1//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements a simple loop unroller. It works best when loops have
10// been canonicalized by the -indvars pass, allowing it to determine the trip
11// counts of loops easily.
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseMapInfo.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/BlockFrequencyInfo.h"
25#include "llvm/Analysis/CodeMetrics.h"
26#include "llvm/Analysis/LoopAnalysisManager.h"
27#include "llvm/Analysis/LoopInfo.h"
28#include "llvm/Analysis/LoopPass.h"
29#include "llvm/Analysis/LoopUnrollAnalyzer.h"
30#include "llvm/Analysis/OptimizationRemarkEmitter.h"
31#include "llvm/Analysis/ProfileSummaryInfo.h"
32#include "llvm/Analysis/ScalarEvolution.h"
33#include "llvm/Analysis/TargetTransformInfo.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CFG.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DiagnosticInfo.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Metadata.h"
45#include "llvm/IR/PassManager.h"
46#include "llvm/InitializePasses.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Transforms/Scalar.h"
54#include "llvm/Transforms/Scalar/LoopPassManager.h"
55#include "llvm/Transforms/Utils.h"
56#include "llvm/Transforms/Utils/LoopPeel.h"
57#include "llvm/Transforms/Utils/LoopSimplify.h"
58#include "llvm/Transforms/Utils/LoopUtils.h"
59#include "llvm/Transforms/Utils/SizeOpts.h"
60#include "llvm/Transforms/Utils/UnrollLoop.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <limits>
65#include <optional>
66#include <string>
67#include <tuple>
68#include <utility>
69
70using namespace llvm;
71
72#define DEBUG_TYPE "loop-unroll"
73
74cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(Val: false), cl::Hidden,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is sometimes preferred to reduce"
78 " compile time."));
79
80static cl::opt<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden,
82 cl::desc("The cost threshold for loop unrolling"));
83
84static cl::opt<unsigned>
85 UnrollOptSizeThreshold(
86 "unroll-optsize-threshold", cl::init(Val: 0), cl::Hidden,
87 cl::desc("The cost threshold for loop unrolling when optimizing for "
88 "size"));
89
90static cl::opt<unsigned> UnrollPartialThreshold(
91 "unroll-partial-threshold", cl::Hidden,
92 cl::desc("The cost threshold for partial loop unrolling"));
93
94static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
95 "unroll-max-percent-threshold-boost", cl::init(Val: 400), cl::Hidden,
96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
97 "to the threshold when aggressively unrolling a loop due to the "
98 "dynamic cost savings. If completely unrolling a loop will reduce "
99 "the total runtime from X to Y, we boost the loop unroll "
100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
101 "X/Y). This limit avoids excessive code bloat."));
102
103static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
104 "unroll-max-iteration-count-to-analyze", cl::init(Val: 10), cl::Hidden,
105 cl::desc("Don't allow loop unrolling to simulate more than this number of"
106 "iterations when checking full unroll profitability"));
107
108static cl::opt<unsigned> UnrollCount(
109 "unroll-count", cl::Hidden,
110 cl::desc("Use this unroll count for all loops including those with "
111 "unroll_count pragma values, for testing purposes"));
112
113static cl::opt<unsigned> UnrollMaxCount(
114 "unroll-max-count", cl::Hidden,
115 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
116 "testing purposes"));
117
118static cl::opt<unsigned> UnrollFullMaxCount(
119 "unroll-full-max-count", cl::Hidden,
120 cl::desc(
121 "Set the max unroll count for full unrolling, for testing purposes"));
122
123static cl::opt<bool>
124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
125 cl::desc("Allows loops to be partially unrolled until "
126 "-unroll-threshold loop size is reached."));
127
128static cl::opt<bool> UnrollAllowRemainder(
129 "unroll-allow-remainder", cl::Hidden,
130 cl::desc("Allow generation of a loop remainder (extra iterations) "
131 "when unrolling a loop."));
132
133static cl::opt<bool>
134 UnrollRuntime("unroll-runtime", cl::Hidden,
135 cl::desc("Unroll loops with run-time trip counts"));
136
137static cl::opt<unsigned> UnrollMaxUpperBound(
138 "unroll-max-upperbound", cl::init(Val: 8), cl::Hidden,
139 cl::desc(
140 "The max of trip count upper bound that is considered in unrolling"));
141
142static cl::opt<unsigned> PragmaUnrollThreshold(
143 "pragma-unroll-threshold", cl::init(Val: 16 * 1024), cl::Hidden,
144 cl::desc("Unrolled size limit for loops with an unroll(full) or "
145 "unroll_count pragma."));
146
147static cl::opt<unsigned> FlatLoopTripCountThreshold(
148 "flat-loop-tripcount-threshold", cl::init(Val: 5), cl::Hidden,
149 cl::desc("If the runtime tripcount for the loop is lower than the "
150 "threshold, the loop is considered as flat and will be less "
151 "aggressively unrolled."));
152
153static cl::opt<bool> UnrollUnrollRemainder(
154 "unroll-remainder", cl::Hidden,
155 cl::desc("Allow the loop remainder to be unrolled."));
156
157// This option isn't ever intended to be enabled, it serves to allow
158// experiments to check the assumptions about when this kind of revisit is
159// necessary.
160static cl::opt<bool> UnrollRevisitChildLoops(
161 "unroll-revisit-child-loops", cl::Hidden,
162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
163 "This shouldn't typically be needed as child loops (or their "
164 "clones) were already visited."));
165
166static cl::opt<unsigned> UnrollThresholdAggressive(
167 "unroll-threshold-aggressive", cl::init(Val: 300), cl::Hidden,
168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
169 "optimizations"));
170static cl::opt<unsigned>
171 UnrollThresholdDefault("unroll-threshold-default", cl::init(Val: 150),
172 cl::Hidden,
173 cl::desc("Default threshold (max size of unrolled "
174 "loop), used in all but O3 optimizations"));
175
176static cl::opt<unsigned> PragmaUnrollFullMaxIterations(
177 "pragma-unroll-full-max-iterations", cl::init(Val: 1'000'000), cl::Hidden,
178 cl::desc("Maximum allowed iterations to unroll under pragma unroll full."));
179
180/// A magic value for use with the Threshold parameter to indicate
181/// that the loop unroll should be performed regardless of how much
182/// code expansion would result.
183static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
184
185/// Gather the various unrolling parameters based on the defaults, compiler
186/// flags, TTI overrides and user specified parameters.
187TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
188 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
189 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
190 OptimizationRemarkEmitter &ORE, int OptLevel,
191 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
192 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
193 std::optional<bool> UserUpperBound,
194 std::optional<unsigned> UserFullUnrollMaxCount) {
195 TargetTransformInfo::UnrollingPreferences UP;
196
197 // Set up the defaults
198 UP.Threshold =
199 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
200 UP.MaxPercentThresholdBoost = 400;
201 UP.OptSizeThreshold = UnrollOptSizeThreshold;
202 UP.PartialThreshold = 150;
203 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
204 UP.Count = 0;
205 UP.DefaultUnrollRuntimeCount = 8;
206 UP.MaxCount = std::numeric_limits<unsigned>::max();
207 UP.MaxUpperBound = UnrollMaxUpperBound;
208 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
209 UP.BEInsns = 2;
210 UP.Partial = false;
211 UP.Runtime = false;
212 UP.AllowRemainder = true;
213 UP.UnrollRemainder = false;
214 UP.AllowExpensiveTripCount = false;
215 UP.Force = false;
216 UP.UpperBound = false;
217 UP.UnrollAndJam = false;
218 UP.UnrollAndJamInnerLoopThreshold = 60;
219 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
220
221 // Override with any target specific settings
222 TTI.getUnrollingPreferences(L, SE, UP, ORE: &ORE);
223
224 // Apply size attributes
225 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
226 // Let unroll hints / pragmas take precedence over PGSO.
227 (hasUnrollTransformation(L) != TM_ForcedByUser &&
228 llvm::shouldOptimizeForSize(BB: L->getHeader(), PSI, BFI,
229 QueryType: PGSOQueryType::IRPass));
230 if (OptForSize) {
231 UP.Threshold = UP.OptSizeThreshold;
232 UP.PartialThreshold = UP.PartialOptSizeThreshold;
233 UP.MaxPercentThresholdBoost = 100;
234 }
235
236 // Apply any user values specified by cl::opt
237 if (UnrollThreshold.getNumOccurrences() > 0)
238 UP.Threshold = UnrollThreshold;
239 if (UnrollPartialThreshold.getNumOccurrences() > 0)
240 UP.PartialThreshold = UnrollPartialThreshold;
241 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
242 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
243 if (UnrollMaxCount.getNumOccurrences() > 0)
244 UP.MaxCount = UnrollMaxCount;
245 if (UnrollMaxUpperBound.getNumOccurrences() > 0)
246 UP.MaxUpperBound = UnrollMaxUpperBound;
247 if (UnrollFullMaxCount.getNumOccurrences() > 0)
248 UP.FullUnrollMaxCount = UnrollFullMaxCount;
249 if (UnrollAllowPartial.getNumOccurrences() > 0)
250 UP.Partial = UnrollAllowPartial;
251 if (UnrollAllowRemainder.getNumOccurrences() > 0)
252 UP.AllowRemainder = UnrollAllowRemainder;
253 if (UnrollRuntime.getNumOccurrences() > 0)
254 UP.Runtime = UnrollRuntime;
255 if (UnrollMaxUpperBound == 0)
256 UP.UpperBound = false;
257 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
258 UP.UnrollRemainder = UnrollUnrollRemainder;
259 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
260 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
261
262 // Apply user values provided by argument
263 if (UserThreshold) {
264 UP.Threshold = *UserThreshold;
265 UP.PartialThreshold = *UserThreshold;
266 }
267 if (UserCount)
268 UP.Count = *UserCount;
269 if (UserAllowPartial)
270 UP.Partial = *UserAllowPartial;
271 if (UserRuntime)
272 UP.Runtime = *UserRuntime;
273 if (UserUpperBound)
274 UP.UpperBound = *UserUpperBound;
275 if (UserFullUnrollMaxCount)
276 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
277
278 return UP;
279}
280
281namespace {
282
283/// A struct to densely store the state of an instruction after unrolling at
284/// each iteration.
285///
286/// This is designed to work like a tuple of <Instruction *, int> for the
287/// purposes of hashing and lookup, but to be able to associate two boolean
288/// states with each key.
289struct UnrolledInstState {
290 Instruction *I;
291 int Iteration : 30;
292 unsigned IsFree : 1;
293 unsigned IsCounted : 1;
294};
295
296/// Hashing and equality testing for a set of the instruction states.
297struct UnrolledInstStateKeyInfo {
298 using PtrInfo = DenseMapInfo<Instruction *>;
299 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
300
301 static inline UnrolledInstState getEmptyKey() {
302 return {.I: PtrInfo::getEmptyKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0};
303 }
304
305 static inline UnrolledInstState getTombstoneKey() {
306 return {.I: PtrInfo::getTombstoneKey(), .Iteration: 0, .IsFree: 0, .IsCounted: 0};
307 }
308
309 static inline unsigned getHashValue(const UnrolledInstState &S) {
310 return PairInfo::getHashValue(PairVal: {S.I, S.Iteration});
311 }
312
313 static inline bool isEqual(const UnrolledInstState &LHS,
314 const UnrolledInstState &RHS) {
315 return PairInfo::isEqual(LHS: {LHS.I, LHS.Iteration}, RHS: {RHS.I, RHS.Iteration});
316 }
317};
318
319struct EstimatedUnrollCost {
320 /// The estimated cost after unrolling.
321 unsigned UnrolledCost;
322
323 /// The estimated dynamic cost of executing the instructions in the
324 /// rolled form.
325 unsigned RolledDynamicCost;
326};
327
328struct PragmaInfo {
329 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
330 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
331 PragmaEnableUnroll(PEU) {}
332 const bool UserUnrollCount;
333 const bool PragmaFullUnroll;
334 const unsigned PragmaCount;
335 const bool PragmaEnableUnroll;
336};
337
338} // end anonymous namespace
339
340/// Figure out if the loop is worth full unrolling.
341///
342/// Complete loop unrolling can make some loads constant, and we need to know
343/// if that would expose any further optimization opportunities. This routine
344/// estimates this optimization. It computes cost of unrolled loop
345/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
346/// dynamic cost we mean that we won't count costs of blocks that are known not
347/// to be executed (i.e. if we have a branch in the loop and we know that at the
348/// given iteration its condition would be resolved to true, we won't add up the
349/// cost of the 'false'-block).
350/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
351/// the analysis failed (no benefits expected from the unrolling, or the loop is
352/// too big to analyze), the returned value is std::nullopt.
353static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
354 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
355 const SmallPtrSetImpl<const Value *> &EphValues,
356 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
357 unsigned MaxIterationsCountToAnalyze) {
358 // We want to be able to scale offsets by the trip count and add more offsets
359 // to them without checking for overflows, and we already don't want to
360 // analyze *massive* trip counts, so we force the max to be reasonably small.
361 assert(MaxIterationsCountToAnalyze <
362 (unsigned)(std::numeric_limits<int>::max() / 2) &&
363 "The unroll iterations max is too large!");
364
365 // Only analyze inner loops. We can't properly estimate cost of nested loops
366 // and we won't visit inner loops again anyway.
367 if (!L->isInnermost())
368 return std::nullopt;
369
370 // Don't simulate loops with a big or unknown tripcount
371 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
372 return std::nullopt;
373
374 SmallSetVector<BasicBlock *, 16> BBWorklist;
375 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
376 DenseMap<Value *, Value *> SimplifiedValues;
377 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
378
379 // The estimated cost of the unrolled form of the loop. We try to estimate
380 // this by simplifying as much as we can while computing the estimate.
381 InstructionCost UnrolledCost = 0;
382
383 // We also track the estimated dynamic (that is, actually executed) cost in
384 // the rolled form. This helps identify cases when the savings from unrolling
385 // aren't just exposing dead control flows, but actual reduced dynamic
386 // instructions due to the simplifications which we expect to occur after
387 // unrolling.
388 InstructionCost RolledDynamicCost = 0;
389
390 // We track the simplification of each instruction in each iteration. We use
391 // this to recursively merge costs into the unrolled cost on-demand so that
392 // we don't count the cost of any dead code. This is essentially a map from
393 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
394 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
395
396 // A small worklist used to accumulate cost of instructions from each
397 // observable and reached root in the loop.
398 SmallVector<Instruction *, 16> CostWorklist;
399
400 // PHI-used worklist used between iterations while accumulating cost.
401 SmallVector<Instruction *, 4> PHIUsedList;
402
403 // Helper function to accumulate cost for instructions in the loop.
404 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
405 assert(Iteration >= 0 && "Cannot have a negative iteration!");
406 assert(CostWorklist.empty() && "Must start with an empty cost list");
407 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
408 CostWorklist.push_back(Elt: &RootI);
409 TargetTransformInfo::TargetCostKind CostKind =
410 RootI.getFunction()->hasMinSize() ?
411 TargetTransformInfo::TCK_CodeSize :
412 TargetTransformInfo::TCK_SizeAndLatency;
413 for (;; --Iteration) {
414 do {
415 Instruction *I = CostWorklist.pop_back_val();
416
417 // InstCostMap only uses I and Iteration as a key, the other two values
418 // don't matter here.
419 auto CostIter = InstCostMap.find(V: {.I: I, .Iteration: Iteration, .IsFree: 0, .IsCounted: 0});
420 if (CostIter == InstCostMap.end())
421 // If an input to a PHI node comes from a dead path through the loop
422 // we may have no cost data for it here. What that actually means is
423 // that it is free.
424 continue;
425 auto &Cost = *CostIter;
426 if (Cost.IsCounted)
427 // Already counted this instruction.
428 continue;
429
430 // Mark that we are counting the cost of this instruction now.
431 Cost.IsCounted = true;
432
433 // If this is a PHI node in the loop header, just add it to the PHI set.
434 if (auto *PhiI = dyn_cast<PHINode>(Val: I))
435 if (PhiI->getParent() == L->getHeader()) {
436 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
437 "inherently simplify during unrolling.");
438 if (Iteration == 0)
439 continue;
440
441 // Push the incoming value from the backedge into the PHI used list
442 // if it is an in-loop instruction. We'll use this to populate the
443 // cost worklist for the next iteration (as we count backwards).
444 if (auto *OpI = dyn_cast<Instruction>(
445 Val: PhiI->getIncomingValueForBlock(BB: L->getLoopLatch())))
446 if (L->contains(Inst: OpI))
447 PHIUsedList.push_back(Elt: OpI);
448 continue;
449 }
450
451 // First accumulate the cost of this instruction.
452 if (!Cost.IsFree) {
453 // Consider simplified operands in instruction cost.
454 SmallVector<Value *, 4> Operands;
455 transform(Range: I->operands(), d_first: std::back_inserter(x&: Operands),
456 F: [&](Value *Op) {
457 if (auto Res = SimplifiedValues.lookup(Val: Op))
458 return Res;
459 return Op;
460 });
461 UnrolledCost += TTI.getInstructionCost(U: I, Operands, CostKind);
462 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
463 << Iteration << "): ");
464 LLVM_DEBUG(I->dump());
465 }
466
467 // We must count the cost of every operand which is not free,
468 // recursively. If we reach a loop PHI node, simply add it to the set
469 // to be considered on the next iteration (backwards!).
470 for (Value *Op : I->operands()) {
471 // Check whether this operand is free due to being a constant or
472 // outside the loop.
473 auto *OpI = dyn_cast<Instruction>(Val: Op);
474 if (!OpI || !L->contains(Inst: OpI))
475 continue;
476
477 // Otherwise accumulate its cost.
478 CostWorklist.push_back(Elt: OpI);
479 }
480 } while (!CostWorklist.empty());
481
482 if (PHIUsedList.empty())
483 // We've exhausted the search.
484 break;
485
486 assert(Iteration > 0 &&
487 "Cannot track PHI-used values past the first iteration!");
488 CostWorklist.append(in_start: PHIUsedList.begin(), in_end: PHIUsedList.end());
489 PHIUsedList.clear();
490 }
491 };
492
493 // Ensure that we don't violate the loop structure invariants relied on by
494 // this analysis.
495 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
496 assert(L->isLCSSAForm(DT) &&
497 "Must have loops in LCSSA form to track live-out values.");
498
499 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
500
501 TargetTransformInfo::TargetCostKind CostKind =
502 L->getHeader()->getParent()->hasMinSize() ?
503 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
504 // Simulate execution of each iteration of the loop counting instructions,
505 // which would be simplified.
506 // Since the same load will take different values on different iterations,
507 // we literally have to go through all loop's iterations.
508 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
509 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
510
511 // Prepare for the iteration by collecting any simplified entry or backedge
512 // inputs.
513 for (Instruction &I : *L->getHeader()) {
514 auto *PHI = dyn_cast<PHINode>(Val: &I);
515 if (!PHI)
516 break;
517
518 // The loop header PHI nodes must have exactly two input: one from the
519 // loop preheader and one from the loop latch.
520 assert(
521 PHI->getNumIncomingValues() == 2 &&
522 "Must have an incoming value only for the preheader and the latch.");
523
524 Value *V = PHI->getIncomingValueForBlock(
525 BB: Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
526 if (Iteration != 0 && SimplifiedValues.count(Val: V))
527 V = SimplifiedValues.lookup(Val: V);
528 SimplifiedInputValues.push_back(Elt: {PHI, V});
529 }
530
531 // Now clear and re-populate the map for the next iteration.
532 SimplifiedValues.clear();
533 while (!SimplifiedInputValues.empty())
534 SimplifiedValues.insert(KV: SimplifiedInputValues.pop_back_val());
535
536 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
537
538 BBWorklist.clear();
539 BBWorklist.insert(X: L->getHeader());
540 // Note that we *must not* cache the size, this loop grows the worklist.
541 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
542 BasicBlock *BB = BBWorklist[Idx];
543
544 // Visit all instructions in the given basic block and try to simplify
545 // it. We don't change the actual IR, just count optimization
546 // opportunities.
547 for (Instruction &I : *BB) {
548 // These won't get into the final code - don't even try calculating the
549 // cost for them.
550 if (isa<DbgInfoIntrinsic>(Val: I) || EphValues.count(Ptr: &I))
551 continue;
552
553 // Track this instruction's expected baseline cost when executing the
554 // rolled loop form.
555 RolledDynamicCost += TTI.getInstructionCost(U: &I, CostKind);
556
557 // Visit the instruction to analyze its loop cost after unrolling,
558 // and if the visitor returns true, mark the instruction as free after
559 // unrolling and continue.
560 bool IsFree = Analyzer.visit(I);
561 bool Inserted = InstCostMap.insert(V: {.I: &I, .Iteration: (int)Iteration,
562 .IsFree: (unsigned)IsFree,
563 /*IsCounted*/ false}).second;
564 (void)Inserted;
565 assert(Inserted && "Cannot have a state for an unvisited instruction!");
566
567 if (IsFree)
568 continue;
569
570 // Can't properly model a cost of a call.
571 // FIXME: With a proper cost model we should be able to do it.
572 if (auto *CI = dyn_cast<CallInst>(Val: &I)) {
573 const Function *Callee = CI->getCalledFunction();
574 if (!Callee || TTI.isLoweredToCall(F: Callee)) {
575 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
576 return std::nullopt;
577 }
578 }
579
580 // If the instruction might have a side-effect recursively account for
581 // the cost of it and all the instructions leading up to it.
582 if (I.mayHaveSideEffects())
583 AddCostRecursively(I, Iteration);
584
585 // If unrolled body turns out to be too big, bail out.
586 if (UnrolledCost > MaxUnrolledLoopSize) {
587 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
588 << " UnrolledCost: " << UnrolledCost
589 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
590 << "\n");
591 return std::nullopt;
592 }
593 }
594
595 Instruction *TI = BB->getTerminator();
596
597 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
598 if (SimplifiedValues.count(Val: V))
599 V = SimplifiedValues.lookup(Val: V);
600 return dyn_cast<Constant>(Val: V);
601 };
602
603 // Add in the live successors by first checking whether we have terminator
604 // that may be simplified based on the values simplified by this call.
605 BasicBlock *KnownSucc = nullptr;
606 if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) {
607 if (BI->isConditional()) {
608 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
609 // Just take the first successor if condition is undef
610 if (isa<UndefValue>(Val: SimpleCond))
611 KnownSucc = BI->getSuccessor(i: 0);
612 else if (ConstantInt *SimpleCondVal =
613 dyn_cast<ConstantInt>(Val: SimpleCond))
614 KnownSucc = BI->getSuccessor(i: SimpleCondVal->isZero() ? 1 : 0);
615 }
616 }
617 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) {
618 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
619 // Just take the first successor if condition is undef
620 if (isa<UndefValue>(Val: SimpleCond))
621 KnownSucc = SI->getSuccessor(idx: 0);
622 else if (ConstantInt *SimpleCondVal =
623 dyn_cast<ConstantInt>(Val: SimpleCond))
624 KnownSucc = SI->findCaseValue(C: SimpleCondVal)->getCaseSuccessor();
625 }
626 }
627 if (KnownSucc) {
628 if (L->contains(BB: KnownSucc))
629 BBWorklist.insert(X: KnownSucc);
630 else
631 ExitWorklist.insert(X: {BB, KnownSucc});
632 continue;
633 }
634
635 // Add BB's successors to the worklist.
636 for (BasicBlock *Succ : successors(BB))
637 if (L->contains(BB: Succ))
638 BBWorklist.insert(X: Succ);
639 else
640 ExitWorklist.insert(X: {BB, Succ});
641 AddCostRecursively(*TI, Iteration);
642 }
643
644 // If we found no optimization opportunities on the first iteration, we
645 // won't find them on later ones too.
646 if (UnrolledCost == RolledDynamicCost) {
647 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
648 << " UnrolledCost: " << UnrolledCost << "\n");
649 return std::nullopt;
650 }
651 }
652
653 while (!ExitWorklist.empty()) {
654 BasicBlock *ExitingBB, *ExitBB;
655 std::tie(args&: ExitingBB, args&: ExitBB) = ExitWorklist.pop_back_val();
656
657 for (Instruction &I : *ExitBB) {
658 auto *PN = dyn_cast<PHINode>(Val: &I);
659 if (!PN)
660 break;
661
662 Value *Op = PN->getIncomingValueForBlock(BB: ExitingBB);
663 if (auto *OpI = dyn_cast<Instruction>(Val: Op))
664 if (L->contains(Inst: OpI))
665 AddCostRecursively(*OpI, TripCount - 1);
666 }
667 }
668
669 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
670 "All instructions must have a valid cost, whether the "
671 "loop is rolled or unrolled.");
672
673 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
674 << "UnrolledCost: " << UnrolledCost << ", "
675 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
676 return {{.UnrolledCost: unsigned(*UnrolledCost.getValue()),
677 .RolledDynamicCost: unsigned(*RolledDynamicCost.getValue())}};
678}
679
680UnrollCostEstimator::UnrollCostEstimator(
681 const Loop *L, const TargetTransformInfo &TTI,
682 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
683 CodeMetrics Metrics;
684 for (BasicBlock *BB : L->blocks())
685 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
686 NumInlineCandidates = Metrics.NumInlineCandidates;
687 NotDuplicatable = Metrics.notDuplicatable;
688 Convergent = Metrics.convergent;
689 LoopSize = Metrics.NumInsts;
690
691 // Don't allow an estimate of size zero. This would allows unrolling of loops
692 // with huge iteration counts, which is a compile time problem even if it's
693 // not a problem for code quality. Also, the code using this size may assume
694 // that each loop has at least three instructions (likely a conditional
695 // branch, a comparison feeding that branch, and some kind of loop increment
696 // feeding that comparison instruction).
697 if (LoopSize.isValid() && LoopSize < BEInsns + 1)
698 // This is an open coded max() on InstructionCost
699 LoopSize = BEInsns + 1;
700}
701
702uint64_t UnrollCostEstimator::getUnrolledLoopSize(
703 const TargetTransformInfo::UnrollingPreferences &UP,
704 unsigned CountOverwrite) const {
705 unsigned LS = *LoopSize.getValue();
706 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
707 if (CountOverwrite)
708 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns;
709 else
710 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns;
711}
712
713// Returns the loop hint metadata node with the given name (for example,
714// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
715// returned.
716static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
717 if (MDNode *LoopID = L->getLoopID())
718 return GetUnrollMetadata(LoopID, Name);
719 return nullptr;
720}
721
722// Returns true if the loop has an unroll(full) pragma.
723static bool hasUnrollFullPragma(const Loop *L) {
724 return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.full");
725}
726
727// Returns true if the loop has an unroll(enable) pragma. This metadata is used
728// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
729static bool hasUnrollEnablePragma(const Loop *L) {
730 return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.enable");
731}
732
733// Returns true if the loop has an runtime unroll(disable) pragma.
734static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
735 return getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.runtime.disable");
736}
737
738// If loop has an unroll_count pragma return the (necessarily
739// positive) value from the pragma. Otherwise return 0.
740static unsigned unrollCountPragmaValue(const Loop *L) {
741 MDNode *MD = getUnrollMetadataForLoop(L, Name: "llvm.loop.unroll.count");
742 if (MD) {
743 assert(MD->getNumOperands() == 2 &&
744 "Unroll count hint metadata should have two operands.");
745 unsigned Count =
746 mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1))->getZExtValue();
747 assert(Count >= 1 && "Unroll count must be positive.");
748 return Count;
749 }
750 return 0;
751}
752
753// Computes the boosting factor for complete unrolling.
754// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
755// be beneficial to fully unroll the loop even if unrolledcost is large. We
756// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
757// the unroll threshold.
758static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
759 unsigned MaxPercentThresholdBoost) {
760 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
761 return 100;
762 else if (Cost.UnrolledCost != 0)
763 // The boosting factor is RolledDynamicCost / UnrolledCost
764 return std::min(a: 100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
765 b: MaxPercentThresholdBoost);
766 else
767 return MaxPercentThresholdBoost;
768}
769
770static std::optional<unsigned>
771shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
772 const unsigned TripMultiple, const unsigned TripCount,
773 unsigned MaxTripCount, const UnrollCostEstimator UCE,
774 const TargetTransformInfo::UnrollingPreferences &UP) {
775
776 // Using unroll pragma
777 // 1st priority is unroll count set by "unroll-count" option.
778
779 if (PInfo.UserUnrollCount) {
780 if (UP.AllowRemainder &&
781 UCE.getUnrolledLoopSize(UP, CountOverwrite: (unsigned)UnrollCount) < UP.Threshold)
782 return (unsigned)UnrollCount;
783 }
784
785 // 2nd priority is unroll count set by pragma.
786 if (PInfo.PragmaCount > 0) {
787 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
788 return PInfo.PragmaCount;
789 }
790
791 if (PInfo.PragmaFullUnroll && TripCount != 0) {
792 // Certain cases with UBSAN can cause trip count to be calculated as
793 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler
794 // doesn't hang trying to unroll the loop. See PR77842
795 if (TripCount > PragmaUnrollFullMaxIterations) {
796 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n");
797 return std::nullopt;
798 }
799
800 return TripCount;
801 }
802
803 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount &&
804 MaxTripCount <= UP.MaxUpperBound)
805 return MaxTripCount;
806
807 // if didn't return until here, should continue to other priorties
808 return std::nullopt;
809}
810
811static std::optional<unsigned> shouldFullUnroll(
812 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
813 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
814 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
815 const TargetTransformInfo::UnrollingPreferences &UP) {
816 assert(FullUnrollTripCount && "should be non-zero!");
817
818 if (FullUnrollTripCount > UP.FullUnrollMaxCount)
819 return std::nullopt;
820
821 // When computing the unrolled size, note that BEInsns are not replicated
822 // like the rest of the loop body.
823 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
824 return FullUnrollTripCount;
825
826 // The loop isn't that small, but we still can fully unroll it if that
827 // helps to remove a significant number of instructions.
828 // To check that, run additional analysis on the loop.
829 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
830 L, TripCount: FullUnrollTripCount, DT, SE, EphValues, TTI,
831 MaxUnrolledLoopSize: UP.Threshold * UP.MaxPercentThresholdBoost / 100,
832 MaxIterationsCountToAnalyze: UP.MaxIterationsCountToAnalyze)) {
833 unsigned Boost =
834 getFullUnrollBoostingFactor(Cost: *Cost, MaxPercentThresholdBoost: UP.MaxPercentThresholdBoost);
835 if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
836 return FullUnrollTripCount;
837 }
838 return std::nullopt;
839}
840
841static std::optional<unsigned>
842shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
843 const UnrollCostEstimator UCE,
844 const TargetTransformInfo::UnrollingPreferences &UP) {
845
846 if (!TripCount)
847 return std::nullopt;
848
849 if (!UP.Partial) {
850 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
851 << "-unroll-allow-partial not given\n");
852 return 0;
853 }
854 unsigned count = UP.Count;
855 if (count == 0)
856 count = TripCount;
857 if (UP.PartialThreshold != NoThreshold) {
858 // Reduce unroll count to be modulo of TripCount for partial unrolling.
859 if (UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold)
860 count = (std::max(a: UP.PartialThreshold, b: UP.BEInsns + 1) - UP.BEInsns) /
861 (LoopSize - UP.BEInsns);
862 if (count > UP.MaxCount)
863 count = UP.MaxCount;
864 while (count != 0 && TripCount % count != 0)
865 count--;
866 if (UP.AllowRemainder && count <= 1) {
867 // If there is no Count that is modulo of TripCount, set Count to
868 // largest power-of-two factor that satisfies the threshold limit.
869 // As we'll create fixup loop, do the type of unrolling only if
870 // remainder loop is allowed.
871 count = UP.DefaultUnrollRuntimeCount;
872 while (count != 0 &&
873 UCE.getUnrolledLoopSize(UP, CountOverwrite: count) > UP.PartialThreshold)
874 count >>= 1;
875 }
876 if (count < 2) {
877 count = 0;
878 }
879 } else {
880 count = TripCount;
881 }
882 if (count > UP.MaxCount)
883 count = UP.MaxCount;
884
885 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
886
887 return count;
888}
889// Returns true if unroll count was set explicitly.
890// Calculates unroll count and writes it to UP.Count.
891// Unless IgnoreUser is true, will also use metadata and command-line options
892// that are specific to to the LoopUnroll pass (which, for instance, are
893// irrelevant for the LoopUnrollAndJam pass).
894// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
895// many LoopUnroll-specific options. The shared functionality should be
896// refactored into it own function.
897bool llvm::computeUnrollCount(
898 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
899 AssumptionCache *AC, ScalarEvolution &SE,
900 const SmallPtrSetImpl<const Value *> &EphValues,
901 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
902 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE,
903 TargetTransformInfo::UnrollingPreferences &UP,
904 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
905
906 unsigned LoopSize = UCE.getRolledLoopSize();
907
908 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
909 const bool PragmaFullUnroll = hasUnrollFullPragma(L);
910 const unsigned PragmaCount = unrollCountPragmaValue(L);
911 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
912
913 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
914 PragmaEnableUnroll || UserUnrollCount;
915
916 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
917 PragmaEnableUnroll);
918 // Use an explicit peel count that has been specified for testing. In this
919 // case it's not permitted to also specify an explicit unroll count.
920 if (PP.PeelCount) {
921 if (UnrollCount.getNumOccurrences() > 0) {
922 report_fatal_error(reason: "Cannot specify both explicit peel count and "
923 "explicit unroll count", /*GenCrashDiag=*/gen_crash_diag: false);
924 }
925 UP.Count = 1;
926 UP.Runtime = false;
927 return true;
928 }
929 // Check for explicit Count.
930 // 1st priority is unroll count set by "unroll-count" option.
931 // 2nd priority is unroll count set by pragma.
932 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
933 MaxTripCount, UCE, UP)) {
934 UP.Count = *UnrollFactor;
935
936 if (UserUnrollCount || (PragmaCount > 0)) {
937 UP.AllowExpensiveTripCount = true;
938 UP.Force = true;
939 }
940 UP.Runtime |= (PragmaCount > 0);
941 return ExplicitUnroll;
942 } else {
943 if (ExplicitUnroll && TripCount != 0) {
944 // If the loop has an unrolling pragma, we want to be more aggressive with
945 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
946 // value which is larger than the default limits.
947 UP.Threshold = std::max<unsigned>(a: UP.Threshold, b: PragmaUnrollThreshold);
948 UP.PartialThreshold =
949 std::max<unsigned>(a: UP.PartialThreshold, b: PragmaUnrollThreshold);
950 }
951 }
952
953 // 3rd priority is exact full unrolling. This will eliminate all copies
954 // of some exit test.
955 UP.Count = 0;
956 if (TripCount) {
957 UP.Count = TripCount;
958 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
959 FullUnrollTripCount: TripCount, UCE, UP)) {
960 UP.Count = *UnrollFactor;
961 UseUpperBound = false;
962 return ExplicitUnroll;
963 }
964 }
965
966 // 4th priority is bounded unrolling.
967 // We can unroll by the upper bound amount if it's generally allowed or if
968 // we know that the loop is executed either the upper bound or zero times.
969 // (MaxOrZero unrolling keeps only the first loop test, so the number of
970 // loop tests remains the same compared to the non-unrolled version, whereas
971 // the generic upper bound unrolling keeps all but the last loop test so the
972 // number of loop tests goes up which may end up being worse on targets with
973 // constrained branch predictor resources so is controlled by an option.)
974 // In addition we only unroll small upper bounds.
975 // Note that the cost of bounded unrolling is always strictly greater than
976 // cost of exact full unrolling. As such, if we have an exact count and
977 // found it unprofitable, we'll never chose to bounded unroll.
978 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
979 MaxTripCount <= UP.MaxUpperBound) {
980 UP.Count = MaxTripCount;
981 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
982 FullUnrollTripCount: MaxTripCount, UCE, UP)) {
983 UP.Count = *UnrollFactor;
984 UseUpperBound = true;
985 return ExplicitUnroll;
986 }
987 }
988
989 // 5th priority is loop peeling.
990 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, Threshold: UP.Threshold);
991 if (PP.PeelCount) {
992 UP.Runtime = false;
993 UP.Count = 1;
994 return ExplicitUnroll;
995 }
996
997 // Before starting partial unrolling, set up.partial to true,
998 // if user explicitly asked for unrolling
999 if (TripCount)
1000 UP.Partial |= ExplicitUnroll;
1001
1002 // 6th priority is partial unrolling.
1003 // Try partial unroll only when TripCount could be statically calculated.
1004 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
1005 UP.Count = *UnrollFactor;
1006
1007 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1008 UP.Count != TripCount)
1009 ORE->emit(RemarkBuilder: [&]() {
1010 return OptimizationRemarkMissed(DEBUG_TYPE,
1011 "FullUnrollAsDirectedTooLarge",
1012 L->getStartLoc(), L->getHeader())
1013 << "Unable to fully unroll loop as directed by unroll pragma "
1014 "because "
1015 "unrolled size is too large.";
1016 });
1017
1018 if (UP.PartialThreshold != NoThreshold) {
1019 if (UP.Count == 0) {
1020 if (PragmaEnableUnroll)
1021 ORE->emit(RemarkBuilder: [&]() {
1022 return OptimizationRemarkMissed(DEBUG_TYPE,
1023 "UnrollAsDirectedTooLarge",
1024 L->getStartLoc(), L->getHeader())
1025 << "Unable to unroll loop as directed by unroll(enable) "
1026 "pragma "
1027 "because unrolled size is too large.";
1028 });
1029 }
1030 }
1031 return ExplicitUnroll;
1032 }
1033 assert(TripCount == 0 &&
1034 "All cases when TripCount is constant should be covered here.");
1035 if (PragmaFullUnroll)
1036 ORE->emit(RemarkBuilder: [&]() {
1037 return OptimizationRemarkMissed(
1038 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1039 L->getStartLoc(), L->getHeader())
1040 << "Unable to fully unroll loop as directed by unroll(full) "
1041 "pragma "
1042 "because loop has a runtime trip count.";
1043 });
1044
1045 // 7th priority is runtime unrolling.
1046 // Don't unroll a runtime trip count loop when it is disabled.
1047 if (hasRuntimeUnrollDisablePragma(L)) {
1048 UP.Count = 0;
1049 return false;
1050 }
1051
1052 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1053 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) {
1054 UP.Count = 0;
1055 return false;
1056 }
1057
1058 // Check if the runtime trip count is too small when profile is available.
1059 if (L->getHeader()->getParent()->hasProfileData()) {
1060 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1061 if (*ProfileTripCount < FlatLoopTripCountThreshold)
1062 return false;
1063 else
1064 UP.AllowExpensiveTripCount = true;
1065 }
1066 }
1067 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1068 if (!UP.Runtime) {
1069 LLVM_DEBUG(
1070 dbgs() << " will not try to unroll loop with runtime trip count "
1071 << "-unroll-runtime not given\n");
1072 UP.Count = 0;
1073 return false;
1074 }
1075 if (UP.Count == 0)
1076 UP.Count = UP.DefaultUnrollRuntimeCount;
1077
1078 // Reduce unroll count to be the largest power-of-two factor of
1079 // the original count which satisfies the threshold limit.
1080 while (UP.Count != 0 &&
1081 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1082 UP.Count >>= 1;
1083
1084#ifndef NDEBUG
1085 unsigned OrigCount = UP.Count;
1086#endif
1087
1088 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1089 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1090 UP.Count >>= 1;
1091 LLVM_DEBUG(
1092 dbgs() << "Remainder loop is restricted (that could architecture "
1093 "specific or because the loop contains a convergent "
1094 "instruction), so unroll count must divide the trip "
1095 "multiple, "
1096 << TripMultiple << ". Reducing unroll count from " << OrigCount
1097 << " to " << UP.Count << ".\n");
1098
1099 using namespace ore;
1100
1101 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1102 ORE->emit(RemarkBuilder: [&]() {
1103 return OptimizationRemarkMissed(DEBUG_TYPE,
1104 "DifferentUnrollCountFromDirected",
1105 L->getStartLoc(), L->getHeader())
1106 << "Unable to unroll loop the number of times directed by "
1107 "unroll_count pragma because remainder loop is restricted "
1108 "(that could architecture specific or because the loop "
1109 "contains a convergent instruction) and so must have an "
1110 "unroll "
1111 "count that divides the loop trip multiple of "
1112 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1113 << NV("UnrollCount", UP.Count) << " time(s).";
1114 });
1115 }
1116
1117 if (UP.Count > UP.MaxCount)
1118 UP.Count = UP.MaxCount;
1119
1120 if (MaxTripCount && UP.Count > MaxTripCount)
1121 UP.Count = MaxTripCount;
1122
1123 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1124 << "\n");
1125 if (UP.Count < 2)
1126 UP.Count = 0;
1127 return ExplicitUnroll;
1128}
1129
1130static LoopUnrollResult
1131tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1132 const TargetTransformInfo &TTI, AssumptionCache &AC,
1133 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1134 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1135 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV,
1136 std::optional<unsigned> ProvidedCount,
1137 std::optional<unsigned> ProvidedThreshold,
1138 std::optional<bool> ProvidedAllowPartial,
1139 std::optional<bool> ProvidedRuntime,
1140 std::optional<bool> ProvidedUpperBound,
1141 std::optional<bool> ProvidedAllowPeeling,
1142 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1143 std::optional<unsigned> ProvidedFullUnrollMaxCount) {
1144
1145 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1146 << L->getHeader()->getParent()->getName() << "] Loop %"
1147 << L->getHeader()->getName() << "\n");
1148 TransformationMode TM = hasUnrollTransformation(L);
1149 if (TM & TM_Disable)
1150 return LoopUnrollResult::Unmodified;
1151
1152 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1153 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1154 // automatic unrolling from interfering with the user requested
1155 // transformation.
1156 Loop *ParentL = L->getParentLoop();
1157 if (ParentL != nullptr &&
1158 hasUnrollAndJamTransformation(L: ParentL) == TM_ForcedByUser &&
1159 hasUnrollTransformation(L) != TM_ForcedByUser) {
1160 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1161 << " llvm.loop.unroll_and_jam.\n");
1162 return LoopUnrollResult::Unmodified;
1163 }
1164
1165 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1166 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1167 // unrolling from interfering with the user requested transformation.
1168 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1169 hasUnrollTransformation(L) != TM_ForcedByUser) {
1170 LLVM_DEBUG(
1171 dbgs()
1172 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1173 return LoopUnrollResult::Unmodified;
1174 }
1175
1176 if (!L->isLoopSimplifyForm()) {
1177 LLVM_DEBUG(
1178 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1179 return LoopUnrollResult::Unmodified;
1180 }
1181
1182 // When automatic unrolling is disabled, do not unroll unless overridden for
1183 // this loop.
1184 if (OnlyWhenForced && !(TM & TM_Enable))
1185 return LoopUnrollResult::Unmodified;
1186
1187 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1188 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1189 L, SE, TTI, BFI, PSI, ORE, OptLevel, UserThreshold: ProvidedThreshold, UserCount: ProvidedCount,
1190 UserAllowPartial: ProvidedAllowPartial, UserRuntime: ProvidedRuntime, UserUpperBound: ProvidedUpperBound,
1191 UserFullUnrollMaxCount: ProvidedFullUnrollMaxCount);
1192 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1193 L, SE, TTI, UserAllowPeeling: ProvidedAllowPeeling, UserAllowProfileBasedPeeling: ProvidedAllowProfileBasedPeeling, UnrollingSpecficValues: true);
1194
1195 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1196 // as threshold later on.
1197 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1198 !OptForSize)
1199 return LoopUnrollResult::Unmodified;
1200
1201 SmallPtrSet<const Value *, 32> EphValues;
1202 CodeMetrics::collectEphemeralValues(L, AC: &AC, EphValues);
1203
1204 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
1205 if (!UCE.canUnroll()) {
1206 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions"
1207 << " which cannot be duplicated or have invalid cost.\n");
1208 return LoopUnrollResult::Unmodified;
1209 }
1210
1211 unsigned LoopSize = UCE.getRolledLoopSize();
1212 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1213
1214 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1215 // later), to (fully) unroll loops, if it does not increase code size.
1216 if (OptForSize)
1217 UP.Threshold = std::max(a: UP.Threshold, b: LoopSize + 1);
1218
1219 if (UCE.NumInlineCandidates != 0) {
1220 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1221 return LoopUnrollResult::Unmodified;
1222 }
1223
1224 // Find the smallest exact trip count for any exit. This is an upper bound
1225 // on the loop trip count, but an exit at an earlier iteration is still
1226 // possible. An unroll by the smallest exact trip count guarantees that all
1227 // branches relating to at least one exit can be eliminated. This is unlike
1228 // the max trip count, which only guarantees that the backedge can be broken.
1229 unsigned TripCount = 0;
1230 unsigned TripMultiple = 1;
1231 SmallVector<BasicBlock *, 8> ExitingBlocks;
1232 L->getExitingBlocks(ExitingBlocks);
1233 for (BasicBlock *ExitingBlock : ExitingBlocks)
1234 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1235 if (!TripCount || TC < TripCount)
1236 TripCount = TripMultiple = TC;
1237
1238 if (!TripCount) {
1239 // If no exact trip count is known, determine the trip multiple of either
1240 // the loop latch or the single exiting block.
1241 // TODO: Relax for multiple exits.
1242 BasicBlock *ExitingBlock = L->getLoopLatch();
1243 if (!ExitingBlock || !L->isLoopExiting(BB: ExitingBlock))
1244 ExitingBlock = L->getExitingBlock();
1245 if (ExitingBlock)
1246 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1247 }
1248
1249 // If the loop contains a convergent operation, the prelude we'd add
1250 // to do the first few instructions before we hit the unrolled loop
1251 // is unsafe -- it adds a control-flow dependency to the convergent
1252 // operation. Therefore restrict remainder loop (try unrolling without).
1253 //
1254 // TODO: This is quite conservative. In practice, convergent_op()
1255 // is likely to be called unconditionally in the loop. In this
1256 // case, the program would be ill-formed (on most architectures)
1257 // unless n were the same on all threads in a thread group.
1258 // Assuming n is the same on all threads, any kind of unrolling is
1259 // safe. But currently llvm's notion of convergence isn't powerful
1260 // enough to express this.
1261 if (UCE.Convergent)
1262 UP.AllowRemainder = false;
1263
1264 // Try to find the trip count upper bound if we cannot find the exact trip
1265 // count.
1266 unsigned MaxTripCount = 0;
1267 bool MaxOrZero = false;
1268 if (!TripCount) {
1269 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1270 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1271 }
1272
1273 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1274 // fully unroll the loop.
1275 bool UseUpperBound = false;
1276 bool IsCountSetExplicitly = computeUnrollCount(
1277 L, TTI, DT, LI, AC: &AC, SE, EphValues, ORE: &ORE, TripCount, MaxTripCount,
1278 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound);
1279 if (!UP.Count)
1280 return LoopUnrollResult::Unmodified;
1281
1282 if (PP.PeelCount) {
1283 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1284 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1285 << " with iteration count " << PP.PeelCount << "!\n");
1286 ORE.emit(RemarkBuilder: [&]() {
1287 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1288 L->getHeader())
1289 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1290 << " iterations";
1291 });
1292
1293 ValueToValueMapTy VMap;
1294 if (peelLoop(L, PeelCount: PP.PeelCount, LI, SE: &SE, DT, AC: &AC, PreserveLCSSA, VMap)) {
1295 simplifyLoopAfterUnroll(L, SimplifyIVs: true, LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI);
1296 // If the loop was peeled, we already "used up" the profile information
1297 // we had, so we don't want to unroll or peel again.
1298 if (PP.PeelProfiledIterations)
1299 L->setLoopAlreadyUnrolled();
1300 return LoopUnrollResult::PartiallyUnrolled;
1301 }
1302 return LoopUnrollResult::Unmodified;
1303 }
1304
1305 // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1306 if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) {
1307 LLVM_DEBUG(
1308 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1309 return LoopUnrollResult::Unmodified;
1310 }
1311
1312 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1313 // However, we only want to actually perform it if we don't know the trip
1314 // count and the unroll count doesn't divide the known trip multiple.
1315 // TODO: This decision should probably be pushed up into
1316 // computeUnrollCount().
1317 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1318
1319 // Save loop properties before it is transformed.
1320 MDNode *OrigLoopID = L->getLoopID();
1321
1322 // Unroll the loop.
1323 Loop *RemainderLoop = nullptr;
1324 LoopUnrollResult UnrollResult = UnrollLoop(
1325 L,
1326 ULO: {.Count: UP.Count, .Force: UP.Force, .Runtime: UP.Runtime, .AllowExpensiveTripCount: UP.AllowExpensiveTripCount,
1327 .UnrollRemainder: UP.UnrollRemainder, .ForgetAllSCEV: ForgetAllSCEV},
1328 LI, SE: &SE, DT: &DT, AC: &AC, TTI: &TTI, ORE: &ORE, PreserveLCSSA, RemainderLoop: &RemainderLoop);
1329 if (UnrollResult == LoopUnrollResult::Unmodified)
1330 return LoopUnrollResult::Unmodified;
1331
1332 if (RemainderLoop) {
1333 std::optional<MDNode *> RemainderLoopID =
1334 makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll,
1335 LLVMLoopUnrollFollowupRemainder});
1336 if (RemainderLoopID)
1337 RemainderLoop->setLoopID(*RemainderLoopID);
1338 }
1339
1340 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1341 std::optional<MDNode *> NewLoopID =
1342 makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopUnrollFollowupAll,
1343 LLVMLoopUnrollFollowupUnrolled});
1344 if (NewLoopID) {
1345 L->setLoopID(*NewLoopID);
1346
1347 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1348 // explicitly.
1349 return UnrollResult;
1350 }
1351 }
1352
1353 // If loop has an unroll count pragma or unrolled by explicitly set count
1354 // mark loop as unrolled to prevent unrolling beyond that requested.
1355 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1356 L->setLoopAlreadyUnrolled();
1357
1358 return UnrollResult;
1359}
1360
1361namespace {
1362
1363class LoopUnroll : public LoopPass {
1364public:
1365 static char ID; // Pass ID, replacement for typeid
1366
1367 int OptLevel;
1368
1369 /// If false, use a cost model to determine whether unrolling of a loop is
1370 /// profitable. If true, only loops that explicitly request unrolling via
1371 /// metadata are considered. All other loops are skipped.
1372 bool OnlyWhenForced;
1373
1374 /// If false, when SCEV is invalidated, only forget everything in the
1375 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1376 /// Otherwise, forgetAllLoops and rebuild when needed next.
1377 bool ForgetAllSCEV;
1378
1379 std::optional<unsigned> ProvidedCount;
1380 std::optional<unsigned> ProvidedThreshold;
1381 std::optional<bool> ProvidedAllowPartial;
1382 std::optional<bool> ProvidedRuntime;
1383 std::optional<bool> ProvidedUpperBound;
1384 std::optional<bool> ProvidedAllowPeeling;
1385 std::optional<bool> ProvidedAllowProfileBasedPeeling;
1386 std::optional<unsigned> ProvidedFullUnrollMaxCount;
1387
1388 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1389 bool ForgetAllSCEV = false,
1390 std::optional<unsigned> Threshold = std::nullopt,
1391 std::optional<unsigned> Count = std::nullopt,
1392 std::optional<bool> AllowPartial = std::nullopt,
1393 std::optional<bool> Runtime = std::nullopt,
1394 std::optional<bool> UpperBound = std::nullopt,
1395 std::optional<bool> AllowPeeling = std::nullopt,
1396 std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1397 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1398 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1399 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1400 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1401 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1402 ProvidedAllowPeeling(AllowPeeling),
1403 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1404 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1405 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1406 }
1407
1408 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1409 if (skipLoop(L))
1410 return false;
1411
1412 Function &F = *L->getHeader()->getParent();
1413
1414 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1415 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1416 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1417 const TargetTransformInfo &TTI =
1418 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1419 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1420 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1421 // pass. Function analyses need to be preserved across loop transformations
1422 // but ORE cannot be preserved (see comment before the pass definition).
1423 OptimizationRemarkEmitter ORE(&F);
1424 bool PreserveLCSSA = mustPreserveAnalysisID(AID&: LCSSAID);
1425
1426 LoopUnrollResult Result = tryToUnrollLoop(
1427 L, DT, LI, SE, TTI, AC, ORE, BFI: nullptr, PSI: nullptr, PreserveLCSSA, OptLevel,
1428 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount,
1429 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1430 ProvidedUpperBound, ProvidedAllowPeeling,
1431 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount);
1432
1433 if (Result == LoopUnrollResult::FullyUnrolled)
1434 LPM.markLoopAsDeleted(L&: *L);
1435
1436 return Result != LoopUnrollResult::Unmodified;
1437 }
1438
1439 /// This transformation requires natural loop information & requires that
1440 /// loop preheaders be inserted into the CFG...
1441 void getAnalysisUsage(AnalysisUsage &AU) const override {
1442 AU.addRequired<AssumptionCacheTracker>();
1443 AU.addRequired<TargetTransformInfoWrapperPass>();
1444 // FIXME: Loop passes are required to preserve domtree, and for now we just
1445 // recreate dom info if anything gets unrolled.
1446 getLoopAnalysisUsage(AU);
1447 }
1448};
1449
1450} // end anonymous namespace
1451
1452char LoopUnroll::ID = 0;
1453
1454INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1455INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1456INITIALIZE_PASS_DEPENDENCY(LoopPass)
1457INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1458INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1459
1460Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1461 bool ForgetAllSCEV, int Threshold, int Count,
1462 int AllowPartial, int Runtime, int UpperBound,
1463 int AllowPeeling) {
1464 // TODO: It would make more sense for this function to take the optionals
1465 // directly, but that's dangerous since it would silently break out of tree
1466 // callers.
1467 return new LoopUnroll(
1468 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1469 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1470 Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1471 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1472 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1473 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1474 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1475}
1476
1477PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1478 LoopStandardAnalysisResults &AR,
1479 LPMUpdater &Updater) {
1480 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1481 // pass. Function analyses need to be preserved across loop transformations
1482 // but ORE cannot be preserved (see comment before the pass definition).
1483 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1484
1485 // Keep track of the previous loop structure so we can identify new loops
1486 // created by unrolling.
1487 Loop *ParentL = L.getParentLoop();
1488 SmallPtrSet<Loop *, 4> OldLoops;
1489 if (ParentL)
1490 OldLoops.insert(I: ParentL->begin(), E: ParentL->end());
1491 else
1492 OldLoops.insert(I: AR.LI.begin(), E: AR.LI.end());
1493
1494 std::string LoopName = std::string(L.getName());
1495
1496 bool Changed =
1497 tryToUnrollLoop(L: &L, DT&: AR.DT, LI: &AR.LI, SE&: AR.SE, TTI: AR.TTI, AC&: AR.AC, ORE,
1498 /*BFI*/ nullptr, /*PSI*/ nullptr,
1499 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true,
1500 OnlyWhenForced, ForgetAllSCEV: ForgetSCEV, /*Count*/ ProvidedCount: std::nullopt,
1501 /*Threshold*/ ProvidedThreshold: std::nullopt, /*AllowPartial*/ ProvidedAllowPartial: false,
1502 /*Runtime*/ ProvidedRuntime: false, /*UpperBound*/ ProvidedUpperBound: false,
1503 /*AllowPeeling*/ ProvidedAllowPeeling: true,
1504 /*AllowProfileBasedPeeling*/ ProvidedAllowProfileBasedPeeling: false,
1505 /*FullUnrollMaxCount*/ ProvidedFullUnrollMaxCount: std::nullopt) !=
1506 LoopUnrollResult::Unmodified;
1507 if (!Changed)
1508 return PreservedAnalyses::all();
1509
1510 // The parent must not be damaged by unrolling!
1511#ifndef NDEBUG
1512 if (ParentL)
1513 ParentL->verifyLoop();
1514#endif
1515
1516 // Unrolling can do several things to introduce new loops into a loop nest:
1517 // - Full unrolling clones child loops within the current loop but then
1518 // removes the current loop making all of the children appear to be new
1519 // sibling loops.
1520 //
1521 // When a new loop appears as a sibling loop after fully unrolling,
1522 // its nesting structure has fundamentally changed and we want to revisit
1523 // it to reflect that.
1524 //
1525 // When unrolling has removed the current loop, we need to tell the
1526 // infrastructure that it is gone.
1527 //
1528 // Finally, we support a debugging/testing mode where we revisit child loops
1529 // as well. These are not expected to require further optimizations as either
1530 // they or the loop they were cloned from have been directly visited already.
1531 // But the debugging mode allows us to check this assumption.
1532 bool IsCurrentLoopValid = false;
1533 SmallVector<Loop *, 4> SibLoops;
1534 if (ParentL)
1535 SibLoops.append(in_start: ParentL->begin(), in_end: ParentL->end());
1536 else
1537 SibLoops.append(in_start: AR.LI.begin(), in_end: AR.LI.end());
1538 erase_if(C&: SibLoops, P: [&](Loop *SibLoop) {
1539 if (SibLoop == &L) {
1540 IsCurrentLoopValid = true;
1541 return true;
1542 }
1543
1544 // Otherwise erase the loop from the list if it was in the old loops.
1545 return OldLoops.contains(Ptr: SibLoop);
1546 });
1547 Updater.addSiblingLoops(NewSibLoops: SibLoops);
1548
1549 if (!IsCurrentLoopValid) {
1550 Updater.markLoopAsDeleted(L, Name: LoopName);
1551 } else {
1552 // We can only walk child loops if the current loop remained valid.
1553 if (UnrollRevisitChildLoops) {
1554 // Walk *all* of the child loops.
1555 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1556 Updater.addChildLoops(NewChildLoops: ChildLoops);
1557 }
1558 }
1559
1560 return getLoopPassPreservedAnalyses();
1561}
1562
1563PreservedAnalyses LoopUnrollPass::run(Function &F,
1564 FunctionAnalysisManager &AM) {
1565 auto &LI = AM.getResult<LoopAnalysis>(IR&: F);
1566 // There are no loops in the function. Return before computing other expensive
1567 // analyses.
1568 if (LI.empty())
1569 return PreservedAnalyses::all();
1570 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(IR&: F);
1571 auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F);
1572 auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F);
1573 auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F);
1574 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: F);
1575
1576 LoopAnalysisManager *LAM = nullptr;
1577 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(IR&: F))
1578 LAM = &LAMProxy->getManager();
1579
1580 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: F);
1581 ProfileSummaryInfo *PSI =
1582 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent());
1583 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1584 &AM.getResult<BlockFrequencyAnalysis>(IR&: F) : nullptr;
1585
1586 bool Changed = false;
1587
1588 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1589 // Since simplification may add new inner loops, it has to run before the
1590 // legality and profitability checks. This means running the loop unroller
1591 // will simplify all loops, regardless of whether anything end up being
1592 // unrolled.
1593 for (const auto &L : LI) {
1594 Changed |=
1595 simplifyLoop(L, DT: &DT, LI: &LI, SE: &SE, AC: &AC, MSSAU: nullptr, PreserveLCSSA: false /* PreserveLCSSA */);
1596 Changed |= formLCSSARecursively(L&: *L, DT, LI: &LI, SE: &SE);
1597 }
1598
1599 // Add the loop nests in the reverse order of LoopInfo. See method
1600 // declaration.
1601 SmallPriorityWorklist<Loop *, 4> Worklist;
1602 appendLoopsToWorklist(LI, Worklist);
1603
1604 while (!Worklist.empty()) {
1605 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1606 // from back to front so that we work forward across the CFG, which
1607 // for unrolling is only needed to get optimization remarks emitted in
1608 // a forward order.
1609 Loop &L = *Worklist.pop_back_val();
1610#ifndef NDEBUG
1611 Loop *ParentL = L.getParentLoop();
1612#endif
1613
1614 // Check if the profile summary indicates that the profiled application
1615 // has a huge working set size, in which case we disable peeling to avoid
1616 // bloating it further.
1617 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1618 if (PSI && PSI->hasHugeWorkingSetSize())
1619 LocalAllowPeeling = false;
1620 std::string LoopName = std::string(L.getName());
1621 // The API here is quite complex to call and we allow to select some
1622 // flavors of unrolling during construction time (by setting UnrollOpts).
1623 LoopUnrollResult Result = tryToUnrollLoop(
1624 L: &L, DT, LI: &LI, SE, TTI, AC, ORE, BFI, PSI,
1625 /*PreserveLCSSA*/ true, OptLevel: UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false,
1626 OnlyWhenForced: UnrollOpts.OnlyWhenForced, ForgetAllSCEV: UnrollOpts.ForgetSCEV,
1627 /*Count*/ ProvidedCount: std::nullopt,
1628 /*Threshold*/ ProvidedThreshold: std::nullopt, ProvidedAllowPartial: UnrollOpts.AllowPartial,
1629 ProvidedRuntime: UnrollOpts.AllowRuntime, ProvidedUpperBound: UnrollOpts.AllowUpperBound, ProvidedAllowPeeling: LocalAllowPeeling,
1630 ProvidedAllowProfileBasedPeeling: UnrollOpts.AllowProfileBasedPeeling, ProvidedFullUnrollMaxCount: UnrollOpts.FullUnrollMaxCount);
1631 Changed |= Result != LoopUnrollResult::Unmodified;
1632
1633 // The parent must not be damaged by unrolling!
1634#ifndef NDEBUG
1635 if (Result != LoopUnrollResult::Unmodified && ParentL)
1636 ParentL->verifyLoop();
1637#endif
1638
1639 // Clear any cached analysis results for L if we removed it completely.
1640 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1641 LAM->clear(IR&: L, Name: LoopName);
1642 }
1643
1644 if (!Changed)
1645 return PreservedAnalyses::all();
1646
1647 return getLoopPassPreservedAnalyses();
1648}
1649
1650void LoopUnrollPass::printPipeline(
1651 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1652 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1653 OS, MapClassName2PassName);
1654 OS << '<';
1655 if (UnrollOpts.AllowPartial != std::nullopt)
1656 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1657 if (UnrollOpts.AllowPeeling != std::nullopt)
1658 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1659 if (UnrollOpts.AllowRuntime != std::nullopt)
1660 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1661 if (UnrollOpts.AllowUpperBound != std::nullopt)
1662 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1663 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1664 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1665 << "profile-peeling;";
1666 if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1667 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';';
1668 OS << 'O' << UnrollOpts.OptLevel;
1669 OS << '>';
1670}
1671

source code of llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp