1//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "AArch64TargetTransformInfo.h"
10#include "AArch64ExpandImm.h"
11#include "AArch64PerfectShuffle.h"
12#include "MCTargetDesc/AArch64AddressingModes.h"
13#include "llvm/Analysis/IVDescriptors.h"
14#include "llvm/Analysis/LoopInfo.h"
15#include "llvm/Analysis/TargetTransformInfo.h"
16#include "llvm/CodeGen/BasicTTIImpl.h"
17#include "llvm/CodeGen/CostTable.h"
18#include "llvm/CodeGen/TargetLowering.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/Intrinsics.h"
21#include "llvm/IR/IntrinsicsAArch64.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Transforms/InstCombine/InstCombiner.h"
25#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
26#include <algorithm>
27#include <optional>
28using namespace llvm;
29using namespace llvm::PatternMatch;
30
31#define DEBUG_TYPE "aarch64tti"
32
33static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
34 cl::init(Val: true), cl::Hidden);
35
36static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(Val: 10),
37 cl::Hidden);
38
39static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
40 cl::init(Val: 10), cl::Hidden);
41
42static cl::opt<unsigned> SVETailFoldInsnThreshold("sve-tail-folding-insn-threshold",
43 cl::init(Val: 15), cl::Hidden);
44
45static cl::opt<unsigned>
46 NeonNonConstStrideOverhead("neon-nonconst-stride-overhead", cl::init(Val: 10),
47 cl::Hidden);
48
49static cl::opt<unsigned> CallPenaltyChangeSM(
50 "call-penalty-sm-change", cl::init(Val: 5), cl::Hidden,
51 cl::desc(
52 "Penalty of calling a function that requires a change to PSTATE.SM"));
53
54static cl::opt<unsigned> InlineCallPenaltyChangeSM(
55 "inline-call-penalty-sm-change", cl::init(Val: 10), cl::Hidden,
56 cl::desc("Penalty of inlining a call that requires a change to PSTATE.SM"));
57
58static cl::opt<bool> EnableOrLikeSelectOpt("enable-aarch64-or-like-select",
59 cl::init(Val: true), cl::Hidden);
60
61namespace {
62class TailFoldingOption {
63 // These bitfields will only ever be set to something non-zero in operator=,
64 // when setting the -sve-tail-folding option. This option should always be of
65 // the form (default|simple|all|disable)[+(Flag1|Flag2|etc)], where here
66 // InitialBits is one of (disabled|all|simple). EnableBits represents
67 // additional flags we're enabling, and DisableBits for those flags we're
68 // disabling. The default flag is tracked in the variable NeedsDefault, since
69 // at the time of setting the option we may not know what the default value
70 // for the CPU is.
71 TailFoldingOpts InitialBits = TailFoldingOpts::Disabled;
72 TailFoldingOpts EnableBits = TailFoldingOpts::Disabled;
73 TailFoldingOpts DisableBits = TailFoldingOpts::Disabled;
74
75 // This value needs to be initialised to true in case the user does not
76 // explicitly set the -sve-tail-folding option.
77 bool NeedsDefault = true;
78
79 void setInitialBits(TailFoldingOpts Bits) { InitialBits = Bits; }
80
81 void setNeedsDefault(bool V) { NeedsDefault = V; }
82
83 void setEnableBit(TailFoldingOpts Bit) {
84 EnableBits |= Bit;
85 DisableBits &= ~Bit;
86 }
87
88 void setDisableBit(TailFoldingOpts Bit) {
89 EnableBits &= ~Bit;
90 DisableBits |= Bit;
91 }
92
93 TailFoldingOpts getBits(TailFoldingOpts DefaultBits) const {
94 TailFoldingOpts Bits = TailFoldingOpts::Disabled;
95
96 assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) &&
97 "Initial bits should only include one of "
98 "(disabled|all|simple|default)");
99 Bits = NeedsDefault ? DefaultBits : InitialBits;
100 Bits |= EnableBits;
101 Bits &= ~DisableBits;
102
103 return Bits;
104 }
105
106 void reportError(std::string Opt) {
107 errs() << "invalid argument '" << Opt
108 << "' to -sve-tail-folding=; the option should be of the form\n"
109 " (disabled|all|default|simple)[+(reductions|recurrences"
110 "|reverse|noreductions|norecurrences|noreverse)]\n";
111 report_fatal_error(reason: "Unrecognised tail-folding option");
112 }
113
114public:
115
116 void operator=(const std::string &Val) {
117 // If the user explicitly sets -sve-tail-folding= then treat as an error.
118 if (Val.empty()) {
119 reportError(Opt: "");
120 return;
121 }
122
123 // Since the user is explicitly setting the option we don't automatically
124 // need the default unless they require it.
125 setNeedsDefault(false);
126
127 SmallVector<StringRef, 4> TailFoldTypes;
128 StringRef(Val).split(A&: TailFoldTypes, Separator: '+', MaxSplit: -1, KeepEmpty: false);
129
130 unsigned StartIdx = 1;
131 if (TailFoldTypes[0] == "disabled")
132 setInitialBits(TailFoldingOpts::Disabled);
133 else if (TailFoldTypes[0] == "all")
134 setInitialBits(TailFoldingOpts::All);
135 else if (TailFoldTypes[0] == "default")
136 setNeedsDefault(true);
137 else if (TailFoldTypes[0] == "simple")
138 setInitialBits(TailFoldingOpts::Simple);
139 else {
140 StartIdx = 0;
141 setInitialBits(TailFoldingOpts::Disabled);
142 }
143
144 for (unsigned I = StartIdx; I < TailFoldTypes.size(); I++) {
145 if (TailFoldTypes[I] == "reductions")
146 setEnableBit(TailFoldingOpts::Reductions);
147 else if (TailFoldTypes[I] == "recurrences")
148 setEnableBit(TailFoldingOpts::Recurrences);
149 else if (TailFoldTypes[I] == "reverse")
150 setEnableBit(TailFoldingOpts::Reverse);
151 else if (TailFoldTypes[I] == "noreductions")
152 setDisableBit(TailFoldingOpts::Reductions);
153 else if (TailFoldTypes[I] == "norecurrences")
154 setDisableBit(TailFoldingOpts::Recurrences);
155 else if (TailFoldTypes[I] == "noreverse")
156 setDisableBit(TailFoldingOpts::Reverse);
157 else
158 reportError(Opt: Val);
159 }
160 }
161
162 bool satisfies(TailFoldingOpts DefaultBits, TailFoldingOpts Required) const {
163 return (getBits(DefaultBits) & Required) == Required;
164 }
165};
166} // namespace
167
168TailFoldingOption TailFoldingOptionLoc;
169
170cl::opt<TailFoldingOption, true, cl::parser<std::string>> SVETailFolding(
171 "sve-tail-folding",
172 cl::desc(
173 "Control the use of vectorisation using tail-folding for SVE where the"
174 " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:"
175 "\ndisabled (Initial) No loop types will vectorize using "
176 "tail-folding"
177 "\ndefault (Initial) Uses the default tail-folding settings for "
178 "the target CPU"
179 "\nall (Initial) All legal loop types will vectorize using "
180 "tail-folding"
181 "\nsimple (Initial) Use tail-folding for simple loops (not "
182 "reductions or recurrences)"
183 "\nreductions Use tail-folding for loops containing reductions"
184 "\nnoreductions Inverse of above"
185 "\nrecurrences Use tail-folding for loops containing fixed order "
186 "recurrences"
187 "\nnorecurrences Inverse of above"
188 "\nreverse Use tail-folding for loops requiring reversed "
189 "predicates"
190 "\nnoreverse Inverse of above"),
191 cl::location(L&: TailFoldingOptionLoc));
192
193// Experimental option that will only be fully functional when the
194// code-generator is changed to use SVE instead of NEON for all fixed-width
195// operations.
196static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
197 "enable-fixedwidth-autovec-in-streaming-mode", cl::init(Val: false), cl::Hidden);
198
199// Experimental option that will only be fully functional when the cost-model
200// and code-generator have been changed to avoid using scalable vector
201// instructions that are not legal in streaming SVE mode.
202static cl::opt<bool> EnableScalableAutovecInStreamingMode(
203 "enable-scalable-autovec-in-streaming-mode", cl::init(Val: false), cl::Hidden);
204
205static bool isSMEABIRoutineCall(const CallInst &CI) {
206 const auto *F = CI.getCalledFunction();
207 return F && StringSwitch<bool>(F->getName())
208 .Case(S: "__arm_sme_state", Value: true)
209 .Case(S: "__arm_tpidr2_save", Value: true)
210 .Case(S: "__arm_tpidr2_restore", Value: true)
211 .Case(S: "__arm_za_disable", Value: true)
212 .Default(Value: false);
213}
214
215/// Returns true if the function has explicit operations that can only be
216/// lowered using incompatible instructions for the selected mode. This also
217/// returns true if the function F may use or modify ZA state.
218static bool hasPossibleIncompatibleOps(const Function *F) {
219 for (const BasicBlock &BB : *F) {
220 for (const Instruction &I : BB) {
221 // Be conservative for now and assume that any call to inline asm or to
222 // intrinsics could could result in non-streaming ops (e.g. calls to
223 // @llvm.aarch64.* or @llvm.gather/scatter intrinsics). We can assume that
224 // all native LLVM instructions can be lowered to compatible instructions.
225 if (isa<CallInst>(Val: I) && !I.isDebugOrPseudoInst() &&
226 (cast<CallInst>(Val: I).isInlineAsm() || isa<IntrinsicInst>(Val: I) ||
227 isSMEABIRoutineCall(CI: cast<CallInst>(Val: I))))
228 return true;
229 }
230 }
231 return false;
232}
233
234bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
235 const Function *Callee) const {
236 SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee);
237
238 // When inlining, we should consider the body of the function, not the
239 // interface.
240 if (CalleeAttrs.hasStreamingBody()) {
241 CalleeAttrs.set(M: SMEAttrs::SM_Compatible, Enable: false);
242 CalleeAttrs.set(M: SMEAttrs::SM_Enabled, Enable: true);
243 }
244
245 if (CalleeAttrs.isNewZA())
246 return false;
247
248 if (CallerAttrs.requiresLazySave(Callee: CalleeAttrs) ||
249 CallerAttrs.requiresSMChange(Callee: CalleeAttrs)) {
250 if (hasPossibleIncompatibleOps(F: Callee))
251 return false;
252 }
253
254 const TargetMachine &TM = getTLI()->getTargetMachine();
255
256 const FeatureBitset &CallerBits =
257 TM.getSubtargetImpl(*Caller)->getFeatureBits();
258 const FeatureBitset &CalleeBits =
259 TM.getSubtargetImpl(*Callee)->getFeatureBits();
260
261 // Inline a callee if its target-features are a subset of the callers
262 // target-features.
263 return (CallerBits & CalleeBits) == CalleeBits;
264}
265
266bool AArch64TTIImpl::areTypesABICompatible(
267 const Function *Caller, const Function *Callee,
268 const ArrayRef<Type *> &Types) const {
269 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
270 return false;
271
272 // We need to ensure that argument promotion does not attempt to promote
273 // pointers to fixed-length vector types larger than 128 bits like
274 // <8 x float> (and pointers to aggregate types which have such fixed-length
275 // vector type members) into the values of the pointees. Such vector types
276 // are used for SVE VLS but there is no ABI for SVE VLS arguments and the
277 // backend cannot lower such value arguments. The 128-bit fixed-length SVE
278 // types can be safely treated as 128-bit NEON types and they cannot be
279 // distinguished in IR.
280 if (ST->useSVEForFixedLengthVectors() && llvm::any_of(Range: Types, P: [](Type *Ty) {
281 auto FVTy = dyn_cast<FixedVectorType>(Val: Ty);
282 return FVTy &&
283 FVTy->getScalarSizeInBits() * FVTy->getNumElements() > 128;
284 }))
285 return false;
286
287 return true;
288}
289
290unsigned
291AArch64TTIImpl::getInlineCallPenalty(const Function *F, const CallBase &Call,
292 unsigned DefaultCallPenalty) const {
293 // This function calculates a penalty for executing Call in F.
294 //
295 // There are two ways this function can be called:
296 // (1) F:
297 // call from F -> G (the call here is Call)
298 //
299 // For (1), Call.getCaller() == F, so it will always return a high cost if
300 // a streaming-mode change is required (thus promoting the need to inline the
301 // function)
302 //
303 // (2) F:
304 // call from F -> G (the call here is not Call)
305 // G:
306 // call from G -> H (the call here is Call)
307 //
308 // For (2), if after inlining the body of G into F the call to H requires a
309 // streaming-mode change, and the call to G from F would also require a
310 // streaming-mode change, then there is benefit to do the streaming-mode
311 // change only once and avoid inlining of G into F.
312 SMEAttrs FAttrs(*F);
313 SMEAttrs CalleeAttrs(Call);
314 if (FAttrs.requiresSMChange(Callee: CalleeAttrs)) {
315 if (F == Call.getCaller()) // (1)
316 return CallPenaltyChangeSM * DefaultCallPenalty;
317 if (FAttrs.requiresSMChange(Callee: SMEAttrs(*Call.getCaller()))) // (2)
318 return InlineCallPenaltyChangeSM * DefaultCallPenalty;
319 }
320
321 return DefaultCallPenalty;
322}
323
324bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
325 TargetTransformInfo::RegisterKind K) const {
326 assert(K != TargetTransformInfo::RGK_Scalar);
327 return (K == TargetTransformInfo::RGK_FixedWidthVector &&
328 ST->isNeonAvailable());
329}
330
331/// Calculate the cost of materializing a 64-bit value. This helper
332/// method might only calculate a fraction of a larger immediate. Therefore it
333/// is valid to return a cost of ZERO.
334InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
335 // Check if the immediate can be encoded within an instruction.
336 if (Val == 0 || AArch64_AM::isLogicalImmediate(imm: Val, regSize: 64))
337 return 0;
338
339 if (Val < 0)
340 Val = ~Val;
341
342 // Calculate how many moves we will need to materialize this constant.
343 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
344 AArch64_IMM::expandMOVImm(Imm: Val, BitSize: 64, Insn);
345 return Insn.size();
346}
347
348/// Calculate the cost of materializing the given constant.
349InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
350 TTI::TargetCostKind CostKind) {
351 assert(Ty->isIntegerTy());
352
353 unsigned BitSize = Ty->getPrimitiveSizeInBits();
354 if (BitSize == 0)
355 return ~0U;
356
357 // Sign-extend all constants to a multiple of 64-bit.
358 APInt ImmVal = Imm;
359 if (BitSize & 0x3f)
360 ImmVal = Imm.sext(width: (BitSize + 63) & ~0x3fU);
361
362 // Split the constant into 64-bit chunks and calculate the cost for each
363 // chunk.
364 InstructionCost Cost = 0;
365 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
366 APInt Tmp = ImmVal.ashr(ShiftAmt: ShiftVal).sextOrTrunc(width: 64);
367 int64_t Val = Tmp.getSExtValue();
368 Cost += getIntImmCost(Val);
369 }
370 // We need at least one instruction to materialze the constant.
371 return std::max<InstructionCost>(a: 1, b: Cost);
372}
373
374InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
375 const APInt &Imm, Type *Ty,
376 TTI::TargetCostKind CostKind,
377 Instruction *Inst) {
378 assert(Ty->isIntegerTy());
379
380 unsigned BitSize = Ty->getPrimitiveSizeInBits();
381 // There is no cost model for constants with a bit size of 0. Return TCC_Free
382 // here, so that constant hoisting will ignore this constant.
383 if (BitSize == 0)
384 return TTI::TCC_Free;
385
386 unsigned ImmIdx = ~0U;
387 switch (Opcode) {
388 default:
389 return TTI::TCC_Free;
390 case Instruction::GetElementPtr:
391 // Always hoist the base address of a GetElementPtr.
392 if (Idx == 0)
393 return 2 * TTI::TCC_Basic;
394 return TTI::TCC_Free;
395 case Instruction::Store:
396 ImmIdx = 0;
397 break;
398 case Instruction::Add:
399 case Instruction::Sub:
400 case Instruction::Mul:
401 case Instruction::UDiv:
402 case Instruction::SDiv:
403 case Instruction::URem:
404 case Instruction::SRem:
405 case Instruction::And:
406 case Instruction::Or:
407 case Instruction::Xor:
408 case Instruction::ICmp:
409 ImmIdx = 1;
410 break;
411 // Always return TCC_Free for the shift value of a shift instruction.
412 case Instruction::Shl:
413 case Instruction::LShr:
414 case Instruction::AShr:
415 if (Idx == 1)
416 return TTI::TCC_Free;
417 break;
418 case Instruction::Trunc:
419 case Instruction::ZExt:
420 case Instruction::SExt:
421 case Instruction::IntToPtr:
422 case Instruction::PtrToInt:
423 case Instruction::BitCast:
424 case Instruction::PHI:
425 case Instruction::Call:
426 case Instruction::Select:
427 case Instruction::Ret:
428 case Instruction::Load:
429 break;
430 }
431
432 if (Idx == ImmIdx) {
433 int NumConstants = (BitSize + 63) / 64;
434 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
435 return (Cost <= NumConstants * TTI::TCC_Basic)
436 ? static_cast<int>(TTI::TCC_Free)
437 : Cost;
438 }
439 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
440}
441
442InstructionCost
443AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
444 const APInt &Imm, Type *Ty,
445 TTI::TargetCostKind CostKind) {
446 assert(Ty->isIntegerTy());
447
448 unsigned BitSize = Ty->getPrimitiveSizeInBits();
449 // There is no cost model for constants with a bit size of 0. Return TCC_Free
450 // here, so that constant hoisting will ignore this constant.
451 if (BitSize == 0)
452 return TTI::TCC_Free;
453
454 // Most (all?) AArch64 intrinsics do not support folding immediates into the
455 // selected instruction, so we compute the materialization cost for the
456 // immediate directly.
457 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
458 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
459
460 switch (IID) {
461 default:
462 return TTI::TCC_Free;
463 case Intrinsic::sadd_with_overflow:
464 case Intrinsic::uadd_with_overflow:
465 case Intrinsic::ssub_with_overflow:
466 case Intrinsic::usub_with_overflow:
467 case Intrinsic::smul_with_overflow:
468 case Intrinsic::umul_with_overflow:
469 if (Idx == 1) {
470 int NumConstants = (BitSize + 63) / 64;
471 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
472 return (Cost <= NumConstants * TTI::TCC_Basic)
473 ? static_cast<int>(TTI::TCC_Free)
474 : Cost;
475 }
476 break;
477 case Intrinsic::experimental_stackmap:
478 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(x: Imm.getSExtValue())))
479 return TTI::TCC_Free;
480 break;
481 case Intrinsic::experimental_patchpoint_void:
482 case Intrinsic::experimental_patchpoint:
483 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(x: Imm.getSExtValue())))
484 return TTI::TCC_Free;
485 break;
486 case Intrinsic::experimental_gc_statepoint:
487 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(x: Imm.getSExtValue())))
488 return TTI::TCC_Free;
489 break;
490 }
491 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
492}
493
494TargetTransformInfo::PopcntSupportKind
495AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
496 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
497 if (TyWidth == 32 || TyWidth == 64)
498 return TTI::PSK_FastHardware;
499 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
500 return TTI::PSK_Software;
501}
502
503static bool isUnpackedVectorVT(EVT VecVT) {
504 return VecVT.isScalableVector() &&
505 VecVT.getSizeInBits().getKnownMinValue() < AArch64::SVEBitsPerBlock;
506}
507
508InstructionCost
509AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
510 TTI::TargetCostKind CostKind) {
511 auto *RetTy = ICA.getReturnType();
512 switch (ICA.getID()) {
513 case Intrinsic::umin:
514 case Intrinsic::umax:
515 case Intrinsic::smin:
516 case Intrinsic::smax: {
517 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
518 MVT::v8i16, MVT::v2i32, MVT::v4i32,
519 MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32,
520 MVT::nxv2i64};
521 auto LT = getTypeLegalizationCost(Ty: RetTy);
522 // v2i64 types get converted to cmp+bif hence the cost of 2
523 if (LT.second == MVT::v2i64)
524 return LT.first * 2;
525 if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
526 return LT.first;
527 break;
528 }
529 case Intrinsic::sadd_sat:
530 case Intrinsic::ssub_sat:
531 case Intrinsic::uadd_sat:
532 case Intrinsic::usub_sat: {
533 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
534 MVT::v8i16, MVT::v2i32, MVT::v4i32,
535 MVT::v2i64};
536 auto LT = getTypeLegalizationCost(Ty: RetTy);
537 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
538 // need to extend the type, as it uses shr(qadd(shl, shl)).
539 unsigned Instrs =
540 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
541 if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
542 return LT.first * Instrs;
543 break;
544 }
545 case Intrinsic::abs: {
546 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
547 MVT::v8i16, MVT::v2i32, MVT::v4i32,
548 MVT::v2i64};
549 auto LT = getTypeLegalizationCost(Ty: RetTy);
550 if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
551 return LT.first;
552 break;
553 }
554 case Intrinsic::bswap: {
555 static const auto ValidAbsTys = {MVT::v4i16, MVT::v8i16, MVT::v2i32,
556 MVT::v4i32, MVT::v2i64};
557 auto LT = getTypeLegalizationCost(Ty: RetTy);
558 if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }) &&
559 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits())
560 return LT.first;
561 break;
562 }
563 case Intrinsic::experimental_stepvector: {
564 InstructionCost Cost = 1; // Cost of the `index' instruction
565 auto LT = getTypeLegalizationCost(Ty: RetTy);
566 // Legalisation of illegal vectors involves an `index' instruction plus
567 // (LT.first - 1) vector adds.
568 if (LT.first > 1) {
569 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Context&: RetTy->getContext());
570 InstructionCost AddCost =
571 getArithmeticInstrCost(Opcode: Instruction::Add, Ty: LegalVTy, CostKind);
572 Cost += AddCost * (LT.first - 1);
573 }
574 return Cost;
575 }
576 case Intrinsic::vector_extract:
577 case Intrinsic::vector_insert: {
578 // If both the vector and subvector types are legal types and the index
579 // is 0, then this should be a no-op or simple operation; return a
580 // relatively low cost.
581
582 // If arguments aren't actually supplied, then we cannot determine the
583 // value of the index. We also want to skip predicate types.
584 if (ICA.getArgs().size() != ICA.getArgTypes().size() ||
585 ICA.getReturnType()->getScalarType()->isIntegerTy(Bitwidth: 1))
586 break;
587
588 LLVMContext &C = RetTy->getContext();
589 EVT VecVT = getTLI()->getValueType(DL, Ty: ICA.getArgTypes()[0]);
590 bool IsExtract = ICA.getID() == Intrinsic::vector_extract;
591 EVT SubVecVT = IsExtract ? getTLI()->getValueType(DL, Ty: RetTy)
592 : getTLI()->getValueType(DL, Ty: ICA.getArgTypes()[1]);
593 // Skip this if either the vector or subvector types are unpacked
594 // SVE types; they may get lowered to stack stores and loads.
595 if (isUnpackedVectorVT(VecVT) || isUnpackedVectorVT(VecVT: SubVecVT))
596 break;
597
598 TargetLoweringBase::LegalizeKind SubVecLK =
599 getTLI()->getTypeConversion(Context&: C, VT: SubVecVT);
600 TargetLoweringBase::LegalizeKind VecLK =
601 getTLI()->getTypeConversion(Context&: C, VT: VecVT);
602 const Value *Idx = IsExtract ? ICA.getArgs()[1] : ICA.getArgs()[2];
603 const ConstantInt *CIdx = cast<ConstantInt>(Val: Idx);
604 if (SubVecLK.first == TargetLoweringBase::TypeLegal &&
605 VecLK.first == TargetLoweringBase::TypeLegal && CIdx->isZero())
606 return TTI::TCC_Free;
607 break;
608 }
609 case Intrinsic::bitreverse: {
610 static const CostTblEntry BitreverseTbl[] = {
611 {Intrinsic::bitreverse, MVT::i32, 1},
612 {Intrinsic::bitreverse, MVT::i64, 1},
613 {Intrinsic::bitreverse, MVT::v8i8, 1},
614 {Intrinsic::bitreverse, MVT::v16i8, 1},
615 {Intrinsic::bitreverse, MVT::v4i16, 2},
616 {Intrinsic::bitreverse, MVT::v8i16, 2},
617 {Intrinsic::bitreverse, MVT::v2i32, 2},
618 {Intrinsic::bitreverse, MVT::v4i32, 2},
619 {Intrinsic::bitreverse, MVT::v1i64, 2},
620 {Intrinsic::bitreverse, MVT::v2i64, 2},
621 };
622 const auto LegalisationCost = getTypeLegalizationCost(Ty: RetTy);
623 const auto *Entry =
624 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
625 if (Entry) {
626 // Cost Model is using the legal type(i32) that i8 and i16 will be
627 // converted to +1 so that we match the actual lowering cost
628 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
629 TLI->getValueType(DL, RetTy, true) == MVT::i16)
630 return LegalisationCost.first * Entry->Cost + 1;
631
632 return LegalisationCost.first * Entry->Cost;
633 }
634 break;
635 }
636 case Intrinsic::ctpop: {
637 if (!ST->hasNEON()) {
638 // 32-bit or 64-bit ctpop without NEON is 12 instructions.
639 return getTypeLegalizationCost(Ty: RetTy).first * 12;
640 }
641 static const CostTblEntry CtpopCostTbl[] = {
642 {ISD::CTPOP, MVT::v2i64, 4},
643 {ISD::CTPOP, MVT::v4i32, 3},
644 {ISD::CTPOP, MVT::v8i16, 2},
645 {ISD::CTPOP, MVT::v16i8, 1},
646 {ISD::CTPOP, MVT::i64, 4},
647 {ISD::CTPOP, MVT::v2i32, 3},
648 {ISD::CTPOP, MVT::v4i16, 2},
649 {ISD::CTPOP, MVT::v8i8, 1},
650 {ISD::CTPOP, MVT::i32, 5},
651 };
652 auto LT = getTypeLegalizationCost(Ty: RetTy);
653 MVT MTy = LT.second;
654 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
655 // Extra cost of +1 when illegal vector types are legalized by promoting
656 // the integer type.
657 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
658 RetTy->getScalarSizeInBits()
659 ? 1
660 : 0;
661 return LT.first * Entry->Cost + ExtraCost;
662 }
663 break;
664 }
665 case Intrinsic::sadd_with_overflow:
666 case Intrinsic::uadd_with_overflow:
667 case Intrinsic::ssub_with_overflow:
668 case Intrinsic::usub_with_overflow:
669 case Intrinsic::smul_with_overflow:
670 case Intrinsic::umul_with_overflow: {
671 static const CostTblEntry WithOverflowCostTbl[] = {
672 {Intrinsic::sadd_with_overflow, MVT::i8, 3},
673 {Intrinsic::uadd_with_overflow, MVT::i8, 3},
674 {Intrinsic::sadd_with_overflow, MVT::i16, 3},
675 {Intrinsic::uadd_with_overflow, MVT::i16, 3},
676 {Intrinsic::sadd_with_overflow, MVT::i32, 1},
677 {Intrinsic::uadd_with_overflow, MVT::i32, 1},
678 {Intrinsic::sadd_with_overflow, MVT::i64, 1},
679 {Intrinsic::uadd_with_overflow, MVT::i64, 1},
680 {Intrinsic::ssub_with_overflow, MVT::i8, 3},
681 {Intrinsic::usub_with_overflow, MVT::i8, 3},
682 {Intrinsic::ssub_with_overflow, MVT::i16, 3},
683 {Intrinsic::usub_with_overflow, MVT::i16, 3},
684 {Intrinsic::ssub_with_overflow, MVT::i32, 1},
685 {Intrinsic::usub_with_overflow, MVT::i32, 1},
686 {Intrinsic::ssub_with_overflow, MVT::i64, 1},
687 {Intrinsic::usub_with_overflow, MVT::i64, 1},
688 {Intrinsic::smul_with_overflow, MVT::i8, 5},
689 {Intrinsic::umul_with_overflow, MVT::i8, 4},
690 {Intrinsic::smul_with_overflow, MVT::i16, 5},
691 {Intrinsic::umul_with_overflow, MVT::i16, 4},
692 {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
693 {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
694 {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
695 {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
696 };
697 EVT MTy = TLI->getValueType(DL, Ty: RetTy->getContainedType(i: 0), AllowUnknown: true);
698 if (MTy.isSimple())
699 if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
700 MTy.getSimpleVT()))
701 return Entry->Cost;
702 break;
703 }
704 case Intrinsic::fptosi_sat:
705 case Intrinsic::fptoui_sat: {
706 if (ICA.getArgTypes().empty())
707 break;
708 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
709 auto LT = getTypeLegalizationCost(Ty: ICA.getArgTypes()[0]);
710 EVT MTy = TLI->getValueType(DL, Ty: RetTy);
711 // Check for the legal types, which are where the size of the input and the
712 // output are the same, or we are using cvt f64->i32 or f32->i64.
713 if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
714 LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
715 LT.second == MVT::v2f64) &&
716 (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
717 (LT.second == MVT::f64 && MTy == MVT::i32) ||
718 (LT.second == MVT::f32 && MTy == MVT::i64)))
719 return LT.first;
720 // Similarly for fp16 sizes
721 if (ST->hasFullFP16() &&
722 ((LT.second == MVT::f16 && MTy == MVT::i32) ||
723 ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
724 (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
725 return LT.first;
726
727 // Otherwise we use a legal convert followed by a min+max
728 if ((LT.second.getScalarType() == MVT::f32 ||
729 LT.second.getScalarType() == MVT::f64 ||
730 (ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
731 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
732 Type *LegalTy =
733 Type::getIntNTy(C&: RetTy->getContext(), N: LT.second.getScalarSizeInBits());
734 if (LT.second.isVector())
735 LegalTy = VectorType::get(ElementType: LegalTy, EC: LT.second.getVectorElementCount());
736 InstructionCost Cost = 1;
737 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
738 LegalTy, {LegalTy, LegalTy});
739 Cost += getIntrinsicInstrCost(ICA: Attrs1, CostKind);
740 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
741 LegalTy, {LegalTy, LegalTy});
742 Cost += getIntrinsicInstrCost(ICA: Attrs2, CostKind);
743 return LT.first * Cost;
744 }
745 break;
746 }
747 case Intrinsic::fshl:
748 case Intrinsic::fshr: {
749 if (ICA.getArgs().empty())
750 break;
751
752 // TODO: Add handling for fshl where third argument is not a constant.
753 const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(V: ICA.getArgs()[2]);
754 if (!OpInfoZ.isConstant())
755 break;
756
757 const auto LegalisationCost = getTypeLegalizationCost(Ty: RetTy);
758 if (OpInfoZ.isUniform()) {
759 // FIXME: The costs could be lower if the codegen is better.
760 static const CostTblEntry FshlTbl[] = {
761 {Intrinsic::fshl, MVT::v4i32, 3}, // ushr + shl + orr
762 {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4},
763 {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3},
764 {Intrinsic::fshl, MVT::v8i8, 4}, {Intrinsic::fshl, MVT::v4i16, 4}};
765 // Costs for both fshl & fshr are the same, so just pass Intrinsic::fshl
766 // to avoid having to duplicate the costs.
767 const auto *Entry =
768 CostTableLookup(FshlTbl, Intrinsic::fshl, LegalisationCost.second);
769 if (Entry)
770 return LegalisationCost.first * Entry->Cost;
771 }
772
773 auto TyL = getTypeLegalizationCost(Ty: RetTy);
774 if (!RetTy->isIntegerTy())
775 break;
776
777 // Estimate cost manually, as types like i8 and i16 will get promoted to
778 // i32 and CostTableLookup will ignore the extra conversion cost.
779 bool HigherCost = (RetTy->getScalarSizeInBits() != 32 &&
780 RetTy->getScalarSizeInBits() < 64) ||
781 (RetTy->getScalarSizeInBits() % 64 != 0);
782 unsigned ExtraCost = HigherCost ? 1 : 0;
783 if (RetTy->getScalarSizeInBits() == 32 ||
784 RetTy->getScalarSizeInBits() == 64)
785 ExtraCost = 0; // fhsl/fshr for i32 and i64 can be lowered to a single
786 // extr instruction.
787 else if (HigherCost)
788 ExtraCost = 1;
789 else
790 break;
791 return TyL.first + ExtraCost;
792 }
793 case Intrinsic::get_active_lane_mask: {
794 auto *RetTy = dyn_cast<FixedVectorType>(Val: ICA.getReturnType());
795 if (RetTy) {
796 EVT RetVT = getTLI()->getValueType(DL, Ty: RetTy);
797 EVT OpVT = getTLI()->getValueType(DL, Ty: ICA.getArgTypes()[0]);
798 if (!getTLI()->shouldExpandGetActiveLaneMask(VT: RetVT, OpVT) &&
799 !getTLI()->isTypeLegal(VT: RetVT)) {
800 // We don't have enough context at this point to determine if the mask
801 // is going to be kept live after the block, which will force the vXi1
802 // type to be expanded to legal vectors of integers, e.g. v4i1->v4i32.
803 // For now, we just assume the vectorizer created this intrinsic and
804 // the result will be the input for a PHI. In this case the cost will
805 // be extremely high for fixed-width vectors.
806 // NOTE: getScalarizationOverhead returns a cost that's far too
807 // pessimistic for the actual generated codegen. In reality there are
808 // two instructions generated per lane.
809 return RetTy->getNumElements() * 2;
810 }
811 }
812 break;
813 }
814 default:
815 break;
816 }
817 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
818}
819
820/// The function will remove redundant reinterprets casting in the presence
821/// of the control flow
822static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
823 IntrinsicInst &II) {
824 SmallVector<Instruction *, 32> Worklist;
825 auto RequiredType = II.getType();
826
827 auto *PN = dyn_cast<PHINode>(Val: II.getArgOperand(i: 0));
828 assert(PN && "Expected Phi Node!");
829
830 // Don't create a new Phi unless we can remove the old one.
831 if (!PN->hasOneUse())
832 return std::nullopt;
833
834 for (Value *IncValPhi : PN->incoming_values()) {
835 auto *Reinterpret = dyn_cast<IntrinsicInst>(Val: IncValPhi);
836 if (!Reinterpret ||
837 Reinterpret->getIntrinsicID() !=
838 Intrinsic::aarch64_sve_convert_to_svbool ||
839 RequiredType != Reinterpret->getArgOperand(0)->getType())
840 return std::nullopt;
841 }
842
843 // Create the new Phi
844 IC.Builder.SetInsertPoint(PN);
845 PHINode *NPN = IC.Builder.CreatePHI(Ty: RequiredType, NumReservedValues: PN->getNumIncomingValues());
846 Worklist.push_back(Elt: PN);
847
848 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
849 auto *Reinterpret = cast<Instruction>(Val: PN->getIncomingValue(i: I));
850 NPN->addIncoming(V: Reinterpret->getOperand(i: 0), BB: PN->getIncomingBlock(i: I));
851 Worklist.push_back(Elt: Reinterpret);
852 }
853
854 // Cleanup Phi Node and reinterprets
855 return IC.replaceInstUsesWith(I&: II, V: NPN);
856}
857
858// (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
859// => (binop (pred) (from_svbool _) (from_svbool _))
860//
861// The above transformation eliminates a `to_svbool` in the predicate
862// operand of bitwise operation `binop` by narrowing the vector width of
863// the operation. For example, it would convert a `<vscale x 16 x i1>
864// and` into a `<vscale x 4 x i1> and`. This is profitable because
865// to_svbool must zero the new lanes during widening, whereas
866// from_svbool is free.
867static std::optional<Instruction *>
868tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
869 auto BinOp = dyn_cast<IntrinsicInst>(Val: II.getOperand(i_nocapture: 0));
870 if (!BinOp)
871 return std::nullopt;
872
873 auto IntrinsicID = BinOp->getIntrinsicID();
874 switch (IntrinsicID) {
875 case Intrinsic::aarch64_sve_and_z:
876 case Intrinsic::aarch64_sve_bic_z:
877 case Intrinsic::aarch64_sve_eor_z:
878 case Intrinsic::aarch64_sve_nand_z:
879 case Intrinsic::aarch64_sve_nor_z:
880 case Intrinsic::aarch64_sve_orn_z:
881 case Intrinsic::aarch64_sve_orr_z:
882 break;
883 default:
884 return std::nullopt;
885 }
886
887 auto BinOpPred = BinOp->getOperand(i_nocapture: 0);
888 auto BinOpOp1 = BinOp->getOperand(i_nocapture: 1);
889 auto BinOpOp2 = BinOp->getOperand(i_nocapture: 2);
890
891 auto PredIntr = dyn_cast<IntrinsicInst>(Val: BinOpPred);
892 if (!PredIntr ||
893 PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
894 return std::nullopt;
895
896 auto PredOp = PredIntr->getOperand(i_nocapture: 0);
897 auto PredOpTy = cast<VectorType>(Val: PredOp->getType());
898 if (PredOpTy != II.getType())
899 return std::nullopt;
900
901 SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
902 auto NarrowBinOpOp1 = IC.Builder.CreateIntrinsic(
903 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
904 NarrowedBinOpArgs.push_back(Elt: NarrowBinOpOp1);
905 if (BinOpOp1 == BinOpOp2)
906 NarrowedBinOpArgs.push_back(Elt: NarrowBinOpOp1);
907 else
908 NarrowedBinOpArgs.push_back(IC.Builder.CreateIntrinsic(
909 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
910
911 auto NarrowedBinOp =
912 IC.Builder.CreateIntrinsic(ID: IntrinsicID, Types: {PredOpTy}, Args: NarrowedBinOpArgs);
913 return IC.replaceInstUsesWith(I&: II, V: NarrowedBinOp);
914}
915
916static std::optional<Instruction *>
917instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
918 // If the reinterpret instruction operand is a PHI Node
919 if (isa<PHINode>(Val: II.getArgOperand(i: 0)))
920 return processPhiNode(IC, II);
921
922 if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
923 return BinOpCombine;
924
925 // Ignore converts to/from svcount_t.
926 if (isa<TargetExtType>(Val: II.getArgOperand(i: 0)->getType()) ||
927 isa<TargetExtType>(Val: II.getType()))
928 return std::nullopt;
929
930 SmallVector<Instruction *, 32> CandidatesForRemoval;
931 Value *Cursor = II.getOperand(i_nocapture: 0), *EarliestReplacement = nullptr;
932
933 const auto *IVTy = cast<VectorType>(Val: II.getType());
934
935 // Walk the chain of conversions.
936 while (Cursor) {
937 // If the type of the cursor has fewer lanes than the final result, zeroing
938 // must take place, which breaks the equivalence chain.
939 const auto *CursorVTy = cast<VectorType>(Val: Cursor->getType());
940 if (CursorVTy->getElementCount().getKnownMinValue() <
941 IVTy->getElementCount().getKnownMinValue())
942 break;
943
944 // If the cursor has the same type as I, it is a viable replacement.
945 if (Cursor->getType() == IVTy)
946 EarliestReplacement = Cursor;
947
948 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Val: Cursor);
949
950 // If this is not an SVE conversion intrinsic, this is the end of the chain.
951 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
952 Intrinsic::aarch64_sve_convert_to_svbool ||
953 IntrinsicCursor->getIntrinsicID() ==
954 Intrinsic::aarch64_sve_convert_from_svbool))
955 break;
956
957 CandidatesForRemoval.insert(I: CandidatesForRemoval.begin(), Elt: IntrinsicCursor);
958 Cursor = IntrinsicCursor->getOperand(i_nocapture: 0);
959 }
960
961 // If no viable replacement in the conversion chain was found, there is
962 // nothing to do.
963 if (!EarliestReplacement)
964 return std::nullopt;
965
966 return IC.replaceInstUsesWith(I&: II, V: EarliestReplacement);
967}
968
969static bool isAllActivePredicate(Value *Pred) {
970 // Look through convert.from.svbool(convert.to.svbool(...) chain.
971 Value *UncastedPred;
972 if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
973 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
974 m_Value(UncastedPred)))))
975 // If the predicate has the same or less lanes than the uncasted
976 // predicate then we know the casting has no effect.
977 if (cast<ScalableVectorType>(Val: Pred->getType())->getMinNumElements() <=
978 cast<ScalableVectorType>(Val: UncastedPred->getType())->getMinNumElements())
979 Pred = UncastedPred;
980
981 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
982 m_ConstantInt<AArch64SVEPredPattern::all>()));
983}
984
985static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
986 IntrinsicInst &II) {
987 // svsel(ptrue, x, y) => x
988 auto *OpPredicate = II.getOperand(i_nocapture: 0);
989 if (isAllActivePredicate(Pred: OpPredicate))
990 return IC.replaceInstUsesWith(I&: II, V: II.getOperand(i_nocapture: 1));
991
992 auto Select =
993 IC.Builder.CreateSelect(C: OpPredicate, True: II.getOperand(i_nocapture: 1), False: II.getOperand(i_nocapture: 2));
994 return IC.replaceInstUsesWith(I&: II, V: Select);
995}
996
997static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
998 IntrinsicInst &II) {
999 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(Val: II.getArgOperand(i: 1));
1000 if (!Pg)
1001 return std::nullopt;
1002
1003 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1004 return std::nullopt;
1005
1006 const auto PTruePattern =
1007 cast<ConstantInt>(Val: Pg->getOperand(i_nocapture: 0))->getZExtValue();
1008 if (PTruePattern != AArch64SVEPredPattern::vl1)
1009 return std::nullopt;
1010
1011 // The intrinsic is inserting into lane zero so use an insert instead.
1012 auto *IdxTy = Type::getInt64Ty(C&: II.getContext());
1013 auto *Insert = InsertElementInst::Create(
1014 Vec: II.getArgOperand(i: 0), NewElt: II.getArgOperand(i: 2), Idx: ConstantInt::get(Ty: IdxTy, V: 0));
1015 Insert->insertBefore(InsertPos: &II);
1016 Insert->takeName(V: &II);
1017
1018 return IC.replaceInstUsesWith(I&: II, V: Insert);
1019}
1020
1021static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
1022 IntrinsicInst &II) {
1023 // Replace DupX with a regular IR splat.
1024 auto *RetTy = cast<ScalableVectorType>(Val: II.getType());
1025 Value *Splat = IC.Builder.CreateVectorSplat(EC: RetTy->getElementCount(),
1026 V: II.getArgOperand(i: 0));
1027 Splat->takeName(V: &II);
1028 return IC.replaceInstUsesWith(I&: II, V: Splat);
1029}
1030
1031static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
1032 IntrinsicInst &II) {
1033 LLVMContext &Ctx = II.getContext();
1034
1035 // Check that the predicate is all active
1036 auto *Pg = dyn_cast<IntrinsicInst>(Val: II.getArgOperand(i: 0));
1037 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1038 return std::nullopt;
1039
1040 const auto PTruePattern =
1041 cast<ConstantInt>(Val: Pg->getOperand(i_nocapture: 0))->getZExtValue();
1042 if (PTruePattern != AArch64SVEPredPattern::all)
1043 return std::nullopt;
1044
1045 // Check that we have a compare of zero..
1046 auto *SplatValue =
1047 dyn_cast_or_null<ConstantInt>(Val: getSplatValue(V: II.getArgOperand(i: 2)));
1048 if (!SplatValue || !SplatValue->isZero())
1049 return std::nullopt;
1050
1051 // ..against a dupq
1052 auto *DupQLane = dyn_cast<IntrinsicInst>(Val: II.getArgOperand(i: 1));
1053 if (!DupQLane ||
1054 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
1055 return std::nullopt;
1056
1057 // Where the dupq is a lane 0 replicate of a vector insert
1058 if (!cast<ConstantInt>(Val: DupQLane->getArgOperand(i: 1))->isZero())
1059 return std::nullopt;
1060
1061 auto *VecIns = dyn_cast<IntrinsicInst>(Val: DupQLane->getArgOperand(i: 0));
1062 if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
1063 return std::nullopt;
1064
1065 // Where the vector insert is a fixed constant vector insert into undef at
1066 // index zero
1067 if (!isa<UndefValue>(Val: VecIns->getArgOperand(i: 0)))
1068 return std::nullopt;
1069
1070 if (!cast<ConstantInt>(Val: VecIns->getArgOperand(i: 2))->isZero())
1071 return std::nullopt;
1072
1073 auto *ConstVec = dyn_cast<Constant>(Val: VecIns->getArgOperand(i: 1));
1074 if (!ConstVec)
1075 return std::nullopt;
1076
1077 auto *VecTy = dyn_cast<FixedVectorType>(Val: ConstVec->getType());
1078 auto *OutTy = dyn_cast<ScalableVectorType>(Val: II.getType());
1079 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
1080 return std::nullopt;
1081
1082 unsigned NumElts = VecTy->getNumElements();
1083 unsigned PredicateBits = 0;
1084
1085 // Expand intrinsic operands to a 16-bit byte level predicate
1086 for (unsigned I = 0; I < NumElts; ++I) {
1087 auto *Arg = dyn_cast<ConstantInt>(Val: ConstVec->getAggregateElement(Elt: I));
1088 if (!Arg)
1089 return std::nullopt;
1090 if (!Arg->isZero())
1091 PredicateBits |= 1 << (I * (16 / NumElts));
1092 }
1093
1094 // If all bits are zero bail early with an empty predicate
1095 if (PredicateBits == 0) {
1096 auto *PFalse = Constant::getNullValue(Ty: II.getType());
1097 PFalse->takeName(V: &II);
1098 return IC.replaceInstUsesWith(I&: II, V: PFalse);
1099 }
1100
1101 // Calculate largest predicate type used (where byte predicate is largest)
1102 unsigned Mask = 8;
1103 for (unsigned I = 0; I < 16; ++I)
1104 if ((PredicateBits & (1 << I)) != 0)
1105 Mask |= (I % 8);
1106
1107 unsigned PredSize = Mask & -Mask;
1108 auto *PredType = ScalableVectorType::get(
1109 ElementType: Type::getInt1Ty(C&: Ctx), MinNumElts: AArch64::SVEBitsPerBlock / (PredSize * 8));
1110
1111 // Ensure all relevant bits are set
1112 for (unsigned I = 0; I < 16; I += PredSize)
1113 if ((PredicateBits & (1 << I)) == 0)
1114 return std::nullopt;
1115
1116 auto *PTruePat =
1117 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1118 auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1119 {PredType}, {PTruePat});
1120 auto *ConvertToSVBool = IC.Builder.CreateIntrinsic(
1121 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
1122 auto *ConvertFromSVBool =
1123 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
1124 {II.getType()}, {ConvertToSVBool});
1125
1126 ConvertFromSVBool->takeName(&II);
1127 return IC.replaceInstUsesWith(I&: II, V: ConvertFromSVBool);
1128}
1129
1130static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
1131 IntrinsicInst &II) {
1132 Value *Pg = II.getArgOperand(i: 0);
1133 Value *Vec = II.getArgOperand(i: 1);
1134 auto IntrinsicID = II.getIntrinsicID();
1135 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
1136
1137 // lastX(splat(X)) --> X
1138 if (auto *SplatVal = getSplatValue(V: Vec))
1139 return IC.replaceInstUsesWith(I&: II, V: SplatVal);
1140
1141 // If x and/or y is a splat value then:
1142 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
1143 Value *LHS, *RHS;
1144 if (match(V: Vec, P: m_OneUse(SubPattern: m_BinOp(L: m_Value(V&: LHS), R: m_Value(V&: RHS))))) {
1145 if (isSplatValue(V: LHS) || isSplatValue(V: RHS)) {
1146 auto *OldBinOp = cast<BinaryOperator>(Val: Vec);
1147 auto OpC = OldBinOp->getOpcode();
1148 auto *NewLHS =
1149 IC.Builder.CreateIntrinsic(ID: IntrinsicID, Types: {Vec->getType()}, Args: {Pg, LHS});
1150 auto *NewRHS =
1151 IC.Builder.CreateIntrinsic(ID: IntrinsicID, Types: {Vec->getType()}, Args: {Pg, RHS});
1152 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
1153 Opc: OpC, V1: NewLHS, V2: NewRHS, CopyO: OldBinOp, Name: OldBinOp->getName(), InsertBefore: II.getIterator());
1154 return IC.replaceInstUsesWith(I&: II, V: NewBinOp);
1155 }
1156 }
1157
1158 auto *C = dyn_cast<Constant>(Val: Pg);
1159 if (IsAfter && C && C->isNullValue()) {
1160 // The intrinsic is extracting lane 0 so use an extract instead.
1161 auto *IdxTy = Type::getInt64Ty(C&: II.getContext());
1162 auto *Extract = ExtractElementInst::Create(Vec, Idx: ConstantInt::get(Ty: IdxTy, V: 0));
1163 Extract->insertBefore(InsertPos: &II);
1164 Extract->takeName(V: &II);
1165 return IC.replaceInstUsesWith(I&: II, V: Extract);
1166 }
1167
1168 auto *IntrPG = dyn_cast<IntrinsicInst>(Val: Pg);
1169 if (!IntrPG)
1170 return std::nullopt;
1171
1172 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1173 return std::nullopt;
1174
1175 const auto PTruePattern =
1176 cast<ConstantInt>(Val: IntrPG->getOperand(i_nocapture: 0))->getZExtValue();
1177
1178 // Can the intrinsic's predicate be converted to a known constant index?
1179 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern: PTruePattern);
1180 if (!MinNumElts)
1181 return std::nullopt;
1182
1183 unsigned Idx = MinNumElts - 1;
1184 // Increment the index if extracting the element after the last active
1185 // predicate element.
1186 if (IsAfter)
1187 ++Idx;
1188
1189 // Ignore extracts whose index is larger than the known minimum vector
1190 // length. NOTE: This is an artificial constraint where we prefer to
1191 // maintain what the user asked for until an alternative is proven faster.
1192 auto *PgVTy = cast<ScalableVectorType>(Val: Pg->getType());
1193 if (Idx >= PgVTy->getMinNumElements())
1194 return std::nullopt;
1195
1196 // The intrinsic is extracting a fixed lane so use an extract instead.
1197 auto *IdxTy = Type::getInt64Ty(C&: II.getContext());
1198 auto *Extract = ExtractElementInst::Create(Vec, Idx: ConstantInt::get(Ty: IdxTy, V: Idx));
1199 Extract->insertBefore(InsertPos: &II);
1200 Extract->takeName(V: &II);
1201 return IC.replaceInstUsesWith(I&: II, V: Extract);
1202}
1203
1204static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
1205 IntrinsicInst &II) {
1206 // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
1207 // integer variant across a variety of micro-architectures. Replace scalar
1208 // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
1209 // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
1210 // depending on the micro-architecture, but has been observed as generally
1211 // being faster, particularly when the CLAST[AB] op is a loop-carried
1212 // dependency.
1213 Value *Pg = II.getArgOperand(i: 0);
1214 Value *Fallback = II.getArgOperand(i: 1);
1215 Value *Vec = II.getArgOperand(i: 2);
1216 Type *Ty = II.getType();
1217
1218 if (!Ty->isIntegerTy())
1219 return std::nullopt;
1220
1221 Type *FPTy;
1222 switch (cast<IntegerType>(Val: Ty)->getBitWidth()) {
1223 default:
1224 return std::nullopt;
1225 case 16:
1226 FPTy = IC.Builder.getHalfTy();
1227 break;
1228 case 32:
1229 FPTy = IC.Builder.getFloatTy();
1230 break;
1231 case 64:
1232 FPTy = IC.Builder.getDoubleTy();
1233 break;
1234 }
1235
1236 Value *FPFallBack = IC.Builder.CreateBitCast(V: Fallback, DestTy: FPTy);
1237 auto *FPVTy = VectorType::get(
1238 ElementType: FPTy, EC: cast<VectorType>(Val: Vec->getType())->getElementCount());
1239 Value *FPVec = IC.Builder.CreateBitCast(V: Vec, DestTy: FPVTy);
1240 auto *FPII = IC.Builder.CreateIntrinsic(
1241 ID: II.getIntrinsicID(), Types: {FPVec->getType()}, Args: {Pg, FPFallBack, FPVec});
1242 Value *FPIItoInt = IC.Builder.CreateBitCast(V: FPII, DestTy: II.getType());
1243 return IC.replaceInstUsesWith(I&: II, V: FPIItoInt);
1244}
1245
1246static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
1247 IntrinsicInst &II) {
1248 LLVMContext &Ctx = II.getContext();
1249 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
1250 // can work with RDFFR_PP for ptest elimination.
1251 auto *AllPat =
1252 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1253 auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1254 {II.getType()}, {AllPat});
1255 auto *RDFFR =
1256 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
1257 RDFFR->takeName(&II);
1258 return IC.replaceInstUsesWith(I&: II, V: RDFFR);
1259}
1260
1261static std::optional<Instruction *>
1262instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
1263 const auto Pattern = cast<ConstantInt>(Val: II.getArgOperand(i: 0))->getZExtValue();
1264
1265 if (Pattern == AArch64SVEPredPattern::all) {
1266 Constant *StepVal = ConstantInt::get(Ty: II.getType(), V: NumElts);
1267 auto *VScale = IC.Builder.CreateVScale(Scaling: StepVal);
1268 VScale->takeName(V: &II);
1269 return IC.replaceInstUsesWith(I&: II, V: VScale);
1270 }
1271
1272 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
1273
1274 return MinNumElts && NumElts >= MinNumElts
1275 ? std::optional<Instruction *>(IC.replaceInstUsesWith(
1276 I&: II, V: ConstantInt::get(Ty: II.getType(), V: MinNumElts)))
1277 : std::nullopt;
1278}
1279
1280static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
1281 IntrinsicInst &II) {
1282 Value *PgVal = II.getArgOperand(i: 0);
1283 Value *OpVal = II.getArgOperand(i: 1);
1284
1285 // PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
1286 // Later optimizations prefer this form.
1287 if (PgVal == OpVal &&
1288 (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
1289 II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
1290 Value *Ops[] = {PgVal, OpVal};
1291 Type *Tys[] = {PgVal->getType()};
1292
1293 auto *PTest =
1294 IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
1295 PTest->takeName(&II);
1296
1297 return IC.replaceInstUsesWith(I&: II, V: PTest);
1298 }
1299
1300 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(Val: PgVal);
1301 IntrinsicInst *Op = dyn_cast<IntrinsicInst>(Val: OpVal);
1302
1303 if (!Pg || !Op)
1304 return std::nullopt;
1305
1306 Intrinsic::ID OpIID = Op->getIntrinsicID();
1307
1308 if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
1309 OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
1310 Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
1311 Value *Ops[] = {Pg->getArgOperand(i: 0), Op->getArgOperand(i: 0)};
1312 Type *Tys[] = {Pg->getArgOperand(i: 0)->getType()};
1313
1314 auto *PTest = IC.Builder.CreateIntrinsic(ID: II.getIntrinsicID(), Types: Tys, Args: Ops);
1315
1316 PTest->takeName(V: &II);
1317 return IC.replaceInstUsesWith(I&: II, V: PTest);
1318 }
1319
1320 // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
1321 // Later optimizations may rewrite sequence to use the flag-setting variant
1322 // of instruction X to remove PTEST.
1323 if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
1324 ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
1325 (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
1326 (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
1327 (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
1328 (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
1329 (OpIID == Intrinsic::aarch64_sve_and_z) ||
1330 (OpIID == Intrinsic::aarch64_sve_bic_z) ||
1331 (OpIID == Intrinsic::aarch64_sve_eor_z) ||
1332 (OpIID == Intrinsic::aarch64_sve_nand_z) ||
1333 (OpIID == Intrinsic::aarch64_sve_nor_z) ||
1334 (OpIID == Intrinsic::aarch64_sve_orn_z) ||
1335 (OpIID == Intrinsic::aarch64_sve_orr_z))) {
1336 Value *Ops[] = {Pg->getArgOperand(i: 0), Pg};
1337 Type *Tys[] = {Pg->getType()};
1338
1339 auto *PTest = IC.Builder.CreateIntrinsic(ID: II.getIntrinsicID(), Types: Tys, Args: Ops);
1340 PTest->takeName(V: &II);
1341
1342 return IC.replaceInstUsesWith(I&: II, V: PTest);
1343 }
1344
1345 return std::nullopt;
1346}
1347
1348template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
1349static std::optional<Instruction *>
1350instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
1351 bool MergeIntoAddendOp) {
1352 Value *P = II.getOperand(i_nocapture: 0);
1353 Value *MulOp0, *MulOp1, *AddendOp, *Mul;
1354 if (MergeIntoAddendOp) {
1355 AddendOp = II.getOperand(i_nocapture: 1);
1356 Mul = II.getOperand(i_nocapture: 2);
1357 } else {
1358 AddendOp = II.getOperand(i_nocapture: 2);
1359 Mul = II.getOperand(i_nocapture: 1);
1360 }
1361
1362 if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(V: P), m_Value(V&: MulOp0),
1363 m_Value(V&: MulOp1))))
1364 return std::nullopt;
1365
1366 if (!Mul->hasOneUse())
1367 return std::nullopt;
1368
1369 Instruction *FMFSource = nullptr;
1370 if (II.getType()->isFPOrFPVectorTy()) {
1371 llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
1372 // Stop the combine when the flags on the inputs differ in case dropping
1373 // flags would lead to us missing out on more beneficial optimizations.
1374 if (FAddFlags != cast<CallInst>(Val: Mul)->getFastMathFlags())
1375 return std::nullopt;
1376 if (!FAddFlags.allowContract())
1377 return std::nullopt;
1378 FMFSource = &II;
1379 }
1380
1381 CallInst *Res;
1382 if (MergeIntoAddendOp)
1383 Res = IC.Builder.CreateIntrinsic(ID: FuseOpc, Types: {II.getType()},
1384 Args: {P, AddendOp, MulOp0, MulOp1}, FMFSource);
1385 else
1386 Res = IC.Builder.CreateIntrinsic(ID: FuseOpc, Types: {II.getType()},
1387 Args: {P, MulOp0, MulOp1, AddendOp}, FMFSource);
1388
1389 return IC.replaceInstUsesWith(I&: II, V: Res);
1390}
1391
1392static std::optional<Instruction *>
1393instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1394 Value *Pred = II.getOperand(i_nocapture: 0);
1395 Value *PtrOp = II.getOperand(i_nocapture: 1);
1396 Type *VecTy = II.getType();
1397
1398 if (isAllActivePredicate(Pred)) {
1399 LoadInst *Load = IC.Builder.CreateLoad(Ty: VecTy, Ptr: PtrOp);
1400 Load->copyMetadata(SrcInst: II);
1401 return IC.replaceInstUsesWith(I&: II, V: Load);
1402 }
1403
1404 CallInst *MaskedLoad =
1405 IC.Builder.CreateMaskedLoad(Ty: VecTy, Ptr: PtrOp, Alignment: PtrOp->getPointerAlignment(DL),
1406 Mask: Pred, PassThru: ConstantAggregateZero::get(Ty: VecTy));
1407 MaskedLoad->copyMetadata(SrcInst: II);
1408 return IC.replaceInstUsesWith(I&: II, V: MaskedLoad);
1409}
1410
1411static std::optional<Instruction *>
1412instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1413 Value *VecOp = II.getOperand(i_nocapture: 0);
1414 Value *Pred = II.getOperand(i_nocapture: 1);
1415 Value *PtrOp = II.getOperand(i_nocapture: 2);
1416
1417 if (isAllActivePredicate(Pred)) {
1418 StoreInst *Store = IC.Builder.CreateStore(Val: VecOp, Ptr: PtrOp);
1419 Store->copyMetadata(SrcInst: II);
1420 return IC.eraseInstFromFunction(I&: II);
1421 }
1422
1423 CallInst *MaskedStore = IC.Builder.CreateMaskedStore(
1424 Val: VecOp, Ptr: PtrOp, Alignment: PtrOp->getPointerAlignment(DL), Mask: Pred);
1425 MaskedStore->copyMetadata(SrcInst: II);
1426 return IC.eraseInstFromFunction(I&: II);
1427}
1428
1429static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
1430 switch (Intrinsic) {
1431 case Intrinsic::aarch64_sve_fmul_u:
1432 return Instruction::BinaryOps::FMul;
1433 case Intrinsic::aarch64_sve_fadd_u:
1434 return Instruction::BinaryOps::FAdd;
1435 case Intrinsic::aarch64_sve_fsub_u:
1436 return Instruction::BinaryOps::FSub;
1437 default:
1438 return Instruction::BinaryOpsEnd;
1439 }
1440}
1441
1442static std::optional<Instruction *>
1443instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
1444 // Bail due to missing support for ISD::STRICT_ scalable vector operations.
1445 if (II.isStrictFP())
1446 return std::nullopt;
1447
1448 auto *OpPredicate = II.getOperand(i_nocapture: 0);
1449 auto BinOpCode = intrinsicIDToBinOpCode(Intrinsic: II.getIntrinsicID());
1450 if (BinOpCode == Instruction::BinaryOpsEnd ||
1451 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1452 m_ConstantInt<AArch64SVEPredPattern::all>())))
1453 return std::nullopt;
1454 IRBuilderBase::FastMathFlagGuard FMFGuard(IC.Builder);
1455 IC.Builder.setFastMathFlags(II.getFastMathFlags());
1456 auto BinOp =
1457 IC.Builder.CreateBinOp(Opc: BinOpCode, LHS: II.getOperand(i_nocapture: 1), RHS: II.getOperand(i_nocapture: 2));
1458 return IC.replaceInstUsesWith(I&: II, V: BinOp);
1459}
1460
1461// Canonicalise operations that take an all active predicate (e.g. sve.add ->
1462// sve.add_u).
1463static std::optional<Instruction *> instCombineSVEAllActive(IntrinsicInst &II,
1464 Intrinsic::ID IID) {
1465 auto *OpPredicate = II.getOperand(i_nocapture: 0);
1466 if (!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1467 m_ConstantInt<AArch64SVEPredPattern::all>())))
1468 return std::nullopt;
1469
1470 auto *Mod = II.getModule();
1471 auto *NewDecl = Intrinsic::getDeclaration(M: Mod, id: IID, Tys: {II.getType()});
1472 II.setCalledFunction(NewDecl);
1473
1474 return &II;
1475}
1476
1477// Simplify operations where predicate has all inactive lanes or try to replace
1478// with _u form when all lanes are active
1479static std::optional<Instruction *>
1480instCombineSVEAllOrNoActive(InstCombiner &IC, IntrinsicInst &II,
1481 Intrinsic::ID IID) {
1482 if (match(V: II.getOperand(i_nocapture: 0), P: m_ZeroInt())) {
1483 // llvm_ir, pred(0), op1, op2 - Spec says to return op1 when all lanes are
1484 // inactive for sv[func]_m
1485 return IC.replaceInstUsesWith(I&: II, V: II.getOperand(i_nocapture: 1));
1486 }
1487 return instCombineSVEAllActive(II, IID);
1488}
1489
1490static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
1491 IntrinsicInst &II) {
1492 if (auto II_U =
1493 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_add_u))
1494 return II_U;
1495 if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1496 Intrinsic::aarch64_sve_mla>(
1497 IC, II, true))
1498 return MLA;
1499 if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1500 Intrinsic::aarch64_sve_mad>(
1501 IC, II, false))
1502 return MAD;
1503 return std::nullopt;
1504}
1505
1506static std::optional<Instruction *>
1507instCombineSVEVectorFAdd(InstCombiner &IC, IntrinsicInst &II) {
1508 if (auto II_U =
1509 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fadd_u))
1510 return II_U;
1511 if (auto FMLA =
1512 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1513 Intrinsic::aarch64_sve_fmla>(IC, II,
1514 true))
1515 return FMLA;
1516 if (auto FMAD =
1517 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1518 Intrinsic::aarch64_sve_fmad>(IC, II,
1519 false))
1520 return FMAD;
1521 if (auto FMLA =
1522 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1523 Intrinsic::aarch64_sve_fmla>(IC, II,
1524 true))
1525 return FMLA;
1526 return std::nullopt;
1527}
1528
1529static std::optional<Instruction *>
1530instCombineSVEVectorFAddU(InstCombiner &IC, IntrinsicInst &II) {
1531 if (auto FMLA =
1532 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1533 Intrinsic::aarch64_sve_fmla>(IC, II,
1534 true))
1535 return FMLA;
1536 if (auto FMAD =
1537 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1538 Intrinsic::aarch64_sve_fmad>(IC, II,
1539 false))
1540 return FMAD;
1541 if (auto FMLA_U =
1542 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1543 Intrinsic::aarch64_sve_fmla_u>(
1544 IC, II, true))
1545 return FMLA_U;
1546 return instCombineSVEVectorBinOp(IC, II);
1547}
1548
1549static std::optional<Instruction *>
1550instCombineSVEVectorFSub(InstCombiner &IC, IntrinsicInst &II) {
1551 if (auto II_U =
1552 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fsub_u))
1553 return II_U;
1554 if (auto FMLS =
1555 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1556 Intrinsic::aarch64_sve_fmls>(IC, II,
1557 true))
1558 return FMLS;
1559 if (auto FMSB =
1560 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1561 Intrinsic::aarch64_sve_fnmsb>(
1562 IC, II, false))
1563 return FMSB;
1564 if (auto FMLS =
1565 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1566 Intrinsic::aarch64_sve_fmls>(IC, II,
1567 true))
1568 return FMLS;
1569 return std::nullopt;
1570}
1571
1572static std::optional<Instruction *>
1573instCombineSVEVectorFSubU(InstCombiner &IC, IntrinsicInst &II) {
1574 if (auto FMLS =
1575 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1576 Intrinsic::aarch64_sve_fmls>(IC, II,
1577 true))
1578 return FMLS;
1579 if (auto FMSB =
1580 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1581 Intrinsic::aarch64_sve_fnmsb>(
1582 IC, II, false))
1583 return FMSB;
1584 if (auto FMLS_U =
1585 instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1586 Intrinsic::aarch64_sve_fmls_u>(
1587 IC, II, true))
1588 return FMLS_U;
1589 return instCombineSVEVectorBinOp(IC, II);
1590}
1591
1592static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
1593 IntrinsicInst &II) {
1594 if (auto II_U =
1595 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sub_u))
1596 return II_U;
1597 if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1598 Intrinsic::aarch64_sve_mls>(
1599 IC, II, true))
1600 return MLS;
1601 return std::nullopt;
1602}
1603
1604static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
1605 IntrinsicInst &II,
1606 Intrinsic::ID IID) {
1607 auto *OpPredicate = II.getOperand(i_nocapture: 0);
1608 auto *OpMultiplicand = II.getOperand(i_nocapture: 1);
1609 auto *OpMultiplier = II.getOperand(i_nocapture: 2);
1610
1611 // Return true if a given instruction is a unit splat value, false otherwise.
1612 auto IsUnitSplat = [](auto *I) {
1613 auto *SplatValue = getSplatValue(I);
1614 if (!SplatValue)
1615 return false;
1616 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1617 };
1618
1619 // Return true if a given instruction is an aarch64_sve_dup intrinsic call
1620 // with a unit splat value, false otherwise.
1621 auto IsUnitDup = [](auto *I) {
1622 auto *IntrI = dyn_cast<IntrinsicInst>(I);
1623 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
1624 return false;
1625
1626 auto *SplatValue = IntrI->getOperand(2);
1627 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1628 };
1629
1630 if (IsUnitSplat(OpMultiplier)) {
1631 // [f]mul pg %n, (dupx 1) => %n
1632 OpMultiplicand->takeName(V: &II);
1633 return IC.replaceInstUsesWith(I&: II, V: OpMultiplicand);
1634 } else if (IsUnitDup(OpMultiplier)) {
1635 // [f]mul pg %n, (dup pg 1) => %n
1636 auto *DupInst = cast<IntrinsicInst>(Val: OpMultiplier);
1637 auto *DupPg = DupInst->getOperand(i_nocapture: 1);
1638 // TODO: this is naive. The optimization is still valid if DupPg
1639 // 'encompasses' OpPredicate, not only if they're the same predicate.
1640 if (OpPredicate == DupPg) {
1641 OpMultiplicand->takeName(V: &II);
1642 return IC.replaceInstUsesWith(I&: II, V: OpMultiplicand);
1643 }
1644 }
1645
1646 return instCombineSVEVectorBinOp(IC, II);
1647}
1648
1649static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
1650 IntrinsicInst &II) {
1651 Value *UnpackArg = II.getArgOperand(i: 0);
1652 auto *RetTy = cast<ScalableVectorType>(Val: II.getType());
1653 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
1654 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
1655
1656 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
1657 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
1658 if (auto *ScalarArg = getSplatValue(V: UnpackArg)) {
1659 ScalarArg =
1660 IC.Builder.CreateIntCast(V: ScalarArg, DestTy: RetTy->getScalarType(), isSigned: IsSigned);
1661 Value *NewVal =
1662 IC.Builder.CreateVectorSplat(EC: RetTy->getElementCount(), V: ScalarArg);
1663 NewVal->takeName(V: &II);
1664 return IC.replaceInstUsesWith(I&: II, V: NewVal);
1665 }
1666
1667 return std::nullopt;
1668}
1669static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
1670 IntrinsicInst &II) {
1671 auto *OpVal = II.getOperand(i_nocapture: 0);
1672 auto *OpIndices = II.getOperand(i_nocapture: 1);
1673 VectorType *VTy = cast<VectorType>(Val: II.getType());
1674
1675 // Check whether OpIndices is a constant splat value < minimal element count
1676 // of result.
1677 auto *SplatValue = dyn_cast_or_null<ConstantInt>(Val: getSplatValue(V: OpIndices));
1678 if (!SplatValue ||
1679 SplatValue->getValue().uge(RHS: VTy->getElementCount().getKnownMinValue()))
1680 return std::nullopt;
1681
1682 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
1683 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
1684 auto *Extract = IC.Builder.CreateExtractElement(Vec: OpVal, Idx: SplatValue);
1685 auto *VectorSplat =
1686 IC.Builder.CreateVectorSplat(EC: VTy->getElementCount(), V: Extract);
1687
1688 VectorSplat->takeName(V: &II);
1689 return IC.replaceInstUsesWith(I&: II, V: VectorSplat);
1690}
1691
1692static std::optional<Instruction *> instCombineSVEUzp1(InstCombiner &IC,
1693 IntrinsicInst &II) {
1694 Value *A, *B;
1695 Type *RetTy = II.getType();
1696 constexpr Intrinsic::ID FromSVB = Intrinsic::aarch64_sve_convert_from_svbool;
1697 constexpr Intrinsic::ID ToSVB = Intrinsic::aarch64_sve_convert_to_svbool;
1698
1699 // uzp1(to_svbool(A), to_svbool(B)) --> <A, B>
1700 // uzp1(from_svbool(to_svbool(A)), from_svbool(to_svbool(B))) --> <A, B>
1701 if ((match(II.getArgOperand(i: 0),
1702 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(V&: A)))) &&
1703 match(II.getArgOperand(i: 1),
1704 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(V&: B))))) ||
1705 (match(II.getArgOperand(i: 0), m_Intrinsic<ToSVB>(m_Value(V&: A))) &&
1706 match(II.getArgOperand(i: 1), m_Intrinsic<ToSVB>(m_Value(V&: B))))) {
1707 auto *TyA = cast<ScalableVectorType>(Val: A->getType());
1708 if (TyA == B->getType() &&
1709 RetTy == ScalableVectorType::getDoubleElementsVectorType(VTy: TyA)) {
1710 auto *SubVec = IC.Builder.CreateInsertVector(
1711 DstType: RetTy, SrcVec: PoisonValue::get(T: RetTy), SubVec: A, Idx: IC.Builder.getInt64(C: 0));
1712 auto *ConcatVec = IC.Builder.CreateInsertVector(
1713 DstType: RetTy, SrcVec: SubVec, SubVec: B, Idx: IC.Builder.getInt64(C: TyA->getMinNumElements()));
1714 ConcatVec->takeName(V: &II);
1715 return IC.replaceInstUsesWith(I&: II, V: ConcatVec);
1716 }
1717 }
1718
1719 return std::nullopt;
1720}
1721
1722static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
1723 IntrinsicInst &II) {
1724 // zip1(uzp1(A, B), uzp2(A, B)) --> A
1725 // zip2(uzp1(A, B), uzp2(A, B)) --> B
1726 Value *A, *B;
1727 if (match(II.getArgOperand(0),
1728 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
1729 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1730 m_Specific(A), m_Specific(B))))
1731 return IC.replaceInstUsesWith(
1732 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
1733
1734 return std::nullopt;
1735}
1736
1737static std::optional<Instruction *>
1738instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
1739 Value *Mask = II.getOperand(i_nocapture: 0);
1740 Value *BasePtr = II.getOperand(i_nocapture: 1);
1741 Value *Index = II.getOperand(i_nocapture: 2);
1742 Type *Ty = II.getType();
1743 Value *PassThru = ConstantAggregateZero::get(Ty);
1744
1745 // Contiguous gather => masked load.
1746 // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
1747 // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
1748 Value *IndexBase;
1749 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1750 m_Value(IndexBase), m_SpecificInt(1)))) {
1751 Align Alignment =
1752 BasePtr->getPointerAlignment(DL: II.getModule()->getDataLayout());
1753
1754 Type *VecPtrTy = PointerType::getUnqual(ElementType: Ty);
1755 Value *Ptr = IC.Builder.CreateGEP(Ty: cast<VectorType>(Val: Ty)->getElementType(),
1756 Ptr: BasePtr, IdxList: IndexBase);
1757 Ptr = IC.Builder.CreateBitCast(V: Ptr, DestTy: VecPtrTy);
1758 CallInst *MaskedLoad =
1759 IC.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
1760 MaskedLoad->takeName(V: &II);
1761 return IC.replaceInstUsesWith(I&: II, V: MaskedLoad);
1762 }
1763
1764 return std::nullopt;
1765}
1766
1767static std::optional<Instruction *>
1768instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
1769 Value *Val = II.getOperand(i_nocapture: 0);
1770 Value *Mask = II.getOperand(i_nocapture: 1);
1771 Value *BasePtr = II.getOperand(i_nocapture: 2);
1772 Value *Index = II.getOperand(i_nocapture: 3);
1773 Type *Ty = Val->getType();
1774
1775 // Contiguous scatter => masked store.
1776 // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
1777 // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
1778 Value *IndexBase;
1779 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1780 m_Value(IndexBase), m_SpecificInt(1)))) {
1781 Align Alignment =
1782 BasePtr->getPointerAlignment(DL: II.getModule()->getDataLayout());
1783
1784 Value *Ptr = IC.Builder.CreateGEP(Ty: cast<VectorType>(Val: Ty)->getElementType(),
1785 Ptr: BasePtr, IdxList: IndexBase);
1786 Type *VecPtrTy = PointerType::getUnqual(ElementType: Ty);
1787 Ptr = IC.Builder.CreateBitCast(V: Ptr, DestTy: VecPtrTy);
1788
1789 (void)IC.Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
1790
1791 return IC.eraseInstFromFunction(I&: II);
1792 }
1793
1794 return std::nullopt;
1795}
1796
1797static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
1798 IntrinsicInst &II) {
1799 Type *Int32Ty = IC.Builder.getInt32Ty();
1800 Value *Pred = II.getOperand(i_nocapture: 0);
1801 Value *Vec = II.getOperand(i_nocapture: 1);
1802 Value *DivVec = II.getOperand(i_nocapture: 2);
1803
1804 Value *SplatValue = getSplatValue(V: DivVec);
1805 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(Val: SplatValue);
1806 if (!SplatConstantInt)
1807 return std::nullopt;
1808 APInt Divisor = SplatConstantInt->getValue();
1809
1810 if (Divisor.isPowerOf2()) {
1811 Constant *DivisorLog2 = ConstantInt::get(Ty: Int32Ty, V: Divisor.logBase2());
1812 auto ASRD = IC.Builder.CreateIntrinsic(
1813 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1814 return IC.replaceInstUsesWith(I&: II, V: ASRD);
1815 }
1816 if (Divisor.isNegatedPowerOf2()) {
1817 Divisor.negate();
1818 Constant *DivisorLog2 = ConstantInt::get(Ty: Int32Ty, V: Divisor.logBase2());
1819 auto ASRD = IC.Builder.CreateIntrinsic(
1820 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1821 auto NEG = IC.Builder.CreateIntrinsic(
1822 Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD});
1823 return IC.replaceInstUsesWith(I&: II, V: NEG);
1824 }
1825
1826 return std::nullopt;
1827}
1828
1829bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
1830 size_t VecSize = Vec.size();
1831 if (VecSize == 1)
1832 return true;
1833 if (!isPowerOf2_64(Value: VecSize))
1834 return false;
1835 size_t HalfVecSize = VecSize / 2;
1836
1837 for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
1838 RHS != Vec.end(); LHS++, RHS++) {
1839 if (*LHS != nullptr && *RHS != nullptr) {
1840 if (*LHS == *RHS)
1841 continue;
1842 else
1843 return false;
1844 }
1845 if (!AllowPoison)
1846 return false;
1847 if (*LHS == nullptr && *RHS != nullptr)
1848 *LHS = *RHS;
1849 }
1850
1851 Vec.resize(N: HalfVecSize);
1852 SimplifyValuePattern(Vec, AllowPoison);
1853 return true;
1854}
1855
1856// Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
1857// to dupqlane(f64(C)) where C is A concatenated with B
1858static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
1859 IntrinsicInst &II) {
1860 Value *CurrentInsertElt = nullptr, *Default = nullptr;
1861 if (!match(II.getOperand(0),
1862 m_Intrinsic<Intrinsic::vector_insert>(
1863 m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
1864 !isa<FixedVectorType>(CurrentInsertElt->getType()))
1865 return std::nullopt;
1866 auto IIScalableTy = cast<ScalableVectorType>(Val: II.getType());
1867
1868 // Insert the scalars into a container ordered by InsertElement index
1869 SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
1870 while (auto InsertElt = dyn_cast<InsertElementInst>(Val: CurrentInsertElt)) {
1871 auto Idx = cast<ConstantInt>(Val: InsertElt->getOperand(i_nocapture: 2));
1872 Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(i_nocapture: 1);
1873 CurrentInsertElt = InsertElt->getOperand(i_nocapture: 0);
1874 }
1875
1876 bool AllowPoison =
1877 isa<PoisonValue>(Val: CurrentInsertElt) && isa<PoisonValue>(Val: Default);
1878 if (!SimplifyValuePattern(Vec&: Elts, AllowPoison))
1879 return std::nullopt;
1880
1881 // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
1882 Value *InsertEltChain = PoisonValue::get(T: CurrentInsertElt->getType());
1883 for (size_t I = 0; I < Elts.size(); I++) {
1884 if (Elts[I] == nullptr)
1885 continue;
1886 InsertEltChain = IC.Builder.CreateInsertElement(Vec: InsertEltChain, NewElt: Elts[I],
1887 Idx: IC.Builder.getInt64(C: I));
1888 }
1889 if (InsertEltChain == nullptr)
1890 return std::nullopt;
1891
1892 // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
1893 // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
1894 // be bitcast to a type wide enough to fit the sequence, be splatted, and then
1895 // be narrowed back to the original type.
1896 unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
1897 unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
1898 IIScalableTy->getMinNumElements() /
1899 PatternWidth;
1900
1901 IntegerType *WideTy = IC.Builder.getIntNTy(N: PatternWidth);
1902 auto *WideScalableTy = ScalableVectorType::get(ElementType: WideTy, MinNumElts: PatternElementCount);
1903 auto *WideShuffleMaskTy =
1904 ScalableVectorType::get(ElementType: IC.Builder.getInt32Ty(), MinNumElts: PatternElementCount);
1905
1906 auto ZeroIdx = ConstantInt::get(Ty: IC.Builder.getInt64Ty(), V: APInt(64, 0));
1907 auto InsertSubvector = IC.Builder.CreateInsertVector(
1908 DstType: II.getType(), SrcVec: PoisonValue::get(T: II.getType()), SubVec: InsertEltChain, Idx: ZeroIdx);
1909 auto WideBitcast =
1910 IC.Builder.CreateBitOrPointerCast(V: InsertSubvector, DestTy: WideScalableTy);
1911 auto WideShuffleMask = ConstantAggregateZero::get(Ty: WideShuffleMaskTy);
1912 auto WideShuffle = IC.Builder.CreateShuffleVector(
1913 V1: WideBitcast, V2: PoisonValue::get(T: WideScalableTy), Mask: WideShuffleMask);
1914 auto NarrowBitcast =
1915 IC.Builder.CreateBitOrPointerCast(V: WideShuffle, DestTy: II.getType());
1916
1917 return IC.replaceInstUsesWith(I&: II, V: NarrowBitcast);
1918}
1919
1920static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
1921 IntrinsicInst &II) {
1922 Value *A = II.getArgOperand(i: 0);
1923 Value *B = II.getArgOperand(i: 1);
1924 if (A == B)
1925 return IC.replaceInstUsesWith(I&: II, V: A);
1926
1927 return std::nullopt;
1928}
1929
1930static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
1931 IntrinsicInst &II) {
1932 Value *Pred = II.getOperand(i_nocapture: 0);
1933 Value *Vec = II.getOperand(i_nocapture: 1);
1934 Value *Shift = II.getOperand(i_nocapture: 2);
1935
1936 // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
1937 Value *AbsPred, *MergedValue;
1938 if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
1939 m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
1940 !match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
1941 m_Value(MergedValue), m_Value(AbsPred), m_Value())))
1942
1943 return std::nullopt;
1944
1945 // Transform is valid if any of the following are true:
1946 // * The ABS merge value is an undef or non-negative
1947 // * The ABS predicate is all active
1948 // * The ABS predicate and the SRSHL predicates are the same
1949 if (!isa<UndefValue>(Val: MergedValue) && !match(V: MergedValue, P: m_NonNegative()) &&
1950 AbsPred != Pred && !isAllActivePredicate(Pred: AbsPred))
1951 return std::nullopt;
1952
1953 // Only valid when the shift amount is non-negative, otherwise the rounding
1954 // behaviour of SRSHL cannot be ignored.
1955 if (!match(V: Shift, P: m_NonNegative()))
1956 return std::nullopt;
1957
1958 auto LSL = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl,
1959 {II.getType()}, {Pred, Vec, Shift});
1960
1961 return IC.replaceInstUsesWith(I&: II, V: LSL);
1962}
1963
1964std::optional<Instruction *>
1965AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
1966 IntrinsicInst &II) const {
1967 Intrinsic::ID IID = II.getIntrinsicID();
1968 switch (IID) {
1969 default:
1970 break;
1971 case Intrinsic::aarch64_neon_fmaxnm:
1972 case Intrinsic::aarch64_neon_fminnm:
1973 return instCombineMaxMinNM(IC, II);
1974 case Intrinsic::aarch64_sve_convert_from_svbool:
1975 return instCombineConvertFromSVBool(IC, II);
1976 case Intrinsic::aarch64_sve_dup:
1977 return instCombineSVEDup(IC, II);
1978 case Intrinsic::aarch64_sve_dup_x:
1979 return instCombineSVEDupX(IC, II);
1980 case Intrinsic::aarch64_sve_cmpne:
1981 case Intrinsic::aarch64_sve_cmpne_wide:
1982 return instCombineSVECmpNE(IC, II);
1983 case Intrinsic::aarch64_sve_rdffr:
1984 return instCombineRDFFR(IC, II);
1985 case Intrinsic::aarch64_sve_lasta:
1986 case Intrinsic::aarch64_sve_lastb:
1987 return instCombineSVELast(IC, II);
1988 case Intrinsic::aarch64_sve_clasta_n:
1989 case Intrinsic::aarch64_sve_clastb_n:
1990 return instCombineSVECondLast(IC, II);
1991 case Intrinsic::aarch64_sve_cntd:
1992 return instCombineSVECntElts(IC, II, NumElts: 2);
1993 case Intrinsic::aarch64_sve_cntw:
1994 return instCombineSVECntElts(IC, II, NumElts: 4);
1995 case Intrinsic::aarch64_sve_cnth:
1996 return instCombineSVECntElts(IC, II, NumElts: 8);
1997 case Intrinsic::aarch64_sve_cntb:
1998 return instCombineSVECntElts(IC, II, NumElts: 16);
1999 case Intrinsic::aarch64_sve_ptest_any:
2000 case Intrinsic::aarch64_sve_ptest_first:
2001 case Intrinsic::aarch64_sve_ptest_last:
2002 return instCombineSVEPTest(IC, II);
2003 case Intrinsic::aarch64_sve_fabd:
2004 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fabd_u);
2005 case Intrinsic::aarch64_sve_fadd:
2006 return instCombineSVEVectorFAdd(IC, II);
2007 case Intrinsic::aarch64_sve_fadd_u:
2008 return instCombineSVEVectorFAddU(IC, II);
2009 case Intrinsic::aarch64_sve_fdiv:
2010 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fdiv_u);
2011 case Intrinsic::aarch64_sve_fmax:
2012 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmax_u);
2013 case Intrinsic::aarch64_sve_fmaxnm:
2014 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmaxnm_u);
2015 case Intrinsic::aarch64_sve_fmin:
2016 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmin_u);
2017 case Intrinsic::aarch64_sve_fminnm:
2018 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fminnm_u);
2019 case Intrinsic::aarch64_sve_fmla:
2020 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmla_u);
2021 case Intrinsic::aarch64_sve_fmls:
2022 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmls_u);
2023 case Intrinsic::aarch64_sve_fmul:
2024 if (auto II_U =
2025 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmul_u))
2026 return II_U;
2027 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2028 case Intrinsic::aarch64_sve_fmul_u:
2029 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2030 case Intrinsic::aarch64_sve_fmulx:
2031 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmulx_u);
2032 case Intrinsic::aarch64_sve_fnmla:
2033 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmla_u);
2034 case Intrinsic::aarch64_sve_fnmls:
2035 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmls_u);
2036 case Intrinsic::aarch64_sve_fsub:
2037 return instCombineSVEVectorFSub(IC, II);
2038 case Intrinsic::aarch64_sve_fsub_u:
2039 return instCombineSVEVectorFSubU(IC, II);
2040 case Intrinsic::aarch64_sve_add:
2041 return instCombineSVEVectorAdd(IC, II);
2042 case Intrinsic::aarch64_sve_add_u:
2043 return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2044 Intrinsic::aarch64_sve_mla_u>(
2045 IC, II, true);
2046 case Intrinsic::aarch64_sve_mla:
2047 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mla_u);
2048 case Intrinsic::aarch64_sve_mls:
2049 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mls_u);
2050 case Intrinsic::aarch64_sve_mul:
2051 if (auto II_U =
2052 instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mul_u))
2053 return II_U;
2054 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2055 case Intrinsic::aarch64_sve_mul_u:
2056 return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2057 case Intrinsic::aarch64_sve_sabd:
2058 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sabd_u);
2059 case Intrinsic::aarch64_sve_smax:
2060 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smax_u);
2061 case Intrinsic::aarch64_sve_smin:
2062 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smin_u);
2063 case Intrinsic::aarch64_sve_smulh:
2064 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smulh_u);
2065 case Intrinsic::aarch64_sve_sub:
2066 return instCombineSVEVectorSub(IC, II);
2067 case Intrinsic::aarch64_sve_sub_u:
2068 return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2069 Intrinsic::aarch64_sve_mls_u>(
2070 IC, II, true);
2071 case Intrinsic::aarch64_sve_uabd:
2072 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uabd_u);
2073 case Intrinsic::aarch64_sve_umax:
2074 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umax_u);
2075 case Intrinsic::aarch64_sve_umin:
2076 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umin_u);
2077 case Intrinsic::aarch64_sve_umulh:
2078 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umulh_u);
2079 case Intrinsic::aarch64_sve_asr:
2080 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_asr_u);
2081 case Intrinsic::aarch64_sve_lsl:
2082 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsl_u);
2083 case Intrinsic::aarch64_sve_lsr:
2084 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsr_u);
2085 case Intrinsic::aarch64_sve_and:
2086 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_and_u);
2087 case Intrinsic::aarch64_sve_bic:
2088 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_bic_u);
2089 case Intrinsic::aarch64_sve_eor:
2090 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_eor_u);
2091 case Intrinsic::aarch64_sve_orr:
2092 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_orr_u);
2093 case Intrinsic::aarch64_sve_sqsub:
2094 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sqsub_u);
2095 case Intrinsic::aarch64_sve_uqsub:
2096 return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uqsub_u);
2097 case Intrinsic::aarch64_sve_tbl:
2098 return instCombineSVETBL(IC, II);
2099 case Intrinsic::aarch64_sve_uunpkhi:
2100 case Intrinsic::aarch64_sve_uunpklo:
2101 case Intrinsic::aarch64_sve_sunpkhi:
2102 case Intrinsic::aarch64_sve_sunpklo:
2103 return instCombineSVEUnpack(IC, II);
2104 case Intrinsic::aarch64_sve_uzp1:
2105 return instCombineSVEUzp1(IC, II);
2106 case Intrinsic::aarch64_sve_zip1:
2107 case Intrinsic::aarch64_sve_zip2:
2108 return instCombineSVEZip(IC, II);
2109 case Intrinsic::aarch64_sve_ld1_gather_index:
2110 return instCombineLD1GatherIndex(IC, II);
2111 case Intrinsic::aarch64_sve_st1_scatter_index:
2112 return instCombineST1ScatterIndex(IC, II);
2113 case Intrinsic::aarch64_sve_ld1:
2114 return instCombineSVELD1(IC, II, DL);
2115 case Intrinsic::aarch64_sve_st1:
2116 return instCombineSVEST1(IC, II, DL);
2117 case Intrinsic::aarch64_sve_sdiv:
2118 return instCombineSVESDIV(IC, II);
2119 case Intrinsic::aarch64_sve_sel:
2120 return instCombineSVESel(IC, II);
2121 case Intrinsic::aarch64_sve_srshl:
2122 return instCombineSVESrshl(IC, II);
2123 case Intrinsic::aarch64_sve_dupq_lane:
2124 return instCombineSVEDupqLane(IC, II);
2125 }
2126
2127 return std::nullopt;
2128}
2129
2130std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
2131 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
2132 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
2133 std::function<void(Instruction *, unsigned, APInt, APInt &)>
2134 SimplifyAndSetOp) const {
2135 switch (II.getIntrinsicID()) {
2136 default:
2137 break;
2138 case Intrinsic::aarch64_neon_fcvtxn:
2139 case Intrinsic::aarch64_neon_rshrn:
2140 case Intrinsic::aarch64_neon_sqrshrn:
2141 case Intrinsic::aarch64_neon_sqrshrun:
2142 case Intrinsic::aarch64_neon_sqshrn:
2143 case Intrinsic::aarch64_neon_sqshrun:
2144 case Intrinsic::aarch64_neon_sqxtn:
2145 case Intrinsic::aarch64_neon_sqxtun:
2146 case Intrinsic::aarch64_neon_uqrshrn:
2147 case Intrinsic::aarch64_neon_uqshrn:
2148 case Intrinsic::aarch64_neon_uqxtn:
2149 SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
2150 break;
2151 }
2152
2153 return std::nullopt;
2154}
2155
2156TypeSize
2157AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
2158 switch (K) {
2159 case TargetTransformInfo::RGK_Scalar:
2160 return TypeSize::getFixed(ExactSize: 64);
2161 case TargetTransformInfo::RGK_FixedWidthVector:
2162 if (!ST->isNeonAvailable() && !EnableFixedwidthAutovecInStreamingMode)
2163 return TypeSize::getFixed(ExactSize: 0);
2164
2165 if (ST->hasSVE())
2166 return TypeSize::getFixed(
2167 ExactSize: std::max(a: ST->getMinSVEVectorSizeInBits(), b: 128u));
2168
2169 return TypeSize::getFixed(ExactSize: ST->hasNEON() ? 128 : 0);
2170 case TargetTransformInfo::RGK_ScalableVector:
2171 if (!ST->isSVEAvailable() && !EnableScalableAutovecInStreamingMode)
2172 return TypeSize::getScalable(MinimumSize: 0);
2173
2174 return TypeSize::getScalable(MinimumSize: ST->hasSVE() ? 128 : 0);
2175 }
2176 llvm_unreachable("Unsupported register kind");
2177}
2178
2179bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
2180 ArrayRef<const Value *> Args,
2181 Type *SrcOverrideTy) {
2182 // A helper that returns a vector type from the given type. The number of
2183 // elements in type Ty determines the vector width.
2184 auto toVectorTy = [&](Type *ArgTy) {
2185 return VectorType::get(ElementType: ArgTy->getScalarType(),
2186 EC: cast<VectorType>(Val: DstTy)->getElementCount());
2187 };
2188
2189 // Exit early if DstTy is not a vector type whose elements are one of [i16,
2190 // i32, i64]. SVE doesn't generally have the same set of instructions to
2191 // perform an extend with the add/sub/mul. There are SMULLB style
2192 // instructions, but they operate on top/bottom, requiring some sort of lane
2193 // interleaving to be used with zext/sext.
2194 unsigned DstEltSize = DstTy->getScalarSizeInBits();
2195 if (!useNeonVector(Ty: DstTy) || Args.size() != 2 ||
2196 (DstEltSize != 16 && DstEltSize != 32 && DstEltSize != 64))
2197 return false;
2198
2199 // Determine if the operation has a widening variant. We consider both the
2200 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
2201 // instructions.
2202 //
2203 // TODO: Add additional widening operations (e.g., shl, etc.) once we
2204 // verify that their extending operands are eliminated during code
2205 // generation.
2206 Type *SrcTy = SrcOverrideTy;
2207 switch (Opcode) {
2208 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
2209 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
2210 // The second operand needs to be an extend
2211 if (isa<SExtInst>(Val: Args[1]) || isa<ZExtInst>(Val: Args[1])) {
2212 if (!SrcTy)
2213 SrcTy =
2214 toVectorTy(cast<Instruction>(Val: Args[1])->getOperand(i: 0)->getType());
2215 } else
2216 return false;
2217 break;
2218 case Instruction::Mul: { // SMULL(2), UMULL(2)
2219 // Both operands need to be extends of the same type.
2220 if ((isa<SExtInst>(Val: Args[0]) && isa<SExtInst>(Val: Args[1])) ||
2221 (isa<ZExtInst>(Val: Args[0]) && isa<ZExtInst>(Val: Args[1]))) {
2222 if (!SrcTy)
2223 SrcTy =
2224 toVectorTy(cast<Instruction>(Val: Args[0])->getOperand(i: 0)->getType());
2225 } else if (isa<ZExtInst>(Val: Args[0]) || isa<ZExtInst>(Val: Args[1])) {
2226 // If one of the operands is a Zext and the other has enough zero bits to
2227 // be treated as unsigned, we can still general a umull, meaning the zext
2228 // is free.
2229 KnownBits Known =
2230 computeKnownBits(V: isa<ZExtInst>(Val: Args[0]) ? Args[1] : Args[0], DL);
2231 if (Args[0]->getType()->getScalarSizeInBits() -
2232 Known.Zero.countLeadingOnes() >
2233 DstTy->getScalarSizeInBits() / 2)
2234 return false;
2235 if (!SrcTy)
2236 SrcTy = toVectorTy(Type::getIntNTy(C&: DstTy->getContext(),
2237 N: DstTy->getScalarSizeInBits() / 2));
2238 } else
2239 return false;
2240 break;
2241 }
2242 default:
2243 return false;
2244 }
2245
2246 // Legalize the destination type and ensure it can be used in a widening
2247 // operation.
2248 auto DstTyL = getTypeLegalizationCost(Ty: DstTy);
2249 if (!DstTyL.second.isVector() || DstEltSize != DstTy->getScalarSizeInBits())
2250 return false;
2251
2252 // Legalize the source type and ensure it can be used in a widening
2253 // operation.
2254 assert(SrcTy && "Expected some SrcTy");
2255 auto SrcTyL = getTypeLegalizationCost(Ty: SrcTy);
2256 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
2257 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
2258 return false;
2259
2260 // Get the total number of vector elements in the legalized types.
2261 InstructionCost NumDstEls =
2262 DstTyL.first * DstTyL.second.getVectorMinNumElements();
2263 InstructionCost NumSrcEls =
2264 SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
2265
2266 // Return true if the legalized types have the same number of vector elements
2267 // and the destination element type size is twice that of the source type.
2268 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstEltSize;
2269}
2270
2271// s/urhadd instructions implement the following pattern, making the
2272// extends free:
2273// %x = add ((zext i8 -> i16), 1)
2274// %y = (zext i8 -> i16)
2275// trunc i16 (lshr (add %x, %y), 1) -> i8
2276//
2277bool AArch64TTIImpl::isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst,
2278 Type *Src) {
2279 // The source should be a legal vector type.
2280 if (!Src->isVectorTy() || !TLI->isTypeLegal(VT: TLI->getValueType(DL, Ty: Src)) ||
2281 (Src->isScalableTy() && !ST->hasSVE2()))
2282 return false;
2283
2284 if (ExtUser->getOpcode() != Instruction::Add || !ExtUser->hasOneUse())
2285 return false;
2286
2287 // Look for trunc/shl/add before trying to match the pattern.
2288 const Instruction *Add = ExtUser;
2289 auto *AddUser =
2290 dyn_cast_or_null<Instruction>(Val: Add->getUniqueUndroppableUser());
2291 if (AddUser && AddUser->getOpcode() == Instruction::Add)
2292 Add = AddUser;
2293
2294 auto *Shr = dyn_cast_or_null<Instruction>(Val: Add->getUniqueUndroppableUser());
2295 if (!Shr || Shr->getOpcode() != Instruction::LShr)
2296 return false;
2297
2298 auto *Trunc = dyn_cast_or_null<Instruction>(Val: Shr->getUniqueUndroppableUser());
2299 if (!Trunc || Trunc->getOpcode() != Instruction::Trunc ||
2300 Src->getScalarSizeInBits() !=
2301 cast<CastInst>(Val: Trunc)->getDestTy()->getScalarSizeInBits())
2302 return false;
2303
2304 // Try to match the whole pattern. Ext could be either the first or second
2305 // m_ZExtOrSExt matched.
2306 Instruction *Ex1, *Ex2;
2307 if (!(match(V: Add, P: m_c_Add(L: m_Instruction(I&: Ex1),
2308 R: m_c_Add(L: m_Instruction(I&: Ex2), R: m_SpecificInt(V: 1))))))
2309 return false;
2310
2311 // Ensure both extends are of the same type
2312 if (match(V: Ex1, P: m_ZExtOrSExt(Op: m_Value())) &&
2313 Ex1->getOpcode() == Ex2->getOpcode())
2314 return true;
2315
2316 return false;
2317}
2318
2319InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2320 Type *Src,
2321 TTI::CastContextHint CCH,
2322 TTI::TargetCostKind CostKind,
2323 const Instruction *I) {
2324 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2325 assert(ISD && "Invalid opcode");
2326 // If the cast is observable, and it is used by a widening instruction (e.g.,
2327 // uaddl, saddw, etc.), it may be free.
2328 if (I && I->hasOneUser()) {
2329 auto *SingleUser = cast<Instruction>(Val: *I->user_begin());
2330 SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
2331 if (isWideningInstruction(DstTy: Dst, Opcode: SingleUser->getOpcode(), Args: Operands, SrcOverrideTy: Src)) {
2332 // For adds only count the second operand as free if both operands are
2333 // extends but not the same operation. (i.e both operands are not free in
2334 // add(sext, zext)).
2335 if (SingleUser->getOpcode() == Instruction::Add) {
2336 if (I == SingleUser->getOperand(i: 1) ||
2337 (isa<CastInst>(Val: SingleUser->getOperand(i: 1)) &&
2338 cast<CastInst>(Val: SingleUser->getOperand(i: 1))->getOpcode() == Opcode))
2339 return 0;
2340 } else // Others are free so long as isWideningInstruction returned true.
2341 return 0;
2342 }
2343
2344 // The cast will be free for the s/urhadd instructions
2345 if ((isa<ZExtInst>(Val: I) || isa<SExtInst>(Val: I)) &&
2346 isExtPartOfAvgExpr(ExtUser: SingleUser, Dst, Src))
2347 return 0;
2348 }
2349
2350 // TODO: Allow non-throughput costs that aren't binary.
2351 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
2352 if (CostKind != TTI::TCK_RecipThroughput)
2353 return Cost == 0 ? 0 : 1;
2354 return Cost;
2355 };
2356
2357 EVT SrcTy = TLI->getValueType(DL, Ty: Src);
2358 EVT DstTy = TLI->getValueType(DL, Ty: Dst);
2359
2360 if (!SrcTy.isSimple() || !DstTy.isSimple())
2361 return AdjustCost(
2362 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2363
2364 static const TypeConversionCostTblEntry
2365 ConversionTbl[] = {
2366 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn
2367 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn
2368 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn
2369 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn
2370 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1
2371 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn
2372 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn
2373 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1
2374 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn
2375 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn
2376 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn
2377 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1
2378 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1
2379 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1
2380 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1
2381 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1
2382 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1
2383 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1
2384 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1
2385 { ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1
2386
2387 // Truncations on nxvmiN
2388 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
2389 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
2390 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
2391 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
2392 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
2393 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
2394 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
2395 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
2396 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
2397 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
2398 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
2399 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
2400 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
2401 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
2402 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
2403 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
2404
2405 // The number of shll instructions for the extension.
2406 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
2407 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
2408 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2409 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2410 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
2411 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
2412 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2413 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2414 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
2415 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
2416 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
2417 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
2418 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2419 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2420 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2421 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2422
2423 // LowerVectorINT_TO_FP:
2424 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2425 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2426 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2427 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2428 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2429 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2430
2431 // Complex: to v2f32
2432 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
2433 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2434 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2435 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
2436 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2437 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2438
2439 // Complex: to v4f32
2440 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
2441 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2442 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
2443 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2444
2445 // Complex: to v8f32
2446 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
2447 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2448 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
2449 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2450
2451 // Complex: to v16f32
2452 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2453 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2454
2455 // Complex: to v2f64
2456 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
2457 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2458 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2459 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
2460 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2461 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2462
2463 // Complex: to v4f64
2464 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
2465 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4 },
2466
2467 // LowerVectorFP_TO_INT
2468 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
2469 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2470 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
2471 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
2472 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
2473 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
2474
2475 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
2476 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
2477 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
2478 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
2479 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
2480 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
2481 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
2482
2483 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
2484 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
2485 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
2486 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
2487 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
2488
2489 // Complex, from nxv2f32.
2490 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2491 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2492 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2493 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
2494 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2495 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2496 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2497 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 },
2498
2499 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
2500 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
2501 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
2502 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
2503 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
2504 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
2505 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
2506
2507 // Complex, from nxv2f64.
2508 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2509 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2510 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2511 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
2512 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2513 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2514 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2515 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 },
2516
2517 // Complex, from nxv4f32.
2518 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2519 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2520 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2521 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
2522 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2523 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2524 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2525 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 },
2526
2527 // Complex, from nxv8f64. Illegal -> illegal conversions not required.
2528 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2529 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
2530 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2531 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 },
2532
2533 // Complex, from nxv4f64. Illegal -> illegal conversions not required.
2534 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2535 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2536 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
2537 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2538 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2539 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 },
2540
2541 // Complex, from nxv8f32. Illegal -> illegal conversions not required.
2542 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2543 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
2544 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2545 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 },
2546
2547 // Complex, from nxv8f16.
2548 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2549 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2550 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2551 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
2552 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2553 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2554 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2555 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 },
2556
2557 // Complex, from nxv4f16.
2558 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2559 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2560 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2561 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
2562 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2563 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2564 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2565 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 },
2566
2567 // Complex, from nxv2f16.
2568 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2569 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2570 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2571 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
2572 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2573 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2574 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2575 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 },
2576
2577 // Truncate from nxvmf32 to nxvmf16.
2578 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
2579 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
2580 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
2581
2582 // Truncate from nxvmf64 to nxvmf16.
2583 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
2584 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
2585 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
2586
2587 // Truncate from nxvmf64 to nxvmf32.
2588 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
2589 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
2590 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
2591
2592 // Extend from nxvmf16 to nxvmf32.
2593 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
2594 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
2595 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
2596
2597 // Extend from nxvmf16 to nxvmf64.
2598 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
2599 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
2600 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
2601
2602 // Extend from nxvmf32 to nxvmf64.
2603 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
2604 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
2605 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
2606
2607 // Bitcasts from float to integer
2608 { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
2609 { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
2610 { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
2611
2612 // Bitcasts from integer to float
2613 { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
2614 { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
2615 { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
2616
2617 // Add cost for extending to illegal -too wide- scalable vectors.
2618 // zero/sign extend are implemented by multiple unpack operations,
2619 // where each operation has a cost of 1.
2620 { ISD::ZERO_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2621 { ISD::ZERO_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2622 { ISD::ZERO_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2623 { ISD::ZERO_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2624 { ISD::ZERO_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2625 { ISD::ZERO_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2626
2627 { ISD::SIGN_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2628 { ISD::SIGN_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2629 { ISD::SIGN_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2630 { ISD::SIGN_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2631 { ISD::SIGN_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2632 { ISD::SIGN_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2633 };
2634
2635 // We have to estimate a cost of fixed length operation upon
2636 // SVE registers(operations) with the number of registers required
2637 // for a fixed type to be represented upon SVE registers.
2638 EVT WiderTy = SrcTy.bitsGT(VT: DstTy) ? SrcTy : DstTy;
2639 if (SrcTy.isFixedLengthVector() && DstTy.isFixedLengthVector() &&
2640 SrcTy.getVectorNumElements() == DstTy.getVectorNumElements() &&
2641 ST->useSVEForFixedLengthVectors(VT: WiderTy)) {
2642 std::pair<InstructionCost, MVT> LT =
2643 getTypeLegalizationCost(Ty: WiderTy.getTypeForEVT(Context&: Dst->getContext()));
2644 unsigned NumElements = AArch64::SVEBitsPerBlock /
2645 LT.second.getVectorElementType().getSizeInBits();
2646 return AdjustCost(
2647 LT.first *
2648 getCastInstrCost(
2649 Opcode, Dst: ScalableVectorType::get(ElementType: Dst->getScalarType(), MinNumElts: NumElements),
2650 Src: ScalableVectorType::get(ElementType: Src->getScalarType(), MinNumElts: NumElements), CCH,
2651 CostKind, I));
2652 }
2653
2654 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
2655 DstTy.getSimpleVT(),
2656 SrcTy.getSimpleVT()))
2657 return AdjustCost(Entry->Cost);
2658
2659 static const TypeConversionCostTblEntry FP16Tbl[] = {
2660 {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
2661 {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
2662 {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
2663 {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
2664 {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
2665 {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
2666 {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
2667 {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
2668 {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
2669 {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
2670 {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
2671 {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
2672 {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
2673 {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
2674 {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
2675 {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
2676 {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
2677 {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
2678 {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf
2679 {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf
2680 {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
2681 {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
2682 };
2683
2684 if (ST->hasFullFP16())
2685 if (const auto *Entry = ConvertCostTableLookup(
2686 FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
2687 return AdjustCost(Entry->Cost);
2688
2689 if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2690 CCH == TTI::CastContextHint::Masked && ST->hasSVEorSME() &&
2691 TLI->getTypeAction(Context&: Src->getContext(), VT: SrcTy) ==
2692 TargetLowering::TypePromoteInteger &&
2693 TLI->getTypeAction(Context&: Dst->getContext(), VT: DstTy) ==
2694 TargetLowering::TypeSplitVector) {
2695 // The standard behaviour in the backend for these cases is to split the
2696 // extend up into two parts:
2697 // 1. Perform an extending load or masked load up to the legal type.
2698 // 2. Extend the loaded data to the final type.
2699 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Ty: Src);
2700 Type *LegalTy = EVT(SrcLT.second).getTypeForEVT(Context&: Src->getContext());
2701 InstructionCost Part1 = AArch64TTIImpl::getCastInstrCost(
2702 Opcode, Dst: LegalTy, Src, CCH, CostKind, I);
2703 InstructionCost Part2 = AArch64TTIImpl::getCastInstrCost(
2704 Opcode, Dst, Src: LegalTy, CCH: TTI::CastContextHint::None, CostKind, I);
2705 return Part1 + Part2;
2706 }
2707
2708 // The BasicTTIImpl version only deals with CCH==TTI::CastContextHint::Normal,
2709 // but we also want to include the TTI::CastContextHint::Masked case too.
2710 if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2711 CCH == TTI::CastContextHint::Masked && ST->hasSVEorSME() &&
2712 TLI->isTypeLegal(VT: DstTy))
2713 CCH = TTI::CastContextHint::Normal;
2714
2715 return AdjustCost(
2716 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2717}
2718
2719InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
2720 Type *Dst,
2721 VectorType *VecTy,
2722 unsigned Index) {
2723
2724 // Make sure we were given a valid extend opcode.
2725 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
2726 "Invalid opcode");
2727
2728 // We are extending an element we extract from a vector, so the source type
2729 // of the extend is the element type of the vector.
2730 auto *Src = VecTy->getElementType();
2731
2732 // Sign- and zero-extends are for integer types only.
2733 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
2734
2735 // Get the cost for the extract. We compute the cost (if any) for the extend
2736 // below.
2737 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2738 InstructionCost Cost = getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: VecTy,
2739 CostKind, Index, Op0: nullptr, Op1: nullptr);
2740
2741 // Legalize the types.
2742 auto VecLT = getTypeLegalizationCost(Ty: VecTy);
2743 auto DstVT = TLI->getValueType(DL, Ty: Dst);
2744 auto SrcVT = TLI->getValueType(DL, Ty: Src);
2745
2746 // If the resulting type is still a vector and the destination type is legal,
2747 // we may get the extension for free. If not, get the default cost for the
2748 // extend.
2749 if (!VecLT.second.isVector() || !TLI->isTypeLegal(VT: DstVT))
2750 return Cost + getCastInstrCost(Opcode, Dst, Src, CCH: TTI::CastContextHint::None,
2751 CostKind);
2752
2753 // The destination type should be larger than the element type. If not, get
2754 // the default cost for the extend.
2755 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
2756 return Cost + getCastInstrCost(Opcode, Dst, Src, CCH: TTI::CastContextHint::None,
2757 CostKind);
2758
2759 switch (Opcode) {
2760 default:
2761 llvm_unreachable("Opcode should be either SExt or ZExt");
2762
2763 // For sign-extends, we only need a smov, which performs the extension
2764 // automatically.
2765 case Instruction::SExt:
2766 return Cost;
2767
2768 // For zero-extends, the extend is performed automatically by a umov unless
2769 // the destination type is i64 and the element type is i8 or i16.
2770 case Instruction::ZExt:
2771 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
2772 return Cost;
2773 }
2774
2775 // If we are unable to perform the extend for free, get the default cost.
2776 return Cost + getCastInstrCost(Opcode, Dst, Src, CCH: TTI::CastContextHint::None,
2777 CostKind);
2778}
2779
2780InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
2781 TTI::TargetCostKind CostKind,
2782 const Instruction *I) {
2783 if (CostKind != TTI::TCK_RecipThroughput)
2784 return Opcode == Instruction::PHI ? 0 : 1;
2785 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
2786 // Branches are assumed to be predicted.
2787 return 0;
2788}
2789
2790InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(const Instruction *I,
2791 Type *Val,
2792 unsigned Index,
2793 bool HasRealUse) {
2794 assert(Val->isVectorTy() && "This must be a vector type");
2795
2796 if (Index != -1U) {
2797 // Legalize the type.
2798 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Val);
2799
2800 // This type is legalized to a scalar type.
2801 if (!LT.second.isVector())
2802 return 0;
2803
2804 // The type may be split. For fixed-width vectors we can normalize the
2805 // index to the new type.
2806 if (LT.second.isFixedLengthVector()) {
2807 unsigned Width = LT.second.getVectorNumElements();
2808 Index = Index % Width;
2809 }
2810
2811 // The element at index zero is already inside the vector.
2812 // - For a physical (HasRealUse==true) insert-element or extract-element
2813 // instruction that extracts integers, an explicit FPR -> GPR move is
2814 // needed. So it has non-zero cost.
2815 // - For the rest of cases (virtual instruction or element type is float),
2816 // consider the instruction free.
2817 if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
2818 return 0;
2819
2820 // This is recognising a LD1 single-element structure to one lane of one
2821 // register instruction. I.e., if this is an `insertelement` instruction,
2822 // and its second operand is a load, then we will generate a LD1, which
2823 // are expensive instructions.
2824 if (I && dyn_cast<LoadInst>(Val: I->getOperand(i: 1)))
2825 return ST->getVectorInsertExtractBaseCost() + 1;
2826
2827 // i1 inserts and extract will include an extra cset or cmp of the vector
2828 // value. Increase the cost by 1 to account.
2829 if (Val->getScalarSizeInBits() == 1)
2830 return ST->getVectorInsertExtractBaseCost() + 1;
2831
2832 // FIXME:
2833 // If the extract-element and insert-element instructions could be
2834 // simplified away (e.g., could be combined into users by looking at use-def
2835 // context), they have no cost. This is not done in the first place for
2836 // compile-time considerations.
2837 }
2838
2839 // All other insert/extracts cost this much.
2840 return ST->getVectorInsertExtractBaseCost();
2841}
2842
2843InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
2844 TTI::TargetCostKind CostKind,
2845 unsigned Index, Value *Op0,
2846 Value *Op1) {
2847 bool HasRealUse =
2848 Opcode == Instruction::InsertElement && Op0 && !isa<UndefValue>(Val: Op0);
2849 return getVectorInstrCostHelper(I: nullptr, Val, Index, HasRealUse);
2850}
2851
2852InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
2853 Type *Val,
2854 TTI::TargetCostKind CostKind,
2855 unsigned Index) {
2856 return getVectorInstrCostHelper(I: &I, Val, Index, HasRealUse: true /* HasRealUse */);
2857}
2858
2859InstructionCost AArch64TTIImpl::getScalarizationOverhead(
2860 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
2861 TTI::TargetCostKind CostKind) {
2862 if (isa<ScalableVectorType>(Val: Ty))
2863 return InstructionCost::getInvalid();
2864 if (Ty->getElementType()->isFloatingPointTy())
2865 return BaseT::getScalarizationOverhead(InTy: Ty, DemandedElts, Insert, Extract,
2866 CostKind);
2867 return DemandedElts.popcount() * (Insert + Extract) *
2868 ST->getVectorInsertExtractBaseCost();
2869}
2870
2871InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
2872 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2873 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
2874 ArrayRef<const Value *> Args,
2875 const Instruction *CxtI) {
2876
2877 // TODO: Handle more cost kinds.
2878 if (CostKind != TTI::TCK_RecipThroughput)
2879 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info,
2880 Opd2Info: Op2Info, Args, CxtI);
2881
2882 // Legalize the type.
2883 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
2884 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2885
2886 switch (ISD) {
2887 default:
2888 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info,
2889 Opd2Info: Op2Info);
2890 case ISD::SDIV:
2891 if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
2892 // On AArch64, scalar signed division by constants power-of-two are
2893 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
2894 // The OperandValue properties many not be same as that of previous
2895 // operation; conservatively assume OP_None.
2896 InstructionCost Cost = getArithmeticInstrCost(
2897 Opcode: Instruction::Add, Ty, CostKind,
2898 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2899 Cost += getArithmeticInstrCost(Opcode: Instruction::Sub, Ty, CostKind,
2900 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2901 Cost += getArithmeticInstrCost(
2902 Opcode: Instruction::Select, Ty, CostKind,
2903 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2904 Cost += getArithmeticInstrCost(Opcode: Instruction::AShr, Ty, CostKind,
2905 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2906 return Cost;
2907 }
2908 [[fallthrough]];
2909 case ISD::UDIV: {
2910 if (Op2Info.isConstant() && Op2Info.isUniform()) {
2911 auto VT = TLI->getValueType(DL, Ty);
2912 if (TLI->isOperationLegalOrCustom(Op: ISD::MULHU, VT)) {
2913 // Vector signed division by constant are expanded to the
2914 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
2915 // to MULHS + SUB + SRL + ADD + SRL.
2916 InstructionCost MulCost = getArithmeticInstrCost(
2917 Opcode: Instruction::Mul, Ty, CostKind, Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2918 InstructionCost AddCost = getArithmeticInstrCost(
2919 Opcode: Instruction::Add, Ty, CostKind, Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2920 InstructionCost ShrCost = getArithmeticInstrCost(
2921 Opcode: Instruction::AShr, Ty, CostKind, Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
2922 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
2923 }
2924 }
2925
2926 InstructionCost Cost = BaseT::getArithmeticInstrCost(
2927 Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info);
2928 if (Ty->isVectorTy()) {
2929 if (TLI->isOperationLegalOrCustom(Op: ISD, VT: LT.second) && ST->hasSVE()) {
2930 // SDIV/UDIV operations are lowered using SVE, then we can have less
2931 // costs.
2932 if (isa<FixedVectorType>(Val: Ty) && cast<FixedVectorType>(Val: Ty)
2933 ->getPrimitiveSizeInBits()
2934 .getFixedValue() < 128) {
2935 EVT VT = TLI->getValueType(DL, Ty);
2936 static const CostTblEntry DivTbl[]{
2937 {ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8},
2938 {ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5},
2939 {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
2940 {ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8},
2941 {ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5},
2942 {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
2943
2944 const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
2945 if (nullptr != Entry)
2946 return Entry->Cost;
2947 }
2948 // For 8/16-bit elements, the cost is higher because the type
2949 // requires promotion and possibly splitting:
2950 if (LT.second.getScalarType() == MVT::i8)
2951 Cost *= 8;
2952 else if (LT.second.getScalarType() == MVT::i16)
2953 Cost *= 4;
2954 return Cost;
2955 } else {
2956 // If one of the operands is a uniform constant then the cost for each
2957 // element is Cost for insertion, extraction and division.
2958 // Insertion cost = 2, Extraction Cost = 2, Division = cost for the
2959 // operation with scalar type
2960 if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
2961 (Op2Info.isConstant() && Op2Info.isUniform())) {
2962 if (auto *VTy = dyn_cast<FixedVectorType>(Val: Ty)) {
2963 InstructionCost DivCost = BaseT::getArithmeticInstrCost(
2964 Opcode, Ty: Ty->getScalarType(), CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info);
2965 return (4 + DivCost) * VTy->getNumElements();
2966 }
2967 }
2968 // On AArch64, without SVE, vector divisions are expanded
2969 // into scalar divisions of each pair of elements.
2970 Cost += getArithmeticInstrCost(Opcode: Instruction::ExtractElement, Ty,
2971 CostKind, Op1Info, Op2Info);
2972 Cost += getArithmeticInstrCost(Opcode: Instruction::InsertElement, Ty, CostKind,
2973 Op1Info, Op2Info);
2974 }
2975
2976 // TODO: if one of the arguments is scalar, then it's not necessary to
2977 // double the cost of handling the vector elements.
2978 Cost += Cost;
2979 }
2980 return Cost;
2981 }
2982 case ISD::MUL:
2983 // When SVE is available, then we can lower the v2i64 operation using
2984 // the SVE mul instruction, which has a lower cost.
2985 if (LT.second == MVT::v2i64 && ST->hasSVE())
2986 return LT.first;
2987
2988 // When SVE is not available, there is no MUL.2d instruction,
2989 // which means mul <2 x i64> is expensive as elements are extracted
2990 // from the vectors and the muls scalarized.
2991 // As getScalarizationOverhead is a bit too pessimistic, we
2992 // estimate the cost for a i64 vector directly here, which is:
2993 // - four 2-cost i64 extracts,
2994 // - two 2-cost i64 inserts, and
2995 // - two 1-cost muls.
2996 // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
2997 // LT.first = 2 the cost is 28. If both operands are extensions it will not
2998 // need to scalarize so the cost can be cheaper (smull or umull).
2999 // so the cost can be cheaper (smull or umull).
3000 if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
3001 return LT.first;
3002 return LT.first * 14;
3003 case ISD::ADD:
3004 case ISD::XOR:
3005 case ISD::OR:
3006 case ISD::AND:
3007 case ISD::SRL:
3008 case ISD::SRA:
3009 case ISD::SHL:
3010 // These nodes are marked as 'custom' for combining purposes only.
3011 // We know that they are legal. See LowerAdd in ISelLowering.
3012 return LT.first;
3013
3014 case ISD::FNEG:
3015 case ISD::FADD:
3016 case ISD::FSUB:
3017 // Increase the cost for half and bfloat types if not architecturally
3018 // supported.
3019 if ((Ty->getScalarType()->isHalfTy() && !ST->hasFullFP16()) ||
3020 (Ty->getScalarType()->isBFloatTy() && !ST->hasBF16()))
3021 return 2 * LT.first;
3022 if (!Ty->getScalarType()->isFP128Ty())
3023 return LT.first;
3024 [[fallthrough]];
3025 case ISD::FMUL:
3026 case ISD::FDIV:
3027 // These nodes are marked as 'custom' just to lower them to SVE.
3028 // We know said lowering will incur no additional cost.
3029 if (!Ty->getScalarType()->isFP128Ty())
3030 return 2 * LT.first;
3031
3032 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info,
3033 Opd2Info: Op2Info);
3034 case ISD::FREM:
3035 // Pass nullptr as fmod/fmodf calls are emitted by the backend even when
3036 // those functions are not declared in the module.
3037 if (!Ty->isVectorTy())
3038 return getCallInstrCost(/*Function*/ F: nullptr, RetTy: Ty, Tys: {Ty, Ty}, CostKind);
3039 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info,
3040 Opd2Info: Op2Info);
3041 }
3042}
3043
3044InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
3045 ScalarEvolution *SE,
3046 const SCEV *Ptr) {
3047 // Address computations in vectorized code with non-consecutive addresses will
3048 // likely result in more instructions compared to scalar code where the
3049 // computation can more often be merged into the index mode. The resulting
3050 // extra micro-ops can significantly decrease throughput.
3051 unsigned NumVectorInstToHideOverhead = NeonNonConstStrideOverhead;
3052 int MaxMergeDistance = 64;
3053
3054 if (Ty->isVectorTy() && SE &&
3055 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MergeDistance: MaxMergeDistance + 1))
3056 return NumVectorInstToHideOverhead;
3057
3058 // In many cases the address computation is not merged into the instruction
3059 // addressing mode.
3060 return 1;
3061}
3062
3063InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
3064 Type *CondTy,
3065 CmpInst::Predicate VecPred,
3066 TTI::TargetCostKind CostKind,
3067 const Instruction *I) {
3068 // TODO: Handle other cost kinds.
3069 if (CostKind != TTI::TCK_RecipThroughput)
3070 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3071 I);
3072
3073 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3074 // We don't lower some vector selects well that are wider than the register
3075 // width.
3076 if (isa<FixedVectorType>(Val: ValTy) && ISD == ISD::SELECT) {
3077 // We would need this many instructions to hide the scalarization happening.
3078 const int AmortizationCost = 20;
3079
3080 // If VecPred is not set, check if we can get a predicate from the context
3081 // instruction, if its type matches the requested ValTy.
3082 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
3083 CmpInst::Predicate CurrentPred;
3084 if (match(V: I, P: m_Select(C: m_Cmp(Pred&: CurrentPred, L: m_Value(), R: m_Value()), L: m_Value(),
3085 R: m_Value())))
3086 VecPred = CurrentPred;
3087 }
3088 // Check if we have a compare/select chain that can be lowered using
3089 // a (F)CMxx & BFI pair.
3090 if (CmpInst::isIntPredicate(P: VecPred) || VecPred == CmpInst::FCMP_OLE ||
3091 VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
3092 VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
3093 VecPred == CmpInst::FCMP_UNE) {
3094 static const auto ValidMinMaxTys = {
3095 MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
3096 MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
3097 static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
3098
3099 auto LT = getTypeLegalizationCost(Ty: ValTy);
3100 if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
3101 (ST->hasFullFP16() &&
3102 any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
3103 return LT.first;
3104 }
3105
3106 static const TypeConversionCostTblEntry
3107 VectorSelectTbl[] = {
3108 { ISD::SELECT, MVT::v2i1, MVT::v2f32, 2 },
3109 { ISD::SELECT, MVT::v2i1, MVT::v2f64, 2 },
3110 { ISD::SELECT, MVT::v4i1, MVT::v4f32, 2 },
3111 { ISD::SELECT, MVT::v4i1, MVT::v4f16, 2 },
3112 { ISD::SELECT, MVT::v8i1, MVT::v8f16, 2 },
3113 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
3114 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
3115 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
3116 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
3117 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
3118 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
3119 };
3120
3121 EVT SelCondTy = TLI->getValueType(DL, Ty: CondTy);
3122 EVT SelValTy = TLI->getValueType(DL, Ty: ValTy);
3123 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
3124 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
3125 SelCondTy.getSimpleVT(),
3126 SelValTy.getSimpleVT()))
3127 return Entry->Cost;
3128 }
3129 }
3130
3131 if (isa<FixedVectorType>(Val: ValTy) && ISD == ISD::SETCC) {
3132 auto LT = getTypeLegalizationCost(Ty: ValTy);
3133 // Cost v4f16 FCmp without FP16 support via converting to v4f32 and back.
3134 if (LT.second == MVT::v4f16 && !ST->hasFullFP16())
3135 return LT.first * 4; // fcvtl + fcvtl + fcmp + xtn
3136 }
3137
3138 // Treat the icmp in icmp(and, 0) as free, as we can make use of ands.
3139 // FIXME: This can apply to more conditions and add/sub if it can be shown to
3140 // be profitable.
3141 if (ValTy->isIntegerTy() && ISD == ISD::SETCC && I &&
3142 ICmpInst::isEquality(P: VecPred) &&
3143 TLI->isTypeLegal(VT: TLI->getValueType(DL, Ty: ValTy)) &&
3144 match(V: I->getOperand(i: 1), P: m_Zero()) &&
3145 match(V: I->getOperand(i: 0), P: m_And(L: m_Value(), R: m_Value())))
3146 return 0;
3147
3148 // The base case handles scalable vectors fine for now, since it treats the
3149 // cost as 1 * legalization cost.
3150 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
3151}
3152
3153AArch64TTIImpl::TTI::MemCmpExpansionOptions
3154AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3155 TTI::MemCmpExpansionOptions Options;
3156 if (ST->requiresStrictAlign()) {
3157 // TODO: Add cost modeling for strict align. Misaligned loads expand to
3158 // a bunch of instructions when strict align is enabled.
3159 return Options;
3160 }
3161 Options.AllowOverlappingLoads = true;
3162 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3163 Options.NumLoadsPerBlock = Options.MaxNumLoads;
3164 // TODO: Though vector loads usually perform well on AArch64, in some targets
3165 // they may wake up the FP unit, which raises the power consumption. Perhaps
3166 // they could be used with no holds barred (-O3).
3167 Options.LoadSizes = {8, 4, 2, 1};
3168 Options.AllowedTailExpansions = {3, 5, 6};
3169 return Options;
3170}
3171
3172bool AArch64TTIImpl::prefersVectorizedAddressing() const {
3173 return ST->hasSVE();
3174}
3175
3176InstructionCost
3177AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
3178 Align Alignment, unsigned AddressSpace,
3179 TTI::TargetCostKind CostKind) {
3180 if (useNeonVector(Ty: Src))
3181 return BaseT::getMaskedMemoryOpCost(Opcode, DataTy: Src, Alignment, AddressSpace,
3182 CostKind);
3183 auto LT = getTypeLegalizationCost(Ty: Src);
3184 if (!LT.first.isValid())
3185 return InstructionCost::getInvalid();
3186
3187 // The code-generator is currently not able to handle scalable vectors
3188 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3189 // it. This change will be removed when code-generation for these types is
3190 // sufficiently reliable.
3191 if (cast<VectorType>(Val: Src)->getElementCount() == ElementCount::getScalable(MinVal: 1))
3192 return InstructionCost::getInvalid();
3193
3194 return LT.first;
3195}
3196
3197static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
3198 return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
3199}
3200
3201InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
3202 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
3203 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
3204 if (useNeonVector(Ty: DataTy) || !isLegalMaskedGatherScatter(DataType: DataTy))
3205 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
3206 Alignment, CostKind, I);
3207 auto *VT = cast<VectorType>(Val: DataTy);
3208 auto LT = getTypeLegalizationCost(Ty: DataTy);
3209 if (!LT.first.isValid())
3210 return InstructionCost::getInvalid();
3211
3212 if (!LT.second.isVector() ||
3213 !isElementTypeLegalForScalableVector(Ty: VT->getElementType()))
3214 return InstructionCost::getInvalid();
3215
3216 // The code-generator is currently not able to handle scalable vectors
3217 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3218 // it. This change will be removed when code-generation for these types is
3219 // sufficiently reliable.
3220 if (cast<VectorType>(Val: DataTy)->getElementCount() ==
3221 ElementCount::getScalable(MinVal: 1))
3222 return InstructionCost::getInvalid();
3223
3224 ElementCount LegalVF = LT.second.getVectorElementCount();
3225 InstructionCost MemOpCost =
3226 getMemoryOpCost(Opcode, Src: VT->getElementType(), Alignment, AddressSpace: 0, CostKind,
3227 OpInfo: {.Kind: TTI::OK_AnyValue, .Properties: TTI::OP_None}, I);
3228 // Add on an overhead cost for using gathers/scatters.
3229 // TODO: At the moment this is applied unilaterally for all CPUs, but at some
3230 // point we may want a per-CPU overhead.
3231 MemOpCost *= getSVEGatherScatterOverhead(Opcode);
3232 return LT.first * MemOpCost * getMaxNumElements(VF: LegalVF);
3233}
3234
3235bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
3236 return isa<FixedVectorType>(Val: Ty) && !ST->useSVEForFixedLengthVectors();
3237}
3238
3239InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
3240 MaybeAlign Alignment,
3241 unsigned AddressSpace,
3242 TTI::TargetCostKind CostKind,
3243 TTI::OperandValueInfo OpInfo,
3244 const Instruction *I) {
3245 EVT VT = TLI->getValueType(DL, Ty, AllowUnknown: true);
3246 // Type legalization can't handle structs
3247 if (VT == MVT::Other)
3248 return BaseT::getMemoryOpCost(Opcode, Src: Ty, Alignment, AddressSpace,
3249 CostKind);
3250
3251 auto LT = getTypeLegalizationCost(Ty);
3252 if (!LT.first.isValid())
3253 return InstructionCost::getInvalid();
3254
3255 // The code-generator is currently not able to handle scalable vectors
3256 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3257 // it. This change will be removed when code-generation for these types is
3258 // sufficiently reliable.
3259 if (auto *VTy = dyn_cast<ScalableVectorType>(Val: Ty))
3260 if (VTy->getElementCount() == ElementCount::getScalable(MinVal: 1))
3261 return InstructionCost::getInvalid();
3262
3263 // TODO: consider latency as well for TCK_SizeAndLatency.
3264 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
3265 return LT.first;
3266
3267 if (CostKind != TTI::TCK_RecipThroughput)
3268 return 1;
3269
3270 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
3271 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
3272 // Unaligned stores are extremely inefficient. We don't split all
3273 // unaligned 128-bit stores because the negative impact that has shown in
3274 // practice on inlined block copy code.
3275 // We make such stores expensive so that we will only vectorize if there
3276 // are 6 other instructions getting vectorized.
3277 const int AmortizationCost = 6;
3278
3279 return LT.first * 2 * AmortizationCost;
3280 }
3281
3282 // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
3283 if (Ty->isPtrOrPtrVectorTy())
3284 return LT.first;
3285
3286 if (useNeonVector(Ty)) {
3287 // Check truncating stores and extending loads.
3288 if (Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
3289 // v4i8 types are lowered to scalar a load/store and sshll/xtn.
3290 if (VT == MVT::v4i8)
3291 return 2;
3292 // Otherwise we need to scalarize.
3293 return cast<FixedVectorType>(Val: Ty)->getNumElements() * 2;
3294 }
3295 EVT EltVT = VT.getVectorElementType();
3296 unsigned EltSize = EltVT.getScalarSizeInBits();
3297 if (!isPowerOf2_32(Value: EltSize) || EltSize < 8 || EltSize > 64 ||
3298 VT.getVectorNumElements() >= (128 / EltSize) || !Alignment ||
3299 *Alignment != Align(1))
3300 return LT.first;
3301 // FIXME: v3i8 lowering currently is very inefficient, due to automatic
3302 // widening to v4i8, which produces suboptimal results.
3303 if (VT.getVectorNumElements() == 3 && EltVT == MVT::i8)
3304 return LT.first;
3305
3306 // Check non-power-of-2 loads/stores for legal vector element types with
3307 // NEON. Non-power-of-2 memory ops will get broken down to a set of
3308 // operations on smaller power-of-2 ops, including ld1/st1.
3309 LLVMContext &C = Ty->getContext();
3310 InstructionCost Cost(0);
3311 SmallVector<EVT> TypeWorklist;
3312 TypeWorklist.push_back(Elt: VT);
3313 while (!TypeWorklist.empty()) {
3314 EVT CurrVT = TypeWorklist.pop_back_val();
3315 unsigned CurrNumElements = CurrVT.getVectorNumElements();
3316 if (isPowerOf2_32(Value: CurrNumElements)) {
3317 Cost += 1;
3318 continue;
3319 }
3320
3321 unsigned PrevPow2 = NextPowerOf2(A: CurrNumElements) / 2;
3322 TypeWorklist.push_back(Elt: EVT::getVectorVT(Context&: C, VT: EltVT, NumElements: PrevPow2));
3323 TypeWorklist.push_back(
3324 Elt: EVT::getVectorVT(Context&: C, VT: EltVT, NumElements: CurrNumElements - PrevPow2));
3325 }
3326 return Cost;
3327 }
3328
3329 return LT.first;
3330}
3331
3332InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
3333 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
3334 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
3335 bool UseMaskForCond, bool UseMaskForGaps) {
3336 assert(Factor >= 2 && "Invalid interleave factor");
3337 auto *VecVTy = cast<VectorType>(Val: VecTy);
3338
3339 if (VecTy->isScalableTy() && (!ST->hasSVE() || Factor != 2))
3340 return InstructionCost::getInvalid();
3341
3342 // Vectorization for masked interleaved accesses is only enabled for scalable
3343 // VF.
3344 if (!VecTy->isScalableTy() && (UseMaskForCond || UseMaskForGaps))
3345 return InstructionCost::getInvalid();
3346
3347 if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
3348 unsigned MinElts = VecVTy->getElementCount().getKnownMinValue();
3349 auto *SubVecTy =
3350 VectorType::get(ElementType: VecVTy->getElementType(),
3351 EC: VecVTy->getElementCount().divideCoefficientBy(RHS: Factor));
3352
3353 // ldN/stN only support legal vector types of size 64 or 128 in bits.
3354 // Accesses having vector types that are a multiple of 128 bits can be
3355 // matched to more than one ldN/stN instruction.
3356 bool UseScalable;
3357 if (MinElts % Factor == 0 &&
3358 TLI->isLegalInterleavedAccessType(VecTy: SubVecTy, DL, UseScalable))
3359 return Factor * TLI->getNumInterleavedAccesses(VecTy: SubVecTy, DL, UseScalable);
3360 }
3361
3362 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3363 Alignment, AddressSpace, CostKind,
3364 UseMaskForCond, UseMaskForGaps);
3365}
3366
3367InstructionCost
3368AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
3369 InstructionCost Cost = 0;
3370 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3371 for (auto *I : Tys) {
3372 if (!I->isVectorTy())
3373 continue;
3374 if (I->getScalarSizeInBits() * cast<FixedVectorType>(Val: I)->getNumElements() ==
3375 128)
3376 Cost += getMemoryOpCost(Opcode: Instruction::Store, Ty: I, Alignment: Align(128), AddressSpace: 0, CostKind) +
3377 getMemoryOpCost(Opcode: Instruction::Load, Ty: I, Alignment: Align(128), AddressSpace: 0, CostKind);
3378 }
3379 return Cost;
3380}
3381
3382unsigned AArch64TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
3383 return ST->getMaxInterleaveFactor();
3384}
3385
3386// For Falkor, we want to avoid having too many strided loads in a loop since
3387// that can exhaust the HW prefetcher resources. We adjust the unroller
3388// MaxCount preference below to attempt to ensure unrolling doesn't create too
3389// many strided loads.
3390static void
3391getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3392 TargetTransformInfo::UnrollingPreferences &UP) {
3393 enum { MaxStridedLoads = 7 };
3394 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
3395 int StridedLoads = 0;
3396 // FIXME? We could make this more precise by looking at the CFG and
3397 // e.g. not counting loads in each side of an if-then-else diamond.
3398 for (const auto BB : L->blocks()) {
3399 for (auto &I : *BB) {
3400 LoadInst *LMemI = dyn_cast<LoadInst>(Val: &I);
3401 if (!LMemI)
3402 continue;
3403
3404 Value *PtrValue = LMemI->getPointerOperand();
3405 if (L->isLoopInvariant(V: PtrValue))
3406 continue;
3407
3408 const SCEV *LSCEV = SE.getSCEV(V: PtrValue);
3409 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(Val: LSCEV);
3410 if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
3411 continue;
3412
3413 // FIXME? We could take pairing of unrolled load copies into account
3414 // by looking at the AddRec, but we would probably have to limit this
3415 // to loops with no stores or other memory optimization barriers.
3416 ++StridedLoads;
3417 // We've seen enough strided loads that seeing more won't make a
3418 // difference.
3419 if (StridedLoads > MaxStridedLoads / 2)
3420 return StridedLoads;
3421 }
3422 }
3423 return StridedLoads;
3424 };
3425
3426 int StridedLoads = countStridedLoads(L, SE);
3427 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
3428 << " strided loads\n");
3429 // Pick the largest power of 2 unroll count that won't result in too many
3430 // strided loads.
3431 if (StridedLoads) {
3432 UP.MaxCount = 1 << Log2_32(Value: MaxStridedLoads / StridedLoads);
3433 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
3434 << UP.MaxCount << '\n');
3435 }
3436}
3437
3438void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3439 TTI::UnrollingPreferences &UP,
3440 OptimizationRemarkEmitter *ORE) {
3441 // Enable partial unrolling and runtime unrolling.
3442 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
3443
3444 UP.UpperBound = true;
3445
3446 // For inner loop, it is more likely to be a hot one, and the runtime check
3447 // can be promoted out from LICM pass, so the overhead is less, let's try
3448 // a larger threshold to unroll more loops.
3449 if (L->getLoopDepth() > 1)
3450 UP.PartialThreshold *= 2;
3451
3452 // Disable partial & runtime unrolling on -Os.
3453 UP.PartialOptSizeThreshold = 0;
3454
3455 if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
3456 EnableFalkorHWPFUnrollFix)
3457 getFalkorUnrollingPreferences(L, SE, UP);
3458
3459 // Scan the loop: don't unroll loops with calls as this could prevent
3460 // inlining. Don't unroll vector loops either, as they don't benefit much from
3461 // unrolling.
3462 for (auto *BB : L->getBlocks()) {
3463 for (auto &I : *BB) {
3464 // Don't unroll vectorised loop.
3465 if (I.getType()->isVectorTy())
3466 return;
3467
3468 if (isa<CallInst>(Val: I) || isa<InvokeInst>(Val: I)) {
3469 if (const Function *F = cast<CallBase>(Val&: I).getCalledFunction()) {
3470 if (!isLoweredToCall(F))
3471 continue;
3472 }
3473 return;
3474 }
3475 }
3476 }
3477
3478 // Enable runtime unrolling for in-order models
3479 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
3480 // checking for that case, we can ensure that the default behaviour is
3481 // unchanged
3482 if (ST->getProcFamily() != AArch64Subtarget::Others &&
3483 !ST->getSchedModel().isOutOfOrder()) {
3484 UP.Runtime = true;
3485 UP.Partial = true;
3486 UP.UnrollRemainder = true;
3487 UP.DefaultUnrollRuntimeCount = 4;
3488
3489 UP.UnrollAndJam = true;
3490 UP.UnrollAndJamInnerLoopThreshold = 60;
3491 }
3492}
3493
3494void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
3495 TTI::PeelingPreferences &PP) {
3496 BaseT::getPeelingPreferences(L, SE, PP);
3497}
3498
3499Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
3500 Type *ExpectedType) {
3501 switch (Inst->getIntrinsicID()) {
3502 default:
3503 return nullptr;
3504 case Intrinsic::aarch64_neon_st2:
3505 case Intrinsic::aarch64_neon_st3:
3506 case Intrinsic::aarch64_neon_st4: {
3507 // Create a struct type
3508 StructType *ST = dyn_cast<StructType>(Val: ExpectedType);
3509 if (!ST)
3510 return nullptr;
3511 unsigned NumElts = Inst->arg_size() - 1;
3512 if (ST->getNumElements() != NumElts)
3513 return nullptr;
3514 for (unsigned i = 0, e = NumElts; i != e; ++i) {
3515 if (Inst->getArgOperand(i)->getType() != ST->getElementType(N: i))
3516 return nullptr;
3517 }
3518 Value *Res = PoisonValue::get(T: ExpectedType);
3519 IRBuilder<> Builder(Inst);
3520 for (unsigned i = 0, e = NumElts; i != e; ++i) {
3521 Value *L = Inst->getArgOperand(i);
3522 Res = Builder.CreateInsertValue(Agg: Res, Val: L, Idxs: i);
3523 }
3524 return Res;
3525 }
3526 case Intrinsic::aarch64_neon_ld2:
3527 case Intrinsic::aarch64_neon_ld3:
3528 case Intrinsic::aarch64_neon_ld4:
3529 if (Inst->getType() == ExpectedType)
3530 return Inst;
3531 return nullptr;
3532 }
3533}
3534
3535bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
3536 MemIntrinsicInfo &Info) {
3537 switch (Inst->getIntrinsicID()) {
3538 default:
3539 break;
3540 case Intrinsic::aarch64_neon_ld2:
3541 case Intrinsic::aarch64_neon_ld3:
3542 case Intrinsic::aarch64_neon_ld4:
3543 Info.ReadMem = true;
3544 Info.WriteMem = false;
3545 Info.PtrVal = Inst->getArgOperand(i: 0);
3546 break;
3547 case Intrinsic::aarch64_neon_st2:
3548 case Intrinsic::aarch64_neon_st3:
3549 case Intrinsic::aarch64_neon_st4:
3550 Info.ReadMem = false;
3551 Info.WriteMem = true;
3552 Info.PtrVal = Inst->getArgOperand(i: Inst->arg_size() - 1);
3553 break;
3554 }
3555
3556 switch (Inst->getIntrinsicID()) {
3557 default:
3558 return false;
3559 case Intrinsic::aarch64_neon_ld2:
3560 case Intrinsic::aarch64_neon_st2:
3561 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
3562 break;
3563 case Intrinsic::aarch64_neon_ld3:
3564 case Intrinsic::aarch64_neon_st3:
3565 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
3566 break;
3567 case Intrinsic::aarch64_neon_ld4:
3568 case Intrinsic::aarch64_neon_st4:
3569 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
3570 break;
3571 }
3572 return true;
3573}
3574
3575/// See if \p I should be considered for address type promotion. We check if \p
3576/// I is a sext with right type and used in memory accesses. If it used in a
3577/// "complex" getelementptr, we allow it to be promoted without finding other
3578/// sext instructions that sign extended the same initial value. A getelementptr
3579/// is considered as "complex" if it has more than 2 operands.
3580bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
3581 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
3582 bool Considerable = false;
3583 AllowPromotionWithoutCommonHeader = false;
3584 if (!isa<SExtInst>(Val: &I))
3585 return false;
3586 Type *ConsideredSExtType =
3587 Type::getInt64Ty(C&: I.getParent()->getParent()->getContext());
3588 if (I.getType() != ConsideredSExtType)
3589 return false;
3590 // See if the sext is the one with the right type and used in at least one
3591 // GetElementPtrInst.
3592 for (const User *U : I.users()) {
3593 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(Val: U)) {
3594 Considerable = true;
3595 // A getelementptr is considered as "complex" if it has more than 2
3596 // operands. We will promote a SExt used in such complex GEP as we
3597 // expect some computation to be merged if they are done on 64 bits.
3598 if (GEPInst->getNumOperands() > 2) {
3599 AllowPromotionWithoutCommonHeader = true;
3600 break;
3601 }
3602 }
3603 }
3604 return Considerable;
3605}
3606
3607bool AArch64TTIImpl::isLegalToVectorizeReduction(
3608 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
3609 if (!VF.isScalable())
3610 return true;
3611
3612 Type *Ty = RdxDesc.getRecurrenceType();
3613 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
3614 return false;
3615
3616 switch (RdxDesc.getRecurrenceKind()) {
3617 case RecurKind::Add:
3618 case RecurKind::FAdd:
3619 case RecurKind::And:
3620 case RecurKind::Or:
3621 case RecurKind::Xor:
3622 case RecurKind::SMin:
3623 case RecurKind::SMax:
3624 case RecurKind::UMin:
3625 case RecurKind::UMax:
3626 case RecurKind::FMin:
3627 case RecurKind::FMax:
3628 case RecurKind::FMulAdd:
3629 case RecurKind::IAnyOf:
3630 case RecurKind::FAnyOf:
3631 return true;
3632 default:
3633 return false;
3634 }
3635}
3636
3637InstructionCost
3638AArch64TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
3639 FastMathFlags FMF,
3640 TTI::TargetCostKind CostKind) {
3641 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
3642
3643 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
3644 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
3645
3646 InstructionCost LegalizationCost = 0;
3647 if (LT.first > 1) {
3648 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Context&: Ty->getContext());
3649 IntrinsicCostAttributes Attrs(IID, LegalVTy, {LegalVTy, LegalVTy}, FMF);
3650 LegalizationCost = getIntrinsicInstrCost(ICA: Attrs, CostKind) * (LT.first - 1);
3651 }
3652
3653 return LegalizationCost + /*Cost of horizontal reduction*/ 2;
3654}
3655
3656InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
3657 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
3658 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy);
3659 InstructionCost LegalizationCost = 0;
3660 if (LT.first > 1) {
3661 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Context&: ValTy->getContext());
3662 LegalizationCost = getArithmeticInstrCost(Opcode, Ty: LegalVTy, CostKind);
3663 LegalizationCost *= LT.first - 1;
3664 }
3665
3666 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3667 assert(ISD && "Invalid opcode");
3668 // Add the final reduction cost for the legal horizontal reduction
3669 switch (ISD) {
3670 case ISD::ADD:
3671 case ISD::AND:
3672 case ISD::OR:
3673 case ISD::XOR:
3674 case ISD::FADD:
3675 return LegalizationCost + 2;
3676 default:
3677 return InstructionCost::getInvalid();
3678 }
3679}
3680
3681InstructionCost
3682AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3683 std::optional<FastMathFlags> FMF,
3684 TTI::TargetCostKind CostKind) {
3685 if (TTI::requiresOrderedReduction(FMF)) {
3686 if (auto *FixedVTy = dyn_cast<FixedVectorType>(Val: ValTy)) {
3687 InstructionCost BaseCost =
3688 BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind);
3689 // Add on extra cost to reflect the extra overhead on some CPUs. We still
3690 // end up vectorizing for more computationally intensive loops.
3691 return BaseCost + FixedVTy->getNumElements();
3692 }
3693
3694 if (Opcode != Instruction::FAdd)
3695 return InstructionCost::getInvalid();
3696
3697 auto *VTy = cast<ScalableVectorType>(Val: ValTy);
3698 InstructionCost Cost =
3699 getArithmeticInstrCost(Opcode, Ty: VTy->getScalarType(), CostKind);
3700 Cost *= getMaxNumElements(VF: VTy->getElementCount());
3701 return Cost;
3702 }
3703
3704 if (isa<ScalableVectorType>(Val: ValTy))
3705 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
3706
3707 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy);
3708 MVT MTy = LT.second;
3709 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3710 assert(ISD && "Invalid opcode");
3711
3712 // Horizontal adds can use the 'addv' instruction. We model the cost of these
3713 // instructions as twice a normal vector add, plus 1 for each legalization
3714 // step (LT.first). This is the only arithmetic vector reduction operation for
3715 // which we have an instruction.
3716 // OR, XOR and AND costs should match the codegen from:
3717 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
3718 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
3719 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
3720 static const CostTblEntry CostTblNoPairwise[]{
3721 {ISD::ADD, MVT::v8i8, 2},
3722 {ISD::ADD, MVT::v16i8, 2},
3723 {ISD::ADD, MVT::v4i16, 2},
3724 {ISD::ADD, MVT::v8i16, 2},
3725 {ISD::ADD, MVT::v4i32, 2},
3726 {ISD::ADD, MVT::v2i64, 2},
3727 {ISD::OR, MVT::v8i8, 15},
3728 {ISD::OR, MVT::v16i8, 17},
3729 {ISD::OR, MVT::v4i16, 7},
3730 {ISD::OR, MVT::v8i16, 9},
3731 {ISD::OR, MVT::v2i32, 3},
3732 {ISD::OR, MVT::v4i32, 5},
3733 {ISD::OR, MVT::v2i64, 3},
3734 {ISD::XOR, MVT::v8i8, 15},
3735 {ISD::XOR, MVT::v16i8, 17},
3736 {ISD::XOR, MVT::v4i16, 7},
3737 {ISD::XOR, MVT::v8i16, 9},
3738 {ISD::XOR, MVT::v2i32, 3},
3739 {ISD::XOR, MVT::v4i32, 5},
3740 {ISD::XOR, MVT::v2i64, 3},
3741 {ISD::AND, MVT::v8i8, 15},
3742 {ISD::AND, MVT::v16i8, 17},
3743 {ISD::AND, MVT::v4i16, 7},
3744 {ISD::AND, MVT::v8i16, 9},
3745 {ISD::AND, MVT::v2i32, 3},
3746 {ISD::AND, MVT::v4i32, 5},
3747 {ISD::AND, MVT::v2i64, 3},
3748 };
3749 switch (ISD) {
3750 default:
3751 break;
3752 case ISD::ADD:
3753 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
3754 return (LT.first - 1) + Entry->Cost;
3755 break;
3756 case ISD::XOR:
3757 case ISD::AND:
3758 case ISD::OR:
3759 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
3760 if (!Entry)
3761 break;
3762 auto *ValVTy = cast<FixedVectorType>(Val: ValTy);
3763 if (MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
3764 isPowerOf2_32(Value: ValVTy->getNumElements())) {
3765 InstructionCost ExtraCost = 0;
3766 if (LT.first != 1) {
3767 // Type needs to be split, so there is an extra cost of LT.first - 1
3768 // arithmetic ops.
3769 auto *Ty = FixedVectorType::get(ElementType: ValTy->getElementType(),
3770 NumElts: MTy.getVectorNumElements());
3771 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3772 ExtraCost *= LT.first - 1;
3773 }
3774 // All and/or/xor of i1 will be lowered with maxv/minv/addv + fmov
3775 auto Cost = ValVTy->getElementType()->isIntegerTy(Bitwidth: 1) ? 2 : Entry->Cost;
3776 return Cost + ExtraCost;
3777 }
3778 break;
3779 }
3780 return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind);
3781}
3782
3783InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
3784 static const CostTblEntry ShuffleTbl[] = {
3785 { TTI::SK_Splice, MVT::nxv16i8, 1 },
3786 { TTI::SK_Splice, MVT::nxv8i16, 1 },
3787 { TTI::SK_Splice, MVT::nxv4i32, 1 },
3788 { TTI::SK_Splice, MVT::nxv2i64, 1 },
3789 { TTI::SK_Splice, MVT::nxv2f16, 1 },
3790 { TTI::SK_Splice, MVT::nxv4f16, 1 },
3791 { TTI::SK_Splice, MVT::nxv8f16, 1 },
3792 { TTI::SK_Splice, MVT::nxv2bf16, 1 },
3793 { TTI::SK_Splice, MVT::nxv4bf16, 1 },
3794 { TTI::SK_Splice, MVT::nxv8bf16, 1 },
3795 { TTI::SK_Splice, MVT::nxv2f32, 1 },
3796 { TTI::SK_Splice, MVT::nxv4f32, 1 },
3797 { TTI::SK_Splice, MVT::nxv2f64, 1 },
3798 };
3799
3800 // The code-generator is currently not able to handle scalable vectors
3801 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3802 // it. This change will be removed when code-generation for these types is
3803 // sufficiently reliable.
3804 if (Tp->getElementCount() == ElementCount::getScalable(MinVal: 1))
3805 return InstructionCost::getInvalid();
3806
3807 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Tp);
3808 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Context&: Tp->getContext());
3809 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3810 EVT PromotedVT = LT.second.getScalarType() == MVT::i1
3811 ? TLI->getPromotedVTForPredicate(EVT(LT.second))
3812 : LT.second;
3813 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Context&: Tp->getContext());
3814 InstructionCost LegalizationCost = 0;
3815 if (Index < 0) {
3816 LegalizationCost =
3817 getCmpSelInstrCost(Opcode: Instruction::ICmp, ValTy: PromotedVTy, CondTy: PromotedVTy,
3818 VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind) +
3819 getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: PromotedVTy, CondTy: LegalVTy,
3820 VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind);
3821 }
3822
3823 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
3824 // Cost performed on a promoted type.
3825 if (LT.second.getScalarType() == MVT::i1) {
3826 LegalizationCost +=
3827 getCastInstrCost(Opcode: Instruction::ZExt, Dst: PromotedVTy, Src: LegalVTy,
3828 CCH: TTI::CastContextHint::None, CostKind) +
3829 getCastInstrCost(Opcode: Instruction::Trunc, Dst: LegalVTy, Src: PromotedVTy,
3830 CCH: TTI::CastContextHint::None, CostKind);
3831 }
3832 const auto *Entry =
3833 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
3834 assert(Entry && "Illegal Type for Splice");
3835 LegalizationCost += Entry->Cost;
3836 return LegalizationCost * LT.first;
3837}
3838
3839InstructionCost AArch64TTIImpl::getShuffleCost(
3840 TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
3841 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
3842 ArrayRef<const Value *> Args, const Instruction *CxtI) {
3843 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Tp);
3844
3845 // If we have a Mask, and the LT is being legalized somehow, split the Mask
3846 // into smaller vectors and sum the cost of each shuffle.
3847 if (!Mask.empty() && isa<FixedVectorType>(Val: Tp) && LT.second.isVector() &&
3848 Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
3849 Mask.size() > LT.second.getVectorNumElements() && !Index && !SubTp) {
3850
3851 // Check for LD3/LD4 instructions, which are represented in llvm IR as
3852 // deinterleaving-shuffle(load). The shuffle cost could potentially be free,
3853 // but we model it with a cost of LT.first so that LD3/LD4 have a higher
3854 // cost than just the load.
3855 if (Args.size() >= 1 && isa<LoadInst>(Val: Args[0]) &&
3856 (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor: 3) ||
3857 ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor: 4)))
3858 return std::max<InstructionCost>(a: 1, b: LT.first / 4);
3859
3860 // Check for ST3/ST4 instructions, which are represented in llvm IR as
3861 // store(interleaving-shuffle). The shuffle cost could potentially be free,
3862 // but we model it with a cost of LT.first so that ST3/ST4 have a higher
3863 // cost than just the store.
3864 if (CxtI && CxtI->hasOneUse() && isa<StoreInst>(Val: *CxtI->user_begin()) &&
3865 (ShuffleVectorInst::isInterleaveMask(
3866 Mask, Factor: 4, NumInputElts: Tp->getElementCount().getKnownMinValue() * 2) ||
3867 ShuffleVectorInst::isInterleaveMask(
3868 Mask, Factor: 3, NumInputElts: Tp->getElementCount().getKnownMinValue() * 2)))
3869 return LT.first;
3870
3871 unsigned TpNumElts = Mask.size();
3872 unsigned LTNumElts = LT.second.getVectorNumElements();
3873 unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
3874 VectorType *NTp =
3875 VectorType::get(ElementType: Tp->getScalarType(), EC: LT.second.getVectorElementCount());
3876 InstructionCost Cost;
3877 for (unsigned N = 0; N < NumVecs; N++) {
3878 SmallVector<int> NMask;
3879 // Split the existing mask into chunks of size LTNumElts. Track the source
3880 // sub-vectors to ensure the result has at most 2 inputs.
3881 unsigned Source1, Source2;
3882 unsigned NumSources = 0;
3883 for (unsigned E = 0; E < LTNumElts; E++) {
3884 int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
3885 : PoisonMaskElem;
3886 if (MaskElt < 0) {
3887 NMask.push_back(Elt: PoisonMaskElem);
3888 continue;
3889 }
3890
3891 // Calculate which source from the input this comes from and whether it
3892 // is new to us.
3893 unsigned Source = MaskElt / LTNumElts;
3894 if (NumSources == 0) {
3895 Source1 = Source;
3896 NumSources = 1;
3897 } else if (NumSources == 1 && Source != Source1) {
3898 Source2 = Source;
3899 NumSources = 2;
3900 } else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
3901 NumSources++;
3902 }
3903
3904 // Add to the new mask. For the NumSources>2 case these are not correct,
3905 // but are only used for the modular lane number.
3906 if (Source == Source1)
3907 NMask.push_back(Elt: MaskElt % LTNumElts);
3908 else if (Source == Source2)
3909 NMask.push_back(Elt: MaskElt % LTNumElts + LTNumElts);
3910 else
3911 NMask.push_back(Elt: MaskElt % LTNumElts);
3912 }
3913 // If the sub-mask has at most 2 input sub-vectors then re-cost it using
3914 // getShuffleCost. If not then cost it using the worst case.
3915 if (NumSources <= 2)
3916 Cost += getShuffleCost(Kind: NumSources <= 1 ? TTI::SK_PermuteSingleSrc
3917 : TTI::SK_PermuteTwoSrc,
3918 Tp: NTp, Mask: NMask, CostKind, Index: 0, SubTp: nullptr, Args, CxtI);
3919 else if (any_of(Range: enumerate(First&: NMask), P: [&](const auto &ME) {
3920 return ME.value() % LTNumElts == ME.index();
3921 }))
3922 Cost += LTNumElts - 1;
3923 else
3924 Cost += LTNumElts;
3925 }
3926 return Cost;
3927 }
3928
3929 Kind = improveShuffleKindFromMask(Kind, Mask, Ty: Tp, Index, SubTy&: SubTp);
3930 // Treat extractsubvector as single op permutation.
3931 bool IsExtractSubvector = Kind == TTI::SK_ExtractSubvector;
3932 if (IsExtractSubvector && LT.second.isFixedLengthVector())
3933 Kind = TTI::SK_PermuteSingleSrc;
3934
3935 // Check for broadcast loads, which are supported by the LD1R instruction.
3936 // In terms of code-size, the shuffle vector is free when a load + dup get
3937 // folded into a LD1R. That's what we check and return here. For performance
3938 // and reciprocal throughput, a LD1R is not completely free. In this case, we
3939 // return the cost for the broadcast below (i.e. 1 for most/all types), so
3940 // that we model the load + dup sequence slightly higher because LD1R is a
3941 // high latency instruction.
3942 if (CostKind == TTI::TCK_CodeSize && Kind == TTI::SK_Broadcast) {
3943 bool IsLoad = !Args.empty() && isa<LoadInst>(Val: Args[0]);
3944 if (IsLoad && LT.second.isVector() &&
3945 isLegalBroadcastLoad(ElementTy: Tp->getElementType(),
3946 NumElements: LT.second.getVectorElementCount()))
3947 return 0;
3948 }
3949
3950 // If we have 4 elements for the shuffle and a Mask, get the cost straight
3951 // from the perfect shuffle tables.
3952 if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(MinVal: 4) &&
3953 (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
3954 all_of(Range&: Mask, P: [](int E) { return E < 8; }))
3955 return getPerfectShuffleCost(M: Mask);
3956
3957 // Check for identity masks, which we can treat as free.
3958 if (!Mask.empty() && LT.second.isFixedLengthVector() &&
3959 (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
3960 all_of(Range: enumerate(First&: Mask), P: [](const auto &M) {
3961 return M.value() < 0 || M.value() == (int)M.index();
3962 }))
3963 return 0;
3964
3965 // Check for other shuffles that are not SK_ kinds but we have native
3966 // instructions for, for example ZIP and UZP.
3967 unsigned Unused;
3968 if (LT.second.isFixedLengthVector() &&
3969 LT.second.getVectorNumElements() == Mask.size() &&
3970 (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
3971 (isZIPMask(M: Mask, VT: LT.second, WhichResultOut&: Unused) ||
3972 isUZPMask(M: Mask, VT: LT.second, WhichResultOut&: Unused) ||
3973 // Check for non-zero lane splats
3974 all_of(Range: drop_begin(RangeOrContainer&: Mask),
3975 P: [&Mask](int M) { return M < 0 || M == Mask[0]; })))
3976 return 1;
3977
3978 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
3979 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
3980 Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
3981 static const CostTblEntry ShuffleTbl[] = {
3982 // Broadcast shuffle kinds can be performed with 'dup'.
3983 {TTI::SK_Broadcast, MVT::v8i8, 1},
3984 {TTI::SK_Broadcast, MVT::v16i8, 1},
3985 {TTI::SK_Broadcast, MVT::v4i16, 1},
3986 {TTI::SK_Broadcast, MVT::v8i16, 1},
3987 {TTI::SK_Broadcast, MVT::v2i32, 1},
3988 {TTI::SK_Broadcast, MVT::v4i32, 1},
3989 {TTI::SK_Broadcast, MVT::v2i64, 1},
3990 {TTI::SK_Broadcast, MVT::v4f16, 1},
3991 {TTI::SK_Broadcast, MVT::v8f16, 1},
3992 {TTI::SK_Broadcast, MVT::v2f32, 1},
3993 {TTI::SK_Broadcast, MVT::v4f32, 1},
3994 {TTI::SK_Broadcast, MVT::v2f64, 1},
3995 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
3996 // 'zip1/zip2' instructions.
3997 {TTI::SK_Transpose, MVT::v8i8, 1},
3998 {TTI::SK_Transpose, MVT::v16i8, 1},
3999 {TTI::SK_Transpose, MVT::v4i16, 1},
4000 {TTI::SK_Transpose, MVT::v8i16, 1},
4001 {TTI::SK_Transpose, MVT::v2i32, 1},
4002 {TTI::SK_Transpose, MVT::v4i32, 1},
4003 {TTI::SK_Transpose, MVT::v2i64, 1},
4004 {TTI::SK_Transpose, MVT::v4f16, 1},
4005 {TTI::SK_Transpose, MVT::v8f16, 1},
4006 {TTI::SK_Transpose, MVT::v2f32, 1},
4007 {TTI::SK_Transpose, MVT::v4f32, 1},
4008 {TTI::SK_Transpose, MVT::v2f64, 1},
4009 // Select shuffle kinds.
4010 // TODO: handle vXi8/vXi16.
4011 {TTI::SK_Select, MVT::v2i32, 1}, // mov.
4012 {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
4013 {TTI::SK_Select, MVT::v2i64, 1}, // mov.
4014 {TTI::SK_Select, MVT::v2f32, 1}, // mov.
4015 {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
4016 {TTI::SK_Select, MVT::v2f64, 1}, // mov.
4017 // PermuteSingleSrc shuffle kinds.
4018 {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
4019 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
4020 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
4021 {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
4022 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
4023 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
4024 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
4025 {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
4026 {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
4027 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl
4028 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl
4029 {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
4030 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl
4031 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl
4032 // Reverse can be lowered with `rev`.
4033 {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
4034 {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
4035 {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
4036 {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
4037 {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
4038 {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
4039 {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
4040 {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
4041 {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
4042 {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
4043 {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
4044 {TTI::SK_Reverse, MVT::v8i8, 1}, // REV64
4045 // Splice can all be lowered as `ext`.
4046 {TTI::SK_Splice, MVT::v2i32, 1},
4047 {TTI::SK_Splice, MVT::v4i32, 1},
4048 {TTI::SK_Splice, MVT::v2i64, 1},
4049 {TTI::SK_Splice, MVT::v2f32, 1},
4050 {TTI::SK_Splice, MVT::v4f32, 1},
4051 {TTI::SK_Splice, MVT::v2f64, 1},
4052 {TTI::SK_Splice, MVT::v8f16, 1},
4053 {TTI::SK_Splice, MVT::v8bf16, 1},
4054 {TTI::SK_Splice, MVT::v8i16, 1},
4055 {TTI::SK_Splice, MVT::v16i8, 1},
4056 {TTI::SK_Splice, MVT::v4bf16, 1},
4057 {TTI::SK_Splice, MVT::v4f16, 1},
4058 {TTI::SK_Splice, MVT::v4i16, 1},
4059 {TTI::SK_Splice, MVT::v8i8, 1},
4060 // Broadcast shuffle kinds for scalable vectors
4061 {TTI::SK_Broadcast, MVT::nxv16i8, 1},
4062 {TTI::SK_Broadcast, MVT::nxv8i16, 1},
4063 {TTI::SK_Broadcast, MVT::nxv4i32, 1},
4064 {TTI::SK_Broadcast, MVT::nxv2i64, 1},
4065 {TTI::SK_Broadcast, MVT::nxv2f16, 1},
4066 {TTI::SK_Broadcast, MVT::nxv4f16, 1},
4067 {TTI::SK_Broadcast, MVT::nxv8f16, 1},
4068 {TTI::SK_Broadcast, MVT::nxv2bf16, 1},
4069 {TTI::SK_Broadcast, MVT::nxv4bf16, 1},
4070 {TTI::SK_Broadcast, MVT::nxv8bf16, 1},
4071 {TTI::SK_Broadcast, MVT::nxv2f32, 1},
4072 {TTI::SK_Broadcast, MVT::nxv4f32, 1},
4073 {TTI::SK_Broadcast, MVT::nxv2f64, 1},
4074 {TTI::SK_Broadcast, MVT::nxv16i1, 1},
4075 {TTI::SK_Broadcast, MVT::nxv8i1, 1},
4076 {TTI::SK_Broadcast, MVT::nxv4i1, 1},
4077 {TTI::SK_Broadcast, MVT::nxv2i1, 1},
4078 // Handle the cases for vector.reverse with scalable vectors
4079 {TTI::SK_Reverse, MVT::nxv16i8, 1},
4080 {TTI::SK_Reverse, MVT::nxv8i16, 1},
4081 {TTI::SK_Reverse, MVT::nxv4i32, 1},
4082 {TTI::SK_Reverse, MVT::nxv2i64, 1},
4083 {TTI::SK_Reverse, MVT::nxv2f16, 1},
4084 {TTI::SK_Reverse, MVT::nxv4f16, 1},
4085 {TTI::SK_Reverse, MVT::nxv8f16, 1},
4086 {TTI::SK_Reverse, MVT::nxv2bf16, 1},
4087 {TTI::SK_Reverse, MVT::nxv4bf16, 1},
4088 {TTI::SK_Reverse, MVT::nxv8bf16, 1},
4089 {TTI::SK_Reverse, MVT::nxv2f32, 1},
4090 {TTI::SK_Reverse, MVT::nxv4f32, 1},
4091 {TTI::SK_Reverse, MVT::nxv2f64, 1},
4092 {TTI::SK_Reverse, MVT::nxv16i1, 1},
4093 {TTI::SK_Reverse, MVT::nxv8i1, 1},
4094 {TTI::SK_Reverse, MVT::nxv4i1, 1},
4095 {TTI::SK_Reverse, MVT::nxv2i1, 1},
4096 };
4097 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
4098 return LT.first * Entry->Cost;
4099 }
4100
4101 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Val: Tp))
4102 return getSpliceCost(Tp, Index);
4103
4104 // Inserting a subvector can often be done with either a D, S or H register
4105 // move, so long as the inserted vector is "aligned".
4106 if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
4107 LT.second.getSizeInBits() <= 128 && SubTp) {
4108 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(Ty: SubTp);
4109 if (SubLT.second.isVector()) {
4110 int NumElts = LT.second.getVectorNumElements();
4111 int NumSubElts = SubLT.second.getVectorNumElements();
4112 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
4113 return SubLT.first;
4114 }
4115 }
4116
4117 // Restore optimal kind.
4118 if (IsExtractSubvector)
4119 Kind = TTI::SK_ExtractSubvector;
4120 return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
4121 CxtI);
4122}
4123
4124static bool containsDecreasingPointers(Loop *TheLoop,
4125 PredicatedScalarEvolution *PSE) {
4126 const auto &Strides = DenseMap<Value *, const SCEV *>();
4127 for (BasicBlock *BB : TheLoop->blocks()) {
4128 // Scan the instructions in the block and look for addresses that are
4129 // consecutive and decreasing.
4130 for (Instruction &I : *BB) {
4131 if (isa<LoadInst>(Val: &I) || isa<StoreInst>(Val: &I)) {
4132 Value *Ptr = getLoadStorePointerOperand(V: &I);
4133 Type *AccessTy = getLoadStoreType(I: &I);
4134 if (getPtrStride(PSE&: *PSE, AccessTy, Ptr, Lp: TheLoop, StridesMap: Strides, /*Assume=*/true,
4135 /*ShouldCheckWrap=*/false)
4136 .value_or(u: 0) < 0)
4137 return true;
4138 }
4139 }
4140 }
4141 return false;
4142}
4143
4144bool AArch64TTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
4145 if (!ST->hasSVE())
4146 return false;
4147
4148 // We don't currently support vectorisation with interleaving for SVE - with
4149 // such loops we're better off not using tail-folding. This gives us a chance
4150 // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
4151 if (TFI->IAI->hasGroups())
4152 return false;
4153
4154 TailFoldingOpts Required = TailFoldingOpts::Disabled;
4155 if (TFI->LVL->getReductionVars().size())
4156 Required |= TailFoldingOpts::Reductions;
4157 if (TFI->LVL->getFixedOrderRecurrences().size())
4158 Required |= TailFoldingOpts::Recurrences;
4159
4160 // We call this to discover whether any load/store pointers in the loop have
4161 // negative strides. This will require extra work to reverse the loop
4162 // predicate, which may be expensive.
4163 if (containsDecreasingPointers(TheLoop: TFI->LVL->getLoop(),
4164 PSE: TFI->LVL->getPredicatedScalarEvolution()))
4165 Required |= TailFoldingOpts::Reverse;
4166 if (Required == TailFoldingOpts::Disabled)
4167 Required |= TailFoldingOpts::Simple;
4168
4169 if (!TailFoldingOptionLoc.satisfies(DefaultBits: ST->getSVETailFoldingDefaultOpts(),
4170 Required))
4171 return false;
4172
4173 // Don't tail-fold for tight loops where we would be better off interleaving
4174 // with an unpredicated loop.
4175 unsigned NumInsns = 0;
4176 for (BasicBlock *BB : TFI->LVL->getLoop()->blocks()) {
4177 NumInsns += BB->sizeWithoutDebug();
4178 }
4179
4180 // We expect 4 of these to be a IV PHI, IV add, IV compare and branch.
4181 return NumInsns >= SVETailFoldInsnThreshold;
4182}
4183
4184InstructionCost
4185AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
4186 int64_t BaseOffset, bool HasBaseReg,
4187 int64_t Scale, unsigned AddrSpace) const {
4188 // Scaling factors are not free at all.
4189 // Operands | Rt Latency
4190 // -------------------------------------------
4191 // Rt, [Xn, Xm] | 4
4192 // -------------------------------------------
4193 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
4194 // Rt, [Xn, Wm, <extend> #imm] |
4195 TargetLoweringBase::AddrMode AM;
4196 AM.BaseGV = BaseGV;
4197 AM.BaseOffs = BaseOffset;
4198 AM.HasBaseReg = HasBaseReg;
4199 AM.Scale = Scale;
4200 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AS: AddrSpace))
4201 // Scale represents reg2 * scale, thus account for 1 if
4202 // it is not equal to 0 or 1.
4203 return AM.Scale != 0 && AM.Scale != 1;
4204 return -1;
4205}
4206
4207bool AArch64TTIImpl::shouldTreatInstructionLikeSelect(const Instruction *I) {
4208 // For the binary operators (e.g. or) we need to be more careful than
4209 // selects, here we only transform them if they are already at a natural
4210 // break point in the code - the end of a block with an unconditional
4211 // terminator.
4212 if (EnableOrLikeSelectOpt && I->getOpcode() == Instruction::Or &&
4213 isa<BranchInst>(Val: I->getNextNode()) &&
4214 cast<BranchInst>(Val: I->getNextNode())->isUnconditional())
4215 return true;
4216 return BaseT::shouldTreatInstructionLikeSelect(I);
4217}
4218

source code of llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp