1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements a TargetTransformInfo analysis pass specific to the
10/// X86 target machine. It uses the target's detailed information to provide
11/// more precise answers to certain TTI queries, while letting the target
12/// independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15/// About Cost Model numbers used below it's necessary to say the following:
16/// the numbers correspond to some "generic" X86 CPU instead of usage of a
17/// specific CPU model. Usually the numbers correspond to the CPU where the
18/// feature first appeared. For example, if we do Subtarget.hasSSE42() in
19/// the lookups below the cost is based on Nehalem as that was the first CPU
20/// to support that feature level and thus has most likely the worst case cost,
21/// although we may discard an outlying worst cost from one CPU (e.g. Atom).
22///
23/// Some examples of other technologies/CPUs:
24/// SSE 3 - Pentium4 / Athlon64
25/// SSE 4.1 - Penryn
26/// SSE 4.2 - Nehalem / Silvermont
27/// AVX - Sandy Bridge / Jaguar / Bulldozer
28/// AVX2 - Haswell / Ryzen
29/// AVX-512 - Xeon Phi / Skylake
30///
31/// And some examples of instruction target dependent costs (latency)
32/// divss sqrtss rsqrtss
33/// AMD K7 11-16 19 3
34/// Piledriver 9-24 13-15 5
35/// Jaguar 14 16 2
36/// Pentium II,III 18 30 2
37/// Nehalem 7-14 7-18 3
38/// Haswell 10-13 11 5
39///
40/// Interpreting the 4 TargetCostKind types:
41/// TCK_RecipThroughput and TCK_Latency should try to match the worst case
42/// values reported by the CPU scheduler models (and llvm-mca).
43/// TCK_CodeSize should match the instruction count (e.g. divss = 1), NOT the
44/// actual encoding size of the instruction.
45/// TCK_SizeAndLatency should match the worst case micro-op counts reported by
46/// by the CPU scheduler models (and llvm-mca), to ensure that they are
47/// compatible with the MicroOpBufferSize and LoopMicroOpBufferSize values which are
48/// often used as the cost thresholds where TCK_SizeAndLatency is requested.
49//===----------------------------------------------------------------------===//
50
51#include "X86TargetTransformInfo.h"
52#include "llvm/Analysis/TargetTransformInfo.h"
53#include "llvm/CodeGen/BasicTTIImpl.h"
54#include "llvm/CodeGen/CostTable.h"
55#include "llvm/CodeGen/TargetLowering.h"
56#include "llvm/IR/InstIterator.h"
57#include "llvm/IR/IntrinsicInst.h"
58#include "llvm/Support/Debug.h"
59#include <optional>
60
61using namespace llvm;
62
63#define DEBUG_TYPE "x86tti"
64
65//===----------------------------------------------------------------------===//
66//
67// X86 cost model.
68//
69//===----------------------------------------------------------------------===//
70
71// Helper struct to store/access costs for each cost kind.
72// TODO: Move this to allow other targets to use it?
73struct CostKindCosts {
74 unsigned RecipThroughputCost = ~0U;
75 unsigned LatencyCost = ~0U;
76 unsigned CodeSizeCost = ~0U;
77 unsigned SizeAndLatencyCost = ~0U;
78
79 std::optional<unsigned>
80 operator[](TargetTransformInfo::TargetCostKind Kind) const {
81 unsigned Cost = ~0U;
82 switch (Kind) {
83 case TargetTransformInfo::TCK_RecipThroughput:
84 Cost = RecipThroughputCost;
85 break;
86 case TargetTransformInfo::TCK_Latency:
87 Cost = LatencyCost;
88 break;
89 case TargetTransformInfo::TCK_CodeSize:
90 Cost = CodeSizeCost;
91 break;
92 case TargetTransformInfo::TCK_SizeAndLatency:
93 Cost = SizeAndLatencyCost;
94 break;
95 }
96 if (Cost == ~0U)
97 return std::nullopt;
98 return Cost;
99 }
100};
101using CostKindTblEntry = CostTblEntryT<CostKindCosts>;
102
103TargetTransformInfo::PopcntSupportKind
104X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
105 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
106 // TODO: Currently the __builtin_popcount() implementation using SSE3
107 // instructions is inefficient. Once the problem is fixed, we should
108 // call ST->hasSSE3() instead of ST->hasPOPCNT().
109 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
110}
111
112std::optional<unsigned> X86TTIImpl::getCacheSize(
113 TargetTransformInfo::CacheLevel Level) const {
114 switch (Level) {
115 case TargetTransformInfo::CacheLevel::L1D:
116 // - Penryn
117 // - Nehalem
118 // - Westmere
119 // - Sandy Bridge
120 // - Ivy Bridge
121 // - Haswell
122 // - Broadwell
123 // - Skylake
124 // - Kabylake
125 return 32 * 1024; // 32 KByte
126 case TargetTransformInfo::CacheLevel::L2D:
127 // - Penryn
128 // - Nehalem
129 // - Westmere
130 // - Sandy Bridge
131 // - Ivy Bridge
132 // - Haswell
133 // - Broadwell
134 // - Skylake
135 // - Kabylake
136 return 256 * 1024; // 256 KByte
137 }
138
139 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
140}
141
142std::optional<unsigned> X86TTIImpl::getCacheAssociativity(
143 TargetTransformInfo::CacheLevel Level) const {
144 // - Penryn
145 // - Nehalem
146 // - Westmere
147 // - Sandy Bridge
148 // - Ivy Bridge
149 // - Haswell
150 // - Broadwell
151 // - Skylake
152 // - Kabylake
153 switch (Level) {
154 case TargetTransformInfo::CacheLevel::L1D:
155 [[fallthrough]];
156 case TargetTransformInfo::CacheLevel::L2D:
157 return 8;
158 }
159
160 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
161}
162
163unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
164 bool Vector = (ClassID == 1);
165 if (Vector && !ST->hasSSE1())
166 return 0;
167
168 if (ST->is64Bit()) {
169 if (Vector && ST->hasAVX512())
170 return 32;
171 return 16;
172 }
173 return 8;
174}
175
176TypeSize
177X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
178 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
179 switch (K) {
180 case TargetTransformInfo::RGK_Scalar:
181 return TypeSize::getFixed(ExactSize: ST->is64Bit() ? 64 : 32);
182 case TargetTransformInfo::RGK_FixedWidthVector:
183 if (ST->hasAVX512() && ST->hasEVEX512() && PreferVectorWidth >= 512)
184 return TypeSize::getFixed(ExactSize: 512);
185 if (ST->hasAVX() && PreferVectorWidth >= 256)
186 return TypeSize::getFixed(ExactSize: 256);
187 if (ST->hasSSE1() && PreferVectorWidth >= 128)
188 return TypeSize::getFixed(ExactSize: 128);
189 return TypeSize::getFixed(ExactSize: 0);
190 case TargetTransformInfo::RGK_ScalableVector:
191 return TypeSize::getScalable(MinimumSize: 0);
192 }
193
194 llvm_unreachable("Unsupported register kind");
195}
196
197unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
198 return getRegisterBitWidth(K: TargetTransformInfo::RGK_FixedWidthVector)
199 .getFixedValue();
200}
201
202unsigned X86TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
203 // If the loop will not be vectorized, don't interleave the loop.
204 // Let regular unroll to unroll the loop, which saves the overflow
205 // check and memory check cost.
206 if (VF.isScalar())
207 return 1;
208
209 if (ST->isAtom())
210 return 1;
211
212 // Sandybridge and Haswell have multiple execution ports and pipelined
213 // vector units.
214 if (ST->hasAVX())
215 return 4;
216
217 return 2;
218}
219
220InstructionCost X86TTIImpl::getArithmeticInstrCost(
221 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
222 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
223 ArrayRef<const Value *> Args,
224 const Instruction *CxtI) {
225
226 // vXi8 multiplications are always promoted to vXi16.
227 // Sub-128-bit types can be extended/packed more efficiently.
228 if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
229 Ty->getPrimitiveSizeInBits() <= 64 && Ty->getScalarSizeInBits() == 8) {
230 Type *WideVecTy =
231 VectorType::getExtendedElementVectorType(VTy: cast<VectorType>(Val: Ty));
232 return getCastInstrCost(Opcode: Instruction::ZExt, Dst: WideVecTy, Src: Ty,
233 CCH: TargetTransformInfo::CastContextHint::None,
234 CostKind) +
235 getCastInstrCost(Opcode: Instruction::Trunc, Dst: Ty, Src: WideVecTy,
236 CCH: TargetTransformInfo::CastContextHint::None,
237 CostKind) +
238 getArithmeticInstrCost(Opcode, Ty: WideVecTy, CostKind, Op1Info, Op2Info);
239 }
240
241 // Legalize the type.
242 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
243
244 int ISD = TLI->InstructionOpcodeToISD(Opcode);
245 assert(ISD && "Invalid opcode");
246
247 if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
248 (LT.second.getScalarType() == MVT::i32 ||
249 LT.second.getScalarType() == MVT::i64)) {
250 // Check if the operands can be represented as a smaller datatype.
251 bool Op1Signed = false, Op2Signed = false;
252 unsigned Op1MinSize = BaseT::minRequiredElementSize(Val: Args[0], isSigned&: Op1Signed);
253 unsigned Op2MinSize = BaseT::minRequiredElementSize(Val: Args[1], isSigned&: Op2Signed);
254 unsigned OpMinSize = std::max(a: Op1MinSize, b: Op2MinSize);
255 bool SignedMode = Op1Signed || Op2Signed;
256
257 // If both vXi32 are representable as i15 and at least one is constant,
258 // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
259 // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
260 if (OpMinSize <= 15 && !ST->isPMADDWDSlow() &&
261 LT.second.getScalarType() == MVT::i32) {
262 bool Op1Constant =
263 isa<ConstantDataVector>(Val: Args[0]) || isa<ConstantVector>(Val: Args[0]);
264 bool Op2Constant =
265 isa<ConstantDataVector>(Val: Args[1]) || isa<ConstantVector>(Val: Args[1]);
266 bool Op1Sext = isa<SExtInst>(Val: Args[0]) &&
267 (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
268 bool Op2Sext = isa<SExtInst>(Val: Args[1]) &&
269 (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
270
271 bool IsZeroExtended = !Op1Signed || !Op2Signed;
272 bool IsConstant = Op1Constant || Op2Constant;
273 bool IsSext = Op1Sext || Op2Sext;
274 if (IsConstant || IsZeroExtended || IsSext)
275 LT.second =
276 MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
277 }
278
279 // Check if the vXi32 operands can be shrunk into a smaller datatype.
280 // This should match the codegen from reduceVMULWidth.
281 // TODO: Make this generic (!ST->SSE41 || ST->isPMULLDSlow()).
282 if (ST->useSLMArithCosts() && LT.second == MVT::v4i32) {
283 if (OpMinSize <= 7)
284 return LT.first * 3; // pmullw/sext
285 if (!SignedMode && OpMinSize <= 8)
286 return LT.first * 3; // pmullw/zext
287 if (OpMinSize <= 15)
288 return LT.first * 5; // pmullw/pmulhw/pshuf
289 if (!SignedMode && OpMinSize <= 16)
290 return LT.first * 5; // pmullw/pmulhw/pshuf
291 }
292
293 // If both vXi64 are representable as (unsigned) i32, then we can perform
294 // the multiple with a single PMULUDQ instruction.
295 // TODO: Add (SSE41+) PMULDQ handling for signed extensions.
296 if (!SignedMode && OpMinSize <= 32 && LT.second.getScalarType() == MVT::i64)
297 ISD = X86ISD::PMULUDQ;
298 }
299
300 // Vector multiply by pow2 will be simplified to shifts.
301 // Vector multiply by -pow2 will be simplified to shifts/negates.
302 if (ISD == ISD::MUL && Op2Info.isConstant() &&
303 (Op2Info.isPowerOf2() || Op2Info.isNegatedPowerOf2())) {
304 InstructionCost Cost =
305 getArithmeticInstrCost(Opcode: Instruction::Shl, Ty, CostKind,
306 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
307 if (Op2Info.isNegatedPowerOf2())
308 Cost += getArithmeticInstrCost(Opcode: Instruction::Sub, Ty, CostKind);
309 return Cost;
310 }
311
312 // On X86, vector signed division by constants power-of-two are
313 // normally expanded to the sequence SRA + SRL + ADD + SRA.
314 // The OperandValue properties may not be the same as that of the previous
315 // operation; conservatively assume OP_None.
316 if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
317 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
318 InstructionCost Cost =
319 2 * getArithmeticInstrCost(Opcode: Instruction::AShr, Ty, CostKind,
320 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
321 Cost += getArithmeticInstrCost(Opcode: Instruction::LShr, Ty, CostKind,
322 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
323 Cost += getArithmeticInstrCost(Opcode: Instruction::Add, Ty, CostKind,
324 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
325
326 if (ISD == ISD::SREM) {
327 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
328 Cost += getArithmeticInstrCost(Opcode: Instruction::Mul, Ty, CostKind, Op1Info: Op1Info.getNoProps(),
329 Op2Info: Op2Info.getNoProps());
330 Cost += getArithmeticInstrCost(Opcode: Instruction::Sub, Ty, CostKind, Op1Info: Op1Info.getNoProps(),
331 Op2Info: Op2Info.getNoProps());
332 }
333
334 return Cost;
335 }
336
337 // Vector unsigned division/remainder will be simplified to shifts/masks.
338 if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
339 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
340 if (ISD == ISD::UDIV)
341 return getArithmeticInstrCost(Opcode: Instruction::LShr, Ty, CostKind,
342 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
343 // UREM
344 return getArithmeticInstrCost(Opcode: Instruction::And, Ty, CostKind,
345 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
346 }
347
348 static const CostKindTblEntry AVX512BWUniformConstCostTable[] = {
349 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
350 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
351 { ISD::SRA, MVT::v16i8, { 1, 8, 4, 5 } }, // psrlw, pand, pxor, psubb.
352 { ISD::SHL, MVT::v32i8, { 1, 8, 2, 3 } }, // psllw + pand.
353 { ISD::SRL, MVT::v32i8, { 1, 8, 2, 3 } }, // psrlw + pand.
354 { ISD::SRA, MVT::v32i8, { 1, 9, 4, 5 } }, // psrlw, pand, pxor, psubb.
355 { ISD::SHL, MVT::v64i8, { 1, 8, 2, 3 } }, // psllw + pand.
356 { ISD::SRL, MVT::v64i8, { 1, 8, 2, 3 } }, // psrlw + pand.
357 { ISD::SRA, MVT::v64i8, { 1, 9, 4, 6 } }, // psrlw, pand, pxor, psubb.
358
359 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // psllw
360 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
361 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
362 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // psllw
363 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
364 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
365 };
366
367 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasBWI())
368 if (const auto *Entry =
369 CostTableLookup(AVX512BWUniformConstCostTable, ISD, LT.second))
370 if (auto KindCost = Entry->Cost[CostKind])
371 return LT.first * *KindCost;
372
373 static const CostKindTblEntry AVX512UniformConstCostTable[] = {
374 { ISD::SHL, MVT::v64i8, { 2, 12, 5, 6 } }, // psllw + pand.
375 { ISD::SRL, MVT::v64i8, { 2, 12, 5, 6 } }, // psrlw + pand.
376 { ISD::SRA, MVT::v64i8, { 3, 10, 12, 12 } }, // psrlw, pand, pxor, psubb.
377
378 { ISD::SHL, MVT::v16i16, { 2, 7, 4, 4 } }, // psllw + split.
379 { ISD::SRL, MVT::v16i16, { 2, 7, 4, 4 } }, // psrlw + split.
380 { ISD::SRA, MVT::v16i16, { 2, 7, 4, 4 } }, // psraw + split.
381
382 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } }, // pslld
383 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } }, // psrld
384 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } }, // psrad
385 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } }, // pslld
386 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } }, // psrld
387 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } }, // psrad
388
389 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } }, // psraq
390 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } }, // psllq
391 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } }, // psrlq
392 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } }, // psraq
393 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } }, // psllq
394 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } }, // psrlq
395 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } }, // psraq
396
397 { ISD::SDIV, MVT::v16i32, { 6 } }, // pmuludq sequence
398 { ISD::SREM, MVT::v16i32, { 8 } }, // pmuludq+mul+sub sequence
399 { ISD::UDIV, MVT::v16i32, { 5 } }, // pmuludq sequence
400 { ISD::UREM, MVT::v16i32, { 7 } }, // pmuludq+mul+sub sequence
401 };
402
403 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX512())
404 if (const auto *Entry =
405 CostTableLookup(AVX512UniformConstCostTable, ISD, LT.second))
406 if (auto KindCost = Entry->Cost[CostKind])
407 return LT.first * *KindCost;
408
409 static const CostKindTblEntry AVX2UniformConstCostTable[] = {
410 { ISD::SHL, MVT::v16i8, { 1, 8, 2, 3 } }, // psllw + pand.
411 { ISD::SRL, MVT::v16i8, { 1, 8, 2, 3 } }, // psrlw + pand.
412 { ISD::SRA, MVT::v16i8, { 2, 10, 5, 6 } }, // psrlw, pand, pxor, psubb.
413 { ISD::SHL, MVT::v32i8, { 2, 8, 2, 4 } }, // psllw + pand.
414 { ISD::SRL, MVT::v32i8, { 2, 8, 2, 4 } }, // psrlw + pand.
415 { ISD::SRA, MVT::v32i8, { 3, 10, 5, 9 } }, // psrlw, pand, pxor, psubb.
416
417 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw
418 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw
419 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw
420 { ISD::SHL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psllw
421 { ISD::SRL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psrlw
422 { ISD::SRA, MVT::v16i16,{ 2, 2, 1, 2 } }, // psraw
423
424 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
425 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld
426 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad
427 { ISD::SHL, MVT::v8i32, { 2, 2, 1, 2 } }, // pslld
428 { ISD::SRL, MVT::v8i32, { 2, 2, 1, 2 } }, // psrld
429 { ISD::SRA, MVT::v8i32, { 2, 2, 1, 2 } }, // psrad
430
431 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq
432 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq
433 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
434 { ISD::SHL, MVT::v4i64, { 2, 2, 1, 2 } }, // psllq
435 { ISD::SRL, MVT::v4i64, { 2, 2, 1, 2 } }, // psrlq
436 { ISD::SRA, MVT::v4i64, { 4, 4, 3, 6 } }, // psrad + shuffle + split.
437
438 { ISD::SDIV, MVT::v8i32, { 6 } }, // pmuludq sequence
439 { ISD::SREM, MVT::v8i32, { 8 } }, // pmuludq+mul+sub sequence
440 { ISD::UDIV, MVT::v8i32, { 5 } }, // pmuludq sequence
441 { ISD::UREM, MVT::v8i32, { 7 } }, // pmuludq+mul+sub sequence
442 };
443
444 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX2())
445 if (const auto *Entry =
446 CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second))
447 if (auto KindCost = Entry->Cost[CostKind])
448 return LT.first * *KindCost;
449
450 static const CostKindTblEntry AVXUniformConstCostTable[] = {
451 { ISD::SHL, MVT::v16i8, { 2, 7, 2, 3 } }, // psllw + pand.
452 { ISD::SRL, MVT::v16i8, { 2, 7, 2, 3 } }, // psrlw + pand.
453 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
454 { ISD::SHL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psllw + pand) + split.
455 { ISD::SRL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psrlw + pand) + split.
456 { ISD::SRA, MVT::v32i8, { 7, 7, 12, 13 } }, // 2*(psrlw, pand, pxor, psubb) + split.
457
458 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 1 } }, // psllw.
459 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 1 } }, // psrlw.
460 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 1 } }, // psraw.
461 { ISD::SHL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psllw + split.
462 { ISD::SRL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psrlw + split.
463 { ISD::SRA, MVT::v16i16,{ 3, 6, 4, 5 } }, // psraw + split.
464
465 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 1 } }, // pslld.
466 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 1 } }, // psrld.
467 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 1 } }, // psrad.
468 { ISD::SHL, MVT::v8i32, { 3, 6, 4, 5 } }, // pslld + split.
469 { ISD::SRL, MVT::v8i32, { 3, 6, 4, 5 } }, // psrld + split.
470 { ISD::SRA, MVT::v8i32, { 3, 6, 4, 5 } }, // psrad + split.
471
472 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 1 } }, // psllq.
473 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 1 } }, // psrlq.
474 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
475 { ISD::SHL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
476 { ISD::SRL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
477 { ISD::SRA, MVT::v4i64, { 5, 7, 8, 9 } }, // 2 x psrad + shuffle + split.
478
479 { ISD::SDIV, MVT::v8i32, { 14 } }, // 2*pmuludq sequence + split.
480 { ISD::SREM, MVT::v8i32, { 18 } }, // 2*pmuludq+mul+sub sequence + split.
481 { ISD::UDIV, MVT::v8i32, { 12 } }, // 2*pmuludq sequence + split.
482 { ISD::UREM, MVT::v8i32, { 16 } }, // 2*pmuludq+mul+sub sequence + split.
483 };
484
485 // XOP has faster vXi8 shifts.
486 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX() &&
487 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
488 if (const auto *Entry =
489 CostTableLookup(AVXUniformConstCostTable, ISD, LT.second))
490 if (auto KindCost = Entry->Cost[CostKind])
491 return LT.first * *KindCost;
492
493 static const CostKindTblEntry SSE2UniformConstCostTable[] = {
494 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
495 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
496 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
497
498 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw.
499 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw.
500 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw.
501
502 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
503 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld.
504 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad.
505
506 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq.
507 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq.
508 { ISD::SRA, MVT::v2i64, { 3, 5, 6, 6 } }, // 2 x psrad + shuffle.
509
510 { ISD::SDIV, MVT::v4i32, { 6 } }, // pmuludq sequence
511 { ISD::SREM, MVT::v4i32, { 8 } }, // pmuludq+mul+sub sequence
512 { ISD::UDIV, MVT::v4i32, { 5 } }, // pmuludq sequence
513 { ISD::UREM, MVT::v4i32, { 7 } }, // pmuludq+mul+sub sequence
514 };
515
516 // XOP has faster vXi8 shifts.
517 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasSSE2() &&
518 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
519 if (const auto *Entry =
520 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
521 if (auto KindCost = Entry->Cost[CostKind])
522 return LT.first * *KindCost;
523
524 static const CostKindTblEntry AVX512BWConstCostTable[] = {
525 { ISD::SDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
526 { ISD::SREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
527 { ISD::UDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
528 { ISD::UREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
529
530 { ISD::SDIV, MVT::v32i16, { 6 } }, // vpmulhw sequence
531 { ISD::SREM, MVT::v32i16, { 8 } }, // vpmulhw+mul+sub sequence
532 { ISD::UDIV, MVT::v32i16, { 6 } }, // vpmulhuw sequence
533 { ISD::UREM, MVT::v32i16, { 8 } }, // vpmulhuw+mul+sub sequence
534 };
535
536 if (Op2Info.isConstant() && ST->hasBWI())
537 if (const auto *Entry =
538 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
539 if (auto KindCost = Entry->Cost[CostKind])
540 return LT.first * *KindCost;
541
542 static const CostKindTblEntry AVX512ConstCostTable[] = {
543 { ISD::SDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
544 { ISD::SREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
545 { ISD::UDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
546 { ISD::UREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
547
548 { ISD::SDIV, MVT::v32i16, { 12 } }, // 2*vpmulhw sequence
549 { ISD::SREM, MVT::v32i16, { 16 } }, // 2*vpmulhw+mul+sub sequence
550 { ISD::UDIV, MVT::v32i16, { 12 } }, // 2*vpmulhuw sequence
551 { ISD::UREM, MVT::v32i16, { 16 } }, // 2*vpmulhuw+mul+sub sequence
552
553 { ISD::SDIV, MVT::v16i32, { 15 } }, // vpmuldq sequence
554 { ISD::SREM, MVT::v16i32, { 17 } }, // vpmuldq+mul+sub sequence
555 { ISD::UDIV, MVT::v16i32, { 15 } }, // vpmuludq sequence
556 { ISD::UREM, MVT::v16i32, { 17 } }, // vpmuludq+mul+sub sequence
557 };
558
559 if (Op2Info.isConstant() && ST->hasAVX512())
560 if (const auto *Entry =
561 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
562 if (auto KindCost = Entry->Cost[CostKind])
563 return LT.first * *KindCost;
564
565 static const CostKindTblEntry AVX2ConstCostTable[] = {
566 { ISD::SDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
567 { ISD::SREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
568 { ISD::UDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
569 { ISD::UREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
570
571 { ISD::SDIV, MVT::v16i16, { 6 } }, // vpmulhw sequence
572 { ISD::SREM, MVT::v16i16, { 8 } }, // vpmulhw+mul+sub sequence
573 { ISD::UDIV, MVT::v16i16, { 6 } }, // vpmulhuw sequence
574 { ISD::UREM, MVT::v16i16, { 8 } }, // vpmulhuw+mul+sub sequence
575
576 { ISD::SDIV, MVT::v8i32, { 15 } }, // vpmuldq sequence
577 { ISD::SREM, MVT::v8i32, { 19 } }, // vpmuldq+mul+sub sequence
578 { ISD::UDIV, MVT::v8i32, { 15 } }, // vpmuludq sequence
579 { ISD::UREM, MVT::v8i32, { 19 } }, // vpmuludq+mul+sub sequence
580 };
581
582 if (Op2Info.isConstant() && ST->hasAVX2())
583 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
584 if (auto KindCost = Entry->Cost[CostKind])
585 return LT.first * *KindCost;
586
587 static const CostKindTblEntry AVXConstCostTable[] = {
588 { ISD::SDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
589 { ISD::SREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
590 { ISD::UDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
591 { ISD::UREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
592
593 { ISD::SDIV, MVT::v16i16, { 14 } }, // 2*pmulhw sequence + split.
594 { ISD::SREM, MVT::v16i16, { 18 } }, // 2*pmulhw+mul+sub sequence + split.
595 { ISD::UDIV, MVT::v16i16, { 14 } }, // 2*pmulhuw sequence + split.
596 { ISD::UREM, MVT::v16i16, { 18 } }, // 2*pmulhuw+mul+sub sequence + split.
597
598 { ISD::SDIV, MVT::v8i32, { 32 } }, // vpmuludq sequence
599 { ISD::SREM, MVT::v8i32, { 38 } }, // vpmuludq+mul+sub sequence
600 { ISD::UDIV, MVT::v8i32, { 32 } }, // 2*pmuludq sequence + split.
601 { ISD::UREM, MVT::v8i32, { 42 } }, // 2*pmuludq+mul+sub sequence + split.
602 };
603
604 if (Op2Info.isConstant() && ST->hasAVX())
605 if (const auto *Entry = CostTableLookup(AVXConstCostTable, ISD, LT.second))
606 if (auto KindCost = Entry->Cost[CostKind])
607 return LT.first * *KindCost;
608
609 static const CostKindTblEntry SSE41ConstCostTable[] = {
610 { ISD::SDIV, MVT::v4i32, { 15 } }, // vpmuludq sequence
611 { ISD::SREM, MVT::v4i32, { 20 } }, // vpmuludq+mul+sub sequence
612 };
613
614 if (Op2Info.isConstant() && ST->hasSSE41())
615 if (const auto *Entry =
616 CostTableLookup(SSE41ConstCostTable, ISD, LT.second))
617 if (auto KindCost = Entry->Cost[CostKind])
618 return LT.first * *KindCost;
619
620 static const CostKindTblEntry SSE2ConstCostTable[] = {
621 { ISD::SDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
622 { ISD::SREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
623 { ISD::UDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
624 { ISD::UREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
625
626 { ISD::SDIV, MVT::v8i16, { 6 } }, // pmulhw sequence
627 { ISD::SREM, MVT::v8i16, { 8 } }, // pmulhw+mul+sub sequence
628 { ISD::UDIV, MVT::v8i16, { 6 } }, // pmulhuw sequence
629 { ISD::UREM, MVT::v8i16, { 8 } }, // pmulhuw+mul+sub sequence
630
631 { ISD::SDIV, MVT::v4i32, { 19 } }, // pmuludq sequence
632 { ISD::SREM, MVT::v4i32, { 24 } }, // pmuludq+mul+sub sequence
633 { ISD::UDIV, MVT::v4i32, { 15 } }, // pmuludq sequence
634 { ISD::UREM, MVT::v4i32, { 20 } }, // pmuludq+mul+sub sequence
635 };
636
637 if (Op2Info.isConstant() && ST->hasSSE2())
638 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
639 if (auto KindCost = Entry->Cost[CostKind])
640 return LT.first * *KindCost;
641
642 static const CostKindTblEntry AVX512BWUniformCostTable[] = {
643 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
644 { ISD::SRL, MVT::v16i8, { 3,10, 5, 8 } }, // psrlw + pand.
645 { ISD::SRA, MVT::v16i8, { 4,12, 8,12 } }, // psrlw, pand, pxor, psubb.
646 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
647 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
648 { ISD::SRA, MVT::v32i8, { 5,10,10,13 } }, // psrlw, pand, pxor, psubb.
649 { ISD::SHL, MVT::v64i8, { 4, 7, 6, 8 } }, // psllw + pand.
650 { ISD::SRL, MVT::v64i8, { 4, 8, 7,10 } }, // psrlw + pand.
651 { ISD::SRA, MVT::v64i8, { 5,10,10,15 } }, // psrlw, pand, pxor, psubb.
652
653 { ISD::SHL, MVT::v32i16, { 2, 4, 2, 3 } }, // psllw
654 { ISD::SRL, MVT::v32i16, { 2, 4, 2, 3 } }, // psrlw
655 { ISD::SRA, MVT::v32i16, { 2, 4, 2, 3 } }, // psrqw
656 };
657
658 if (ST->hasBWI() && Op2Info.isUniform())
659 if (const auto *Entry =
660 CostTableLookup(AVX512BWUniformCostTable, ISD, LT.second))
661 if (auto KindCost = Entry->Cost[CostKind])
662 return LT.first * *KindCost;
663
664 static const CostKindTblEntry AVX512UniformCostTable[] = {
665 { ISD::SHL, MVT::v32i16, { 5,10, 5, 7 } }, // psllw + split.
666 { ISD::SRL, MVT::v32i16, { 5,10, 5, 7 } }, // psrlw + split.
667 { ISD::SRA, MVT::v32i16, { 5,10, 5, 7 } }, // psraw + split.
668
669 { ISD::SHL, MVT::v16i32, { 2, 4, 2, 3 } }, // pslld
670 { ISD::SRL, MVT::v16i32, { 2, 4, 2, 3 } }, // psrld
671 { ISD::SRA, MVT::v16i32, { 2, 4, 2, 3 } }, // psrad
672
673 { ISD::SRA, MVT::v2i64, { 1, 2, 1, 2 } }, // psraq
674 { ISD::SHL, MVT::v4i64, { 1, 4, 1, 2 } }, // psllq
675 { ISD::SRL, MVT::v4i64, { 1, 4, 1, 2 } }, // psrlq
676 { ISD::SRA, MVT::v4i64, { 1, 4, 1, 2 } }, // psraq
677 { ISD::SHL, MVT::v8i64, { 1, 4, 1, 2 } }, // psllq
678 { ISD::SRL, MVT::v8i64, { 1, 4, 1, 2 } }, // psrlq
679 { ISD::SRA, MVT::v8i64, { 1, 4, 1, 2 } }, // psraq
680 };
681
682 if (ST->hasAVX512() && Op2Info.isUniform())
683 if (const auto *Entry =
684 CostTableLookup(AVX512UniformCostTable, ISD, LT.second))
685 if (auto KindCost = Entry->Cost[CostKind])
686 return LT.first * *KindCost;
687
688 static const CostKindTblEntry AVX2UniformCostTable[] = {
689 // Uniform splats are cheaper for the following instructions.
690 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
691 { ISD::SRL, MVT::v16i8, { 3, 9, 5, 8 } }, // psrlw + pand.
692 { ISD::SRA, MVT::v16i8, { 4, 5, 9,13 } }, // psrlw, pand, pxor, psubb.
693 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
694 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
695 { ISD::SRA, MVT::v32i8, { 6, 9,11,16 } }, // psrlw, pand, pxor, psubb.
696
697 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 2 } }, // psllw.
698 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 2 } }, // psrlw.
699 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 2 } }, // psraw.
700 { ISD::SHL, MVT::v16i16, { 2, 4, 2, 3 } }, // psllw.
701 { ISD::SRL, MVT::v16i16, { 2, 4, 2, 3 } }, // psrlw.
702 { ISD::SRA, MVT::v16i16, { 2, 4, 2, 3 } }, // psraw.
703
704 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 2 } }, // pslld
705 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 2 } }, // psrld
706 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 2 } }, // psrad
707 { ISD::SHL, MVT::v8i32, { 2, 4, 2, 3 } }, // pslld
708 { ISD::SRL, MVT::v8i32, { 2, 4, 2, 3 } }, // psrld
709 { ISD::SRA, MVT::v8i32, { 2, 4, 2, 3 } }, // psrad
710
711 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 2 } }, // psllq
712 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 2 } }, // psrlq
713 { ISD::SRA, MVT::v2i64, { 2, 4, 5, 7 } }, // 2 x psrad + shuffle.
714 { ISD::SHL, MVT::v4i64, { 2, 4, 1, 2 } }, // psllq
715 { ISD::SRL, MVT::v4i64, { 2, 4, 1, 2 } }, // psrlq
716 { ISD::SRA, MVT::v4i64, { 4, 6, 5, 9 } }, // 2 x psrad + shuffle.
717 };
718
719 if (ST->hasAVX2() && Op2Info.isUniform())
720 if (const auto *Entry =
721 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
722 if (auto KindCost = Entry->Cost[CostKind])
723 return LT.first * *KindCost;
724
725 static const CostKindTblEntry AVXUniformCostTable[] = {
726 { ISD::SHL, MVT::v16i8, { 4, 4, 6, 8 } }, // psllw + pand.
727 { ISD::SRL, MVT::v16i8, { 4, 8, 5, 8 } }, // psrlw + pand.
728 { ISD::SRA, MVT::v16i8, { 6, 6, 9,13 } }, // psrlw, pand, pxor, psubb.
729 { ISD::SHL, MVT::v32i8, { 7, 8,11,14 } }, // psllw + pand + split.
730 { ISD::SRL, MVT::v32i8, { 7, 9,10,14 } }, // psrlw + pand + split.
731 { ISD::SRA, MVT::v32i8, { 10,11,16,21 } }, // psrlw, pand, pxor, psubb + split.
732
733 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 2 } }, // psllw.
734 { ISD::SRL, MVT::v8i16, { 1, 3, 1, 2 } }, // psrlw.
735 { ISD::SRA, MVT::v8i16, { 1, 3, 1, 2 } }, // psraw.
736 { ISD::SHL, MVT::v16i16, { 3, 7, 5, 7 } }, // psllw + split.
737 { ISD::SRL, MVT::v16i16, { 3, 7, 5, 7 } }, // psrlw + split.
738 { ISD::SRA, MVT::v16i16, { 3, 7, 5, 7 } }, // psraw + split.
739
740 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 2 } }, // pslld.
741 { ISD::SRL, MVT::v4i32, { 1, 3, 1, 2 } }, // psrld.
742 { ISD::SRA, MVT::v4i32, { 1, 3, 1, 2 } }, // psrad.
743 { ISD::SHL, MVT::v8i32, { 3, 7, 5, 7 } }, // pslld + split.
744 { ISD::SRL, MVT::v8i32, { 3, 7, 5, 7 } }, // psrld + split.
745 { ISD::SRA, MVT::v8i32, { 3, 7, 5, 7 } }, // psrad + split.
746
747 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 2 } }, // psllq.
748 { ISD::SRL, MVT::v2i64, { 1, 3, 1, 2 } }, // psrlq.
749 { ISD::SRA, MVT::v2i64, { 3, 4, 5, 7 } }, // 2 x psrad + shuffle.
750 { ISD::SHL, MVT::v4i64, { 3, 7, 4, 6 } }, // psllq + split.
751 { ISD::SRL, MVT::v4i64, { 3, 7, 4, 6 } }, // psrlq + split.
752 { ISD::SRA, MVT::v4i64, { 6, 7,10,13 } }, // 2 x (2 x psrad + shuffle) + split.
753 };
754
755 // XOP has faster vXi8 shifts.
756 if (ST->hasAVX() && Op2Info.isUniform() &&
757 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
758 if (const auto *Entry =
759 CostTableLookup(AVXUniformCostTable, ISD, LT.second))
760 if (auto KindCost = Entry->Cost[CostKind])
761 return LT.first * *KindCost;
762
763 static const CostKindTblEntry SSE2UniformCostTable[] = {
764 // Uniform splats are cheaper for the following instructions.
765 { ISD::SHL, MVT::v16i8, { 9, 10, 6, 9 } }, // psllw + pand.
766 { ISD::SRL, MVT::v16i8, { 9, 13, 5, 9 } }, // psrlw + pand.
767 { ISD::SRA, MVT::v16i8, { 11, 15, 9,13 } }, // pcmpgtb sequence.
768
769 { ISD::SHL, MVT::v8i16, { 2, 2, 1, 2 } }, // psllw.
770 { ISD::SRL, MVT::v8i16, { 2, 2, 1, 2 } }, // psrlw.
771 { ISD::SRA, MVT::v8i16, { 2, 2, 1, 2 } }, // psraw.
772
773 { ISD::SHL, MVT::v4i32, { 2, 2, 1, 2 } }, // pslld
774 { ISD::SRL, MVT::v4i32, { 2, 2, 1, 2 } }, // psrld.
775 { ISD::SRA, MVT::v4i32, { 2, 2, 1, 2 } }, // psrad.
776
777 { ISD::SHL, MVT::v2i64, { 2, 2, 1, 2 } }, // psllq.
778 { ISD::SRL, MVT::v2i64, { 2, 2, 1, 2 } }, // psrlq.
779 { ISD::SRA, MVT::v2i64, { 5, 9, 5, 7 } }, // 2*psrlq + xor + sub.
780 };
781
782 if (ST->hasSSE2() && Op2Info.isUniform() &&
783 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
784 if (const auto *Entry =
785 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
786 if (auto KindCost = Entry->Cost[CostKind])
787 return LT.first * *KindCost;
788
789 static const CostKindTblEntry AVX512DQCostTable[] = {
790 { ISD::MUL, MVT::v2i64, { 2, 15, 1, 3 } }, // pmullq
791 { ISD::MUL, MVT::v4i64, { 2, 15, 1, 3 } }, // pmullq
792 { ISD::MUL, MVT::v8i64, { 3, 15, 1, 3 } } // pmullq
793 };
794
795 // Look for AVX512DQ lowering tricks for custom cases.
796 if (ST->hasDQI())
797 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
798 if (auto KindCost = Entry->Cost[CostKind])
799 return LT.first * *KindCost;
800
801 static const CostKindTblEntry AVX512BWCostTable[] = {
802 { ISD::SHL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsllvw/pack sequence.
803 { ISD::SRL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsrlvw/pack sequence.
804 { ISD::SRA, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsravw/pack sequence.
805 { ISD::SHL, MVT::v32i8, { 4, 23,11,16 } }, // extend/vpsllvw/pack sequence.
806 { ISD::SRL, MVT::v32i8, { 4, 30,12,18 } }, // extend/vpsrlvw/pack sequence.
807 { ISD::SRA, MVT::v32i8, { 6, 13,24,30 } }, // extend/vpsravw/pack sequence.
808 { ISD::SHL, MVT::v64i8, { 6, 19,13,15 } }, // extend/vpsllvw/pack sequence.
809 { ISD::SRL, MVT::v64i8, { 7, 27,15,18 } }, // extend/vpsrlvw/pack sequence.
810 { ISD::SRA, MVT::v64i8, { 15, 15,30,30 } }, // extend/vpsravw/pack sequence.
811
812 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsllvw
813 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsrlvw
814 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsravw
815 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsllvw
816 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsrlvw
817 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsravw
818 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsllvw
819 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsrlvw
820 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsravw
821
822 { ISD::ADD, MVT::v64i8, { 1, 1, 1, 1 } }, // paddb
823 { ISD::ADD, MVT::v32i16, { 1, 1, 1, 1 } }, // paddw
824
825 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 1 } }, // paddb
826 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 1 } }, // paddw
827 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 1 } }, // paddd
828 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 1 } }, // paddq
829
830 { ISD::SUB, MVT::v64i8, { 1, 1, 1, 1 } }, // psubb
831 { ISD::SUB, MVT::v32i16, { 1, 1, 1, 1 } }, // psubw
832
833 { ISD::MUL, MVT::v64i8, { 5, 10,10,11 } },
834 { ISD::MUL, MVT::v32i16, { 1, 5, 1, 1 } }, // pmullw
835
836 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 1 } }, // psubb
837 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 1 } }, // psubw
838 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 1 } }, // psubd
839 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 1 } }, // psubq
840 };
841
842 // Look for AVX512BW lowering tricks for custom cases.
843 if (ST->hasBWI())
844 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
845 if (auto KindCost = Entry->Cost[CostKind])
846 return LT.first * *KindCost;
847
848 static const CostKindTblEntry AVX512CostTable[] = {
849 { ISD::SHL, MVT::v64i8, { 15, 19,27,33 } }, // vpblendv+split sequence.
850 { ISD::SRL, MVT::v64i8, { 15, 19,30,36 } }, // vpblendv+split sequence.
851 { ISD::SRA, MVT::v64i8, { 37, 37,51,63 } }, // vpblendv+split sequence.
852
853 { ISD::SHL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
854 { ISD::SRL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
855 { ISD::SRA, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsravd/pack sequence.
856
857 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } },
858 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } },
859 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } },
860 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } },
861 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } },
862 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } },
863 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } },
864 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } },
865 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } },
866
867 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } },
868 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } },
869 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } },
870 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } },
871 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } },
872 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } },
873 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } },
874 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } },
875 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } },
876
877 { ISD::ADD, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*paddb + split
878 { ISD::ADD, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*paddw + split
879
880 { ISD::SUB, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*psubb + split
881 { ISD::SUB, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*psubw + split
882
883 { ISD::AND, MVT::v32i8, { 1, 1, 1, 1 } },
884 { ISD::AND, MVT::v16i16, { 1, 1, 1, 1 } },
885 { ISD::AND, MVT::v8i32, { 1, 1, 1, 1 } },
886 { ISD::AND, MVT::v4i64, { 1, 1, 1, 1 } },
887
888 { ISD::OR, MVT::v32i8, { 1, 1, 1, 1 } },
889 { ISD::OR, MVT::v16i16, { 1, 1, 1, 1 } },
890 { ISD::OR, MVT::v8i32, { 1, 1, 1, 1 } },
891 { ISD::OR, MVT::v4i64, { 1, 1, 1, 1 } },
892
893 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 1 } },
894 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 1 } },
895 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 1 } },
896 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 1 } },
897
898 { ISD::MUL, MVT::v16i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
899 { ISD::MUL, MVT::v8i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
900 { ISD::MUL, MVT::v4i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
901 { ISD::MUL, MVT::v8i64, { 6, 9, 8, 8 } }, // 3*pmuludq/3*shift/2*add
902 { ISD::MUL, MVT::i64, { 1 } }, // Skylake from http://www.agner.org/
903
904 { X86ISD::PMULUDQ, MVT::v8i64, { 1, 5, 1, 1 } },
905
906 { ISD::FNEG, MVT::v8f64, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
907 { ISD::FADD, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
908 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
909 { ISD::FSUB, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
910 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
911 { ISD::FMUL, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
912 { ISD::FMUL, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
913 { ISD::FMUL, MVT::v2f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
914 { ISD::FMUL, MVT::f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
915
916 { ISD::FDIV, MVT::f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
917 { ISD::FDIV, MVT::v2f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
918 { ISD::FDIV, MVT::v4f64, { 8, 14, 1, 1 } }, // Skylake from http://www.agner.org/
919 { ISD::FDIV, MVT::v8f64, { 16, 23, 1, 3 } }, // Skylake from http://www.agner.org/
920
921 { ISD::FNEG, MVT::v16f32, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
922 { ISD::FADD, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
923 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
924 { ISD::FSUB, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
925 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
926 { ISD::FMUL, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
927 { ISD::FMUL, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
928 { ISD::FMUL, MVT::v4f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
929 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
930
931 { ISD::FDIV, MVT::f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
932 { ISD::FDIV, MVT::v4f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
933 { ISD::FDIV, MVT::v8f32, { 5, 11, 1, 1 } }, // Skylake from http://www.agner.org/
934 { ISD::FDIV, MVT::v16f32, { 10, 18, 1, 3 } }, // Skylake from http://www.agner.org/
935 };
936
937 if (ST->hasAVX512())
938 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
939 if (auto KindCost = Entry->Cost[CostKind])
940 return LT.first * *KindCost;
941
942 static const CostKindTblEntry AVX2ShiftCostTable[] = {
943 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
944 // customize them to detect the cases where shift amount is a scalar one.
945 { ISD::SHL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsllvd (Haswell from agner.org)
946 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
947 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsravd (Haswell from agner.org)
948 { ISD::SHL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsllvd (Haswell from agner.org)
949 { ISD::SRL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
950 { ISD::SRA, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsravd (Haswell from agner.org)
951 { ISD::SHL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsllvq (Haswell from agner.org)
952 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsrlvq (Haswell from agner.org)
953 { ISD::SHL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsllvq (Haswell from agner.org)
954 { ISD::SRL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsrlvq (Haswell from agner.org)
955 };
956
957 if (ST->hasAVX512()) {
958 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && Op2Info.isConstant())
959 // On AVX512, a packed v32i16 shift left by a constant build_vector
960 // is lowered into a vector multiply (vpmullw).
961 return getArithmeticInstrCost(Opcode: Instruction::Mul, Ty, CostKind,
962 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
963 }
964
965 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
966 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
967 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
968 Op2Info.isConstant())
969 // On AVX2, a packed v16i16 shift left by a constant build_vector
970 // is lowered into a vector multiply (vpmullw).
971 return getArithmeticInstrCost(Opcode: Instruction::Mul, Ty, CostKind,
972 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
973
974 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
975 if (auto KindCost = Entry->Cost[CostKind])
976 return LT.first * *KindCost;
977 }
978
979 static const CostKindTblEntry XOPShiftCostTable[] = {
980 // 128bit shifts take 1cy, but right shifts require negation beforehand.
981 { ISD::SHL, MVT::v16i8, { 1, 3, 1, 1 } },
982 { ISD::SRL, MVT::v16i8, { 2, 3, 1, 1 } },
983 { ISD::SRA, MVT::v16i8, { 2, 3, 1, 1 } },
984 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 1 } },
985 { ISD::SRL, MVT::v8i16, { 2, 3, 1, 1 } },
986 { ISD::SRA, MVT::v8i16, { 2, 3, 1, 1 } },
987 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 1 } },
988 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 1 } },
989 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 1 } },
990 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 1 } },
991 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } },
992 { ISD::SRA, MVT::v2i64, { 2, 3, 1, 1 } },
993 // 256bit shifts require splitting if AVX2 didn't catch them above.
994 { ISD::SHL, MVT::v32i8, { 4, 7, 5, 6 } },
995 { ISD::SRL, MVT::v32i8, { 6, 7, 5, 6 } },
996 { ISD::SRA, MVT::v32i8, { 6, 7, 5, 6 } },
997 { ISD::SHL, MVT::v16i16, { 4, 7, 5, 6 } },
998 { ISD::SRL, MVT::v16i16, { 6, 7, 5, 6 } },
999 { ISD::SRA, MVT::v16i16, { 6, 7, 5, 6 } },
1000 { ISD::SHL, MVT::v8i32, { 4, 7, 5, 6 } },
1001 { ISD::SRL, MVT::v8i32, { 6, 7, 5, 6 } },
1002 { ISD::SRA, MVT::v8i32, { 6, 7, 5, 6 } },
1003 { ISD::SHL, MVT::v4i64, { 4, 7, 5, 6 } },
1004 { ISD::SRL, MVT::v4i64, { 6, 7, 5, 6 } },
1005 { ISD::SRA, MVT::v4i64, { 6, 7, 5, 6 } },
1006 };
1007
1008 // Look for XOP lowering tricks.
1009 if (ST->hasXOP()) {
1010 // If the right shift is constant then we'll fold the negation so
1011 // it's as cheap as a left shift.
1012 int ShiftISD = ISD;
1013 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && Op2Info.isConstant())
1014 ShiftISD = ISD::SHL;
1015 if (const auto *Entry =
1016 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
1017 if (auto KindCost = Entry->Cost[CostKind])
1018 return LT.first * *KindCost;
1019 }
1020
1021 if (ISD == ISD::SHL && !Op2Info.isUniform() && Op2Info.isConstant()) {
1022 MVT VT = LT.second;
1023 // Vector shift left by non uniform constant can be lowered
1024 // into vector multiply.
1025 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
1026 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
1027 ISD = ISD::MUL;
1028 }
1029
1030 static const CostKindTblEntry GLMCostTable[] = {
1031 { ISD::FDIV, MVT::f32, { 18, 19, 1, 1 } }, // divss
1032 { ISD::FDIV, MVT::v4f32, { 35, 36, 1, 1 } }, // divps
1033 { ISD::FDIV, MVT::f64, { 33, 34, 1, 1 } }, // divsd
1034 { ISD::FDIV, MVT::v2f64, { 65, 66, 1, 1 } }, // divpd
1035 };
1036
1037 if (ST->useGLMDivSqrtCosts())
1038 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, LT.second))
1039 if (auto KindCost = Entry->Cost[CostKind])
1040 return LT.first * *KindCost;
1041
1042 static const CostKindTblEntry SLMCostTable[] = {
1043 { ISD::MUL, MVT::v4i32, { 11, 11, 1, 7 } }, // pmulld
1044 { ISD::MUL, MVT::v8i16, { 2, 5, 1, 1 } }, // pmullw
1045 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // mulsd
1046 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // mulss
1047 { ISD::FMUL, MVT::v2f64, { 4, 7, 1, 1 } }, // mulpd
1048 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // mulps
1049 { ISD::FDIV, MVT::f32, { 17, 19, 1, 1 } }, // divss
1050 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 6 } }, // divps
1051 { ISD::FDIV, MVT::f64, { 32, 34, 1, 1 } }, // divsd
1052 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 6 } }, // divpd
1053 { ISD::FADD, MVT::v2f64, { 2, 4, 1, 1 } }, // addpd
1054 { ISD::FSUB, MVT::v2f64, { 2, 4, 1, 1 } }, // subpd
1055 // v2i64/v4i64 mul is custom lowered as a series of long:
1056 // multiplies(3), shifts(3) and adds(2)
1057 // slm muldq version throughput is 2 and addq throughput 4
1058 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
1059 // 3X4 (addq throughput) = 17
1060 { ISD::MUL, MVT::v2i64, { 17, 22, 9, 9 } },
1061 // slm addq\subq throughput is 4
1062 { ISD::ADD, MVT::v2i64, { 4, 2, 1, 2 } },
1063 { ISD::SUB, MVT::v2i64, { 4, 2, 1, 2 } },
1064 };
1065
1066 if (ST->useSLMArithCosts())
1067 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, LT.second))
1068 if (auto KindCost = Entry->Cost[CostKind])
1069 return LT.first * *KindCost;
1070
1071 static const CostKindTblEntry AVX2CostTable[] = {
1072 { ISD::SHL, MVT::v16i8, { 6, 21,11,16 } }, // vpblendvb sequence.
1073 { ISD::SHL, MVT::v32i8, { 6, 23,11,22 } }, // vpblendvb sequence.
1074 { ISD::SHL, MVT::v8i16, { 5, 18, 5,10 } }, // extend/vpsrlvd/pack sequence.
1075 { ISD::SHL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1076
1077 { ISD::SRL, MVT::v16i8, { 6, 27,12,18 } }, // vpblendvb sequence.
1078 { ISD::SRL, MVT::v32i8, { 8, 30,12,24 } }, // vpblendvb sequence.
1079 { ISD::SRL, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsrlvd/pack sequence.
1080 { ISD::SRL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1081
1082 { ISD::SRA, MVT::v16i8, { 17, 17,24,30 } }, // vpblendvb sequence.
1083 { ISD::SRA, MVT::v32i8, { 18, 20,24,43 } }, // vpblendvb sequence.
1084 { ISD::SRA, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsravd/pack sequence.
1085 { ISD::SRA, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsravd/pack sequence.
1086 { ISD::SRA, MVT::v2i64, { 4, 5, 5, 5 } }, // srl/xor/sub sequence.
1087 { ISD::SRA, MVT::v4i64, { 8, 8, 5, 9 } }, // srl/xor/sub sequence.
1088
1089 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 2 } }, // psubb
1090 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 2 } }, // paddb
1091 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 2 } }, // psubw
1092 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 2 } }, // paddw
1093 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 2 } }, // psubd
1094 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 2 } }, // paddd
1095 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 2 } }, // psubq
1096 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 2 } }, // paddq
1097
1098 { ISD::MUL, MVT::v16i8, { 5, 18, 6,12 } }, // extend/pmullw/pack
1099 { ISD::MUL, MVT::v32i8, { 6, 11,10,19 } }, // unpack/pmullw
1100 { ISD::MUL, MVT::v16i16, { 2, 5, 1, 2 } }, // pmullw
1101 { ISD::MUL, MVT::v8i32, { 4, 10, 1, 2 } }, // pmulld
1102 { ISD::MUL, MVT::v4i32, { 2, 10, 1, 2 } }, // pmulld
1103 { ISD::MUL, MVT::v4i64, { 6, 10, 8,13 } }, // 3*pmuludq/3*shift/2*add
1104 { ISD::MUL, MVT::v2i64, { 6, 10, 8, 8 } }, // 3*pmuludq/3*shift/2*add
1105
1106 { X86ISD::PMULUDQ, MVT::v4i64, { 1, 5, 1, 1 } },
1107
1108 { ISD::FNEG, MVT::v4f64, { 1, 1, 1, 2 } }, // vxorpd
1109 { ISD::FNEG, MVT::v8f32, { 1, 1, 1, 2 } }, // vxorps
1110
1111 { ISD::FADD, MVT::f64, { 1, 4, 1, 1 } }, // vaddsd
1112 { ISD::FADD, MVT::f32, { 1, 4, 1, 1 } }, // vaddss
1113 { ISD::FADD, MVT::v2f64, { 1, 4, 1, 1 } }, // vaddpd
1114 { ISD::FADD, MVT::v4f32, { 1, 4, 1, 1 } }, // vaddps
1115 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 2 } }, // vaddpd
1116 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 2 } }, // vaddps
1117
1118 { ISD::FSUB, MVT::f64, { 1, 4, 1, 1 } }, // vsubsd
1119 { ISD::FSUB, MVT::f32, { 1, 4, 1, 1 } }, // vsubss
1120 { ISD::FSUB, MVT::v2f64, { 1, 4, 1, 1 } }, // vsubpd
1121 { ISD::FSUB, MVT::v4f32, { 1, 4, 1, 1 } }, // vsubps
1122 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 2 } }, // vsubpd
1123 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 2 } }, // vsubps
1124
1125 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // vmulsd
1126 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // vmulss
1127 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // vmulpd
1128 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // vmulps
1129 { ISD::FMUL, MVT::v4f64, { 1, 5, 1, 2 } }, // vmulpd
1130 { ISD::FMUL, MVT::v8f32, { 1, 5, 1, 2 } }, // vmulps
1131
1132 { ISD::FDIV, MVT::f32, { 7, 13, 1, 1 } }, // vdivss
1133 { ISD::FDIV, MVT::v4f32, { 7, 13, 1, 1 } }, // vdivps
1134 { ISD::FDIV, MVT::v8f32, { 14, 21, 1, 3 } }, // vdivps
1135 { ISD::FDIV, MVT::f64, { 14, 20, 1, 1 } }, // vdivsd
1136 { ISD::FDIV, MVT::v2f64, { 14, 20, 1, 1 } }, // vdivpd
1137 { ISD::FDIV, MVT::v4f64, { 28, 35, 1, 3 } }, // vdivpd
1138 };
1139
1140 // Look for AVX2 lowering tricks for custom cases.
1141 if (ST->hasAVX2())
1142 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
1143 if (auto KindCost = Entry->Cost[CostKind])
1144 return LT.first * *KindCost;
1145
1146 static const CostKindTblEntry AVX1CostTable[] = {
1147 // We don't have to scalarize unsupported ops. We can issue two half-sized
1148 // operations and we only need to extract the upper YMM half.
1149 // Two ops + 1 extract + 1 insert = 4.
1150 { ISD::MUL, MVT::v32i8, { 12, 13, 22, 23 } }, // unpack/pmullw + split
1151 { ISD::MUL, MVT::v16i16, { 4, 8, 5, 6 } }, // pmullw + split
1152 { ISD::MUL, MVT::v8i32, { 5, 8, 5, 10 } }, // pmulld + split
1153 { ISD::MUL, MVT::v4i32, { 2, 5, 1, 3 } }, // pmulld
1154 { ISD::MUL, MVT::v4i64, { 12, 15, 19, 20 } },
1155
1156 { ISD::AND, MVT::v32i8, { 1, 1, 1, 2 } }, // vandps
1157 { ISD::AND, MVT::v16i16, { 1, 1, 1, 2 } }, // vandps
1158 { ISD::AND, MVT::v8i32, { 1, 1, 1, 2 } }, // vandps
1159 { ISD::AND, MVT::v4i64, { 1, 1, 1, 2 } }, // vandps
1160
1161 { ISD::OR, MVT::v32i8, { 1, 1, 1, 2 } }, // vorps
1162 { ISD::OR, MVT::v16i16, { 1, 1, 1, 2 } }, // vorps
1163 { ISD::OR, MVT::v8i32, { 1, 1, 1, 2 } }, // vorps
1164 { ISD::OR, MVT::v4i64, { 1, 1, 1, 2 } }, // vorps
1165
1166 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 2 } }, // vxorps
1167 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 2 } }, // vxorps
1168 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 2 } }, // vxorps
1169 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 2 } }, // vxorps
1170
1171 { ISD::SUB, MVT::v32i8, { 4, 2, 5, 6 } }, // psubb + split
1172 { ISD::ADD, MVT::v32i8, { 4, 2, 5, 6 } }, // paddb + split
1173 { ISD::SUB, MVT::v16i16, { 4, 2, 5, 6 } }, // psubw + split
1174 { ISD::ADD, MVT::v16i16, { 4, 2, 5, 6 } }, // paddw + split
1175 { ISD::SUB, MVT::v8i32, { 4, 2, 5, 6 } }, // psubd + split
1176 { ISD::ADD, MVT::v8i32, { 4, 2, 5, 6 } }, // paddd + split
1177 { ISD::SUB, MVT::v4i64, { 4, 2, 5, 6 } }, // psubq + split
1178 { ISD::ADD, MVT::v4i64, { 4, 2, 5, 6 } }, // paddq + split
1179 { ISD::SUB, MVT::v2i64, { 1, 1, 1, 1 } }, // psubq
1180 { ISD::ADD, MVT::v2i64, { 1, 1, 1, 1 } }, // paddq
1181
1182 { ISD::SHL, MVT::v16i8, { 10, 21,11,17 } }, // pblendvb sequence.
1183 { ISD::SHL, MVT::v32i8, { 22, 22,27,40 } }, // pblendvb sequence + split.
1184 { ISD::SHL, MVT::v8i16, { 6, 9,11,11 } }, // pblendvb sequence.
1185 { ISD::SHL, MVT::v16i16, { 13, 16,24,25 } }, // pblendvb sequence + split.
1186 { ISD::SHL, MVT::v4i32, { 3, 11, 4, 6 } }, // pslld/paddd/cvttps2dq/pmulld
1187 { ISD::SHL, MVT::v8i32, { 9, 11,12,17 } }, // pslld/paddd/cvttps2dq/pmulld + split
1188 { ISD::SHL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1189 { ISD::SHL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1190
1191 { ISD::SRL, MVT::v16i8, { 11, 27,12,18 } }, // pblendvb sequence.
1192 { ISD::SRL, MVT::v32i8, { 23, 23,30,43 } }, // pblendvb sequence + split.
1193 { ISD::SRL, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1194 { ISD::SRL, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1195 { ISD::SRL, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1196 { ISD::SRL, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1197 { ISD::SRL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1198 { ISD::SRL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1199
1200 { ISD::SRA, MVT::v16i8, { 21, 22,24,36 } }, // pblendvb sequence.
1201 { ISD::SRA, MVT::v32i8, { 44, 45,51,76 } }, // pblendvb sequence + split.
1202 { ISD::SRA, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1203 { ISD::SRA, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1204 { ISD::SRA, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1205 { ISD::SRA, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1206 { ISD::SRA, MVT::v2i64, { 5, 6,10,14 } }, // Shift each lane + blend.
1207 { ISD::SRA, MVT::v4i64, { 12, 12,22,30 } }, // Shift each lane + blend + split.
1208
1209 { ISD::FNEG, MVT::v4f64, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1210 { ISD::FNEG, MVT::v8f32, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1211
1212 { ISD::FADD, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1213 { ISD::FADD, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1214 { ISD::FADD, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1215 { ISD::FADD, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1216 { ISD::FADD, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1217 { ISD::FADD, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1218
1219 { ISD::FSUB, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1220 { ISD::FSUB, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1221 { ISD::FSUB, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1222 { ISD::FSUB, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1223 { ISD::FSUB, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1224 { ISD::FSUB, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1225
1226 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1227 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1228 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1229 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1230 { ISD::FMUL, MVT::v4f64, { 4, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1231 { ISD::FMUL, MVT::v8f32, { 2, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1232
1233 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1234 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1235 { ISD::FDIV, MVT::v8f32, { 28, 29, 1, 3 } }, // SNB from http://www.agner.org/
1236 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1237 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1238 { ISD::FDIV, MVT::v4f64, { 44, 45, 1, 3 } }, // SNB from http://www.agner.org/
1239 };
1240
1241 if (ST->hasAVX())
1242 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
1243 if (auto KindCost = Entry->Cost[CostKind])
1244 return LT.first * *KindCost;
1245
1246 static const CostKindTblEntry SSE42CostTable[] = {
1247 { ISD::FADD, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1248 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1249 { ISD::FADD, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1250 { ISD::FADD, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1251
1252 { ISD::FSUB, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1253 { ISD::FSUB, MVT::f32 , { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1254 { ISD::FSUB, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1255 { ISD::FSUB, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1256
1257 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1258 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1259 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1260 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1261
1262 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1263 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1264 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1265 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1266
1267 { ISD::MUL, MVT::v2i64, { 6, 10,10,10 } } // 3*pmuludq/3*shift/2*add
1268 };
1269
1270 if (ST->hasSSE42())
1271 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
1272 if (auto KindCost = Entry->Cost[CostKind])
1273 return LT.first * *KindCost;
1274
1275 static const CostKindTblEntry SSE41CostTable[] = {
1276 { ISD::SHL, MVT::v16i8, { 15, 24,17,22 } }, // pblendvb sequence.
1277 { ISD::SHL, MVT::v8i16, { 11, 14,11,11 } }, // pblendvb sequence.
1278 { ISD::SHL, MVT::v4i32, { 14, 20, 4,10 } }, // pslld/paddd/cvttps2dq/pmulld
1279
1280 { ISD::SRL, MVT::v16i8, { 16, 27,18,24 } }, // pblendvb sequence.
1281 { ISD::SRL, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1282 { ISD::SRL, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1283 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1284
1285 { ISD::SRA, MVT::v16i8, { 38, 41,30,36 } }, // pblendvb sequence.
1286 { ISD::SRA, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1287 { ISD::SRA, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1288 { ISD::SRA, MVT::v2i64, { 8, 17, 5, 7 } }, // splat+shuffle sequence.
1289
1290 { ISD::MUL, MVT::v16i8, { 5, 18,10,12 } }, // 2*unpack/2*pmullw/2*and/pack
1291 { ISD::MUL, MVT::v4i32, { 2, 11, 1, 1 } } // pmulld (Nehalem from agner.org)
1292 };
1293
1294 if (ST->hasSSE41())
1295 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
1296 if (auto KindCost = Entry->Cost[CostKind])
1297 return LT.first * *KindCost;
1298
1299 static const CostKindTblEntry SSE2CostTable[] = {
1300 // We don't correctly identify costs of casts because they are marked as
1301 // custom.
1302 { ISD::SHL, MVT::v16i8, { 13, 21,26,28 } }, // cmpgtb sequence.
1303 { ISD::SHL, MVT::v8i16, { 24, 27,16,20 } }, // cmpgtw sequence.
1304 { ISD::SHL, MVT::v4i32, { 17, 19,10,12 } }, // pslld/paddd/cvttps2dq/pmuludq.
1305 { ISD::SHL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1306
1307 { ISD::SRL, MVT::v16i8, { 14, 28,27,30 } }, // cmpgtb sequence.
1308 { ISD::SRL, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1309 { ISD::SRL, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1310 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1311
1312 { ISD::SRA, MVT::v16i8, { 27, 30,54,54 } }, // unpacked cmpgtb sequence.
1313 { ISD::SRA, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1314 { ISD::SRA, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1315 { ISD::SRA, MVT::v2i64, { 8, 11,12,16 } }, // srl/xor/sub splat+shuffle sequence.
1316
1317 { ISD::AND, MVT::v16i8, { 1, 1, 1, 1 } }, // pand
1318 { ISD::AND, MVT::v8i16, { 1, 1, 1, 1 } }, // pand
1319 { ISD::AND, MVT::v4i32, { 1, 1, 1, 1 } }, // pand
1320 { ISD::AND, MVT::v2i64, { 1, 1, 1, 1 } }, // pand
1321
1322 { ISD::OR, MVT::v16i8, { 1, 1, 1, 1 } }, // por
1323 { ISD::OR, MVT::v8i16, { 1, 1, 1, 1 } }, // por
1324 { ISD::OR, MVT::v4i32, { 1, 1, 1, 1 } }, // por
1325 { ISD::OR, MVT::v2i64, { 1, 1, 1, 1 } }, // por
1326
1327 { ISD::XOR, MVT::v16i8, { 1, 1, 1, 1 } }, // pxor
1328 { ISD::XOR, MVT::v8i16, { 1, 1, 1, 1 } }, // pxor
1329 { ISD::XOR, MVT::v4i32, { 1, 1, 1, 1 } }, // pxor
1330 { ISD::XOR, MVT::v2i64, { 1, 1, 1, 1 } }, // pxor
1331
1332 { ISD::ADD, MVT::v2i64, { 1, 2, 1, 2 } }, // paddq
1333 { ISD::SUB, MVT::v2i64, { 1, 2, 1, 2 } }, // psubq
1334
1335 { ISD::MUL, MVT::v16i8, { 5, 18,12,12 } }, // 2*unpack/2*pmullw/2*and/pack
1336 { ISD::MUL, MVT::v8i16, { 1, 5, 1, 1 } }, // pmullw
1337 { ISD::MUL, MVT::v4i32, { 6, 8, 7, 7 } }, // 3*pmuludq/4*shuffle
1338 { ISD::MUL, MVT::v2i64, { 7, 10,10,10 } }, // 3*pmuludq/3*shift/2*add
1339
1340 { X86ISD::PMULUDQ, MVT::v2i64, { 1, 5, 1, 1 } },
1341
1342 { ISD::FDIV, MVT::f32, { 23, 23, 1, 1 } }, // Pentium IV from http://www.agner.org/
1343 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 1 } }, // Pentium IV from http://www.agner.org/
1344 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // Pentium IV from http://www.agner.org/
1345 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 1 } }, // Pentium IV from http://www.agner.org/
1346
1347 { ISD::FNEG, MVT::f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1348 { ISD::FNEG, MVT::f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1349 { ISD::FNEG, MVT::v4f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1350 { ISD::FNEG, MVT::v2f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1351
1352 { ISD::FADD, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1353 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1354 { ISD::FADD, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1355
1356 { ISD::FSUB, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1357 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1358 { ISD::FSUB, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1359
1360 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1361 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1362 };
1363
1364 if (ST->hasSSE2())
1365 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1366 if (auto KindCost = Entry->Cost[CostKind])
1367 return LT.first * *KindCost;
1368
1369 static const CostKindTblEntry SSE1CostTable[] = {
1370 { ISD::FDIV, MVT::f32, { 17, 18, 1, 1 } }, // Pentium III from http://www.agner.org/
1371 { ISD::FDIV, MVT::v4f32, { 34, 48, 1, 1 } }, // Pentium III from http://www.agner.org/
1372
1373 { ISD::FNEG, MVT::f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1374 { ISD::FNEG, MVT::v4f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1375
1376 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1377 { ISD::FADD, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1378
1379 { ISD::FSUB, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1380 { ISD::FSUB, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1381
1382 { ISD::FMUL, MVT::f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1383 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1384 };
1385
1386 if (ST->hasSSE1())
1387 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1388 if (auto KindCost = Entry->Cost[CostKind])
1389 return LT.first * *KindCost;
1390
1391 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
1392 { ISD::ADD, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1393 { ISD::SUB, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1394 { ISD::MUL, MVT::i64, { 2, 6, 1, 2 } },
1395 };
1396
1397 if (ST->is64Bit())
1398 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1399 if (auto KindCost = Entry->Cost[CostKind])
1400 return LT.first * *KindCost;
1401
1402 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1403 { ISD::ADD, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1404 { ISD::ADD, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1405 { ISD::ADD, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1406
1407 { ISD::SUB, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1408 { ISD::SUB, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1409 { ISD::SUB, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1410
1411 { ISD::MUL, MVT::i8, { 3, 4, 1, 1 } },
1412 { ISD::MUL, MVT::i16, { 2, 4, 1, 1 } },
1413 { ISD::MUL, MVT::i32, { 1, 4, 1, 1 } },
1414
1415 { ISD::FNEG, MVT::f64, { 2, 2, 1, 3 } }, // (x87)
1416 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1417 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1418 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // (x87)
1419 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // (x87)
1420 };
1421
1422 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1423 if (auto KindCost = Entry->Cost[CostKind])
1424 return LT.first * *KindCost;
1425
1426 // It is not a good idea to vectorize division. We have to scalarize it and
1427 // in the process we will often end up having to spilling regular
1428 // registers. The overhead of division is going to dominate most kernels
1429 // anyways so try hard to prevent vectorization of division - it is
1430 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1431 // to hide "20 cycles" for each lane.
1432 if (CostKind == TTI::TCK_RecipThroughput && LT.second.isVector() &&
1433 (ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
1434 ISD == ISD::UREM)) {
1435 InstructionCost ScalarCost =
1436 getArithmeticInstrCost(Opcode, Ty: Ty->getScalarType(), CostKind,
1437 Op1Info: Op1Info.getNoProps(), Op2Info: Op2Info.getNoProps());
1438 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1439 }
1440
1441 // Handle some basic single instruction code size cases.
1442 if (CostKind == TTI::TCK_CodeSize) {
1443 switch (ISD) {
1444 case ISD::FADD:
1445 case ISD::FSUB:
1446 case ISD::FMUL:
1447 case ISD::FDIV:
1448 case ISD::FNEG:
1449 case ISD::AND:
1450 case ISD::OR:
1451 case ISD::XOR:
1452 return LT.first;
1453 break;
1454 }
1455 }
1456
1457 // Fallback to the default implementation.
1458 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info: Op1Info, Opd2Info: Op2Info,
1459 Args, CxtI);
1460}
1461
1462InstructionCost
1463X86TTIImpl::getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
1464 unsigned Opcode1, const SmallBitVector &OpcodeMask,
1465 TTI::TargetCostKind CostKind) const {
1466 if (isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask))
1467 return TTI::TCC_Basic;
1468 return InstructionCost::getInvalid();
1469}
1470
1471InstructionCost X86TTIImpl::getShuffleCost(
1472 TTI::ShuffleKind Kind, VectorType *BaseTp, ArrayRef<int> Mask,
1473 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
1474 ArrayRef<const Value *> Args, const Instruction *CxtI) {
1475 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1476 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1477 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: BaseTp);
1478
1479 Kind = improveShuffleKindFromMask(Kind, Mask, Ty: BaseTp, Index, SubTy&: SubTp);
1480
1481 // Recognize a basic concat_vector shuffle.
1482 if (Kind == TTI::SK_PermuteTwoSrc &&
1483 Mask.size() == (2 * BaseTp->getElementCount().getKnownMinValue()) &&
1484 ShuffleVectorInst::isIdentityMask(Mask, NumSrcElts: Mask.size()))
1485 return getShuffleCost(Kind: TTI::SK_InsertSubvector,
1486 BaseTp: VectorType::getDoubleElementsVectorType(VTy: BaseTp), Mask,
1487 CostKind, Index: Mask.size() / 2, SubTp: BaseTp);
1488
1489 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1490 if (Kind == TTI::SK_Transpose)
1491 Kind = TTI::SK_PermuteTwoSrc;
1492
1493 if (Kind == TTI::SK_Broadcast) {
1494 // For Broadcasts we are splatting the first element from the first input
1495 // register, so only need to reference that input and all the output
1496 // registers are the same.
1497 LT.first = 1;
1498
1499 // If we're broadcasting a load then AVX/AVX2 can do this for free.
1500 using namespace PatternMatch;
1501 if (!Args.empty() && match(V: Args[0], P: m_OneUse(SubPattern: m_Load(Op: m_Value()))) &&
1502 (ST->hasAVX2() ||
1503 (ST->hasAVX() && LT.second.getScalarSizeInBits() >= 32)))
1504 return TTI::TCC_Free;
1505 }
1506
1507 // Treat <X x bfloat> shuffles as <X x half>.
1508 if (LT.second.isVector() && LT.second.getScalarType() == MVT::bf16)
1509 LT.second = LT.second.changeVectorElementType(MVT::f16);
1510
1511 // Subvector extractions are free if they start at the beginning of a
1512 // vector and cheap if the subvectors are aligned.
1513 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1514 int NumElts = LT.second.getVectorNumElements();
1515 if ((Index % NumElts) == 0)
1516 return 0;
1517 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(Ty: SubTp);
1518 if (SubLT.second.isVector()) {
1519 int NumSubElts = SubLT.second.getVectorNumElements();
1520 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1521 return SubLT.first;
1522 // Handle some cases for widening legalization. For now we only handle
1523 // cases where the original subvector was naturally aligned and evenly
1524 // fit in its legalized subvector type.
1525 // FIXME: Remove some of the alignment restrictions.
1526 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1527 // vectors.
1528 int OrigSubElts = cast<FixedVectorType>(Val: SubTp)->getNumElements();
1529 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1530 (NumSubElts % OrigSubElts) == 0 &&
1531 LT.second.getVectorElementType() ==
1532 SubLT.second.getVectorElementType() &&
1533 LT.second.getVectorElementType().getSizeInBits() ==
1534 BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1535 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1536 "Unexpected number of elements!");
1537 auto *VecTy = FixedVectorType::get(ElementType: BaseTp->getElementType(),
1538 NumElts: LT.second.getVectorNumElements());
1539 auto *SubTy = FixedVectorType::get(ElementType: BaseTp->getElementType(),
1540 NumElts: SubLT.second.getVectorNumElements());
1541 int ExtractIndex = alignDown(Value: (Index % NumElts), Align: NumSubElts);
1542 InstructionCost ExtractCost =
1543 getShuffleCost(Kind: TTI::SK_ExtractSubvector, BaseTp: VecTy, Mask: std::nullopt,
1544 CostKind, Index: ExtractIndex, SubTp: SubTy);
1545
1546 // If the original size is 32-bits or more, we can use pshufd. Otherwise
1547 // if we have SSSE3 we can use pshufb.
1548 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1549 return ExtractCost + 1; // pshufd or pshufb
1550
1551 assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1552 "Unexpected vector size");
1553
1554 return ExtractCost + 2; // worst case pshufhw + pshufd
1555 }
1556 }
1557 // If the extract subvector is not optimal, treat it as single op shuffle.
1558 Kind = TTI::SK_PermuteSingleSrc;
1559 }
1560
1561 // Subvector insertions are cheap if the subvectors are aligned.
1562 // Note that in general, the insertion starting at the beginning of a vector
1563 // isn't free, because we need to preserve the rest of the wide vector.
1564 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1565 int NumElts = LT.second.getVectorNumElements();
1566 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(Ty: SubTp);
1567 if (SubLT.second.isVector()) {
1568 int NumSubElts = SubLT.second.getVectorNumElements();
1569 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1570 return SubLT.first;
1571 }
1572
1573 // If the insertion isn't aligned, treat it like a 2-op shuffle.
1574 Kind = TTI::SK_PermuteTwoSrc;
1575 }
1576
1577 // Handle some common (illegal) sub-vector types as they are often very cheap
1578 // to shuffle even on targets without PSHUFB.
1579 EVT VT = TLI->getValueType(DL, Ty: BaseTp);
1580 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1581 !ST->hasSSSE3()) {
1582 static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1583 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
1584 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
1585 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
1586 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
1587 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
1588
1589 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
1590 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
1591 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
1592 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
1593
1594 {TTI::SK_Splice, MVT::v4i16, 2}, // punpck+psrldq
1595 {TTI::SK_Splice, MVT::v2i16, 2}, // punpck+psrldq
1596 {TTI::SK_Splice, MVT::v4i8, 2}, // punpck+psrldq
1597 {TTI::SK_Splice, MVT::v2i8, 2}, // punpck+psrldq
1598
1599 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
1600 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
1601 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
1602 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
1603 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
1604
1605 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1606 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1607 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
1608 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
1609 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
1610 };
1611
1612 if (ST->hasSSE2())
1613 if (const auto *Entry =
1614 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1615 return Entry->Cost;
1616 }
1617
1618 // We are going to permute multiple sources and the result will be in multiple
1619 // destinations. Providing an accurate cost only for splits where the element
1620 // type remains the same.
1621 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
1622 MVT LegalVT = LT.second;
1623 if (LegalVT.isVector() &&
1624 LegalVT.getVectorElementType().getSizeInBits() ==
1625 BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1626 LegalVT.getVectorNumElements() <
1627 cast<FixedVectorType>(Val: BaseTp)->getNumElements()) {
1628 unsigned VecTySize = DL.getTypeStoreSize(Ty: BaseTp);
1629 unsigned LegalVTSize = LegalVT.getStoreSize();
1630 // Number of source vectors after legalization:
1631 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1632 // Number of destination vectors after legalization:
1633 InstructionCost NumOfDests = LT.first;
1634
1635 auto *SingleOpTy = FixedVectorType::get(ElementType: BaseTp->getElementType(),
1636 NumElts: LegalVT.getVectorNumElements());
1637
1638 if (!Mask.empty() && NumOfDests.isValid()) {
1639 // Try to perform better estimation of the permutation.
1640 // 1. Split the source/destination vectors into real registers.
1641 // 2. Do the mask analysis to identify which real registers are
1642 // permuted. If more than 1 source registers are used for the
1643 // destination register building, the cost for this destination register
1644 // is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
1645 // source register is used, build mask and calculate the cost as a cost
1646 // of PermuteSingleSrc.
1647 // Also, for the single register permute we try to identify if the
1648 // destination register is just a copy of the source register or the
1649 // copy of the previous destination register (the cost is
1650 // TTI::TCC_Basic). If the source register is just reused, the cost for
1651 // this operation is 0.
1652 NumOfDests =
1653 getTypeLegalizationCost(
1654 Ty: FixedVectorType::get(ElementType: BaseTp->getElementType(), NumElts: Mask.size()))
1655 .first;
1656 unsigned E = *NumOfDests.getValue();
1657 unsigned NormalizedVF =
1658 LegalVT.getVectorNumElements() * std::max(a: NumOfSrcs, b: E);
1659 unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
1660 unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
1661 SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem);
1662 copy(Range&: Mask, Out: NormalizedMask.begin());
1663 unsigned PrevSrcReg = 0;
1664 ArrayRef<int> PrevRegMask;
1665 InstructionCost Cost = 0;
1666 processShuffleMasks(
1667 Mask: NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfUsedRegs: NumOfDestRegs, NoInputAction: []() {},
1668 SingleInputAction: [this, SingleOpTy, CostKind, &PrevSrcReg, &PrevRegMask,
1669 &Cost](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
1670 if (!ShuffleVectorInst::isIdentityMask(Mask: RegMask, NumSrcElts: RegMask.size())) {
1671 // Check if the previous register can be just copied to the next
1672 // one.
1673 if (PrevRegMask.empty() || PrevSrcReg != SrcReg ||
1674 PrevRegMask != RegMask)
1675 Cost += getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, BaseTp: SingleOpTy,
1676 Mask: RegMask, CostKind, Index: 0, SubTp: nullptr);
1677 else
1678 // Just a copy of previous destination register.
1679 Cost += TTI::TCC_Basic;
1680 return;
1681 }
1682 if (SrcReg != DestReg &&
1683 any_of(Range&: RegMask, P: [](int I) { return I != PoisonMaskElem; })) {
1684 // Just a copy of the source register.
1685 Cost += TTI::TCC_Basic;
1686 }
1687 PrevSrcReg = SrcReg;
1688 PrevRegMask = RegMask;
1689 },
1690 ManyInputsAction: [this, SingleOpTy, CostKind, &Cost](ArrayRef<int> RegMask,
1691 unsigned /*Unused*/,
1692 unsigned /*Unused*/) {
1693 Cost += getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, BaseTp: SingleOpTy, Mask: RegMask,
1694 CostKind, Index: 0, SubTp: nullptr);
1695 });
1696 return Cost;
1697 }
1698
1699 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1700 return NumOfShuffles * getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, BaseTp: SingleOpTy,
1701 Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
1702 }
1703
1704 return BaseT::getShuffleCost(Kind, Tp: BaseTp, Mask, CostKind, Index, SubTp);
1705 }
1706
1707 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
1708 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
1709 // We assume that source and destination have the same vector type.
1710 InstructionCost NumOfDests = LT.first;
1711 InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
1712 LT.first = NumOfDests * NumOfShufflesPerDest;
1713 }
1714
1715 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1716 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1717 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1718
1719 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1720 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1721
1722 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1723 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1724 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
1725 };
1726
1727 if (ST->hasVBMI())
1728 if (const auto *Entry =
1729 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1730 return LT.first * Entry->Cost;
1731
1732 static const CostTblEntry AVX512BWShuffleTbl[] = {
1733 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1734 {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1735 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1736
1737 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1738 {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1739 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1740 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1741
1742 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1743 {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1744 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1745 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1746 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1747
1748 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1749 {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1750 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1751 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
1752 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1753
1754 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1755 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb
1756
1757 {TTI::SK_Splice, MVT::v32i16, 2}, // vshufi64x2 + palignr
1758 {TTI::SK_Splice, MVT::v32f16, 2}, // vshufi64x2 + palignr
1759 {TTI::SK_Splice, MVT::v64i8, 2}, // vshufi64x2 + palignr
1760 };
1761
1762 if (ST->hasBWI())
1763 if (const auto *Entry =
1764 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1765 return LT.first * Entry->Cost;
1766
1767 static const CostKindTblEntry AVX512ShuffleTbl[] = {
1768 {TTI::SK_Broadcast, MVT::v8f64, { 1, 1, 1, 1 } }, // vbroadcastsd
1769 {TTI::SK_Broadcast, MVT::v16f32, { 1, 1, 1, 1 } }, // vbroadcastss
1770 {TTI::SK_Broadcast, MVT::v8i64, { 1, 1, 1, 1 } }, // vpbroadcastq
1771 {TTI::SK_Broadcast, MVT::v16i32, { 1, 1, 1, 1 } }, // vpbroadcastd
1772 {TTI::SK_Broadcast, MVT::v32i16, { 1, 1, 1, 1 } }, // vpbroadcastw
1773 {TTI::SK_Broadcast, MVT::v32f16, { 1, 1, 1, 1 } }, // vpbroadcastw
1774 {TTI::SK_Broadcast, MVT::v64i8, { 1, 1, 1, 1 } }, // vpbroadcastb
1775
1776 {TTI::SK_Reverse, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1777 {TTI::SK_Reverse, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1778 {TTI::SK_Reverse, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1779 {TTI::SK_Reverse, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1780 {TTI::SK_Reverse, MVT::v32i16, { 7, 7, 7, 7 } }, // per mca
1781 {TTI::SK_Reverse, MVT::v32f16, { 7, 7, 7, 7 } }, // per mca
1782 {TTI::SK_Reverse, MVT::v64i8, { 7, 7, 7, 7 } }, // per mca
1783
1784 {TTI::SK_Splice, MVT::v8f64, { 1, 1, 1, 1 } }, // vpalignd
1785 {TTI::SK_Splice, MVT::v4f64, { 1, 1, 1, 1 } }, // vpalignd
1786 {TTI::SK_Splice, MVT::v16f32, { 1, 1, 1, 1 } }, // vpalignd
1787 {TTI::SK_Splice, MVT::v8f32, { 1, 1, 1, 1 } }, // vpalignd
1788 {TTI::SK_Splice, MVT::v8i64, { 1, 1, 1, 1 } }, // vpalignd
1789 {TTI::SK_Splice, MVT::v4i64, { 1, 1, 1, 1 } }, // vpalignd
1790 {TTI::SK_Splice, MVT::v16i32, { 1, 1, 1, 1 } }, // vpalignd
1791 {TTI::SK_Splice, MVT::v8i32, { 1, 1, 1, 1 } }, // vpalignd
1792 {TTI::SK_Splice, MVT::v32i16, { 4, 4, 4, 4 } }, // split + palignr
1793 {TTI::SK_Splice, MVT::v32f16, { 4, 4, 4, 4 } }, // split + palignr
1794 {TTI::SK_Splice, MVT::v64i8, { 4, 4, 4, 4 } }, // split + palignr
1795
1796 {TTI::SK_PermuteSingleSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1797 {TTI::SK_PermuteSingleSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermpd
1798 {TTI::SK_PermuteSingleSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermpd
1799 {TTI::SK_PermuteSingleSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1800 {TTI::SK_PermuteSingleSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermps
1801 {TTI::SK_PermuteSingleSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermps
1802 {TTI::SK_PermuteSingleSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1803 {TTI::SK_PermuteSingleSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermq
1804 {TTI::SK_PermuteSingleSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermq
1805 {TTI::SK_PermuteSingleSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1806 {TTI::SK_PermuteSingleSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermd
1807 {TTI::SK_PermuteSingleSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermd
1808 {TTI::SK_PermuteSingleSrc, MVT::v16i8, { 1, 3, 1, 1 } }, // pshufb
1809
1810 {TTI::SK_PermuteTwoSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermt2pd
1811 {TTI::SK_PermuteTwoSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermt2ps
1812 {TTI::SK_PermuteTwoSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermt2q
1813 {TTI::SK_PermuteTwoSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermt2d
1814 {TTI::SK_PermuteTwoSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermt2pd
1815 {TTI::SK_PermuteTwoSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermt2ps
1816 {TTI::SK_PermuteTwoSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermt2q
1817 {TTI::SK_PermuteTwoSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermt2d
1818 {TTI::SK_PermuteTwoSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermt2pd
1819 {TTI::SK_PermuteTwoSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermt2ps
1820 {TTI::SK_PermuteTwoSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermt2q
1821 {TTI::SK_PermuteTwoSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermt2d
1822
1823 // FIXME: This just applies the type legalization cost rules above
1824 // assuming these completely split.
1825 {TTI::SK_PermuteSingleSrc, MVT::v32i16, { 14, 14, 14, 14 } },
1826 {TTI::SK_PermuteSingleSrc, MVT::v32f16, { 14, 14, 14, 14 } },
1827 {TTI::SK_PermuteSingleSrc, MVT::v64i8, { 14, 14, 14, 14 } },
1828 {TTI::SK_PermuteTwoSrc, MVT::v32i16, { 42, 42, 42, 42 } },
1829 {TTI::SK_PermuteTwoSrc, MVT::v32f16, { 42, 42, 42, 42 } },
1830 {TTI::SK_PermuteTwoSrc, MVT::v64i8, { 42, 42, 42, 42 } },
1831
1832 {TTI::SK_Select, MVT::v32i16, { 1, 1, 1, 1 } }, // vpternlogq
1833 {TTI::SK_Select, MVT::v32f16, { 1, 1, 1, 1 } }, // vpternlogq
1834 {TTI::SK_Select, MVT::v64i8, { 1, 1, 1, 1 } }, // vpternlogq
1835 {TTI::SK_Select, MVT::v8f64, { 1, 1, 1, 1 } }, // vblendmpd
1836 {TTI::SK_Select, MVT::v16f32, { 1, 1, 1, 1 } }, // vblendmps
1837 {TTI::SK_Select, MVT::v8i64, { 1, 1, 1, 1 } }, // vblendmq
1838 {TTI::SK_Select, MVT::v16i32, { 1, 1, 1, 1 } }, // vblendmd
1839 };
1840
1841 if (ST->hasAVX512())
1842 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1843 if (auto KindCost = Entry->Cost[CostKind])
1844 return LT.first * *KindCost;
1845
1846 static const CostTblEntry AVX2ShuffleTbl[] = {
1847 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1848 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1849 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1850 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1851 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1852 {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1853 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1854
1855 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1856 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1857 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1858 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1859 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1860 {TTI::SK_Reverse, MVT::v16f16, 2}, // vperm2i128 + pshufb
1861 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1862
1863 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1864 {TTI::SK_Select, MVT::v16f16, 1}, // vpblendvb
1865 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1866
1867 {TTI::SK_Splice, MVT::v8i32, 2}, // vperm2i128 + vpalignr
1868 {TTI::SK_Splice, MVT::v8f32, 2}, // vperm2i128 + vpalignr
1869 {TTI::SK_Splice, MVT::v16i16, 2}, // vperm2i128 + vpalignr
1870 {TTI::SK_Splice, MVT::v16f16, 2}, // vperm2i128 + vpalignr
1871 {TTI::SK_Splice, MVT::v32i8, 2}, // vperm2i128 + vpalignr
1872
1873 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1874 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1875 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1876 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1877 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1878 // + vpblendvb
1879 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vperm2i128 + 2*vpshufb
1880 // + vpblendvb
1881 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1882 // + vpblendvb
1883
1884 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1885 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1886 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1887 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1888 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1889 // + vpblendvb
1890 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 7}, // 2*vperm2i128 + 4*vpshufb
1891 // + vpblendvb
1892 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1893 // + vpblendvb
1894 };
1895
1896 if (ST->hasAVX2())
1897 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1898 return LT.first * Entry->Cost;
1899
1900 static const CostTblEntry XOPShuffleTbl[] = {
1901 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1902 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1903 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1904 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1905 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1906 // + vinsertf128
1907 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1908 // + vinsertf128
1909
1910 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1911 // + vinsertf128
1912 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
1913 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
1914 // + vinsertf128
1915 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
1916 };
1917
1918 if (ST->hasXOP())
1919 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1920 return LT.first * Entry->Cost;
1921
1922 static const CostTblEntry AVX1ShuffleTbl[] = {
1923 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1924 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1925 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1926 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1927 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1928 {TTI::SK_Broadcast, MVT::v16f16, 3}, // vpshuflw + vpshufd + vinsertf128
1929 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
1930
1931 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1932 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1933 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1934 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1935 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1936 // + vinsertf128
1937 {TTI::SK_Reverse, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
1938 // + vinsertf128
1939 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
1940 // + vinsertf128
1941
1942 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
1943 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
1944 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
1945 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
1946 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1947 {TTI::SK_Select, MVT::v16f16, 3}, // vpand + vpandn + vpor
1948 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
1949
1950 {TTI::SK_Splice, MVT::v4i64, 2}, // vperm2f128 + shufpd
1951 {TTI::SK_Splice, MVT::v4f64, 2}, // vperm2f128 + shufpd
1952 {TTI::SK_Splice, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1953 {TTI::SK_Splice, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1954 {TTI::SK_Splice, MVT::v16i16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1955 {TTI::SK_Splice, MVT::v16f16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1956 {TTI::SK_Splice, MVT::v32i8, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
1957
1958 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
1959 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
1960 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1961 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1962 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1963 // + 2*por + vinsertf128
1964 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 8}, // vextractf128 + 4*pshufb
1965 // + 2*por + vinsertf128
1966 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
1967 // + 2*por + vinsertf128
1968
1969 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
1970 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
1971 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1972 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1973 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1974 // + 4*por + vinsertf128
1975 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 15}, // 2*vextractf128 + 8*pshufb
1976 // + 4*por + vinsertf128
1977 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
1978 // + 4*por + vinsertf128
1979 };
1980
1981 if (ST->hasAVX())
1982 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1983 return LT.first * Entry->Cost;
1984
1985 static const CostTblEntry SSE41ShuffleTbl[] = {
1986 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1987 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1988 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1989 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1990 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1991 {TTI::SK_Select, MVT::v8f16, 1}, // pblendw
1992 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
1993 };
1994
1995 if (ST->hasSSE41())
1996 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1997 return LT.first * Entry->Cost;
1998
1999 static const CostTblEntry SSSE3ShuffleTbl[] = {
2000 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
2001 {TTI::SK_Broadcast, MVT::v8f16, 1}, // pshufb
2002 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
2003
2004 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
2005 {TTI::SK_Reverse, MVT::v8f16, 1}, // pshufb
2006 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
2007
2008 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
2009 {TTI::SK_Select, MVT::v8f16, 3}, // 2*pshufb + por
2010 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
2011
2012 {TTI::SK_Splice, MVT::v4i32, 1}, // palignr
2013 {TTI::SK_Splice, MVT::v4f32, 1}, // palignr
2014 {TTI::SK_Splice, MVT::v8i16, 1}, // palignr
2015 {TTI::SK_Splice, MVT::v8f16, 1}, // palignr
2016 {TTI::SK_Splice, MVT::v16i8, 1}, // palignr
2017
2018 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
2019 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // pshufb
2020 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
2021
2022 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
2023 {TTI::SK_PermuteTwoSrc, MVT::v8f16, 3}, // 2*pshufb + por
2024 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
2025 };
2026
2027 if (ST->hasSSSE3())
2028 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
2029 return LT.first * Entry->Cost;
2030
2031 static const CostTblEntry SSE2ShuffleTbl[] = {
2032 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
2033 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
2034 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
2035 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
2036 {TTI::SK_Broadcast, MVT::v8f16, 2}, // pshuflw + pshufd
2037 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
2038
2039 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
2040 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
2041 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
2042 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
2043 {TTI::SK_Reverse, MVT::v8f16, 3}, // pshuflw + pshufhw + pshufd
2044 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
2045 // + 2*pshufd + 2*unpck + packus
2046
2047 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
2048 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
2049 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
2050 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
2051 {TTI::SK_Select, MVT::v8f16, 3}, // pand + pandn + por
2052 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
2053
2054 {TTI::SK_Splice, MVT::v2i64, 1}, // shufpd
2055 {TTI::SK_Splice, MVT::v2f64, 1}, // shufpd
2056 {TTI::SK_Splice, MVT::v4i32, 2}, // 2*{unpck,movsd,pshufd}
2057 {TTI::SK_Splice, MVT::v8i16, 3}, // psrldq + psrlldq + por
2058 {TTI::SK_Splice, MVT::v8f16, 3}, // psrldq + psrlldq + por
2059 {TTI::SK_Splice, MVT::v16i8, 3}, // psrldq + psrlldq + por
2060
2061 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
2062 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
2063 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
2064 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
2065 // + pshufd/unpck
2066 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 5}, // 2*pshuflw + 2*pshufhw
2067 // + pshufd/unpck
2068 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
2069 // + 2*pshufd + 2*unpck + 2*packus
2070
2071 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
2072 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
2073 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
2074 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
2075 { TTI::SK_PermuteTwoSrc, MVT::v8f16, 8 }, // blend+permute
2076 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
2077 };
2078
2079 static const CostTblEntry SSE3BroadcastLoadTbl[] = {
2080 {TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
2081 };
2082
2083 if (ST->hasSSE2()) {
2084 bool IsLoad =
2085 llvm::any_of(Range&: Args, P: [](const auto &V) { return isa<LoadInst>(V); });
2086 if (ST->hasSSE3() && IsLoad)
2087 if (const auto *Entry =
2088 CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
2089 assert(isLegalBroadcastLoad(BaseTp->getElementType(),
2090 LT.second.getVectorElementCount()) &&
2091 "Table entry missing from isLegalBroadcastLoad()");
2092 return LT.first * Entry->Cost;
2093 }
2094
2095 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
2096 return LT.first * Entry->Cost;
2097 }
2098
2099 static const CostTblEntry SSE1ShuffleTbl[] = {
2100 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
2101 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
2102 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
2103 { TTI::SK_Splice, MVT::v4f32, 2 }, // 2*shufps
2104 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
2105 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
2106 };
2107
2108 if (ST->hasSSE1())
2109 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
2110 return LT.first * Entry->Cost;
2111
2112 return BaseT::getShuffleCost(Kind, Tp: BaseTp, Mask, CostKind, Index, SubTp);
2113}
2114
2115InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2116 Type *Src,
2117 TTI::CastContextHint CCH,
2118 TTI::TargetCostKind CostKind,
2119 const Instruction *I) {
2120 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2121 assert(ISD && "Invalid opcode");
2122
2123 // TODO: Allow non-throughput costs that aren't binary.
2124 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
2125 if (CostKind != TTI::TCK_RecipThroughput)
2126 return Cost == 0 ? 0 : 1;
2127 return Cost;
2128 };
2129
2130 // The cost tables include both specific, custom (non-legal) src/dst type
2131 // conversions and generic, legalized types. We test for customs first, before
2132 // falling back to legalization.
2133 // FIXME: Need a better design of the cost table to handle non-simple types of
2134 // potential massive combinations (elem_num x src_type x dst_type).
2135 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
2136 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
2137 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
2138
2139 // Mask sign extend has an instruction.
2140 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
2141 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
2142 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
2143 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
2144 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
2145 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
2146 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
2147 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
2148 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
2149 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
2150 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
2151 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
2152 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2153 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
2154 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
2155 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
2156 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1, 1 },
2157
2158 // Mask zero extend is a sext + shift.
2159 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
2160 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
2161 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
2162 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
2163 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
2164 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
2165 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
2166 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
2167 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
2168 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
2169 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
2170 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
2171 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
2172 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
2173 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
2174 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
2175 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1, 2 },
2176
2177 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
2178 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
2179 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
2180 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
2181 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
2182 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
2183 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
2184 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
2185 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
2186 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
2187 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
2188 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
2189 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
2190 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
2191 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 },
2192 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 },
2193 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i16, 2 },
2194
2195 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 },
2196 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm
2197 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb
2198 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb
2199 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb
2200 };
2201
2202 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
2203 // Mask sign extend has an instruction.
2204 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
2205 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
2206 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
2207 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
2208 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
2209 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i1, 1 },
2210 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 },
2211 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 },
2212
2213 // Mask zero extend is a sext + shift.
2214 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
2215 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
2216 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
2217 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
2218 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
2219 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i1, 2 },
2220 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 },
2221 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
2222
2223 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
2224 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
2225 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
2226 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
2227 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2228 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 },
2229 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 },
2230 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i64, 2 },
2231
2232 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
2233 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
2234
2235 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
2236 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
2237
2238 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
2239 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
2240
2241 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
2242 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
2243 };
2244
2245 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
2246 // 256-bit wide vectors.
2247
2248 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
2249 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
2250 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
2251 { ISD::FP_EXTEND, MVT::v16f64, MVT::v16f32, 4 }, // 2*vcvtps2pd+vextractf64x4
2252 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
2253
2254 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
2255 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
2256 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
2257 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd
2258 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
2259 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
2260 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
2261 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd
2262 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd
2263 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd
2264 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd
2265 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd
2266 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq
2267 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq
2268 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq
2269 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb
2270 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb
2271 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb
2272 { ISD::TRUNCATE, MVT::v32i8, MVT::v16i32, 2 }, // vpmovdb
2273 { ISD::TRUNCATE, MVT::v64i8, MVT::v16i32, 2 }, // vpmovdb
2274 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdw
2275 { ISD::TRUNCATE, MVT::v32i16, MVT::v16i32, 2 }, // vpmovdw
2276 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb
2277 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb
2278 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb
2279 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i64, 2 }, // vpmovqb
2280 { ISD::TRUNCATE, MVT::v32i8, MVT::v8i64, 2 }, // vpmovqb
2281 { ISD::TRUNCATE, MVT::v64i8, MVT::v8i64, 2 }, // vpmovqb
2282 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw
2283 { ISD::TRUNCATE, MVT::v16i16, MVT::v8i64, 2 }, // vpmovqw
2284 { ISD::TRUNCATE, MVT::v32i16, MVT::v8i64, 2 }, // vpmovqw
2285 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd
2286 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd
2287 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
2288
2289 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32
2290 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 },
2291 { ISD::TRUNCATE, MVT::v64i8, MVT::v32i16, 8 },
2292
2293 // Sign extend is zmm vpternlogd+vptruncdb.
2294 // Zero extend is zmm broadcast load+vptruncdw.
2295 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 },
2296 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 },
2297 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 },
2298 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 },
2299 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 },
2300 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 },
2301 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 },
2302 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 },
2303
2304 // Sign extend is zmm vpternlogd+vptruncdw.
2305 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
2306 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 },
2307 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
2308 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 },
2309 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
2310 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 },
2311 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
2312 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 },
2313 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2314
2315 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd
2316 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld
2317 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd
2318 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld
2319 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd
2320 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld
2321 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq
2322 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq
2323 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq
2324 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq
2325
2326 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd
2327 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld
2328 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq
2329 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq
2330
2331 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
2332 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
2333 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
2334 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
2335 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
2336 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
2337 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
2338 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
2339 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
2340 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
2341
2342 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
2343 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
2344
2345 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
2346 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
2347 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
2348 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
2349 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
2350 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
2351 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
2352 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
2353
2354 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
2355 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
2356 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
2357 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
2358 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
2359 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
2360 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
2361 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
2362 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
2363 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
2364
2365 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
2366 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, 7 },
2367 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64,15 },
2368 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32,11 },
2369 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64,31 },
2370 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 },
2371 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, 7 },
2372 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, 5 },
2373 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64,15 },
2374 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 1 },
2375 { ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, 3 },
2376
2377 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
2378 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 },
2379 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 },
2380 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
2381 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 },
2382 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 },
2383 };
2384
2385 static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
2386 // Mask sign extend has an instruction.
2387 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
2388 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
2389 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
2390 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
2391 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
2392 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
2393 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
2394 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
2395 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
2396 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
2397 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
2398 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
2399 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2400 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
2401 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1, 1 },
2402 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v64i1, 1 },
2403 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1, 1 },
2404
2405 // Mask zero extend is a sext + shift.
2406 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
2407 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
2408 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
2409 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
2410 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
2411 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
2412 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
2413 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
2414 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
2415 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
2416 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
2417 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
2418 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
2419 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
2420 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1, 2 },
2421 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v64i1, 2 },
2422 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1, 2 },
2423
2424 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
2425 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
2426 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
2427 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
2428 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
2429 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
2430 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
2431 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
2432 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
2433 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
2434 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
2435 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
2436 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
2437 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
2438 { ISD::TRUNCATE, MVT::v32i1, MVT::v16i16, 2 },
2439 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i8, 2 },
2440 { ISD::TRUNCATE, MVT::v64i1, MVT::v16i16, 2 },
2441
2442 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
2443 };
2444
2445 static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
2446 // Mask sign extend has an instruction.
2447 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
2448 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
2449 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
2450 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i1, 1 },
2451 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
2452 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i1, 1 },
2453 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 },
2454 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
2455
2456 // Mask zero extend is a sext + shift.
2457 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
2458 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
2459 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
2460 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i1, 2 },
2461 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
2462 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i1, 2 },
2463 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 },
2464 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
2465
2466 { ISD::TRUNCATE, MVT::v16i1, MVT::v4i64, 2 },
2467 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 },
2468 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
2469 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
2470 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
2471 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
2472 { ISD::TRUNCATE, MVT::v8i1, MVT::v4i64, 2 },
2473 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2474
2475 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
2476 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2477 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
2478 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
2479
2480 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
2481 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2482 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
2483 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
2484
2485 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, 1 },
2486 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
2487 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
2488 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
2489
2490 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, 1 },
2491 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
2492 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
2493 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
2494 };
2495
2496 static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
2497 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
2498 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
2499 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
2500 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8
2501 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
2502 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
2503 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
2504 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16
2505 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd
2506 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd
2507 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd
2508 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 }, // vpslld+vptestmd
2509 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq
2510 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq
2511 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd
2512 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb
2513 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw
2514 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb
2515
2516 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
2517 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
2518 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 },
2519 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 },
2520 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 },
2521 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 },
2522 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 },
2523 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 },
2524 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 },
2525 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 },
2526
2527 // sign extend is vpcmpeq+maskedmove+vpmovdw
2528 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
2529 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
2530 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 },
2531 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
2532 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 },
2533 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
2534 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 },
2535 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
2536 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
2537
2538 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd
2539 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld
2540 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd
2541 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld
2542 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd
2543 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld
2544 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 }, // vpternlogd
2545 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 }, // vpternlogd+psrld
2546
2547 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq
2548 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq
2549 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq
2550 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq
2551
2552 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
2553 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
2554 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
2555 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
2556 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
2557 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
2558 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
2559 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
2560 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
2561 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
2562 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
2563 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
2564
2565 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2566 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
2567 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2568 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
2569
2570 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
2571 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
2572 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2573 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
2574 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2575 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
2576 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2577 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2578 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
2579 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
2580 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
2581 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
2582 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
2583
2584 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
2585 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
2586 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, 5 },
2587
2588 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
2589 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
2590 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
2591 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 1 },
2592 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
2593 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
2594 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
2595 };
2596
2597 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
2598 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
2599 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
2600 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
2601 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
2602 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2603 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
2604
2605 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
2606 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
2607 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
2608 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
2609 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2610 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2611 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
2612 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
2613 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2614 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
2615 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2616 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
2617 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2618 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
2619
2620 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
2621
2622 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 4 },
2623 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 4 },
2624 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 1 },
2625 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 1 },
2626 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 1 },
2627 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 4 },
2628 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 4 },
2629 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 1 },
2630 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 1 },
2631 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 5 },
2632 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
2633 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
2634
2635 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
2636 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
2637
2638 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 1 },
2639 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 1 },
2640 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 1 },
2641 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 3 },
2642
2643 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 3 },
2644 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 3 },
2645 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 1 },
2646 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
2647 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2648 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4 },
2649 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 3 },
2650 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 4 },
2651
2652 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
2653 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
2654 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
2655 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
2656 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
2657 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
2658 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 3 },
2659
2660 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
2661 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
2662 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
2663 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
2664 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
2665 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
2666 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 2 },
2667 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2668 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
2669 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
2670 };
2671
2672 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
2673 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
2674 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
2675 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
2676 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
2677 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2678 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
2679
2680 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
2681 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
2682 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
2683 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
2684 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
2685 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
2686 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
2687 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
2688 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
2689 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
2690 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
2691 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
2692
2693 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 },
2694 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 },
2695 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 },
2696 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 },
2697 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 },
2698
2699 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
2700 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
2701 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb
2702 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 5 },
2703 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
2704 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 5 },
2705 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 3 }, // and+extract+2*packusdw
2706 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
2707
2708 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
2709 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
2710 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
2711 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2712 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2713 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2714 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2715 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2716 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
2717 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
2718 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 5 },
2719 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 8 },
2720
2721 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
2722 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
2723 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
2724 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
2725 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
2726 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2727 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
2728 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 4 },
2729 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 4 },
2730 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2731 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
2732 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
2733 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 10 },
2734 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 10 },
2735 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 18 },
2736 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
2737 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 10 },
2738
2739 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
2740 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, 2 },
2741 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, 2 },
2742 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, 2 },
2743 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 2 },
2744 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, 2 },
2745 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 2 },
2746 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, 2 },
2747 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 2 },
2748 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 2 },
2749 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 5 },
2750
2751 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, 2 },
2752 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, 2 },
2753 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, 2 },
2754 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, 2 },
2755 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 2 },
2756 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, 2 },
2757 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 2 },
2758 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, 2 },
2759 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
2760 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2761 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 6 },
2762 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 7 },
2763 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 7 },
2764
2765 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
2766 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
2767 };
2768
2769 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
2770 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2771 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
2772 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2773 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
2774 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2775 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2776 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2777 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
2778 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2779 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2780 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2781 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2782
2783 // These truncates end up widening elements.
2784 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ
2785 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ
2786 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD
2787
2788 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 2 },
2789 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 2 },
2790 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 2 },
2791
2792 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 1 },
2793 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 1 },
2794 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 1 },
2795 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 1 },
2796 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2797 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2798 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2799 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2800 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2801 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 1 },
2802 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
2803
2804 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 1 },
2805 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 1 },
2806 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
2807 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
2808 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
2809 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
2810 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
2811 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
2812 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 3 },
2813 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2814 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 2 },
2815 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 12 },
2816 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 22 },
2817 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 4 },
2818
2819 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 1 },
2820 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 1 },
2821 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 1 },
2822 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 1 },
2823 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 2 },
2824 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 2 },
2825 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 1 },
2826 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 1 },
2827 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2828 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 1 },
2829
2830 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 1 },
2831 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2832 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 1 },
2833 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
2834 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 2 },
2835 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 2 },
2836 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 1 },
2837 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 1 },
2838 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 4 },
2839 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
2840 };
2841
2842 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
2843 // These are somewhat magic numbers justified by comparing the
2844 // output of llvm-mca for our various supported scheduler models
2845 // and basing it off the worst case scenario.
2846 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 3 },
2847 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 3 },
2848 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 3 },
2849 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 3 },
2850 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 3 },
2851 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2852 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 3 },
2853 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2854 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
2855 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4 },
2856 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 8 },
2857 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 8 },
2858
2859 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 3 },
2860 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 3 },
2861 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 8 },
2862 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 9 },
2863 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
2864 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 4 },
2865 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 4 },
2866 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
2867 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 7 },
2868 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 7 },
2869 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
2870 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 15 },
2871 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 18 },
2872
2873 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 4 },
2874 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 4 },
2875 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 4 },
2876 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 4 },
2877 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 6 },
2878 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 6 },
2879 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 5 },
2880 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 5 },
2881 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 4 },
2882 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 4 },
2883
2884 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 4 },
2885 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
2886 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 4 },
2887 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 15 },
2888 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 6 },
2889 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 6 },
2890 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 5 },
2891 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 5 },
2892 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 },
2893 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 8 },
2894
2895 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2896 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
2897 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 2 },
2898 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 3 },
2899 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
2900 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 2 },
2901 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 2 },
2902 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 3 },
2903 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
2904 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 2 },
2905 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
2906 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 2 },
2907
2908 // These truncates are really widening elements.
2909 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD
2910 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ
2911 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD
2912 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD
2913 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD
2914 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW
2915
2916 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 2 }, // PAND+PACKUSWB
2917 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
2918 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 3 }, // PAND+2*PACKUSWB
2919 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
2920 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
2921 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 3 },
2922 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
2923 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32,10 },
2924 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
2925 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
2926 { ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, 1 }, // PSHUFD
2927 };
2928
2929 // Attempt to map directly to (simple) MVT types to let us match custom entries.
2930 EVT SrcTy = TLI->getValueType(DL, Ty: Src);
2931 EVT DstTy = TLI->getValueType(DL, Ty: Dst);
2932
2933 // The function getSimpleVT only handles simple value types.
2934 if (SrcTy.isSimple() && DstTy.isSimple()) {
2935 MVT SimpleSrcTy = SrcTy.getSimpleVT();
2936 MVT SimpleDstTy = DstTy.getSimpleVT();
2937
2938 if (ST->useAVX512Regs()) {
2939 if (ST->hasBWI())
2940 if (const auto *Entry = ConvertCostTableLookup(
2941 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2942 return AdjustCost(Entry->Cost);
2943
2944 if (ST->hasDQI())
2945 if (const auto *Entry = ConvertCostTableLookup(
2946 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2947 return AdjustCost(Entry->Cost);
2948
2949 if (ST->hasAVX512())
2950 if (const auto *Entry = ConvertCostTableLookup(
2951 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2952 return AdjustCost(Entry->Cost);
2953 }
2954
2955 if (ST->hasBWI())
2956 if (const auto *Entry = ConvertCostTableLookup(
2957 AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2958 return AdjustCost(Entry->Cost);
2959
2960 if (ST->hasDQI())
2961 if (const auto *Entry = ConvertCostTableLookup(
2962 AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
2963 return AdjustCost(Entry->Cost);
2964
2965 if (ST->hasAVX512())
2966 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
2967 SimpleDstTy, SimpleSrcTy))
2968 return AdjustCost(Entry->Cost);
2969
2970 if (ST->hasAVX2()) {
2971 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
2972 SimpleDstTy, SimpleSrcTy))
2973 return AdjustCost(Entry->Cost);
2974 }
2975
2976 if (ST->hasAVX()) {
2977 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
2978 SimpleDstTy, SimpleSrcTy))
2979 return AdjustCost(Entry->Cost);
2980 }
2981
2982 if (ST->hasSSE41()) {
2983 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
2984 SimpleDstTy, SimpleSrcTy))
2985 return AdjustCost(Entry->Cost);
2986 }
2987
2988 if (ST->hasSSE2()) {
2989 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
2990 SimpleDstTy, SimpleSrcTy))
2991 return AdjustCost(Entry->Cost);
2992 }
2993 }
2994
2995 // Fall back to legalized types.
2996 std::pair<InstructionCost, MVT> LTSrc = getTypeLegalizationCost(Ty: Src);
2997 std::pair<InstructionCost, MVT> LTDest = getTypeLegalizationCost(Ty: Dst);
2998
2999 // If we're truncating to the same legalized type - just assume its free.
3000 if (ISD == ISD::TRUNCATE && LTSrc.second == LTDest.second)
3001 return TTI::TCC_Free;
3002
3003 if (ST->useAVX512Regs()) {
3004 if (ST->hasBWI())
3005 if (const auto *Entry = ConvertCostTableLookup(
3006 AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
3007 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3008
3009 if (ST->hasDQI())
3010 if (const auto *Entry = ConvertCostTableLookup(
3011 AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
3012 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3013
3014 if (ST->hasAVX512())
3015 if (const auto *Entry = ConvertCostTableLookup(
3016 AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
3017 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3018 }
3019
3020 if (ST->hasBWI())
3021 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
3022 LTDest.second, LTSrc.second))
3023 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3024
3025 if (ST->hasDQI())
3026 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
3027 LTDest.second, LTSrc.second))
3028 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3029
3030 if (ST->hasAVX512())
3031 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
3032 LTDest.second, LTSrc.second))
3033 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3034
3035 if (ST->hasAVX2())
3036 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
3037 LTDest.second, LTSrc.second))
3038 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3039
3040 if (ST->hasAVX())
3041 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
3042 LTDest.second, LTSrc.second))
3043 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3044
3045 if (ST->hasSSE41())
3046 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
3047 LTDest.second, LTSrc.second))
3048 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3049
3050 if (ST->hasSSE2())
3051 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
3052 LTDest.second, LTSrc.second))
3053 return AdjustCost(std::max(a: LTSrc.first, b: LTDest.first) * Entry->Cost);
3054
3055 // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
3056 // sitofp.
3057 if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
3058 1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
3059 Type *ExtSrc = Src->getWithNewBitWidth(NewBitWidth: 32);
3060 unsigned ExtOpc =
3061 (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
3062
3063 // For scalar loads the extend would be free.
3064 InstructionCost ExtCost = 0;
3065 if (!(Src->isIntegerTy() && I && isa<LoadInst>(Val: I->getOperand(i: 0))))
3066 ExtCost = getCastInstrCost(Opcode: ExtOpc, Dst: ExtSrc, Src, CCH, CostKind);
3067
3068 return ExtCost + getCastInstrCost(Opcode: Instruction::SIToFP, Dst, Src: ExtSrc,
3069 CCH: TTI::CastContextHint::None, CostKind);
3070 }
3071
3072 // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
3073 // i32.
3074 if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
3075 1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
3076 Type *TruncDst = Dst->getWithNewBitWidth(NewBitWidth: 32);
3077 return getCastInstrCost(Opcode: Instruction::FPToSI, Dst: TruncDst, Src, CCH, CostKind) +
3078 getCastInstrCost(Opcode: Instruction::Trunc, Dst, Src: TruncDst,
3079 CCH: TTI::CastContextHint::None, CostKind);
3080 }
3081
3082 return AdjustCost(
3083 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
3084}
3085
3086InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
3087 Type *CondTy,
3088 CmpInst::Predicate VecPred,
3089 TTI::TargetCostKind CostKind,
3090 const Instruction *I) {
3091 // Early out if this type isn't scalar/vector integer/float.
3092 if (!(ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy()))
3093 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3094 I);
3095
3096 // Legalize the type.
3097 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy);
3098
3099 MVT MTy = LT.second;
3100
3101 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3102 assert(ISD && "Invalid opcode");
3103
3104 InstructionCost ExtraCost = 0;
3105 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
3106 // Some vector comparison predicates cost extra instructions.
3107 // TODO: Adjust ExtraCost based on CostKind?
3108 // TODO: Should we invert this and assume worst case cmp costs
3109 // and reduce for particular predicates?
3110 if (MTy.isVector() &&
3111 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
3112 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
3113 ST->hasBWI())) {
3114 // Fallback to I if a specific predicate wasn't specified.
3115 CmpInst::Predicate Pred = VecPred;
3116 if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
3117 Pred == CmpInst::BAD_FCMP_PREDICATE))
3118 Pred = cast<CmpInst>(Val: I)->getPredicate();
3119
3120 bool CmpWithConstant = false;
3121 if (auto *CmpInstr = dyn_cast_or_null<CmpInst>(Val: I))
3122 CmpWithConstant = isa<Constant>(Val: CmpInstr->getOperand(i_nocapture: 1));
3123
3124 switch (Pred) {
3125 case CmpInst::Predicate::ICMP_NE:
3126 // xor(cmpeq(x,y),-1)
3127 ExtraCost = CmpWithConstant ? 0 : 1;
3128 break;
3129 case CmpInst::Predicate::ICMP_SGE:
3130 case CmpInst::Predicate::ICMP_SLE:
3131 // xor(cmpgt(x,y),-1)
3132 ExtraCost = CmpWithConstant ? 0 : 1;
3133 break;
3134 case CmpInst::Predicate::ICMP_ULT:
3135 case CmpInst::Predicate::ICMP_UGT:
3136 // cmpgt(xor(x,signbit),xor(y,signbit))
3137 // xor(cmpeq(pmaxu(x,y),x),-1)
3138 ExtraCost = CmpWithConstant ? 1 : 2;
3139 break;
3140 case CmpInst::Predicate::ICMP_ULE:
3141 case CmpInst::Predicate::ICMP_UGE:
3142 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
3143 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
3144 // cmpeq(psubus(x,y),0)
3145 // cmpeq(pminu(x,y),x)
3146 ExtraCost = 1;
3147 } else {
3148 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
3149 ExtraCost = CmpWithConstant ? 2 : 3;
3150 }
3151 break;
3152 case CmpInst::Predicate::FCMP_ONE:
3153 case CmpInst::Predicate::FCMP_UEQ:
3154 // Without AVX we need to expand FCMP_ONE/FCMP_UEQ cases.
3155 // Use FCMP_UEQ expansion - FCMP_ONE should be the same.
3156 if (CondTy && !ST->hasAVX())
3157 return getCmpSelInstrCost(Opcode, ValTy, CondTy,
3158 VecPred: CmpInst::Predicate::FCMP_UNO, CostKind) +
3159 getCmpSelInstrCost(Opcode, ValTy, CondTy,
3160 VecPred: CmpInst::Predicate::FCMP_OEQ, CostKind) +
3161 getArithmeticInstrCost(Opcode: Instruction::Or, Ty: CondTy, CostKind);
3162
3163 break;
3164 case CmpInst::Predicate::BAD_ICMP_PREDICATE:
3165 case CmpInst::Predicate::BAD_FCMP_PREDICATE:
3166 // Assume worst case scenario and add the maximum extra cost.
3167 ExtraCost = 3;
3168 break;
3169 default:
3170 break;
3171 }
3172 }
3173 }
3174
3175 static const CostKindTblEntry SLMCostTbl[] = {
3176 // slm pcmpeq/pcmpgt throughput is 2
3177 { ISD::SETCC, MVT::v2i64, { 2, 5, 1, 2 } },
3178 // slm pblendvb/blendvpd/blendvps throughput is 4
3179 { ISD::SELECT, MVT::v2f64, { 4, 4, 1, 3 } }, // vblendvpd
3180 { ISD::SELECT, MVT::v4f32, { 4, 4, 1, 3 } }, // vblendvps
3181 { ISD::SELECT, MVT::v2i64, { 4, 4, 1, 3 } }, // pblendvb
3182 { ISD::SELECT, MVT::v8i32, { 4, 4, 1, 3 } }, // pblendvb
3183 { ISD::SELECT, MVT::v8i16, { 4, 4, 1, 3 } }, // pblendvb
3184 { ISD::SELECT, MVT::v16i8, { 4, 4, 1, 3 } }, // pblendvb
3185 };
3186
3187 static const CostKindTblEntry AVX512BWCostTbl[] = {
3188 { ISD::SETCC, MVT::v32i16, { 1, 1, 1, 1 } },
3189 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 1 } },
3190 { ISD::SETCC, MVT::v64i8, { 1, 1, 1, 1 } },
3191 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 1 } },
3192
3193 { ISD::SELECT, MVT::v32i16, { 1, 1, 1, 1 } },
3194 { ISD::SELECT, MVT::v64i8, { 1, 1, 1, 1 } },
3195 };
3196
3197 static const CostKindTblEntry AVX512CostTbl[] = {
3198 { ISD::SETCC, MVT::v8f64, { 1, 4, 1, 1 } },
3199 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 1 } },
3200 { ISD::SETCC, MVT::v16f32, { 1, 4, 1, 1 } },
3201 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 1 } },
3202
3203 { ISD::SETCC, MVT::v8i64, { 1, 1, 1, 1 } },
3204 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 1 } },
3205 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3206 { ISD::SETCC, MVT::v16i32, { 1, 1, 1, 1 } },
3207 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 1 } },
3208 { ISD::SETCC, MVT::v32i16, { 3, 7, 5, 5 } },
3209 { ISD::SETCC, MVT::v64i8, { 3, 7, 5, 5 } },
3210
3211 { ISD::SELECT, MVT::v8i64, { 1, 1, 1, 1 } },
3212 { ISD::SELECT, MVT::v4i64, { 1, 1, 1, 1 } },
3213 { ISD::SELECT, MVT::v2i64, { 1, 1, 1, 1 } },
3214 { ISD::SELECT, MVT::v16i32, { 1, 1, 1, 1 } },
3215 { ISD::SELECT, MVT::v8i32, { 1, 1, 1, 1 } },
3216 { ISD::SELECT, MVT::v4i32, { 1, 1, 1, 1 } },
3217 { ISD::SELECT, MVT::v8f64, { 1, 1, 1, 1 } },
3218 { ISD::SELECT, MVT::v4f64, { 1, 1, 1, 1 } },
3219 { ISD::SELECT, MVT::v2f64, { 1, 1, 1, 1 } },
3220 { ISD::SELECT, MVT::f64, { 1, 1, 1, 1 } },
3221 { ISD::SELECT, MVT::v16f32, { 1, 1, 1, 1 } },
3222 { ISD::SELECT, MVT::v8f32 , { 1, 1, 1, 1 } },
3223 { ISD::SELECT, MVT::v4f32, { 1, 1, 1, 1 } },
3224 { ISD::SELECT, MVT::f32 , { 1, 1, 1, 1 } },
3225
3226 { ISD::SELECT, MVT::v32i16, { 2, 2, 4, 4 } },
3227 { ISD::SELECT, MVT::v16i16, { 1, 1, 1, 1 } },
3228 { ISD::SELECT, MVT::v8i16, { 1, 1, 1, 1 } },
3229 { ISD::SELECT, MVT::v64i8, { 2, 2, 4, 4 } },
3230 { ISD::SELECT, MVT::v32i8, { 1, 1, 1, 1 } },
3231 { ISD::SELECT, MVT::v16i8, { 1, 1, 1, 1 } },
3232 };
3233
3234 static const CostKindTblEntry AVX2CostTbl[] = {
3235 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 2 } },
3236 { ISD::SETCC, MVT::v2f64, { 1, 4, 1, 1 } },
3237 { ISD::SETCC, MVT::f64, { 1, 4, 1, 1 } },
3238 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 2 } },
3239 { ISD::SETCC, MVT::v4f32, { 1, 4, 1, 1 } },
3240 { ISD::SETCC, MVT::f32, { 1, 4, 1, 1 } },
3241
3242 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 2 } },
3243 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 2 } },
3244 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 2 } },
3245 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 2 } },
3246
3247 { ISD::SELECT, MVT::v4f64, { 2, 2, 1, 2 } }, // vblendvpd
3248 { ISD::SELECT, MVT::v8f32, { 2, 2, 1, 2 } }, // vblendvps
3249 { ISD::SELECT, MVT::v4i64, { 2, 2, 1, 2 } }, // pblendvb
3250 { ISD::SELECT, MVT::v8i32, { 2, 2, 1, 2 } }, // pblendvb
3251 { ISD::SELECT, MVT::v16i16, { 2, 2, 1, 2 } }, // pblendvb
3252 { ISD::SELECT, MVT::v32i8, { 2, 2, 1, 2 } }, // pblendvb
3253 };
3254
3255 static const CostKindTblEntry XOPCostTbl[] = {
3256 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3257 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3258 };
3259
3260 static const CostKindTblEntry AVX1CostTbl[] = {
3261 { ISD::SETCC, MVT::v4f64, { 2, 3, 1, 2 } },
3262 { ISD::SETCC, MVT::v2f64, { 1, 3, 1, 1 } },
3263 { ISD::SETCC, MVT::f64, { 1, 3, 1, 1 } },
3264 { ISD::SETCC, MVT::v8f32, { 2, 3, 1, 2 } },
3265 { ISD::SETCC, MVT::v4f32, { 1, 3, 1, 1 } },
3266 { ISD::SETCC, MVT::f32, { 1, 3, 1, 1 } },
3267
3268 // AVX1 does not support 8-wide integer compare.
3269 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3270 { ISD::SETCC, MVT::v8i32, { 4, 2, 5, 6 } },
3271 { ISD::SETCC, MVT::v16i16, { 4, 2, 5, 6 } },
3272 { ISD::SETCC, MVT::v32i8, { 4, 2, 5, 6 } },
3273
3274 { ISD::SELECT, MVT::v4f64, { 3, 3, 1, 2 } }, // vblendvpd
3275 { ISD::SELECT, MVT::v8f32, { 3, 3, 1, 2 } }, // vblendvps
3276 { ISD::SELECT, MVT::v4i64, { 3, 3, 1, 2 } }, // vblendvpd
3277 { ISD::SELECT, MVT::v8i32, { 3, 3, 1, 2 } }, // vblendvps
3278 { ISD::SELECT, MVT::v16i16, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3279 { ISD::SELECT, MVT::v32i8, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3280 };
3281
3282 static const CostKindTblEntry SSE42CostTbl[] = {
3283 { ISD::SETCC, MVT::v2i64, { 1, 2, 1, 2 } },
3284 };
3285
3286 static const CostKindTblEntry SSE41CostTbl[] = {
3287 { ISD::SETCC, MVT::v2f64, { 1, 5, 1, 1 } },
3288 { ISD::SETCC, MVT::v4f32, { 1, 5, 1, 1 } },
3289
3290 { ISD::SELECT, MVT::v2f64, { 2, 2, 1, 2 } }, // blendvpd
3291 { ISD::SELECT, MVT::f64, { 2, 2, 1, 2 } }, // blendvpd
3292 { ISD::SELECT, MVT::v4f32, { 2, 2, 1, 2 } }, // blendvps
3293 { ISD::SELECT, MVT::f32 , { 2, 2, 1, 2 } }, // blendvps
3294 { ISD::SELECT, MVT::v2i64, { 2, 2, 1, 2 } }, // pblendvb
3295 { ISD::SELECT, MVT::v4i32, { 2, 2, 1, 2 } }, // pblendvb
3296 { ISD::SELECT, MVT::v8i16, { 2, 2, 1, 2 } }, // pblendvb
3297 { ISD::SELECT, MVT::v16i8, { 2, 2, 1, 2 } }, // pblendvb
3298 };
3299
3300 static const CostKindTblEntry SSE2CostTbl[] = {
3301 { ISD::SETCC, MVT::v2f64, { 2, 5, 1, 1 } },
3302 { ISD::SETCC, MVT::f64, { 1, 5, 1, 1 } },
3303
3304 { ISD::SETCC, MVT::v2i64, { 5, 4, 5, 5 } }, // pcmpeqd/pcmpgtd expansion
3305 { ISD::SETCC, MVT::v4i32, { 1, 1, 1, 1 } },
3306 { ISD::SETCC, MVT::v8i16, { 1, 1, 1, 1 } },
3307 { ISD::SETCC, MVT::v16i8, { 1, 1, 1, 1 } },
3308
3309 { ISD::SELECT, MVT::v2f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3310 { ISD::SELECT, MVT::f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3311 { ISD::SELECT, MVT::v2i64, { 2, 2, 3, 3 } }, // pand + pandn + por
3312 { ISD::SELECT, MVT::v4i32, { 2, 2, 3, 3 } }, // pand + pandn + por
3313 { ISD::SELECT, MVT::v8i16, { 2, 2, 3, 3 } }, // pand + pandn + por
3314 { ISD::SELECT, MVT::v16i8, { 2, 2, 3, 3 } }, // pand + pandn + por
3315 };
3316
3317 static const CostKindTblEntry SSE1CostTbl[] = {
3318 { ISD::SETCC, MVT::v4f32, { 2, 5, 1, 1 } },
3319 { ISD::SETCC, MVT::f32, { 1, 5, 1, 1 } },
3320
3321 { ISD::SELECT, MVT::v4f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3322 { ISD::SELECT, MVT::f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3323 };
3324
3325 if (ST->useSLMArithCosts())
3326 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3327 if (auto KindCost = Entry->Cost[CostKind])
3328 return LT.first * (ExtraCost + *KindCost);
3329
3330 if (ST->hasBWI())
3331 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3332 if (auto KindCost = Entry->Cost[CostKind])
3333 return LT.first * (ExtraCost + *KindCost);
3334
3335 if (ST->hasAVX512())
3336 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3337 if (auto KindCost = Entry->Cost[CostKind])
3338 return LT.first * (ExtraCost + *KindCost);
3339
3340 if (ST->hasAVX2())
3341 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3342 if (auto KindCost = Entry->Cost[CostKind])
3343 return LT.first * (ExtraCost + *KindCost);
3344
3345 if (ST->hasXOP())
3346 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3347 if (auto KindCost = Entry->Cost[CostKind])
3348 return LT.first * (ExtraCost + *KindCost);
3349
3350 if (ST->hasAVX())
3351 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3352 if (auto KindCost = Entry->Cost[CostKind])
3353 return LT.first * (ExtraCost + *KindCost);
3354
3355 if (ST->hasSSE42())
3356 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3357 if (auto KindCost = Entry->Cost[CostKind])
3358 return LT.first * (ExtraCost + *KindCost);
3359
3360 if (ST->hasSSE41())
3361 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3362 if (auto KindCost = Entry->Cost[CostKind])
3363 return LT.first * (ExtraCost + *KindCost);
3364
3365 if (ST->hasSSE2())
3366 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3367 if (auto KindCost = Entry->Cost[CostKind])
3368 return LT.first * (ExtraCost + *KindCost);
3369
3370 if (ST->hasSSE1())
3371 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3372 if (auto KindCost = Entry->Cost[CostKind])
3373 return LT.first * (ExtraCost + *KindCost);
3374
3375 // Assume a 3cy latency for fp select ops.
3376 if (CostKind == TTI::TCK_Latency && Opcode == Instruction::Select)
3377 if (ValTy->getScalarType()->isFloatingPointTy())
3378 return 3;
3379
3380 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
3381}
3382
3383unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
3384
3385InstructionCost
3386X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3387 TTI::TargetCostKind CostKind) {
3388 // Costs should match the codegen from:
3389 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
3390 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
3391 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
3392 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
3393 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
3394
3395 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
3396 // specialized in these tables yet.
3397 static const CostKindTblEntry AVX512VBMI2CostTbl[] = {
3398 { ISD::FSHL, MVT::v8i64, { 1, 1, 1, 1 } },
3399 { ISD::FSHL, MVT::v4i64, { 1, 1, 1, 1 } },
3400 { ISD::FSHL, MVT::v2i64, { 1, 1, 1, 1 } },
3401 { ISD::FSHL, MVT::v16i32, { 1, 1, 1, 1 } },
3402 { ISD::FSHL, MVT::v8i32, { 1, 1, 1, 1 } },
3403 { ISD::FSHL, MVT::v4i32, { 1, 1, 1, 1 } },
3404 { ISD::FSHL, MVT::v32i16, { 1, 1, 1, 1 } },
3405 { ISD::FSHL, MVT::v16i16, { 1, 1, 1, 1 } },
3406 { ISD::FSHL, MVT::v8i16, { 1, 1, 1, 1 } },
3407 { ISD::ROTL, MVT::v32i16, { 1, 1, 1, 1 } },
3408 { ISD::ROTL, MVT::v16i16, { 1, 1, 1, 1 } },
3409 { ISD::ROTL, MVT::v8i16, { 1, 1, 1, 1 } },
3410 { ISD::ROTR, MVT::v32i16, { 1, 1, 1, 1 } },
3411 { ISD::ROTR, MVT::v16i16, { 1, 1, 1, 1 } },
3412 { ISD::ROTR, MVT::v8i16, { 1, 1, 1, 1 } },
3413 { X86ISD::VROTLI, MVT::v32i16, { 1, 1, 1, 1 } },
3414 { X86ISD::VROTLI, MVT::v16i16, { 1, 1, 1, 1 } },
3415 { X86ISD::VROTLI, MVT::v8i16, { 1, 1, 1, 1 } },
3416 };
3417 static const CostKindTblEntry AVX512BITALGCostTbl[] = {
3418 { ISD::CTPOP, MVT::v32i16, { 1, 1, 1, 1 } },
3419 { ISD::CTPOP, MVT::v64i8, { 1, 1, 1, 1 } },
3420 { ISD::CTPOP, MVT::v16i16, { 1, 1, 1, 1 } },
3421 { ISD::CTPOP, MVT::v32i8, { 1, 1, 1, 1 } },
3422 { ISD::CTPOP, MVT::v8i16, { 1, 1, 1, 1 } },
3423 { ISD::CTPOP, MVT::v16i8, { 1, 1, 1, 1 } },
3424 };
3425 static const CostKindTblEntry AVX512VPOPCNTDQCostTbl[] = {
3426 { ISD::CTPOP, MVT::v8i64, { 1, 1, 1, 1 } },
3427 { ISD::CTPOP, MVT::v16i32, { 1, 1, 1, 1 } },
3428 { ISD::CTPOP, MVT::v4i64, { 1, 1, 1, 1 } },
3429 { ISD::CTPOP, MVT::v8i32, { 1, 1, 1, 1 } },
3430 { ISD::CTPOP, MVT::v2i64, { 1, 1, 1, 1 } },
3431 { ISD::CTPOP, MVT::v4i32, { 1, 1, 1, 1 } },
3432 };
3433 static const CostKindTblEntry AVX512CDCostTbl[] = {
3434 { ISD::CTLZ, MVT::v8i64, { 1, 5, 1, 1 } },
3435 { ISD::CTLZ, MVT::v16i32, { 1, 5, 1, 1 } },
3436 { ISD::CTLZ, MVT::v32i16, { 18, 27, 23, 27 } },
3437 { ISD::CTLZ, MVT::v64i8, { 3, 16, 9, 11 } },
3438 { ISD::CTLZ, MVT::v4i64, { 1, 5, 1, 1 } },
3439 { ISD::CTLZ, MVT::v8i32, { 1, 5, 1, 1 } },
3440 { ISD::CTLZ, MVT::v16i16, { 8, 19, 11, 13 } },
3441 { ISD::CTLZ, MVT::v32i8, { 2, 11, 9, 10 } },
3442 { ISD::CTLZ, MVT::v2i64, { 1, 5, 1, 1 } },
3443 { ISD::CTLZ, MVT::v4i32, { 1, 5, 1, 1 } },
3444 { ISD::CTLZ, MVT::v8i16, { 3, 15, 4, 6 } },
3445 { ISD::CTLZ, MVT::v16i8, { 2, 10, 9, 10 } },
3446
3447 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3448 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3449 { ISD::CTTZ, MVT::v4i64, { 1, 8, 6, 6 } },
3450 { ISD::CTTZ, MVT::v8i32, { 1, 8, 6, 6 } },
3451 { ISD::CTTZ, MVT::v2i64, { 1, 8, 6, 6 } },
3452 { ISD::CTTZ, MVT::v4i32, { 1, 8, 6, 6 } },
3453 };
3454 static const CostKindTblEntry AVX512BWCostTbl[] = {
3455 { ISD::ABS, MVT::v32i16, { 1, 1, 1, 1 } },
3456 { ISD::ABS, MVT::v64i8, { 1, 1, 1, 1 } },
3457 { ISD::BITREVERSE, MVT::v2i64, { 3, 10, 10, 11 } },
3458 { ISD::BITREVERSE, MVT::v4i64, { 3, 11, 10, 11 } },
3459 { ISD::BITREVERSE, MVT::v8i64, { 3, 12, 10, 14 } },
3460 { ISD::BITREVERSE, MVT::v4i32, { 3, 10, 10, 11 } },
3461 { ISD::BITREVERSE, MVT::v8i32, { 3, 11, 10, 11 } },
3462 { ISD::BITREVERSE, MVT::v16i32, { 3, 12, 10, 14 } },
3463 { ISD::BITREVERSE, MVT::v8i16, { 3, 10, 10, 11 } },
3464 { ISD::BITREVERSE, MVT::v16i16, { 3, 11, 10, 11 } },
3465 { ISD::BITREVERSE, MVT::v32i16, { 3, 12, 10, 14 } },
3466 { ISD::BITREVERSE, MVT::v16i8, { 2, 5, 9, 9 } },
3467 { ISD::BITREVERSE, MVT::v32i8, { 2, 5, 9, 9 } },
3468 { ISD::BITREVERSE, MVT::v64i8, { 2, 5, 9, 12 } },
3469 { ISD::BSWAP, MVT::v2i64, { 1, 1, 1, 2 } },
3470 { ISD::BSWAP, MVT::v4i64, { 1, 1, 1, 2 } },
3471 { ISD::BSWAP, MVT::v8i64, { 1, 1, 1, 2 } },
3472 { ISD::BSWAP, MVT::v4i32, { 1, 1, 1, 2 } },
3473 { ISD::BSWAP, MVT::v8i32, { 1, 1, 1, 2 } },
3474 { ISD::BSWAP, MVT::v16i32, { 1, 1, 1, 2 } },
3475 { ISD::BSWAP, MVT::v8i16, { 1, 1, 1, 2 } },
3476 { ISD::BSWAP, MVT::v16i16, { 1, 1, 1, 2 } },
3477 { ISD::BSWAP, MVT::v32i16, { 1, 1, 1, 2 } },
3478 { ISD::CTLZ, MVT::v8i64, { 8, 22, 23, 23 } },
3479 { ISD::CTLZ, MVT::v16i32, { 8, 23, 25, 25 } },
3480 { ISD::CTLZ, MVT::v32i16, { 4, 15, 15, 16 } },
3481 { ISD::CTLZ, MVT::v64i8, { 3, 12, 10, 9 } },
3482 { ISD::CTPOP, MVT::v2i64, { 3, 7, 10, 10 } },
3483 { ISD::CTPOP, MVT::v4i64, { 3, 7, 10, 10 } },
3484 { ISD::CTPOP, MVT::v8i64, { 3, 8, 10, 12 } },
3485 { ISD::CTPOP, MVT::v4i32, { 7, 11, 14, 14 } },
3486 { ISD::CTPOP, MVT::v8i32, { 7, 11, 14, 14 } },
3487 { ISD::CTPOP, MVT::v16i32, { 7, 12, 14, 16 } },
3488 { ISD::CTPOP, MVT::v8i16, { 2, 7, 11, 11 } },
3489 { ISD::CTPOP, MVT::v16i16, { 2, 7, 11, 11 } },
3490 { ISD::CTPOP, MVT::v32i16, { 3, 7, 11, 13 } },
3491 { ISD::CTPOP, MVT::v16i8, { 2, 4, 8, 8 } },
3492 { ISD::CTPOP, MVT::v32i8, { 2, 4, 8, 8 } },
3493 { ISD::CTPOP, MVT::v64i8, { 2, 5, 8, 10 } },
3494 { ISD::CTTZ, MVT::v8i16, { 3, 9, 14, 14 } },
3495 { ISD::CTTZ, MVT::v16i16, { 3, 9, 14, 14 } },
3496 { ISD::CTTZ, MVT::v32i16, { 3, 10, 14, 16 } },
3497 { ISD::CTTZ, MVT::v16i8, { 2, 6, 11, 11 } },
3498 { ISD::CTTZ, MVT::v32i8, { 2, 6, 11, 11 } },
3499 { ISD::CTTZ, MVT::v64i8, { 3, 7, 11, 13 } },
3500 { ISD::ROTL, MVT::v32i16, { 2, 8, 6, 8 } },
3501 { ISD::ROTL, MVT::v16i16, { 2, 8, 6, 7 } },
3502 { ISD::ROTL, MVT::v8i16, { 2, 7, 6, 7 } },
3503 { ISD::ROTL, MVT::v64i8, { 5, 6, 11, 12 } },
3504 { ISD::ROTL, MVT::v32i8, { 5, 15, 7, 10 } },
3505 { ISD::ROTL, MVT::v16i8, { 5, 15, 7, 10 } },
3506 { ISD::ROTR, MVT::v32i16, { 2, 8, 6, 8 } },
3507 { ISD::ROTR, MVT::v16i16, { 2, 8, 6, 7 } },
3508 { ISD::ROTR, MVT::v8i16, { 2, 7, 6, 7 } },
3509 { ISD::ROTR, MVT::v64i8, { 5, 6, 12, 14 } },
3510 { ISD::ROTR, MVT::v32i8, { 5, 14, 6, 9 } },
3511 { ISD::ROTR, MVT::v16i8, { 5, 14, 6, 9 } },
3512 { X86ISD::VROTLI, MVT::v32i16, { 2, 5, 3, 3 } },
3513 { X86ISD::VROTLI, MVT::v16i16, { 1, 5, 3, 3 } },
3514 { X86ISD::VROTLI, MVT::v8i16, { 1, 5, 3, 3 } },
3515 { X86ISD::VROTLI, MVT::v64i8, { 2, 9, 3, 4 } },
3516 { X86ISD::VROTLI, MVT::v32i8, { 1, 9, 3, 4 } },
3517 { X86ISD::VROTLI, MVT::v16i8, { 1, 8, 3, 4 } },
3518 { ISD::SADDSAT, MVT::v32i16, { 1 } },
3519 { ISD::SADDSAT, MVT::v64i8, { 1 } },
3520 { ISD::SMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3521 { ISD::SMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3522 { ISD::SMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3523 { ISD::SMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3524 { ISD::SSUBSAT, MVT::v32i16, { 1 } },
3525 { ISD::SSUBSAT, MVT::v64i8, { 1 } },
3526 { ISD::UADDSAT, MVT::v32i16, { 1 } },
3527 { ISD::UADDSAT, MVT::v64i8, { 1 } },
3528 { ISD::UMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3529 { ISD::UMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3530 { ISD::UMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3531 { ISD::UMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3532 { ISD::USUBSAT, MVT::v32i16, { 1 } },
3533 { ISD::USUBSAT, MVT::v64i8, { 1 } },
3534 };
3535 static const CostKindTblEntry AVX512CostTbl[] = {
3536 { ISD::ABS, MVT::v8i64, { 1, 1, 1, 1 } },
3537 { ISD::ABS, MVT::v4i64, { 1, 1, 1, 1 } },
3538 { ISD::ABS, MVT::v2i64, { 1, 1, 1, 1 } },
3539 { ISD::ABS, MVT::v16i32, { 1, 1, 1, 1 } },
3540 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 1 } },
3541 { ISD::ABS, MVT::v32i16, { 2, 7, 4, 4 } },
3542 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 1 } },
3543 { ISD::ABS, MVT::v64i8, { 2, 7, 4, 4 } },
3544 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 1 } },
3545 { ISD::BITREVERSE, MVT::v8i64, { 9, 13, 20, 20 } },
3546 { ISD::BITREVERSE, MVT::v16i32, { 9, 13, 20, 20 } },
3547 { ISD::BITREVERSE, MVT::v32i16, { 9, 13, 20, 20 } },
3548 { ISD::BITREVERSE, MVT::v64i8, { 6, 11, 17, 17 } },
3549 { ISD::BSWAP, MVT::v8i64, { 4, 7, 5, 5 } },
3550 { ISD::BSWAP, MVT::v16i32, { 4, 7, 5, 5 } },
3551 { ISD::BSWAP, MVT::v32i16, { 4, 7, 5, 5 } },
3552 { ISD::CTLZ, MVT::v8i64, { 10, 28, 32, 32 } },
3553 { ISD::CTLZ, MVT::v16i32, { 12, 30, 38, 38 } },
3554 { ISD::CTLZ, MVT::v32i16, { 8, 15, 29, 29 } },
3555 { ISD::CTLZ, MVT::v64i8, { 6, 11, 19, 19 } },
3556 { ISD::CTPOP, MVT::v8i64, { 16, 16, 19, 19 } },
3557 { ISD::CTPOP, MVT::v16i32, { 24, 19, 27, 27 } },
3558 { ISD::CTPOP, MVT::v32i16, { 18, 15, 22, 22 } },
3559 { ISD::CTPOP, MVT::v64i8, { 12, 11, 16, 16 } },
3560 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3561 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3562 { ISD::CTTZ, MVT::v32i16, { 7, 17, 27, 27 } },
3563 { ISD::CTTZ, MVT::v64i8, { 6, 13, 21, 21 } },
3564 { ISD::ROTL, MVT::v8i64, { 1, 1, 1, 1 } },
3565 { ISD::ROTL, MVT::v4i64, { 1, 1, 1, 1 } },
3566 { ISD::ROTL, MVT::v2i64, { 1, 1, 1, 1 } },
3567 { ISD::ROTL, MVT::v16i32, { 1, 1, 1, 1 } },
3568 { ISD::ROTL, MVT::v8i32, { 1, 1, 1, 1 } },
3569 { ISD::ROTL, MVT::v4i32, { 1, 1, 1, 1 } },
3570 { ISD::ROTR, MVT::v8i64, { 1, 1, 1, 1 } },
3571 { ISD::ROTR, MVT::v4i64, { 1, 1, 1, 1 } },
3572 { ISD::ROTR, MVT::v2i64, { 1, 1, 1, 1 } },
3573 { ISD::ROTR, MVT::v16i32, { 1, 1, 1, 1 } },
3574 { ISD::ROTR, MVT::v8i32, { 1, 1, 1, 1 } },
3575 { ISD::ROTR, MVT::v4i32, { 1, 1, 1, 1 } },
3576 { X86ISD::VROTLI, MVT::v8i64, { 1, 1, 1, 1 } },
3577 { X86ISD::VROTLI, MVT::v4i64, { 1, 1, 1, 1 } },
3578 { X86ISD::VROTLI, MVT::v2i64, { 1, 1, 1, 1 } },
3579 { X86ISD::VROTLI, MVT::v16i32, { 1, 1, 1, 1 } },
3580 { X86ISD::VROTLI, MVT::v8i32, { 1, 1, 1, 1 } },
3581 { X86ISD::VROTLI, MVT::v4i32, { 1, 1, 1, 1 } },
3582 { ISD::SMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3583 { ISD::SMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3584 { ISD::SMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3585 { ISD::SMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3586 { ISD::SMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3587 { ISD::SMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3588 { ISD::SMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3589 { ISD::SMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3590 { ISD::SMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3591 { ISD::SMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3592 { ISD::SMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3593 { ISD::SMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3594 { ISD::UMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3595 { ISD::UMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3596 { ISD::UMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3597 { ISD::UMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3598 { ISD::UMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3599 { ISD::UMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3600 { ISD::UMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3601 { ISD::UMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3602 { ISD::UMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3603 { ISD::UMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3604 { ISD::UMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3605 { ISD::UMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3606 { ISD::USUBSAT, MVT::v16i32, { 2 } }, // pmaxud + psubd
3607 { ISD::USUBSAT, MVT::v2i64, { 2 } }, // pmaxuq + psubq
3608 { ISD::USUBSAT, MVT::v4i64, { 2 } }, // pmaxuq + psubq
3609 { ISD::USUBSAT, MVT::v8i64, { 2 } }, // pmaxuq + psubq
3610 { ISD::UADDSAT, MVT::v16i32, { 3 } }, // not + pminud + paddd
3611 { ISD::UADDSAT, MVT::v2i64, { 3 } }, // not + pminuq + paddq
3612 { ISD::UADDSAT, MVT::v4i64, { 3 } }, // not + pminuq + paddq
3613 { ISD::UADDSAT, MVT::v8i64, { 3 } }, // not + pminuq + paddq
3614 { ISD::SADDSAT, MVT::v32i16, { 2 } },
3615 { ISD::SADDSAT, MVT::v64i8, { 2 } },
3616 { ISD::SSUBSAT, MVT::v32i16, { 2 } },
3617 { ISD::SSUBSAT, MVT::v64i8, { 2 } },
3618 { ISD::UADDSAT, MVT::v32i16, { 2 } },
3619 { ISD::UADDSAT, MVT::v64i8, { 2 } },
3620 { ISD::USUBSAT, MVT::v32i16, { 2 } },
3621 { ISD::USUBSAT, MVT::v64i8, { 2 } },
3622 { ISD::FMAXNUM, MVT::f32, { 2, 2, 3, 3 } },
3623 { ISD::FMAXNUM, MVT::v4f32, { 1, 1, 3, 3 } },
3624 { ISD::FMAXNUM, MVT::v8f32, { 2, 2, 3, 3 } },
3625 { ISD::FMAXNUM, MVT::v16f32, { 4, 4, 3, 3 } },
3626 { ISD::FMAXNUM, MVT::f64, { 2, 2, 3, 3 } },
3627 { ISD::FMAXNUM, MVT::v2f64, { 1, 1, 3, 3 } },
3628 { ISD::FMAXNUM, MVT::v4f64, { 2, 2, 3, 3 } },
3629 { ISD::FMAXNUM, MVT::v8f64, { 3, 3, 3, 3 } },
3630 { ISD::FSQRT, MVT::f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3631 { ISD::FSQRT, MVT::v4f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3632 { ISD::FSQRT, MVT::v8f32, { 6, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3633 { ISD::FSQRT, MVT::v16f32, { 12, 20, 1, 3 } }, // Skylake from http://www.agner.org/
3634 { ISD::FSQRT, MVT::f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3635 { ISD::FSQRT, MVT::v2f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3636 { ISD::FSQRT, MVT::v4f64, { 12, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3637 { ISD::FSQRT, MVT::v8f64, { 24, 32, 1, 3 } }, // Skylake from http://www.agner.org/
3638 };
3639 static const CostKindTblEntry XOPCostTbl[] = {
3640 { ISD::BITREVERSE, MVT::v4i64, { 3, 6, 5, 6 } },
3641 { ISD::BITREVERSE, MVT::v8i32, { 3, 6, 5, 6 } },
3642 { ISD::BITREVERSE, MVT::v16i16, { 3, 6, 5, 6 } },
3643 { ISD::BITREVERSE, MVT::v32i8, { 3, 6, 5, 6 } },
3644 { ISD::BITREVERSE, MVT::v2i64, { 2, 7, 1, 1 } },
3645 { ISD::BITREVERSE, MVT::v4i32, { 2, 7, 1, 1 } },
3646 { ISD::BITREVERSE, MVT::v8i16, { 2, 7, 1, 1 } },
3647 { ISD::BITREVERSE, MVT::v16i8, { 2, 7, 1, 1 } },
3648 { ISD::BITREVERSE, MVT::i64, { 2, 2, 3, 4 } },
3649 { ISD::BITREVERSE, MVT::i32, { 2, 2, 3, 4 } },
3650 { ISD::BITREVERSE, MVT::i16, { 2, 2, 3, 4 } },
3651 { ISD::BITREVERSE, MVT::i8, { 2, 2, 3, 4 } },
3652 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3653 { ISD::ROTL, MVT::v4i64, { 4, 7, 5, 6 } },
3654 { ISD::ROTL, MVT::v8i32, { 4, 7, 5, 6 } },
3655 { ISD::ROTL, MVT::v16i16, { 4, 7, 5, 6 } },
3656 { ISD::ROTL, MVT::v32i8, { 4, 7, 5, 6 } },
3657 { ISD::ROTL, MVT::v2i64, { 1, 3, 1, 1 } },
3658 { ISD::ROTL, MVT::v4i32, { 1, 3, 1, 1 } },
3659 { ISD::ROTL, MVT::v8i16, { 1, 3, 1, 1 } },
3660 { ISD::ROTL, MVT::v16i8, { 1, 3, 1, 1 } },
3661 { ISD::ROTR, MVT::v4i64, { 4, 7, 8, 9 } },
3662 { ISD::ROTR, MVT::v8i32, { 4, 7, 8, 9 } },
3663 { ISD::ROTR, MVT::v16i16, { 4, 7, 8, 9 } },
3664 { ISD::ROTR, MVT::v32i8, { 4, 7, 8, 9 } },
3665 { ISD::ROTR, MVT::v2i64, { 1, 3, 3, 3 } },
3666 { ISD::ROTR, MVT::v4i32, { 1, 3, 3, 3 } },
3667 { ISD::ROTR, MVT::v8i16, { 1, 3, 3, 3 } },
3668 { ISD::ROTR, MVT::v16i8, { 1, 3, 3, 3 } },
3669 { X86ISD::VROTLI, MVT::v4i64, { 4, 7, 5, 6 } },
3670 { X86ISD::VROTLI, MVT::v8i32, { 4, 7, 5, 6 } },
3671 { X86ISD::VROTLI, MVT::v16i16, { 4, 7, 5, 6 } },
3672 { X86ISD::VROTLI, MVT::v32i8, { 4, 7, 5, 6 } },
3673 { X86ISD::VROTLI, MVT::v2i64, { 1, 3, 1, 1 } },
3674 { X86ISD::VROTLI, MVT::v4i32, { 1, 3, 1, 1 } },
3675 { X86ISD::VROTLI, MVT::v8i16, { 1, 3, 1, 1 } },
3676 { X86ISD::VROTLI, MVT::v16i8, { 1, 3, 1, 1 } },
3677 };
3678 static const CostKindTblEntry AVX2CostTbl[] = {
3679 { ISD::ABS, MVT::v2i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3680 { ISD::ABS, MVT::v4i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3681 { ISD::ABS, MVT::v4i32, { 1, 1, 1, 1 } },
3682 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 2 } },
3683 { ISD::ABS, MVT::v8i16, { 1, 1, 1, 1 } },
3684 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 2 } },
3685 { ISD::ABS, MVT::v16i8, { 1, 1, 1, 1 } },
3686 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 2 } },
3687 { ISD::BITREVERSE, MVT::v2i64, { 3, 11, 10, 11 } },
3688 { ISD::BITREVERSE, MVT::v4i64, { 5, 11, 10, 17 } },
3689 { ISD::BITREVERSE, MVT::v4i32, { 3, 11, 10, 11 } },
3690 { ISD::BITREVERSE, MVT::v8i32, { 5, 11, 10, 17 } },
3691 { ISD::BITREVERSE, MVT::v8i16, { 3, 11, 10, 11 } },
3692 { ISD::BITREVERSE, MVT::v16i16, { 5, 11, 10, 17 } },
3693 { ISD::BITREVERSE, MVT::v16i8, { 3, 6, 9, 9 } },
3694 { ISD::BITREVERSE, MVT::v32i8, { 4, 5, 9, 15 } },
3695 { ISD::BSWAP, MVT::v2i64, { 1, 2, 1, 2 } },
3696 { ISD::BSWAP, MVT::v4i64, { 1, 3, 1, 2 } },
3697 { ISD::BSWAP, MVT::v4i32, { 1, 2, 1, 2 } },
3698 { ISD::BSWAP, MVT::v8i32, { 1, 3, 1, 2 } },
3699 { ISD::BSWAP, MVT::v8i16, { 1, 2, 1, 2 } },
3700 { ISD::BSWAP, MVT::v16i16, { 1, 3, 1, 2 } },
3701 { ISD::CTLZ, MVT::v2i64, { 7, 18, 24, 25 } },
3702 { ISD::CTLZ, MVT::v4i64, { 14, 18, 24, 44 } },
3703 { ISD::CTLZ, MVT::v4i32, { 5, 16, 19, 20 } },
3704 { ISD::CTLZ, MVT::v8i32, { 10, 16, 19, 34 } },
3705 { ISD::CTLZ, MVT::v8i16, { 4, 13, 14, 15 } },
3706 { ISD::CTLZ, MVT::v16i16, { 6, 14, 14, 24 } },
3707 { ISD::CTLZ, MVT::v16i8, { 3, 12, 9, 10 } },
3708 { ISD::CTLZ, MVT::v32i8, { 4, 12, 9, 14 } },
3709 { ISD::CTPOP, MVT::v2i64, { 3, 9, 10, 10 } },
3710 { ISD::CTPOP, MVT::v4i64, { 4, 9, 10, 14 } },
3711 { ISD::CTPOP, MVT::v4i32, { 7, 12, 14, 14 } },
3712 { ISD::CTPOP, MVT::v8i32, { 7, 12, 14, 18 } },
3713 { ISD::CTPOP, MVT::v8i16, { 3, 7, 11, 11 } },
3714 { ISD::CTPOP, MVT::v16i16, { 6, 8, 11, 18 } },
3715 { ISD::CTPOP, MVT::v16i8, { 2, 5, 8, 8 } },
3716 { ISD::CTPOP, MVT::v32i8, { 3, 5, 8, 12 } },
3717 { ISD::CTTZ, MVT::v2i64, { 4, 11, 13, 13 } },
3718 { ISD::CTTZ, MVT::v4i64, { 5, 11, 13, 20 } },
3719 { ISD::CTTZ, MVT::v4i32, { 7, 14, 17, 17 } },
3720 { ISD::CTTZ, MVT::v8i32, { 7, 15, 17, 24 } },
3721 { ISD::CTTZ, MVT::v8i16, { 4, 9, 14, 14 } },
3722 { ISD::CTTZ, MVT::v16i16, { 6, 9, 14, 24 } },
3723 { ISD::CTTZ, MVT::v16i8, { 3, 7, 11, 11 } },
3724 { ISD::CTTZ, MVT::v32i8, { 5, 7, 11, 18 } },
3725 { ISD::SADDSAT, MVT::v16i16, { 1 } },
3726 { ISD::SADDSAT, MVT::v32i8, { 1 } },
3727 { ISD::SMAX, MVT::v2i64, { 2, 7, 2, 3 } },
3728 { ISD::SMAX, MVT::v4i64, { 2, 7, 2, 3 } },
3729 { ISD::SMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3730 { ISD::SMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3731 { ISD::SMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3732 { ISD::SMIN, MVT::v2i64, { 2, 7, 2, 3 } },
3733 { ISD::SMIN, MVT::v4i64, { 2, 7, 2, 3 } },
3734 { ISD::SMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3735 { ISD::SMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3736 { ISD::SMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3737 { ISD::SSUBSAT, MVT::v16i16, { 1 } },
3738 { ISD::SSUBSAT, MVT::v32i8, { 1 } },
3739 { ISD::UADDSAT, MVT::v16i16, { 1 } },
3740 { ISD::UADDSAT, MVT::v32i8, { 1 } },
3741 { ISD::UADDSAT, MVT::v8i32, { 3 } }, // not + pminud + paddd
3742 { ISD::UMAX, MVT::v2i64, { 2, 8, 5, 6 } },
3743 { ISD::UMAX, MVT::v4i64, { 2, 8, 5, 8 } },
3744 { ISD::UMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3745 { ISD::UMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3746 { ISD::UMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3747 { ISD::UMIN, MVT::v2i64, { 2, 8, 5, 6 } },
3748 { ISD::UMIN, MVT::v4i64, { 2, 8, 5, 8 } },
3749 { ISD::UMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3750 { ISD::UMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3751 { ISD::UMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3752 { ISD::USUBSAT, MVT::v16i16, { 1 } },
3753 { ISD::USUBSAT, MVT::v32i8, { 1 } },
3754 { ISD::USUBSAT, MVT::v8i32, { 2 } }, // pmaxud + psubd
3755 { ISD::FMAXNUM, MVT::f32, { 2, 7, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
3756 { ISD::FMAXNUM, MVT::v4f32, { 2, 7, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3757 { ISD::FMAXNUM, MVT::v8f32, { 3, 7, 3, 6 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3758 { ISD::FMAXNUM, MVT::f64, { 2, 7, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
3759 { ISD::FMAXNUM, MVT::v2f64, { 2, 7, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3760 { ISD::FMAXNUM, MVT::v4f64, { 3, 7, 3, 6 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3761 { ISD::FSQRT, MVT::f32, { 7, 15, 1, 1 } }, // vsqrtss
3762 { ISD::FSQRT, MVT::v4f32, { 7, 15, 1, 1 } }, // vsqrtps
3763 { ISD::FSQRT, MVT::v8f32, { 14, 21, 1, 3 } }, // vsqrtps
3764 { ISD::FSQRT, MVT::f64, { 14, 21, 1, 1 } }, // vsqrtsd
3765 { ISD::FSQRT, MVT::v2f64, { 14, 21, 1, 1 } }, // vsqrtpd
3766 { ISD::FSQRT, MVT::v4f64, { 28, 35, 1, 3 } }, // vsqrtpd
3767 };
3768 static const CostKindTblEntry AVX1CostTbl[] = {
3769 { ISD::ABS, MVT::v4i64, { 6, 8, 6, 12 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3770 { ISD::ABS, MVT::v8i32, { 3, 6, 4, 5 } },
3771 { ISD::ABS, MVT::v16i16, { 3, 6, 4, 5 } },
3772 { ISD::ABS, MVT::v32i8, { 3, 6, 4, 5 } },
3773 { ISD::BITREVERSE, MVT::v4i64, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
3774 { ISD::BITREVERSE, MVT::v2i64, { 8, 13, 10, 16 } },
3775 { ISD::BITREVERSE, MVT::v8i32, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
3776 { ISD::BITREVERSE, MVT::v4i32, { 8, 13, 10, 16 } },
3777 { ISD::BITREVERSE, MVT::v16i16, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
3778 { ISD::BITREVERSE, MVT::v8i16, { 8, 13, 10, 16 } },
3779 { ISD::BITREVERSE, MVT::v32i8, { 13, 15, 17, 26 } }, // 2 x 128-bit Op + extract/insert
3780 { ISD::BITREVERSE, MVT::v16i8, { 7, 7, 9, 13 } },
3781 { ISD::BSWAP, MVT::v4i64, { 5, 6, 5, 10 } },
3782 { ISD::BSWAP, MVT::v2i64, { 2, 2, 1, 3 } },
3783 { ISD::BSWAP, MVT::v8i32, { 5, 6, 5, 10 } },
3784 { ISD::BSWAP, MVT::v4i32, { 2, 2, 1, 3 } },
3785 { ISD::BSWAP, MVT::v16i16, { 5, 6, 5, 10 } },
3786 { ISD::BSWAP, MVT::v8i16, { 2, 2, 1, 3 } },
3787 { ISD::CTLZ, MVT::v4i64, { 29, 33, 49, 58 } }, // 2 x 128-bit Op + extract/insert
3788 { ISD::CTLZ, MVT::v2i64, { 14, 24, 24, 28 } },
3789 { ISD::CTLZ, MVT::v8i32, { 24, 28, 39, 48 } }, // 2 x 128-bit Op + extract/insert
3790 { ISD::CTLZ, MVT::v4i32, { 12, 20, 19, 23 } },
3791 { ISD::CTLZ, MVT::v16i16, { 19, 22, 29, 38 } }, // 2 x 128-bit Op + extract/insert
3792 { ISD::CTLZ, MVT::v8i16, { 9, 16, 14, 18 } },
3793 { ISD::CTLZ, MVT::v32i8, { 14, 15, 19, 28 } }, // 2 x 128-bit Op + extract/insert
3794 { ISD::CTLZ, MVT::v16i8, { 7, 12, 9, 13 } },
3795 { ISD::CTPOP, MVT::v4i64, { 14, 18, 19, 28 } }, // 2 x 128-bit Op + extract/insert
3796 { ISD::CTPOP, MVT::v2i64, { 7, 14, 10, 14 } },
3797 { ISD::CTPOP, MVT::v8i32, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
3798 { ISD::CTPOP, MVT::v4i32, { 9, 20, 14, 18 } },
3799 { ISD::CTPOP, MVT::v16i16, { 16, 21, 22, 31 } }, // 2 x 128-bit Op + extract/insert
3800 { ISD::CTPOP, MVT::v8i16, { 8, 18, 11, 15 } },
3801 { ISD::CTPOP, MVT::v32i8, { 13, 15, 16, 25 } }, // 2 x 128-bit Op + extract/insert
3802 { ISD::CTPOP, MVT::v16i8, { 6, 12, 8, 12 } },
3803 { ISD::CTTZ, MVT::v4i64, { 17, 22, 24, 33 } }, // 2 x 128-bit Op + extract/insert
3804 { ISD::CTTZ, MVT::v2i64, { 9, 19, 13, 17 } },
3805 { ISD::CTTZ, MVT::v8i32, { 21, 27, 32, 41 } }, // 2 x 128-bit Op + extract/insert
3806 { ISD::CTTZ, MVT::v4i32, { 11, 24, 17, 21 } },
3807 { ISD::CTTZ, MVT::v16i16, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
3808 { ISD::CTTZ, MVT::v8i16, { 9, 21, 14, 18 } },
3809 { ISD::CTTZ, MVT::v32i8, { 15, 18, 21, 30 } }, // 2 x 128-bit Op + extract/insert
3810 { ISD::CTTZ, MVT::v16i8, { 8, 16, 11, 15 } },
3811 { ISD::SADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3812 { ISD::SADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3813 { ISD::SMAX, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
3814 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 4 } },
3815 { ISD::SMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3816 { ISD::SMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3817 { ISD::SMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3818 { ISD::SMIN, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
3819 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
3820 { ISD::SMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3821 { ISD::SMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3822 { ISD::SMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3823 { ISD::SSUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3824 { ISD::SSUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3825 { ISD::UADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3826 { ISD::UADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3827 { ISD::UADDSAT, MVT::v8i32, { 8 } }, // 2 x 128-bit Op + extract/insert
3828 { ISD::UMAX, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
3829 { ISD::UMAX, MVT::v2i64, { 4, 8, 5, 7 } },
3830 { ISD::UMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3831 { ISD::UMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3832 { ISD::UMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3833 { ISD::UMIN, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
3834 { ISD::UMIN, MVT::v2i64, { 4, 8, 5, 7 } },
3835 { ISD::UMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3836 { ISD::UMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3837 { ISD::UMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
3838 { ISD::USUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
3839 { ISD::USUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
3840 { ISD::USUBSAT, MVT::v8i32, { 6 } }, // 2 x 128-bit Op + extract/insert
3841 { ISD::FMAXNUM, MVT::f32, { 3, 6, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
3842 { ISD::FMAXNUM, MVT::v4f32, { 3, 6, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3843 { ISD::FMAXNUM, MVT::v8f32, { 5, 7, 3, 10 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3844 { ISD::FMAXNUM, MVT::f64, { 3, 6, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
3845 { ISD::FMAXNUM, MVT::v2f64, { 3, 6, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3846 { ISD::FMAXNUM, MVT::v4f64, { 5, 7, 3, 10 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3847 { ISD::FSQRT, MVT::f32, { 21, 21, 1, 1 } }, // vsqrtss
3848 { ISD::FSQRT, MVT::v4f32, { 21, 21, 1, 1 } }, // vsqrtps
3849 { ISD::FSQRT, MVT::v8f32, { 42, 42, 1, 3 } }, // vsqrtps
3850 { ISD::FSQRT, MVT::f64, { 27, 27, 1, 1 } }, // vsqrtsd
3851 { ISD::FSQRT, MVT::v2f64, { 27, 27, 1, 1 } }, // vsqrtpd
3852 { ISD::FSQRT, MVT::v4f64, { 54, 54, 1, 3 } }, // vsqrtpd
3853 };
3854 static const CostKindTblEntry GFNICostTbl[] = {
3855 { ISD::BITREVERSE, MVT::i8, { 3, 3, 3, 4 } }, // gf2p8affineqb
3856 { ISD::BITREVERSE, MVT::i16, { 3, 3, 4, 6 } }, // gf2p8affineqb
3857 { ISD::BITREVERSE, MVT::i32, { 3, 3, 4, 5 } }, // gf2p8affineqb
3858 { ISD::BITREVERSE, MVT::i64, { 3, 3, 4, 6 } }, // gf2p8affineqb
3859 { ISD::BITREVERSE, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
3860 { ISD::BITREVERSE, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
3861 { ISD::BITREVERSE, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
3862 { ISD::BITREVERSE, MVT::v8i16, { 1, 8, 2, 4 } }, // gf2p8affineqb
3863 { ISD::BITREVERSE, MVT::v16i16, { 1, 9, 2, 4 } }, // gf2p8affineqb
3864 { ISD::BITREVERSE, MVT::v32i16, { 1, 9, 2, 4 } }, // gf2p8affineqb
3865 { ISD::BITREVERSE, MVT::v4i32, { 1, 8, 2, 4 } }, // gf2p8affineqb
3866 { ISD::BITREVERSE, MVT::v8i32, { 1, 9, 2, 4 } }, // gf2p8affineqb
3867 { ISD::BITREVERSE, MVT::v16i32, { 1, 9, 2, 4 } }, // gf2p8affineqb
3868 { ISD::BITREVERSE, MVT::v2i64, { 1, 8, 2, 4 } }, // gf2p8affineqb
3869 { ISD::BITREVERSE, MVT::v4i64, { 1, 9, 2, 4 } }, // gf2p8affineqb
3870 { ISD::BITREVERSE, MVT::v8i64, { 1, 9, 2, 4 } }, // gf2p8affineqb
3871 };
3872 static const CostKindTblEntry GLMCostTbl[] = {
3873 { ISD::FSQRT, MVT::f32, { 19, 20, 1, 1 } }, // sqrtss
3874 { ISD::FSQRT, MVT::v4f32, { 37, 41, 1, 5 } }, // sqrtps
3875 { ISD::FSQRT, MVT::f64, { 34, 35, 1, 1 } }, // sqrtsd
3876 { ISD::FSQRT, MVT::v2f64, { 67, 71, 1, 5 } }, // sqrtpd
3877 };
3878 static const CostKindTblEntry SLMCostTbl[] = {
3879 { ISD::BSWAP, MVT::v2i64, { 5, 5, 1, 5 } },
3880 { ISD::BSWAP, MVT::v4i32, { 5, 5, 1, 5 } },
3881 { ISD::BSWAP, MVT::v8i16, { 5, 5, 1, 5 } },
3882 { ISD::FSQRT, MVT::f32, { 20, 20, 1, 1 } }, // sqrtss
3883 { ISD::FSQRT, MVT::v4f32, { 40, 41, 1, 5 } }, // sqrtps
3884 { ISD::FSQRT, MVT::f64, { 35, 35, 1, 1 } }, // sqrtsd
3885 { ISD::FSQRT, MVT::v2f64, { 70, 71, 1, 5 } }, // sqrtpd
3886 };
3887 static const CostKindTblEntry SSE42CostTbl[] = {
3888 { ISD::USUBSAT, MVT::v4i32, { 2 } }, // pmaxud + psubd
3889 { ISD::UADDSAT, MVT::v4i32, { 3 } }, // not + pminud + paddd
3890 { ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } }, // MAXSS + CMPUNORDSS + BLENDVPS
3891 { ISD::FMAXNUM, MVT::v4f32, { 4, 4, 4, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3892 { ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } }, // MAXSD + CMPUNORDSD + BLENDVPD
3893 { ISD::FMAXNUM, MVT::v2f64, { 4, 4, 4, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
3894 { ISD::FSQRT, MVT::f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
3895 { ISD::FSQRT, MVT::v4f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
3896 };
3897 static const CostKindTblEntry SSE41CostTbl[] = {
3898 { ISD::ABS, MVT::v2i64, { 3, 4, 3, 5 } }, // BLENDVPD(X,PSUBQ(0,X),X)
3899 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 3 } },
3900 { ISD::SMAX, MVT::v4i32, { 1, 1, 1, 1 } },
3901 { ISD::SMAX, MVT::v16i8, { 1, 1, 1, 1 } },
3902 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
3903 { ISD::SMIN, MVT::v4i32, { 1, 1, 1, 1 } },
3904 { ISD::SMIN, MVT::v16i8, { 1, 1, 1, 1 } },
3905 { ISD::UMAX, MVT::v2i64, { 2, 11, 6, 7 } },
3906 { ISD::UMAX, MVT::v4i32, { 1, 1, 1, 1 } },
3907 { ISD::UMAX, MVT::v8i16, { 1, 1, 1, 1 } },
3908 { ISD::UMIN, MVT::v2i64, { 2, 11, 6, 7 } },
3909 { ISD::UMIN, MVT::v4i32, { 1, 1, 1, 1 } },
3910 { ISD::UMIN, MVT::v8i16, { 1, 1, 1, 1 } },
3911 };
3912 static const CostKindTblEntry SSSE3CostTbl[] = {
3913 { ISD::ABS, MVT::v4i32, { 1, 2, 1, 1 } },
3914 { ISD::ABS, MVT::v8i16, { 1, 2, 1, 1 } },
3915 { ISD::ABS, MVT::v16i8, { 1, 2, 1, 1 } },
3916 { ISD::BITREVERSE, MVT::v2i64, { 16, 20, 11, 21 } },
3917 { ISD::BITREVERSE, MVT::v4i32, { 16, 20, 11, 21 } },
3918 { ISD::BITREVERSE, MVT::v8i16, { 16, 20, 11, 21 } },
3919 { ISD::BITREVERSE, MVT::v16i8, { 11, 12, 10, 16 } },
3920 { ISD::BSWAP, MVT::v2i64, { 2, 3, 1, 5 } },
3921 { ISD::BSWAP, MVT::v4i32, { 2, 3, 1, 5 } },
3922 { ISD::BSWAP, MVT::v8i16, { 2, 3, 1, 5 } },
3923 { ISD::CTLZ, MVT::v2i64, { 18, 28, 28, 35 } },
3924 { ISD::CTLZ, MVT::v4i32, { 15, 20, 22, 28 } },
3925 { ISD::CTLZ, MVT::v8i16, { 13, 17, 16, 22 } },
3926 { ISD::CTLZ, MVT::v16i8, { 11, 15, 10, 16 } },
3927 { ISD::CTPOP, MVT::v2i64, { 13, 19, 12, 18 } },
3928 { ISD::CTPOP, MVT::v4i32, { 18, 24, 16, 22 } },
3929 { ISD::CTPOP, MVT::v8i16, { 13, 18, 14, 20 } },
3930 { ISD::CTPOP, MVT::v16i8, { 11, 12, 10, 16 } },
3931 { ISD::CTTZ, MVT::v2i64, { 13, 25, 15, 22 } },
3932 { ISD::CTTZ, MVT::v4i32, { 18, 26, 19, 25 } },
3933 { ISD::CTTZ, MVT::v8i16, { 13, 20, 17, 23 } },
3934 { ISD::CTTZ, MVT::v16i8, { 11, 16, 13, 19 } }
3935 };
3936 static const CostKindTblEntry SSE2CostTbl[] = {
3937 { ISD::ABS, MVT::v2i64, { 3, 6, 5, 5 } },
3938 { ISD::ABS, MVT::v4i32, { 1, 4, 4, 4 } },
3939 { ISD::ABS, MVT::v8i16, { 1, 2, 3, 3 } },
3940 { ISD::ABS, MVT::v16i8, { 1, 2, 3, 3 } },
3941 { ISD::BITREVERSE, MVT::v2i64, { 16, 20, 32, 32 } },
3942 { ISD::BITREVERSE, MVT::v4i32, { 16, 20, 30, 30 } },
3943 { ISD::BITREVERSE, MVT::v8i16, { 16, 20, 25, 25 } },
3944 { ISD::BITREVERSE, MVT::v16i8, { 11, 12, 21, 21 } },
3945 { ISD::BSWAP, MVT::v2i64, { 5, 6, 11, 11 } },
3946 { ISD::BSWAP, MVT::v4i32, { 5, 5, 9, 9 } },
3947 { ISD::BSWAP, MVT::v8i16, { 5, 5, 4, 5 } },
3948 { ISD::CTLZ, MVT::v2i64, { 10, 45, 36, 38 } },
3949 { ISD::CTLZ, MVT::v4i32, { 10, 45, 38, 40 } },
3950 { ISD::CTLZ, MVT::v8i16, { 9, 38, 32, 34 } },
3951 { ISD::CTLZ, MVT::v16i8, { 8, 39, 29, 32 } },
3952 { ISD::CTPOP, MVT::v2i64, { 12, 26, 16, 18 } },
3953 { ISD::CTPOP, MVT::v4i32, { 15, 29, 21, 23 } },
3954 { ISD::CTPOP, MVT::v8i16, { 13, 25, 18, 20 } },
3955 { ISD::CTPOP, MVT::v16i8, { 10, 21, 14, 16 } },
3956 { ISD::CTTZ, MVT::v2i64, { 14, 28, 19, 21 } },
3957 { ISD::CTTZ, MVT::v4i32, { 18, 31, 24, 26 } },
3958 { ISD::CTTZ, MVT::v8i16, { 16, 27, 21, 23 } },
3959 { ISD::CTTZ, MVT::v16i8, { 13, 23, 17, 19 } },
3960 { ISD::SADDSAT, MVT::v8i16, { 1 } },
3961 { ISD::SADDSAT, MVT::v16i8, { 1 } },
3962 { ISD::SMAX, MVT::v2i64, { 4, 8, 15, 15 } },
3963 { ISD::SMAX, MVT::v4i32, { 2, 4, 5, 5 } },
3964 { ISD::SMAX, MVT::v8i16, { 1, 1, 1, 1 } },
3965 { ISD::SMAX, MVT::v16i8, { 2, 4, 5, 5 } },
3966 { ISD::SMIN, MVT::v2i64, { 4, 8, 15, 15 } },
3967 { ISD::SMIN, MVT::v4i32, { 2, 4, 5, 5 } },
3968 { ISD::SMIN, MVT::v8i16, { 1, 1, 1, 1 } },
3969 { ISD::SMIN, MVT::v16i8, { 2, 4, 5, 5 } },
3970 { ISD::SSUBSAT, MVT::v8i16, { 1 } },
3971 { ISD::SSUBSAT, MVT::v16i8, { 1 } },
3972 { ISD::UADDSAT, MVT::v8i16, { 1 } },
3973 { ISD::UADDSAT, MVT::v16i8, { 1 } },
3974 { ISD::UMAX, MVT::v2i64, { 4, 8, 15, 15 } },
3975 { ISD::UMAX, MVT::v4i32, { 2, 5, 8, 8 } },
3976 { ISD::UMAX, MVT::v8i16, { 1, 3, 3, 3 } },
3977 { ISD::UMAX, MVT::v16i8, { 1, 1, 1, 1 } },
3978 { ISD::UMIN, MVT::v2i64, { 4, 8, 15, 15 } },
3979 { ISD::UMIN, MVT::v4i32, { 2, 5, 8, 8 } },
3980 { ISD::UMIN, MVT::v8i16, { 1, 3, 3, 3 } },
3981 { ISD::UMIN, MVT::v16i8, { 1, 1, 1, 1 } },
3982 { ISD::USUBSAT, MVT::v8i16, { 1 } },
3983 { ISD::USUBSAT, MVT::v16i8, { 1 } },
3984 { ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } },
3985 { ISD::FMAXNUM, MVT::v2f64, { 4, 6, 6, 6 } },
3986 { ISD::FSQRT, MVT::f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
3987 { ISD::FSQRT, MVT::v2f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
3988 };
3989 static const CostKindTblEntry SSE1CostTbl[] = {
3990 { ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } },
3991 { ISD::FMAXNUM, MVT::v4f32, { 4, 6, 6, 6 } },
3992 { ISD::FSQRT, MVT::f32, { 28, 30, 1, 2 } }, // Pentium III from http://www.agner.org/
3993 { ISD::FSQRT, MVT::v4f32, { 56, 56, 1, 2 } }, // Pentium III from http://www.agner.org/
3994 };
3995 static const CostKindTblEntry BMI64CostTbl[] = { // 64-bit targets
3996 { ISD::CTTZ, MVT::i64, { 1 } },
3997 };
3998 static const CostKindTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
3999 { ISD::CTTZ, MVT::i32, { 1 } },
4000 { ISD::CTTZ, MVT::i16, { 1 } },
4001 { ISD::CTTZ, MVT::i8, { 1 } },
4002 };
4003 static const CostKindTblEntry LZCNT64CostTbl[] = { // 64-bit targets
4004 { ISD::CTLZ, MVT::i64, { 1 } },
4005 };
4006 static const CostKindTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
4007 { ISD::CTLZ, MVT::i32, { 1 } },
4008 { ISD::CTLZ, MVT::i16, { 2 } },
4009 { ISD::CTLZ, MVT::i8, { 2 } },
4010 };
4011 static const CostKindTblEntry POPCNT64CostTbl[] = { // 64-bit targets
4012 { ISD::CTPOP, MVT::i64, { 1, 1, 1, 1 } }, // popcnt
4013 };
4014 static const CostKindTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
4015 { ISD::CTPOP, MVT::i32, { 1, 1, 1, 1 } }, // popcnt
4016 { ISD::CTPOP, MVT::i16, { 1, 1, 2, 2 } }, // popcnt(zext())
4017 { ISD::CTPOP, MVT::i8, { 1, 1, 2, 2 } }, // popcnt(zext())
4018 };
4019 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
4020 { ISD::ABS, MVT::i64, { 1, 2, 3, 4 } }, // SUB+CMOV
4021 { ISD::BITREVERSE, MVT::i64, { 10, 12, 20, 22 } },
4022 { ISD::BSWAP, MVT::i64, { 1, 2, 1, 2 } },
4023 { ISD::CTLZ, MVT::i64, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
4024 { ISD::CTLZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR+XOR
4025 { ISD::CTTZ, MVT::i64, { 3 } }, // TEST+BSF+CMOV/BRANCH
4026 { ISD::CTTZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR
4027 { ISD::CTPOP, MVT::i64, { 10, 6, 19, 19 } },
4028 { ISD::ROTL, MVT::i64, { 2, 3, 1, 3 } },
4029 { ISD::ROTR, MVT::i64, { 2, 3, 1, 3 } },
4030 { X86ISD::VROTLI, MVT::i64, { 1, 1, 1, 1 } },
4031 { ISD::FSHL, MVT::i64, { 4, 4, 1, 4 } },
4032 { ISD::SMAX, MVT::i64, { 1, 3, 2, 3 } },
4033 { ISD::SMIN, MVT::i64, { 1, 3, 2, 3 } },
4034 { ISD::UMAX, MVT::i64, { 1, 3, 2, 3 } },
4035 { ISD::UMIN, MVT::i64, { 1, 3, 2, 3 } },
4036 { ISD::SADDO, MVT::i64, { 1 } },
4037 { ISD::UADDO, MVT::i64, { 1 } },
4038 { ISD::UMULO, MVT::i64, { 2 } }, // mulq + seto
4039 };
4040 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
4041 { ISD::ABS, MVT::i32, { 1, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
4042 { ISD::ABS, MVT::i16, { 2, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
4043 { ISD::ABS, MVT::i8, { 2, 4, 4, 4 } }, // SUB+XOR+SRA
4044 { ISD::BITREVERSE, MVT::i32, { 9, 12, 17, 19 } },
4045 { ISD::BITREVERSE, MVT::i16, { 9, 12, 17, 19 } },
4046 { ISD::BITREVERSE, MVT::i8, { 7, 9, 13, 14 } },
4047 { ISD::BSWAP, MVT::i32, { 1, 1, 1, 1 } },
4048 { ISD::BSWAP, MVT::i16, { 1, 2, 1, 2 } }, // ROL
4049 { ISD::CTLZ, MVT::i32, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
4050 { ISD::CTLZ, MVT::i16, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
4051 { ISD::CTLZ, MVT::i8, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
4052 { ISD::CTLZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSR+XOR
4053 { ISD::CTLZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 3, 3 } }, // BSR+XOR
4054 { ISD::CTLZ_ZERO_UNDEF, MVT::i8, { 2, 2, 3, 3 } }, // BSR+XOR
4055 { ISD::CTTZ, MVT::i32, { 3 } }, // TEST+BSF+CMOV/BRANCH
4056 { ISD::CTTZ, MVT::i16, { 3 } }, // TEST+BSF+CMOV/BRANCH
4057 { ISD::CTTZ, MVT::i8, { 3 } }, // TEST+BSF+CMOV/BRANCH
4058 { ISD::CTTZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSF
4059 { ISD::CTTZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 1, 1 } }, // BSF
4060 { ISD::CTTZ_ZERO_UNDEF, MVT::i8, { 2, 2, 1, 1 } }, // BSF
4061 { ISD::CTPOP, MVT::i32, { 8, 7, 15, 15 } },
4062 { ISD::CTPOP, MVT::i16, { 9, 8, 17, 17 } },
4063 { ISD::CTPOP, MVT::i8, { 7, 6, 6, 6 } },
4064 { ISD::ROTL, MVT::i32, { 2, 3, 1, 3 } },
4065 { ISD::ROTL, MVT::i16, { 2, 3, 1, 3 } },
4066 { ISD::ROTL, MVT::i8, { 2, 3, 1, 3 } },
4067 { ISD::ROTR, MVT::i32, { 2, 3, 1, 3 } },
4068 { ISD::ROTR, MVT::i16, { 2, 3, 1, 3 } },
4069 { ISD::ROTR, MVT::i8, { 2, 3, 1, 3 } },
4070 { X86ISD::VROTLI, MVT::i32, { 1, 1, 1, 1 } },
4071 { X86ISD::VROTLI, MVT::i16, { 1, 1, 1, 1 } },
4072 { X86ISD::VROTLI, MVT::i8, { 1, 1, 1, 1 } },
4073 { ISD::FSHL, MVT::i32, { 4, 4, 1, 4 } },
4074 { ISD::FSHL, MVT::i16, { 4, 4, 2, 5 } },
4075 { ISD::FSHL, MVT::i8, { 4, 4, 2, 5 } },
4076 { ISD::SMAX, MVT::i32, { 1, 2, 2, 3 } },
4077 { ISD::SMAX, MVT::i16, { 1, 4, 2, 4 } },
4078 { ISD::SMAX, MVT::i8, { 1, 4, 2, 4 } },
4079 { ISD::SMIN, MVT::i32, { 1, 2, 2, 3 } },
4080 { ISD::SMIN, MVT::i16, { 1, 4, 2, 4 } },
4081 { ISD::SMIN, MVT::i8, { 1, 4, 2, 4 } },
4082 { ISD::UMAX, MVT::i32, { 1, 2, 2, 3 } },
4083 { ISD::UMAX, MVT::i16, { 1, 4, 2, 4 } },
4084 { ISD::UMAX, MVT::i8, { 1, 4, 2, 4 } },
4085 { ISD::UMIN, MVT::i32, { 1, 2, 2, 3 } },
4086 { ISD::UMIN, MVT::i16, { 1, 4, 2, 4 } },
4087 { ISD::UMIN, MVT::i8, { 1, 4, 2, 4 } },
4088 { ISD::SADDO, MVT::i32, { 1 } },
4089 { ISD::SADDO, MVT::i16, { 1 } },
4090 { ISD::SADDO, MVT::i8, { 1 } },
4091 { ISD::UADDO, MVT::i32, { 1 } },
4092 { ISD::UADDO, MVT::i16, { 1 } },
4093 { ISD::UADDO, MVT::i8, { 1 } },
4094 { ISD::UMULO, MVT::i32, { 2 } }, // mul + seto
4095 { ISD::UMULO, MVT::i16, { 2 } },
4096 { ISD::UMULO, MVT::i8, { 2 } },
4097 };
4098
4099 Type *RetTy = ICA.getReturnType();
4100 Type *OpTy = RetTy;
4101 Intrinsic::ID IID = ICA.getID();
4102 unsigned ISD = ISD::DELETED_NODE;
4103 switch (IID) {
4104 default:
4105 break;
4106 case Intrinsic::abs:
4107 ISD = ISD::ABS;
4108 break;
4109 case Intrinsic::bitreverse:
4110 ISD = ISD::BITREVERSE;
4111 break;
4112 case Intrinsic::bswap:
4113 ISD = ISD::BSWAP;
4114 break;
4115 case Intrinsic::ctlz:
4116 ISD = ISD::CTLZ;
4117 break;
4118 case Intrinsic::ctpop:
4119 ISD = ISD::CTPOP;
4120 break;
4121 case Intrinsic::cttz:
4122 ISD = ISD::CTTZ;
4123 break;
4124 case Intrinsic::fshl:
4125 ISD = ISD::FSHL;
4126 if (!ICA.isTypeBasedOnly()) {
4127 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4128 if (Args[0] == Args[1]) {
4129 ISD = ISD::ROTL;
4130 // Handle uniform constant rotation amounts.
4131 // TODO: Handle funnel-shift cases.
4132 const APInt *Amt;
4133 if (Args[2] &&
4134 PatternMatch::match(V: Args[2], P: PatternMatch::m_APIntAllowPoison(Res&: Amt)))
4135 ISD = X86ISD::VROTLI;
4136 }
4137 }
4138 break;
4139 case Intrinsic::fshr:
4140 // FSHR has same costs so don't duplicate.
4141 ISD = ISD::FSHL;
4142 if (!ICA.isTypeBasedOnly()) {
4143 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4144 if (Args[0] == Args[1]) {
4145 ISD = ISD::ROTR;
4146 // Handle uniform constant rotation amount.
4147 // TODO: Handle funnel-shift cases.
4148 const APInt *Amt;
4149 if (Args[2] &&
4150 PatternMatch::match(V: Args[2], P: PatternMatch::m_APIntAllowPoison(Res&: Amt)))
4151 ISD = X86ISD::VROTLI;
4152 }
4153 }
4154 break;
4155 case Intrinsic::maxnum:
4156 case Intrinsic::minnum:
4157 // FMINNUM has same costs so don't duplicate.
4158 ISD = ISD::FMAXNUM;
4159 break;
4160 case Intrinsic::sadd_sat:
4161 ISD = ISD::SADDSAT;
4162 break;
4163 case Intrinsic::smax:
4164 ISD = ISD::SMAX;
4165 break;
4166 case Intrinsic::smin:
4167 ISD = ISD::SMIN;
4168 break;
4169 case Intrinsic::ssub_sat:
4170 ISD = ISD::SSUBSAT;
4171 break;
4172 case Intrinsic::uadd_sat:
4173 ISD = ISD::UADDSAT;
4174 break;
4175 case Intrinsic::umax:
4176 ISD = ISD::UMAX;
4177 break;
4178 case Intrinsic::umin:
4179 ISD = ISD::UMIN;
4180 break;
4181 case Intrinsic::usub_sat:
4182 ISD = ISD::USUBSAT;
4183 break;
4184 case Intrinsic::sqrt:
4185 ISD = ISD::FSQRT;
4186 break;
4187 case Intrinsic::sadd_with_overflow:
4188 case Intrinsic::ssub_with_overflow:
4189 // SSUBO has same costs so don't duplicate.
4190 ISD = ISD::SADDO;
4191 OpTy = RetTy->getContainedType(i: 0);
4192 break;
4193 case Intrinsic::uadd_with_overflow:
4194 case Intrinsic::usub_with_overflow:
4195 // USUBO has same costs so don't duplicate.
4196 ISD = ISD::UADDO;
4197 OpTy = RetTy->getContainedType(i: 0);
4198 break;
4199 case Intrinsic::umul_with_overflow:
4200 case Intrinsic::smul_with_overflow:
4201 // SMULO has same costs so don't duplicate.
4202 ISD = ISD::UMULO;
4203 OpTy = RetTy->getContainedType(i: 0);
4204 break;
4205 }
4206
4207 if (ISD != ISD::DELETED_NODE) {
4208 // Legalize the type.
4209 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: OpTy);
4210 MVT MTy = LT.second;
4211
4212 // Without BMI/LZCNT see if we're only looking for a *_ZERO_UNDEF cost.
4213 if (((ISD == ISD::CTTZ && !ST->hasBMI()) ||
4214 (ISD == ISD::CTLZ && !ST->hasLZCNT())) &&
4215 !MTy.isVector() && !ICA.isTypeBasedOnly()) {
4216 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4217 if (auto *Cst = dyn_cast<ConstantInt>(Val: Args[1]))
4218 if (Cst->isAllOnesValue())
4219 ISD = ISD == ISD::CTTZ ? ISD::CTTZ_ZERO_UNDEF : ISD::CTLZ_ZERO_UNDEF;
4220 }
4221
4222 // FSQRT is a single instruction.
4223 if (ISD == ISD::FSQRT && CostKind == TTI::TCK_CodeSize)
4224 return LT.first;
4225
4226 auto adjustTableCost = [](int ISD, unsigned Cost,
4227 InstructionCost LegalizationCost,
4228 FastMathFlags FMF) {
4229 // If there are no NANs to deal with, then these are reduced to a
4230 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
4231 // assume is used in the non-fast case.
4232 if (ISD == ISD::FMAXNUM || ISD == ISD::FMINNUM) {
4233 if (FMF.noNaNs())
4234 return LegalizationCost * 1;
4235 }
4236 return LegalizationCost * (int)Cost;
4237 };
4238
4239 if (ST->useGLMDivSqrtCosts())
4240 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
4241 if (auto KindCost = Entry->Cost[CostKind])
4242 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4243 ICA.getFlags());
4244
4245 if (ST->useSLMArithCosts())
4246 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
4247 if (auto KindCost = Entry->Cost[CostKind])
4248 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4249 ICA.getFlags());
4250
4251 if (ST->hasVBMI2())
4252 if (const auto *Entry = CostTableLookup(AVX512VBMI2CostTbl, ISD, MTy))
4253 if (auto KindCost = Entry->Cost[CostKind])
4254 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4255 ICA.getFlags());
4256
4257 if (ST->hasBITALG())
4258 if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
4259 if (auto KindCost = Entry->Cost[CostKind])
4260 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4261 ICA.getFlags());
4262
4263 if (ST->hasVPOPCNTDQ())
4264 if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
4265 if (auto KindCost = Entry->Cost[CostKind])
4266 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4267 ICA.getFlags());
4268
4269 if (ST->hasGFNI())
4270 if (const auto *Entry = CostTableLookup(GFNICostTbl, ISD, MTy))
4271 if (auto KindCost = Entry->Cost[CostKind])
4272 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4273 ICA.getFlags());
4274
4275 if (ST->hasCDI())
4276 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
4277 if (auto KindCost = Entry->Cost[CostKind])
4278 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4279 ICA.getFlags());
4280
4281 if (ST->hasBWI())
4282 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4283 if (auto KindCost = Entry->Cost[CostKind])
4284 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4285 ICA.getFlags());
4286
4287 if (ST->hasAVX512())
4288 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4289 if (auto KindCost = Entry->Cost[CostKind])
4290 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4291 ICA.getFlags());
4292
4293 if (ST->hasXOP())
4294 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
4295 if (auto KindCost = Entry->Cost[CostKind])
4296 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4297 ICA.getFlags());
4298
4299 if (ST->hasAVX2())
4300 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4301 if (auto KindCost = Entry->Cost[CostKind])
4302 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4303 ICA.getFlags());
4304
4305 if (ST->hasAVX())
4306 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4307 if (auto KindCost = Entry->Cost[CostKind])
4308 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4309 ICA.getFlags());
4310
4311 if (ST->hasSSE42())
4312 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4313 if (auto KindCost = Entry->Cost[CostKind])
4314 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4315 ICA.getFlags());
4316
4317 if (ST->hasSSE41())
4318 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4319 if (auto KindCost = Entry->Cost[CostKind])
4320 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4321 ICA.getFlags());
4322
4323 if (ST->hasSSSE3())
4324 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
4325 if (auto KindCost = Entry->Cost[CostKind])
4326 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4327 ICA.getFlags());
4328
4329 if (ST->hasSSE2())
4330 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4331 if (auto KindCost = Entry->Cost[CostKind])
4332 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4333 ICA.getFlags());
4334
4335 if (ST->hasSSE1())
4336 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4337 if (auto KindCost = Entry->Cost[CostKind])
4338 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4339 ICA.getFlags());
4340
4341 if (ST->hasBMI()) {
4342 if (ST->is64Bit())
4343 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
4344 if (auto KindCost = Entry->Cost[CostKind])
4345 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4346 ICA.getFlags());
4347
4348 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
4349 if (auto KindCost = Entry->Cost[CostKind])
4350 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4351 ICA.getFlags());
4352 }
4353
4354 if (ST->hasLZCNT()) {
4355 if (ST->is64Bit())
4356 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
4357 if (auto KindCost = Entry->Cost[CostKind])
4358 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4359 ICA.getFlags());
4360
4361 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
4362 if (auto KindCost = Entry->Cost[CostKind])
4363 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4364 ICA.getFlags());
4365 }
4366
4367 if (ST->hasPOPCNT()) {
4368 if (ST->is64Bit())
4369 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
4370 if (auto KindCost = Entry->Cost[CostKind])
4371 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4372 ICA.getFlags());
4373
4374 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
4375 if (auto KindCost = Entry->Cost[CostKind])
4376 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4377 ICA.getFlags());
4378 }
4379
4380 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
4381 if (const Instruction *II = ICA.getInst()) {
4382 if (II->hasOneUse() && isa<StoreInst>(Val: II->user_back()))
4383 return TTI::TCC_Free;
4384 if (auto *LI = dyn_cast<LoadInst>(Val: II->getOperand(i: 0))) {
4385 if (LI->hasOneUse())
4386 return TTI::TCC_Free;
4387 }
4388 }
4389 }
4390
4391 if (ST->is64Bit())
4392 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
4393 if (auto KindCost = Entry->Cost[CostKind])
4394 return adjustTableCost(Entry->ISD, *KindCost, LT.first,
4395 ICA.getFlags());
4396
4397 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
4398 if (auto KindCost = Entry->Cost[CostKind])
4399 return adjustTableCost(Entry->ISD, *KindCost, LT.first, ICA.getFlags());
4400 }
4401
4402 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
4403}
4404
4405InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
4406 TTI::TargetCostKind CostKind,
4407 unsigned Index, Value *Op0,
4408 Value *Op1) {
4409 static const CostTblEntry SLMCostTbl[] = {
4410 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
4411 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
4412 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
4413 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
4414 };
4415
4416 assert(Val->isVectorTy() && "This must be a vector type");
4417 Type *ScalarType = Val->getScalarType();
4418 InstructionCost RegisterFileMoveCost = 0;
4419
4420 // Non-immediate extraction/insertion can be handled as a sequence of
4421 // aliased loads+stores via the stack.
4422 if (Index == -1U && (Opcode == Instruction::ExtractElement ||
4423 Opcode == Instruction::InsertElement)) {
4424 // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
4425 // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
4426
4427 // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
4428 assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
4429 Align VecAlign = DL.getPrefTypeAlign(Ty: Val);
4430 Align SclAlign = DL.getPrefTypeAlign(Ty: ScalarType);
4431
4432 // Extract - store vector to stack, load scalar.
4433 if (Opcode == Instruction::ExtractElement) {
4434 return getMemoryOpCost(Opcode: Instruction::Store, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind) +
4435 getMemoryOpCost(Opcode: Instruction::Load, Src: ScalarType, Alignment: SclAlign, AddressSpace: 0,
4436 CostKind);
4437 }
4438 // Insert - store vector to stack, store scalar, load vector.
4439 if (Opcode == Instruction::InsertElement) {
4440 return getMemoryOpCost(Opcode: Instruction::Store, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind) +
4441 getMemoryOpCost(Opcode: Instruction::Store, Src: ScalarType, Alignment: SclAlign, AddressSpace: 0,
4442 CostKind) +
4443 getMemoryOpCost(Opcode: Instruction::Load, Src: Val, Alignment: VecAlign, AddressSpace: 0, CostKind);
4444 }
4445 }
4446
4447 if (Index != -1U && (Opcode == Instruction::ExtractElement ||
4448 Opcode == Instruction::InsertElement)) {
4449 // Extraction of vXi1 elements are now efficiently handled by MOVMSK.
4450 if (Opcode == Instruction::ExtractElement &&
4451 ScalarType->getScalarSizeInBits() == 1 &&
4452 cast<FixedVectorType>(Val)->getNumElements() > 1)
4453 return 1;
4454
4455 // Legalize the type.
4456 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Val);
4457
4458 // This type is legalized to a scalar type.
4459 if (!LT.second.isVector())
4460 return 0;
4461
4462 // The type may be split. Normalize the index to the new type.
4463 unsigned SizeInBits = LT.second.getSizeInBits();
4464 unsigned NumElts = LT.second.getVectorNumElements();
4465 unsigned SubNumElts = NumElts;
4466 Index = Index % NumElts;
4467
4468 // For >128-bit vectors, we need to extract higher 128-bit subvectors.
4469 // For inserts, we also need to insert the subvector back.
4470 if (SizeInBits > 128) {
4471 assert((SizeInBits % 128) == 0 && "Illegal vector");
4472 unsigned NumSubVecs = SizeInBits / 128;
4473 SubNumElts = NumElts / NumSubVecs;
4474 if (SubNumElts <= Index) {
4475 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
4476 Index %= SubNumElts;
4477 }
4478 }
4479
4480 MVT MScalarTy = LT.second.getScalarType();
4481 auto IsCheapPInsrPExtrInsertPS = [&]() {
4482 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
4483 // Also, assume insertps is relatively cheap on all >= SSE41 targets.
4484 return (MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4485 (MScalarTy.isInteger() && ST->hasSSE41()) ||
4486 (MScalarTy == MVT::f32 && ST->hasSSE41() &&
4487 Opcode == Instruction::InsertElement);
4488 };
4489
4490 if (Index == 0) {
4491 // Floating point scalars are already located in index #0.
4492 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
4493 // true for all.
4494 if (ScalarType->isFloatingPointTy() &&
4495 (Opcode != Instruction::InsertElement || !Op0 ||
4496 isa<UndefValue>(Val: Op0)))
4497 return RegisterFileMoveCost;
4498
4499 if (Opcode == Instruction::InsertElement &&
4500 isa_and_nonnull<UndefValue>(Val: Op0)) {
4501 // Consider the gather cost to be cheap.
4502 if (isa_and_nonnull<LoadInst>(Val: Op1))
4503 return RegisterFileMoveCost;
4504 if (!IsCheapPInsrPExtrInsertPS()) {
4505 // mov constant-to-GPR + movd/movq GPR -> XMM.
4506 if (isa_and_nonnull<Constant>(Val: Op1) && Op1->getType()->isIntegerTy())
4507 return 2 + RegisterFileMoveCost;
4508 // Assume movd/movq GPR -> XMM is relatively cheap on all targets.
4509 return 1 + RegisterFileMoveCost;
4510 }
4511 }
4512
4513 // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
4514 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
4515 return 1 + RegisterFileMoveCost;
4516 }
4517
4518 int ISD = TLI->InstructionOpcodeToISD(Opcode);
4519 assert(ISD && "Unexpected vector opcode");
4520 if (ST->useSLMArithCosts())
4521 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
4522 return Entry->Cost + RegisterFileMoveCost;
4523
4524 // Consider cheap cases.
4525 if (IsCheapPInsrPExtrInsertPS())
4526 return 1 + RegisterFileMoveCost;
4527
4528 // For extractions we just need to shuffle the element to index 0, which
4529 // should be very cheap (assume cost = 1). For insertions we need to shuffle
4530 // the elements to its destination. In both cases we must handle the
4531 // subvector move(s).
4532 // If the vector type is already less than 128-bits then don't reduce it.
4533 // TODO: Under what circumstances should we shuffle using the full width?
4534 InstructionCost ShuffleCost = 1;
4535 if (Opcode == Instruction::InsertElement) {
4536 auto *SubTy = cast<VectorType>(Val);
4537 EVT VT = TLI->getValueType(DL, Ty: Val);
4538 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
4539 SubTy = FixedVectorType::get(ElementType: ScalarType, NumElts: SubNumElts);
4540 ShuffleCost = getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, BaseTp: SubTy, Mask: std::nullopt,
4541 CostKind, Index: 0, SubTp: SubTy);
4542 }
4543 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
4544 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
4545 }
4546
4547 return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1) +
4548 RegisterFileMoveCost;
4549}
4550
4551InstructionCost
4552X86TTIImpl::getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
4553 bool Insert, bool Extract,
4554 TTI::TargetCostKind CostKind) {
4555 assert(DemandedElts.getBitWidth() ==
4556 cast<FixedVectorType>(Ty)->getNumElements() &&
4557 "Vector size mismatch");
4558
4559 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
4560 MVT MScalarTy = LT.second.getScalarType();
4561 unsigned LegalVectorBitWidth = LT.second.getSizeInBits();
4562 InstructionCost Cost = 0;
4563
4564 constexpr unsigned LaneBitWidth = 128;
4565 assert((LegalVectorBitWidth < LaneBitWidth ||
4566 (LegalVectorBitWidth % LaneBitWidth) == 0) &&
4567 "Illegal vector");
4568
4569 const int NumLegalVectors = *LT.first.getValue();
4570 assert(NumLegalVectors >= 0 && "Negative cost!");
4571
4572 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
4573 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
4574 if (Insert) {
4575 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4576 (MScalarTy.isInteger() && ST->hasSSE41()) ||
4577 (MScalarTy == MVT::f32 && ST->hasSSE41())) {
4578 // For types we can insert directly, insertion into 128-bit sub vectors is
4579 // cheap, followed by a cheap chain of concatenations.
4580 if (LegalVectorBitWidth <= LaneBitWidth) {
4581 Cost += BaseT::getScalarizationOverhead(InTy: Ty, DemandedElts, Insert,
4582 /*Extract*/ false, CostKind);
4583 } else {
4584 // In each 128-lane, if at least one index is demanded but not all
4585 // indices are demanded and this 128-lane is not the first 128-lane of
4586 // the legalized-vector, then this 128-lane needs a extracti128; If in
4587 // each 128-lane, there is at least one demanded index, this 128-lane
4588 // needs a inserti128.
4589
4590 // The following cases will help you build a better understanding:
4591 // Assume we insert several elements into a v8i32 vector in avx2,
4592 // Case#1: inserting into 1th index needs vpinsrd + inserti128.
4593 // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
4594 // inserti128.
4595 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
4596 assert((LegalVectorBitWidth % LaneBitWidth) == 0 && "Illegal vector");
4597 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4598 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4599 unsigned NumLegalElts =
4600 LT.second.getVectorNumElements() * NumLegalVectors;
4601 assert(NumLegalElts >= DemandedElts.getBitWidth() &&
4602 "Vector has been legalized to smaller element count");
4603 assert((NumLegalElts % NumLanesTotal) == 0 &&
4604 "Unexpected elts per lane");
4605 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
4606
4607 APInt WidenedDemandedElts = DemandedElts.zext(width: NumLegalElts);
4608 auto *LaneTy =
4609 FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumEltsPerLane);
4610
4611 for (unsigned I = 0; I != NumLanesTotal; ++I) {
4612 APInt LaneEltMask = WidenedDemandedElts.extractBits(
4613 numBits: NumEltsPerLane, bitPosition: NumEltsPerLane * I);
4614 if (LaneEltMask.isZero())
4615 continue;
4616 // FIXME: we don't need to extract if all non-demanded elements
4617 // are legalization-inserted padding.
4618 if (!LaneEltMask.isAllOnes())
4619 Cost += getShuffleCost(Kind: TTI::SK_ExtractSubvector, BaseTp: Ty, Mask: std::nullopt,
4620 CostKind, Index: I * NumEltsPerLane, SubTp: LaneTy);
4621 Cost += BaseT::getScalarizationOverhead(InTy: LaneTy, DemandedElts: LaneEltMask, Insert,
4622 /*Extract*/ false, CostKind);
4623 }
4624
4625 APInt AffectedLanes =
4626 APIntOps::ScaleBitMask(A: WidenedDemandedElts, NewBitWidth: NumLanesTotal);
4627 APInt FullyAffectedLegalVectors = APIntOps::ScaleBitMask(
4628 A: AffectedLanes, NewBitWidth: NumLegalVectors, /*MatchAllBits=*/true);
4629 for (int LegalVec = 0; LegalVec != NumLegalVectors; ++LegalVec) {
4630 for (unsigned Lane = 0; Lane != NumLegalLanes; ++Lane) {
4631 unsigned I = NumLegalLanes * LegalVec + Lane;
4632 // No need to insert unaffected lane; or lane 0 of each legal vector
4633 // iff ALL lanes of that vector were affected and will be inserted.
4634 if (!AffectedLanes[I] ||
4635 (Lane == 0 && FullyAffectedLegalVectors[LegalVec]))
4636 continue;
4637 Cost += getShuffleCost(Kind: TTI::SK_InsertSubvector, BaseTp: Ty, Mask: std::nullopt,
4638 CostKind, Index: I * NumEltsPerLane, SubTp: LaneTy);
4639 }
4640 }
4641 }
4642 } else if (LT.second.isVector()) {
4643 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
4644 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
4645 // series of UNPCK followed by CONCAT_VECTORS - all of these can be
4646 // considered cheap.
4647 if (Ty->isIntOrIntVectorTy())
4648 Cost += DemandedElts.popcount();
4649
4650 // Get the smaller of the legalized or original pow2-extended number of
4651 // vector elements, which represents the number of unpacks we'll end up
4652 // performing.
4653 unsigned NumElts = LT.second.getVectorNumElements();
4654 unsigned Pow2Elts =
4655 PowerOf2Ceil(A: cast<FixedVectorType>(Val: Ty)->getNumElements());
4656 Cost += (std::min<unsigned>(a: NumElts, b: Pow2Elts) - 1) * LT.first;
4657 }
4658 }
4659
4660 if (Extract) {
4661 // vXi1 can be efficiently extracted with MOVMSK.
4662 // TODO: AVX512 predicate mask handling.
4663 // NOTE: This doesn't work well for roundtrip scalarization.
4664 if (!Insert && Ty->getScalarSizeInBits() == 1 && !ST->hasAVX512()) {
4665 unsigned NumElts = cast<FixedVectorType>(Val: Ty)->getNumElements();
4666 unsigned MaxElts = ST->hasAVX2() ? 32 : 16;
4667 unsigned MOVMSKCost = (NumElts + MaxElts - 1) / MaxElts;
4668 return MOVMSKCost;
4669 }
4670
4671 if (LT.second.isVector()) {
4672 unsigned NumLegalElts =
4673 LT.second.getVectorNumElements() * NumLegalVectors;
4674 assert(NumLegalElts >= DemandedElts.getBitWidth() &&
4675 "Vector has been legalized to smaller element count");
4676
4677 // If we're extracting elements from a 128-bit subvector lane,
4678 // we only need to extract each lane once, not for every element.
4679 if (LegalVectorBitWidth > LaneBitWidth) {
4680 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4681 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4682 assert((NumLegalElts % NumLanesTotal) == 0 &&
4683 "Unexpected elts per lane");
4684 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
4685
4686 // Add cost for each demanded 128-bit subvector extraction.
4687 // Luckily this is a lot easier than for insertion.
4688 APInt WidenedDemandedElts = DemandedElts.zext(width: NumLegalElts);
4689 auto *LaneTy =
4690 FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumEltsPerLane);
4691
4692 for (unsigned I = 0; I != NumLanesTotal; ++I) {
4693 APInt LaneEltMask = WidenedDemandedElts.extractBits(
4694 numBits: NumEltsPerLane, bitPosition: I * NumEltsPerLane);
4695 if (LaneEltMask.isZero())
4696 continue;
4697 Cost += getShuffleCost(Kind: TTI::SK_ExtractSubvector, BaseTp: Ty, Mask: std::nullopt,
4698 CostKind, Index: I * NumEltsPerLane, SubTp: LaneTy);
4699 Cost += BaseT::getScalarizationOverhead(
4700 InTy: LaneTy, DemandedElts: LaneEltMask, /*Insert*/ false, Extract, CostKind);
4701 }
4702
4703 return Cost;
4704 }
4705 }
4706
4707 // Fallback to default extraction.
4708 Cost += BaseT::getScalarizationOverhead(InTy: Ty, DemandedElts, /*Insert*/ false,
4709 Extract, CostKind);
4710 }
4711
4712 return Cost;
4713}
4714
4715InstructionCost
4716X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
4717 int VF, const APInt &DemandedDstElts,
4718 TTI::TargetCostKind CostKind) {
4719 const unsigned EltTyBits = DL.getTypeSizeInBits(Ty: EltTy);
4720 // We don't differentiate element types here, only element bit width.
4721 EltTy = IntegerType::getIntNTy(C&: EltTy->getContext(), N: EltTyBits);
4722
4723 auto bailout = [&]() {
4724 return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
4725 DemandedDstElts, CostKind);
4726 };
4727
4728 // For now, only deal with AVX512 cases.
4729 if (!ST->hasAVX512())
4730 return bailout();
4731
4732 // Do we have a native shuffle for this element type, or should we promote?
4733 unsigned PromEltTyBits = EltTyBits;
4734 switch (EltTyBits) {
4735 case 32:
4736 case 64:
4737 break; // AVX512F.
4738 case 16:
4739 if (!ST->hasBWI())
4740 PromEltTyBits = 32; // promote to i32, AVX512F.
4741 break; // AVX512BW
4742 case 8:
4743 if (!ST->hasVBMI())
4744 PromEltTyBits = 32; // promote to i32, AVX512F.
4745 break; // AVX512VBMI
4746 case 1:
4747 // There is no support for shuffling i1 elements. We *must* promote.
4748 if (ST->hasBWI()) {
4749 if (ST->hasVBMI())
4750 PromEltTyBits = 8; // promote to i8, AVX512VBMI.
4751 else
4752 PromEltTyBits = 16; // promote to i16, AVX512BW.
4753 break;
4754 }
4755 PromEltTyBits = 32; // promote to i32, AVX512F.
4756 break;
4757 default:
4758 return bailout();
4759 }
4760 auto *PromEltTy = IntegerType::getIntNTy(C&: EltTy->getContext(), N: PromEltTyBits);
4761
4762 auto *SrcVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: VF);
4763 auto *PromSrcVecTy = FixedVectorType::get(ElementType: PromEltTy, NumElts: VF);
4764
4765 int NumDstElements = VF * ReplicationFactor;
4766 auto *PromDstVecTy = FixedVectorType::get(ElementType: PromEltTy, NumElts: NumDstElements);
4767 auto *DstVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: NumDstElements);
4768
4769 // Legalize the types.
4770 MVT LegalSrcVecTy = getTypeLegalizationCost(Ty: SrcVecTy).second;
4771 MVT LegalPromSrcVecTy = getTypeLegalizationCost(Ty: PromSrcVecTy).second;
4772 MVT LegalPromDstVecTy = getTypeLegalizationCost(Ty: PromDstVecTy).second;
4773 MVT LegalDstVecTy = getTypeLegalizationCost(Ty: DstVecTy).second;
4774 // They should have legalized into vector types.
4775 if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
4776 !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
4777 return bailout();
4778
4779 if (PromEltTyBits != EltTyBits) {
4780 // If we have to perform the shuffle with wider elt type than our data type,
4781 // then we will first need to anyext (we don't care about the new bits)
4782 // the source elements, and then truncate Dst elements.
4783 InstructionCost PromotionCost;
4784 PromotionCost += getCastInstrCost(
4785 Opcode: Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
4786 CCH: TargetTransformInfo::CastContextHint::None, CostKind);
4787 PromotionCost +=
4788 getCastInstrCost(Opcode: Instruction::Trunc, /*Dst=*/DstVecTy,
4789 /*Src=*/PromDstVecTy,
4790 CCH: TargetTransformInfo::CastContextHint::None, CostKind);
4791 return PromotionCost + getReplicationShuffleCost(EltTy: PromEltTy,
4792 ReplicationFactor, VF,
4793 DemandedDstElts, CostKind);
4794 }
4795
4796 assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
4797 LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
4798 "We expect that the legalization doesn't affect the element width, "
4799 "doesn't coalesce/split elements.");
4800
4801 unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
4802 unsigned NumDstVectors =
4803 divideCeil(Numerator: DstVecTy->getNumElements(), Denominator: NumEltsPerDstVec);
4804
4805 auto *SingleDstVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: NumEltsPerDstVec);
4806
4807 // Not all the produced Dst elements may be demanded. In our case,
4808 // given that a single Dst vector is formed by a single shuffle,
4809 // if all elements that will form a single Dst vector aren't demanded,
4810 // then we won't need to do that shuffle, so adjust the cost accordingly.
4811 APInt DemandedDstVectors = APIntOps::ScaleBitMask(
4812 A: DemandedDstElts.zext(width: NumDstVectors * NumEltsPerDstVec), NewBitWidth: NumDstVectors);
4813 unsigned NumDstVectorsDemanded = DemandedDstVectors.popcount();
4814
4815 InstructionCost SingleShuffleCost = getShuffleCost(
4816 Kind: TTI::SK_PermuteSingleSrc, BaseTp: SingleDstVecTy, /*Mask=*/std::nullopt, CostKind,
4817 /*Index=*/0, /*SubTp=*/nullptr);
4818 return NumDstVectorsDemanded * SingleShuffleCost;
4819}
4820
4821InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
4822 MaybeAlign Alignment,
4823 unsigned AddressSpace,
4824 TTI::TargetCostKind CostKind,
4825 TTI::OperandValueInfo OpInfo,
4826 const Instruction *I) {
4827 // TODO: Handle other cost kinds.
4828 if (CostKind != TTI::TCK_RecipThroughput) {
4829 if (auto *SI = dyn_cast_or_null<StoreInst>(Val: I)) {
4830 // Store instruction with index and scale costs 2 Uops.
4831 // Check the preceding GEP to identify non-const indices.
4832 if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: SI->getPointerOperand())) {
4833 if (!all_of(Range: GEP->indices(), P: [](Value *V) { return isa<Constant>(Val: V); }))
4834 return TTI::TCC_Basic * 2;
4835 }
4836 }
4837 return TTI::TCC_Basic;
4838 }
4839
4840 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
4841 "Invalid Opcode");
4842 // Type legalization can't handle structs
4843 if (TLI->getValueType(DL, Src, true) == MVT::Other)
4844 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4845 CostKind);
4846
4847 // Legalize the type.
4848 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: Src);
4849
4850 auto *VTy = dyn_cast<FixedVectorType>(Val: Src);
4851
4852 InstructionCost Cost = 0;
4853
4854 // Add a cost for constant load to vector.
4855 if (Opcode == Instruction::Store && OpInfo.isConstant())
4856 Cost += getMemoryOpCost(Opcode: Instruction::Load, Src, Alignment: DL.getABITypeAlign(Ty: Src),
4857 /*AddressSpace=*/0, CostKind);
4858
4859 // Handle the simple case of non-vectors.
4860 // NOTE: this assumes that legalization never creates vector from scalars!
4861 if (!VTy || !LT.second.isVector()) {
4862 // Each load/store unit costs 1.
4863 return (LT.second.isFloatingPoint() ? Cost : 0) + LT.first * 1;
4864 }
4865
4866 bool IsLoad = Opcode == Instruction::Load;
4867
4868 Type *EltTy = VTy->getElementType();
4869
4870 const int EltTyBits = DL.getTypeSizeInBits(Ty: EltTy);
4871
4872 // Source of truth: how many elements were there in the original IR vector?
4873 const unsigned SrcNumElt = VTy->getNumElements();
4874
4875 // How far have we gotten?
4876 int NumEltRemaining = SrcNumElt;
4877 // Note that we intentionally capture by-reference, NumEltRemaining changes.
4878 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
4879
4880 const int MaxLegalOpSizeBytes = divideCeil(Numerator: LT.second.getSizeInBits(), Denominator: 8);
4881
4882 // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
4883 const unsigned XMMBits = 128;
4884 if (XMMBits % EltTyBits != 0)
4885 // Vector size must be a multiple of the element size. I.e. no padding.
4886 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4887 CostKind);
4888 const int NumEltPerXMM = XMMBits / EltTyBits;
4889
4890 auto *XMMVecTy = FixedVectorType::get(ElementType: EltTy, NumElts: NumEltPerXMM);
4891
4892 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
4893 NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
4894 // How many elements would a single op deal with at once?
4895 if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
4896 // Vector size must be a multiple of the element size. I.e. no padding.
4897 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
4898 CostKind);
4899 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
4900
4901 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
4902 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
4903 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
4904 "Unless we haven't halved the op size yet, "
4905 "we have less than two op's sized units of work left.");
4906
4907 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
4908 ? FixedVectorType::get(ElementType: EltTy, NumElts: CurrNumEltPerOp)
4909 : XMMVecTy;
4910
4911 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
4912 "After halving sizes, the vector elt count is no longer a multiple "
4913 "of number of elements per operation?");
4914 auto *CoalescedVecTy =
4915 CurrNumEltPerOp == 1
4916 ? CurrVecTy
4917 : FixedVectorType::get(
4918 ElementType: IntegerType::get(C&: Src->getContext(),
4919 NumBits: EltTyBits * CurrNumEltPerOp),
4920 NumElts: CurrVecTy->getNumElements() / CurrNumEltPerOp);
4921 assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
4922 DL.getTypeSizeInBits(CurrVecTy) &&
4923 "coalesciing elements doesn't change vector width.");
4924
4925 while (NumEltRemaining > 0) {
4926 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
4927
4928 // Can we use this vector size, as per the remaining element count?
4929 // Iff the vector is naturally aligned, we can do a wide load regardless.
4930 if (NumEltRemaining < CurrNumEltPerOp &&
4931 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
4932 CurrOpSizeBytes != 1)
4933 break; // Try smalled vector size.
4934
4935 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
4936
4937 // If we have fully processed the previous reg, we need to replenish it.
4938 if (SubVecEltsLeft == 0) {
4939 SubVecEltsLeft += CurrVecTy->getNumElements();
4940 // And that's free only for the 0'th subvector of a legalized vector.
4941 if (!Is0thSubVec)
4942 Cost += getShuffleCost(Kind: IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
4943 : TTI::ShuffleKind::SK_ExtractSubvector,
4944 BaseTp: VTy, Mask: std::nullopt, CostKind, Index: NumEltDone(),
4945 SubTp: CurrVecTy);
4946 }
4947
4948 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
4949 // for smaller widths (32/16/8) we have to insert/extract them separately.
4950 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
4951 // but let's pretend that it is also true for 16/8 bit wide ops...)
4952 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
4953 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
4954 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
4955 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
4956 APInt DemandedElts =
4957 APInt::getBitsSet(numBits: CoalescedVecTy->getNumElements(),
4958 loBit: CoalescedVecEltIdx, hiBit: CoalescedVecEltIdx + 1);
4959 assert(DemandedElts.popcount() == 1 && "Inserting single value");
4960 Cost += getScalarizationOverhead(Ty: CoalescedVecTy, DemandedElts, Insert: IsLoad,
4961 Extract: !IsLoad, CostKind);
4962 }
4963
4964 // This isn't exactly right. We're using slow unaligned 32-byte accesses
4965 // as a proxy for a double-pumped AVX memory interface such as on
4966 // Sandybridge.
4967 // Sub-32-bit loads/stores will be slower either with PINSR*/PEXTR* or
4968 // will be scalarized.
4969 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
4970 Cost += 2;
4971 else if (CurrOpSizeBytes < 4)
4972 Cost += 2;
4973 else
4974 Cost += 1;
4975
4976 SubVecEltsLeft -= CurrNumEltPerOp;
4977 NumEltRemaining -= CurrNumEltPerOp;
4978 Alignment = commonAlignment(A: Alignment.valueOrOne(), Offset: CurrOpSizeBytes);
4979 }
4980 }
4981
4982 assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
4983
4984 return Cost;
4985}
4986
4987InstructionCost
4988X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
4989 unsigned AddressSpace,
4990 TTI::TargetCostKind CostKind) {
4991 bool IsLoad = (Instruction::Load == Opcode);
4992 bool IsStore = (Instruction::Store == Opcode);
4993
4994 auto *SrcVTy = dyn_cast<FixedVectorType>(Val: SrcTy);
4995 if (!SrcVTy)
4996 // To calculate scalar take the regular cost, without mask
4997 return getMemoryOpCost(Opcode, Src: SrcTy, Alignment, AddressSpace, CostKind);
4998
4999 unsigned NumElem = SrcVTy->getNumElements();
5000 auto *MaskTy =
5001 FixedVectorType::get(ElementType: Type::getInt8Ty(C&: SrcVTy->getContext()), NumElts: NumElem);
5002 if ((IsLoad && !isLegalMaskedLoad(DataType: SrcVTy, Alignment)) ||
5003 (IsStore && !isLegalMaskedStore(DataType: SrcVTy, Alignment))) {
5004 // Scalarization
5005 APInt DemandedElts = APInt::getAllOnes(numBits: NumElem);
5006 InstructionCost MaskSplitCost = getScalarizationOverhead(
5007 Ty: MaskTy, DemandedElts, /*Insert*/ false, /*Extract*/ true, CostKind);
5008 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
5009 Opcode: Instruction::ICmp, ValTy: Type::getInt8Ty(C&: SrcVTy->getContext()), CondTy: nullptr,
5010 VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind);
5011 InstructionCost BranchCost = getCFInstrCost(Opcode: Instruction::Br, CostKind);
5012 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
5013 InstructionCost ValueSplitCost = getScalarizationOverhead(
5014 Ty: SrcVTy, DemandedElts, Insert: IsLoad, Extract: IsStore, CostKind);
5015 InstructionCost MemopCost =
5016 NumElem * BaseT::getMemoryOpCost(Opcode, Src: SrcVTy->getScalarType(),
5017 Alignment, AddressSpace, CostKind);
5018 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
5019 }
5020
5021 // Legalize the type.
5022 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: SrcVTy);
5023 auto VT = TLI->getValueType(DL, Ty: SrcVTy);
5024 InstructionCost Cost = 0;
5025 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
5026 LT.second.getVectorNumElements() == NumElem)
5027 // Promotion requires extend/truncate for data and a shuffle for mask.
5028 Cost += getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, BaseTp: SrcVTy, Mask: std::nullopt,
5029 CostKind, Index: 0, SubTp: nullptr) +
5030 getShuffleCost(Kind: TTI::SK_PermuteTwoSrc, BaseTp: MaskTy, Mask: std::nullopt,
5031 CostKind, Index: 0, SubTp: nullptr);
5032
5033 else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
5034 auto *NewMaskTy = FixedVectorType::get(ElementType: MaskTy->getElementType(),
5035 NumElts: LT.second.getVectorNumElements());
5036 // Expanding requires fill mask with zeroes
5037 Cost += getShuffleCost(Kind: TTI::SK_InsertSubvector, BaseTp: NewMaskTy, Mask: std::nullopt,
5038 CostKind, Index: 0, SubTp: MaskTy);
5039 }
5040
5041 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
5042 if (!ST->hasAVX512())
5043 return Cost + LT.first * (IsLoad ? 2 : 8);
5044
5045 // AVX-512 masked load/store is cheaper
5046 return Cost + LT.first;
5047}
5048
5049InstructionCost
5050X86TTIImpl::getPointersChainCost(ArrayRef<const Value *> Ptrs,
5051 const Value *Base,
5052 const TTI::PointersChainInfo &Info,
5053 Type *AccessTy, TTI::TargetCostKind CostKind) {
5054 if (Info.isSameBase() && Info.isKnownStride()) {
5055 // If all the pointers have known stride all the differences are translated
5056 // into constants. X86 memory addressing allows encoding it into
5057 // displacement. So we just need to take the base GEP cost.
5058 if (const auto *BaseGEP = dyn_cast<GetElementPtrInst>(Val: Base)) {
5059 SmallVector<const Value *> Indices(BaseGEP->indices());
5060 return getGEPCost(PointeeType: BaseGEP->getSourceElementType(),
5061 Ptr: BaseGEP->getPointerOperand(), Operands: Indices, AccessType: nullptr,
5062 CostKind);
5063 }
5064 return TTI::TCC_Free;
5065 }
5066 return BaseT::getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
5067}
5068
5069InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
5070 ScalarEvolution *SE,
5071 const SCEV *Ptr) {
5072 // Address computations in vectorized code with non-consecutive addresses will
5073 // likely result in more instructions compared to scalar code where the
5074 // computation can more often be merged into the index mode. The resulting
5075 // extra micro-ops can significantly decrease throughput.
5076 const unsigned NumVectorInstToHideOverhead = 10;
5077
5078 // Cost modeling of Strided Access Computation is hidden by the indexing
5079 // modes of X86 regardless of the stride value. We dont believe that there
5080 // is a difference between constant strided access in gerenal and constant
5081 // strided value which is less than or equal to 64.
5082 // Even in the case of (loop invariant) stride whose value is not known at
5083 // compile time, the address computation will not incur more than one extra
5084 // ADD instruction.
5085 if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
5086 // TODO: AVX2 is the current cut-off because we don't have correct
5087 // interleaving costs for prior ISA's.
5088 if (!BaseT::isStridedAccess(Ptr))
5089 return NumVectorInstToHideOverhead;
5090 if (!BaseT::getConstantStrideStep(SE, Ptr))
5091 return 1;
5092 }
5093
5094 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
5095}
5096
5097InstructionCost
5098X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
5099 std::optional<FastMathFlags> FMF,
5100 TTI::TargetCostKind CostKind) {
5101 if (TTI::requiresOrderedReduction(FMF))
5102 return BaseT::getArithmeticReductionCost(Opcode, Ty: ValTy, FMF, CostKind);
5103
5104 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
5105 // and make it as the cost.
5106
5107 static const CostTblEntry SLMCostTbl[] = {
5108 { ISD::FADD, MVT::v2f64, 3 },
5109 { ISD::ADD, MVT::v2i64, 5 },
5110 };
5111
5112 static const CostTblEntry SSE2CostTbl[] = {
5113 { ISD::FADD, MVT::v2f64, 2 },
5114 { ISD::FADD, MVT::v2f32, 2 },
5115 { ISD::FADD, MVT::v4f32, 4 },
5116 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
5117 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
5118 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
5119 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
5120 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
5121 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
5122 { ISD::ADD, MVT::v2i8, 2 },
5123 { ISD::ADD, MVT::v4i8, 2 },
5124 { ISD::ADD, MVT::v8i8, 2 },
5125 { ISD::ADD, MVT::v16i8, 3 },
5126 };
5127
5128 static const CostTblEntry AVX1CostTbl[] = {
5129 { ISD::FADD, MVT::v4f64, 3 },
5130 { ISD::FADD, MVT::v4f32, 3 },
5131 { ISD::FADD, MVT::v8f32, 4 },
5132 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
5133 { ISD::ADD, MVT::v4i64, 3 },
5134 { ISD::ADD, MVT::v8i32, 5 },
5135 { ISD::ADD, MVT::v16i16, 5 },
5136 { ISD::ADD, MVT::v32i8, 4 },
5137 };
5138
5139 int ISD = TLI->InstructionOpcodeToISD(Opcode);
5140 assert(ISD && "Invalid opcode");
5141
5142 // Before legalizing the type, give a chance to look up illegal narrow types
5143 // in the table.
5144 // FIXME: Is there a better way to do this?
5145 EVT VT = TLI->getValueType(DL, Ty: ValTy);
5146 if (VT.isSimple()) {
5147 MVT MTy = VT.getSimpleVT();
5148 if (ST->useSLMArithCosts())
5149 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
5150 return Entry->Cost;
5151
5152 if (ST->hasAVX())
5153 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5154 return Entry->Cost;
5155
5156 if (ST->hasSSE2())
5157 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5158 return Entry->Cost;
5159 }
5160
5161 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy);
5162
5163 MVT MTy = LT.second;
5164
5165 auto *ValVTy = cast<FixedVectorType>(Val: ValTy);
5166
5167 // Special case: vXi8 mul reductions are performed as vXi16.
5168 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
5169 auto *WideSclTy = IntegerType::get(C&: ValVTy->getContext(), NumBits: 16);
5170 auto *WideVecTy = FixedVectorType::get(ElementType: WideSclTy, NumElts: ValVTy->getNumElements());
5171 return getCastInstrCost(Opcode: Instruction::ZExt, Dst: WideVecTy, Src: ValTy,
5172 CCH: TargetTransformInfo::CastContextHint::None,
5173 CostKind) +
5174 getArithmeticReductionCost(Opcode, ValTy: WideVecTy, FMF, CostKind);
5175 }
5176
5177 InstructionCost ArithmeticCost = 0;
5178 if (LT.first != 1 && MTy.isVector() &&
5179 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5180 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5181 auto *SingleOpTy = FixedVectorType::get(ElementType: ValVTy->getElementType(),
5182 NumElts: MTy.getVectorNumElements());
5183 ArithmeticCost = getArithmeticInstrCost(Opcode, Ty: SingleOpTy, CostKind);
5184 ArithmeticCost *= LT.first - 1;
5185 }
5186
5187 if (ST->useSLMArithCosts())
5188 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
5189 return ArithmeticCost + Entry->Cost;
5190
5191 if (ST->hasAVX())
5192 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5193 return ArithmeticCost + Entry->Cost;
5194
5195 if (ST->hasSSE2())
5196 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5197 return ArithmeticCost + Entry->Cost;
5198
5199 // FIXME: These assume a naive kshift+binop lowering, which is probably
5200 // conservative in most cases.
5201 static const CostTblEntry AVX512BoolReduction[] = {
5202 { ISD::AND, MVT::v2i1, 3 },
5203 { ISD::AND, MVT::v4i1, 5 },
5204 { ISD::AND, MVT::v8i1, 7 },
5205 { ISD::AND, MVT::v16i1, 9 },
5206 { ISD::AND, MVT::v32i1, 11 },
5207 { ISD::AND, MVT::v64i1, 13 },
5208 { ISD::OR, MVT::v2i1, 3 },
5209 { ISD::OR, MVT::v4i1, 5 },
5210 { ISD::OR, MVT::v8i1, 7 },
5211 { ISD::OR, MVT::v16i1, 9 },
5212 { ISD::OR, MVT::v32i1, 11 },
5213 { ISD::OR, MVT::v64i1, 13 },
5214 };
5215
5216 static const CostTblEntry AVX2BoolReduction[] = {
5217 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
5218 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
5219 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
5220 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
5221 };
5222
5223 static const CostTblEntry AVX1BoolReduction[] = {
5224 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
5225 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
5226 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5227 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5228 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
5229 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
5230 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5231 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5232 };
5233
5234 static const CostTblEntry SSE2BoolReduction[] = {
5235 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
5236 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
5237 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
5238 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
5239 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
5240 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
5241 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
5242 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
5243 };
5244
5245 // Handle bool allof/anyof patterns.
5246 if (ValVTy->getElementType()->isIntegerTy(Bitwidth: 1)) {
5247 InstructionCost ArithmeticCost = 0;
5248 if (LT.first != 1 && MTy.isVector() &&
5249 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5250 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5251 auto *SingleOpTy = FixedVectorType::get(ElementType: ValVTy->getElementType(),
5252 NumElts: MTy.getVectorNumElements());
5253 ArithmeticCost = getArithmeticInstrCost(Opcode, Ty: SingleOpTy, CostKind);
5254 ArithmeticCost *= LT.first - 1;
5255 }
5256
5257 if (ST->hasAVX512())
5258 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
5259 return ArithmeticCost + Entry->Cost;
5260 if (ST->hasAVX2())
5261 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
5262 return ArithmeticCost + Entry->Cost;
5263 if (ST->hasAVX())
5264 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
5265 return ArithmeticCost + Entry->Cost;
5266 if (ST->hasSSE2())
5267 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
5268 return ArithmeticCost + Entry->Cost;
5269
5270 return BaseT::getArithmeticReductionCost(Opcode, Ty: ValVTy, FMF, CostKind);
5271 }
5272
5273 unsigned NumVecElts = ValVTy->getNumElements();
5274 unsigned ScalarSize = ValVTy->getScalarSizeInBits();
5275
5276 // Special case power of 2 reductions where the scalar type isn't changed
5277 // by type legalization.
5278 if (!isPowerOf2_32(Value: NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
5279 return BaseT::getArithmeticReductionCost(Opcode, Ty: ValVTy, FMF, CostKind);
5280
5281 InstructionCost ReductionCost = 0;
5282
5283 auto *Ty = ValVTy;
5284 if (LT.first != 1 && MTy.isVector() &&
5285 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5286 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5287 Ty = FixedVectorType::get(ElementType: ValVTy->getElementType(),
5288 NumElts: MTy.getVectorNumElements());
5289 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
5290 ReductionCost *= LT.first - 1;
5291 NumVecElts = MTy.getVectorNumElements();
5292 }
5293
5294 // Now handle reduction with the legal type, taking into account size changes
5295 // at each level.
5296 while (NumVecElts > 1) {
5297 // Determine the size of the remaining vector we need to reduce.
5298 unsigned Size = NumVecElts * ScalarSize;
5299 NumVecElts /= 2;
5300 // If we're reducing from 256/512 bits, use an extract_subvector.
5301 if (Size > 128) {
5302 auto *SubTy = FixedVectorType::get(ElementType: ValVTy->getElementType(), NumElts: NumVecElts);
5303 ReductionCost +=
5304 getShuffleCost(Kind: TTI::SK_ExtractSubvector, BaseTp: Ty, Mask: std::nullopt, CostKind,
5305 Index: NumVecElts, SubTp: SubTy);
5306 Ty = SubTy;
5307 } else if (Size == 128) {
5308 // Reducing from 128 bits is a permute of v2f64/v2i64.
5309 FixedVectorType *ShufTy;
5310 if (ValVTy->isFloatingPointTy())
5311 ShufTy =
5312 FixedVectorType::get(ElementType: Type::getDoubleTy(C&: ValVTy->getContext()), NumElts: 2);
5313 else
5314 ShufTy =
5315 FixedVectorType::get(ElementType: Type::getInt64Ty(C&: ValVTy->getContext()), NumElts: 2);
5316 ReductionCost += getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, BaseTp: ShufTy,
5317 Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
5318 } else if (Size == 64) {
5319 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5320 FixedVectorType *ShufTy;
5321 if (ValVTy->isFloatingPointTy())
5322 ShufTy =
5323 FixedVectorType::get(ElementType: Type::getFloatTy(C&: ValVTy->getContext()), NumElts: 4);
5324 else
5325 ShufTy =
5326 FixedVectorType::get(ElementType: Type::getInt32Ty(C&: ValVTy->getContext()), NumElts: 4);
5327 ReductionCost += getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, BaseTp: ShufTy,
5328 Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
5329 } else {
5330 // Reducing from smaller size is a shift by immediate.
5331 auto *ShiftTy = FixedVectorType::get(
5332 ElementType: Type::getIntNTy(C&: ValVTy->getContext(), N: Size), NumElts: 128 / Size);
5333 ReductionCost += getArithmeticInstrCost(
5334 Opcode: Instruction::LShr, Ty: ShiftTy, CostKind,
5335 Op1Info: {.Kind: TargetTransformInfo::OK_AnyValue, .Properties: TargetTransformInfo::OP_None},
5336 Op2Info: {.Kind: TargetTransformInfo::OK_UniformConstantValue, .Properties: TargetTransformInfo::OP_None});
5337 }
5338
5339 // Add the arithmetic op for this level.
5340 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
5341 }
5342
5343 // Add the final extract element to the cost.
5344 return ReductionCost + getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: Ty,
5345 CostKind, Index: 0, Op0: nullptr, Op1: nullptr);
5346}
5347
5348InstructionCost X86TTIImpl::getMinMaxCost(Intrinsic::ID IID, Type *Ty,
5349 TTI::TargetCostKind CostKind,
5350 FastMathFlags FMF) {
5351 IntrinsicCostAttributes ICA(IID, Ty, {Ty, Ty}, FMF);
5352 return getIntrinsicInstrCost(ICA, CostKind);
5353}
5354
5355InstructionCost
5356X86TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *ValTy,
5357 FastMathFlags FMF,
5358 TTI::TargetCostKind CostKind) {
5359 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty: ValTy);
5360
5361 MVT MTy = LT.second;
5362
5363 int ISD;
5364 if (ValTy->isIntOrIntVectorTy()) {
5365 ISD = (IID == Intrinsic::umin || IID == Intrinsic::umax) ? ISD::UMIN
5366 : ISD::SMIN;
5367 } else {
5368 assert(ValTy->isFPOrFPVectorTy() &&
5369 "Expected float point or integer vector type.");
5370 ISD = (IID == Intrinsic::minnum || IID == Intrinsic::maxnum)
5371 ? ISD::FMINNUM
5372 : ISD::FMINIMUM;
5373 }
5374
5375 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
5376 // and make it as the cost.
5377
5378 static const CostTblEntry SSE2CostTbl[] = {
5379 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
5380 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
5381 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
5382 };
5383
5384 static const CostTblEntry SSE41CostTbl[] = {
5385 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
5386 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
5387 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
5388 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
5389 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
5390 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
5391 {ISD::SMIN, MVT::v2i8, 3}, // pminsb
5392 {ISD::SMIN, MVT::v4i8, 5}, // pminsb
5393 {ISD::SMIN, MVT::v8i8, 7}, // pminsb
5394 {ISD::SMIN, MVT::v16i8, 6},
5395 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2
5396 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2
5397 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2
5398 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
5399 };
5400
5401 static const CostTblEntry AVX1CostTbl[] = {
5402 {ISD::SMIN, MVT::v16i16, 6},
5403 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
5404 {ISD::SMIN, MVT::v32i8, 8},
5405 {ISD::UMIN, MVT::v32i8, 8},
5406 };
5407
5408 static const CostTblEntry AVX512BWCostTbl[] = {
5409 {ISD::SMIN, MVT::v32i16, 8},
5410 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
5411 {ISD::SMIN, MVT::v64i8, 10},
5412 {ISD::UMIN, MVT::v64i8, 10},
5413 };
5414
5415 // Before legalizing the type, give a chance to look up illegal narrow types
5416 // in the table.
5417 // FIXME: Is there a better way to do this?
5418 EVT VT = TLI->getValueType(DL, Ty: ValTy);
5419 if (VT.isSimple()) {
5420 MVT MTy = VT.getSimpleVT();
5421 if (ST->hasBWI())
5422 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
5423 return Entry->Cost;
5424
5425 if (ST->hasAVX())
5426 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5427 return Entry->Cost;
5428
5429 if (ST->hasSSE41())
5430 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
5431 return Entry->Cost;
5432
5433 if (ST->hasSSE2())
5434 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5435 return Entry->Cost;
5436 }
5437
5438 auto *ValVTy = cast<FixedVectorType>(Val: ValTy);
5439 unsigned NumVecElts = ValVTy->getNumElements();
5440
5441 auto *Ty = ValVTy;
5442 InstructionCost MinMaxCost = 0;
5443 if (LT.first != 1 && MTy.isVector() &&
5444 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5445 // Type needs to be split. We need LT.first - 1 operations ops.
5446 Ty = FixedVectorType::get(ElementType: ValVTy->getElementType(),
5447 NumElts: MTy.getVectorNumElements());
5448 MinMaxCost = getMinMaxCost(IID, Ty, CostKind, FMF);
5449 MinMaxCost *= LT.first - 1;
5450 NumVecElts = MTy.getVectorNumElements();
5451 }
5452
5453 if (ST->hasBWI())
5454 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
5455 return MinMaxCost + Entry->Cost;
5456
5457 if (ST->hasAVX())
5458 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5459 return MinMaxCost + Entry->Cost;
5460
5461 if (ST->hasSSE41())
5462 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
5463 return MinMaxCost + Entry->Cost;
5464
5465 if (ST->hasSSE2())
5466 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5467 return MinMaxCost + Entry->Cost;
5468
5469 unsigned ScalarSize = ValTy->getScalarSizeInBits();
5470
5471 // Special case power of 2 reductions where the scalar type isn't changed
5472 // by type legalization.
5473 if (!isPowerOf2_32(Value: ValVTy->getNumElements()) ||
5474 ScalarSize != MTy.getScalarSizeInBits())
5475 return BaseT::getMinMaxReductionCost(IID, Ty: ValTy, FMF, CostKind);
5476
5477 // Now handle reduction with the legal type, taking into account size changes
5478 // at each level.
5479 while (NumVecElts > 1) {
5480 // Determine the size of the remaining vector we need to reduce.
5481 unsigned Size = NumVecElts * ScalarSize;
5482 NumVecElts /= 2;
5483 // If we're reducing from 256/512 bits, use an extract_subvector.
5484 if (Size > 128) {
5485 auto *SubTy = FixedVectorType::get(ElementType: ValVTy->getElementType(), NumElts: NumVecElts);
5486 MinMaxCost += getShuffleCost(Kind: TTI::SK_ExtractSubvector, BaseTp: Ty, Mask: std::nullopt,
5487 CostKind, Index: NumVecElts, SubTp: SubTy);
5488 Ty = SubTy;
5489 } else if (Size == 128) {
5490 // Reducing from 128 bits is a permute of v2f64/v2i64.
5491 VectorType *ShufTy;
5492 if (ValTy->isFloatingPointTy())
5493 ShufTy =
5494 FixedVectorType::get(ElementType: Type::getDoubleTy(C&: ValTy->getContext()), NumElts: 2);
5495 else
5496 ShufTy = FixedVectorType::get(ElementType: Type::getInt64Ty(C&: ValTy->getContext()), NumElts: 2);
5497 MinMaxCost += getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, BaseTp: ShufTy,
5498 Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
5499 } else if (Size == 64) {
5500 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5501 FixedVectorType *ShufTy;
5502 if (ValTy->isFloatingPointTy())
5503 ShufTy = FixedVectorType::get(ElementType: Type::getFloatTy(C&: ValTy->getContext()), NumElts: 4);
5504 else
5505 ShufTy = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: ValTy->getContext()), NumElts: 4);
5506 MinMaxCost += getShuffleCost(Kind: TTI::SK_PermuteSingleSrc, BaseTp: ShufTy,
5507 Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
5508 } else {
5509 // Reducing from smaller size is a shift by immediate.
5510 auto *ShiftTy = FixedVectorType::get(
5511 ElementType: Type::getIntNTy(C&: ValTy->getContext(), N: Size), NumElts: 128 / Size);
5512 MinMaxCost += getArithmeticInstrCost(
5513 Opcode: Instruction::LShr, Ty: ShiftTy, CostKind: TTI::TCK_RecipThroughput,
5514 Op1Info: {.Kind: TargetTransformInfo::OK_AnyValue, .Properties: TargetTransformInfo::OP_None},
5515 Op2Info: {.Kind: TargetTransformInfo::OK_UniformConstantValue, .Properties: TargetTransformInfo::OP_None});
5516 }
5517
5518 // Add the arithmetic op for this level.
5519 MinMaxCost += getMinMaxCost(IID, Ty, CostKind, FMF);
5520 }
5521
5522 // Add the final extract element to the cost.
5523 return MinMaxCost + getVectorInstrCost(Opcode: Instruction::ExtractElement, Val: Ty,
5524 CostKind, Index: 0, Op0: nullptr, Op1: nullptr);
5525}
5526
5527/// Calculate the cost of materializing a 64-bit value. This helper
5528/// method might only calculate a fraction of a larger immediate. Therefore it
5529/// is valid to return a cost of ZERO.
5530InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
5531 if (Val == 0)
5532 return TTI::TCC_Free;
5533
5534 if (isInt<32>(x: Val))
5535 return TTI::TCC_Basic;
5536
5537 return 2 * TTI::TCC_Basic;
5538}
5539
5540InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
5541 TTI::TargetCostKind CostKind) {
5542 assert(Ty->isIntegerTy());
5543
5544 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5545 if (BitSize == 0)
5546 return ~0U;
5547
5548 // Never hoist constants larger than 128bit, because this might lead to
5549 // incorrect code generation or assertions in codegen.
5550 // Fixme: Create a cost model for types larger than i128 once the codegen
5551 // issues have been fixed.
5552 if (BitSize > 128)
5553 return TTI::TCC_Free;
5554
5555 if (Imm == 0)
5556 return TTI::TCC_Free;
5557
5558 // Sign-extend all constants to a multiple of 64-bit.
5559 APInt ImmVal = Imm;
5560 if (BitSize % 64 != 0)
5561 ImmVal = Imm.sext(width: alignTo(Value: BitSize, Align: 64));
5562
5563 // Split the constant into 64-bit chunks and calculate the cost for each
5564 // chunk.
5565 InstructionCost Cost = 0;
5566 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
5567 APInt Tmp = ImmVal.ashr(ShiftAmt: ShiftVal).sextOrTrunc(width: 64);
5568 int64_t Val = Tmp.getSExtValue();
5569 Cost += getIntImmCost(Val);
5570 }
5571 // We need at least one instruction to materialize the constant.
5572 return std::max<InstructionCost>(a: 1, b: Cost);
5573}
5574
5575InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
5576 const APInt &Imm, Type *Ty,
5577 TTI::TargetCostKind CostKind,
5578 Instruction *Inst) {
5579 assert(Ty->isIntegerTy());
5580
5581 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5582 // There is no cost model for constants with a bit size of 0. Return TCC_Free
5583 // here, so that constant hoisting will ignore this constant.
5584 if (BitSize == 0)
5585 return TTI::TCC_Free;
5586
5587 unsigned ImmIdx = ~0U;
5588 switch (Opcode) {
5589 default:
5590 return TTI::TCC_Free;
5591 case Instruction::GetElementPtr:
5592 // Always hoist the base address of a GetElementPtr. This prevents the
5593 // creation of new constants for every base constant that gets constant
5594 // folded with the offset.
5595 if (Idx == 0)
5596 return 2 * TTI::TCC_Basic;
5597 return TTI::TCC_Free;
5598 case Instruction::Store:
5599 ImmIdx = 0;
5600 break;
5601 case Instruction::ICmp:
5602 // This is an imperfect hack to prevent constant hoisting of
5603 // compares that might be trying to check if a 64-bit value fits in
5604 // 32-bits. The backend can optimize these cases using a right shift by 32.
5605 // Ideally we would check the compare predicate here. There also other
5606 // similar immediates the backend can use shifts for.
5607 if (Idx == 1 && Imm.getBitWidth() == 64) {
5608 uint64_t ImmVal = Imm.getZExtValue();
5609 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
5610 return TTI::TCC_Free;
5611 }
5612 ImmIdx = 1;
5613 break;
5614 case Instruction::And:
5615 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
5616 // by using a 32-bit operation with implicit zero extension. Detect such
5617 // immediates here as the normal path expects bit 31 to be sign extended.
5618 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.isIntN(N: 32))
5619 return TTI::TCC_Free;
5620 ImmIdx = 1;
5621 break;
5622 case Instruction::Add:
5623 case Instruction::Sub:
5624 // For add/sub, we can use the opposite instruction for INT32_MIN.
5625 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
5626 return TTI::TCC_Free;
5627 ImmIdx = 1;
5628 break;
5629 case Instruction::UDiv:
5630 case Instruction::SDiv:
5631 case Instruction::URem:
5632 case Instruction::SRem:
5633 // Division by constant is typically expanded later into a different
5634 // instruction sequence. This completely changes the constants.
5635 // Report them as "free" to stop ConstantHoist from marking them as opaque.
5636 return TTI::TCC_Free;
5637 case Instruction::Mul:
5638 case Instruction::Or:
5639 case Instruction::Xor:
5640 ImmIdx = 1;
5641 break;
5642 // Always return TCC_Free for the shift value of a shift instruction.
5643 case Instruction::Shl:
5644 case Instruction::LShr:
5645 case Instruction::AShr:
5646 if (Idx == 1)
5647 return TTI::TCC_Free;
5648 break;
5649 case Instruction::Trunc:
5650 case Instruction::ZExt:
5651 case Instruction::SExt:
5652 case Instruction::IntToPtr:
5653 case Instruction::PtrToInt:
5654 case Instruction::BitCast:
5655 case Instruction::PHI:
5656 case Instruction::Call:
5657 case Instruction::Select:
5658 case Instruction::Ret:
5659 case Instruction::Load:
5660 break;
5661 }
5662
5663 if (Idx == ImmIdx) {
5664 uint64_t NumConstants = divideCeil(Numerator: BitSize, Denominator: 64);
5665 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5666 return (Cost <= NumConstants * TTI::TCC_Basic)
5667 ? static_cast<int>(TTI::TCC_Free)
5668 : Cost;
5669 }
5670
5671 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5672}
5673
5674InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
5675 const APInt &Imm, Type *Ty,
5676 TTI::TargetCostKind CostKind) {
5677 assert(Ty->isIntegerTy());
5678
5679 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5680 // There is no cost model for constants with a bit size of 0. Return TCC_Free
5681 // here, so that constant hoisting will ignore this constant.
5682 if (BitSize == 0)
5683 return TTI::TCC_Free;
5684
5685 switch (IID) {
5686 default:
5687 return TTI::TCC_Free;
5688 case Intrinsic::sadd_with_overflow:
5689 case Intrinsic::uadd_with_overflow:
5690 case Intrinsic::ssub_with_overflow:
5691 case Intrinsic::usub_with_overflow:
5692 case Intrinsic::smul_with_overflow:
5693 case Intrinsic::umul_with_overflow:
5694 if ((Idx == 1) && Imm.getBitWidth() <= 64 && Imm.isSignedIntN(N: 32))
5695 return TTI::TCC_Free;
5696 break;
5697 case Intrinsic::experimental_stackmap:
5698 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(N: 64)))
5699 return TTI::TCC_Free;
5700 break;
5701 case Intrinsic::experimental_patchpoint_void:
5702 case Intrinsic::experimental_patchpoint:
5703 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(N: 64)))
5704 return TTI::TCC_Free;
5705 break;
5706 }
5707 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5708}
5709
5710InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
5711 TTI::TargetCostKind CostKind,
5712 const Instruction *I) {
5713 if (CostKind != TTI::TCK_RecipThroughput)
5714 return Opcode == Instruction::PHI ? 0 : 1;
5715 // Branches are assumed to be predicted.
5716 return 0;
5717}
5718
5719int X86TTIImpl::getGatherOverhead() const {
5720 // Some CPUs have more overhead for gather. The specified overhead is relative
5721 // to the Load operation. "2" is the number provided by Intel architects. This
5722 // parameter is used for cost estimation of Gather Op and comparison with
5723 // other alternatives.
5724 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
5725 // enable gather with a -march.
5726 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
5727 return 2;
5728
5729 return 1024;
5730}
5731
5732int X86TTIImpl::getScatterOverhead() const {
5733 if (ST->hasAVX512())
5734 return 2;
5735
5736 return 1024;
5737}
5738
5739// Return an average cost of Gather / Scatter instruction, maybe improved later.
5740// FIXME: Add TargetCostKind support.
5741InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode,
5742 TTI::TargetCostKind CostKind,
5743 Type *SrcVTy, const Value *Ptr,
5744 Align Alignment,
5745 unsigned AddressSpace) {
5746
5747 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
5748 unsigned VF = cast<FixedVectorType>(Val: SrcVTy)->getNumElements();
5749
5750 // Try to reduce index size from 64 bit (default for GEP)
5751 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
5752 // operation will use 16 x 64 indices which do not fit in a zmm and needs
5753 // to split. Also check that the base pointer is the same for all lanes,
5754 // and that there's at most one variable index.
5755 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
5756 unsigned IndexSize = DL.getPointerSizeInBits();
5757 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Ptr);
5758 if (IndexSize < 64 || !GEP)
5759 return IndexSize;
5760
5761 unsigned NumOfVarIndices = 0;
5762 const Value *Ptrs = GEP->getPointerOperand();
5763 if (Ptrs->getType()->isVectorTy() && !getSplatValue(V: Ptrs))
5764 return IndexSize;
5765 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
5766 if (isa<Constant>(Val: GEP->getOperand(i_nocapture: I)))
5767 continue;
5768 Type *IndxTy = GEP->getOperand(i_nocapture: I)->getType();
5769 if (auto *IndexVTy = dyn_cast<VectorType>(Val: IndxTy))
5770 IndxTy = IndexVTy->getElementType();
5771 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
5772 !isa<SExtInst>(Val: GEP->getOperand(i_nocapture: I))) ||
5773 ++NumOfVarIndices > 1)
5774 return IndexSize; // 64
5775 }
5776 return (unsigned)32;
5777 };
5778
5779 // Trying to reduce IndexSize to 32 bits for vector 16.
5780 // By default the IndexSize is equal to pointer size.
5781 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
5782 ? getIndexSizeInBits(Ptr, DL)
5783 : DL.getPointerSizeInBits();
5784
5785 auto *IndexVTy = FixedVectorType::get(
5786 ElementType: IntegerType::get(C&: SrcVTy->getContext(), NumBits: IndexSize), NumElts: VF);
5787 std::pair<InstructionCost, MVT> IdxsLT = getTypeLegalizationCost(Ty: IndexVTy);
5788 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Ty: SrcVTy);
5789 InstructionCost::CostType SplitFactor =
5790 *std::max(a: IdxsLT.first, b: SrcLT.first).getValue();
5791 if (SplitFactor > 1) {
5792 // Handle splitting of vector of pointers
5793 auto *SplitSrcTy =
5794 FixedVectorType::get(ElementType: SrcVTy->getScalarType(), NumElts: VF / SplitFactor);
5795 return SplitFactor * getGSVectorCost(Opcode, CostKind, SrcVTy: SplitSrcTy, Ptr,
5796 Alignment, AddressSpace);
5797 }
5798
5799 // The gather / scatter cost is given by Intel architects. It is a rough
5800 // number since we are looking at one instruction in a time.
5801 const int GSOverhead = (Opcode == Instruction::Load)
5802 ? getGatherOverhead()
5803 : getScatterOverhead();
5804 return GSOverhead + VF * getMemoryOpCost(Opcode, Src: SrcVTy->getScalarType(),
5805 Alignment: MaybeAlign(Alignment), AddressSpace,
5806 CostKind: TTI::TCK_RecipThroughput);
5807}
5808
5809/// Return the cost of full scalarization of gather / scatter operation.
5810///
5811/// Opcode - Load or Store instruction.
5812/// SrcVTy - The type of the data vector that should be gathered or scattered.
5813/// VariableMask - The mask is non-constant at compile time.
5814/// Alignment - Alignment for one element.
5815/// AddressSpace - pointer[s] address space.
5816/// TODO: Remove this and use getCommonMaskedMemoryOpCost directly.
5817InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode,
5818 TTI::TargetCostKind CostKind,
5819 Type *SrcVTy, bool VariableMask,
5820 Align Alignment,
5821 unsigned AddressSpace) {
5822 Type *ScalarTy = SrcVTy->getScalarType();
5823 unsigned VF = cast<FixedVectorType>(Val: SrcVTy)->getNumElements();
5824 APInt DemandedElts = APInt::getAllOnes(numBits: VF);
5825
5826 InstructionCost MaskUnpackCost = 0;
5827 if (VariableMask) {
5828 auto *MaskTy =
5829 FixedVectorType::get(ElementType: Type::getInt1Ty(C&: SrcVTy->getContext()), NumElts: VF);
5830 MaskUnpackCost = getScalarizationOverhead(
5831 Ty: MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true, CostKind);
5832 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
5833 Opcode: Instruction::ICmp, ValTy: Type::getInt1Ty(C&: SrcVTy->getContext()), CondTy: nullptr,
5834 VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind);
5835 InstructionCost BranchCost = getCFInstrCost(Opcode: Instruction::Br, CostKind);
5836 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
5837 }
5838
5839 InstructionCost AddressUnpackCost = getScalarizationOverhead(
5840 Ty: FixedVectorType::get(ElementType: PointerType::getUnqual(C&: ScalarTy->getContext()), NumElts: VF),
5841 DemandedElts, /*Insert=*/false, /*Extract=*/true, CostKind);
5842
5843 // The cost of the scalar loads/stores.
5844 InstructionCost MemoryOpCost =
5845 VF * getMemoryOpCost(Opcode, Src: ScalarTy, Alignment: MaybeAlign(Alignment),
5846 AddressSpace, CostKind);
5847
5848 // The cost of forming the vector from loaded scalars/
5849 // scalarizing the vector to perform scalar stores.
5850 InstructionCost InsertExtractCost = getScalarizationOverhead(
5851 Ty: cast<FixedVectorType>(Val: SrcVTy), DemandedElts,
5852 /*Insert=*/Opcode == Instruction::Load,
5853 /*Extract=*/Opcode == Instruction::Store, CostKind);
5854
5855 return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
5856}
5857
5858/// Calculate the cost of Gather / Scatter operation
5859InstructionCost X86TTIImpl::getGatherScatterOpCost(
5860 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
5861 Align Alignment, TTI::TargetCostKind CostKind,
5862 const Instruction *I = nullptr) {
5863 if (CostKind != TTI::TCK_RecipThroughput) {
5864 if ((Opcode == Instruction::Load &&
5865 isLegalMaskedGather(DataType: SrcVTy, Alignment: Align(Alignment)) &&
5866 !forceScalarizeMaskedGather(VTy: cast<VectorType>(Val: SrcVTy),
5867 Alignment: Align(Alignment))) ||
5868 (Opcode == Instruction::Store &&
5869 isLegalMaskedScatter(DataType: SrcVTy, Alignment: Align(Alignment)) &&
5870 !forceScalarizeMaskedScatter(VTy: cast<VectorType>(Val: SrcVTy),
5871 Alignment: Align(Alignment))))
5872 return 1;
5873 return BaseT::getGatherScatterOpCost(Opcode, DataTy: SrcVTy, Ptr, VariableMask,
5874 Alignment, CostKind, I);
5875 }
5876
5877 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
5878 PointerType *PtrTy = dyn_cast<PointerType>(Val: Ptr->getType());
5879 if (!PtrTy && Ptr->getType()->isVectorTy())
5880 PtrTy = dyn_cast<PointerType>(
5881 Val: cast<VectorType>(Val: Ptr->getType())->getElementType());
5882 assert(PtrTy && "Unexpected type for Ptr argument");
5883 unsigned AddressSpace = PtrTy->getAddressSpace();
5884
5885 if ((Opcode == Instruction::Load &&
5886 (!isLegalMaskedGather(DataType: SrcVTy, Alignment: Align(Alignment)) ||
5887 forceScalarizeMaskedGather(VTy: cast<VectorType>(Val: SrcVTy),
5888 Alignment: Align(Alignment)))) ||
5889 (Opcode == Instruction::Store &&
5890 (!isLegalMaskedScatter(DataType: SrcVTy, Alignment: Align(Alignment)) ||
5891 forceScalarizeMaskedScatter(VTy: cast<VectorType>(Val: SrcVTy),
5892 Alignment: Align(Alignment)))))
5893 return getGSScalarCost(Opcode, CostKind, SrcVTy, VariableMask, Alignment,
5894 AddressSpace);
5895
5896 return getGSVectorCost(Opcode, CostKind, SrcVTy, Ptr, Alignment,
5897 AddressSpace);
5898}
5899
5900bool X86TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
5901 const TargetTransformInfo::LSRCost &C2) {
5902 // X86 specific here are "instruction number 1st priority".
5903 return std::tie(args: C1.Insns, args: C1.NumRegs, args: C1.AddRecCost,
5904 args: C1.NumIVMuls, args: C1.NumBaseAdds,
5905 args: C1.ScaleCost, args: C1.ImmCost, args: C1.SetupCost) <
5906 std::tie(args: C2.Insns, args: C2.NumRegs, args: C2.AddRecCost,
5907 args: C2.NumIVMuls, args: C2.NumBaseAdds,
5908 args: C2.ScaleCost, args: C2.ImmCost, args: C2.SetupCost);
5909}
5910
5911bool X86TTIImpl::canMacroFuseCmp() {
5912 return ST->hasMacroFusion() || ST->hasBranchFusion();
5913}
5914
5915bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
5916 if (!ST->hasAVX())
5917 return false;
5918
5919 // The backend can't handle a single element vector.
5920 if (isa<VectorType>(Val: DataTy) &&
5921 cast<FixedVectorType>(Val: DataTy)->getNumElements() == 1)
5922 return false;
5923 Type *ScalarTy = DataTy->getScalarType();
5924
5925 if (ScalarTy->isPointerTy())
5926 return true;
5927
5928 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
5929 return true;
5930
5931 if (ScalarTy->isHalfTy() && ST->hasBWI())
5932 return true;
5933
5934 if (ScalarTy->isBFloatTy() && ST->hasBF16())
5935 return true;
5936
5937 if (!ScalarTy->isIntegerTy())
5938 return false;
5939
5940 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
5941 return IntWidth == 32 || IntWidth == 64 ||
5942 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
5943}
5944
5945bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
5946 return isLegalMaskedLoad(DataTy: DataType, Alignment);
5947}
5948
5949bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
5950 unsigned DataSize = DL.getTypeStoreSize(Ty: DataType);
5951 // The only supported nontemporal loads are for aligned vectors of 16 or 32
5952 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
5953 // (the equivalent stores only require AVX).
5954 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
5955 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
5956
5957 return false;
5958}
5959
5960bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
5961 unsigned DataSize = DL.getTypeStoreSize(Ty: DataType);
5962
5963 // SSE4A supports nontemporal stores of float and double at arbitrary
5964 // alignment.
5965 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
5966 return true;
5967
5968 // Besides the SSE4A subtarget exception above, only aligned stores are
5969 // available nontemporaly on any other subtarget. And only stores with a size
5970 // of 4..32 bytes (powers of 2, only) are permitted.
5971 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
5972 !isPowerOf2_32(Value: DataSize))
5973 return false;
5974
5975 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
5976 // loads require AVX2).
5977 if (DataSize == 32)
5978 return ST->hasAVX();
5979 if (DataSize == 16)
5980 return ST->hasSSE1();
5981 return true;
5982}
5983
5984bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
5985 ElementCount NumElements) const {
5986 // movddup
5987 return ST->hasSSE3() && !NumElements.isScalable() &&
5988 NumElements.getFixedValue() == 2 &&
5989 ElementTy == Type::getDoubleTy(C&: ElementTy->getContext());
5990}
5991
5992bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy, Align Alignment) {
5993 if (!isa<VectorType>(Val: DataTy))
5994 return false;
5995
5996 if (!ST->hasAVX512())
5997 return false;
5998
5999 // The backend can't handle a single element vector.
6000 if (cast<FixedVectorType>(Val: DataTy)->getNumElements() == 1)
6001 return false;
6002
6003 Type *ScalarTy = cast<VectorType>(Val: DataTy)->getElementType();
6004
6005 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
6006 return true;
6007
6008 if (!ScalarTy->isIntegerTy())
6009 return false;
6010
6011 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
6012 return IntWidth == 32 || IntWidth == 64 ||
6013 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
6014}
6015
6016bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
6017 return isLegalMaskedExpandLoad(DataTy, Alignment);
6018}
6019
6020bool X86TTIImpl::supportsGather() const {
6021 // Some CPUs have better gather performance than others.
6022 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
6023 // enable gather with a -march.
6024 return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
6025}
6026
6027bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
6028 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
6029 // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
6030 // it to 8 elements, but zeroing upper bits of the mask vector will add more
6031 // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
6032 // Check, maybe the gather/scatter instruction is better in the VariableMask
6033 // case.
6034 unsigned NumElts = cast<FixedVectorType>(Val: VTy)->getNumElements();
6035 return NumElts == 1 ||
6036 (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
6037}
6038
6039bool X86TTIImpl::isLegalMaskedGatherScatter(Type *DataTy, Align Alignment) {
6040 Type *ScalarTy = DataTy->getScalarType();
6041 if (ScalarTy->isPointerTy())
6042 return true;
6043
6044 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
6045 return true;
6046
6047 if (!ScalarTy->isIntegerTy())
6048 return false;
6049
6050 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
6051 return IntWidth == 32 || IntWidth == 64;
6052}
6053
6054bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
6055 if (!supportsGather() || !ST->preferGather())
6056 return false;
6057 return isLegalMaskedGatherScatter(DataTy, Alignment);
6058}
6059
6060bool X86TTIImpl::isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
6061 unsigned Opcode1,
6062 const SmallBitVector &OpcodeMask) const {
6063 // ADDSUBPS 4xf32 SSE3
6064 // VADDSUBPS 4xf32 AVX
6065 // VADDSUBPS 8xf32 AVX2
6066 // ADDSUBPD 2xf64 SSE3
6067 // VADDSUBPD 2xf64 AVX
6068 // VADDSUBPD 4xf64 AVX2
6069
6070 unsigned NumElements = cast<FixedVectorType>(Val: VecTy)->getNumElements();
6071 assert(OpcodeMask.size() == NumElements && "Mask and VecTy are incompatible");
6072 if (!isPowerOf2_32(Value: NumElements))
6073 return false;
6074 // Check the opcode pattern. We apply the mask on the opcode arguments and
6075 // then check if it is what we expect.
6076 for (int Lane : seq<int>(Begin: 0, End: NumElements)) {
6077 unsigned Opc = OpcodeMask.test(Idx: Lane) ? Opcode1 : Opcode0;
6078 // We expect FSub for even lanes and FAdd for odd lanes.
6079 if (Lane % 2 == 0 && Opc != Instruction::FSub)
6080 return false;
6081 if (Lane % 2 == 1 && Opc != Instruction::FAdd)
6082 return false;
6083 }
6084 // Now check that the pattern is supported by the target ISA.
6085 Type *ElemTy = cast<VectorType>(Val: VecTy)->getElementType();
6086 if (ElemTy->isFloatTy())
6087 return ST->hasSSE3() && NumElements % 4 == 0;
6088 if (ElemTy->isDoubleTy())
6089 return ST->hasSSE3() && NumElements % 2 == 0;
6090 return false;
6091}
6092
6093bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
6094 // AVX2 doesn't support scatter
6095 if (!ST->hasAVX512() || !ST->preferScatter())
6096 return false;
6097 return isLegalMaskedGatherScatter(DataTy: DataType, Alignment);
6098}
6099
6100bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
6101 EVT VT = TLI->getValueType(DL, Ty: DataType);
6102 return TLI->isOperationLegal(Op: IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
6103}
6104
6105bool X86TTIImpl::isExpensiveToSpeculativelyExecute(const Instruction* I) {
6106 // FDIV is always expensive, even if it has a very low uop count.
6107 // TODO: Still necessary for recent CPUs with low latency/throughput fdiv?
6108 if (I->getOpcode() == Instruction::FDiv)
6109 return true;
6110
6111 return BaseT::isExpensiveToSpeculativelyExecute(I);
6112}
6113
6114bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
6115 return false;
6116}
6117
6118bool X86TTIImpl::areInlineCompatible(const Function *Caller,
6119 const Function *Callee) const {
6120 const TargetMachine &TM = getTLI()->getTargetMachine();
6121
6122 // Work this as a subsetting of subtarget features.
6123 const FeatureBitset &CallerBits =
6124 TM.getSubtargetImpl(*Caller)->getFeatureBits();
6125 const FeatureBitset &CalleeBits =
6126 TM.getSubtargetImpl(*Callee)->getFeatureBits();
6127
6128 // Check whether features are the same (apart from the ignore list).
6129 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
6130 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
6131 if (RealCallerBits == RealCalleeBits)
6132 return true;
6133
6134 // If the features are a subset, we need to additionally check for calls
6135 // that may become ABI-incompatible as a result of inlining.
6136 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
6137 return false;
6138
6139 for (const Instruction &I : instructions(F: Callee)) {
6140 if (const auto *CB = dyn_cast<CallBase>(Val: &I)) {
6141 // Having more target features is fine for inline ASM.
6142 if (CB->isInlineAsm())
6143 continue;
6144
6145 SmallVector<Type *, 8> Types;
6146 for (Value *Arg : CB->args())
6147 Types.push_back(Elt: Arg->getType());
6148 if (!CB->getType()->isVoidTy())
6149 Types.push_back(Elt: CB->getType());
6150
6151 // Simple types are always ABI compatible.
6152 auto IsSimpleTy = [](Type *Ty) {
6153 return !Ty->isVectorTy() && !Ty->isAggregateType();
6154 };
6155 if (all_of(Range&: Types, P: IsSimpleTy))
6156 continue;
6157
6158 if (Function *NestedCallee = CB->getCalledFunction()) {
6159 // Assume that intrinsics are always ABI compatible.
6160 if (NestedCallee->isIntrinsic())
6161 continue;
6162
6163 // Do a precise compatibility check.
6164 if (!areTypesABICompatible(Caller, Callee: NestedCallee, Type: Types))
6165 return false;
6166 } else {
6167 // We don't know the target features of the callee,
6168 // assume it is incompatible.
6169 return false;
6170 }
6171 }
6172 }
6173 return true;
6174}
6175
6176bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
6177 const Function *Callee,
6178 const ArrayRef<Type *> &Types) const {
6179 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
6180 return false;
6181
6182 // If we get here, we know the target features match. If one function
6183 // considers 512-bit vectors legal and the other does not, consider them
6184 // incompatible.
6185 const TargetMachine &TM = getTLI()->getTargetMachine();
6186
6187 if (TM.getSubtarget<X86Subtarget>(F: *Caller).useAVX512Regs() ==
6188 TM.getSubtarget<X86Subtarget>(F: *Callee).useAVX512Regs())
6189 return true;
6190
6191 // Consider the arguments compatible if they aren't vectors or aggregates.
6192 // FIXME: Look at the size of vectors.
6193 // FIXME: Look at the element types of aggregates to see if there are vectors.
6194 return llvm::none_of(Range: Types,
6195 P: [](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
6196}
6197
6198X86TTIImpl::TTI::MemCmpExpansionOptions
6199X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
6200 TTI::MemCmpExpansionOptions Options;
6201 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
6202 Options.NumLoadsPerBlock = 2;
6203 // All GPR and vector loads can be unaligned.
6204 Options.AllowOverlappingLoads = true;
6205 if (IsZeroCmp) {
6206 // Only enable vector loads for equality comparison. Right now the vector
6207 // version is not as fast for three way compare (see #33329).
6208 const unsigned PreferredWidth = ST->getPreferVectorWidth();
6209 if (PreferredWidth >= 512 && ST->hasAVX512() && ST->hasEVEX512())
6210 Options.LoadSizes.push_back(Elt: 64);
6211 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(Elt: 32);
6212 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(Elt: 16);
6213 }
6214 if (ST->is64Bit()) {
6215 Options.LoadSizes.push_back(Elt: 8);
6216 }
6217 Options.LoadSizes.push_back(Elt: 4);
6218 Options.LoadSizes.push_back(Elt: 2);
6219 Options.LoadSizes.push_back(Elt: 1);
6220 return Options;
6221}
6222
6223bool X86TTIImpl::prefersVectorizedAddressing() const {
6224 return supportsGather();
6225}
6226
6227bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
6228 return false;
6229}
6230
6231bool X86TTIImpl::enableInterleavedAccessVectorization() {
6232 // TODO: We expect this to be beneficial regardless of arch,
6233 // but there are currently some unexplained performance artifacts on Atom.
6234 // As a temporary solution, disable on Atom.
6235 return !(ST->isAtom());
6236}
6237
6238// Get estimation for interleaved load/store operations and strided load.
6239// \p Indices contains indices for strided load.
6240// \p Factor - the factor of interleaving.
6241// AVX-512 provides 3-src shuffles that significantly reduces the cost.
6242InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
6243 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
6244 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
6245 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
6246 // VecTy for interleave memop is <VF*Factor x Elt>.
6247 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6248 // VecTy = <12 x i32>.
6249
6250 // Calculate the number of memory operations (NumOfMemOps), required
6251 // for load/store the VecTy.
6252 MVT LegalVT = getTypeLegalizationCost(Ty: VecTy).second;
6253 unsigned VecTySize = DL.getTypeStoreSize(Ty: VecTy);
6254 unsigned LegalVTSize = LegalVT.getStoreSize();
6255 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
6256
6257 // Get the cost of one memory operation.
6258 auto *SingleMemOpTy = FixedVectorType::get(ElementType: VecTy->getElementType(),
6259 NumElts: LegalVT.getVectorNumElements());
6260 InstructionCost MemOpCost;
6261 bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
6262 if (UseMaskedMemOp)
6263 MemOpCost = getMaskedMemoryOpCost(Opcode, SrcTy: SingleMemOpTy, Alignment,
6264 AddressSpace, CostKind);
6265 else
6266 MemOpCost = getMemoryOpCost(Opcode, Src: SingleMemOpTy, Alignment: MaybeAlign(Alignment),
6267 AddressSpace, CostKind);
6268
6269 unsigned VF = VecTy->getNumElements() / Factor;
6270 MVT VT = MVT::getVectorVT(VT: MVT::getVT(Ty: VecTy->getScalarType()), NumElements: VF);
6271
6272 InstructionCost MaskCost;
6273 if (UseMaskedMemOp) {
6274 APInt DemandedLoadStoreElts = APInt::getZero(numBits: VecTy->getNumElements());
6275 for (unsigned Index : Indices) {
6276 assert(Index < Factor && "Invalid index for interleaved memory op");
6277 for (unsigned Elm = 0; Elm < VF; Elm++)
6278 DemandedLoadStoreElts.setBit(Index + Elm * Factor);
6279 }
6280
6281 Type *I1Type = Type::getInt1Ty(C&: VecTy->getContext());
6282
6283 MaskCost = getReplicationShuffleCost(
6284 EltTy: I1Type, ReplicationFactor: Factor, VF,
6285 DemandedDstElts: UseMaskForGaps ? DemandedLoadStoreElts
6286 : APInt::getAllOnes(numBits: VecTy->getNumElements()),
6287 CostKind);
6288
6289 // The Gaps mask is invariant and created outside the loop, therefore the
6290 // cost of creating it is not accounted for here. However if we have both
6291 // a MaskForGaps and some other mask that guards the execution of the
6292 // memory access, we need to account for the cost of And-ing the two masks
6293 // inside the loop.
6294 if (UseMaskForGaps) {
6295 auto *MaskVT = FixedVectorType::get(ElementType: I1Type, NumElts: VecTy->getNumElements());
6296 MaskCost += getArithmeticInstrCost(Opcode: BinaryOperator::And, Ty: MaskVT, CostKind);
6297 }
6298 }
6299
6300 if (Opcode == Instruction::Load) {
6301 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
6302 // contain the cost of the optimized shuffle sequence that the
6303 // X86InterleavedAccess pass will generate.
6304 // The cost of loads and stores are computed separately from the table.
6305
6306 // X86InterleavedAccess support only the following interleaved-access group.
6307 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
6308 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
6309 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
6310 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
6311 };
6312
6313 if (const auto *Entry =
6314 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
6315 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6316 //If an entry does not exist, fallback to the default implementation.
6317
6318 // Kind of shuffle depends on number of loaded values.
6319 // If we load the entire data in one register, we can use a 1-src shuffle.
6320 // Otherwise, we'll merge 2 sources in each operation.
6321 TTI::ShuffleKind ShuffleKind =
6322 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
6323
6324 InstructionCost ShuffleCost = getShuffleCost(
6325 Kind: ShuffleKind, BaseTp: SingleMemOpTy, Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
6326
6327 unsigned NumOfLoadsInInterleaveGrp =
6328 Indices.size() ? Indices.size() : Factor;
6329 auto *ResultTy = FixedVectorType::get(ElementType: VecTy->getElementType(),
6330 NumElts: VecTy->getNumElements() / Factor);
6331 InstructionCost NumOfResults =
6332 getTypeLegalizationCost(Ty: ResultTy).first * NumOfLoadsInInterleaveGrp;
6333
6334 // About a half of the loads may be folded in shuffles when we have only
6335 // one result. If we have more than one result, or the loads are masked,
6336 // we do not fold loads at all.
6337 unsigned NumOfUnfoldedLoads =
6338 UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
6339
6340 // Get a number of shuffle operations per result.
6341 unsigned NumOfShufflesPerResult =
6342 std::max(a: (unsigned)1, b: (unsigned)(NumOfMemOps - 1));
6343
6344 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6345 // When we have more than one destination, we need additional instructions
6346 // to keep sources.
6347 InstructionCost NumOfMoves = 0;
6348 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
6349 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
6350
6351 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
6352 MaskCost + NumOfUnfoldedLoads * MemOpCost +
6353 NumOfMoves;
6354
6355 return Cost;
6356 }
6357
6358 // Store.
6359 assert(Opcode == Instruction::Store &&
6360 "Expected Store Instruction at this point");
6361 // X86InterleavedAccess support only the following interleaved-access group.
6362 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
6363 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
6364 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
6365 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
6366
6367 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
6368 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
6369 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
6370 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
6371 };
6372
6373 if (const auto *Entry =
6374 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
6375 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6376 //If an entry does not exist, fallback to the default implementation.
6377
6378 // There is no strided stores meanwhile. And store can't be folded in
6379 // shuffle.
6380 unsigned NumOfSources = Factor; // The number of values to be merged.
6381 InstructionCost ShuffleCost = getShuffleCost(
6382 Kind: TTI::SK_PermuteTwoSrc, BaseTp: SingleMemOpTy, Mask: std::nullopt, CostKind, Index: 0, SubTp: nullptr);
6383 unsigned NumOfShufflesPerStore = NumOfSources - 1;
6384
6385 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6386 // We need additional instructions to keep sources.
6387 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
6388 InstructionCost Cost =
6389 MaskCost +
6390 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
6391 NumOfMoves;
6392 return Cost;
6393}
6394
6395InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
6396 unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
6397 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
6398 bool UseMaskForCond, bool UseMaskForGaps) {
6399 auto *VecTy = cast<FixedVectorType>(Val: BaseTy);
6400
6401 auto isSupportedOnAVX512 = [&](Type *VecTy) {
6402 Type *EltTy = cast<VectorType>(Val: VecTy)->getElementType();
6403 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(Bitwidth: 64) ||
6404 EltTy->isIntegerTy(Bitwidth: 32) || EltTy->isPointerTy())
6405 return true;
6406 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || EltTy->isHalfTy())
6407 return ST->hasBWI();
6408 if (EltTy->isBFloatTy())
6409 return ST->hasBF16();
6410 return false;
6411 };
6412 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy))
6413 return getInterleavedMemoryOpCostAVX512(
6414 Opcode, VecTy, Factor, Indices, Alignment,
6415 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
6416
6417 if (UseMaskForCond || UseMaskForGaps)
6418 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6419 Alignment, AddressSpace, CostKind,
6420 UseMaskForCond, UseMaskForGaps);
6421
6422 // Get estimation for interleaved load/store operations for SSE-AVX2.
6423 // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
6424 // computing the cost using a generic formula as a function of generic
6425 // shuffles. We therefore use a lookup table instead, filled according to
6426 // the instruction sequences that codegen currently generates.
6427
6428 // VecTy for interleave memop is <VF*Factor x Elt>.
6429 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6430 // VecTy = <12 x i32>.
6431 MVT LegalVT = getTypeLegalizationCost(Ty: VecTy).second;
6432
6433 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
6434 // the VF=2, while v2i128 is an unsupported MVT vector type
6435 // (see MachineValueType.h::getVectorVT()).
6436 if (!LegalVT.isVector())
6437 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6438 Alignment, AddressSpace, CostKind);
6439
6440 unsigned VF = VecTy->getNumElements() / Factor;
6441 Type *ScalarTy = VecTy->getElementType();
6442 // Deduplicate entries, model floats/pointers as appropriately-sized integers.
6443 if (!ScalarTy->isIntegerTy())
6444 ScalarTy =
6445 Type::getIntNTy(C&: ScalarTy->getContext(), N: DL.getTypeSizeInBits(Ty: ScalarTy));
6446
6447 // Get the cost of all the memory operations.
6448 // FIXME: discount dead loads.
6449 InstructionCost MemOpCosts = getMemoryOpCost(
6450 Opcode, Src: VecTy, Alignment: MaybeAlign(Alignment), AddressSpace, CostKind);
6451
6452 auto *VT = FixedVectorType::get(ElementType: ScalarTy, NumElts: VF);
6453 EVT ETy = TLI->getValueType(DL, Ty: VT);
6454 if (!ETy.isSimple())
6455 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6456 Alignment, AddressSpace, CostKind);
6457
6458 // TODO: Complete for other data-types and strides.
6459 // Each combination of Stride, element bit width and VF results in a different
6460 // sequence; The cost tables are therefore accessed with:
6461 // Factor (stride) and VectorType=VFxiN.
6462 // The Cost accounts only for the shuffle sequence;
6463 // The cost of the loads/stores is accounted for separately.
6464 //
6465 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
6466 {2, MVT::v2i8, 2}, // (load 4i8 and) deinterleave into 2 x 2i8
6467 {2, MVT::v4i8, 2}, // (load 8i8 and) deinterleave into 2 x 4i8
6468 {2, MVT::v8i8, 2}, // (load 16i8 and) deinterleave into 2 x 8i8
6469 {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
6470 {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
6471
6472 {2, MVT::v8i16, 6}, // (load 16i16 and) deinterleave into 2 x 8i16
6473 {2, MVT::v16i16, 9}, // (load 32i16 and) deinterleave into 2 x 16i16
6474 {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
6475
6476 {2, MVT::v8i32, 4}, // (load 16i32 and) deinterleave into 2 x 8i32
6477 {2, MVT::v16i32, 8}, // (load 32i32 and) deinterleave into 2 x 16i32
6478 {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
6479
6480 {2, MVT::v4i64, 4}, // (load 8i64 and) deinterleave into 2 x 4i64
6481 {2, MVT::v8i64, 8}, // (load 16i64 and) deinterleave into 2 x 8i64
6482 {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
6483 {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
6484
6485 {3, MVT::v2i8, 3}, // (load 6i8 and) deinterleave into 3 x 2i8
6486 {3, MVT::v4i8, 3}, // (load 12i8 and) deinterleave into 3 x 4i8
6487 {3, MVT::v8i8, 6}, // (load 24i8 and) deinterleave into 3 x 8i8
6488 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
6489 {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
6490
6491 {3, MVT::v2i16, 5}, // (load 6i16 and) deinterleave into 3 x 2i16
6492 {3, MVT::v4i16, 7}, // (load 12i16 and) deinterleave into 3 x 4i16
6493 {3, MVT::v8i16, 9}, // (load 24i16 and) deinterleave into 3 x 8i16
6494 {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
6495 {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
6496
6497 {3, MVT::v2i32, 3}, // (load 6i32 and) deinterleave into 3 x 2i32
6498 {3, MVT::v4i32, 3}, // (load 12i32 and) deinterleave into 3 x 4i32
6499 {3, MVT::v8i32, 7}, // (load 24i32 and) deinterleave into 3 x 8i32
6500 {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
6501 {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
6502
6503 {3, MVT::v2i64, 1}, // (load 6i64 and) deinterleave into 3 x 2i64
6504 {3, MVT::v4i64, 5}, // (load 12i64 and) deinterleave into 3 x 4i64
6505 {3, MVT::v8i64, 10}, // (load 24i64 and) deinterleave into 3 x 8i64
6506 {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
6507
6508 {4, MVT::v2i8, 4}, // (load 8i8 and) deinterleave into 4 x 2i8
6509 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8
6510 {4, MVT::v8i8, 12}, // (load 32i8 and) deinterleave into 4 x 8i8
6511 {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
6512 {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
6513
6514 {4, MVT::v2i16, 6}, // (load 8i16 and) deinterleave into 4 x 2i16
6515 {4, MVT::v4i16, 17}, // (load 16i16 and) deinterleave into 4 x 4i16
6516 {4, MVT::v8i16, 33}, // (load 32i16 and) deinterleave into 4 x 8i16
6517 {4, MVT::v16i16, 75}, // (load 64i16 and) deinterleave into 4 x 16i16
6518 {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
6519
6520 {4, MVT::v2i32, 4}, // (load 8i32 and) deinterleave into 4 x 2i32
6521 {4, MVT::v4i32, 8}, // (load 16i32 and) deinterleave into 4 x 4i32
6522 {4, MVT::v8i32, 16}, // (load 32i32 and) deinterleave into 4 x 8i32
6523 {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
6524 {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
6525
6526 {4, MVT::v2i64, 6}, // (load 8i64 and) deinterleave into 4 x 2i64
6527 {4, MVT::v4i64, 8}, // (load 16i64 and) deinterleave into 4 x 4i64
6528 {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
6529 {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
6530
6531 {6, MVT::v2i8, 6}, // (load 12i8 and) deinterleave into 6 x 2i8
6532 {6, MVT::v4i8, 14}, // (load 24i8 and) deinterleave into 6 x 4i8
6533 {6, MVT::v8i8, 18}, // (load 48i8 and) deinterleave into 6 x 8i8
6534 {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
6535 {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
6536
6537 {6, MVT::v2i16, 13}, // (load 12i16 and) deinterleave into 6 x 2i16
6538 {6, MVT::v4i16, 9}, // (load 24i16 and) deinterleave into 6 x 4i16
6539 {6, MVT::v8i16, 39}, // (load 48i16 and) deinterleave into 6 x 8i16
6540 {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
6541 {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
6542
6543 {6, MVT::v2i32, 6}, // (load 12i32 and) deinterleave into 6 x 2i32
6544 {6, MVT::v4i32, 15}, // (load 24i32 and) deinterleave into 6 x 4i32
6545 {6, MVT::v8i32, 31}, // (load 48i32 and) deinterleave into 6 x 8i32
6546 {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
6547
6548 {6, MVT::v2i64, 6}, // (load 12i64 and) deinterleave into 6 x 2i64
6549 {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
6550 {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
6551
6552 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
6553 };
6554
6555 static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
6556 {2, MVT::v4i16, 2}, // (load 8i16 and) deinterleave into 2 x 4i16
6557 };
6558
6559 static const CostTblEntry SSE2InterleavedLoadTbl[] = {
6560 {2, MVT::v2i16, 2}, // (load 4i16 and) deinterleave into 2 x 2i16
6561 {2, MVT::v4i16, 7}, // (load 8i16 and) deinterleave into 2 x 4i16
6562
6563 {2, MVT::v2i32, 2}, // (load 4i32 and) deinterleave into 2 x 2i32
6564 {2, MVT::v4i32, 2}, // (load 8i32 and) deinterleave into 2 x 4i32
6565
6566 {2, MVT::v2i64, 2}, // (load 4i64 and) deinterleave into 2 x 2i64
6567 };
6568
6569 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
6570 {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
6571 {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
6572
6573 {2, MVT::v8i16, 3}, // interleave 2 x 8i16 into 16i16 (and store)
6574 {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
6575 {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
6576
6577 {2, MVT::v4i32, 2}, // interleave 2 x 4i32 into 8i32 (and store)
6578 {2, MVT::v8i32, 4}, // interleave 2 x 8i32 into 16i32 (and store)
6579 {2, MVT::v16i32, 8}, // interleave 2 x 16i32 into 32i32 (and store)
6580 {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
6581
6582 {2, MVT::v2i64, 2}, // interleave 2 x 2i64 into 4i64 (and store)
6583 {2, MVT::v4i64, 4}, // interleave 2 x 4i64 into 8i64 (and store)
6584 {2, MVT::v8i64, 8}, // interleave 2 x 8i64 into 16i64 (and store)
6585 {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
6586 {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
6587
6588 {3, MVT::v2i8, 4}, // interleave 3 x 2i8 into 6i8 (and store)
6589 {3, MVT::v4i8, 4}, // interleave 3 x 4i8 into 12i8 (and store)
6590 {3, MVT::v8i8, 6}, // interleave 3 x 8i8 into 24i8 (and store)
6591 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
6592 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
6593
6594 {3, MVT::v2i16, 4}, // interleave 3 x 2i16 into 6i16 (and store)
6595 {3, MVT::v4i16, 6}, // interleave 3 x 4i16 into 12i16 (and store)
6596 {3, MVT::v8i16, 12}, // interleave 3 x 8i16 into 24i16 (and store)
6597 {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
6598 {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
6599
6600 {3, MVT::v2i32, 4}, // interleave 3 x 2i32 into 6i32 (and store)
6601 {3, MVT::v4i32, 5}, // interleave 3 x 4i32 into 12i32 (and store)
6602 {3, MVT::v8i32, 11}, // interleave 3 x 8i32 into 24i32 (and store)
6603 {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
6604 {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
6605
6606 {3, MVT::v2i64, 4}, // interleave 3 x 2i64 into 6i64 (and store)
6607 {3, MVT::v4i64, 6}, // interleave 3 x 4i64 into 12i64 (and store)
6608 {3, MVT::v8i64, 12}, // interleave 3 x 8i64 into 24i64 (and store)
6609 {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
6610
6611 {4, MVT::v2i8, 4}, // interleave 4 x 2i8 into 8i8 (and store)
6612 {4, MVT::v4i8, 4}, // interleave 4 x 4i8 into 16i8 (and store)
6613 {4, MVT::v8i8, 4}, // interleave 4 x 8i8 into 32i8 (and store)
6614 {4, MVT::v16i8, 8}, // interleave 4 x 16i8 into 64i8 (and store)
6615 {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
6616
6617 {4, MVT::v2i16, 2}, // interleave 4 x 2i16 into 8i16 (and store)
6618 {4, MVT::v4i16, 6}, // interleave 4 x 4i16 into 16i16 (and store)
6619 {4, MVT::v8i16, 10}, // interleave 4 x 8i16 into 32i16 (and store)
6620 {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
6621 {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
6622
6623 {4, MVT::v2i32, 5}, // interleave 4 x 2i32 into 8i32 (and store)
6624 {4, MVT::v4i32, 6}, // interleave 4 x 4i32 into 16i32 (and store)
6625 {4, MVT::v8i32, 16}, // interleave 4 x 8i32 into 32i32 (and store)
6626 {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
6627 {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
6628
6629 {4, MVT::v2i64, 6}, // interleave 4 x 2i64 into 8i64 (and store)
6630 {4, MVT::v4i64, 8}, // interleave 4 x 4i64 into 16i64 (and store)
6631 {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
6632 {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
6633
6634 {6, MVT::v2i8, 7}, // interleave 6 x 2i8 into 12i8 (and store)
6635 {6, MVT::v4i8, 9}, // interleave 6 x 4i8 into 24i8 (and store)
6636 {6, MVT::v8i8, 16}, // interleave 6 x 8i8 into 48i8 (and store)
6637 {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
6638 {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
6639
6640 {6, MVT::v2i16, 10}, // interleave 6 x 2i16 into 12i16 (and store)
6641 {6, MVT::v4i16, 15}, // interleave 6 x 4i16 into 24i16 (and store)
6642 {6, MVT::v8i16, 21}, // interleave 6 x 8i16 into 48i16 (and store)
6643 {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
6644 {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
6645
6646 {6, MVT::v2i32, 9}, // interleave 6 x 2i32 into 12i32 (and store)
6647 {6, MVT::v4i32, 12}, // interleave 6 x 4i32 into 24i32 (and store)
6648 {6, MVT::v8i32, 33}, // interleave 6 x 8i32 into 48i32 (and store)
6649 {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
6650
6651 {6, MVT::v2i64, 8}, // interleave 6 x 2i64 into 12i64 (and store)
6652 {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
6653 {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
6654 };
6655
6656 static const CostTblEntry SSE2InterleavedStoreTbl[] = {
6657 {2, MVT::v2i8, 1}, // interleave 2 x 2i8 into 4i8 (and store)
6658 {2, MVT::v4i8, 1}, // interleave 2 x 4i8 into 8i8 (and store)
6659 {2, MVT::v8i8, 1}, // interleave 2 x 8i8 into 16i8 (and store)
6660
6661 {2, MVT::v2i16, 1}, // interleave 2 x 2i16 into 4i16 (and store)
6662 {2, MVT::v4i16, 1}, // interleave 2 x 4i16 into 8i16 (and store)
6663
6664 {2, MVT::v2i32, 1}, // interleave 2 x 2i32 into 4i32 (and store)
6665 };
6666
6667 if (Opcode == Instruction::Load) {
6668 auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
6669 MemOpCosts](const CostTblEntry *Entry) {
6670 // NOTE: this is just an approximation!
6671 // It can over/under -estimate the cost!
6672 return MemOpCosts + divideCeil(Numerator: NumMembers * Entry->Cost, Denominator: Factor);
6673 };
6674
6675 if (ST->hasAVX2())
6676 if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
6677 ETy.getSimpleVT()))
6678 return GetDiscountedCost(Entry);
6679
6680 if (ST->hasSSSE3())
6681 if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
6682 ETy.getSimpleVT()))
6683 return GetDiscountedCost(Entry);
6684
6685 if (ST->hasSSE2())
6686 if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
6687 ETy.getSimpleVT()))
6688 return GetDiscountedCost(Entry);
6689 } else {
6690 assert(Opcode == Instruction::Store &&
6691 "Expected Store Instruction at this point");
6692 assert((!Indices.size() || Indices.size() == Factor) &&
6693 "Interleaved store only supports fully-interleaved groups.");
6694 if (ST->hasAVX2())
6695 if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
6696 ETy.getSimpleVT()))
6697 return MemOpCosts + Entry->Cost;
6698
6699 if (ST->hasSSE2())
6700 if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
6701 ETy.getSimpleVT()))
6702 return MemOpCosts + Entry->Cost;
6703 }
6704
6705 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6706 Alignment, AddressSpace, CostKind,
6707 UseMaskForCond, UseMaskForGaps);
6708}
6709
6710InstructionCost X86TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
6711 int64_t BaseOffset,
6712 bool HasBaseReg, int64_t Scale,
6713 unsigned AddrSpace) const {
6714 // Scaling factors are not free at all.
6715 // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
6716 // will take 2 allocations in the out of order engine instead of 1
6717 // for plain addressing mode, i.e. inst (reg1).
6718 // E.g.,
6719 // vaddps (%rsi,%rdx), %ymm0, %ymm1
6720 // Requires two allocations (one for the load, one for the computation)
6721 // whereas:
6722 // vaddps (%rsi), %ymm0, %ymm1
6723 // Requires just 1 allocation, i.e., freeing allocations for other operations
6724 // and having less micro operations to execute.
6725 //
6726 // For some X86 architectures, this is even worse because for instance for
6727 // stores, the complex addressing mode forces the instruction to use the
6728 // "load" ports instead of the dedicated "store" port.
6729 // E.g., on Haswell:
6730 // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
6731 // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
6732 TargetLoweringBase::AddrMode AM;
6733 AM.BaseGV = BaseGV;
6734 AM.BaseOffs = BaseOffset;
6735 AM.HasBaseReg = HasBaseReg;
6736 AM.Scale = Scale;
6737 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AS: AddrSpace))
6738 // Scale represents reg2 * scale, thus account for 1
6739 // as soon as we use a second register.
6740 return AM.Scale != 0;
6741 return -1;
6742}
6743

source code of llvm/lib/Target/X86/X86TargetTransformInfo.cpp