::SummaryID, ErrMsg: "expected module ID"))
10277 return true;
10278
10279 unsigned ModuleID = Lex.getUIntVal();
10280 auto I = ModuleIdMap.find(x: ModuleID);
10281 // We should have already parsed all module IDs
10282 assert(I != ModuleIdMap.end());
10283 ModulePath = I->second;
10284 return false;
10285}
10286
10287/// GVReference
10288/// ::= SummaryID
10289bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
10290 bool WriteOnly = false, ReadOnly = EatIfPresent(T: lltok::kw_readonly);
10291 if (!ReadOnly)
10292 WriteOnly = EatIfPresent(lltok::T: kw_writeonly);
10293 if (parseToken(T: lltok::SummaryID, ErrMsg: "expected GV ID"))
10294 return true;
10295
10296 GVId = Lex.getUIntVal();
10297 // Check if we already have a VI for this GV
10298 if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
10299 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
10300 VI = NumberedValueInfos[GVId];
10301 } else
10302 // We will create a forward reference to the stored location.
10303 VI = ValueInfo(false, FwdVIRef);
10304
10305 if (ReadOnly)
10306 VI.setReadOnly();
10307 if (WriteOnly)
10308 VI.setWriteOnly();
10309 return false;
10310}
10311
10312/// OptionalAllocs
10313/// := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
10314/// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
10315/// ',' MemProfs ')'
10316/// Version ::= UInt32
10317bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
10318 assert(Lex.getKind() == lltok::kw_allocs);
10319 Lex.Lex();
10320
10321 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in allocs") ||
10322 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in allocs"))
10323 return true;
10324
10325 // parse each alloc
10326 do {
10327 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in alloc") ||
10328 parseToken(T: lltok::kw_versions, ErrMsg: "expected 'versions' in alloc") ||
10329 parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
10330 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in versions"))
10331 return true;
10332
10333 SmallVector<uint8_t> Versions;
10334 do {
10335 uint8_t V = 0;
10336 if (parseAllocType(AllocType&: V))
10337 return true;
10338 Versions.push_back(Elt: V);
10339 } while (EatIfPresent(T: lltok::comma));
10340
10341 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in versions") ||
10342 parseToken(T: lltok::comma, ErrMsg: "expected ',' in alloc"))
10343 return true;
10344
10345 std::vector<MIBInfo> MIBs;
10346 if (parseMemProfs(MIBs))
10347 return true;
10348
10349 Allocs.push_back(x: {Versions, MIBs});
10350
10351 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in alloc"))
10352 return true;
10353 } while (EatIfPresent(T: lltok::comma));
10354
10355 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in allocs"))
10356 return true;
10357
10358 return false;
10359}
10360
10361/// MemProfs
10362/// := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10363/// MemProf ::= '(' 'type' ':' AllocType
10364/// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10365/// StackId ::= UInt64
10366bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10367 assert(Lex.getKind() == lltok::kw_memProf);
10368 Lex.Lex();
10369
10370 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in memprof") ||
10371 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in memprof"))
10372 return true;
10373
10374 // parse each MIB
10375 do {
10376 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in memprof") ||
10377 parseToken(T: lltok::kw_type, ErrMsg: "expected 'type' in memprof") ||
10378 parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10379 return true;
10380
10381 uint8_t AllocType;
10382 if (parseAllocType(AllocType))
10383 return true;
10384
10385 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' in memprof") ||
10386 parseToken(T: lltok::kw_stackIds, ErrMsg: "expected 'stackIds' in memprof") ||
10387 parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
10388 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in stackIds"))
10389 return true;
10390
10391 SmallVector<unsigned> StackIdIndices;
10392 do {
10393 uint64_t StackId = 0;
10394 if (parseUInt64(Val&: StackId))
10395 return true;
10396 StackIdIndices.push_back(Elt: Index->addOrGetStackIdIndex(StackId));
10397 } while (EatIfPresent(T: lltok::comma));
10398
10399 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in stackIds"))
10400 return true;
10401
10402 MIBs.push_back(x: {(AllocationType)AllocType, StackIdIndices});
10403
10404 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in memprof"))
10405 return true;
10406 } while (EatIfPresent(T: lltok::comma));
10407
10408 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in memprof"))
10409 return true;
10410
10411 return false;
10412}
10413
10414/// AllocType
10415/// := ('none'|'notcold'|'cold'|'hot')
10416bool LLParser::parseAllocType(uint8_t &AllocType) {
10417 switch (Lex.getKind()) {
10418 case lltok::kw_none:
10419 AllocType = (uint8_t)AllocationType::None;
10420 break;
10421 case lltok::kw_notcold:
10422 AllocType = (uint8_t)AllocationType::NotCold;
10423 break;
10424 case lltok::kw_cold:
10425 AllocType = (uint8_t)AllocationType::Cold;
10426 break;
10427 case lltok::kw_hot:
10428 AllocType = (uint8_t)AllocationType::Hot;
10429 break;
10430 default:
10431 return error(L: Lex.getLoc(), Msg: "invalid alloc type");
10432 }
10433 Lex.Lex();
10434 return false;
10435}
10436
10437/// OptionalCallsites
10438/// := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10439/// Callsite ::= '(' 'callee' ':' GVReference
10440/// ',' 'clones' ':' '(' Version [',' Version]* ')'
10441/// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10442/// Version ::= UInt32
10443/// StackId ::= UInt64
10444bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10445 assert(Lex.getKind() == lltok::kw_callsites);
10446 Lex.Lex();
10447
10448 if (parseToken(T: lltok::colon, ErrMsg: "expected ':' in callsites") ||
10449 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in callsites"))
10450 return true;
10451
10452 IdToIndexMapType IdToIndexMap;
10453 // parse each callsite
10454 do {
10455 if (parseToken(T: lltok::lparen, ErrMsg: "expected '(' in callsite") ||
10456 parseToken(T: lltok::kw_callee, ErrMsg: "expected 'callee' in callsite") ||
10457 parseToken(T: lltok::colon, ErrMsg: "expected ':'"))
10458 return true;
10459
10460 ValueInfo VI;
10461 unsigned GVId = 0;
10462 LocTy Loc = Lex.getLoc();
10463 if (!EatIfPresent(T: lltok::kw_null)) {
10464 if (parseGVReference(VI, GVId))
10465 return true;
10466 }
10467
10468 if (parseToken(T: lltok::comma, ErrMsg: "expected ',' in callsite") ||
10469 parseToken(T: lltok::kw_clones, ErrMsg: "expected 'clones' in callsite") ||
10470 parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
10471 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in clones"))
10472 return true;
10473
10474 SmallVector<unsigned> Clones;
10475 do {
10476 unsigned V = 0;
10477 if (parseUInt32(Val&: V))
10478 return true;
10479 Clones.push_back(Elt: V);
10480 } while (EatIfPresent(T: lltok::comma));
10481
10482 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in clones") ||
10483 parseToken(T: lltok::comma, ErrMsg: "expected ',' in callsite") ||
10484 parseToken(T: lltok::kw_stackIds, ErrMsg: "expected 'stackIds' in callsite") ||
10485 parseToken(T: lltok::colon, ErrMsg: "expected ':'") ||
10486 parseToken(T: lltok::lparen, ErrMsg: "expected '(' in stackIds"))
10487 return true;
10488
10489 SmallVector<unsigned> StackIdIndices;
10490 do {
10491 uint64_t StackId = 0;
10492 if (parseUInt64(Val&: StackId))
10493 return true;
10494 StackIdIndices.push_back(Elt: Index->addOrGetStackIdIndex(StackId));
10495 } while (EatIfPresent(T: lltok::comma));
10496
10497 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in stackIds"))
10498 return true;
10499
10500 // Keep track of the Callsites array index needing a forward reference.
10501 // We will save the location of the ValueInfo needing an update, but
10502 // can only do so once the SmallVector is finalized.
10503 if (VI.getRef() == FwdVIRef)
10504 IdToIndexMap[GVId].push_back(x: std::make_pair(x: Callsites.size(), y&: Loc));
10505 Callsites.push_back(x: {VI, Clones, StackIdIndices});
10506
10507 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in callsite"))
10508 return true;
10509 } while (EatIfPresent(T: lltok::comma));
10510
10511 // Now that the Callsites vector is finalized, it is safe to save the
10512 // locations of any forward GV references that need updating later.
10513 for (auto I : IdToIndexMap) {
10514 auto &Infos = ForwardRefValueInfos[I.first];
10515 for (auto P : I.second) {
10516 assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10517 "Forward referenced ValueInfo expected to be empty");
10518 Infos.emplace_back(args: &Callsites[P.first].Callee, args&: P.second);
10519 }
10520 }
10521
10522 if (parseToken(T: lltok::rparen, ErrMsg: "expected ')' in callsites"))
10523 return true;
10524
10525 return false;
10526}
10527

source code of llvm/lib/AsmParser/LLParser.cpp