1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Peephole optimize the CFG.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/Sequence.h"
19#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/Analysis/AssumptionCache.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/DomTreeUpdater.h"
29#include "llvm/Analysis/GuardUtils.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/MemorySSA.h"
32#include "llvm/Analysis/MemorySSAUpdater.h"
33#include "llvm/Analysis/TargetTransformInfo.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/Constant.h"
39#include "llvm/IR/ConstantRange.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugInfo.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/IRBuilder.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/IntrinsicInst.h"
52#include "llvm/IR/LLVMContext.h"
53#include "llvm/IR/MDBuilder.h"
54#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/NoFolder.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/IR/PatternMatch.h"
60#include "llvm/IR/ProfDataUtils.h"
61#include "llvm/IR/Type.h"
62#include "llvm/IR/Use.h"
63#include "llvm/IR/User.h"
64#include "llvm/IR/Value.h"
65#include "llvm/IR/ValueHandle.h"
66#include "llvm/Support/BranchProbability.h"
67#include "llvm/Support/Casting.h"
68#include "llvm/Support/CommandLine.h"
69#include "llvm/Support/Debug.h"
70#include "llvm/Support/ErrorHandling.h"
71#include "llvm/Support/KnownBits.h"
72#include "llvm/Support/MathExtras.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Transforms/Utils/BasicBlockUtils.h"
75#include "llvm/Transforms/Utils/Local.h"
76#include "llvm/Transforms/Utils/ValueMapper.h"
77#include <algorithm>
78#include <cassert>
79#include <climits>
80#include <cstddef>
81#include <cstdint>
82#include <iterator>
83#include <map>
84#include <optional>
85#include <set>
86#include <tuple>
87#include <utility>
88#include <vector>
89
90using namespace llvm;
91using namespace PatternMatch;
92
93#define DEBUG_TYPE "simplifycfg"
94
95cl::opt<bool> llvm::RequireAndPreserveDomTree(
96 "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97
98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99 "into preserving DomTree,"));
100
101// Chosen as 2 so as to be cheap, but still to have enough power to fold
102// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103// To catch this, we need to fold a compare and a select, hence '2' being the
104// minimum reasonable default.
105static cl::opt<unsigned> PHINodeFoldingThreshold(
106 "phi-node-folding-threshold", cl::Hidden, cl::init(Val: 2),
107 cl::desc(
108 "Control the amount of phi node folding to perform (default = 2)"));
109
110static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(Val: 4),
112 cl::desc("Control the maximal total instruction cost that we are willing "
113 "to speculatively execute to fold a 2-entry PHI node into a "
114 "select (default = 4)"));
115
116static cl::opt<bool>
117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(Val: true),
118 cl::desc("Hoist common instructions up to the parent block"));
119
120static cl::opt<unsigned>
121 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
122 cl::init(Val: 20),
123 cl::desc("Allow reordering across at most this many "
124 "instructions when hoisting"));
125
126static cl::opt<bool>
127 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(Val: true),
128 cl::desc("Sink common instructions down to the end block"));
129
130static cl::opt<bool> HoistCondStores(
131 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(Val: true),
132 cl::desc("Hoist conditional stores if an unconditional store precedes"));
133
134static cl::opt<bool> MergeCondStores(
135 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(Val: true),
136 cl::desc("Hoist conditional stores even if an unconditional store does not "
137 "precede - hoist multiple conditional stores into a single "
138 "predicated store"));
139
140static cl::opt<bool> MergeCondStoresAggressively(
141 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(Val: false),
142 cl::desc("When merging conditional stores, do so even if the resultant "
143 "basic blocks are unlikely to be if-converted as a result"));
144
145static cl::opt<bool> SpeculateOneExpensiveInst(
146 "speculate-one-expensive-inst", cl::Hidden, cl::init(Val: true),
147 cl::desc("Allow exactly one expensive instruction to be speculatively "
148 "executed"));
149
150static cl::opt<unsigned> MaxSpeculationDepth(
151 "max-speculation-depth", cl::Hidden, cl::init(Val: 10),
152 cl::desc("Limit maximum recursion depth when calculating costs of "
153 "speculatively executed instructions"));
154
155static cl::opt<int>
156 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
157 cl::init(Val: 10),
158 cl::desc("Max size of a block which is still considered "
159 "small enough to thread through"));
160
161// Two is chosen to allow one negation and a logical combine.
162static cl::opt<unsigned>
163 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
164 cl::init(Val: 2),
165 cl::desc("Maximum cost of combining conditions when "
166 "folding branches"));
167
168static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
169 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
170 cl::init(Val: 2),
171 cl::desc("Multiplier to apply to threshold when determining whether or not "
172 "to fold branch to common destination when vector operations are "
173 "present"));
174
175static cl::opt<bool> EnableMergeCompatibleInvokes(
176 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(Val: true),
177 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
178
179static cl::opt<unsigned> MaxSwitchCasesPerResult(
180 "max-switch-cases-per-result", cl::Hidden, cl::init(Val: 16),
181 cl::desc("Limit cases to analyze when converting a switch to select"));
182
183STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
184STATISTIC(NumLinearMaps,
185 "Number of switch instructions turned into linear mapping");
186STATISTIC(NumLookupTables,
187 "Number of switch instructions turned into lookup tables");
188STATISTIC(
189 NumLookupTablesHoles,
190 "Number of switch instructions turned into lookup tables (holes checked)");
191STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
192STATISTIC(NumFoldValueComparisonIntoPredecessors,
193 "Number of value comparisons folded into predecessor basic blocks");
194STATISTIC(NumFoldBranchToCommonDest,
195 "Number of branches folded into predecessor basic block");
196STATISTIC(
197 NumHoistCommonCode,
198 "Number of common instruction 'blocks' hoisted up to the begin block");
199STATISTIC(NumHoistCommonInstrs,
200 "Number of common instructions hoisted up to the begin block");
201STATISTIC(NumSinkCommonCode,
202 "Number of common instruction 'blocks' sunk down to the end block");
203STATISTIC(NumSinkCommonInstrs,
204 "Number of common instructions sunk down to the end block");
205STATISTIC(NumSpeculations, "Number of speculative executed instructions");
206STATISTIC(NumInvokes,
207 "Number of invokes with empty resume blocks simplified into calls");
208STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
209STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
210
211namespace {
212
213// The first field contains the value that the switch produces when a certain
214// case group is selected, and the second field is a vector containing the
215// cases composing the case group.
216using SwitchCaseResultVectorTy =
217 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
218
219// The first field contains the phi node that generates a result of the switch
220// and the second field contains the value generated for a certain case in the
221// switch for that PHI.
222using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
223
224/// ValueEqualityComparisonCase - Represents a case of a switch.
225struct ValueEqualityComparisonCase {
226 ConstantInt *Value;
227 BasicBlock *Dest;
228
229 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
230 : Value(Value), Dest(Dest) {}
231
232 bool operator<(ValueEqualityComparisonCase RHS) const {
233 // Comparing pointers is ok as we only rely on the order for uniquing.
234 return Value < RHS.Value;
235 }
236
237 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
238};
239
240class SimplifyCFGOpt {
241 const TargetTransformInfo &TTI;
242 DomTreeUpdater *DTU;
243 const DataLayout &DL;
244 ArrayRef<WeakVH> LoopHeaders;
245 const SimplifyCFGOptions &Options;
246 bool Resimplify;
247
248 Value *isValueEqualityComparison(Instruction *TI);
249 BasicBlock *GetValueEqualityComparisonCases(
250 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
251 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
252 BasicBlock *Pred,
253 IRBuilder<> &Builder);
254 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
255 Instruction *PTI,
256 IRBuilder<> &Builder);
257 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
258 IRBuilder<> &Builder);
259
260 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
261 bool simplifySingleResume(ResumeInst *RI);
262 bool simplifyCommonResume(ResumeInst *RI);
263 bool simplifyCleanupReturn(CleanupReturnInst *RI);
264 bool simplifyUnreachable(UnreachableInst *UI);
265 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
266 bool simplifyIndirectBr(IndirectBrInst *IBI);
267 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
268 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
269 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
270
271 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
272 IRBuilder<> &Builder);
273
274 bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly);
275 bool hoistSuccIdenticalTerminatorToSwitchOrIf(
276 Instruction *TI, Instruction *I1,
277 SmallVectorImpl<Instruction *> &OtherSuccTIs);
278 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
279 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
280 BasicBlock *TrueBB, BasicBlock *FalseBB,
281 uint32_t TrueWeight, uint32_t FalseWeight);
282 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
283 const DataLayout &DL);
284 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
285 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
286 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
287
288public:
289 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
290 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
291 const SimplifyCFGOptions &Opts)
292 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
293 assert((!DTU || !DTU->hasPostDomTree()) &&
294 "SimplifyCFG is not yet capable of maintaining validity of a "
295 "PostDomTree, so don't ask for it.");
296 }
297
298 bool simplifyOnce(BasicBlock *BB);
299 bool run(BasicBlock *BB);
300
301 // Helper to set Resimplify and return change indication.
302 bool requestResimplify() {
303 Resimplify = true;
304 return true;
305 }
306};
307
308} // end anonymous namespace
309
310/// Return true if all the PHI nodes in the basic block \p BB
311/// receive compatible (identical) incoming values when coming from
312/// all of the predecessor blocks that are specified in \p IncomingBlocks.
313///
314/// Note that if the values aren't exactly identical, but \p EquivalenceSet
315/// is provided, and *both* of the values are present in the set,
316/// then they are considered equal.
317static bool IncomingValuesAreCompatible(
318 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
319 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
320 assert(IncomingBlocks.size() == 2 &&
321 "Only for a pair of incoming blocks at the time!");
322
323 // FIXME: it is okay if one of the incoming values is an `undef` value,
324 // iff the other incoming value is guaranteed to be a non-poison value.
325 // FIXME: it is okay if one of the incoming values is a `poison` value.
326 return all_of(Range: BB->phis(), P: [IncomingBlocks, EquivalenceSet](PHINode &PN) {
327 Value *IV0 = PN.getIncomingValueForBlock(BB: IncomingBlocks[0]);
328 Value *IV1 = PN.getIncomingValueForBlock(BB: IncomingBlocks[1]);
329 if (IV0 == IV1)
330 return true;
331 if (EquivalenceSet && EquivalenceSet->contains(Ptr: IV0) &&
332 EquivalenceSet->contains(Ptr: IV1))
333 return true;
334 return false;
335 });
336}
337
338/// Return true if it is safe to merge these two
339/// terminator instructions together.
340static bool
341SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
342 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
343 if (SI1 == SI2)
344 return false; // Can't merge with self!
345
346 // It is not safe to merge these two switch instructions if they have a common
347 // successor, and if that successor has a PHI node, and if *that* PHI node has
348 // conflicting incoming values from the two switch blocks.
349 BasicBlock *SI1BB = SI1->getParent();
350 BasicBlock *SI2BB = SI2->getParent();
351
352 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(BB: SI1BB), succ_end(BB: SI1BB));
353 bool Fail = false;
354 for (BasicBlock *Succ : successors(BB: SI2BB)) {
355 if (!SI1Succs.count(Ptr: Succ))
356 continue;
357 if (IncomingValuesAreCompatible(BB: Succ, IncomingBlocks: {SI1BB, SI2BB}))
358 continue;
359 Fail = true;
360 if (FailBlocks)
361 FailBlocks->insert(X: Succ);
362 else
363 break;
364 }
365
366 return !Fail;
367}
368
369/// Update PHI nodes in Succ to indicate that there will now be entries in it
370/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
371/// will be the same as those coming in from ExistPred, an existing predecessor
372/// of Succ.
373static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
374 BasicBlock *ExistPred,
375 MemorySSAUpdater *MSSAU = nullptr) {
376 for (PHINode &PN : Succ->phis())
377 PN.addIncoming(V: PN.getIncomingValueForBlock(BB: ExistPred), BB: NewPred);
378 if (MSSAU)
379 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(BB: Succ))
380 MPhi->addIncoming(V: MPhi->getIncomingValueForBlock(BB: ExistPred), BB: NewPred);
381}
382
383/// Compute an abstract "cost" of speculating the given instruction,
384/// which is assumed to be safe to speculate. TCC_Free means cheap,
385/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
386/// expensive.
387static InstructionCost computeSpeculationCost(const User *I,
388 const TargetTransformInfo &TTI) {
389 assert((!isa<Instruction>(I) ||
390 isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
391 "Instruction is not safe to speculatively execute!");
392 return TTI.getInstructionCost(U: I, CostKind: TargetTransformInfo::TCK_SizeAndLatency);
393}
394
395/// If we have a merge point of an "if condition" as accepted above,
396/// return true if the specified value dominates the block. We
397/// don't handle the true generality of domination here, just a special case
398/// which works well enough for us.
399///
400/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
401/// see if V (which must be an instruction) and its recursive operands
402/// that do not dominate BB have a combined cost lower than Budget and
403/// are non-trapping. If both are true, the instruction is inserted into the
404/// set and true is returned.
405///
406/// The cost for most non-trapping instructions is defined as 1 except for
407/// Select whose cost is 2.
408///
409/// After this function returns, Cost is increased by the cost of
410/// V plus its non-dominating operands. If that cost is greater than
411/// Budget, false is returned and Cost is undefined.
412static bool dominatesMergePoint(Value *V, BasicBlock *BB,
413 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
414 InstructionCost &Cost,
415 InstructionCost Budget,
416 const TargetTransformInfo &TTI,
417 unsigned Depth = 0) {
418 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
419 // so limit the recursion depth.
420 // TODO: While this recursion limit does prevent pathological behavior, it
421 // would be better to track visited instructions to avoid cycles.
422 if (Depth == MaxSpeculationDepth)
423 return false;
424
425 Instruction *I = dyn_cast<Instruction>(Val: V);
426 if (!I) {
427 // Non-instructions dominate all instructions and can be executed
428 // unconditionally.
429 return true;
430 }
431 BasicBlock *PBB = I->getParent();
432
433 // We don't want to allow weird loops that might have the "if condition" in
434 // the bottom of this block.
435 if (PBB == BB)
436 return false;
437
438 // If this instruction is defined in a block that contains an unconditional
439 // branch to BB, then it must be in the 'conditional' part of the "if
440 // statement". If not, it definitely dominates the region.
441 BranchInst *BI = dyn_cast<BranchInst>(Val: PBB->getTerminator());
442 if (!BI || BI->isConditional() || BI->getSuccessor(i: 0) != BB)
443 return true;
444
445 // If we have seen this instruction before, don't count it again.
446 if (AggressiveInsts.count(Ptr: I))
447 return true;
448
449 // Okay, it looks like the instruction IS in the "condition". Check to
450 // see if it's a cheap instruction to unconditionally compute, and if it
451 // only uses stuff defined outside of the condition. If so, hoist it out.
452 if (!isSafeToSpeculativelyExecute(I))
453 return false;
454
455 Cost += computeSpeculationCost(I, TTI);
456
457 // Allow exactly one instruction to be speculated regardless of its cost
458 // (as long as it is safe to do so).
459 // This is intended to flatten the CFG even if the instruction is a division
460 // or other expensive operation. The speculation of an expensive instruction
461 // is expected to be undone in CodeGenPrepare if the speculation has not
462 // enabled further IR optimizations.
463 if (Cost > Budget &&
464 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
465 !Cost.isValid()))
466 return false;
467
468 // Okay, we can only really hoist these out if their operands do
469 // not take us over the cost threshold.
470 for (Use &Op : I->operands())
471 if (!dominatesMergePoint(V: Op, BB, AggressiveInsts, Cost, Budget, TTI,
472 Depth: Depth + 1))
473 return false;
474 // Okay, it's safe to do this! Remember this instruction.
475 AggressiveInsts.insert(Ptr: I);
476 return true;
477}
478
479/// Extract ConstantInt from value, looking through IntToPtr
480/// and PointerNullValue. Return NULL if value is not a constant int.
481static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
482 // Normal constant int.
483 ConstantInt *CI = dyn_cast<ConstantInt>(Val: V);
484 if (CI || !isa<Constant>(Val: V) || !V->getType()->isPointerTy() ||
485 DL.isNonIntegralPointerType(Ty: V->getType()))
486 return CI;
487
488 // This is some kind of pointer constant. Turn it into a pointer-sized
489 // ConstantInt if possible.
490 IntegerType *PtrTy = cast<IntegerType>(Val: DL.getIntPtrType(V->getType()));
491
492 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
493 if (isa<ConstantPointerNull>(Val: V))
494 return ConstantInt::get(Ty: PtrTy, V: 0);
495
496 // IntToPtr const int.
497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: V))
498 if (CE->getOpcode() == Instruction::IntToPtr)
499 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: CE->getOperand(i_nocapture: 0))) {
500 // The constant is very likely to have the right type already.
501 if (CI->getType() == PtrTy)
502 return CI;
503 else
504 return cast<ConstantInt>(
505 Val: ConstantFoldIntegerCast(C: CI, DestTy: PtrTy, /*isSigned=*/IsSigned: false, DL));
506 }
507 return nullptr;
508}
509
510namespace {
511
512/// Given a chain of or (||) or and (&&) comparison of a value against a
513/// constant, this will try to recover the information required for a switch
514/// structure.
515/// It will depth-first traverse the chain of comparison, seeking for patterns
516/// like %a == 12 or %a < 4 and combine them to produce a set of integer
517/// representing the different cases for the switch.
518/// Note that if the chain is composed of '||' it will build the set of elements
519/// that matches the comparisons (i.e. any of this value validate the chain)
520/// while for a chain of '&&' it will build the set elements that make the test
521/// fail.
522struct ConstantComparesGatherer {
523 const DataLayout &DL;
524
525 /// Value found for the switch comparison
526 Value *CompValue = nullptr;
527
528 /// Extra clause to be checked before the switch
529 Value *Extra = nullptr;
530
531 /// Set of integers to match in switch
532 SmallVector<ConstantInt *, 8> Vals;
533
534 /// Number of comparisons matched in the and/or chain
535 unsigned UsedICmps = 0;
536
537 /// Construct and compute the result for the comparison instruction Cond
538 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
539 gather(V: Cond);
540 }
541
542 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
543 ConstantComparesGatherer &
544 operator=(const ConstantComparesGatherer &) = delete;
545
546private:
547 /// Try to set the current value used for the comparison, it succeeds only if
548 /// it wasn't set before or if the new value is the same as the old one
549 bool setValueOnce(Value *NewVal) {
550 if (CompValue && CompValue != NewVal)
551 return false;
552 CompValue = NewVal;
553 return (CompValue != nullptr);
554 }
555
556 /// Try to match Instruction "I" as a comparison against a constant and
557 /// populates the array Vals with the set of values that match (or do not
558 /// match depending on isEQ).
559 /// Return false on failure. On success, the Value the comparison matched
560 /// against is placed in CompValue.
561 /// If CompValue is already set, the function is expected to fail if a match
562 /// is found but the value compared to is different.
563 bool matchInstruction(Instruction *I, bool isEQ) {
564 // If this is an icmp against a constant, handle this as one of the cases.
565 ICmpInst *ICI;
566 ConstantInt *C;
567 if (!((ICI = dyn_cast<ICmpInst>(Val: I)) &&
568 (C = GetConstantInt(V: I->getOperand(i: 1), DL)))) {
569 return false;
570 }
571
572 Value *RHSVal;
573 const APInt *RHSC;
574
575 // Pattern match a special case
576 // (x & ~2^z) == y --> x == y || x == y|2^z
577 // This undoes a transformation done by instcombine to fuse 2 compares.
578 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
579 // It's a little bit hard to see why the following transformations are
580 // correct. Here is a CVC3 program to verify them for 64-bit values:
581
582 /*
583 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
584 x : BITVECTOR(64);
585 y : BITVECTOR(64);
586 z : BITVECTOR(64);
587 mask : BITVECTOR(64) = BVSHL(ONE, z);
588 QUERY( (y & ~mask = y) =>
589 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
590 );
591 QUERY( (y | mask = y) =>
592 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
593 );
594 */
595
596 // Please note that each pattern must be a dual implication (<--> or
597 // iff). One directional implication can create spurious matches. If the
598 // implication is only one-way, an unsatisfiable condition on the left
599 // side can imply a satisfiable condition on the right side. Dual
600 // implication ensures that satisfiable conditions are transformed to
601 // other satisfiable conditions and unsatisfiable conditions are
602 // transformed to other unsatisfiable conditions.
603
604 // Here is a concrete example of a unsatisfiable condition on the left
605 // implying a satisfiable condition on the right:
606 //
607 // mask = (1 << z)
608 // (x & ~mask) == y --> (x == y || x == (y | mask))
609 //
610 // Substituting y = 3, z = 0 yields:
611 // (x & -2) == 3 --> (x == 3 || x == 2)
612
613 // Pattern match a special case:
614 /*
615 QUERY( (y & ~mask = y) =>
616 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
617 );
618 */
619 if (match(V: ICI->getOperand(i_nocapture: 0),
620 P: m_And(L: m_Value(V&: RHSVal), R: m_APInt(Res&: RHSC)))) {
621 APInt Mask = ~*RHSC;
622 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
623 // If we already have a value for the switch, it has to match!
624 if (!setValueOnce(RHSVal))
625 return false;
626
627 Vals.push_back(Elt: C);
628 Vals.push_back(
629 Elt: ConstantInt::get(Context&: C->getContext(),
630 V: C->getValue() | Mask));
631 UsedICmps++;
632 return true;
633 }
634 }
635
636 // Pattern match a special case:
637 /*
638 QUERY( (y | mask = y) =>
639 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
640 );
641 */
642 if (match(V: ICI->getOperand(i_nocapture: 0),
643 P: m_Or(L: m_Value(V&: RHSVal), R: m_APInt(Res&: RHSC)))) {
644 APInt Mask = *RHSC;
645 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
646 // If we already have a value for the switch, it has to match!
647 if (!setValueOnce(RHSVal))
648 return false;
649
650 Vals.push_back(Elt: C);
651 Vals.push_back(Elt: ConstantInt::get(Context&: C->getContext(),
652 V: C->getValue() & ~Mask));
653 UsedICmps++;
654 return true;
655 }
656 }
657
658 // If we already have a value for the switch, it has to match!
659 if (!setValueOnce(ICI->getOperand(i_nocapture: 0)))
660 return false;
661
662 UsedICmps++;
663 Vals.push_back(Elt: C);
664 return ICI->getOperand(i_nocapture: 0);
665 }
666
667 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
668 ConstantRange Span =
669 ConstantRange::makeExactICmpRegion(Pred: ICI->getPredicate(), Other: C->getValue());
670
671 // Shift the range if the compare is fed by an add. This is the range
672 // compare idiom as emitted by instcombine.
673 Value *CandidateVal = I->getOperand(i: 0);
674 if (match(V: I->getOperand(i: 0), P: m_Add(L: m_Value(V&: RHSVal), R: m_APInt(Res&: RHSC)))) {
675 Span = Span.subtract(CI: *RHSC);
676 CandidateVal = RHSVal;
677 }
678
679 // If this is an and/!= check, then we are looking to build the set of
680 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
681 // x != 0 && x != 1.
682 if (!isEQ)
683 Span = Span.inverse();
684
685 // If there are a ton of values, we don't want to make a ginormous switch.
686 if (Span.isSizeLargerThan(MaxSize: 8) || Span.isEmptySet()) {
687 return false;
688 }
689
690 // If we already have a value for the switch, it has to match!
691 if (!setValueOnce(CandidateVal))
692 return false;
693
694 // Add all values from the range to the set
695 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
696 Vals.push_back(Elt: ConstantInt::get(Context&: I->getContext(), V: Tmp));
697
698 UsedICmps++;
699 return true;
700 }
701
702 /// Given a potentially 'or'd or 'and'd together collection of icmp
703 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
704 /// the value being compared, and stick the list constants into the Vals
705 /// vector.
706 /// One "Extra" case is allowed to differ from the other.
707 void gather(Value *V) {
708 bool isEQ = match(V, P: m_LogicalOr(L: m_Value(), R: m_Value()));
709
710 // Keep a stack (SmallVector for efficiency) for depth-first traversal
711 SmallVector<Value *, 8> DFT;
712 SmallPtrSet<Value *, 8> Visited;
713
714 // Initialize
715 Visited.insert(Ptr: V);
716 DFT.push_back(Elt: V);
717
718 while (!DFT.empty()) {
719 V = DFT.pop_back_val();
720
721 if (Instruction *I = dyn_cast<Instruction>(Val: V)) {
722 // If it is a || (or && depending on isEQ), process the operands.
723 Value *Op0, *Op1;
724 if (isEQ ? match(V: I, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))
725 : match(V: I, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) {
726 if (Visited.insert(Ptr: Op1).second)
727 DFT.push_back(Elt: Op1);
728 if (Visited.insert(Ptr: Op0).second)
729 DFT.push_back(Elt: Op0);
730
731 continue;
732 }
733
734 // Try to match the current instruction
735 if (matchInstruction(I, isEQ))
736 // Match succeed, continue the loop
737 continue;
738 }
739
740 // One element of the sequence of || (or &&) could not be match as a
741 // comparison against the same value as the others.
742 // We allow only one "Extra" case to be checked before the switch
743 if (!Extra) {
744 Extra = V;
745 continue;
746 }
747 // Failed to parse a proper sequence, abort now
748 CompValue = nullptr;
749 break;
750 }
751 }
752};
753
754} // end anonymous namespace
755
756static void EraseTerminatorAndDCECond(Instruction *TI,
757 MemorySSAUpdater *MSSAU = nullptr) {
758 Instruction *Cond = nullptr;
759 if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) {
760 Cond = dyn_cast<Instruction>(Val: SI->getCondition());
761 } else if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) {
762 if (BI->isConditional())
763 Cond = dyn_cast<Instruction>(Val: BI->getCondition());
764 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(Val: TI)) {
765 Cond = dyn_cast<Instruction>(Val: IBI->getAddress());
766 }
767
768 TI->eraseFromParent();
769 if (Cond)
770 RecursivelyDeleteTriviallyDeadInstructions(V: Cond, TLI: nullptr, MSSAU);
771}
772
773/// Return true if the specified terminator checks
774/// to see if a value is equal to constant integer value.
775Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
776 Value *CV = nullptr;
777 if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) {
778 // Do not permit merging of large switch instructions into their
779 // predecessors unless there is only one predecessor.
780 if (!SI->getParent()->hasNPredecessorsOrMore(N: 128 / SI->getNumSuccessors()))
781 CV = SI->getCondition();
782 } else if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI))
783 if (BI->isConditional() && BI->getCondition()->hasOneUse())
784 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Val: BI->getCondition())) {
785 if (ICI->isEquality() && GetConstantInt(V: ICI->getOperand(i_nocapture: 1), DL))
786 CV = ICI->getOperand(i_nocapture: 0);
787 }
788
789 // Unwrap any lossless ptrtoint cast.
790 if (CV) {
791 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(Val: CV)) {
792 Value *Ptr = PTII->getPointerOperand();
793 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
794 CV = Ptr;
795 }
796 }
797 return CV;
798}
799
800/// Given a value comparison instruction,
801/// decode all of the 'cases' that it represents and return the 'default' block.
802BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
803 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
804 if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) {
805 Cases.reserve(n: SI->getNumCases());
806 for (auto Case : SI->cases())
807 Cases.push_back(x: ValueEqualityComparisonCase(Case.getCaseValue(),
808 Case.getCaseSuccessor()));
809 return SI->getDefaultDest();
810 }
811
812 BranchInst *BI = cast<BranchInst>(Val: TI);
813 ICmpInst *ICI = cast<ICmpInst>(Val: BI->getCondition());
814 BasicBlock *Succ = BI->getSuccessor(i: ICI->getPredicate() == ICmpInst::ICMP_NE);
815 Cases.push_back(x: ValueEqualityComparisonCase(
816 GetConstantInt(V: ICI->getOperand(i_nocapture: 1), DL), Succ));
817 return BI->getSuccessor(i: ICI->getPredicate() == ICmpInst::ICMP_EQ);
818}
819
820/// Given a vector of bb/value pairs, remove any entries
821/// in the list that match the specified block.
822static void
823EliminateBlockCases(BasicBlock *BB,
824 std::vector<ValueEqualityComparisonCase> &Cases) {
825 llvm::erase(C&: Cases, V: BB);
826}
827
828/// Return true if there are any keys in C1 that exist in C2 as well.
829static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
830 std::vector<ValueEqualityComparisonCase> &C2) {
831 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
832
833 // Make V1 be smaller than V2.
834 if (V1->size() > V2->size())
835 std::swap(a&: V1, b&: V2);
836
837 if (V1->empty())
838 return false;
839 if (V1->size() == 1) {
840 // Just scan V2.
841 ConstantInt *TheVal = (*V1)[0].Value;
842 for (const ValueEqualityComparisonCase &VECC : *V2)
843 if (TheVal == VECC.Value)
844 return true;
845 }
846
847 // Otherwise, just sort both lists and compare element by element.
848 array_pod_sort(Start: V1->begin(), End: V1->end());
849 array_pod_sort(Start: V2->begin(), End: V2->end());
850 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
851 while (i1 != e1 && i2 != e2) {
852 if ((*V1)[i1].Value == (*V2)[i2].Value)
853 return true;
854 if ((*V1)[i1].Value < (*V2)[i2].Value)
855 ++i1;
856 else
857 ++i2;
858 }
859 return false;
860}
861
862// Set branch weights on SwitchInst. This sets the metadata if there is at
863// least one non-zero weight.
864static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
865 // Check that there is at least one non-zero weight. Otherwise, pass
866 // nullptr to setMetadata which will erase the existing metadata.
867 MDNode *N = nullptr;
868 if (llvm::any_of(Range&: Weights, P: [](uint32_t W) { return W != 0; }))
869 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
870 SI->setMetadata(KindID: LLVMContext::MD_prof, Node: N);
871}
872
873// Similar to the above, but for branch and select instructions that take
874// exactly 2 weights.
875static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
876 uint32_t FalseWeight) {
877 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
878 // Check that there is at least one non-zero weight. Otherwise, pass
879 // nullptr to setMetadata which will erase the existing metadata.
880 MDNode *N = nullptr;
881 if (TrueWeight || FalseWeight)
882 N = MDBuilder(I->getParent()->getContext())
883 .createBranchWeights(TrueWeight, FalseWeight);
884 I->setMetadata(KindID: LLVMContext::MD_prof, Node: N);
885}
886
887/// If TI is known to be a terminator instruction and its block is known to
888/// only have a single predecessor block, check to see if that predecessor is
889/// also a value comparison with the same value, and if that comparison
890/// determines the outcome of this comparison. If so, simplify TI. This does a
891/// very limited form of jump threading.
892bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
893 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
894 Value *PredVal = isValueEqualityComparison(TI: Pred->getTerminator());
895 if (!PredVal)
896 return false; // Not a value comparison in predecessor.
897
898 Value *ThisVal = isValueEqualityComparison(TI);
899 assert(ThisVal && "This isn't a value comparison!!");
900 if (ThisVal != PredVal)
901 return false; // Different predicates.
902
903 // TODO: Preserve branch weight metadata, similarly to how
904 // FoldValueComparisonIntoPredecessors preserves it.
905
906 // Find out information about when control will move from Pred to TI's block.
907 std::vector<ValueEqualityComparisonCase> PredCases;
908 BasicBlock *PredDef =
909 GetValueEqualityComparisonCases(TI: Pred->getTerminator(), Cases&: PredCases);
910 EliminateBlockCases(BB: PredDef, Cases&: PredCases); // Remove default from cases.
911
912 // Find information about how control leaves this block.
913 std::vector<ValueEqualityComparisonCase> ThisCases;
914 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, Cases&: ThisCases);
915 EliminateBlockCases(BB: ThisDef, Cases&: ThisCases); // Remove default from cases.
916
917 // If TI's block is the default block from Pred's comparison, potentially
918 // simplify TI based on this knowledge.
919 if (PredDef == TI->getParent()) {
920 // If we are here, we know that the value is none of those cases listed in
921 // PredCases. If there are any cases in ThisCases that are in PredCases, we
922 // can simplify TI.
923 if (!ValuesOverlap(C1&: PredCases, C2&: ThisCases))
924 return false;
925
926 if (isa<BranchInst>(Val: TI)) {
927 // Okay, one of the successors of this condbr is dead. Convert it to a
928 // uncond br.
929 assert(ThisCases.size() == 1 && "Branch can only have one case!");
930 // Insert the new branch.
931 Instruction *NI = Builder.CreateBr(Dest: ThisDef);
932 (void)NI;
933
934 // Remove PHI node entries for the dead edge.
935 ThisCases[0].Dest->removePredecessor(Pred: PredDef);
936
937 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
938 << "Through successor TI: " << *TI << "Leaving: " << *NI
939 << "\n");
940
941 EraseTerminatorAndDCECond(TI);
942
943 if (DTU)
944 DTU->applyUpdates(
945 Updates: {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
946
947 return true;
948 }
949
950 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(Val: TI);
951 // Okay, TI has cases that are statically dead, prune them away.
952 SmallPtrSet<Constant *, 16> DeadCases;
953 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
954 DeadCases.insert(Ptr: PredCases[i].Value);
955
956 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
957 << "Through successor TI: " << *TI);
958
959 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
960 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
961 --i;
962 auto *Successor = i->getCaseSuccessor();
963 if (DTU)
964 ++NumPerSuccessorCases[Successor];
965 if (DeadCases.count(Ptr: i->getCaseValue())) {
966 Successor->removePredecessor(Pred: PredDef);
967 SI.removeCase(I: i);
968 if (DTU)
969 --NumPerSuccessorCases[Successor];
970 }
971 }
972
973 if (DTU) {
974 std::vector<DominatorTree::UpdateType> Updates;
975 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
976 if (I.second == 0)
977 Updates.push_back(x: {DominatorTree::Delete, PredDef, I.first});
978 DTU->applyUpdates(Updates);
979 }
980
981 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
982 return true;
983 }
984
985 // Otherwise, TI's block must correspond to some matched value. Find out
986 // which value (or set of values) this is.
987 ConstantInt *TIV = nullptr;
988 BasicBlock *TIBB = TI->getParent();
989 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
990 if (PredCases[i].Dest == TIBB) {
991 if (TIV)
992 return false; // Cannot handle multiple values coming to this block.
993 TIV = PredCases[i].Value;
994 }
995 assert(TIV && "No edge from pred to succ?");
996
997 // Okay, we found the one constant that our value can be if we get into TI's
998 // BB. Find out which successor will unconditionally be branched to.
999 BasicBlock *TheRealDest = nullptr;
1000 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
1001 if (ThisCases[i].Value == TIV) {
1002 TheRealDest = ThisCases[i].Dest;
1003 break;
1004 }
1005
1006 // If not handled by any explicit cases, it is handled by the default case.
1007 if (!TheRealDest)
1008 TheRealDest = ThisDef;
1009
1010 SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1011
1012 // Remove PHI node entries for dead edges.
1013 BasicBlock *CheckEdge = TheRealDest;
1014 for (BasicBlock *Succ : successors(BB: TIBB))
1015 if (Succ != CheckEdge) {
1016 if (Succ != TheRealDest)
1017 RemovedSuccs.insert(Ptr: Succ);
1018 Succ->removePredecessor(Pred: TIBB);
1019 } else
1020 CheckEdge = nullptr;
1021
1022 // Insert the new branch.
1023 Instruction *NI = Builder.CreateBr(Dest: TheRealDest);
1024 (void)NI;
1025
1026 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1027 << "Through successor TI: " << *TI << "Leaving: " << *NI
1028 << "\n");
1029
1030 EraseTerminatorAndDCECond(TI);
1031 if (DTU) {
1032 SmallVector<DominatorTree::UpdateType, 2> Updates;
1033 Updates.reserve(N: RemovedSuccs.size());
1034 for (auto *RemovedSucc : RemovedSuccs)
1035 Updates.push_back(Elt: {DominatorTree::Delete, TIBB, RemovedSucc});
1036 DTU->applyUpdates(Updates);
1037 }
1038 return true;
1039}
1040
1041namespace {
1042
1043/// This class implements a stable ordering of constant
1044/// integers that does not depend on their address. This is important for
1045/// applications that sort ConstantInt's to ensure uniqueness.
1046struct ConstantIntOrdering {
1047 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1048 return LHS->getValue().ult(RHS: RHS->getValue());
1049 }
1050};
1051
1052} // end anonymous namespace
1053
1054static int ConstantIntSortPredicate(ConstantInt *const *P1,
1055 ConstantInt *const *P2) {
1056 const ConstantInt *LHS = *P1;
1057 const ConstantInt *RHS = *P2;
1058 if (LHS == RHS)
1059 return 0;
1060 return LHS->getValue().ult(RHS: RHS->getValue()) ? 1 : -1;
1061}
1062
1063/// Get Weights of a given terminator, the default weight is at the front
1064/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1065/// metadata.
1066static void GetBranchWeights(Instruction *TI,
1067 SmallVectorImpl<uint64_t> &Weights) {
1068 MDNode *MD = TI->getMetadata(KindID: LLVMContext::MD_prof);
1069 assert(MD);
1070 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1071 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: i));
1072 Weights.push_back(Elt: CI->getValue().getZExtValue());
1073 }
1074
1075 // If TI is a conditional eq, the default case is the false case,
1076 // and the corresponding branch-weight data is at index 2. We swap the
1077 // default weight to be the first entry.
1078 if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) {
1079 assert(Weights.size() == 2);
1080 ICmpInst *ICI = cast<ICmpInst>(Val: BI->getCondition());
1081 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1082 std::swap(a&: Weights.front(), b&: Weights.back());
1083 }
1084}
1085
1086/// Keep halving the weights until all can fit in uint32_t.
1087static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1088 uint64_t Max = *llvm::max_element(Range&: Weights);
1089 if (Max > UINT_MAX) {
1090 unsigned Offset = 32 - llvm::countl_zero(Val: Max);
1091 for (uint64_t &I : Weights)
1092 I >>= Offset;
1093 }
1094}
1095
1096static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1097 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1098 Instruction *PTI = PredBlock->getTerminator();
1099
1100 // If we have bonus instructions, clone them into the predecessor block.
1101 // Note that there may be multiple predecessor blocks, so we cannot move
1102 // bonus instructions to a predecessor block.
1103 for (Instruction &BonusInst : *BB) {
1104 if (BonusInst.isTerminator())
1105 continue;
1106
1107 Instruction *NewBonusInst = BonusInst.clone();
1108
1109 if (!isa<DbgInfoIntrinsic>(Val: BonusInst) &&
1110 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1111 // Unless the instruction has the same !dbg location as the original
1112 // branch, drop it. When we fold the bonus instructions we want to make
1113 // sure we reset their debug locations in order to avoid stepping on
1114 // dead code caused by folding dead branches.
1115 NewBonusInst->setDebugLoc(DebugLoc());
1116 }
1117
1118 RemapInstruction(I: NewBonusInst, VM&: VMap,
1119 Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1120
1121 // If we speculated an instruction, we need to drop any metadata that may
1122 // result in undefined behavior, as the metadata might have been valid
1123 // only given the branch precondition.
1124 // Similarly strip attributes on call parameters that may cause UB in
1125 // location the call is moved to.
1126 NewBonusInst->dropUBImplyingAttrsAndMetadata();
1127
1128 NewBonusInst->insertInto(ParentBB: PredBlock, It: PTI->getIterator());
1129 auto Range = NewBonusInst->cloneDebugInfoFrom(From: &BonusInst);
1130 RemapDbgVariableRecordRange(M: NewBonusInst->getModule(), Range, VM&: VMap,
1131 Flags: RF_NoModuleLevelChanges |
1132 RF_IgnoreMissingLocals);
1133
1134 if (isa<DbgInfoIntrinsic>(Val: BonusInst))
1135 continue;
1136
1137 NewBonusInst->takeName(V: &BonusInst);
1138 BonusInst.setName(NewBonusInst->getName() + ".old");
1139 VMap[&BonusInst] = NewBonusInst;
1140
1141 // Update (liveout) uses of bonus instructions,
1142 // now that the bonus instruction has been cloned into predecessor.
1143 // Note that we expect to be in a block-closed SSA form for this to work!
1144 for (Use &U : make_early_inc_range(Range: BonusInst.uses())) {
1145 auto *UI = cast<Instruction>(Val: U.getUser());
1146 auto *PN = dyn_cast<PHINode>(Val: UI);
1147 if (!PN) {
1148 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1149 "If the user is not a PHI node, then it should be in the same "
1150 "block as, and come after, the original bonus instruction.");
1151 continue; // Keep using the original bonus instruction.
1152 }
1153 // Is this the block-closed SSA form PHI node?
1154 if (PN->getIncomingBlock(U) == BB)
1155 continue; // Great, keep using the original bonus instruction.
1156 // The only other alternative is an "use" when coming from
1157 // the predecessor block - here we should refer to the cloned bonus instr.
1158 assert(PN->getIncomingBlock(U) == PredBlock &&
1159 "Not in block-closed SSA form?");
1160 U.set(NewBonusInst);
1161 }
1162 }
1163}
1164
1165bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1166 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1167 BasicBlock *BB = TI->getParent();
1168 BasicBlock *Pred = PTI->getParent();
1169
1170 SmallVector<DominatorTree::UpdateType, 32> Updates;
1171
1172 // Figure out which 'cases' to copy from SI to PSI.
1173 std::vector<ValueEqualityComparisonCase> BBCases;
1174 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, Cases&: BBCases);
1175
1176 std::vector<ValueEqualityComparisonCase> PredCases;
1177 BasicBlock *PredDefault = GetValueEqualityComparisonCases(TI: PTI, Cases&: PredCases);
1178
1179 // Based on whether the default edge from PTI goes to BB or not, fill in
1180 // PredCases and PredDefault with the new switch cases we would like to
1181 // build.
1182 SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1183
1184 // Update the branch weight metadata along the way
1185 SmallVector<uint64_t, 8> Weights;
1186 bool PredHasWeights = hasBranchWeightMD(I: *PTI);
1187 bool SuccHasWeights = hasBranchWeightMD(I: *TI);
1188
1189 if (PredHasWeights) {
1190 GetBranchWeights(TI: PTI, Weights);
1191 // branch-weight metadata is inconsistent here.
1192 if (Weights.size() != 1 + PredCases.size())
1193 PredHasWeights = SuccHasWeights = false;
1194 } else if (SuccHasWeights)
1195 // If there are no predecessor weights but there are successor weights,
1196 // populate Weights with 1, which will later be scaled to the sum of
1197 // successor's weights
1198 Weights.assign(NumElts: 1 + PredCases.size(), Elt: 1);
1199
1200 SmallVector<uint64_t, 8> SuccWeights;
1201 if (SuccHasWeights) {
1202 GetBranchWeights(TI, Weights&: SuccWeights);
1203 // branch-weight metadata is inconsistent here.
1204 if (SuccWeights.size() != 1 + BBCases.size())
1205 PredHasWeights = SuccHasWeights = false;
1206 } else if (PredHasWeights)
1207 SuccWeights.assign(NumElts: 1 + BBCases.size(), Elt: 1);
1208
1209 if (PredDefault == BB) {
1210 // If this is the default destination from PTI, only the edges in TI
1211 // that don't occur in PTI, or that branch to BB will be activated.
1212 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1213 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1214 if (PredCases[i].Dest != BB)
1215 PTIHandled.insert(x: PredCases[i].Value);
1216 else {
1217 // The default destination is BB, we don't need explicit targets.
1218 std::swap(a&: PredCases[i], b&: PredCases.back());
1219
1220 if (PredHasWeights || SuccHasWeights) {
1221 // Increase weight for the default case.
1222 Weights[0] += Weights[i + 1];
1223 std::swap(a&: Weights[i + 1], b&: Weights.back());
1224 Weights.pop_back();
1225 }
1226
1227 PredCases.pop_back();
1228 --i;
1229 --e;
1230 }
1231
1232 // Reconstruct the new switch statement we will be building.
1233 if (PredDefault != BBDefault) {
1234 PredDefault->removePredecessor(Pred);
1235 if (DTU && PredDefault != BB)
1236 Updates.push_back(Elt: {DominatorTree::Delete, Pred, PredDefault});
1237 PredDefault = BBDefault;
1238 ++NewSuccessors[BBDefault];
1239 }
1240
1241 unsigned CasesFromPred = Weights.size();
1242 uint64_t ValidTotalSuccWeight = 0;
1243 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1244 if (!PTIHandled.count(x: BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1245 PredCases.push_back(x: BBCases[i]);
1246 ++NewSuccessors[BBCases[i].Dest];
1247 if (SuccHasWeights || PredHasWeights) {
1248 // The default weight is at index 0, so weight for the ith case
1249 // should be at index i+1. Scale the cases from successor by
1250 // PredDefaultWeight (Weights[0]).
1251 Weights.push_back(Elt: Weights[0] * SuccWeights[i + 1]);
1252 ValidTotalSuccWeight += SuccWeights[i + 1];
1253 }
1254 }
1255
1256 if (SuccHasWeights || PredHasWeights) {
1257 ValidTotalSuccWeight += SuccWeights[0];
1258 // Scale the cases from predecessor by ValidTotalSuccWeight.
1259 for (unsigned i = 1; i < CasesFromPred; ++i)
1260 Weights[i] *= ValidTotalSuccWeight;
1261 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1262 Weights[0] *= SuccWeights[0];
1263 }
1264 } else {
1265 // If this is not the default destination from PSI, only the edges
1266 // in SI that occur in PSI with a destination of BB will be
1267 // activated.
1268 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1269 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1270 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1271 if (PredCases[i].Dest == BB) {
1272 PTIHandled.insert(x: PredCases[i].Value);
1273
1274 if (PredHasWeights || SuccHasWeights) {
1275 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1276 std::swap(a&: Weights[i + 1], b&: Weights.back());
1277 Weights.pop_back();
1278 }
1279
1280 std::swap(a&: PredCases[i], b&: PredCases.back());
1281 PredCases.pop_back();
1282 --i;
1283 --e;
1284 }
1285
1286 // Okay, now we know which constants were sent to BB from the
1287 // predecessor. Figure out where they will all go now.
1288 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1289 if (PTIHandled.count(x: BBCases[i].Value)) {
1290 // If this is one we are capable of getting...
1291 if (PredHasWeights || SuccHasWeights)
1292 Weights.push_back(Elt: WeightsForHandled[BBCases[i].Value]);
1293 PredCases.push_back(x: BBCases[i]);
1294 ++NewSuccessors[BBCases[i].Dest];
1295 PTIHandled.erase(x: BBCases[i].Value); // This constant is taken care of
1296 }
1297
1298 // If there are any constants vectored to BB that TI doesn't handle,
1299 // they must go to the default destination of TI.
1300 for (ConstantInt *I : PTIHandled) {
1301 if (PredHasWeights || SuccHasWeights)
1302 Weights.push_back(Elt: WeightsForHandled[I]);
1303 PredCases.push_back(x: ValueEqualityComparisonCase(I, BBDefault));
1304 ++NewSuccessors[BBDefault];
1305 }
1306 }
1307
1308 // Okay, at this point, we know which new successor Pred will get. Make
1309 // sure we update the number of entries in the PHI nodes for these
1310 // successors.
1311 SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1312 if (DTU) {
1313 SuccsOfPred = {succ_begin(BB: Pred), succ_end(BB: Pred)};
1314 Updates.reserve(N: Updates.size() + NewSuccessors.size());
1315 }
1316 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1317 NewSuccessors) {
1318 for (auto I : seq(Size: NewSuccessor.second)) {
1319 (void)I;
1320 AddPredecessorToBlock(Succ: NewSuccessor.first, NewPred: Pred, ExistPred: BB);
1321 }
1322 if (DTU && !SuccsOfPred.contains(Ptr: NewSuccessor.first))
1323 Updates.push_back(Elt: {DominatorTree::Insert, Pred, NewSuccessor.first});
1324 }
1325
1326 Builder.SetInsertPoint(PTI);
1327 // Convert pointer to int before we switch.
1328 if (CV->getType()->isPointerTy()) {
1329 CV =
1330 Builder.CreatePtrToInt(V: CV, DestTy: DL.getIntPtrType(CV->getType()), Name: "magicptr");
1331 }
1332
1333 // Now that the successors are updated, create the new Switch instruction.
1334 SwitchInst *NewSI = Builder.CreateSwitch(V: CV, Dest: PredDefault, NumCases: PredCases.size());
1335 NewSI->setDebugLoc(PTI->getDebugLoc());
1336 for (ValueEqualityComparisonCase &V : PredCases)
1337 NewSI->addCase(OnVal: V.Value, Dest: V.Dest);
1338
1339 if (PredHasWeights || SuccHasWeights) {
1340 // Halve the weights if any of them cannot fit in an uint32_t
1341 FitWeights(Weights);
1342
1343 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1344
1345 setBranchWeights(SI: NewSI, Weights: MDWeights);
1346 }
1347
1348 EraseTerminatorAndDCECond(TI: PTI);
1349
1350 // Okay, last check. If BB is still a successor of PSI, then we must
1351 // have an infinite loop case. If so, add an infinitely looping block
1352 // to handle the case to preserve the behavior of the code.
1353 BasicBlock *InfLoopBlock = nullptr;
1354 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1355 if (NewSI->getSuccessor(idx: i) == BB) {
1356 if (!InfLoopBlock) {
1357 // Insert it at the end of the function, because it's either code,
1358 // or it won't matter if it's hot. :)
1359 InfLoopBlock =
1360 BasicBlock::Create(Context&: BB->getContext(), Name: "infloop", Parent: BB->getParent());
1361 BranchInst::Create(IfTrue: InfLoopBlock, InsertAtEnd: InfLoopBlock);
1362 if (DTU)
1363 Updates.push_back(
1364 Elt: {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1365 }
1366 NewSI->setSuccessor(idx: i, NewSucc: InfLoopBlock);
1367 }
1368
1369 if (DTU) {
1370 if (InfLoopBlock)
1371 Updates.push_back(Elt: {DominatorTree::Insert, Pred, InfLoopBlock});
1372
1373 Updates.push_back(Elt: {DominatorTree::Delete, Pred, BB});
1374
1375 DTU->applyUpdates(Updates);
1376 }
1377
1378 ++NumFoldValueComparisonIntoPredecessors;
1379 return true;
1380}
1381
1382/// The specified terminator is a value equality comparison instruction
1383/// (either a switch or a branch on "X == c").
1384/// See if any of the predecessors of the terminator block are value comparisons
1385/// on the same value. If so, and if safe to do so, fold them together.
1386bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1387 IRBuilder<> &Builder) {
1388 BasicBlock *BB = TI->getParent();
1389 Value *CV = isValueEqualityComparison(TI); // CondVal
1390 assert(CV && "Not a comparison?");
1391
1392 bool Changed = false;
1393
1394 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1395 while (!Preds.empty()) {
1396 BasicBlock *Pred = Preds.pop_back_val();
1397 Instruction *PTI = Pred->getTerminator();
1398
1399 // Don't try to fold into itself.
1400 if (Pred == BB)
1401 continue;
1402
1403 // See if the predecessor is a comparison with the same value.
1404 Value *PCV = isValueEqualityComparison(TI: PTI); // PredCondVal
1405 if (PCV != CV)
1406 continue;
1407
1408 SmallSetVector<BasicBlock *, 4> FailBlocks;
1409 if (!SafeToMergeTerminators(SI1: TI, SI2: PTI, FailBlocks: &FailBlocks)) {
1410 for (auto *Succ : FailBlocks) {
1411 if (!SplitBlockPredecessors(BB: Succ, Preds: TI->getParent(), Suffix: ".fold.split", DTU))
1412 return false;
1413 }
1414 }
1415
1416 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1417 Changed = true;
1418 }
1419 return Changed;
1420}
1421
1422// If we would need to insert a select that uses the value of this invoke
1423// (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1424// need to do this), we can't hoist the invoke, as there is nowhere to put the
1425// select in this case.
1426static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1427 Instruction *I1, Instruction *I2) {
1428 for (BasicBlock *Succ : successors(BB: BB1)) {
1429 for (const PHINode &PN : Succ->phis()) {
1430 Value *BB1V = PN.getIncomingValueForBlock(BB: BB1);
1431 Value *BB2V = PN.getIncomingValueForBlock(BB: BB2);
1432 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1433 return false;
1434 }
1435 }
1436 }
1437 return true;
1438}
1439
1440// Get interesting characteristics of instructions that
1441// `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1442// instructions can be reordered across.
1443enum SkipFlags {
1444 SkipReadMem = 1,
1445 SkipSideEffect = 2,
1446 SkipImplicitControlFlow = 4
1447};
1448
1449static unsigned skippedInstrFlags(Instruction *I) {
1450 unsigned Flags = 0;
1451 if (I->mayReadFromMemory())
1452 Flags |= SkipReadMem;
1453 // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1454 // inalloca) across stacksave/stackrestore boundaries.
1455 if (I->mayHaveSideEffects() || isa<AllocaInst>(Val: I))
1456 Flags |= SkipSideEffect;
1457 if (!isGuaranteedToTransferExecutionToSuccessor(I))
1458 Flags |= SkipImplicitControlFlow;
1459 return Flags;
1460}
1461
1462// Returns true if it is safe to reorder an instruction across preceding
1463// instructions in a basic block.
1464static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1465 // Don't reorder a store over a load.
1466 if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1467 return false;
1468
1469 // If we have seen an instruction with side effects, it's unsafe to reorder an
1470 // instruction which reads memory or itself has side effects.
1471 if ((Flags & SkipSideEffect) &&
1472 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(Val: I)))
1473 return false;
1474
1475 // Reordering across an instruction which does not necessarily transfer
1476 // control to the next instruction is speculation.
1477 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1478 return false;
1479
1480 // Hoisting of llvm.deoptimize is only legal together with the next return
1481 // instruction, which this pass is not always able to do.
1482 if (auto *CB = dyn_cast<CallBase>(Val: I))
1483 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1484 return false;
1485
1486 // It's also unsafe/illegal to hoist an instruction above its instruction
1487 // operands
1488 BasicBlock *BB = I->getParent();
1489 for (Value *Op : I->operands()) {
1490 if (auto *J = dyn_cast<Instruction>(Val: Op))
1491 if (J->getParent() == BB)
1492 return false;
1493 }
1494
1495 return true;
1496}
1497
1498static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1499
1500/// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1501/// instructions \p I1 and \p I2 can and should be hoisted.
1502static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1503 const TargetTransformInfo &TTI) {
1504 // If we're going to hoist a call, make sure that the two instructions
1505 // we're commoning/hoisting are both marked with musttail, or neither of
1506 // them is marked as such. Otherwise, we might end up in a situation where
1507 // we hoist from a block where the terminator is a `ret` to a block where
1508 // the terminator is a `br`, and `musttail` calls expect to be followed by
1509 // a return.
1510 auto *C1 = dyn_cast<CallInst>(Val: I1);
1511 auto *C2 = dyn_cast<CallInst>(Val: I2);
1512 if (C1 && C2)
1513 if (C1->isMustTailCall() != C2->isMustTailCall())
1514 return false;
1515
1516 if (!TTI.isProfitableToHoist(I: I1) || !TTI.isProfitableToHoist(I: I2))
1517 return false;
1518
1519 // If any of the two call sites has nomerge or convergent attribute, stop
1520 // hoisting.
1521 if (const auto *CB1 = dyn_cast<CallBase>(Val: I1))
1522 if (CB1->cannotMerge() || CB1->isConvergent())
1523 return false;
1524 if (const auto *CB2 = dyn_cast<CallBase>(Val: I2))
1525 if (CB2->cannotMerge() || CB2->isConvergent())
1526 return false;
1527
1528 return true;
1529}
1530
1531/// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1532/// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1533/// hoistCommonCodeFromSuccessors. e.g. The input:
1534/// I1 DVRs: { x, z },
1535/// OtherInsts: { I2 DVRs: { x, y, z } }
1536/// would result in hoisting only DbgVariableRecord x.
1537static void hoistLockstepIdenticalDbgVariableRecords(
1538 Instruction *TI, Instruction *I1,
1539 SmallVectorImpl<Instruction *> &OtherInsts) {
1540 if (!I1->hasDbgRecords())
1541 return;
1542 using CurrentAndEndIt =
1543 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1544 // Vector of {Current, End} iterators.
1545 SmallVector<CurrentAndEndIt> Itrs;
1546 Itrs.reserve(N: OtherInsts.size() + 1);
1547 // Helper lambdas for lock-step checks:
1548 // Return true if this Current == End.
1549 auto atEnd = [](const CurrentAndEndIt &Pair) {
1550 return Pair.first == Pair.second;
1551 };
1552 // Return true if all Current are identical.
1553 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1554 return all_of(Range: make_first_range(c: ArrayRef(Itrs).drop_front()),
1555 P: [&](DbgRecord::self_iterator I) {
1556 return Itrs[0].first->isIdenticalToWhenDefined(R: *I);
1557 });
1558 };
1559
1560 // Collect the iterators.
1561 Itrs.push_back(
1562 Elt: {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1563 for (Instruction *Other : OtherInsts) {
1564 if (!Other->hasDbgRecords())
1565 return;
1566 Itrs.push_back(
1567 Elt: {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1568 }
1569
1570 // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1571 // the lock-step DbgRecord are identical, hoist all of them to TI.
1572 // This replicates the dbg.* intrinsic behaviour in
1573 // hoistCommonCodeFromSuccessors.
1574 while (none_of(Range&: Itrs, P: atEnd)) {
1575 bool HoistDVRs = allIdentical(Itrs);
1576 for (CurrentAndEndIt &Pair : Itrs) {
1577 // Increment Current iterator now as we may be about to move the
1578 // DbgRecord.
1579 DbgRecord &DR = *Pair.first++;
1580 if (HoistDVRs) {
1581 DR.removeFromParent();
1582 TI->getParent()->insertDbgRecordBefore(DR: &DR, Here: TI->getIterator());
1583 }
1584 }
1585 }
1586}
1587
1588/// Hoist any common code in the successor blocks up into the block. This
1589/// function guarantees that BB dominates all successors. If EqTermsOnly is
1590/// given, only perform hoisting in case both blocks only contain a terminator.
1591/// In that case, only the original BI will be replaced and selects for PHIs are
1592/// added.
1593bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB,
1594 bool EqTermsOnly) {
1595 // This does very trivial matching, with limited scanning, to find identical
1596 // instructions in the two blocks. In particular, we don't want to get into
1597 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1598 // such, we currently just scan for obviously identical instructions in an
1599 // identical order, possibly separated by the same number of non-identical
1600 // instructions.
1601 unsigned int SuccSize = succ_size(BB);
1602 if (SuccSize < 2)
1603 return false;
1604
1605 // If either of the blocks has it's address taken, then we can't do this fold,
1606 // because the code we'd hoist would no longer run when we jump into the block
1607 // by it's address.
1608 for (auto *Succ : successors(BB))
1609 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1610 return false;
1611
1612 auto *TI = BB->getTerminator();
1613
1614 // The second of pair is a SkipFlags bitmask.
1615 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1616 SmallVector<SuccIterPair, 8> SuccIterPairs;
1617 for (auto *Succ : successors(BB)) {
1618 BasicBlock::iterator SuccItr = Succ->begin();
1619 if (isa<PHINode>(Val: *SuccItr))
1620 return false;
1621 SuccIterPairs.push_back(Elt: SuccIterPair(SuccItr, 0));
1622 }
1623
1624 // Check if only hoisting terminators is allowed. This does not add new
1625 // instructions to the hoist location.
1626 if (EqTermsOnly) {
1627 // Skip any debug intrinsics, as they are free to hoist.
1628 for (auto &SuccIter : make_first_range(c&: SuccIterPairs)) {
1629 auto *INonDbg = &*skipDebugIntrinsics(It: SuccIter);
1630 if (!INonDbg->isTerminator())
1631 return false;
1632 }
1633 // Now we know that we only need to hoist debug intrinsics and the
1634 // terminator. Let the loop below handle those 2 cases.
1635 }
1636
1637 // Count how many instructions were not hoisted so far. There's a limit on how
1638 // many instructions we skip, serving as a compilation time control as well as
1639 // preventing excessive increase of life ranges.
1640 unsigned NumSkipped = 0;
1641 // If we find an unreachable instruction at the beginning of a basic block, we
1642 // can still hoist instructions from the rest of the basic blocks.
1643 if (SuccIterPairs.size() > 2) {
1644 erase_if(C&: SuccIterPairs,
1645 P: [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1646 if (SuccIterPairs.size() < 2)
1647 return false;
1648 }
1649
1650 bool Changed = false;
1651
1652 for (;;) {
1653 auto *SuccIterPairBegin = SuccIterPairs.begin();
1654 auto &BB1ItrPair = *SuccIterPairBegin++;
1655 auto OtherSuccIterPairRange =
1656 iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1657 auto OtherSuccIterRange = make_first_range(c&: OtherSuccIterPairRange);
1658
1659 Instruction *I1 = &*BB1ItrPair.first;
1660
1661 // Skip debug info if it is not identical.
1662 bool AllDbgInstsAreIdentical = all_of(Range&: OtherSuccIterRange, P: [I1](auto &Iter) {
1663 Instruction *I2 = &*Iter;
1664 return I1->isIdenticalToWhenDefined(I: I2);
1665 });
1666 if (!AllDbgInstsAreIdentical) {
1667 while (isa<DbgInfoIntrinsic>(Val: I1))
1668 I1 = &*++BB1ItrPair.first;
1669 for (auto &SuccIter : OtherSuccIterRange) {
1670 Instruction *I2 = &*SuccIter;
1671 while (isa<DbgInfoIntrinsic>(Val: I2))
1672 I2 = &*++SuccIter;
1673 }
1674 }
1675
1676 bool AllInstsAreIdentical = true;
1677 bool HasTerminator = I1->isTerminator();
1678 for (auto &SuccIter : OtherSuccIterRange) {
1679 Instruction *I2 = &*SuccIter;
1680 HasTerminator |= I2->isTerminator();
1681 if (AllInstsAreIdentical && (!I1->isIdenticalToWhenDefined(I: I2) ||
1682 MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1683 AllInstsAreIdentical = false;
1684 }
1685
1686 SmallVector<Instruction *, 8> OtherInsts;
1687 for (auto &SuccIter : OtherSuccIterRange)
1688 OtherInsts.push_back(Elt: &*SuccIter);
1689
1690 // If we are hoisting the terminator instruction, don't move one (making a
1691 // broken BB), instead clone it, and remove BI.
1692 if (HasTerminator) {
1693 // Even if BB, which contains only one unreachable instruction, is ignored
1694 // at the beginning of the loop, we can hoist the terminator instruction.
1695 // If any instructions remain in the block, we cannot hoist terminators.
1696 if (NumSkipped || !AllInstsAreIdentical) {
1697 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1698 return Changed;
1699 }
1700
1701 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherSuccTIs&: OtherInsts) ||
1702 Changed;
1703 }
1704
1705 if (AllInstsAreIdentical) {
1706 unsigned SkipFlagsBB1 = BB1ItrPair.second;
1707 AllInstsAreIdentical =
1708 isSafeToHoistInstr(I: I1, Flags: SkipFlagsBB1) &&
1709 all_of(Range&: OtherSuccIterPairRange, P: [=](const auto &Pair) {
1710 Instruction *I2 = &*Pair.first;
1711 unsigned SkipFlagsBB2 = Pair.second;
1712 // Even if the instructions are identical, it may not
1713 // be safe to hoist them if we have skipped over
1714 // instructions with side effects or their operands
1715 // weren't hoisted.
1716 return isSafeToHoistInstr(I: I2, Flags: SkipFlagsBB2) &&
1717 shouldHoistCommonInstructions(I1, I2, TTI);
1718 });
1719 }
1720
1721 if (AllInstsAreIdentical) {
1722 BB1ItrPair.first++;
1723 if (isa<DbgInfoIntrinsic>(Val: I1)) {
1724 // The debug location is an integral part of a debug info intrinsic
1725 // and can't be separated from it or replaced. Instead of attempting
1726 // to merge locations, simply hoist both copies of the intrinsic.
1727 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1728 // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1729 // and leave any that were not hoisted behind (by calling moveBefore
1730 // rather than moveBeforePreserving).
1731 I1->moveBefore(MovePos: TI);
1732 for (auto &SuccIter : OtherSuccIterRange) {
1733 auto *I2 = &*SuccIter++;
1734 assert(isa<DbgInfoIntrinsic>(I2));
1735 I2->moveBefore(MovePos: TI);
1736 }
1737 } else {
1738 // For a normal instruction, we just move one to right before the
1739 // branch, then replace all uses of the other with the first. Finally,
1740 // we remove the now redundant second instruction.
1741 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1742 // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1743 // and leave any that were not hoisted behind (by calling moveBefore
1744 // rather than moveBeforePreserving).
1745 I1->moveBefore(MovePos: TI);
1746 for (auto &SuccIter : OtherSuccIterRange) {
1747 Instruction *I2 = &*SuccIter++;
1748 assert(I2 != I1);
1749 if (!I2->use_empty())
1750 I2->replaceAllUsesWith(V: I1);
1751 I1->andIRFlags(V: I2);
1752 combineMetadataForCSE(K: I1, J: I2, DoesKMove: true);
1753 // I1 and I2 are being combined into a single instruction. Its debug
1754 // location is the merged locations of the original instructions.
1755 I1->applyMergedLocation(LocA: I1->getDebugLoc(), LocB: I2->getDebugLoc());
1756 I2->eraseFromParent();
1757 }
1758 }
1759 if (!Changed)
1760 NumHoistCommonCode += SuccIterPairs.size();
1761 Changed = true;
1762 NumHoistCommonInstrs += SuccIterPairs.size();
1763 } else {
1764 if (NumSkipped >= HoistCommonSkipLimit) {
1765 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1766 return Changed;
1767 }
1768 // We are about to skip over a pair of non-identical instructions. Record
1769 // if any have characteristics that would prevent reordering instructions
1770 // across them.
1771 for (auto &SuccIterPair : SuccIterPairs) {
1772 Instruction *I = &*SuccIterPair.first++;
1773 SuccIterPair.second |= skippedInstrFlags(I);
1774 }
1775 ++NumSkipped;
1776 }
1777 }
1778}
1779
1780bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1781 Instruction *TI, Instruction *I1,
1782 SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1783
1784 auto *BI = dyn_cast<BranchInst>(Val: TI);
1785
1786 bool Changed = false;
1787 BasicBlock *TIParent = TI->getParent();
1788 BasicBlock *BB1 = I1->getParent();
1789
1790 // Use only for an if statement.
1791 auto *I2 = *OtherSuccTIs.begin();
1792 auto *BB2 = I2->getParent();
1793 if (BI) {
1794 assert(OtherSuccTIs.size() == 1);
1795 assert(BI->getSuccessor(0) == I1->getParent());
1796 assert(BI->getSuccessor(1) == I2->getParent());
1797 }
1798
1799 // In the case of an if statement, we try to hoist an invoke.
1800 // FIXME: Can we define a safety predicate for CallBr?
1801 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1802 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1803 if (isa<InvokeInst>(Val: I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1804 return false;
1805
1806 // TODO: callbr hoisting currently disabled pending further study.
1807 if (isa<CallBrInst>(Val: I1))
1808 return false;
1809
1810 for (BasicBlock *Succ : successors(BB: BB1)) {
1811 for (PHINode &PN : Succ->phis()) {
1812 Value *BB1V = PN.getIncomingValueForBlock(BB: BB1);
1813 for (Instruction *OtherSuccTI : OtherSuccTIs) {
1814 Value *BB2V = PN.getIncomingValueForBlock(BB: OtherSuccTI->getParent());
1815 if (BB1V == BB2V)
1816 continue;
1817
1818 // In the case of an if statement, check for
1819 // passingValueIsAlwaysUndefined here because we would rather eliminate
1820 // undefined control flow then converting it to a select.
1821 if (!BI || passingValueIsAlwaysUndefined(V: BB1V, I: &PN) ||
1822 passingValueIsAlwaysUndefined(V: BB2V, I: &PN))
1823 return false;
1824 }
1825 }
1826 }
1827
1828 // Hoist DbgVariableRecords attached to the terminator to match dbg.*
1829 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
1830 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts&: OtherSuccTIs);
1831 // Clone the terminator and hoist it into the pred, without any debug info.
1832 Instruction *NT = I1->clone();
1833 NT->insertInto(ParentBB: TIParent, It: TI->getIterator());
1834 if (!NT->getType()->isVoidTy()) {
1835 I1->replaceAllUsesWith(V: NT);
1836 for (Instruction *OtherSuccTI : OtherSuccTIs)
1837 OtherSuccTI->replaceAllUsesWith(V: NT);
1838 NT->takeName(V: I1);
1839 }
1840 Changed = true;
1841 NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
1842
1843 // Ensure terminator gets a debug location, even an unknown one, in case
1844 // it involves inlinable calls.
1845 SmallVector<DILocation *, 4> Locs;
1846 Locs.push_back(Elt: I1->getDebugLoc());
1847 for (auto *OtherSuccTI : OtherSuccTIs)
1848 Locs.push_back(Elt: OtherSuccTI->getDebugLoc());
1849 NT->setDebugLoc(DILocation::getMergedLocations(Locs));
1850
1851 // PHIs created below will adopt NT's merged DebugLoc.
1852 IRBuilder<NoFolder> Builder(NT);
1853
1854 // In the case of an if statement, hoisting one of the terminators from our
1855 // successor is a great thing. Unfortunately, the successors of the if/else
1856 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2
1857 // must agree for all PHI nodes, so we insert select instruction to compute
1858 // the final result.
1859 if (BI) {
1860 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1861 for (BasicBlock *Succ : successors(BB: BB1)) {
1862 for (PHINode &PN : Succ->phis()) {
1863 Value *BB1V = PN.getIncomingValueForBlock(BB: BB1);
1864 Value *BB2V = PN.getIncomingValueForBlock(BB: BB2);
1865 if (BB1V == BB2V)
1866 continue;
1867
1868 // These values do not agree. Insert a select instruction before NT
1869 // that determines the right value.
1870 SelectInst *&SI = InsertedSelects[std::make_pair(x&: BB1V, y&: BB2V)];
1871 if (!SI) {
1872 // Propagate fast-math-flags from phi node to its replacement select.
1873 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1874 if (isa<FPMathOperator>(Val: PN))
1875 Builder.setFastMathFlags(PN.getFastMathFlags());
1876
1877 SI = cast<SelectInst>(Val: Builder.CreateSelect(
1878 C: BI->getCondition(), True: BB1V, False: BB2V,
1879 Name: BB1V->getName() + "." + BB2V->getName(), MDFrom: BI));
1880 }
1881
1882 // Make the PHI node use the select for all incoming values for BB1/BB2
1883 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1884 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1885 PN.setIncomingValue(i, V: SI);
1886 }
1887 }
1888 }
1889
1890 SmallVector<DominatorTree::UpdateType, 4> Updates;
1891
1892 // Update any PHI nodes in our new successors.
1893 for (BasicBlock *Succ : successors(BB: BB1)) {
1894 AddPredecessorToBlock(Succ, NewPred: TIParent, ExistPred: BB1);
1895 if (DTU)
1896 Updates.push_back(Elt: {DominatorTree::Insert, TIParent, Succ});
1897 }
1898
1899 if (DTU)
1900 for (BasicBlock *Succ : successors(I: TI))
1901 Updates.push_back(Elt: {DominatorTree::Delete, TIParent, Succ});
1902
1903 EraseTerminatorAndDCECond(TI);
1904 if (DTU)
1905 DTU->applyUpdates(Updates);
1906 return Changed;
1907}
1908
1909// Check lifetime markers.
1910static bool isLifeTimeMarker(const Instruction *I) {
1911 if (auto II = dyn_cast<IntrinsicInst>(Val: I)) {
1912 switch (II->getIntrinsicID()) {
1913 default:
1914 break;
1915 case Intrinsic::lifetime_start:
1916 case Intrinsic::lifetime_end:
1917 return true;
1918 }
1919 }
1920 return false;
1921}
1922
1923// TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1924// into variables.
1925static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1926 int OpIdx) {
1927 return !isa<IntrinsicInst>(Val: I);
1928}
1929
1930// All instructions in Insts belong to different blocks that all unconditionally
1931// branch to a common successor. Analyze each instruction and return true if it
1932// would be possible to sink them into their successor, creating one common
1933// instruction instead. For every value that would be required to be provided by
1934// PHI node (because an operand varies in each input block), add to PHIOperands.
1935static bool canSinkInstructions(
1936 ArrayRef<Instruction *> Insts,
1937 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1938 // Prune out obviously bad instructions to move. Each instruction must have
1939 // exactly zero or one use, and we check later that use is by a single, common
1940 // PHI instruction in the successor.
1941 bool HasUse = !Insts.front()->user_empty();
1942 for (auto *I : Insts) {
1943 // These instructions may change or break semantics if moved.
1944 if (isa<PHINode>(Val: I) || I->isEHPad() || isa<AllocaInst>(Val: I) ||
1945 I->getType()->isTokenTy())
1946 return false;
1947
1948 // Do not try to sink an instruction in an infinite loop - it can cause
1949 // this algorithm to infinite loop.
1950 if (I->getParent()->getSingleSuccessor() == I->getParent())
1951 return false;
1952
1953 // Conservatively return false if I is an inline-asm instruction. Sinking
1954 // and merging inline-asm instructions can potentially create arguments
1955 // that cannot satisfy the inline-asm constraints.
1956 // If the instruction has nomerge or convergent attribute, return false.
1957 if (const auto *C = dyn_cast<CallBase>(Val: I))
1958 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
1959 return false;
1960
1961 // Each instruction must have zero or one use.
1962 if (HasUse && !I->hasOneUse())
1963 return false;
1964 if (!HasUse && !I->user_empty())
1965 return false;
1966 }
1967
1968 const Instruction *I0 = Insts.front();
1969 const auto I0MMRA = MMRAMetadata(*I0);
1970 for (auto *I : Insts) {
1971 if (!I->isSameOperationAs(I: I0))
1972 return false;
1973
1974 // swifterror pointers can only be used by a load or store; sinking a load
1975 // or store would require introducing a select for the pointer operand,
1976 // which isn't allowed for swifterror pointers.
1977 if (isa<StoreInst>(Val: I) && I->getOperand(i: 1)->isSwiftError())
1978 return false;
1979 if (isa<LoadInst>(Val: I) && I->getOperand(i: 0)->isSwiftError())
1980 return false;
1981
1982 // Treat MMRAs conservatively. This pass can be quite aggressive and
1983 // could drop a lot of MMRAs otherwise.
1984 if (MMRAMetadata(*I) != I0MMRA)
1985 return false;
1986 }
1987
1988 // All instructions in Insts are known to be the same opcode. If they have a
1989 // use, check that the only user is a PHI or in the same block as the
1990 // instruction, because if a user is in the same block as an instruction we're
1991 // contemplating sinking, it must already be determined to be sinkable.
1992 if (HasUse) {
1993 auto *PNUse = dyn_cast<PHINode>(Val: *I0->user_begin());
1994 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(Idx: 0);
1995 if (!all_of(Range&: Insts, P: [&PNUse,&Succ](const Instruction *I) -> bool {
1996 auto *U = cast<Instruction>(Val: *I->user_begin());
1997 return (PNUse &&
1998 PNUse->getParent() == Succ &&
1999 PNUse->getIncomingValueForBlock(BB: I->getParent()) == I) ||
2000 U->getParent() == I->getParent();
2001 }))
2002 return false;
2003 }
2004
2005 // Because SROA can't handle speculating stores of selects, try not to sink
2006 // loads, stores or lifetime markers of allocas when we'd have to create a
2007 // PHI for the address operand. Also, because it is likely that loads or
2008 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
2009 // them.
2010 // This can cause code churn which can have unintended consequences down
2011 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
2012 // FIXME: This is a workaround for a deficiency in SROA - see
2013 // https://llvm.org/bugs/show_bug.cgi?id=30188
2014 if (isa<StoreInst>(Val: I0) && any_of(Range&: Insts, P: [](const Instruction *I) {
2015 return isa<AllocaInst>(Val: I->getOperand(i: 1)->stripPointerCasts());
2016 }))
2017 return false;
2018 if (isa<LoadInst>(Val: I0) && any_of(Range&: Insts, P: [](const Instruction *I) {
2019 return isa<AllocaInst>(Val: I->getOperand(i: 0)->stripPointerCasts());
2020 }))
2021 return false;
2022 if (isLifeTimeMarker(I: I0) && any_of(Range&: Insts, P: [](const Instruction *I) {
2023 return isa<AllocaInst>(Val: I->getOperand(i: 1)->stripPointerCasts());
2024 }))
2025 return false;
2026
2027 // For calls to be sinkable, they must all be indirect, or have same callee.
2028 // I.e. if we have two direct calls to different callees, we don't want to
2029 // turn that into an indirect call. Likewise, if we have an indirect call,
2030 // and a direct call, we don't actually want to have a single indirect call.
2031 if (isa<CallBase>(Val: I0)) {
2032 auto IsIndirectCall = [](const Instruction *I) {
2033 return cast<CallBase>(Val: I)->isIndirectCall();
2034 };
2035 bool HaveIndirectCalls = any_of(Range&: Insts, P: IsIndirectCall);
2036 bool AllCallsAreIndirect = all_of(Range&: Insts, P: IsIndirectCall);
2037 if (HaveIndirectCalls) {
2038 if (!AllCallsAreIndirect)
2039 return false;
2040 } else {
2041 // All callees must be identical.
2042 Value *Callee = nullptr;
2043 for (const Instruction *I : Insts) {
2044 Value *CurrCallee = cast<CallBase>(Val: I)->getCalledOperand();
2045 if (!Callee)
2046 Callee = CurrCallee;
2047 else if (Callee != CurrCallee)
2048 return false;
2049 }
2050 }
2051 }
2052
2053 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2054 Value *Op = I0->getOperand(i: OI);
2055 if (Op->getType()->isTokenTy())
2056 // Don't touch any operand of token type.
2057 return false;
2058
2059 auto SameAsI0 = [&I0, OI](const Instruction *I) {
2060 assert(I->getNumOperands() == I0->getNumOperands());
2061 return I->getOperand(i: OI) == I0->getOperand(i: OI);
2062 };
2063 if (!all_of(Range&: Insts, P: SameAsI0)) {
2064 if ((isa<Constant>(Val: Op) && !replacingOperandWithVariableIsCheap(I: I0, OpIdx: OI)) ||
2065 !canReplaceOperandWithVariable(I: I0, OpIdx: OI))
2066 // We can't create a PHI from this GEP.
2067 return false;
2068 for (auto *I : Insts)
2069 PHIOperands[I].push_back(Elt: I->getOperand(i: OI));
2070 }
2071 }
2072 return true;
2073}
2074
2075// Assuming canSinkInstructions(Blocks) has returned true, sink the last
2076// instruction of every block in Blocks to their common successor, commoning
2077// into one instruction.
2078static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2079 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(Idx: 0);
2080
2081 // canSinkInstructions returning true guarantees that every block has at
2082 // least one non-terminator instruction.
2083 SmallVector<Instruction*,4> Insts;
2084 for (auto *BB : Blocks) {
2085 Instruction *I = BB->getTerminator();
2086 do {
2087 I = I->getPrevNode();
2088 } while (isa<DbgInfoIntrinsic>(Val: I) && I != &BB->front());
2089 if (!isa<DbgInfoIntrinsic>(Val: I))
2090 Insts.push_back(Elt: I);
2091 }
2092
2093 // The only checking we need to do now is that all users of all instructions
2094 // are the same PHI node. canSinkInstructions should have checked this but
2095 // it is slightly over-aggressive - it gets confused by commutative
2096 // instructions so double-check it here.
2097 Instruction *I0 = Insts.front();
2098 if (!I0->user_empty()) {
2099 auto *PNUse = dyn_cast<PHINode>(Val: *I0->user_begin());
2100 if (!all_of(Range&: Insts, P: [&PNUse](const Instruction *I) -> bool {
2101 auto *U = cast<Instruction>(Val: *I->user_begin());
2102 return U == PNUse;
2103 }))
2104 return false;
2105 }
2106
2107 // We don't need to do any more checking here; canSinkInstructions should
2108 // have done it all for us.
2109 SmallVector<Value*, 4> NewOperands;
2110 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2111 // This check is different to that in canSinkInstructions. There, we
2112 // cared about the global view once simplifycfg (and instcombine) have
2113 // completed - it takes into account PHIs that become trivially
2114 // simplifiable. However here we need a more local view; if an operand
2115 // differs we create a PHI and rely on instcombine to clean up the very
2116 // small mess we may make.
2117 bool NeedPHI = any_of(Range&: Insts, P: [&I0, O](const Instruction *I) {
2118 return I->getOperand(i: O) != I0->getOperand(i: O);
2119 });
2120 if (!NeedPHI) {
2121 NewOperands.push_back(Elt: I0->getOperand(i: O));
2122 continue;
2123 }
2124
2125 // Create a new PHI in the successor block and populate it.
2126 auto *Op = I0->getOperand(i: O);
2127 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2128 auto *PN =
2129 PHINode::Create(Ty: Op->getType(), NumReservedValues: Insts.size(), NameStr: Op->getName() + ".sink");
2130 PN->insertBefore(InsertPos: BBEnd->begin());
2131 for (auto *I : Insts)
2132 PN->addIncoming(V: I->getOperand(i: O), BB: I->getParent());
2133 NewOperands.push_back(Elt: PN);
2134 }
2135
2136 // Arbitrarily use I0 as the new "common" instruction; remap its operands
2137 // and move it to the start of the successor block.
2138 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2139 I0->getOperandUse(i: O).set(NewOperands[O]);
2140
2141 I0->moveBefore(BB&: *BBEnd, I: BBEnd->getFirstInsertionPt());
2142
2143 // Update metadata and IR flags, and merge debug locations.
2144 for (auto *I : Insts)
2145 if (I != I0) {
2146 // The debug location for the "common" instruction is the merged locations
2147 // of all the commoned instructions. We start with the original location
2148 // of the "common" instruction and iteratively merge each location in the
2149 // loop below.
2150 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2151 // However, as N-way merge for CallInst is rare, so we use simplified API
2152 // instead of using complex API for N-way merge.
2153 I0->applyMergedLocation(LocA: I0->getDebugLoc(), LocB: I->getDebugLoc());
2154 combineMetadataForCSE(K: I0, J: I, DoesKMove: true);
2155 I0->andIRFlags(V: I);
2156 }
2157
2158 if (!I0->user_empty()) {
2159 // canSinkLastInstruction checked that all instructions were used by
2160 // one and only one PHI node. Find that now, RAUW it to our common
2161 // instruction and nuke it.
2162 auto *PN = cast<PHINode>(Val: *I0->user_begin());
2163 PN->replaceAllUsesWith(V: I0);
2164 PN->eraseFromParent();
2165 }
2166
2167 // Finally nuke all instructions apart from the common instruction.
2168 for (auto *I : Insts) {
2169 if (I == I0)
2170 continue;
2171 // The remaining uses are debug users, replace those with the common inst.
2172 // In most (all?) cases this just introduces a use-before-def.
2173 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2174 I->replaceAllUsesWith(V: I0);
2175 I->eraseFromParent();
2176 }
2177
2178 return true;
2179}
2180
2181namespace {
2182
2183 // LockstepReverseIterator - Iterates through instructions
2184 // in a set of blocks in reverse order from the first non-terminator.
2185 // For example (assume all blocks have size n):
2186 // LockstepReverseIterator I([B1, B2, B3]);
2187 // *I-- = [B1[n], B2[n], B3[n]];
2188 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2189 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2190 // ...
2191 class LockstepReverseIterator {
2192 ArrayRef<BasicBlock*> Blocks;
2193 SmallVector<Instruction*,4> Insts;
2194 bool Fail;
2195
2196 public:
2197 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2198 reset();
2199 }
2200
2201 void reset() {
2202 Fail = false;
2203 Insts.clear();
2204 for (auto *BB : Blocks) {
2205 Instruction *Inst = BB->getTerminator();
2206 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Val: Inst);)
2207 Inst = Inst->getPrevNode();
2208 if (!Inst) {
2209 // Block wasn't big enough.
2210 Fail = true;
2211 return;
2212 }
2213 Insts.push_back(Elt: Inst);
2214 }
2215 }
2216
2217 bool isValid() const {
2218 return !Fail;
2219 }
2220
2221 void operator--() {
2222 if (Fail)
2223 return;
2224 for (auto *&Inst : Insts) {
2225 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Val: Inst);)
2226 Inst = Inst->getPrevNode();
2227 // Already at beginning of block.
2228 if (!Inst) {
2229 Fail = true;
2230 return;
2231 }
2232 }
2233 }
2234
2235 void operator++() {
2236 if (Fail)
2237 return;
2238 for (auto *&Inst : Insts) {
2239 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Val: Inst);)
2240 Inst = Inst->getNextNode();
2241 // Already at end of block.
2242 if (!Inst) {
2243 Fail = true;
2244 return;
2245 }
2246 }
2247 }
2248
2249 ArrayRef<Instruction*> operator * () const {
2250 return Insts;
2251 }
2252 };
2253
2254} // end anonymous namespace
2255
2256/// Check whether BB's predecessors end with unconditional branches. If it is
2257/// true, sink any common code from the predecessors to BB.
2258static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2259 DomTreeUpdater *DTU) {
2260 // We support two situations:
2261 // (1) all incoming arcs are unconditional
2262 // (2) there are non-unconditional incoming arcs
2263 //
2264 // (2) is very common in switch defaults and
2265 // else-if patterns;
2266 //
2267 // if (a) f(1);
2268 // else if (b) f(2);
2269 //
2270 // produces:
2271 //
2272 // [if]
2273 // / \
2274 // [f(1)] [if]
2275 // | | \
2276 // | | |
2277 // | [f(2)]|
2278 // \ | /
2279 // [ end ]
2280 //
2281 // [end] has two unconditional predecessor arcs and one conditional. The
2282 // conditional refers to the implicit empty 'else' arc. This conditional
2283 // arc can also be caused by an empty default block in a switch.
2284 //
2285 // In this case, we attempt to sink code from all *unconditional* arcs.
2286 // If we can sink instructions from these arcs (determined during the scan
2287 // phase below) we insert a common successor for all unconditional arcs and
2288 // connect that to [end], to enable sinking:
2289 //
2290 // [if]
2291 // / \
2292 // [x(1)] [if]
2293 // | | \
2294 // | | \
2295 // | [x(2)] |
2296 // \ / |
2297 // [sink.split] |
2298 // \ /
2299 // [ end ]
2300 //
2301 SmallVector<BasicBlock*,4> UnconditionalPreds;
2302 bool HaveNonUnconditionalPredecessors = false;
2303 for (auto *PredBB : predecessors(BB)) {
2304 auto *PredBr = dyn_cast<BranchInst>(Val: PredBB->getTerminator());
2305 if (PredBr && PredBr->isUnconditional())
2306 UnconditionalPreds.push_back(Elt: PredBB);
2307 else
2308 HaveNonUnconditionalPredecessors = true;
2309 }
2310 if (UnconditionalPreds.size() < 2)
2311 return false;
2312
2313 // We take a two-step approach to tail sinking. First we scan from the end of
2314 // each block upwards in lockstep. If the n'th instruction from the end of each
2315 // block can be sunk, those instructions are added to ValuesToSink and we
2316 // carry on. If we can sink an instruction but need to PHI-merge some operands
2317 // (because they're not identical in each instruction) we add these to
2318 // PHIOperands.
2319 int ScanIdx = 0;
2320 SmallPtrSet<Value*,4> InstructionsToSink;
2321 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2322 LockstepReverseIterator LRI(UnconditionalPreds);
2323 while (LRI.isValid() &&
2324 canSinkInstructions(Insts: *LRI, PHIOperands)) {
2325 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2326 << "\n");
2327 InstructionsToSink.insert(I: (*LRI).begin(), E: (*LRI).end());
2328 ++ScanIdx;
2329 --LRI;
2330 }
2331
2332 // If no instructions can be sunk, early-return.
2333 if (ScanIdx == 0)
2334 return false;
2335
2336 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2337
2338 if (!followedByDeoptOrUnreachable) {
2339 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2340 // actually sink before encountering instruction that is unprofitable to
2341 // sink?
2342 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2343 unsigned NumPHIdValues = 0;
2344 for (auto *I : *LRI)
2345 for (auto *V : PHIOperands[I]) {
2346 if (!InstructionsToSink.contains(Ptr: V))
2347 ++NumPHIdValues;
2348 // FIXME: this check is overly optimistic. We may end up not sinking
2349 // said instruction, due to the very same profitability check.
2350 // See @creating_too_many_phis in sink-common-code.ll.
2351 }
2352 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2353 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2354 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2355 NumPHIInsts++;
2356
2357 return NumPHIInsts <= 1;
2358 };
2359
2360 // We've determined that we are going to sink last ScanIdx instructions,
2361 // and recorded them in InstructionsToSink. Now, some instructions may be
2362 // unprofitable to sink. But that determination depends on the instructions
2363 // that we are going to sink.
2364
2365 // First, forward scan: find the first instruction unprofitable to sink,
2366 // recording all the ones that are profitable to sink.
2367 // FIXME: would it be better, after we detect that not all are profitable.
2368 // to either record the profitable ones, or erase the unprofitable ones?
2369 // Maybe we need to choose (at runtime) the one that will touch least
2370 // instrs?
2371 LRI.reset();
2372 int Idx = 0;
2373 SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2374 while (Idx < ScanIdx) {
2375 if (!ProfitableToSinkInstruction(LRI)) {
2376 // Too many PHIs would be created.
2377 LLVM_DEBUG(
2378 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2379 break;
2380 }
2381 InstructionsProfitableToSink.insert(I: (*LRI).begin(), E: (*LRI).end());
2382 --LRI;
2383 ++Idx;
2384 }
2385
2386 // If no instructions can be sunk, early-return.
2387 if (Idx == 0)
2388 return false;
2389
2390 // Did we determine that (only) some instructions are unprofitable to sink?
2391 if (Idx < ScanIdx) {
2392 // Okay, some instructions are unprofitable.
2393 ScanIdx = Idx;
2394 InstructionsToSink = InstructionsProfitableToSink;
2395
2396 // But, that may make other instructions unprofitable, too.
2397 // So, do a backward scan, do any earlier instructions become
2398 // unprofitable?
2399 assert(
2400 !ProfitableToSinkInstruction(LRI) &&
2401 "We already know that the last instruction is unprofitable to sink");
2402 ++LRI;
2403 --Idx;
2404 while (Idx >= 0) {
2405 // If we detect that an instruction becomes unprofitable to sink,
2406 // all earlier instructions won't be sunk either,
2407 // so preemptively keep InstructionsProfitableToSink in sync.
2408 // FIXME: is this the most performant approach?
2409 for (auto *I : *LRI)
2410 InstructionsProfitableToSink.erase(Ptr: I);
2411 if (!ProfitableToSinkInstruction(LRI)) {
2412 // Everything starting with this instruction won't be sunk.
2413 ScanIdx = Idx;
2414 InstructionsToSink = InstructionsProfitableToSink;
2415 }
2416 ++LRI;
2417 --Idx;
2418 }
2419 }
2420
2421 // If no instructions can be sunk, early-return.
2422 if (ScanIdx == 0)
2423 return false;
2424 }
2425
2426 bool Changed = false;
2427
2428 if (HaveNonUnconditionalPredecessors) {
2429 if (!followedByDeoptOrUnreachable) {
2430 // It is always legal to sink common instructions from unconditional
2431 // predecessors. However, if not all predecessors are unconditional,
2432 // this transformation might be pessimizing. So as a rule of thumb,
2433 // don't do it unless we'd sink at least one non-speculatable instruction.
2434 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2435 LRI.reset();
2436 int Idx = 0;
2437 bool Profitable = false;
2438 while (Idx < ScanIdx) {
2439 if (!isSafeToSpeculativelyExecute(I: (*LRI)[0])) {
2440 Profitable = true;
2441 break;
2442 }
2443 --LRI;
2444 ++Idx;
2445 }
2446 if (!Profitable)
2447 return false;
2448 }
2449
2450 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2451 // We have a conditional edge and we're going to sink some instructions.
2452 // Insert a new block postdominating all blocks we're going to sink from.
2453 if (!SplitBlockPredecessors(BB, Preds: UnconditionalPreds, Suffix: ".sink.split", DTU))
2454 // Edges couldn't be split.
2455 return false;
2456 Changed = true;
2457 }
2458
2459 // Now that we've analyzed all potential sinking candidates, perform the
2460 // actual sink. We iteratively sink the last non-terminator of the source
2461 // blocks into their common successor unless doing so would require too
2462 // many PHI instructions to be generated (currently only one PHI is allowed
2463 // per sunk instruction).
2464 //
2465 // We can use InstructionsToSink to discount values needing PHI-merging that will
2466 // actually be sunk in a later iteration. This allows us to be more
2467 // aggressive in what we sink. This does allow a false positive where we
2468 // sink presuming a later value will also be sunk, but stop half way through
2469 // and never actually sink it which means we produce more PHIs than intended.
2470 // This is unlikely in practice though.
2471 int SinkIdx = 0;
2472 for (; SinkIdx != ScanIdx; ++SinkIdx) {
2473 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2474 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2475 << "\n");
2476
2477 // Because we've sunk every instruction in turn, the current instruction to
2478 // sink is always at index 0.
2479 LRI.reset();
2480
2481 if (!sinkLastInstruction(Blocks: UnconditionalPreds)) {
2482 LLVM_DEBUG(
2483 dbgs()
2484 << "SINK: stopping here, failed to actually sink instruction!\n");
2485 break;
2486 }
2487
2488 NumSinkCommonInstrs++;
2489 Changed = true;
2490 }
2491 if (SinkIdx != 0)
2492 ++NumSinkCommonCode;
2493 return Changed;
2494}
2495
2496namespace {
2497
2498struct CompatibleSets {
2499 using SetTy = SmallVector<InvokeInst *, 2>;
2500
2501 SmallVector<SetTy, 1> Sets;
2502
2503 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2504
2505 SetTy &getCompatibleSet(InvokeInst *II);
2506
2507 void insert(InvokeInst *II);
2508};
2509
2510CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2511 // Perform a linear scan over all the existing sets, see if the new `invoke`
2512 // is compatible with any particular set. Since we know that all the `invokes`
2513 // within a set are compatible, only check the first `invoke` in each set.
2514 // WARNING: at worst, this has quadratic complexity.
2515 for (CompatibleSets::SetTy &Set : Sets) {
2516 if (CompatibleSets::shouldBelongToSameSet(Invokes: {Set.front(), II}))
2517 return Set;
2518 }
2519
2520 // Otherwise, we either had no sets yet, or this invoke forms a new set.
2521 return Sets.emplace_back();
2522}
2523
2524void CompatibleSets::insert(InvokeInst *II) {
2525 getCompatibleSet(II).emplace_back(Args&: II);
2526}
2527
2528bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2529 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2530
2531 // Can we theoretically merge these `invoke`s?
2532 auto IsIllegalToMerge = [](InvokeInst *II) {
2533 return II->cannotMerge() || II->isInlineAsm();
2534 };
2535 if (any_of(Range&: Invokes, P: IsIllegalToMerge))
2536 return false;
2537
2538 // Either both `invoke`s must be direct,
2539 // or both `invoke`s must be indirect.
2540 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2541 bool HaveIndirectCalls = any_of(Range&: Invokes, P: IsIndirectCall);
2542 bool AllCallsAreIndirect = all_of(Range&: Invokes, P: IsIndirectCall);
2543 if (HaveIndirectCalls) {
2544 if (!AllCallsAreIndirect)
2545 return false;
2546 } else {
2547 // All callees must be identical.
2548 Value *Callee = nullptr;
2549 for (InvokeInst *II : Invokes) {
2550 Value *CurrCallee = II->getCalledOperand();
2551 assert(CurrCallee && "There is always a called operand.");
2552 if (!Callee)
2553 Callee = CurrCallee;
2554 else if (Callee != CurrCallee)
2555 return false;
2556 }
2557 }
2558
2559 // Either both `invoke`s must not have a normal destination,
2560 // or both `invoke`s must have a normal destination,
2561 auto HasNormalDest = [](InvokeInst *II) {
2562 return !isa<UnreachableInst>(Val: II->getNormalDest()->getFirstNonPHIOrDbg());
2563 };
2564 if (any_of(Range&: Invokes, P: HasNormalDest)) {
2565 // Do not merge `invoke` that does not have a normal destination with one
2566 // that does have a normal destination, even though doing so would be legal.
2567 if (!all_of(Range&: Invokes, P: HasNormalDest))
2568 return false;
2569
2570 // All normal destinations must be identical.
2571 BasicBlock *NormalBB = nullptr;
2572 for (InvokeInst *II : Invokes) {
2573 BasicBlock *CurrNormalBB = II->getNormalDest();
2574 assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2575 if (!NormalBB)
2576 NormalBB = CurrNormalBB;
2577 else if (NormalBB != CurrNormalBB)
2578 return false;
2579 }
2580
2581 // In the normal destination, the incoming values for these two `invoke`s
2582 // must be compatible.
2583 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2584 if (!IncomingValuesAreCompatible(
2585 BB: NormalBB, IncomingBlocks: {Invokes[0]->getParent(), Invokes[1]->getParent()},
2586 EquivalenceSet: &EquivalenceSet))
2587 return false;
2588 }
2589
2590#ifndef NDEBUG
2591 // All unwind destinations must be identical.
2592 // We know that because we have started from said unwind destination.
2593 BasicBlock *UnwindBB = nullptr;
2594 for (InvokeInst *II : Invokes) {
2595 BasicBlock *CurrUnwindBB = II->getUnwindDest();
2596 assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2597 if (!UnwindBB)
2598 UnwindBB = CurrUnwindBB;
2599 else
2600 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2601 }
2602#endif
2603
2604 // In the unwind destination, the incoming values for these two `invoke`s
2605 // must be compatible.
2606 if (!IncomingValuesAreCompatible(
2607 BB: Invokes.front()->getUnwindDest(),
2608 IncomingBlocks: {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2609 return false;
2610
2611 // Ignoring arguments, these `invoke`s must be identical,
2612 // including operand bundles.
2613 const InvokeInst *II0 = Invokes.front();
2614 for (auto *II : Invokes.drop_front())
2615 if (!II->isSameOperationAs(I: II0))
2616 return false;
2617
2618 // Can we theoretically form the data operands for the merged `invoke`?
2619 auto IsIllegalToMergeArguments = [](auto Ops) {
2620 Use &U0 = std::get<0>(Ops);
2621 Use &U1 = std::get<1>(Ops);
2622 if (U0 == U1)
2623 return false;
2624 return U0->getType()->isTokenTy() ||
2625 !canReplaceOperandWithVariable(I: cast<Instruction>(Val: U0.getUser()),
2626 OpIdx: U0.getOperandNo());
2627 };
2628 assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2629 if (any_of(Range: zip(t: Invokes[0]->data_ops(), u: Invokes[1]->data_ops()),
2630 P: IsIllegalToMergeArguments))
2631 return false;
2632
2633 return true;
2634}
2635
2636} // namespace
2637
2638// Merge all invokes in the provided set, all of which are compatible
2639// as per the `CompatibleSets::shouldBelongToSameSet()`.
2640static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2641 DomTreeUpdater *DTU) {
2642 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2643
2644 SmallVector<DominatorTree::UpdateType, 8> Updates;
2645 if (DTU)
2646 Updates.reserve(N: 2 + 3 * Invokes.size());
2647
2648 bool HasNormalDest =
2649 !isa<UnreachableInst>(Val: Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2650
2651 // Clone one of the invokes into a new basic block.
2652 // Since they are all compatible, it doesn't matter which invoke is cloned.
2653 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2654 InvokeInst *II0 = Invokes.front();
2655 BasicBlock *II0BB = II0->getParent();
2656 BasicBlock *InsertBeforeBlock =
2657 II0->getParent()->getIterator()->getNextNode();
2658 Function *Func = II0BB->getParent();
2659 LLVMContext &Ctx = II0->getContext();
2660
2661 BasicBlock *MergedInvokeBB = BasicBlock::Create(
2662 Context&: Ctx, Name: II0BB->getName() + ".invoke", Parent: Func, InsertBefore: InsertBeforeBlock);
2663
2664 auto *MergedInvoke = cast<InvokeInst>(Val: II0->clone());
2665 // NOTE: all invokes have the same attributes, so no handling needed.
2666 MergedInvoke->insertInto(ParentBB: MergedInvokeBB, It: MergedInvokeBB->end());
2667
2668 if (!HasNormalDest) {
2669 // This set does not have a normal destination,
2670 // so just form a new block with unreachable terminator.
2671 BasicBlock *MergedNormalDest = BasicBlock::Create(
2672 Context&: Ctx, Name: II0BB->getName() + ".cont", Parent: Func, InsertBefore: InsertBeforeBlock);
2673 new UnreachableInst(Ctx, MergedNormalDest);
2674 MergedInvoke->setNormalDest(MergedNormalDest);
2675 }
2676
2677 // The unwind destination, however, remainds identical for all invokes here.
2678
2679 return MergedInvoke;
2680 }();
2681
2682 if (DTU) {
2683 // Predecessor blocks that contained these invokes will now branch to
2684 // the new block that contains the merged invoke, ...
2685 for (InvokeInst *II : Invokes)
2686 Updates.push_back(
2687 Elt: {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2688
2689 // ... which has the new `unreachable` block as normal destination,
2690 // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2691 for (BasicBlock *SuccBBOfMergedInvoke : successors(I: MergedInvoke))
2692 Updates.push_back(Elt: {DominatorTree::Insert, MergedInvoke->getParent(),
2693 SuccBBOfMergedInvoke});
2694
2695 // Since predecessor blocks now unconditionally branch to a new block,
2696 // they no longer branch to their original successors.
2697 for (InvokeInst *II : Invokes)
2698 for (BasicBlock *SuccOfPredBB : successors(BB: II->getParent()))
2699 Updates.push_back(
2700 Elt: {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2701 }
2702
2703 bool IsIndirectCall = Invokes[0]->isIndirectCall();
2704
2705 // Form the merged operands for the merged invoke.
2706 for (Use &U : MergedInvoke->operands()) {
2707 // Only PHI together the indirect callees and data operands.
2708 if (MergedInvoke->isCallee(U: &U)) {
2709 if (!IsIndirectCall)
2710 continue;
2711 } else if (!MergedInvoke->isDataOperand(U: &U))
2712 continue;
2713
2714 // Don't create trivial PHI's with all-identical incoming values.
2715 bool NeedPHI = any_of(Range&: Invokes, P: [&U](InvokeInst *II) {
2716 return II->getOperand(i_nocapture: U.getOperandNo()) != U.get();
2717 });
2718 if (!NeedPHI)
2719 continue;
2720
2721 // Form a PHI out of all the data ops under this index.
2722 PHINode *PN = PHINode::Create(
2723 Ty: U->getType(), /*NumReservedValues=*/Invokes.size(), NameStr: "", InsertBefore: MergedInvoke->getIterator());
2724 for (InvokeInst *II : Invokes)
2725 PN->addIncoming(V: II->getOperand(i_nocapture: U.getOperandNo()), BB: II->getParent());
2726
2727 U.set(PN);
2728 }
2729
2730 // We've ensured that each PHI node has compatible (identical) incoming values
2731 // when coming from each of the `invoke`s in the current merge set,
2732 // so update the PHI nodes accordingly.
2733 for (BasicBlock *Succ : successors(I: MergedInvoke))
2734 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2735 /*ExistPred=*/Invokes.front()->getParent());
2736
2737 // And finally, replace the original `invoke`s with an unconditional branch
2738 // to the block with the merged `invoke`. Also, give that merged `invoke`
2739 // the merged debugloc of all the original `invoke`s.
2740 DILocation *MergedDebugLoc = nullptr;
2741 for (InvokeInst *II : Invokes) {
2742 // Compute the debug location common to all the original `invoke`s.
2743 if (!MergedDebugLoc)
2744 MergedDebugLoc = II->getDebugLoc();
2745 else
2746 MergedDebugLoc =
2747 DILocation::getMergedLocation(LocA: MergedDebugLoc, LocB: II->getDebugLoc());
2748
2749 // And replace the old `invoke` with an unconditionally branch
2750 // to the block with the merged `invoke`.
2751 for (BasicBlock *OrigSuccBB : successors(BB: II->getParent()))
2752 OrigSuccBB->removePredecessor(Pred: II->getParent());
2753 BranchInst::Create(IfTrue: MergedInvoke->getParent(), InsertAtEnd: II->getParent());
2754 II->replaceAllUsesWith(V: MergedInvoke);
2755 II->eraseFromParent();
2756 ++NumInvokesMerged;
2757 }
2758 MergedInvoke->setDebugLoc(MergedDebugLoc);
2759 ++NumInvokeSetsFormed;
2760
2761 if (DTU)
2762 DTU->applyUpdates(Updates);
2763}
2764
2765/// If this block is a `landingpad` exception handling block, categorize all
2766/// the predecessor `invoke`s into sets, with all `invoke`s in each set
2767/// being "mergeable" together, and then merge invokes in each set together.
2768///
2769/// This is a weird mix of hoisting and sinking. Visually, it goes from:
2770/// [...] [...]
2771/// | |
2772/// [invoke0] [invoke1]
2773/// / \ / \
2774/// [cont0] [landingpad] [cont1]
2775/// to:
2776/// [...] [...]
2777/// \ /
2778/// [invoke]
2779/// / \
2780/// [cont] [landingpad]
2781///
2782/// But of course we can only do that if the invokes share the `landingpad`,
2783/// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2784/// and the invoked functions are "compatible".
2785static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2786 if (!EnableMergeCompatibleInvokes)
2787 return false;
2788
2789 bool Changed = false;
2790
2791 // FIXME: generalize to all exception handling blocks?
2792 if (!BB->isLandingPad())
2793 return Changed;
2794
2795 CompatibleSets Grouper;
2796
2797 // Record all the predecessors of this `landingpad`. As per verifier,
2798 // the only allowed predecessor is the unwind edge of an `invoke`.
2799 // We want to group "compatible" `invokes` into the same set to be merged.
2800 for (BasicBlock *PredBB : predecessors(BB))
2801 Grouper.insert(II: cast<InvokeInst>(Val: PredBB->getTerminator()));
2802
2803 // And now, merge `invoke`s that were grouped togeter.
2804 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2805 if (Invokes.size() < 2)
2806 continue;
2807 Changed = true;
2808 MergeCompatibleInvokesImpl(Invokes, DTU);
2809 }
2810
2811 return Changed;
2812}
2813
2814namespace {
2815/// Track ephemeral values, which should be ignored for cost-modelling
2816/// purposes. Requires walking instructions in reverse order.
2817class EphemeralValueTracker {
2818 SmallPtrSet<const Instruction *, 32> EphValues;
2819
2820 bool isEphemeral(const Instruction *I) {
2821 if (isa<AssumeInst>(Val: I))
2822 return true;
2823 return !I->mayHaveSideEffects() && !I->isTerminator() &&
2824 all_of(Range: I->users(), P: [&](const User *U) {
2825 return EphValues.count(Ptr: cast<Instruction>(Val: U));
2826 });
2827 }
2828
2829public:
2830 bool track(const Instruction *I) {
2831 if (isEphemeral(I)) {
2832 EphValues.insert(Ptr: I);
2833 return true;
2834 }
2835 return false;
2836 }
2837
2838 bool contains(const Instruction *I) const { return EphValues.contains(Ptr: I); }
2839};
2840} // namespace
2841
2842/// Determine if we can hoist sink a sole store instruction out of a
2843/// conditional block.
2844///
2845/// We are looking for code like the following:
2846/// BrBB:
2847/// store i32 %add, i32* %arrayidx2
2848/// ... // No other stores or function calls (we could be calling a memory
2849/// ... // function).
2850/// %cmp = icmp ult %x, %y
2851/// br i1 %cmp, label %EndBB, label %ThenBB
2852/// ThenBB:
2853/// store i32 %add5, i32* %arrayidx2
2854/// br label EndBB
2855/// EndBB:
2856/// ...
2857/// We are going to transform this into:
2858/// BrBB:
2859/// store i32 %add, i32* %arrayidx2
2860/// ... //
2861/// %cmp = icmp ult %x, %y
2862/// %add.add5 = select i1 %cmp, i32 %add, %add5
2863/// store i32 %add.add5, i32* %arrayidx2
2864/// ...
2865///
2866/// \return The pointer to the value of the previous store if the store can be
2867/// hoisted into the predecessor block. 0 otherwise.
2868static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2869 BasicBlock *StoreBB, BasicBlock *EndBB) {
2870 StoreInst *StoreToHoist = dyn_cast<StoreInst>(Val: I);
2871 if (!StoreToHoist)
2872 return nullptr;
2873
2874 // Volatile or atomic.
2875 if (!StoreToHoist->isSimple())
2876 return nullptr;
2877
2878 Value *StorePtr = StoreToHoist->getPointerOperand();
2879 Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2880
2881 // Look for a store to the same pointer in BrBB.
2882 unsigned MaxNumInstToLookAt = 9;
2883 // Skip pseudo probe intrinsic calls which are not really killing any memory
2884 // accesses.
2885 for (Instruction &CurI : reverse(C: BrBB->instructionsWithoutDebug(SkipPseudoOp: true))) {
2886 if (!MaxNumInstToLookAt)
2887 break;
2888 --MaxNumInstToLookAt;
2889
2890 // Could be calling an instruction that affects memory like free().
2891 if (CurI.mayWriteToMemory() && !isa<StoreInst>(Val: CurI))
2892 return nullptr;
2893
2894 if (auto *SI = dyn_cast<StoreInst>(Val: &CurI)) {
2895 // Found the previous store to same location and type. Make sure it is
2896 // simple, to avoid introducing a spurious non-atomic write after an
2897 // atomic write.
2898 if (SI->getPointerOperand() == StorePtr &&
2899 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
2900 SI->getAlign() >= StoreToHoist->getAlign())
2901 // Found the previous store, return its value operand.
2902 return SI->getValueOperand();
2903 return nullptr; // Unknown store.
2904 }
2905
2906 if (auto *LI = dyn_cast<LoadInst>(Val: &CurI)) {
2907 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2908 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
2909 // Local objects (created by an `alloca` instruction) are always
2910 // writable, so once we are past a read from a location it is valid to
2911 // also write to that same location.
2912 // If the address of the local object never escapes the function, that
2913 // means it's never concurrently read or written, hence moving the store
2914 // from under the condition will not introduce a data race.
2915 auto *AI = dyn_cast<AllocaInst>(Val: getUnderlyingObject(V: StorePtr));
2916 if (AI && !PointerMayBeCaptured(V: AI, ReturnCaptures: false, StoreCaptures: true))
2917 // Found a previous load, return it.
2918 return LI;
2919 }
2920 // The load didn't work out, but we may still find a store.
2921 }
2922 }
2923
2924 return nullptr;
2925}
2926
2927/// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2928/// converted to selects.
2929static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2930 BasicBlock *EndBB,
2931 unsigned &SpeculatedInstructions,
2932 InstructionCost &Cost,
2933 const TargetTransformInfo &TTI) {
2934 TargetTransformInfo::TargetCostKind CostKind =
2935 BB->getParent()->hasMinSize()
2936 ? TargetTransformInfo::TCK_CodeSize
2937 : TargetTransformInfo::TCK_SizeAndLatency;
2938
2939 bool HaveRewritablePHIs = false;
2940 for (PHINode &PN : EndBB->phis()) {
2941 Value *OrigV = PN.getIncomingValueForBlock(BB);
2942 Value *ThenV = PN.getIncomingValueForBlock(BB: ThenBB);
2943
2944 // FIXME: Try to remove some of the duplication with
2945 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
2946 if (ThenV == OrigV)
2947 continue;
2948
2949 Cost += TTI.getCmpSelInstrCost(Opcode: Instruction::Select, ValTy: PN.getType(), CondTy: nullptr,
2950 VecPred: CmpInst::BAD_ICMP_PREDICATE, CostKind);
2951
2952 // Don't convert to selects if we could remove undefined behavior instead.
2953 if (passingValueIsAlwaysUndefined(V: OrigV, I: &PN) ||
2954 passingValueIsAlwaysUndefined(V: ThenV, I: &PN))
2955 return false;
2956
2957 HaveRewritablePHIs = true;
2958 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(Val: OrigV);
2959 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(Val: ThenV);
2960 if (!OrigCE && !ThenCE)
2961 continue; // Known cheap (FIXME: Maybe not true for aggregates).
2962
2963 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(I: OrigCE, TTI) : 0;
2964 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(I: ThenCE, TTI) : 0;
2965 InstructionCost MaxCost =
2966 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2967 if (OrigCost + ThenCost > MaxCost)
2968 return false;
2969
2970 // Account for the cost of an unfolded ConstantExpr which could end up
2971 // getting expanded into Instructions.
2972 // FIXME: This doesn't account for how many operations are combined in the
2973 // constant expression.
2974 ++SpeculatedInstructions;
2975 if (SpeculatedInstructions > 1)
2976 return false;
2977 }
2978
2979 return HaveRewritablePHIs;
2980}
2981
2982/// Speculate a conditional basic block flattening the CFG.
2983///
2984/// Note that this is a very risky transform currently. Speculating
2985/// instructions like this is most often not desirable. Instead, there is an MI
2986/// pass which can do it with full awareness of the resource constraints.
2987/// However, some cases are "obvious" and we should do directly. An example of
2988/// this is speculating a single, reasonably cheap instruction.
2989///
2990/// There is only one distinct advantage to flattening the CFG at the IR level:
2991/// it makes very common but simplistic optimizations such as are common in
2992/// instcombine and the DAG combiner more powerful by removing CFG edges and
2993/// modeling their effects with easier to reason about SSA value graphs.
2994///
2995///
2996/// An illustration of this transform is turning this IR:
2997/// \code
2998/// BB:
2999/// %cmp = icmp ult %x, %y
3000/// br i1 %cmp, label %EndBB, label %ThenBB
3001/// ThenBB:
3002/// %sub = sub %x, %y
3003/// br label BB2
3004/// EndBB:
3005/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
3006/// ...
3007/// \endcode
3008///
3009/// Into this IR:
3010/// \code
3011/// BB:
3012/// %cmp = icmp ult %x, %y
3013/// %sub = sub %x, %y
3014/// %cond = select i1 %cmp, 0, %sub
3015/// ...
3016/// \endcode
3017///
3018/// \returns true if the conditional block is removed.
3019bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI,
3020 BasicBlock *ThenBB) {
3021 if (!Options.SpeculateBlocks)
3022 return false;
3023
3024 // Be conservative for now. FP select instruction can often be expensive.
3025 Value *BrCond = BI->getCondition();
3026 if (isa<FCmpInst>(Val: BrCond))
3027 return false;
3028
3029 BasicBlock *BB = BI->getParent();
3030 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(Idx: 0);
3031 InstructionCost Budget =
3032 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3033
3034 // If ThenBB is actually on the false edge of the conditional branch, remember
3035 // to swap the select operands later.
3036 bool Invert = false;
3037 if (ThenBB != BI->getSuccessor(i: 0)) {
3038 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3039 Invert = true;
3040 }
3041 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3042
3043 // If the branch is non-unpredictable, and is predicted to *not* branch to
3044 // the `then` block, then avoid speculating it.
3045 if (!BI->getMetadata(KindID: LLVMContext::MD_unpredictable)) {
3046 uint64_t TWeight, FWeight;
3047 if (extractBranchWeights(I: *BI, TrueVal&: TWeight, FalseVal&: FWeight) &&
3048 (TWeight + FWeight) != 0) {
3049 uint64_t EndWeight = Invert ? TWeight : FWeight;
3050 BranchProbability BIEndProb =
3051 BranchProbability::getBranchProbability(Numerator: EndWeight, Denominator: TWeight + FWeight);
3052 BranchProbability Likely = TTI.getPredictableBranchThreshold();
3053 if (BIEndProb >= Likely)
3054 return false;
3055 }
3056 }
3057
3058 // Keep a count of how many times instructions are used within ThenBB when
3059 // they are candidates for sinking into ThenBB. Specifically:
3060 // - They are defined in BB, and
3061 // - They have no side effects, and
3062 // - All of their uses are in ThenBB.
3063 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3064
3065 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3066
3067 unsigned SpeculatedInstructions = 0;
3068 Value *SpeculatedStoreValue = nullptr;
3069 StoreInst *SpeculatedStore = nullptr;
3070 EphemeralValueTracker EphTracker;
3071 for (Instruction &I : reverse(C: drop_end(RangeOrContainer&: *ThenBB))) {
3072 // Skip debug info.
3073 if (isa<DbgInfoIntrinsic>(Val: I)) {
3074 SpeculatedDbgIntrinsics.push_back(Elt: &I);
3075 continue;
3076 }
3077
3078 // Skip pseudo probes. The consequence is we lose track of the branch
3079 // probability for ThenBB, which is fine since the optimization here takes
3080 // place regardless of the branch probability.
3081 if (isa<PseudoProbeInst>(Val: I)) {
3082 // The probe should be deleted so that it will not be over-counted when
3083 // the samples collected on the non-conditional path are counted towards
3084 // the conditional path. We leave it for the counts inference algorithm to
3085 // figure out a proper count for an unknown probe.
3086 SpeculatedDbgIntrinsics.push_back(Elt: &I);
3087 continue;
3088 }
3089
3090 // Ignore ephemeral values, they will be dropped by the transform.
3091 if (EphTracker.track(I: &I))
3092 continue;
3093
3094 // Only speculatively execute a single instruction (not counting the
3095 // terminator) for now.
3096 ++SpeculatedInstructions;
3097 if (SpeculatedInstructions > 1)
3098 return false;
3099
3100 // Don't hoist the instruction if it's unsafe or expensive.
3101 if (!isSafeToSpeculativelyExecute(I: &I) &&
3102 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
3103 I: &I, BrBB: BB, StoreBB: ThenBB, EndBB))))
3104 return false;
3105 if (!SpeculatedStoreValue &&
3106 computeSpeculationCost(I: &I, TTI) >
3107 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3108 return false;
3109
3110 // Store the store speculation candidate.
3111 if (SpeculatedStoreValue)
3112 SpeculatedStore = cast<StoreInst>(Val: &I);
3113
3114 // Do not hoist the instruction if any of its operands are defined but not
3115 // used in BB. The transformation will prevent the operand from
3116 // being sunk into the use block.
3117 for (Use &Op : I.operands()) {
3118 Instruction *OpI = dyn_cast<Instruction>(Val&: Op);
3119 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3120 continue; // Not a candidate for sinking.
3121
3122 ++SinkCandidateUseCounts[OpI];
3123 }
3124 }
3125
3126 // Consider any sink candidates which are only used in ThenBB as costs for
3127 // speculation. Note, while we iterate over a DenseMap here, we are summing
3128 // and so iteration order isn't significant.
3129 for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3130 if (Inst->hasNUses(N: Count)) {
3131 ++SpeculatedInstructions;
3132 if (SpeculatedInstructions > 1)
3133 return false;
3134 }
3135
3136 // Check that we can insert the selects and that it's not too expensive to do
3137 // so.
3138 bool Convert = SpeculatedStore != nullptr;
3139 InstructionCost Cost = 0;
3140 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3141 SpeculatedInstructions,
3142 Cost, TTI);
3143 if (!Convert || Cost > Budget)
3144 return false;
3145
3146 // If we get here, we can hoist the instruction and if-convert.
3147 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3148
3149 // Insert a select of the value of the speculated store.
3150 if (SpeculatedStoreValue) {
3151 IRBuilder<NoFolder> Builder(BI);
3152 Value *OrigV = SpeculatedStore->getValueOperand();
3153 Value *TrueV = SpeculatedStore->getValueOperand();
3154 Value *FalseV = SpeculatedStoreValue;
3155 if (Invert)
3156 std::swap(a&: TrueV, b&: FalseV);
3157 Value *S = Builder.CreateSelect(
3158 C: BrCond, True: TrueV, False: FalseV, Name: "spec.store.select", MDFrom: BI);
3159 SpeculatedStore->setOperand(i_nocapture: 0, Val_nocapture: S);
3160 SpeculatedStore->applyMergedLocation(LocA: BI->getDebugLoc(),
3161 LocB: SpeculatedStore->getDebugLoc());
3162 // The value stored is still conditional, but the store itself is now
3163 // unconditonally executed, so we must be sure that any linked dbg.assign
3164 // intrinsics are tracking the new stored value (the result of the
3165 // select). If we don't, and the store were to be removed by another pass
3166 // (e.g. DSE), then we'd eventually end up emitting a location describing
3167 // the conditional value, unconditionally.
3168 //
3169 // === Before this transformation ===
3170 // pred:
3171 // store %one, %x.dest, !DIAssignID !1
3172 // dbg.assign %one, "x", ..., !1, ...
3173 // br %cond if.then
3174 //
3175 // if.then:
3176 // store %two, %x.dest, !DIAssignID !2
3177 // dbg.assign %two, "x", ..., !2, ...
3178 //
3179 // === After this transformation ===
3180 // pred:
3181 // store %one, %x.dest, !DIAssignID !1
3182 // dbg.assign %one, "x", ..., !1
3183 /// ...
3184 // %merge = select %cond, %two, %one
3185 // store %merge, %x.dest, !DIAssignID !2
3186 // dbg.assign %merge, "x", ..., !2
3187 auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3188 if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3189 DbgAssign->replaceVariableLocationOp(OrigV, S);
3190 };
3191 for_each(Range: at::getAssignmentMarkers(Inst: SpeculatedStore), F: replaceVariable);
3192 for_each(Range: at::getDVRAssignmentMarkers(Inst: SpeculatedStore), F: replaceVariable);
3193 }
3194
3195 // Metadata can be dependent on the condition we are hoisting above.
3196 // Strip all UB-implying metadata on the instruction. Drop the debug loc
3197 // to avoid making it appear as if the condition is a constant, which would
3198 // be misleading while debugging.
3199 // Similarly strip attributes that maybe dependent on condition we are
3200 // hoisting above.
3201 for (auto &I : make_early_inc_range(Range&: *ThenBB)) {
3202 if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3203 // Don't update the DILocation of dbg.assign intrinsics.
3204 if (!isa<DbgAssignIntrinsic>(Val: &I))
3205 I.setDebugLoc(DebugLoc());
3206 }
3207 I.dropUBImplyingAttrsAndMetadata();
3208
3209 // Drop ephemeral values.
3210 if (EphTracker.contains(I: &I)) {
3211 I.replaceAllUsesWith(V: PoisonValue::get(T: I.getType()));
3212 I.eraseFromParent();
3213 }
3214 }
3215
3216 // Hoist the instructions.
3217 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3218 // to these instructions, in the same way that dbg.value intrinsics are
3219 // dropped at the end of this block.
3220 for (auto &It : make_range(x: ThenBB->begin(), y: ThenBB->end()))
3221 for (DbgRecord &DR : make_early_inc_range(Range: It.getDbgRecordRange()))
3222 // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3223 // equivalent).
3224 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(Val: &DR);
3225 !DVR || !DVR->isDbgAssign())
3226 It.dropOneDbgRecord(I: &DR);
3227 BB->splice(ToIt: BI->getIterator(), FromBB: ThenBB, FromBeginIt: ThenBB->begin(),
3228 FromEndIt: std::prev(x: ThenBB->end()));
3229
3230 // Insert selects and rewrite the PHI operands.
3231 IRBuilder<NoFolder> Builder(BI);
3232 for (PHINode &PN : EndBB->phis()) {
3233 unsigned OrigI = PN.getBasicBlockIndex(BB);
3234 unsigned ThenI = PN.getBasicBlockIndex(BB: ThenBB);
3235 Value *OrigV = PN.getIncomingValue(i: OrigI);
3236 Value *ThenV = PN.getIncomingValue(i: ThenI);
3237
3238 // Skip PHIs which are trivial.
3239 if (OrigV == ThenV)
3240 continue;
3241
3242 // Create a select whose true value is the speculatively executed value and
3243 // false value is the pre-existing value. Swap them if the branch
3244 // destinations were inverted.
3245 Value *TrueV = ThenV, *FalseV = OrigV;
3246 if (Invert)
3247 std::swap(a&: TrueV, b&: FalseV);
3248 Value *V = Builder.CreateSelect(C: BrCond, True: TrueV, False: FalseV, Name: "spec.select", MDFrom: BI);
3249 PN.setIncomingValue(i: OrigI, V);
3250 PN.setIncomingValue(i: ThenI, V);
3251 }
3252
3253 // Remove speculated dbg intrinsics.
3254 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3255 // dbg value for the different flows and inserting it after the select.
3256 for (Instruction *I : SpeculatedDbgIntrinsics) {
3257 // We still want to know that an assignment took place so don't remove
3258 // dbg.assign intrinsics.
3259 if (!isa<DbgAssignIntrinsic>(Val: I))
3260 I->eraseFromParent();
3261 }
3262
3263 ++NumSpeculations;
3264 return true;
3265}
3266
3267/// Return true if we can thread a branch across this block.
3268static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3269 int Size = 0;
3270 EphemeralValueTracker EphTracker;
3271
3272 // Walk the loop in reverse so that we can identify ephemeral values properly
3273 // (values only feeding assumes).
3274 for (Instruction &I : reverse(C: BB->instructionsWithoutDebug(SkipPseudoOp: false))) {
3275 // Can't fold blocks that contain noduplicate or convergent calls.
3276 if (CallInst *CI = dyn_cast<CallInst>(Val: &I))
3277 if (CI->cannotDuplicate() || CI->isConvergent())
3278 return false;
3279
3280 // Ignore ephemeral values which are deleted during codegen.
3281 // We will delete Phis while threading, so Phis should not be accounted in
3282 // block's size.
3283 if (!EphTracker.track(I: &I) && !isa<PHINode>(Val: I)) {
3284 if (Size++ > MaxSmallBlockSize)
3285 return false; // Don't clone large BB's.
3286 }
3287
3288 // We can only support instructions that do not define values that are
3289 // live outside of the current basic block.
3290 for (User *U : I.users()) {
3291 Instruction *UI = cast<Instruction>(Val: U);
3292 if (UI->getParent() != BB || isa<PHINode>(Val: UI))
3293 return false;
3294 }
3295
3296 // Looks ok, continue checking.
3297 }
3298
3299 return true;
3300}
3301
3302static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3303 BasicBlock *To) {
3304 // Don't look past the block defining the value, we might get the value from
3305 // a previous loop iteration.
3306 auto *I = dyn_cast<Instruction>(Val: V);
3307 if (I && I->getParent() == To)
3308 return nullptr;
3309
3310 // We know the value if the From block branches on it.
3311 auto *BI = dyn_cast<BranchInst>(Val: From->getTerminator());
3312 if (BI && BI->isConditional() && BI->getCondition() == V &&
3313 BI->getSuccessor(i: 0) != BI->getSuccessor(i: 1))
3314 return BI->getSuccessor(i: 0) == To ? ConstantInt::getTrue(Context&: BI->getContext())
3315 : ConstantInt::getFalse(Context&: BI->getContext());
3316
3317 return nullptr;
3318}
3319
3320/// If we have a conditional branch on something for which we know the constant
3321/// value in predecessors (e.g. a phi node in the current block), thread edges
3322/// from the predecessor to their ultimate destination.
3323static std::optional<bool>
3324FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3325 const DataLayout &DL,
3326 AssumptionCache *AC) {
3327 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3328 BasicBlock *BB = BI->getParent();
3329 Value *Cond = BI->getCondition();
3330 PHINode *PN = dyn_cast<PHINode>(Val: Cond);
3331 if (PN && PN->getParent() == BB) {
3332 // Degenerate case of a single entry PHI.
3333 if (PN->getNumIncomingValues() == 1) {
3334 FoldSingleEntryPHINodes(BB: PN->getParent());
3335 return true;
3336 }
3337
3338 for (Use &U : PN->incoming_values())
3339 if (auto *CB = dyn_cast<ConstantInt>(Val&: U))
3340 KnownValues[CB].insert(X: PN->getIncomingBlock(U));
3341 } else {
3342 for (BasicBlock *Pred : predecessors(BB)) {
3343 if (ConstantInt *CB = getKnownValueOnEdge(V: Cond, From: Pred, To: BB))
3344 KnownValues[CB].insert(X: Pred);
3345 }
3346 }
3347
3348 if (KnownValues.empty())
3349 return false;
3350
3351 // Now we know that this block has multiple preds and two succs.
3352 // Check that the block is small enough and values defined in the block are
3353 // not used outside of it.
3354 if (!BlockIsSimpleEnoughToThreadThrough(BB))
3355 return false;
3356
3357 for (const auto &Pair : KnownValues) {
3358 // Okay, we now know that all edges from PredBB should be revectored to
3359 // branch to RealDest.
3360 ConstantInt *CB = Pair.first;
3361 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3362 BasicBlock *RealDest = BI->getSuccessor(i: !CB->getZExtValue());
3363
3364 if (RealDest == BB)
3365 continue; // Skip self loops.
3366
3367 // Skip if the predecessor's terminator is an indirect branch.
3368 if (any_of(Range&: PredBBs, P: [](BasicBlock *PredBB) {
3369 return isa<IndirectBrInst>(Val: PredBB->getTerminator());
3370 }))
3371 continue;
3372
3373 LLVM_DEBUG({
3374 dbgs() << "Condition " << *Cond << " in " << BB->getName()
3375 << " has value " << *Pair.first << " in predecessors:\n";
3376 for (const BasicBlock *PredBB : Pair.second)
3377 dbgs() << " " << PredBB->getName() << "\n";
3378 dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3379 });
3380
3381 // Split the predecessors we are threading into a new edge block. We'll
3382 // clone the instructions into this block, and then redirect it to RealDest.
3383 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, Preds: PredBBs, Suffix: ".critedge", DTU);
3384
3385 // TODO: These just exist to reduce test diff, we can drop them if we like.
3386 EdgeBB->setName(RealDest->getName() + ".critedge");
3387 EdgeBB->moveBefore(MovePos: RealDest);
3388
3389 // Update PHI nodes.
3390 AddPredecessorToBlock(Succ: RealDest, NewPred: EdgeBB, ExistPred: BB);
3391
3392 // BB may have instructions that are being threaded over. Clone these
3393 // instructions into EdgeBB. We know that there will be no uses of the
3394 // cloned instructions outside of EdgeBB.
3395 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3396 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3397 TranslateMap[Cond] = CB;
3398
3399 // RemoveDIs: track instructions that we optimise away while folding, so
3400 // that we can copy DbgVariableRecords from them later.
3401 BasicBlock::iterator SrcDbgCursor = BB->begin();
3402 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3403 if (PHINode *PN = dyn_cast<PHINode>(Val&: BBI)) {
3404 TranslateMap[PN] = PN->getIncomingValueForBlock(BB: EdgeBB);
3405 continue;
3406 }
3407 // Clone the instruction.
3408 Instruction *N = BBI->clone();
3409 // Insert the new instruction into its new home.
3410 N->insertInto(ParentBB: EdgeBB, It: InsertPt);
3411
3412 if (BBI->hasName())
3413 N->setName(BBI->getName() + ".c");
3414
3415 // Update operands due to translation.
3416 for (Use &Op : N->operands()) {
3417 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Val: Op);
3418 if (PI != TranslateMap.end())
3419 Op = PI->second;
3420 }
3421
3422 // Check for trivial simplification.
3423 if (Value *V = simplifyInstruction(I: N, Q: {DL, nullptr, nullptr, AC})) {
3424 if (!BBI->use_empty())
3425 TranslateMap[&*BBI] = V;
3426 if (!N->mayHaveSideEffects()) {
3427 N->eraseFromParent(); // Instruction folded away, don't need actual
3428 // inst
3429 N = nullptr;
3430 }
3431 } else {
3432 if (!BBI->use_empty())
3433 TranslateMap[&*BBI] = N;
3434 }
3435 if (N) {
3436 // Copy all debug-info attached to instructions from the last we
3437 // successfully clone, up to this instruction (they might have been
3438 // folded away).
3439 for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3440 N->cloneDebugInfoFrom(From: &*SrcDbgCursor);
3441 SrcDbgCursor = std::next(x: BBI);
3442 // Clone debug-info on this instruction too.
3443 N->cloneDebugInfoFrom(From: &*BBI);
3444
3445 // Register the new instruction with the assumption cache if necessary.
3446 if (auto *Assume = dyn_cast<AssumeInst>(Val: N))
3447 if (AC)
3448 AC->registerAssumption(CI: Assume);
3449 }
3450 }
3451
3452 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3453 InsertPt->cloneDebugInfoFrom(From: &*SrcDbgCursor);
3454 InsertPt->cloneDebugInfoFrom(From: BI);
3455
3456 BB->removePredecessor(Pred: EdgeBB);
3457 BranchInst *EdgeBI = cast<BranchInst>(Val: EdgeBB->getTerminator());
3458 EdgeBI->setSuccessor(idx: 0, NewSucc: RealDest);
3459 EdgeBI->setDebugLoc(BI->getDebugLoc());
3460
3461 if (DTU) {
3462 SmallVector<DominatorTree::UpdateType, 2> Updates;
3463 Updates.push_back(Elt: {DominatorTree::Delete, EdgeBB, BB});
3464 Updates.push_back(Elt: {DominatorTree::Insert, EdgeBB, RealDest});
3465 DTU->applyUpdates(Updates);
3466 }
3467
3468 // For simplicity, we created a separate basic block for the edge. Merge
3469 // it back into the predecessor if possible. This not only avoids
3470 // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3471 // bypass the check for trivial cycles above.
3472 MergeBlockIntoPredecessor(BB: EdgeBB, DTU);
3473
3474 // Signal repeat, simplifying any other constants.
3475 return std::nullopt;
3476 }
3477
3478 return false;
3479}
3480
3481static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3482 DomTreeUpdater *DTU,
3483 const DataLayout &DL,
3484 AssumptionCache *AC) {
3485 std::optional<bool> Result;
3486 bool EverChanged = false;
3487 do {
3488 // Note that None means "we changed things, but recurse further."
3489 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3490 EverChanged |= Result == std::nullopt || *Result;
3491 } while (Result == std::nullopt);
3492 return EverChanged;
3493}
3494
3495/// Given a BB that starts with the specified two-entry PHI node,
3496/// see if we can eliminate it.
3497static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3498 DomTreeUpdater *DTU, const DataLayout &DL) {
3499 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
3500 // statement", which has a very simple dominance structure. Basically, we
3501 // are trying to find the condition that is being branched on, which
3502 // subsequently causes this merge to happen. We really want control
3503 // dependence information for this check, but simplifycfg can't keep it up
3504 // to date, and this catches most of the cases we care about anyway.
3505 BasicBlock *BB = PN->getParent();
3506
3507 BasicBlock *IfTrue, *IfFalse;
3508 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3509 if (!DomBI)
3510 return false;
3511 Value *IfCond = DomBI->getCondition();
3512 // Don't bother if the branch will be constant folded trivially.
3513 if (isa<ConstantInt>(Val: IfCond))
3514 return false;
3515
3516 BasicBlock *DomBlock = DomBI->getParent();
3517 SmallVector<BasicBlock *, 2> IfBlocks;
3518 llvm::copy_if(
3519 Range: PN->blocks(), Out: std::back_inserter(x&: IfBlocks), P: [](BasicBlock *IfBlock) {
3520 return cast<BranchInst>(Val: IfBlock->getTerminator())->isUnconditional();
3521 });
3522 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3523 "Will have either one or two blocks to speculate.");
3524
3525 // If the branch is non-unpredictable, see if we either predictably jump to
3526 // the merge bb (if we have only a single 'then' block), or if we predictably
3527 // jump to one specific 'then' block (if we have two of them).
3528 // It isn't beneficial to speculatively execute the code
3529 // from the block that we know is predictably not entered.
3530 if (!DomBI->getMetadata(KindID: LLVMContext::MD_unpredictable)) {
3531 uint64_t TWeight, FWeight;
3532 if (extractBranchWeights(I: *DomBI, TrueVal&: TWeight, FalseVal&: FWeight) &&
3533 (TWeight + FWeight) != 0) {
3534 BranchProbability BITrueProb =
3535 BranchProbability::getBranchProbability(Numerator: TWeight, Denominator: TWeight + FWeight);
3536 BranchProbability Likely = TTI.getPredictableBranchThreshold();
3537 BranchProbability BIFalseProb = BITrueProb.getCompl();
3538 if (IfBlocks.size() == 1) {
3539 BranchProbability BIBBProb =
3540 DomBI->getSuccessor(i: 0) == BB ? BITrueProb : BIFalseProb;
3541 if (BIBBProb >= Likely)
3542 return false;
3543 } else {
3544 if (BITrueProb >= Likely || BIFalseProb >= Likely)
3545 return false;
3546 }
3547 }
3548 }
3549
3550 // Don't try to fold an unreachable block. For example, the phi node itself
3551 // can't be the candidate if-condition for a select that we want to form.
3552 if (auto *IfCondPhiInst = dyn_cast<PHINode>(Val: IfCond))
3553 if (IfCondPhiInst->getParent() == BB)
3554 return false;
3555
3556 // Okay, we found that we can merge this two-entry phi node into a select.
3557 // Doing so would require us to fold *all* two entry phi nodes in this block.
3558 // At some point this becomes non-profitable (particularly if the target
3559 // doesn't support cmov's). Only do this transformation if there are two or
3560 // fewer PHI nodes in this block.
3561 unsigned NumPhis = 0;
3562 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(Val: I); ++NumPhis, ++I)
3563 if (NumPhis > 2)
3564 return false;
3565
3566 // Loop over the PHI's seeing if we can promote them all to select
3567 // instructions. While we are at it, keep track of the instructions
3568 // that need to be moved to the dominating block.
3569 SmallPtrSet<Instruction *, 4> AggressiveInsts;
3570 InstructionCost Cost = 0;
3571 InstructionCost Budget =
3572 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3573
3574 bool Changed = false;
3575 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(Val: II);) {
3576 PHINode *PN = cast<PHINode>(Val: II++);
3577 if (Value *V = simplifyInstruction(I: PN, Q: {DL, PN})) {
3578 PN->replaceAllUsesWith(V);
3579 PN->eraseFromParent();
3580 Changed = true;
3581 continue;
3582 }
3583
3584 if (!dominatesMergePoint(V: PN->getIncomingValue(i: 0), BB, AggressiveInsts,
3585 Cost, Budget, TTI) ||
3586 !dominatesMergePoint(V: PN->getIncomingValue(i: 1), BB, AggressiveInsts,
3587 Cost, Budget, TTI))
3588 return Changed;
3589 }
3590
3591 // If we folded the first phi, PN dangles at this point. Refresh it. If
3592 // we ran out of PHIs then we simplified them all.
3593 PN = dyn_cast<PHINode>(Val: BB->begin());
3594 if (!PN)
3595 return true;
3596
3597 // Return true if at least one of these is a 'not', and another is either
3598 // a 'not' too, or a constant.
3599 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3600 if (!match(V: V0, P: m_Not(V: m_Value())))
3601 std::swap(a&: V0, b&: V1);
3602 auto Invertible = m_CombineOr(L: m_Not(V: m_Value()), R: m_AnyIntegralConstant());
3603 return match(V: V0, P: m_Not(V: m_Value())) && match(V: V1, P: Invertible);
3604 };
3605
3606 // Don't fold i1 branches on PHIs which contain binary operators or
3607 // (possibly inverted) select form of or/ands, unless one of
3608 // the incoming values is an 'not' and another one is freely invertible.
3609 // These can often be turned into switches and other things.
3610 auto IsBinOpOrAnd = [](Value *V) {
3611 return match(
3612 V, P: m_CombineOr(
3613 L: m_BinOp(),
3614 R: m_CombineOr(L: m_Select(C: m_Value(), L: m_ImmConstant(), R: m_Value()),
3615 R: m_Select(C: m_Value(), L: m_Value(), R: m_ImmConstant()))));
3616 };
3617 if (PN->getType()->isIntegerTy(Bitwidth: 1) &&
3618 (IsBinOpOrAnd(PN->getIncomingValue(i: 0)) ||
3619 IsBinOpOrAnd(PN->getIncomingValue(i: 1)) || IsBinOpOrAnd(IfCond)) &&
3620 !CanHoistNotFromBothValues(PN->getIncomingValue(i: 0),
3621 PN->getIncomingValue(i: 1)))
3622 return Changed;
3623
3624 // If all PHI nodes are promotable, check to make sure that all instructions
3625 // in the predecessor blocks can be promoted as well. If not, we won't be able
3626 // to get rid of the control flow, so it's not worth promoting to select
3627 // instructions.
3628 for (BasicBlock *IfBlock : IfBlocks)
3629 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3630 if (!AggressiveInsts.count(Ptr: &*I) && !I->isDebugOrPseudoInst()) {
3631 // This is not an aggressive instruction that we can promote.
3632 // Because of this, we won't be able to get rid of the control flow, so
3633 // the xform is not worth it.
3634 return Changed;
3635 }
3636
3637 // If either of the blocks has it's address taken, we can't do this fold.
3638 if (any_of(Range&: IfBlocks,
3639 P: [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3640 return Changed;
3641
3642 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
3643 << " T: " << IfTrue->getName()
3644 << " F: " << IfFalse->getName() << "\n");
3645
3646 // If we can still promote the PHI nodes after this gauntlet of tests,
3647 // do all of the PHI's now.
3648
3649 // Move all 'aggressive' instructions, which are defined in the
3650 // conditional parts of the if's up to the dominating block.
3651 for (BasicBlock *IfBlock : IfBlocks)
3652 hoistAllInstructionsInto(DomBlock, InsertPt: DomBI, BB: IfBlock);
3653
3654 IRBuilder<NoFolder> Builder(DomBI);
3655 // Propagate fast-math-flags from phi nodes to replacement selects.
3656 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3657 while (PHINode *PN = dyn_cast<PHINode>(Val: BB->begin())) {
3658 if (isa<FPMathOperator>(Val: PN))
3659 Builder.setFastMathFlags(PN->getFastMathFlags());
3660
3661 // Change the PHI node into a select instruction.
3662 Value *TrueVal = PN->getIncomingValueForBlock(BB: IfTrue);
3663 Value *FalseVal = PN->getIncomingValueForBlock(BB: IfFalse);
3664
3665 Value *Sel = Builder.CreateSelect(C: IfCond, True: TrueVal, False: FalseVal, Name: "", MDFrom: DomBI);
3666 PN->replaceAllUsesWith(V: Sel);
3667 Sel->takeName(V: PN);
3668 PN->eraseFromParent();
3669 }
3670
3671 // At this point, all IfBlocks are empty, so our if statement
3672 // has been flattened. Change DomBlock to jump directly to our new block to
3673 // avoid other simplifycfg's kicking in on the diamond.
3674 Builder.CreateBr(Dest: BB);
3675
3676 SmallVector<DominatorTree::UpdateType, 3> Updates;
3677 if (DTU) {
3678 Updates.push_back(Elt: {DominatorTree::Insert, DomBlock, BB});
3679 for (auto *Successor : successors(BB: DomBlock))
3680 Updates.push_back(Elt: {DominatorTree::Delete, DomBlock, Successor});
3681 }
3682
3683 DomBI->eraseFromParent();
3684 if (DTU)
3685 DTU->applyUpdates(Updates);
3686
3687 return true;
3688}
3689
3690static Value *createLogicalOp(IRBuilderBase &Builder,
3691 Instruction::BinaryOps Opc, Value *LHS,
3692 Value *RHS, const Twine &Name = "") {
3693 // Try to relax logical op to binary op.
3694 if (impliesPoison(ValAssumedPoison: RHS, V: LHS))
3695 return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3696 if (Opc == Instruction::And)
3697 return Builder.CreateLogicalAnd(Cond1: LHS, Cond2: RHS, Name);
3698 if (Opc == Instruction::Or)
3699 return Builder.CreateLogicalOr(Cond1: LHS, Cond2: RHS, Name);
3700 llvm_unreachable("Invalid logical opcode");
3701}
3702
3703/// Return true if either PBI or BI has branch weight available, and store
3704/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3705/// not have branch weight, use 1:1 as its weight.
3706static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3707 uint64_t &PredTrueWeight,
3708 uint64_t &PredFalseWeight,
3709 uint64_t &SuccTrueWeight,
3710 uint64_t &SuccFalseWeight) {
3711 bool PredHasWeights =
3712 extractBranchWeights(I: *PBI, TrueVal&: PredTrueWeight, FalseVal&: PredFalseWeight);
3713 bool SuccHasWeights =
3714 extractBranchWeights(I: *BI, TrueVal&: SuccTrueWeight, FalseVal&: SuccFalseWeight);
3715 if (PredHasWeights || SuccHasWeights) {
3716 if (!PredHasWeights)
3717 PredTrueWeight = PredFalseWeight = 1;
3718 if (!SuccHasWeights)
3719 SuccTrueWeight = SuccFalseWeight = 1;
3720 return true;
3721 } else {
3722 return false;
3723 }
3724}
3725
3726/// Determine if the two branches share a common destination and deduce a glue
3727/// that joins the branches' conditions to arrive at the common destination if
3728/// that would be profitable.
3729static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3730shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3731 const TargetTransformInfo *TTI) {
3732 assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3733 "Both blocks must end with a conditional branches.");
3734 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3735 "PredBB must be a predecessor of BB.");
3736
3737 // We have the potential to fold the conditions together, but if the
3738 // predecessor branch is predictable, we may not want to merge them.
3739 uint64_t PTWeight, PFWeight;
3740 BranchProbability PBITrueProb, Likely;
3741 if (TTI && !PBI->getMetadata(KindID: LLVMContext::MD_unpredictable) &&
3742 extractBranchWeights(I: *PBI, TrueVal&: PTWeight, FalseVal&: PFWeight) &&
3743 (PTWeight + PFWeight) != 0) {
3744 PBITrueProb =
3745 BranchProbability::getBranchProbability(Numerator: PTWeight, Denominator: PTWeight + PFWeight);
3746 Likely = TTI->getPredictableBranchThreshold();
3747 }
3748
3749 if (PBI->getSuccessor(i: 0) == BI->getSuccessor(i: 0)) {
3750 // Speculate the 2nd condition unless the 1st is probably true.
3751 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3752 return {{BI->getSuccessor(i: 0), Instruction::Or, false}};
3753 } else if (PBI->getSuccessor(i: 1) == BI->getSuccessor(i: 1)) {
3754 // Speculate the 2nd condition unless the 1st is probably false.
3755 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3756 return {{BI->getSuccessor(i: 1), Instruction::And, false}};
3757 } else if (PBI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) {
3758 // Speculate the 2nd condition unless the 1st is probably true.
3759 if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3760 return {{BI->getSuccessor(i: 1), Instruction::And, true}};
3761 } else if (PBI->getSuccessor(i: 1) == BI->getSuccessor(i: 0)) {
3762 // Speculate the 2nd condition unless the 1st is probably false.
3763 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3764 return {{BI->getSuccessor(i: 0), Instruction::Or, true}};
3765 }
3766 return std::nullopt;
3767}
3768
3769static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3770 DomTreeUpdater *DTU,
3771 MemorySSAUpdater *MSSAU,
3772 const TargetTransformInfo *TTI) {
3773 BasicBlock *BB = BI->getParent();
3774 BasicBlock *PredBlock = PBI->getParent();
3775
3776 // Determine if the two branches share a common destination.
3777 BasicBlock *CommonSucc;
3778 Instruction::BinaryOps Opc;
3779 bool InvertPredCond;
3780 std::tie(args&: CommonSucc, args&: Opc, args&: InvertPredCond) =
3781 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3782
3783 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3784
3785 IRBuilder<> Builder(PBI);
3786 // The builder is used to create instructions to eliminate the branch in BB.
3787 // If BB's terminator has !annotation metadata, add it to the new
3788 // instructions.
3789 Builder.CollectMetadataToCopy(Src: BB->getTerminator(),
3790 MetadataKinds: {LLVMContext::MD_annotation});
3791
3792 // If we need to invert the condition in the pred block to match, do so now.
3793 if (InvertPredCond) {
3794 InvertBranch(PBI, Builder);
3795 }
3796
3797 BasicBlock *UniqueSucc =
3798 PBI->getSuccessor(i: 0) == BB ? BI->getSuccessor(i: 0) : BI->getSuccessor(i: 1);
3799
3800 // Before cloning instructions, notify the successor basic block that it
3801 // is about to have a new predecessor. This will update PHI nodes,
3802 // which will allow us to update live-out uses of bonus instructions.
3803 AddPredecessorToBlock(Succ: UniqueSucc, NewPred: PredBlock, ExistPred: BB, MSSAU);
3804
3805 // Try to update branch weights.
3806 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3807 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3808 SuccTrueWeight, SuccFalseWeight)) {
3809 SmallVector<uint64_t, 8> NewWeights;
3810
3811 if (PBI->getSuccessor(i: 0) == BB) {
3812 // PBI: br i1 %x, BB, FalseDest
3813 // BI: br i1 %y, UniqueSucc, FalseDest
3814 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3815 NewWeights.push_back(Elt: PredTrueWeight * SuccTrueWeight);
3816 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3817 // TrueWeight for PBI * FalseWeight for BI.
3818 // We assume that total weights of a BranchInst can fit into 32 bits.
3819 // Therefore, we will not have overflow using 64-bit arithmetic.
3820 NewWeights.push_back(Elt: PredFalseWeight *
3821 (SuccFalseWeight + SuccTrueWeight) +
3822 PredTrueWeight * SuccFalseWeight);
3823 } else {
3824 // PBI: br i1 %x, TrueDest, BB
3825 // BI: br i1 %y, TrueDest, UniqueSucc
3826 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3827 // FalseWeight for PBI * TrueWeight for BI.
3828 NewWeights.push_back(Elt: PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3829 PredFalseWeight * SuccTrueWeight);
3830 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3831 NewWeights.push_back(Elt: PredFalseWeight * SuccFalseWeight);
3832 }
3833
3834 // Halve the weights if any of them cannot fit in an uint32_t
3835 FitWeights(Weights: NewWeights);
3836
3837 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3838 setBranchWeights(I: PBI, TrueWeight: MDWeights[0], FalseWeight: MDWeights[1]);
3839
3840 // TODO: If BB is reachable from all paths through PredBlock, then we
3841 // could replace PBI's branch probabilities with BI's.
3842 } else
3843 PBI->setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr);
3844
3845 // Now, update the CFG.
3846 PBI->setSuccessor(idx: PBI->getSuccessor(i: 0) != BB, NewSucc: UniqueSucc);
3847
3848 if (DTU)
3849 DTU->applyUpdates(Updates: {{DominatorTree::Insert, PredBlock, UniqueSucc},
3850 {DominatorTree::Delete, PredBlock, BB}});
3851
3852 // If BI was a loop latch, it may have had associated loop metadata.
3853 // We need to copy it to the new latch, that is, PBI.
3854 if (MDNode *LoopMD = BI->getMetadata(KindID: LLVMContext::MD_loop))
3855 PBI->setMetadata(KindID: LLVMContext::MD_loop, Node: LoopMD);
3856
3857 ValueToValueMapTy VMap; // maps original values to cloned values
3858 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3859
3860 Module *M = BB->getModule();
3861
3862 if (PredBlock->IsNewDbgInfoFormat) {
3863 PredBlock->getTerminator()->cloneDebugInfoFrom(From: BB->getTerminator());
3864 for (DbgVariableRecord &DVR :
3865 filterDbgVars(R: PredBlock->getTerminator()->getDbgRecordRange())) {
3866 RemapDbgVariableRecord(M, V: &DVR, VM&: VMap,
3867 Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3868 }
3869 }
3870
3871 // Now that the Cond was cloned into the predecessor basic block,
3872 // or/and the two conditions together.
3873 Value *BICond = VMap[BI->getCondition()];
3874 PBI->setCondition(
3875 createLogicalOp(Builder, Opc, LHS: PBI->getCondition(), RHS: BICond, Name: "or.cond"));
3876
3877 ++NumFoldBranchToCommonDest;
3878 return true;
3879}
3880
3881/// Return if an instruction's type or any of its operands' types are a vector
3882/// type.
3883static bool isVectorOp(Instruction &I) {
3884 return I.getType()->isVectorTy() || any_of(Range: I.operands(), P: [](Use &U) {
3885 return U->getType()->isVectorTy();
3886 });
3887}
3888
3889/// If this basic block is simple enough, and if a predecessor branches to us
3890/// and one of our successors, fold the block into the predecessor and use
3891/// logical operations to pick the right destination.
3892bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3893 MemorySSAUpdater *MSSAU,
3894 const TargetTransformInfo *TTI,
3895 unsigned BonusInstThreshold) {
3896 // If this block ends with an unconditional branch,
3897 // let SpeculativelyExecuteBB() deal with it.
3898 if (!BI->isConditional())
3899 return false;
3900
3901 BasicBlock *BB = BI->getParent();
3902 TargetTransformInfo::TargetCostKind CostKind =
3903 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3904 : TargetTransformInfo::TCK_SizeAndLatency;
3905
3906 Instruction *Cond = dyn_cast<Instruction>(Val: BI->getCondition());
3907
3908 if (!Cond ||
3909 (!isa<CmpInst>(Val: Cond) && !isa<BinaryOperator>(Val: Cond) &&
3910 !isa<SelectInst>(Val: Cond)) ||
3911 Cond->getParent() != BB || !Cond->hasOneUse())
3912 return false;
3913
3914 // Finally, don't infinitely unroll conditional loops.
3915 if (is_contained(Range: successors(BB), Element: BB))
3916 return false;
3917
3918 // With which predecessors will we want to deal with?
3919 SmallVector<BasicBlock *, 8> Preds;
3920 for (BasicBlock *PredBlock : predecessors(BB)) {
3921 BranchInst *PBI = dyn_cast<BranchInst>(Val: PredBlock->getTerminator());
3922
3923 // Check that we have two conditional branches. If there is a PHI node in
3924 // the common successor, verify that the same value flows in from both
3925 // blocks.
3926 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(SI1: BI, SI2: PBI))
3927 continue;
3928
3929 // Determine if the two branches share a common destination.
3930 BasicBlock *CommonSucc;
3931 Instruction::BinaryOps Opc;
3932 bool InvertPredCond;
3933 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3934 std::tie(args&: CommonSucc, args&: Opc, args&: InvertPredCond) = *Recipe;
3935 else
3936 continue;
3937
3938 // Check the cost of inserting the necessary logic before performing the
3939 // transformation.
3940 if (TTI) {
3941 Type *Ty = BI->getCondition()->getType();
3942 InstructionCost Cost = TTI->getArithmeticInstrCost(Opcode: Opc, Ty, CostKind);
3943 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3944 !isa<CmpInst>(Val: PBI->getCondition())))
3945 Cost += TTI->getArithmeticInstrCost(Opcode: Instruction::Xor, Ty, CostKind);
3946
3947 if (Cost > BranchFoldThreshold)
3948 continue;
3949 }
3950
3951 // Ok, we do want to deal with this predecessor. Record it.
3952 Preds.emplace_back(Args&: PredBlock);
3953 }
3954
3955 // If there aren't any predecessors into which we can fold,
3956 // don't bother checking the cost.
3957 if (Preds.empty())
3958 return false;
3959
3960 // Only allow this transformation if computing the condition doesn't involve
3961 // too many instructions and these involved instructions can be executed
3962 // unconditionally. We denote all involved instructions except the condition
3963 // as "bonus instructions", and only allow this transformation when the
3964 // number of the bonus instructions we'll need to create when cloning into
3965 // each predecessor does not exceed a certain threshold.
3966 unsigned NumBonusInsts = 0;
3967 bool SawVectorOp = false;
3968 const unsigned PredCount = Preds.size();
3969 for (Instruction &I : *BB) {
3970 // Don't check the branch condition comparison itself.
3971 if (&I == Cond)
3972 continue;
3973 // Ignore dbg intrinsics, and the terminator.
3974 if (isa<DbgInfoIntrinsic>(Val: I) || isa<BranchInst>(Val: I))
3975 continue;
3976 // I must be safe to execute unconditionally.
3977 if (!isSafeToSpeculativelyExecute(I: &I))
3978 return false;
3979 SawVectorOp |= isVectorOp(I);
3980
3981 // Account for the cost of duplicating this instruction into each
3982 // predecessor. Ignore free instructions.
3983 if (!TTI || TTI->getInstructionCost(U: &I, CostKind) !=
3984 TargetTransformInfo::TCC_Free) {
3985 NumBonusInsts += PredCount;
3986
3987 // Early exits once we reach the limit.
3988 if (NumBonusInsts >
3989 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3990 return false;
3991 }
3992
3993 auto IsBCSSAUse = [BB, &I](Use &U) {
3994 auto *UI = cast<Instruction>(Val: U.getUser());
3995 if (auto *PN = dyn_cast<PHINode>(Val: UI))
3996 return PN->getIncomingBlock(U) == BB;
3997 return UI->getParent() == BB && I.comesBefore(Other: UI);
3998 };
3999
4000 // Does this instruction require rewriting of uses?
4001 if (!all_of(Range: I.uses(), P: IsBCSSAUse))
4002 return false;
4003 }
4004 if (NumBonusInsts >
4005 BonusInstThreshold *
4006 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4007 return false;
4008
4009 // Ok, we have the budget. Perform the transformation.
4010 for (BasicBlock *PredBlock : Preds) {
4011 auto *PBI = cast<BranchInst>(Val: PredBlock->getTerminator());
4012 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4013 }
4014 return false;
4015}
4016
4017// If there is only one store in BB1 and BB2, return it, otherwise return
4018// nullptr.
4019static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4020 StoreInst *S = nullptr;
4021 for (auto *BB : {BB1, BB2}) {
4022 if (!BB)
4023 continue;
4024 for (auto &I : *BB)
4025 if (auto *SI = dyn_cast<StoreInst>(Val: &I)) {
4026 if (S)
4027 // Multiple stores seen.
4028 return nullptr;
4029 else
4030 S = SI;
4031 }
4032 }
4033 return S;
4034}
4035
4036static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4037 Value *AlternativeV = nullptr) {
4038 // PHI is going to be a PHI node that allows the value V that is defined in
4039 // BB to be referenced in BB's only successor.
4040 //
4041 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4042 // doesn't matter to us what the other operand is (it'll never get used). We
4043 // could just create a new PHI with an undef incoming value, but that could
4044 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4045 // other PHI. So here we directly look for some PHI in BB's successor with V
4046 // as an incoming operand. If we find one, we use it, else we create a new
4047 // one.
4048 //
4049 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4050 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4051 // where OtherBB is the single other predecessor of BB's only successor.
4052 PHINode *PHI = nullptr;
4053 BasicBlock *Succ = BB->getSingleSuccessor();
4054
4055 for (auto I = Succ->begin(); isa<PHINode>(Val: I); ++I)
4056 if (cast<PHINode>(Val&: I)->getIncomingValueForBlock(BB) == V) {
4057 PHI = cast<PHINode>(Val&: I);
4058 if (!AlternativeV)
4059 break;
4060
4061 assert(Succ->hasNPredecessors(2));
4062 auto PredI = pred_begin(BB: Succ);
4063 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4064 if (PHI->getIncomingValueForBlock(BB: OtherPredBB) == AlternativeV)
4065 break;
4066 PHI = nullptr;
4067 }
4068 if (PHI)
4069 return PHI;
4070
4071 // If V is not an instruction defined in BB, just return it.
4072 if (!AlternativeV &&
4073 (!isa<Instruction>(Val: V) || cast<Instruction>(Val: V)->getParent() != BB))
4074 return V;
4075
4076 PHI = PHINode::Create(Ty: V->getType(), NumReservedValues: 2, NameStr: "simplifycfg.merge");
4077 PHI->insertBefore(InsertPos: Succ->begin());
4078 PHI->addIncoming(V, BB);
4079 for (BasicBlock *PredBB : predecessors(BB: Succ))
4080 if (PredBB != BB)
4081 PHI->addIncoming(
4082 V: AlternativeV ? AlternativeV : PoisonValue::get(T: V->getType()), BB: PredBB);
4083 return PHI;
4084}
4085
4086static bool mergeConditionalStoreToAddress(
4087 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4088 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4089 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4090 // For every pointer, there must be exactly two stores, one coming from
4091 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4092 // store (to any address) in PTB,PFB or QTB,QFB.
4093 // FIXME: We could relax this restriction with a bit more work and performance
4094 // testing.
4095 StoreInst *PStore = findUniqueStoreInBlocks(BB1: PTB, BB2: PFB);
4096 StoreInst *QStore = findUniqueStoreInBlocks(BB1: QTB, BB2: QFB);
4097 if (!PStore || !QStore)
4098 return false;
4099
4100 // Now check the stores are compatible.
4101 if (!QStore->isUnordered() || !PStore->isUnordered() ||
4102 PStore->getValueOperand()->getType() !=
4103 QStore->getValueOperand()->getType())
4104 return false;
4105
4106 // Check that sinking the store won't cause program behavior changes. Sinking
4107 // the store out of the Q blocks won't change any behavior as we're sinking
4108 // from a block to its unconditional successor. But we're moving a store from
4109 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4110 // So we need to check that there are no aliasing loads or stores in
4111 // QBI, QTB and QFB. We also need to check there are no conflicting memory
4112 // operations between PStore and the end of its parent block.
4113 //
4114 // The ideal way to do this is to query AliasAnalysis, but we don't
4115 // preserve AA currently so that is dangerous. Be super safe and just
4116 // check there are no other memory operations at all.
4117 for (auto &I : *QFB->getSinglePredecessor())
4118 if (I.mayReadOrWriteMemory())
4119 return false;
4120 for (auto &I : *QFB)
4121 if (&I != QStore && I.mayReadOrWriteMemory())
4122 return false;
4123 if (QTB)
4124 for (auto &I : *QTB)
4125 if (&I != QStore && I.mayReadOrWriteMemory())
4126 return false;
4127 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4128 I != E; ++I)
4129 if (&*I != PStore && I->mayReadOrWriteMemory())
4130 return false;
4131
4132 // If we're not in aggressive mode, we only optimize if we have some
4133 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4134 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4135 if (!BB)
4136 return true;
4137 // Heuristic: if the block can be if-converted/phi-folded and the
4138 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4139 // thread this store.
4140 InstructionCost Cost = 0;
4141 InstructionCost Budget =
4142 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4143 for (auto &I : BB->instructionsWithoutDebug(SkipPseudoOp: false)) {
4144 // Consider terminator instruction to be free.
4145 if (I.isTerminator())
4146 continue;
4147 // If this is one the stores that we want to speculate out of this BB,
4148 // then don't count it's cost, consider it to be free.
4149 if (auto *S = dyn_cast<StoreInst>(Val: &I))
4150 if (llvm::find(Range&: FreeStores, Val: S))
4151 continue;
4152 // Else, we have a white-list of instructions that we are ak speculating.
4153 if (!isa<BinaryOperator>(Val: I) && !isa<GetElementPtrInst>(Val: I))
4154 return false; // Not in white-list - not worthwhile folding.
4155 // And finally, if this is a non-free instruction that we are okay
4156 // speculating, ensure that we consider the speculation budget.
4157 Cost +=
4158 TTI.getInstructionCost(U: &I, CostKind: TargetTransformInfo::TCK_SizeAndLatency);
4159 if (Cost > Budget)
4160 return false; // Eagerly refuse to fold as soon as we're out of budget.
4161 }
4162 assert(Cost <= Budget &&
4163 "When we run out of budget we will eagerly return from within the "
4164 "per-instruction loop.");
4165 return true;
4166 };
4167
4168 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4169 if (!MergeCondStoresAggressively &&
4170 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4171 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4172 return false;
4173
4174 // If PostBB has more than two predecessors, we need to split it so we can
4175 // sink the store.
4176 if (std::next(x: pred_begin(BB: PostBB), n: 2) != pred_end(BB: PostBB)) {
4177 // We know that QFB's only successor is PostBB. And QFB has a single
4178 // predecessor. If QTB exists, then its only successor is also PostBB.
4179 // If QTB does not exist, then QFB's only predecessor has a conditional
4180 // branch to QFB and PostBB.
4181 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4182 BasicBlock *NewBB =
4183 SplitBlockPredecessors(BB: PostBB, Preds: {QFB, TruePred}, Suffix: "condstore.split", DTU);
4184 if (!NewBB)
4185 return false;
4186 PostBB = NewBB;
4187 }
4188
4189 // OK, we're going to sink the stores to PostBB. The store has to be
4190 // conditional though, so first create the predicate.
4191 Value *PCond = cast<BranchInst>(Val: PFB->getSinglePredecessor()->getTerminator())
4192 ->getCondition();
4193 Value *QCond = cast<BranchInst>(Val: QFB->getSinglePredecessor()->getTerminator())
4194 ->getCondition();
4195
4196 Value *PPHI = ensureValueAvailableInSuccessor(V: PStore->getValueOperand(),
4197 BB: PStore->getParent());
4198 Value *QPHI = ensureValueAvailableInSuccessor(V: QStore->getValueOperand(),
4199 BB: QStore->getParent(), AlternativeV: PPHI);
4200
4201 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4202 IRBuilder<> QB(PostBB, PostBBFirst);
4203 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4204
4205 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(V: PCond);
4206 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(V: QCond);
4207
4208 if (InvertPCond)
4209 PPred = QB.CreateNot(V: PPred);
4210 if (InvertQCond)
4211 QPred = QB.CreateNot(V: QPred);
4212 Value *CombinedPred = QB.CreateOr(LHS: PPred, RHS: QPred);
4213
4214 BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4215 auto *T = SplitBlockAndInsertIfThen(Cond: CombinedPred, SplitBefore: InsertPt,
4216 /*Unreachable=*/false,
4217 /*BranchWeights=*/nullptr, DTU);
4218
4219 QB.SetInsertPoint(T);
4220 StoreInst *SI = cast<StoreInst>(Val: QB.CreateStore(Val: QPHI, Ptr: Address));
4221 SI->setAAMetadata(PStore->getAAMetadata().merge(Other: QStore->getAAMetadata()));
4222 // Choose the minimum alignment. If we could prove both stores execute, we
4223 // could use biggest one. In this case, though, we only know that one of the
4224 // stores executes. And we don't know it's safe to take the alignment from a
4225 // store that doesn't execute.
4226 SI->setAlignment(std::min(a: PStore->getAlign(), b: QStore->getAlign()));
4227
4228 QStore->eraseFromParent();
4229 PStore->eraseFromParent();
4230
4231 return true;
4232}
4233
4234static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4235 DomTreeUpdater *DTU, const DataLayout &DL,
4236 const TargetTransformInfo &TTI) {
4237 // The intention here is to find diamonds or triangles (see below) where each
4238 // conditional block contains a store to the same address. Both of these
4239 // stores are conditional, so they can't be unconditionally sunk. But it may
4240 // be profitable to speculatively sink the stores into one merged store at the
4241 // end, and predicate the merged store on the union of the two conditions of
4242 // PBI and QBI.
4243 //
4244 // This can reduce the number of stores executed if both of the conditions are
4245 // true, and can allow the blocks to become small enough to be if-converted.
4246 // This optimization will also chain, so that ladders of test-and-set
4247 // sequences can be if-converted away.
4248 //
4249 // We only deal with simple diamonds or triangles:
4250 //
4251 // PBI or PBI or a combination of the two
4252 // / \ | \
4253 // PTB PFB | PFB
4254 // \ / | /
4255 // QBI QBI
4256 // / \ | \
4257 // QTB QFB | QFB
4258 // \ / | /
4259 // PostBB PostBB
4260 //
4261 // We model triangles as a type of diamond with a nullptr "true" block.
4262 // Triangles are canonicalized so that the fallthrough edge is represented by
4263 // a true condition, as in the diagram above.
4264 BasicBlock *PTB = PBI->getSuccessor(i: 0);
4265 BasicBlock *PFB = PBI->getSuccessor(i: 1);
4266 BasicBlock *QTB = QBI->getSuccessor(i: 0);
4267 BasicBlock *QFB = QBI->getSuccessor(i: 1);
4268 BasicBlock *PostBB = QFB->getSingleSuccessor();
4269
4270 // Make sure we have a good guess for PostBB. If QTB's only successor is
4271 // QFB, then QFB is a better PostBB.
4272 if (QTB->getSingleSuccessor() == QFB)
4273 PostBB = QFB;
4274
4275 // If we couldn't find a good PostBB, stop.
4276 if (!PostBB)
4277 return false;
4278
4279 bool InvertPCond = false, InvertQCond = false;
4280 // Canonicalize fallthroughs to the true branches.
4281 if (PFB == QBI->getParent()) {
4282 std::swap(a&: PFB, b&: PTB);
4283 InvertPCond = true;
4284 }
4285 if (QFB == PostBB) {
4286 std::swap(a&: QFB, b&: QTB);
4287 InvertQCond = true;
4288 }
4289
4290 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4291 // and QFB may not. Model fallthroughs as a nullptr block.
4292 if (PTB == QBI->getParent())
4293 PTB = nullptr;
4294 if (QTB == PostBB)
4295 QTB = nullptr;
4296
4297 // Legality bailouts. We must have at least the non-fallthrough blocks and
4298 // the post-dominating block, and the non-fallthroughs must only have one
4299 // predecessor.
4300 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4301 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4302 };
4303 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4304 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4305 return false;
4306 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4307 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4308 return false;
4309 if (!QBI->getParent()->hasNUses(N: 2))
4310 return false;
4311
4312 // OK, this is a sequence of two diamonds or triangles.
4313 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4314 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4315 for (auto *BB : {PTB, PFB}) {
4316 if (!BB)
4317 continue;
4318 for (auto &I : *BB)
4319 if (StoreInst *SI = dyn_cast<StoreInst>(Val: &I))
4320 PStoreAddresses.insert(Ptr: SI->getPointerOperand());
4321 }
4322 for (auto *BB : {QTB, QFB}) {
4323 if (!BB)
4324 continue;
4325 for (auto &I : *BB)
4326 if (StoreInst *SI = dyn_cast<StoreInst>(Val: &I))
4327 QStoreAddresses.insert(Ptr: SI->getPointerOperand());
4328 }
4329
4330 set_intersect(S1&: PStoreAddresses, S2: QStoreAddresses);
4331 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4332 // clear what it contains.
4333 auto &CommonAddresses = PStoreAddresses;
4334
4335 bool Changed = false;
4336 for (auto *Address : CommonAddresses)
4337 Changed |=
4338 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4339 InvertPCond, InvertQCond, DTU, DL, TTI);
4340 return Changed;
4341}
4342
4343/// If the previous block ended with a widenable branch, determine if reusing
4344/// the target block is profitable and legal. This will have the effect of
4345/// "widening" PBI, but doesn't require us to reason about hosting safety.
4346static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4347 DomTreeUpdater *DTU) {
4348 // TODO: This can be generalized in two important ways:
4349 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4350 // values from the PBI edge.
4351 // 2) We can sink side effecting instructions into BI's fallthrough
4352 // successor provided they doesn't contribute to computation of
4353 // BI's condition.
4354 BasicBlock *IfTrueBB = PBI->getSuccessor(i: 0);
4355 BasicBlock *IfFalseBB = PBI->getSuccessor(i: 1);
4356 if (!isWidenableBranch(U: PBI) || IfTrueBB != BI->getParent() ||
4357 !BI->getParent()->getSinglePredecessor())
4358 return false;
4359 if (!IfFalseBB->phis().empty())
4360 return false; // TODO
4361 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4362 // may undo the transform done here.
4363 // TODO: There might be a more fine-grained solution to this.
4364 if (!llvm::succ_empty(BB: IfFalseBB))
4365 return false;
4366 // Use lambda to lazily compute expensive condition after cheap ones.
4367 auto NoSideEffects = [](BasicBlock &BB) {
4368 return llvm::none_of(Range&: BB, P: [](const Instruction &I) {
4369 return I.mayWriteToMemory() || I.mayHaveSideEffects();
4370 });
4371 };
4372 if (BI->getSuccessor(i: 1) != IfFalseBB && // no inf looping
4373 BI->getSuccessor(i: 1)->getTerminatingDeoptimizeCall() && // profitability
4374 NoSideEffects(*BI->getParent())) {
4375 auto *OldSuccessor = BI->getSuccessor(i: 1);
4376 OldSuccessor->removePredecessor(Pred: BI->getParent());
4377 BI->setSuccessor(idx: 1, NewSucc: IfFalseBB);
4378 if (DTU)
4379 DTU->applyUpdates(
4380 Updates: {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4381 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4382 return true;
4383 }
4384 if (BI->getSuccessor(i: 0) != IfFalseBB && // no inf looping
4385 BI->getSuccessor(i: 0)->getTerminatingDeoptimizeCall() && // profitability
4386 NoSideEffects(*BI->getParent())) {
4387 auto *OldSuccessor = BI->getSuccessor(i: 0);
4388 OldSuccessor->removePredecessor(Pred: BI->getParent());
4389 BI->setSuccessor(idx: 0, NewSucc: IfFalseBB);
4390 if (DTU)
4391 DTU->applyUpdates(
4392 Updates: {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4393 {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4394 return true;
4395 }
4396 return false;
4397}
4398
4399/// If we have a conditional branch as a predecessor of another block,
4400/// this function tries to simplify it. We know
4401/// that PBI and BI are both conditional branches, and BI is in one of the
4402/// successor blocks of PBI - PBI branches to BI.
4403static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4404 DomTreeUpdater *DTU,
4405 const DataLayout &DL,
4406 const TargetTransformInfo &TTI) {
4407 assert(PBI->isConditional() && BI->isConditional());
4408 BasicBlock *BB = BI->getParent();
4409
4410 // If this block ends with a branch instruction, and if there is a
4411 // predecessor that ends on a branch of the same condition, make
4412 // this conditional branch redundant.
4413 if (PBI->getCondition() == BI->getCondition() &&
4414 PBI->getSuccessor(i: 0) != PBI->getSuccessor(i: 1)) {
4415 // Okay, the outcome of this conditional branch is statically
4416 // knowable. If this block had a single pred, handle specially, otherwise
4417 // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4418 if (BB->getSinglePredecessor()) {
4419 // Turn this into a branch on constant.
4420 bool CondIsTrue = PBI->getSuccessor(i: 0) == BB;
4421 BI->setCondition(
4422 ConstantInt::get(Ty: Type::getInt1Ty(C&: BB->getContext()), V: CondIsTrue));
4423 return true; // Nuke the branch on constant.
4424 }
4425 }
4426
4427 // If the previous block ended with a widenable branch, determine if reusing
4428 // the target block is profitable and legal. This will have the effect of
4429 // "widening" PBI, but doesn't require us to reason about hosting safety.
4430 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4431 return true;
4432
4433 // If both branches are conditional and both contain stores to the same
4434 // address, remove the stores from the conditionals and create a conditional
4435 // merged store at the end.
4436 if (MergeCondStores && mergeConditionalStores(PBI, QBI: BI, DTU, DL, TTI))
4437 return true;
4438
4439 // If this is a conditional branch in an empty block, and if any
4440 // predecessors are a conditional branch to one of our destinations,
4441 // fold the conditions into logical ops and one cond br.
4442
4443 // Ignore dbg intrinsics.
4444 if (&*BB->instructionsWithoutDebug(SkipPseudoOp: false).begin() != BI)
4445 return false;
4446
4447 int PBIOp, BIOp;
4448 if (PBI->getSuccessor(i: 0) == BI->getSuccessor(i: 0)) {
4449 PBIOp = 0;
4450 BIOp = 0;
4451 } else if (PBI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) {
4452 PBIOp = 0;
4453 BIOp = 1;
4454 } else if (PBI->getSuccessor(i: 1) == BI->getSuccessor(i: 0)) {
4455 PBIOp = 1;
4456 BIOp = 0;
4457 } else if (PBI->getSuccessor(i: 1) == BI->getSuccessor(i: 1)) {
4458 PBIOp = 1;
4459 BIOp = 1;
4460 } else {
4461 return false;
4462 }
4463
4464 // Check to make sure that the other destination of this branch
4465 // isn't BB itself. If so, this is an infinite loop that will
4466 // keep getting unwound.
4467 if (PBI->getSuccessor(i: PBIOp) == BB)
4468 return false;
4469
4470 // If predecessor's branch probability to BB is too low don't merge branches.
4471 SmallVector<uint32_t, 2> PredWeights;
4472 if (!PBI->getMetadata(KindID: LLVMContext::MD_unpredictable) &&
4473 extractBranchWeights(I: *PBI, Weights&: PredWeights) &&
4474 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4475
4476 BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4477 Numerator: PredWeights[PBIOp],
4478 Denominator: static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4479
4480 BranchProbability Likely = TTI.getPredictableBranchThreshold();
4481 if (CommonDestProb >= Likely)
4482 return false;
4483 }
4484
4485 // Do not perform this transformation if it would require
4486 // insertion of a large number of select instructions. For targets
4487 // without predication/cmovs, this is a big pessimization.
4488
4489 BasicBlock *CommonDest = PBI->getSuccessor(i: PBIOp);
4490 BasicBlock *RemovedDest = PBI->getSuccessor(i: PBIOp ^ 1);
4491 unsigned NumPhis = 0;
4492 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(Val: II);
4493 ++II, ++NumPhis) {
4494 if (NumPhis > 2) // Disable this xform.
4495 return false;
4496 }
4497
4498 // Finally, if everything is ok, fold the branches to logical ops.
4499 BasicBlock *OtherDest = BI->getSuccessor(i: BIOp ^ 1);
4500
4501 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4502 << "AND: " << *BI->getParent());
4503
4504 SmallVector<DominatorTree::UpdateType, 5> Updates;
4505
4506 // If OtherDest *is* BB, then BB is a basic block with a single conditional
4507 // branch in it, where one edge (OtherDest) goes back to itself but the other
4508 // exits. We don't *know* that the program avoids the infinite loop
4509 // (even though that seems likely). If we do this xform naively, we'll end up
4510 // recursively unpeeling the loop. Since we know that (after the xform is
4511 // done) that the block *is* infinite if reached, we just make it an obviously
4512 // infinite loop with no cond branch.
4513 if (OtherDest == BB) {
4514 // Insert it at the end of the function, because it's either code,
4515 // or it won't matter if it's hot. :)
4516 BasicBlock *InfLoopBlock =
4517 BasicBlock::Create(Context&: BB->getContext(), Name: "infloop", Parent: BB->getParent());
4518 BranchInst::Create(IfTrue: InfLoopBlock, InsertAtEnd: InfLoopBlock);
4519 if (DTU)
4520 Updates.push_back(Elt: {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4521 OtherDest = InfLoopBlock;
4522 }
4523
4524 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4525
4526 // BI may have other predecessors. Because of this, we leave
4527 // it alone, but modify PBI.
4528
4529 // Make sure we get to CommonDest on True&True directions.
4530 Value *PBICond = PBI->getCondition();
4531 IRBuilder<NoFolder> Builder(PBI);
4532 if (PBIOp)
4533 PBICond = Builder.CreateNot(V: PBICond, Name: PBICond->getName() + ".not");
4534
4535 Value *BICond = BI->getCondition();
4536 if (BIOp)
4537 BICond = Builder.CreateNot(V: BICond, Name: BICond->getName() + ".not");
4538
4539 // Merge the conditions.
4540 Value *Cond =
4541 createLogicalOp(Builder, Opc: Instruction::Or, LHS: PBICond, RHS: BICond, Name: "brmerge");
4542
4543 // Modify PBI to branch on the new condition to the new dests.
4544 PBI->setCondition(Cond);
4545 PBI->setSuccessor(idx: 0, NewSucc: CommonDest);
4546 PBI->setSuccessor(idx: 1, NewSucc: OtherDest);
4547
4548 if (DTU) {
4549 Updates.push_back(Elt: {DominatorTree::Insert, PBI->getParent(), OtherDest});
4550 Updates.push_back(Elt: {DominatorTree::Delete, PBI->getParent(), RemovedDest});
4551
4552 DTU->applyUpdates(Updates);
4553 }
4554
4555 // Update branch weight for PBI.
4556 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4557 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4558 bool HasWeights =
4559 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4560 SuccTrueWeight, SuccFalseWeight);
4561 if (HasWeights) {
4562 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4563 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4564 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4565 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4566 // The weight to CommonDest should be PredCommon * SuccTotal +
4567 // PredOther * SuccCommon.
4568 // The weight to OtherDest should be PredOther * SuccOther.
4569 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4570 PredOther * SuccCommon,
4571 PredOther * SuccOther};
4572 // Halve the weights if any of them cannot fit in an uint32_t
4573 FitWeights(Weights: NewWeights);
4574
4575 setBranchWeights(I: PBI, TrueWeight: NewWeights[0], FalseWeight: NewWeights[1]);
4576 }
4577
4578 // OtherDest may have phi nodes. If so, add an entry from PBI's
4579 // block that are identical to the entries for BI's block.
4580 AddPredecessorToBlock(Succ: OtherDest, NewPred: PBI->getParent(), ExistPred: BB);
4581
4582 // We know that the CommonDest already had an edge from PBI to
4583 // it. If it has PHIs though, the PHIs may have different
4584 // entries for BB and PBI's BB. If so, insert a select to make
4585 // them agree.
4586 for (PHINode &PN : CommonDest->phis()) {
4587 Value *BIV = PN.getIncomingValueForBlock(BB);
4588 unsigned PBBIdx = PN.getBasicBlockIndex(BB: PBI->getParent());
4589 Value *PBIV = PN.getIncomingValue(i: PBBIdx);
4590 if (BIV != PBIV) {
4591 // Insert a select in PBI to pick the right value.
4592 SelectInst *NV = cast<SelectInst>(
4593 Val: Builder.CreateSelect(C: PBICond, True: PBIV, False: BIV, Name: PBIV->getName() + ".mux"));
4594 PN.setIncomingValue(i: PBBIdx, V: NV);
4595 // Although the select has the same condition as PBI, the original branch
4596 // weights for PBI do not apply to the new select because the select's
4597 // 'logical' edges are incoming edges of the phi that is eliminated, not
4598 // the outgoing edges of PBI.
4599 if (HasWeights) {
4600 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4601 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4602 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4603 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4604 // The weight to PredCommonDest should be PredCommon * SuccTotal.
4605 // The weight to PredOtherDest should be PredOther * SuccCommon.
4606 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4607 PredOther * SuccCommon};
4608
4609 FitWeights(Weights: NewWeights);
4610
4611 setBranchWeights(I: NV, TrueWeight: NewWeights[0], FalseWeight: NewWeights[1]);
4612 }
4613 }
4614 }
4615
4616 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4617 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4618
4619 // This basic block is probably dead. We know it has at least
4620 // one fewer predecessor.
4621 return true;
4622}
4623
4624// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4625// true or to FalseBB if Cond is false.
4626// Takes care of updating the successors and removing the old terminator.
4627// Also makes sure not to introduce new successors by assuming that edges to
4628// non-successor TrueBBs and FalseBBs aren't reachable.
4629bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4630 Value *Cond, BasicBlock *TrueBB,
4631 BasicBlock *FalseBB,
4632 uint32_t TrueWeight,
4633 uint32_t FalseWeight) {
4634 auto *BB = OldTerm->getParent();
4635 // Remove any superfluous successor edges from the CFG.
4636 // First, figure out which successors to preserve.
4637 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4638 // successor.
4639 BasicBlock *KeepEdge1 = TrueBB;
4640 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4641
4642 SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4643
4644 // Then remove the rest.
4645 for (BasicBlock *Succ : successors(I: OldTerm)) {
4646 // Make sure only to keep exactly one copy of each edge.
4647 if (Succ == KeepEdge1)
4648 KeepEdge1 = nullptr;
4649 else if (Succ == KeepEdge2)
4650 KeepEdge2 = nullptr;
4651 else {
4652 Succ->removePredecessor(Pred: BB,
4653 /*KeepOneInputPHIs=*/true);
4654
4655 if (Succ != TrueBB && Succ != FalseBB)
4656 RemovedSuccessors.insert(X: Succ);
4657 }
4658 }
4659
4660 IRBuilder<> Builder(OldTerm);
4661 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4662
4663 // Insert an appropriate new terminator.
4664 if (!KeepEdge1 && !KeepEdge2) {
4665 if (TrueBB == FalseBB) {
4666 // We were only looking for one successor, and it was present.
4667 // Create an unconditional branch to it.
4668 Builder.CreateBr(Dest: TrueBB);
4669 } else {
4670 // We found both of the successors we were looking for.
4671 // Create a conditional branch sharing the condition of the select.
4672 BranchInst *NewBI = Builder.CreateCondBr(Cond, True: TrueBB, False: FalseBB);
4673 if (TrueWeight != FalseWeight)
4674 setBranchWeights(I: NewBI, TrueWeight, FalseWeight);
4675 }
4676 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4677 // Neither of the selected blocks were successors, so this
4678 // terminator must be unreachable.
4679 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4680 } else {
4681 // One of the selected values was a successor, but the other wasn't.
4682 // Insert an unconditional branch to the one that was found;
4683 // the edge to the one that wasn't must be unreachable.
4684 if (!KeepEdge1) {
4685 // Only TrueBB was found.
4686 Builder.CreateBr(Dest: TrueBB);
4687 } else {
4688 // Only FalseBB was found.
4689 Builder.CreateBr(Dest: FalseBB);
4690 }
4691 }
4692
4693 EraseTerminatorAndDCECond(TI: OldTerm);
4694
4695 if (DTU) {
4696 SmallVector<DominatorTree::UpdateType, 2> Updates;
4697 Updates.reserve(N: RemovedSuccessors.size());
4698 for (auto *RemovedSuccessor : RemovedSuccessors)
4699 Updates.push_back(Elt: {DominatorTree::Delete, BB, RemovedSuccessor});
4700 DTU->applyUpdates(Updates);
4701 }
4702
4703 return true;
4704}
4705
4706// Replaces
4707// (switch (select cond, X, Y)) on constant X, Y
4708// with a branch - conditional if X and Y lead to distinct BBs,
4709// unconditional otherwise.
4710bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4711 SelectInst *Select) {
4712 // Check for constant integer values in the select.
4713 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Val: Select->getTrueValue());
4714 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Val: Select->getFalseValue());
4715 if (!TrueVal || !FalseVal)
4716 return false;
4717
4718 // Find the relevant condition and destinations.
4719 Value *Condition = Select->getCondition();
4720 BasicBlock *TrueBB = SI->findCaseValue(C: TrueVal)->getCaseSuccessor();
4721 BasicBlock *FalseBB = SI->findCaseValue(C: FalseVal)->getCaseSuccessor();
4722
4723 // Get weight for TrueBB and FalseBB.
4724 uint32_t TrueWeight = 0, FalseWeight = 0;
4725 SmallVector<uint64_t, 8> Weights;
4726 bool HasWeights = hasBranchWeightMD(I: *SI);
4727 if (HasWeights) {
4728 GetBranchWeights(TI: SI, Weights);
4729 if (Weights.size() == 1 + SI->getNumCases()) {
4730 TrueWeight =
4731 (uint32_t)Weights[SI->findCaseValue(C: TrueVal)->getSuccessorIndex()];
4732 FalseWeight =
4733 (uint32_t)Weights[SI->findCaseValue(C: FalseVal)->getSuccessorIndex()];
4734 }
4735 }
4736
4737 // Perform the actual simplification.
4738 return SimplifyTerminatorOnSelect(OldTerm: SI, Cond: Condition, TrueBB, FalseBB, TrueWeight,
4739 FalseWeight);
4740}
4741
4742// Replaces
4743// (indirectbr (select cond, blockaddress(@fn, BlockA),
4744// blockaddress(@fn, BlockB)))
4745// with
4746// (br cond, BlockA, BlockB).
4747bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4748 SelectInst *SI) {
4749 // Check that both operands of the select are block addresses.
4750 BlockAddress *TBA = dyn_cast<BlockAddress>(Val: SI->getTrueValue());
4751 BlockAddress *FBA = dyn_cast<BlockAddress>(Val: SI->getFalseValue());
4752 if (!TBA || !FBA)
4753 return false;
4754
4755 // Extract the actual blocks.
4756 BasicBlock *TrueBB = TBA->getBasicBlock();
4757 BasicBlock *FalseBB = FBA->getBasicBlock();
4758
4759 // Perform the actual simplification.
4760 return SimplifyTerminatorOnSelect(OldTerm: IBI, Cond: SI->getCondition(), TrueBB, FalseBB, TrueWeight: 0,
4761 FalseWeight: 0);
4762}
4763
4764/// This is called when we find an icmp instruction
4765/// (a seteq/setne with a constant) as the only instruction in a
4766/// block that ends with an uncond branch. We are looking for a very specific
4767/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4768/// this case, we merge the first two "or's of icmp" into a switch, but then the
4769/// default value goes to an uncond block with a seteq in it, we get something
4770/// like:
4771///
4772/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4773/// DEFAULT:
4774/// %tmp = icmp eq i8 %A, 92
4775/// br label %end
4776/// end:
4777/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4778///
4779/// We prefer to split the edge to 'end' so that there is a true/false entry to
4780/// the PHI, merging the third icmp into the switch.
4781bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4782 ICmpInst *ICI, IRBuilder<> &Builder) {
4783 BasicBlock *BB = ICI->getParent();
4784
4785 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4786 // complex.
4787 if (isa<PHINode>(Val: BB->begin()) || !ICI->hasOneUse())
4788 return false;
4789
4790 Value *V = ICI->getOperand(i_nocapture: 0);
4791 ConstantInt *Cst = cast<ConstantInt>(Val: ICI->getOperand(i_nocapture: 1));
4792
4793 // The pattern we're looking for is where our only predecessor is a switch on
4794 // 'V' and this block is the default case for the switch. In this case we can
4795 // fold the compared value into the switch to simplify things.
4796 BasicBlock *Pred = BB->getSinglePredecessor();
4797 if (!Pred || !isa<SwitchInst>(Val: Pred->getTerminator()))
4798 return false;
4799
4800 SwitchInst *SI = cast<SwitchInst>(Val: Pred->getTerminator());
4801 if (SI->getCondition() != V)
4802 return false;
4803
4804 // If BB is reachable on a non-default case, then we simply know the value of
4805 // V in this block. Substitute it and constant fold the icmp instruction
4806 // away.
4807 if (SI->getDefaultDest() != BB) {
4808 ConstantInt *VVal = SI->findCaseDest(BB);
4809 assert(VVal && "Should have a unique destination value");
4810 ICI->setOperand(i_nocapture: 0, Val_nocapture: VVal);
4811
4812 if (Value *V = simplifyInstruction(I: ICI, Q: {DL, ICI})) {
4813 ICI->replaceAllUsesWith(V);
4814 ICI->eraseFromParent();
4815 }
4816 // BB is now empty, so it is likely to simplify away.
4817 return requestResimplify();
4818 }
4819
4820 // Ok, the block is reachable from the default dest. If the constant we're
4821 // comparing exists in one of the other edges, then we can constant fold ICI
4822 // and zap it.
4823 if (SI->findCaseValue(C: Cst) != SI->case_default()) {
4824 Value *V;
4825 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4826 V = ConstantInt::getFalse(Context&: BB->getContext());
4827 else
4828 V = ConstantInt::getTrue(Context&: BB->getContext());
4829
4830 ICI->replaceAllUsesWith(V);
4831 ICI->eraseFromParent();
4832 // BB is now empty, so it is likely to simplify away.
4833 return requestResimplify();
4834 }
4835
4836 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4837 // the block.
4838 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(Idx: 0);
4839 PHINode *PHIUse = dyn_cast<PHINode>(Val: ICI->user_back());
4840 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4841 isa<PHINode>(Val: ++BasicBlock::iterator(PHIUse)))
4842 return false;
4843
4844 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4845 // true in the PHI.
4846 Constant *DefaultCst = ConstantInt::getTrue(Context&: BB->getContext());
4847 Constant *NewCst = ConstantInt::getFalse(Context&: BB->getContext());
4848
4849 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4850 std::swap(a&: DefaultCst, b&: NewCst);
4851
4852 // Replace ICI (which is used by the PHI for the default value) with true or
4853 // false depending on if it is EQ or NE.
4854 ICI->replaceAllUsesWith(V: DefaultCst);
4855 ICI->eraseFromParent();
4856
4857 SmallVector<DominatorTree::UpdateType, 2> Updates;
4858
4859 // Okay, the switch goes to this block on a default value. Add an edge from
4860 // the switch to the merge point on the compared value.
4861 BasicBlock *NewBB =
4862 BasicBlock::Create(Context&: BB->getContext(), Name: "switch.edge", Parent: BB->getParent(), InsertBefore: BB);
4863 {
4864 SwitchInstProfUpdateWrapper SIW(*SI);
4865 auto W0 = SIW.getSuccessorWeight(idx: 0);
4866 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4867 if (W0) {
4868 NewW = ((uint64_t(*W0) + 1) >> 1);
4869 SIW.setSuccessorWeight(idx: 0, W: *NewW);
4870 }
4871 SIW.addCase(OnVal: Cst, Dest: NewBB, W: NewW);
4872 if (DTU)
4873 Updates.push_back(Elt: {DominatorTree::Insert, Pred, NewBB});
4874 }
4875
4876 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4877 Builder.SetInsertPoint(NewBB);
4878 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4879 Builder.CreateBr(Dest: SuccBlock);
4880 PHIUse->addIncoming(V: NewCst, BB: NewBB);
4881 if (DTU) {
4882 Updates.push_back(Elt: {DominatorTree::Insert, NewBB, SuccBlock});
4883 DTU->applyUpdates(Updates);
4884 }
4885 return true;
4886}
4887
4888/// The specified branch is a conditional branch.
4889/// Check to see if it is branching on an or/and chain of icmp instructions, and
4890/// fold it into a switch instruction if so.
4891bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4892 IRBuilder<> &Builder,
4893 const DataLayout &DL) {
4894 Instruction *Cond = dyn_cast<Instruction>(Val: BI->getCondition());
4895 if (!Cond)
4896 return false;
4897
4898 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4899 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4900 // 'setne's and'ed together, collect them.
4901
4902 // Try to gather values from a chain of and/or to be turned into a switch
4903 ConstantComparesGatherer ConstantCompare(Cond, DL);
4904 // Unpack the result
4905 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4906 Value *CompVal = ConstantCompare.CompValue;
4907 unsigned UsedICmps = ConstantCompare.UsedICmps;
4908 Value *ExtraCase = ConstantCompare.Extra;
4909
4910 // If we didn't have a multiply compared value, fail.
4911 if (!CompVal)
4912 return false;
4913
4914 // Avoid turning single icmps into a switch.
4915 if (UsedICmps <= 1)
4916 return false;
4917
4918 bool TrueWhenEqual = match(V: Cond, P: m_LogicalOr(L: m_Value(), R: m_Value()));
4919
4920 // There might be duplicate constants in the list, which the switch
4921 // instruction can't handle, remove them now.
4922 array_pod_sort(Start: Values.begin(), End: Values.end(), Compare: ConstantIntSortPredicate);
4923 Values.erase(CS: std::unique(first: Values.begin(), last: Values.end()), CE: Values.end());
4924
4925 // If Extra was used, we require at least two switch values to do the
4926 // transformation. A switch with one value is just a conditional branch.
4927 if (ExtraCase && Values.size() < 2)
4928 return false;
4929
4930 // TODO: Preserve branch weight metadata, similarly to how
4931 // FoldValueComparisonIntoPredecessors preserves it.
4932
4933 // Figure out which block is which destination.
4934 BasicBlock *DefaultBB = BI->getSuccessor(i: 1);
4935 BasicBlock *EdgeBB = BI->getSuccessor(i: 0);
4936 if (!TrueWhenEqual)
4937 std::swap(a&: DefaultBB, b&: EdgeBB);
4938
4939 BasicBlock *BB = BI->getParent();
4940
4941 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4942 << " cases into SWITCH. BB is:\n"
4943 << *BB);
4944
4945 SmallVector<DominatorTree::UpdateType, 2> Updates;
4946
4947 // If there are any extra values that couldn't be folded into the switch
4948 // then we evaluate them with an explicit branch first. Split the block
4949 // right before the condbr to handle it.
4950 if (ExtraCase) {
4951 BasicBlock *NewBB = SplitBlock(Old: BB, SplitPt: BI, DTU, /*LI=*/nullptr,
4952 /*MSSAU=*/nullptr, BBName: "switch.early.test");
4953
4954 // Remove the uncond branch added to the old block.
4955 Instruction *OldTI = BB->getTerminator();
4956 Builder.SetInsertPoint(OldTI);
4957
4958 // There can be an unintended UB if extra values are Poison. Before the
4959 // transformation, extra values may not be evaluated according to the
4960 // condition, and it will not raise UB. But after transformation, we are
4961 // evaluating extra values before checking the condition, and it will raise
4962 // UB. It can be solved by adding freeze instruction to extra values.
4963 AssumptionCache *AC = Options.AC;
4964
4965 if (!isGuaranteedNotToBeUndefOrPoison(V: ExtraCase, AC, CtxI: BI, DT: nullptr))
4966 ExtraCase = Builder.CreateFreeze(V: ExtraCase);
4967
4968 if (TrueWhenEqual)
4969 Builder.CreateCondBr(Cond: ExtraCase, True: EdgeBB, False: NewBB);
4970 else
4971 Builder.CreateCondBr(Cond: ExtraCase, True: NewBB, False: EdgeBB);
4972
4973 OldTI->eraseFromParent();
4974
4975 if (DTU)
4976 Updates.push_back(Elt: {DominatorTree::Insert, BB, EdgeBB});
4977
4978 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4979 // for the edge we just added.
4980 AddPredecessorToBlock(Succ: EdgeBB, NewPred: BB, ExistPred: NewBB);
4981
4982 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4983 << "\nEXTRABB = " << *BB);
4984 BB = NewBB;
4985 }
4986
4987 Builder.SetInsertPoint(BI);
4988 // Convert pointer to int before we switch.
4989 if (CompVal->getType()->isPointerTy()) {
4990 CompVal = Builder.CreatePtrToInt(
4991 V: CompVal, DestTy: DL.getIntPtrType(CompVal->getType()), Name: "magicptr");
4992 }
4993
4994 // Create the new switch instruction now.
4995 SwitchInst *New = Builder.CreateSwitch(V: CompVal, Dest: DefaultBB, NumCases: Values.size());
4996
4997 // Add all of the 'cases' to the switch instruction.
4998 for (unsigned i = 0, e = Values.size(); i != e; ++i)
4999 New->addCase(OnVal: Values[i], Dest: EdgeBB);
5000
5001 // We added edges from PI to the EdgeBB. As such, if there were any
5002 // PHI nodes in EdgeBB, they need entries to be added corresponding to
5003 // the number of edges added.
5004 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(Val: BBI); ++BBI) {
5005 PHINode *PN = cast<PHINode>(Val&: BBI);
5006 Value *InVal = PN->getIncomingValueForBlock(BB);
5007 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5008 PN->addIncoming(V: InVal, BB);
5009 }
5010
5011 // Erase the old branch instruction.
5012 EraseTerminatorAndDCECond(TI: BI);
5013 if (DTU)
5014 DTU->applyUpdates(Updates);
5015
5016 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
5017 return true;
5018}
5019
5020bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5021 if (isa<PHINode>(Val: RI->getValue()))
5022 return simplifyCommonResume(RI);
5023 else if (isa<LandingPadInst>(Val: RI->getParent()->getFirstNonPHI()) &&
5024 RI->getValue() == RI->getParent()->getFirstNonPHI())
5025 // The resume must unwind the exception that caused control to branch here.
5026 return simplifySingleResume(RI);
5027
5028 return false;
5029}
5030
5031// Check if cleanup block is empty
5032static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5033 for (Instruction &I : R) {
5034 auto *II = dyn_cast<IntrinsicInst>(Val: &I);
5035 if (!II)
5036 return false;
5037
5038 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5039 switch (IntrinsicID) {
5040 case Intrinsic::dbg_declare:
5041 case Intrinsic::dbg_value:
5042 case Intrinsic::dbg_label:
5043 case Intrinsic::lifetime_end:
5044 break;
5045 default:
5046 return false;
5047 }
5048 }
5049 return true;
5050}
5051
5052// Simplify resume that is shared by several landing pads (phi of landing pad).
5053bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5054 BasicBlock *BB = RI->getParent();
5055
5056 // Check that there are no other instructions except for debug and lifetime
5057 // intrinsics between the phi's and resume instruction.
5058 if (!isCleanupBlockEmpty(
5059 R: make_range(x: RI->getParent()->getFirstNonPHI(), y: BB->getTerminator())))
5060 return false;
5061
5062 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5063 auto *PhiLPInst = cast<PHINode>(Val: RI->getValue());
5064
5065 // Check incoming blocks to see if any of them are trivial.
5066 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5067 Idx++) {
5068 auto *IncomingBB = PhiLPInst->getIncomingBlock(i: Idx);
5069 auto *IncomingValue = PhiLPInst->getIncomingValue(i: Idx);
5070
5071 // If the block has other successors, we can not delete it because
5072 // it has other dependents.
5073 if (IncomingBB->getUniqueSuccessor() != BB)
5074 continue;
5075
5076 auto *LandingPad = dyn_cast<LandingPadInst>(Val: IncomingBB->getFirstNonPHI());
5077 // Not the landing pad that caused the control to branch here.
5078 if (IncomingValue != LandingPad)
5079 continue;
5080
5081 if (isCleanupBlockEmpty(
5082 R: make_range(x: LandingPad->getNextNode(), y: IncomingBB->getTerminator())))
5083 TrivialUnwindBlocks.insert(X: IncomingBB);
5084 }
5085
5086 // If no trivial unwind blocks, don't do any simplifications.
5087 if (TrivialUnwindBlocks.empty())
5088 return false;
5089
5090 // Turn all invokes that unwind here into calls.
5091 for (auto *TrivialBB : TrivialUnwindBlocks) {
5092 // Blocks that will be simplified should be removed from the phi node.
5093 // Note there could be multiple edges to the resume block, and we need
5094 // to remove them all.
5095 while (PhiLPInst->getBasicBlockIndex(BB: TrivialBB) != -1)
5096 BB->removePredecessor(Pred: TrivialBB, KeepOneInputPHIs: true);
5097
5098 for (BasicBlock *Pred :
5099 llvm::make_early_inc_range(Range: predecessors(BB: TrivialBB))) {
5100 removeUnwindEdge(BB: Pred, DTU);
5101 ++NumInvokes;
5102 }
5103
5104 // In each SimplifyCFG run, only the current processed block can be erased.
5105 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5106 // of erasing TrivialBB, we only remove the branch to the common resume
5107 // block so that we can later erase the resume block since it has no
5108 // predecessors.
5109 TrivialBB->getTerminator()->eraseFromParent();
5110 new UnreachableInst(RI->getContext(), TrivialBB);
5111 if (DTU)
5112 DTU->applyUpdates(Updates: {{DominatorTree::Delete, TrivialBB, BB}});
5113 }
5114
5115 // Delete the resume block if all its predecessors have been removed.
5116 if (pred_empty(BB))
5117 DeleteDeadBlock(BB, DTU);
5118
5119 return !TrivialUnwindBlocks.empty();
5120}
5121
5122// Simplify resume that is only used by a single (non-phi) landing pad.
5123bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5124 BasicBlock *BB = RI->getParent();
5125 auto *LPInst = cast<LandingPadInst>(Val: BB->getFirstNonPHI());
5126 assert(RI->getValue() == LPInst &&
5127 "Resume must unwind the exception that caused control to here");
5128
5129 // Check that there are no other instructions except for debug intrinsics.
5130 if (!isCleanupBlockEmpty(
5131 R: make_range<Instruction *>(x: LPInst->getNextNode(), y: RI)))
5132 return false;
5133
5134 // Turn all invokes that unwind here into calls and delete the basic block.
5135 for (BasicBlock *Pred : llvm::make_early_inc_range(Range: predecessors(BB))) {
5136 removeUnwindEdge(BB: Pred, DTU);
5137 ++NumInvokes;
5138 }
5139
5140 // The landingpad is now unreachable. Zap it.
5141 DeleteDeadBlock(BB, DTU);
5142 return true;
5143}
5144
5145static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5146 // If this is a trivial cleanup pad that executes no instructions, it can be
5147 // eliminated. If the cleanup pad continues to the caller, any predecessor
5148 // that is an EH pad will be updated to continue to the caller and any
5149 // predecessor that terminates with an invoke instruction will have its invoke
5150 // instruction converted to a call instruction. If the cleanup pad being
5151 // simplified does not continue to the caller, each predecessor will be
5152 // updated to continue to the unwind destination of the cleanup pad being
5153 // simplified.
5154 BasicBlock *BB = RI->getParent();
5155 CleanupPadInst *CPInst = RI->getCleanupPad();
5156 if (CPInst->getParent() != BB)
5157 // This isn't an empty cleanup.
5158 return false;
5159
5160 // We cannot kill the pad if it has multiple uses. This typically arises
5161 // from unreachable basic blocks.
5162 if (!CPInst->hasOneUse())
5163 return false;
5164
5165 // Check that there are no other instructions except for benign intrinsics.
5166 if (!isCleanupBlockEmpty(
5167 R: make_range<Instruction *>(x: CPInst->getNextNode(), y: RI)))
5168 return false;
5169
5170 // If the cleanup return we are simplifying unwinds to the caller, this will
5171 // set UnwindDest to nullptr.
5172 BasicBlock *UnwindDest = RI->getUnwindDest();
5173 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5174
5175 // We're about to remove BB from the control flow. Before we do, sink any
5176 // PHINodes into the unwind destination. Doing this before changing the
5177 // control flow avoids some potentially slow checks, since we can currently
5178 // be certain that UnwindDest and BB have no common predecessors (since they
5179 // are both EH pads).
5180 if (UnwindDest) {
5181 // First, go through the PHI nodes in UnwindDest and update any nodes that
5182 // reference the block we are removing
5183 for (PHINode &DestPN : UnwindDest->phis()) {
5184 int Idx = DestPN.getBasicBlockIndex(BB);
5185 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5186 assert(Idx != -1);
5187 // This PHI node has an incoming value that corresponds to a control
5188 // path through the cleanup pad we are removing. If the incoming
5189 // value is in the cleanup pad, it must be a PHINode (because we
5190 // verified above that the block is otherwise empty). Otherwise, the
5191 // value is either a constant or a value that dominates the cleanup
5192 // pad being removed.
5193 //
5194 // Because BB and UnwindDest are both EH pads, all of their
5195 // predecessors must unwind to these blocks, and since no instruction
5196 // can have multiple unwind destinations, there will be no overlap in
5197 // incoming blocks between SrcPN and DestPN.
5198 Value *SrcVal = DestPN.getIncomingValue(i: Idx);
5199 PHINode *SrcPN = dyn_cast<PHINode>(Val: SrcVal);
5200
5201 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5202 for (auto *Pred : predecessors(BB)) {
5203 Value *Incoming =
5204 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(BB: Pred) : SrcVal;
5205 DestPN.addIncoming(V: Incoming, BB: Pred);
5206 }
5207 }
5208
5209 // Sink any remaining PHI nodes directly into UnwindDest.
5210 Instruction *InsertPt = DestEHPad;
5211 for (PHINode &PN : make_early_inc_range(Range: BB->phis())) {
5212 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5213 // If the PHI node has no uses or all of its uses are in this basic
5214 // block (meaning they are debug or lifetime intrinsics), just leave
5215 // it. It will be erased when we erase BB below.
5216 continue;
5217
5218 // Otherwise, sink this PHI node into UnwindDest.
5219 // Any predecessors to UnwindDest which are not already represented
5220 // must be back edges which inherit the value from the path through
5221 // BB. In this case, the PHI value must reference itself.
5222 for (auto *pred : predecessors(BB: UnwindDest))
5223 if (pred != BB)
5224 PN.addIncoming(V: &PN, BB: pred);
5225 PN.moveBefore(MovePos: InsertPt);
5226 // Also, add a dummy incoming value for the original BB itself,
5227 // so that the PHI is well-formed until we drop said predecessor.
5228 PN.addIncoming(V: PoisonValue::get(T: PN.getType()), BB);
5229 }
5230 }
5231
5232 std::vector<DominatorTree::UpdateType> Updates;
5233
5234 // We use make_early_inc_range here because we will remove all predecessors.
5235 for (BasicBlock *PredBB : llvm::make_early_inc_range(Range: predecessors(BB))) {
5236 if (UnwindDest == nullptr) {
5237 if (DTU) {
5238 DTU->applyUpdates(Updates);
5239 Updates.clear();
5240 }
5241 removeUnwindEdge(BB: PredBB, DTU);
5242 ++NumInvokes;
5243 } else {
5244 BB->removePredecessor(Pred: PredBB);
5245 Instruction *TI = PredBB->getTerminator();
5246 TI->replaceUsesOfWith(From: BB, To: UnwindDest);
5247 if (DTU) {
5248 Updates.push_back(x: {DominatorTree::Insert, PredBB, UnwindDest});
5249 Updates.push_back(x: {DominatorTree::Delete, PredBB, BB});
5250 }
5251 }
5252 }
5253
5254 if (DTU)
5255 DTU->applyUpdates(Updates);
5256
5257 DeleteDeadBlock(BB, DTU);
5258
5259 return true;
5260}
5261
5262// Try to merge two cleanuppads together.
5263static bool mergeCleanupPad(CleanupReturnInst *RI) {
5264 // Skip any cleanuprets which unwind to caller, there is nothing to merge
5265 // with.
5266 BasicBlock *UnwindDest = RI->getUnwindDest();
5267 if (!UnwindDest)
5268 return false;
5269
5270 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5271 // be safe to merge without code duplication.
5272 if (UnwindDest->getSinglePredecessor() != RI->getParent())
5273 return false;
5274
5275 // Verify that our cleanuppad's unwind destination is another cleanuppad.
5276 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(Val: &UnwindDest->front());
5277 if (!SuccessorCleanupPad)
5278 return false;
5279
5280 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5281 // Replace any uses of the successor cleanupad with the predecessor pad
5282 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5283 // funclet bundle operands.
5284 SuccessorCleanupPad->replaceAllUsesWith(V: PredecessorCleanupPad);
5285 // Remove the old cleanuppad.
5286 SuccessorCleanupPad->eraseFromParent();
5287 // Now, we simply replace the cleanupret with a branch to the unwind
5288 // destination.
5289 BranchInst::Create(IfTrue: UnwindDest, InsertAtEnd: RI->getParent());
5290 RI->eraseFromParent();
5291
5292 return true;
5293}
5294
5295bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5296 // It is possible to transiantly have an undef cleanuppad operand because we
5297 // have deleted some, but not all, dead blocks.
5298 // Eventually, this block will be deleted.
5299 if (isa<UndefValue>(Val: RI->getOperand(i_nocapture: 0)))
5300 return false;
5301
5302 if (mergeCleanupPad(RI))
5303 return true;
5304
5305 if (removeEmptyCleanup(RI, DTU))
5306 return true;
5307
5308 return false;
5309}
5310
5311// WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5312bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5313 BasicBlock *BB = UI->getParent();
5314
5315 bool Changed = false;
5316
5317 // Ensure that any debug-info records that used to occur after the Unreachable
5318 // are moved to in front of it -- otherwise they'll "dangle" at the end of
5319 // the block.
5320 BB->flushTerminatorDbgRecords();
5321
5322 // Debug-info records on the unreachable inst itself should be deleted, as
5323 // below we delete everything past the final executable instruction.
5324 UI->dropDbgRecords();
5325
5326 // If there are any instructions immediately before the unreachable that can
5327 // be removed, do so.
5328 while (UI->getIterator() != BB->begin()) {
5329 BasicBlock::iterator BBI = UI->getIterator();
5330 --BBI;
5331
5332 if (!isGuaranteedToTransferExecutionToSuccessor(I: &*BBI))
5333 break; // Can not drop any more instructions. We're done here.
5334 // Otherwise, this instruction can be freely erased,
5335 // even if it is not side-effect free.
5336
5337 // Note that deleting EH's here is in fact okay, although it involves a bit
5338 // of subtle reasoning. If this inst is an EH, all the predecessors of this
5339 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5340 // and we can therefore guarantee this block will be erased.
5341
5342 // If we're deleting this, we're deleting any subsequent debug info, so
5343 // delete DbgRecords.
5344 BBI->dropDbgRecords();
5345
5346 // Delete this instruction (any uses are guaranteed to be dead)
5347 BBI->replaceAllUsesWith(V: PoisonValue::get(T: BBI->getType()));
5348 BBI->eraseFromParent();
5349 Changed = true;
5350 }
5351
5352 // If the unreachable instruction is the first in the block, take a gander
5353 // at all of the predecessors of this instruction, and simplify them.
5354 if (&BB->front() != UI)
5355 return Changed;
5356
5357 std::vector<DominatorTree::UpdateType> Updates;
5358
5359 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5360 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5361 auto *Predecessor = Preds[i];
5362 Instruction *TI = Predecessor->getTerminator();
5363 IRBuilder<> Builder(TI);
5364 if (auto *BI = dyn_cast<BranchInst>(Val: TI)) {
5365 // We could either have a proper unconditional branch,
5366 // or a degenerate conditional branch with matching destinations.
5367 if (all_of(Range: BI->successors(),
5368 P: [BB](auto *Successor) { return Successor == BB; })) {
5369 new UnreachableInst(TI->getContext(), TI->getIterator());
5370 TI->eraseFromParent();
5371 Changed = true;
5372 } else {
5373 assert(BI->isConditional() && "Can't get here with an uncond branch.");
5374 Value* Cond = BI->getCondition();
5375 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5376 "The destinations are guaranteed to be different here.");
5377 CallInst *Assumption;
5378 if (BI->getSuccessor(i: 0) == BB) {
5379 Assumption = Builder.CreateAssumption(Cond: Builder.CreateNot(V: Cond));
5380 Builder.CreateBr(Dest: BI->getSuccessor(i: 1));
5381 } else {
5382 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5383 Assumption = Builder.CreateAssumption(Cond);
5384 Builder.CreateBr(Dest: BI->getSuccessor(i: 0));
5385 }
5386 if (Options.AC)
5387 Options.AC->registerAssumption(CI: cast<AssumeInst>(Val: Assumption));
5388
5389 EraseTerminatorAndDCECond(TI: BI);
5390 Changed = true;
5391 }
5392 if (DTU)
5393 Updates.push_back(x: {DominatorTree::Delete, Predecessor, BB});
5394 } else if (auto *SI = dyn_cast<SwitchInst>(Val: TI)) {
5395 SwitchInstProfUpdateWrapper SU(*SI);
5396 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5397 if (i->getCaseSuccessor() != BB) {
5398 ++i;
5399 continue;
5400 }
5401 BB->removePredecessor(Pred: SU->getParent());
5402 i = SU.removeCase(I: i);
5403 e = SU->case_end();
5404 Changed = true;
5405 }
5406 // Note that the default destination can't be removed!
5407 if (DTU && SI->getDefaultDest() != BB)
5408 Updates.push_back(x: {DominatorTree::Delete, Predecessor, BB});
5409 } else if (auto *II = dyn_cast<InvokeInst>(Val: TI)) {
5410 if (II->getUnwindDest() == BB) {
5411 if (DTU) {
5412 DTU->applyUpdates(Updates);
5413 Updates.clear();
5414 }
5415 auto *CI = cast<CallInst>(Val: removeUnwindEdge(BB: TI->getParent(), DTU));
5416 if (!CI->doesNotThrow())
5417 CI->setDoesNotThrow();
5418 Changed = true;
5419 }
5420 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: TI)) {
5421 if (CSI->getUnwindDest() == BB) {
5422 if (DTU) {
5423 DTU->applyUpdates(Updates);
5424 Updates.clear();
5425 }
5426 removeUnwindEdge(BB: TI->getParent(), DTU);
5427 Changed = true;
5428 continue;
5429 }
5430
5431 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5432 E = CSI->handler_end();
5433 I != E; ++I) {
5434 if (*I == BB) {
5435 CSI->removeHandler(HI: I);
5436 --I;
5437 --E;
5438 Changed = true;
5439 }
5440 }
5441 if (DTU)
5442 Updates.push_back(x: {DominatorTree::Delete, Predecessor, BB});
5443 if (CSI->getNumHandlers() == 0) {
5444 if (CSI->hasUnwindDest()) {
5445 // Redirect all predecessors of the block containing CatchSwitchInst
5446 // to instead branch to the CatchSwitchInst's unwind destination.
5447 if (DTU) {
5448 for (auto *PredecessorOfPredecessor : predecessors(BB: Predecessor)) {
5449 Updates.push_back(x: {DominatorTree::Insert,
5450 PredecessorOfPredecessor,
5451 CSI->getUnwindDest()});
5452 Updates.push_back(x: {DominatorTree::Delete,
5453 PredecessorOfPredecessor, Predecessor});
5454 }
5455 }
5456 Predecessor->replaceAllUsesWith(V: CSI->getUnwindDest());
5457 } else {
5458 // Rewrite all preds to unwind to caller (or from invoke to call).
5459 if (DTU) {
5460 DTU->applyUpdates(Updates);
5461 Updates.clear();
5462 }
5463 SmallVector<BasicBlock *, 8> EHPreds(predecessors(BB: Predecessor));
5464 for (BasicBlock *EHPred : EHPreds)
5465 removeUnwindEdge(BB: EHPred, DTU);
5466 }
5467 // The catchswitch is no longer reachable.
5468 new UnreachableInst(CSI->getContext(), CSI->getIterator());
5469 CSI->eraseFromParent();
5470 Changed = true;
5471 }
5472 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) {
5473 (void)CRI;
5474 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5475 "Expected to always have an unwind to BB.");
5476 if (DTU)
5477 Updates.push_back(x: {DominatorTree::Delete, Predecessor, BB});
5478 new UnreachableInst(TI->getContext(), TI->getIterator());
5479 TI->eraseFromParent();
5480 Changed = true;
5481 }
5482 }
5483
5484 if (DTU)
5485 DTU->applyUpdates(Updates);
5486
5487 // If this block is now dead, remove it.
5488 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5489 DeleteDeadBlock(BB, DTU);
5490 return true;
5491 }
5492
5493 return Changed;
5494}
5495
5496static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5497 assert(Cases.size() >= 1);
5498
5499 array_pod_sort(Start: Cases.begin(), End: Cases.end(), Compare: ConstantIntSortPredicate);
5500 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5501 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5502 return false;
5503 }
5504 return true;
5505}
5506
5507static void createUnreachableSwitchDefault(SwitchInst *Switch,
5508 DomTreeUpdater *DTU) {
5509 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5510 auto *BB = Switch->getParent();
5511 auto *OrigDefaultBlock = Switch->getDefaultDest();
5512 OrigDefaultBlock->removePredecessor(Pred: BB);
5513 BasicBlock *NewDefaultBlock = BasicBlock::Create(
5514 Context&: BB->getContext(), Name: BB->getName() + ".unreachabledefault", Parent: BB->getParent(),
5515 InsertBefore: OrigDefaultBlock);
5516 new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5517 Switch->setDefaultDest(&*NewDefaultBlock);
5518 if (DTU) {
5519 SmallVector<DominatorTree::UpdateType, 2> Updates;
5520 Updates.push_back(Elt: {DominatorTree::Insert, BB, &*NewDefaultBlock});
5521 if (!is_contained(Range: successors(BB), Element: OrigDefaultBlock))
5522 Updates.push_back(Elt: {DominatorTree::Delete, BB, &*OrigDefaultBlock});
5523 DTU->applyUpdates(Updates);
5524 }
5525}
5526
5527/// Turn a switch into an integer range comparison and branch.
5528/// Switches with more than 2 destinations are ignored.
5529/// Switches with 1 destination are also ignored.
5530bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5531 IRBuilder<> &Builder) {
5532 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5533
5534 bool HasDefault =
5535 !isa<UnreachableInst>(Val: SI->getDefaultDest()->getFirstNonPHIOrDbg());
5536
5537 auto *BB = SI->getParent();
5538
5539 // Partition the cases into two sets with different destinations.
5540 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5541 BasicBlock *DestB = nullptr;
5542 SmallVector<ConstantInt *, 16> CasesA;
5543 SmallVector<ConstantInt *, 16> CasesB;
5544
5545 for (auto Case : SI->cases()) {
5546 BasicBlock *Dest = Case.getCaseSuccessor();
5547 if (!DestA)
5548 DestA = Dest;
5549 if (Dest == DestA) {
5550 CasesA.push_back(Elt: Case.getCaseValue());
5551 continue;
5552 }
5553 if (!DestB)
5554 DestB = Dest;
5555 if (Dest == DestB) {
5556 CasesB.push_back(Elt: Case.getCaseValue());
5557 continue;
5558 }
5559 return false; // More than two destinations.
5560 }
5561 if (!DestB)
5562 return false; // All destinations are the same and the default is unreachable
5563
5564 assert(DestA && DestB &&
5565 "Single-destination switch should have been folded.");
5566 assert(DestA != DestB);
5567 assert(DestB != SI->getDefaultDest());
5568 assert(!CasesB.empty() && "There must be non-default cases.");
5569 assert(!CasesA.empty() || HasDefault);
5570
5571 // Figure out if one of the sets of cases form a contiguous range.
5572 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5573 BasicBlock *ContiguousDest = nullptr;
5574 BasicBlock *OtherDest = nullptr;
5575 if (!CasesA.empty() && CasesAreContiguous(Cases&: CasesA)) {
5576 ContiguousCases = &CasesA;
5577 ContiguousDest = DestA;
5578 OtherDest = DestB;
5579 } else if (CasesAreContiguous(Cases&: CasesB)) {
5580 ContiguousCases = &CasesB;
5581 ContiguousDest = DestB;
5582 OtherDest = DestA;
5583 } else
5584 return false;
5585
5586 // Start building the compare and branch.
5587
5588 Constant *Offset = ConstantExpr::getNeg(C: ContiguousCases->back());
5589 Constant *NumCases =
5590 ConstantInt::get(Ty: Offset->getType(), V: ContiguousCases->size());
5591
5592 Value *Sub = SI->getCondition();
5593 if (!Offset->isNullValue())
5594 Sub = Builder.CreateAdd(LHS: Sub, RHS: Offset, Name: Sub->getName() + ".off");
5595
5596 Value *Cmp;
5597 // If NumCases overflowed, then all possible values jump to the successor.
5598 if (NumCases->isNullValue() && !ContiguousCases->empty())
5599 Cmp = ConstantInt::getTrue(Context&: SI->getContext());
5600 else
5601 Cmp = Builder.CreateICmpULT(LHS: Sub, RHS: NumCases, Name: "switch");
5602 BranchInst *NewBI = Builder.CreateCondBr(Cond: Cmp, True: ContiguousDest, False: OtherDest);
5603
5604 // Update weight for the newly-created conditional branch.
5605 if (hasBranchWeightMD(I: *SI)) {
5606 SmallVector<uint64_t, 8> Weights;
5607 GetBranchWeights(TI: SI, Weights);
5608 if (Weights.size() == 1 + SI->getNumCases()) {
5609 uint64_t TrueWeight = 0;
5610 uint64_t FalseWeight = 0;
5611 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5612 if (SI->getSuccessor(idx: I) == ContiguousDest)
5613 TrueWeight += Weights[I];
5614 else
5615 FalseWeight += Weights[I];
5616 }
5617 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5618 TrueWeight /= 2;
5619 FalseWeight /= 2;
5620 }
5621 setBranchWeights(I: NewBI, TrueWeight, FalseWeight);
5622 }
5623 }
5624
5625 // Prune obsolete incoming values off the successors' PHI nodes.
5626 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(Val: BBI); ++BBI) {
5627 unsigned PreviousEdges = ContiguousCases->size();
5628 if (ContiguousDest == SI->getDefaultDest())
5629 ++PreviousEdges;
5630 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5631 cast<PHINode>(Val&: BBI)->removeIncomingValue(BB: SI->getParent());
5632 }
5633 for (auto BBI = OtherDest->begin(); isa<PHINode>(Val: BBI); ++BBI) {
5634 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5635 if (OtherDest == SI->getDefaultDest())
5636 ++PreviousEdges;
5637 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5638 cast<PHINode>(Val&: BBI)->removeIncomingValue(BB: SI->getParent());
5639 }
5640
5641 // Clean up the default block - it may have phis or other instructions before
5642 // the unreachable terminator.
5643 if (!HasDefault)
5644 createUnreachableSwitchDefault(Switch: SI, DTU);
5645
5646 auto *UnreachableDefault = SI->getDefaultDest();
5647
5648 // Drop the switch.
5649 SI->eraseFromParent();
5650
5651 if (!HasDefault && DTU)
5652 DTU->applyUpdates(Updates: {{DominatorTree::Delete, BB, UnreachableDefault}});
5653
5654 return true;
5655}
5656
5657/// Compute masked bits for the condition of a switch
5658/// and use it to remove dead cases.
5659static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5660 AssumptionCache *AC,
5661 const DataLayout &DL) {
5662 Value *Cond = SI->getCondition();
5663 KnownBits Known = computeKnownBits(V: Cond, DL, Depth: 0, AC, CxtI: SI);
5664
5665 // We can also eliminate cases by determining that their values are outside of
5666 // the limited range of the condition based on how many significant (non-sign)
5667 // bits are in the condition value.
5668 unsigned MaxSignificantBitsInCond =
5669 ComputeMaxSignificantBits(Op: Cond, DL, Depth: 0, AC, CxtI: SI);
5670
5671 // Gather dead cases.
5672 SmallVector<ConstantInt *, 8> DeadCases;
5673 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5674 SmallVector<BasicBlock *, 8> UniqueSuccessors;
5675 for (const auto &Case : SI->cases()) {
5676 auto *Successor = Case.getCaseSuccessor();
5677 if (DTU) {
5678 if (!NumPerSuccessorCases.count(Val: Successor))
5679 UniqueSuccessors.push_back(Elt: Successor);
5680 ++NumPerSuccessorCases[Successor];
5681 }
5682 const APInt &CaseVal = Case.getCaseValue()->getValue();
5683 if (Known.Zero.intersects(RHS: CaseVal) || !Known.One.isSubsetOf(RHS: CaseVal) ||
5684 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5685 DeadCases.push_back(Elt: Case.getCaseValue());
5686 if (DTU)
5687 --NumPerSuccessorCases[Successor];
5688 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5689 << " is dead.\n");
5690 }
5691 }
5692
5693 // If we can prove that the cases must cover all possible values, the
5694 // default destination becomes dead and we can remove it. If we know some
5695 // of the bits in the value, we can use that to more precisely compute the
5696 // number of possible unique case values.
5697 bool HasDefault =
5698 !isa<UnreachableInst>(Val: SI->getDefaultDest()->getFirstNonPHIOrDbg());
5699 const unsigned NumUnknownBits =
5700 Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5701 assert(NumUnknownBits <= Known.getBitWidth());
5702 if (HasDefault && DeadCases.empty() &&
5703 NumUnknownBits < 64 /* avoid overflow */ &&
5704 SI->getNumCases() == (1ULL << NumUnknownBits)) {
5705 createUnreachableSwitchDefault(Switch: SI, DTU);
5706 return true;
5707 }
5708
5709 if (DeadCases.empty())
5710 return false;
5711
5712 SwitchInstProfUpdateWrapper SIW(*SI);
5713 for (ConstantInt *DeadCase : DeadCases) {
5714 SwitchInst::CaseIt CaseI = SI->findCaseValue(C: DeadCase);
5715 assert(CaseI != SI->case_default() &&
5716 "Case was not found. Probably mistake in DeadCases forming.");
5717 // Prune unused values from PHI nodes.
5718 CaseI->getCaseSuccessor()->removePredecessor(Pred: SI->getParent());
5719 SIW.removeCase(I: CaseI);
5720 }
5721
5722 if (DTU) {
5723 std::vector<DominatorTree::UpdateType> Updates;
5724 for (auto *Successor : UniqueSuccessors)
5725 if (NumPerSuccessorCases[Successor] == 0)
5726 Updates.push_back(x: {DominatorTree::Delete, SI->getParent(), Successor});
5727 DTU->applyUpdates(Updates);
5728 }
5729
5730 return true;
5731}
5732
5733/// If BB would be eligible for simplification by
5734/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5735/// by an unconditional branch), look at the phi node for BB in the successor
5736/// block and see if the incoming value is equal to CaseValue. If so, return
5737/// the phi node, and set PhiIndex to BB's index in the phi node.
5738static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5739 BasicBlock *BB, int *PhiIndex) {
5740 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5741 return nullptr; // BB must be empty to be a candidate for simplification.
5742 if (!BB->getSinglePredecessor())
5743 return nullptr; // BB must be dominated by the switch.
5744
5745 BranchInst *Branch = dyn_cast<BranchInst>(Val: BB->getTerminator());
5746 if (!Branch || !Branch->isUnconditional())
5747 return nullptr; // Terminator must be unconditional branch.
5748
5749 BasicBlock *Succ = Branch->getSuccessor(i: 0);
5750
5751 for (PHINode &PHI : Succ->phis()) {
5752 int Idx = PHI.getBasicBlockIndex(BB);
5753 assert(Idx >= 0 && "PHI has no entry for predecessor?");
5754
5755 Value *InValue = PHI.getIncomingValue(i: Idx);
5756 if (InValue != CaseValue)
5757 continue;
5758
5759 *PhiIndex = Idx;
5760 return &PHI;
5761 }
5762
5763 return nullptr;
5764}
5765
5766/// Try to forward the condition of a switch instruction to a phi node
5767/// dominated by the switch, if that would mean that some of the destination
5768/// blocks of the switch can be folded away. Return true if a change is made.
5769static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5770 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5771
5772 ForwardingNodesMap ForwardingNodes;
5773 BasicBlock *SwitchBlock = SI->getParent();
5774 bool Changed = false;
5775 for (const auto &Case : SI->cases()) {
5776 ConstantInt *CaseValue = Case.getCaseValue();
5777 BasicBlock *CaseDest = Case.getCaseSuccessor();
5778
5779 // Replace phi operands in successor blocks that are using the constant case
5780 // value rather than the switch condition variable:
5781 // switchbb:
5782 // switch i32 %x, label %default [
5783 // i32 17, label %succ
5784 // ...
5785 // succ:
5786 // %r = phi i32 ... [ 17, %switchbb ] ...
5787 // -->
5788 // %r = phi i32 ... [ %x, %switchbb ] ...
5789
5790 for (PHINode &Phi : CaseDest->phis()) {
5791 // This only works if there is exactly 1 incoming edge from the switch to
5792 // a phi. If there is >1, that means multiple cases of the switch map to 1
5793 // value in the phi, and that phi value is not the switch condition. Thus,
5794 // this transform would not make sense (the phi would be invalid because
5795 // a phi can't have different incoming values from the same block).
5796 int SwitchBBIdx = Phi.getBasicBlockIndex(BB: SwitchBlock);
5797 if (Phi.getIncomingValue(i: SwitchBBIdx) == CaseValue &&
5798 count(Range: Phi.blocks(), Element: SwitchBlock) == 1) {
5799 Phi.setIncomingValue(i: SwitchBBIdx, V: SI->getCondition());
5800 Changed = true;
5801 }
5802 }
5803
5804 // Collect phi nodes that are indirectly using this switch's case constants.
5805 int PhiIdx;
5806 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, BB: CaseDest, PhiIndex: &PhiIdx))
5807 ForwardingNodes[Phi].push_back(Elt: PhiIdx);
5808 }
5809
5810 for (auto &ForwardingNode : ForwardingNodes) {
5811 PHINode *Phi = ForwardingNode.first;
5812 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5813 if (Indexes.size() < 2)
5814 continue;
5815
5816 for (int Index : Indexes)
5817 Phi->setIncomingValue(i: Index, V: SI->getCondition());
5818 Changed = true;
5819 }
5820
5821 return Changed;
5822}
5823
5824/// Return true if the backend will be able to handle
5825/// initializing an array of constants like C.
5826static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5827 if (C->isThreadDependent())
5828 return false;
5829 if (C->isDLLImportDependent())
5830 return false;
5831
5832 if (!isa<ConstantFP>(Val: C) && !isa<ConstantInt>(Val: C) &&
5833 !isa<ConstantPointerNull>(Val: C) && !isa<GlobalValue>(Val: C) &&
5834 !isa<UndefValue>(Val: C) && !isa<ConstantExpr>(Val: C))
5835 return false;
5836
5837 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) {
5838 // Pointer casts and in-bounds GEPs will not prohibit the backend from
5839 // materializing the array of constants.
5840 Constant *StrippedC = cast<Constant>(Val: CE->stripInBoundsConstantOffsets());
5841 if (StrippedC == C || !ValidLookupTableConstant(C: StrippedC, TTI))
5842 return false;
5843 }
5844
5845 if (!TTI.shouldBuildLookupTablesForConstant(C))
5846 return false;
5847
5848 return true;
5849}
5850
5851/// If V is a Constant, return it. Otherwise, try to look up
5852/// its constant value in ConstantPool, returning 0 if it's not there.
5853static Constant *
5854LookupConstant(Value *V,
5855 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5856 if (Constant *C = dyn_cast<Constant>(Val: V))
5857 return C;
5858 return ConstantPool.lookup(Val: V);
5859}
5860
5861/// Try to fold instruction I into a constant. This works for
5862/// simple instructions such as binary operations where both operands are
5863/// constant or can be replaced by constants from the ConstantPool. Returns the
5864/// resulting constant on success, 0 otherwise.
5865static Constant *
5866ConstantFold(Instruction *I, const DataLayout &DL,
5867 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5868 if (SelectInst *Select = dyn_cast<SelectInst>(Val: I)) {
5869 Constant *A = LookupConstant(V: Select->getCondition(), ConstantPool);
5870 if (!A)
5871 return nullptr;
5872 if (A->isAllOnesValue())
5873 return LookupConstant(V: Select->getTrueValue(), ConstantPool);
5874 if (A->isNullValue())
5875 return LookupConstant(V: Select->getFalseValue(), ConstantPool);
5876 return nullptr;
5877 }
5878
5879 SmallVector<Constant *, 4> COps;
5880 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5881 if (Constant *A = LookupConstant(V: I->getOperand(i: N), ConstantPool))
5882 COps.push_back(Elt: A);
5883 else
5884 return nullptr;
5885 }
5886
5887 return ConstantFoldInstOperands(I, Ops: COps, DL);
5888}
5889
5890/// Try to determine the resulting constant values in phi nodes
5891/// at the common destination basic block, *CommonDest, for one of the case
5892/// destionations CaseDest corresponding to value CaseVal (0 for the default
5893/// case), of a switch instruction SI.
5894static bool
5895getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5896 BasicBlock **CommonDest,
5897 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5898 const DataLayout &DL, const TargetTransformInfo &TTI) {
5899 // The block from which we enter the common destination.
5900 BasicBlock *Pred = SI->getParent();
5901
5902 // If CaseDest is empty except for some side-effect free instructions through
5903 // which we can constant-propagate the CaseVal, continue to its successor.
5904 SmallDenseMap<Value *, Constant *> ConstantPool;
5905 ConstantPool.insert(KV: std::make_pair(x: SI->getCondition(), y&: CaseVal));
5906 for (Instruction &I : CaseDest->instructionsWithoutDebug(SkipPseudoOp: false)) {
5907 if (I.isTerminator()) {
5908 // If the terminator is a simple branch, continue to the next block.
5909 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
5910 return false;
5911 Pred = CaseDest;
5912 CaseDest = I.getSuccessor(Idx: 0);
5913 } else if (Constant *C = ConstantFold(I: &I, DL, ConstantPool)) {
5914 // Instruction is side-effect free and constant.
5915
5916 // If the instruction has uses outside this block or a phi node slot for
5917 // the block, it is not safe to bypass the instruction since it would then
5918 // no longer dominate all its uses.
5919 for (auto &Use : I.uses()) {
5920 User *User = Use.getUser();
5921 if (Instruction *I = dyn_cast<Instruction>(Val: User))
5922 if (I->getParent() == CaseDest)
5923 continue;
5924 if (PHINode *Phi = dyn_cast<PHINode>(Val: User))
5925 if (Phi->getIncomingBlock(U: Use) == CaseDest)
5926 continue;
5927 return false;
5928 }
5929
5930 ConstantPool.insert(KV: std::make_pair(x: &I, y&: C));
5931 } else {
5932 break;
5933 }
5934 }
5935
5936 // If we did not have a CommonDest before, use the current one.
5937 if (!*CommonDest)
5938 *CommonDest = CaseDest;
5939 // If the destination isn't the common one, abort.
5940 if (CaseDest != *CommonDest)
5941 return false;
5942
5943 // Get the values for this case from phi nodes in the destination block.
5944 for (PHINode &PHI : (*CommonDest)->phis()) {
5945 int Idx = PHI.getBasicBlockIndex(BB: Pred);
5946 if (Idx == -1)
5947 continue;
5948
5949 Constant *ConstVal =
5950 LookupConstant(V: PHI.getIncomingValue(i: Idx), ConstantPool);
5951 if (!ConstVal)
5952 return false;
5953
5954 // Be conservative about which kinds of constants we support.
5955 if (!ValidLookupTableConstant(C: ConstVal, TTI))
5956 return false;
5957
5958 Res.push_back(Elt: std::make_pair(x: &PHI, y&: ConstVal));
5959 }
5960
5961 return Res.size() > 0;
5962}
5963
5964// Helper function used to add CaseVal to the list of cases that generate
5965// Result. Returns the updated number of cases that generate this result.
5966static size_t mapCaseToResult(ConstantInt *CaseVal,
5967 SwitchCaseResultVectorTy &UniqueResults,
5968 Constant *Result) {
5969 for (auto &I : UniqueResults) {
5970 if (I.first == Result) {
5971 I.second.push_back(Elt: CaseVal);
5972 return I.second.size();
5973 }
5974 }
5975 UniqueResults.push_back(
5976 Elt: std::make_pair(x&: Result, y: SmallVector<ConstantInt *, 4>(1, CaseVal)));
5977 return 1;
5978}
5979
5980// Helper function that initializes a map containing
5981// results for the PHI node of the common destination block for a switch
5982// instruction. Returns false if multiple PHI nodes have been found or if
5983// there is not a common destination block for the switch.
5984static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5985 BasicBlock *&CommonDest,
5986 SwitchCaseResultVectorTy &UniqueResults,
5987 Constant *&DefaultResult,
5988 const DataLayout &DL,
5989 const TargetTransformInfo &TTI,
5990 uintptr_t MaxUniqueResults) {
5991 for (const auto &I : SI->cases()) {
5992 ConstantInt *CaseVal = I.getCaseValue();
5993
5994 // Resulting value at phi nodes for this case value.
5995 SwitchCaseResultsTy Results;
5996 if (!getCaseResults(SI, CaseVal, CaseDest: I.getCaseSuccessor(), CommonDest: &CommonDest, Res&: Results,
5997 DL, TTI))
5998 return false;
5999
6000 // Only one value per case is permitted.
6001 if (Results.size() > 1)
6002 return false;
6003
6004 // Add the case->result mapping to UniqueResults.
6005 const size_t NumCasesForResult =
6006 mapCaseToResult(CaseVal, UniqueResults, Result: Results.begin()->second);
6007
6008 // Early out if there are too many cases for this result.
6009 if (NumCasesForResult > MaxSwitchCasesPerResult)
6010 return false;
6011
6012 // Early out if there are too many unique results.
6013 if (UniqueResults.size() > MaxUniqueResults)
6014 return false;
6015
6016 // Check the PHI consistency.
6017 if (!PHI)
6018 PHI = Results[0].first;
6019 else if (PHI != Results[0].first)
6020 return false;
6021 }
6022 // Find the default result value.
6023 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6024 BasicBlock *DefaultDest = SI->getDefaultDest();
6025 getCaseResults(SI, CaseVal: nullptr, CaseDest: SI->getDefaultDest(), CommonDest: &CommonDest, Res&: DefaultResults,
6026 DL, TTI);
6027 // If the default value is not found abort unless the default destination
6028 // is unreachable.
6029 DefaultResult =
6030 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6031 if ((!DefaultResult &&
6032 !isa<UnreachableInst>(Val: DefaultDest->getFirstNonPHIOrDbg())))
6033 return false;
6034
6035 return true;
6036}
6037
6038// Helper function that checks if it is possible to transform a switch with only
6039// two cases (or two cases + default) that produces a result into a select.
6040// TODO: Handle switches with more than 2 cases that map to the same result.
6041static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6042 Constant *DefaultResult, Value *Condition,
6043 IRBuilder<> &Builder) {
6044 // If we are selecting between only two cases transform into a simple
6045 // select or a two-way select if default is possible.
6046 // Example:
6047 // switch (a) { %0 = icmp eq i32 %a, 10
6048 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4
6049 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20
6050 // default: return 4; %3 = select i1 %2, i32 2, i32 %1
6051 // }
6052 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6053 ResultVector[1].second.size() == 1) {
6054 ConstantInt *FirstCase = ResultVector[0].second[0];
6055 ConstantInt *SecondCase = ResultVector[1].second[0];
6056 Value *SelectValue = ResultVector[1].first;
6057 if (DefaultResult) {
6058 Value *ValueCompare =
6059 Builder.CreateICmpEQ(LHS: Condition, RHS: SecondCase, Name: "switch.selectcmp");
6060 SelectValue = Builder.CreateSelect(C: ValueCompare, True: ResultVector[1].first,
6061 False: DefaultResult, Name: "switch.select");
6062 }
6063 Value *ValueCompare =
6064 Builder.CreateICmpEQ(LHS: Condition, RHS: FirstCase, Name: "switch.selectcmp");
6065 return Builder.CreateSelect(C: ValueCompare, True: ResultVector[0].first,
6066 False: SelectValue, Name: "switch.select");
6067 }
6068
6069 // Handle the degenerate case where two cases have the same result value.
6070 if (ResultVector.size() == 1 && DefaultResult) {
6071 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6072 unsigned CaseCount = CaseValues.size();
6073 // n bits group cases map to the same result:
6074 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default
6075 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default
6076 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6077 if (isPowerOf2_32(Value: CaseCount)) {
6078 ConstantInt *MinCaseVal = CaseValues[0];
6079 // Find mininal value.
6080 for (auto *Case : CaseValues)
6081 if (Case->getValue().slt(RHS: MinCaseVal->getValue()))
6082 MinCaseVal = Case;
6083
6084 // Mark the bits case number touched.
6085 APInt BitMask = APInt::getZero(numBits: MinCaseVal->getBitWidth());
6086 for (auto *Case : CaseValues)
6087 BitMask |= (Case->getValue() - MinCaseVal->getValue());
6088
6089 // Check if cases with the same result can cover all number
6090 // in touched bits.
6091 if (BitMask.popcount() == Log2_32(Value: CaseCount)) {
6092 if (!MinCaseVal->isNullValue())
6093 Condition = Builder.CreateSub(LHS: Condition, RHS: MinCaseVal);
6094 Value *And = Builder.CreateAnd(LHS: Condition, RHS: ~BitMask, Name: "switch.and");
6095 Value *Cmp = Builder.CreateICmpEQ(
6096 LHS: And, RHS: Constant::getNullValue(Ty: And->getType()), Name: "switch.selectcmp");
6097 return Builder.CreateSelect(C: Cmp, True: ResultVector[0].first, False: DefaultResult);
6098 }
6099 }
6100
6101 // Handle the degenerate case where two cases have the same value.
6102 if (CaseValues.size() == 2) {
6103 Value *Cmp1 = Builder.CreateICmpEQ(LHS: Condition, RHS: CaseValues[0],
6104 Name: "switch.selectcmp.case1");
6105 Value *Cmp2 = Builder.CreateICmpEQ(LHS: Condition, RHS: CaseValues[1],
6106 Name: "switch.selectcmp.case2");
6107 Value *Cmp = Builder.CreateOr(LHS: Cmp1, RHS: Cmp2, Name: "switch.selectcmp");
6108 return Builder.CreateSelect(C: Cmp, True: ResultVector[0].first, False: DefaultResult);
6109 }
6110 }
6111
6112 return nullptr;
6113}
6114
6115// Helper function to cleanup a switch instruction that has been converted into
6116// a select, fixing up PHI nodes and basic blocks.
6117static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6118 Value *SelectValue,
6119 IRBuilder<> &Builder,
6120 DomTreeUpdater *DTU) {
6121 std::vector<DominatorTree::UpdateType> Updates;
6122
6123 BasicBlock *SelectBB = SI->getParent();
6124 BasicBlock *DestBB = PHI->getParent();
6125
6126 if (DTU && !is_contained(Range: predecessors(BB: DestBB), Element: SelectBB))
6127 Updates.push_back(x: {DominatorTree::Insert, SelectBB, DestBB});
6128 Builder.CreateBr(Dest: DestBB);
6129
6130 // Remove the switch.
6131
6132 PHI->removeIncomingValueIf(
6133 Predicate: [&](unsigned Idx) { return PHI->getIncomingBlock(i: Idx) == SelectBB; });
6134 PHI->addIncoming(V: SelectValue, BB: SelectBB);
6135
6136 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6137 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6138 BasicBlock *Succ = SI->getSuccessor(idx: i);
6139
6140 if (Succ == DestBB)
6141 continue;
6142 Succ->removePredecessor(Pred: SelectBB);
6143 if (DTU && RemovedSuccessors.insert(Ptr: Succ).second)
6144 Updates.push_back(x: {DominatorTree::Delete, SelectBB, Succ});
6145 }
6146 SI->eraseFromParent();
6147 if (DTU)
6148 DTU->applyUpdates(Updates);
6149}
6150
6151/// If a switch is only used to initialize one or more phi nodes in a common
6152/// successor block with only two different constant values, try to replace the
6153/// switch with a select. Returns true if the fold was made.
6154static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6155 DomTreeUpdater *DTU, const DataLayout &DL,
6156 const TargetTransformInfo &TTI) {
6157 Value *const Cond = SI->getCondition();
6158 PHINode *PHI = nullptr;
6159 BasicBlock *CommonDest = nullptr;
6160 Constant *DefaultResult;
6161 SwitchCaseResultVectorTy UniqueResults;
6162 // Collect all the cases that will deliver the same value from the switch.
6163 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6164 DL, TTI, /*MaxUniqueResults*/ 2))
6165 return false;
6166
6167 assert(PHI != nullptr && "PHI for value select not found");
6168 Builder.SetInsertPoint(SI);
6169 Value *SelectValue =
6170 foldSwitchToSelect(ResultVector: UniqueResults, DefaultResult, Condition: Cond, Builder);
6171 if (!SelectValue)
6172 return false;
6173
6174 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6175 return true;
6176}
6177
6178namespace {
6179
6180/// This class represents a lookup table that can be used to replace a switch.
6181class SwitchLookupTable {
6182public:
6183 /// Create a lookup table to use as a switch replacement with the contents
6184 /// of Values, using DefaultValue to fill any holes in the table.
6185 SwitchLookupTable(
6186 Module &M, uint64_t TableSize, ConstantInt *Offset,
6187 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6188 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6189
6190 /// Build instructions with Builder to retrieve the value at
6191 /// the position given by Index in the lookup table.
6192 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
6193
6194 /// Return true if a table with TableSize elements of
6195 /// type ElementType would fit in a target-legal register.
6196 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6197 Type *ElementType);
6198
6199private:
6200 // Depending on the contents of the table, it can be represented in
6201 // different ways.
6202 enum {
6203 // For tables where each element contains the same value, we just have to
6204 // store that single value and return it for each lookup.
6205 SingleValueKind,
6206
6207 // For tables where there is a linear relationship between table index
6208 // and values. We calculate the result with a simple multiplication
6209 // and addition instead of a table lookup.
6210 LinearMapKind,
6211
6212 // For small tables with integer elements, we can pack them into a bitmap
6213 // that fits into a target-legal register. Values are retrieved by
6214 // shift and mask operations.
6215 BitMapKind,
6216
6217 // The table is stored as an array of values. Values are retrieved by load
6218 // instructions from the table.
6219 ArrayKind
6220 } Kind;
6221
6222 // For SingleValueKind, this is the single value.
6223 Constant *SingleValue = nullptr;
6224
6225 // For BitMapKind, this is the bitmap.
6226 ConstantInt *BitMap = nullptr;
6227 IntegerType *BitMapElementTy = nullptr;
6228
6229 // For LinearMapKind, these are the constants used to derive the value.
6230 ConstantInt *LinearOffset = nullptr;
6231 ConstantInt *LinearMultiplier = nullptr;
6232 bool LinearMapValWrapped = false;
6233
6234 // For ArrayKind, this is the array.
6235 GlobalVariable *Array = nullptr;
6236};
6237
6238} // end anonymous namespace
6239
6240SwitchLookupTable::SwitchLookupTable(
6241 Module &M, uint64_t TableSize, ConstantInt *Offset,
6242 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6243 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6244 assert(Values.size() && "Can't build lookup table without values!");
6245 assert(TableSize >= Values.size() && "Can't fit values in table!");
6246
6247 // If all values in the table are equal, this is that value.
6248 SingleValue = Values.begin()->second;
6249
6250 Type *ValueType = Values.begin()->second->getType();
6251
6252 // Build up the table contents.
6253 SmallVector<Constant *, 64> TableContents(TableSize);
6254 for (size_t I = 0, E = Values.size(); I != E; ++I) {
6255 ConstantInt *CaseVal = Values[I].first;
6256 Constant *CaseRes = Values[I].second;
6257 assert(CaseRes->getType() == ValueType);
6258
6259 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6260 TableContents[Idx] = CaseRes;
6261
6262 if (CaseRes != SingleValue)
6263 SingleValue = nullptr;
6264 }
6265
6266 // Fill in any holes in the table with the default result.
6267 if (Values.size() < TableSize) {
6268 assert(DefaultValue &&
6269 "Need a default value to fill the lookup table holes.");
6270 assert(DefaultValue->getType() == ValueType);
6271 for (uint64_t I = 0; I < TableSize; ++I) {
6272 if (!TableContents[I])
6273 TableContents[I] = DefaultValue;
6274 }
6275
6276 if (DefaultValue != SingleValue)
6277 SingleValue = nullptr;
6278 }
6279
6280 // If each element in the table contains the same value, we only need to store
6281 // that single value.
6282 if (SingleValue) {
6283 Kind = SingleValueKind;
6284 return;
6285 }
6286
6287 // Check if we can derive the value with a linear transformation from the
6288 // table index.
6289 if (isa<IntegerType>(Val: ValueType)) {
6290 bool LinearMappingPossible = true;
6291 APInt PrevVal;
6292 APInt DistToPrev;
6293 // When linear map is monotonic and signed overflow doesn't happen on
6294 // maximum index, we can attach nsw on Add and Mul.
6295 bool NonMonotonic = false;
6296 assert(TableSize >= 2 && "Should be a SingleValue table.");
6297 // Check if there is the same distance between two consecutive values.
6298 for (uint64_t I = 0; I < TableSize; ++I) {
6299 ConstantInt *ConstVal = dyn_cast<ConstantInt>(Val: TableContents[I]);
6300 if (!ConstVal) {
6301 // This is an undef. We could deal with it, but undefs in lookup tables
6302 // are very seldom. It's probably not worth the additional complexity.
6303 LinearMappingPossible = false;
6304 break;
6305 }
6306 const APInt &Val = ConstVal->getValue();
6307 if (I != 0) {
6308 APInt Dist = Val - PrevVal;
6309 if (I == 1) {
6310 DistToPrev = Dist;
6311 } else if (Dist != DistToPrev) {
6312 LinearMappingPossible = false;
6313 break;
6314 }
6315 NonMonotonic |=
6316 Dist.isStrictlyPositive() ? Val.sle(RHS: PrevVal) : Val.sgt(RHS: PrevVal);
6317 }
6318 PrevVal = Val;
6319 }
6320 if (LinearMappingPossible) {
6321 LinearOffset = cast<ConstantInt>(Val: TableContents[0]);
6322 LinearMultiplier = ConstantInt::get(Context&: M.getContext(), V: DistToPrev);
6323 bool MayWrap = false;
6324 APInt M = LinearMultiplier->getValue();
6325 (void)M.smul_ov(RHS: APInt(M.getBitWidth(), TableSize - 1), Overflow&: MayWrap);
6326 LinearMapValWrapped = NonMonotonic || MayWrap;
6327 Kind = LinearMapKind;
6328 ++NumLinearMaps;
6329 return;
6330 }
6331 }
6332
6333 // If the type is integer and the table fits in a register, build a bitmap.
6334 if (WouldFitInRegister(DL, TableSize, ElementType: ValueType)) {
6335 IntegerType *IT = cast<IntegerType>(Val: ValueType);
6336 APInt TableInt(TableSize * IT->getBitWidth(), 0);
6337 for (uint64_t I = TableSize; I > 0; --I) {
6338 TableInt <<= IT->getBitWidth();
6339 // Insert values into the bitmap. Undef values are set to zero.
6340 if (!isa<UndefValue>(Val: TableContents[I - 1])) {
6341 ConstantInt *Val = cast<ConstantInt>(Val: TableContents[I - 1]);
6342 TableInt |= Val->getValue().zext(width: TableInt.getBitWidth());
6343 }
6344 }
6345 BitMap = ConstantInt::get(Context&: M.getContext(), V: TableInt);
6346 BitMapElementTy = IT;
6347 Kind = BitMapKind;
6348 ++NumBitMaps;
6349 return;
6350 }
6351
6352 // Store the table in an array.
6353 ArrayType *ArrayTy = ArrayType::get(ElementType: ValueType, NumElements: TableSize);
6354 Constant *Initializer = ConstantArray::get(T: ArrayTy, V: TableContents);
6355
6356 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6357 GlobalVariable::PrivateLinkage, Initializer,
6358 "switch.table." + FuncName);
6359 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6360 // Set the alignment to that of an array items. We will be only loading one
6361 // value out of it.
6362 Array->setAlignment(DL.getPrefTypeAlign(Ty: ValueType));
6363 Kind = ArrayKind;
6364}
6365
6366Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6367 switch (Kind) {
6368 case SingleValueKind:
6369 return SingleValue;
6370 case LinearMapKind: {
6371 // Derive the result value from the input value.
6372 Value *Result = Builder.CreateIntCast(V: Index, DestTy: LinearMultiplier->getType(),
6373 isSigned: false, Name: "switch.idx.cast");
6374 if (!LinearMultiplier->isOne())
6375 Result = Builder.CreateMul(LHS: Result, RHS: LinearMultiplier, Name: "switch.idx.mult",
6376 /*HasNUW = */ false,
6377 /*HasNSW = */ !LinearMapValWrapped);
6378
6379 if (!LinearOffset->isZero())
6380 Result = Builder.CreateAdd(LHS: Result, RHS: LinearOffset, Name: "switch.offset",
6381 /*HasNUW = */ false,
6382 /*HasNSW = */ !LinearMapValWrapped);
6383 return Result;
6384 }
6385 case BitMapKind: {
6386 // Type of the bitmap (e.g. i59).
6387 IntegerType *MapTy = BitMap->getIntegerType();
6388
6389 // Cast Index to the same type as the bitmap.
6390 // Note: The Index is <= the number of elements in the table, so
6391 // truncating it to the width of the bitmask is safe.
6392 Value *ShiftAmt = Builder.CreateZExtOrTrunc(V: Index, DestTy: MapTy, Name: "switch.cast");
6393
6394 // Multiply the shift amount by the element width. NUW/NSW can always be
6395 // set, because WouldFitInRegister guarantees Index * ShiftAmt is in
6396 // BitMap's bit width.
6397 ShiftAmt = Builder.CreateMul(
6398 LHS: ShiftAmt, RHS: ConstantInt::get(Ty: MapTy, V: BitMapElementTy->getBitWidth()),
6399 Name: "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6400
6401 // Shift down.
6402 Value *DownShifted =
6403 Builder.CreateLShr(LHS: BitMap, RHS: ShiftAmt, Name: "switch.downshift");
6404 // Mask off.
6405 return Builder.CreateTrunc(V: DownShifted, DestTy: BitMapElementTy, Name: "switch.masked");
6406 }
6407 case ArrayKind: {
6408 // Make sure the table index will not overflow when treated as signed.
6409 IntegerType *IT = cast<IntegerType>(Val: Index->getType());
6410 uint64_t TableSize =
6411 Array->getInitializer()->getType()->getArrayNumElements();
6412 if (TableSize > (1ULL << std::min(a: IT->getBitWidth() - 1, b: 63u)))
6413 Index = Builder.CreateZExt(
6414 V: Index, DestTy: IntegerType::get(C&: IT->getContext(), NumBits: IT->getBitWidth() + 1),
6415 Name: "switch.tableidx.zext");
6416
6417 Value *GEPIndices[] = {Builder.getInt32(C: 0), Index};
6418 Value *GEP = Builder.CreateInBoundsGEP(Ty: Array->getValueType(), Ptr: Array,
6419 IdxList: GEPIndices, Name: "switch.gep");
6420 return Builder.CreateLoad(
6421 Ty: cast<ArrayType>(Val: Array->getValueType())->getElementType(), Ptr: GEP,
6422 Name: "switch.load");
6423 }
6424 }
6425 llvm_unreachable("Unknown lookup table kind!");
6426}
6427
6428bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6429 uint64_t TableSize,
6430 Type *ElementType) {
6431 auto *IT = dyn_cast<IntegerType>(Val: ElementType);
6432 if (!IT)
6433 return false;
6434 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6435 // are <= 15, we could try to narrow the type.
6436
6437 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6438 if (TableSize >= UINT_MAX / IT->getBitWidth())
6439 return false;
6440 return DL.fitsInLegalInteger(Width: TableSize * IT->getBitWidth());
6441}
6442
6443static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6444 const DataLayout &DL) {
6445 // Allow any legal type.
6446 if (TTI.isTypeLegal(Ty))
6447 return true;
6448
6449 auto *IT = dyn_cast<IntegerType>(Val: Ty);
6450 if (!IT)
6451 return false;
6452
6453 // Also allow power of 2 integer types that have at least 8 bits and fit in
6454 // a register. These types are common in frontend languages and targets
6455 // usually support loads of these types.
6456 // TODO: We could relax this to any integer that fits in a register and rely
6457 // on ABI alignment and padding in the table to allow the load to be widened.
6458 // Or we could widen the constants and truncate the load.
6459 unsigned BitWidth = IT->getBitWidth();
6460 return BitWidth >= 8 && isPowerOf2_32(Value: BitWidth) &&
6461 DL.fitsInLegalInteger(Width: IT->getBitWidth());
6462}
6463
6464static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6465 // 40% is the default density for building a jump table in optsize/minsize
6466 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6467 // function was based on.
6468 const uint64_t MinDensity = 40;
6469
6470 if (CaseRange >= UINT64_MAX / 100)
6471 return false; // Avoid multiplication overflows below.
6472
6473 return NumCases * 100 >= CaseRange * MinDensity;
6474}
6475
6476static bool isSwitchDense(ArrayRef<int64_t> Values) {
6477 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6478 uint64_t Range = Diff + 1;
6479 if (Range < Diff)
6480 return false; // Overflow.
6481
6482 return isSwitchDense(NumCases: Values.size(), CaseRange: Range);
6483}
6484
6485/// Determine whether a lookup table should be built for this switch, based on
6486/// the number of cases, size of the table, and the types of the results.
6487// TODO: We could support larger than legal types by limiting based on the
6488// number of loads required and/or table size. If the constants are small we
6489// could use smaller table entries and extend after the load.
6490static bool
6491ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6492 const TargetTransformInfo &TTI, const DataLayout &DL,
6493 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6494 if (SI->getNumCases() > TableSize)
6495 return false; // TableSize overflowed.
6496
6497 bool AllTablesFitInRegister = true;
6498 bool HasIllegalType = false;
6499 for (const auto &I : ResultTypes) {
6500 Type *Ty = I.second;
6501
6502 // Saturate this flag to true.
6503 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6504
6505 // Saturate this flag to false.
6506 AllTablesFitInRegister =
6507 AllTablesFitInRegister &&
6508 SwitchLookupTable::WouldFitInRegister(DL, TableSize, ElementType: Ty);
6509
6510 // If both flags saturate, we're done. NOTE: This *only* works with
6511 // saturating flags, and all flags have to saturate first due to the
6512 // non-deterministic behavior of iterating over a dense map.
6513 if (HasIllegalType && !AllTablesFitInRegister)
6514 break;
6515 }
6516
6517 // If each table would fit in a register, we should build it anyway.
6518 if (AllTablesFitInRegister)
6519 return true;
6520
6521 // Don't build a table that doesn't fit in-register if it has illegal types.
6522 if (HasIllegalType)
6523 return false;
6524
6525 return isSwitchDense(NumCases: SI->getNumCases(), CaseRange: TableSize);
6526}
6527
6528static bool ShouldUseSwitchConditionAsTableIndex(
6529 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6530 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6531 const DataLayout &DL, const TargetTransformInfo &TTI) {
6532 if (MinCaseVal.isNullValue())
6533 return true;
6534 if (MinCaseVal.isNegative() ||
6535 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6536 !HasDefaultResults)
6537 return false;
6538 return all_of(Range: ResultTypes, P: [&](const auto &KV) {
6539 return SwitchLookupTable::WouldFitInRegister(
6540 DL, TableSize: MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6541 ElementType: KV.second /* ResultType */);
6542 });
6543}
6544
6545/// Try to reuse the switch table index compare. Following pattern:
6546/// \code
6547/// if (idx < tablesize)
6548/// r = table[idx]; // table does not contain default_value
6549/// else
6550/// r = default_value;
6551/// if (r != default_value)
6552/// ...
6553/// \endcode
6554/// Is optimized to:
6555/// \code
6556/// cond = idx < tablesize;
6557/// if (cond)
6558/// r = table[idx];
6559/// else
6560/// r = default_value;
6561/// if (cond)
6562/// ...
6563/// \endcode
6564/// Jump threading will then eliminate the second if(cond).
6565static void reuseTableCompare(
6566 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6567 Constant *DefaultValue,
6568 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6569 ICmpInst *CmpInst = dyn_cast<ICmpInst>(Val: PhiUser);
6570 if (!CmpInst)
6571 return;
6572
6573 // We require that the compare is in the same block as the phi so that jump
6574 // threading can do its work afterwards.
6575 if (CmpInst->getParent() != PhiBlock)
6576 return;
6577
6578 Constant *CmpOp1 = dyn_cast<Constant>(Val: CmpInst->getOperand(i_nocapture: 1));
6579 if (!CmpOp1)
6580 return;
6581
6582 Value *RangeCmp = RangeCheckBranch->getCondition();
6583 Constant *TrueConst = ConstantInt::getTrue(Ty: RangeCmp->getType());
6584 Constant *FalseConst = ConstantInt::getFalse(Ty: RangeCmp->getType());
6585
6586 // Check if the compare with the default value is constant true or false.
6587 Constant *DefaultConst = ConstantExpr::getICmp(pred: CmpInst->getPredicate(),
6588 LHS: DefaultValue, RHS: CmpOp1, OnlyIfReduced: true);
6589 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6590 return;
6591
6592 // Check if the compare with the case values is distinct from the default
6593 // compare result.
6594 for (auto ValuePair : Values) {
6595 Constant *CaseConst = ConstantExpr::getICmp(pred: CmpInst->getPredicate(),
6596 LHS: ValuePair.second, RHS: CmpOp1, OnlyIfReduced: true);
6597 if (!CaseConst || CaseConst == DefaultConst ||
6598 (CaseConst != TrueConst && CaseConst != FalseConst))
6599 return;
6600 }
6601
6602 // Check if the branch instruction dominates the phi node. It's a simple
6603 // dominance check, but sufficient for our needs.
6604 // Although this check is invariant in the calling loops, it's better to do it
6605 // at this late stage. Practically we do it at most once for a switch.
6606 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6607 for (BasicBlock *Pred : predecessors(BB: PhiBlock)) {
6608 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6609 return;
6610 }
6611
6612 if (DefaultConst == FalseConst) {
6613 // The compare yields the same result. We can replace it.
6614 CmpInst->replaceAllUsesWith(V: RangeCmp);
6615 ++NumTableCmpReuses;
6616 } else {
6617 // The compare yields the same result, just inverted. We can replace it.
6618 Value *InvertedTableCmp = BinaryOperator::CreateXor(
6619 V1: RangeCmp, V2: ConstantInt::get(Ty: RangeCmp->getType(), V: 1), Name: "inverted.cmp",
6620 It: RangeCheckBranch->getIterator());
6621 CmpInst->replaceAllUsesWith(V: InvertedTableCmp);
6622 ++NumTableCmpReuses;
6623 }
6624}
6625
6626/// If the switch is only used to initialize one or more phi nodes in a common
6627/// successor block with different constant values, replace the switch with
6628/// lookup tables.
6629static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6630 DomTreeUpdater *DTU, const DataLayout &DL,
6631 const TargetTransformInfo &TTI) {
6632 assert(SI->getNumCases() > 1 && "Degenerate switch?");
6633
6634 BasicBlock *BB = SI->getParent();
6635 Function *Fn = BB->getParent();
6636 // Only build lookup table when we have a target that supports it or the
6637 // attribute is not set.
6638 if (!TTI.shouldBuildLookupTables() ||
6639 (Fn->getFnAttribute(Kind: "no-jump-tables").getValueAsBool()))
6640 return false;
6641
6642 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6643 // split off a dense part and build a lookup table for that.
6644
6645 // FIXME: This creates arrays of GEPs to constant strings, which means each
6646 // GEP needs a runtime relocation in PIC code. We should just build one big
6647 // string and lookup indices into that.
6648
6649 // Ignore switches with less than three cases. Lookup tables will not make
6650 // them faster, so we don't analyze them.
6651 if (SI->getNumCases() < 3)
6652 return false;
6653
6654 // Figure out the corresponding result for each case value and phi node in the
6655 // common destination, as well as the min and max case values.
6656 assert(!SI->cases().empty());
6657 SwitchInst::CaseIt CI = SI->case_begin();
6658 ConstantInt *MinCaseVal = CI->getCaseValue();
6659 ConstantInt *MaxCaseVal = CI->getCaseValue();
6660
6661 BasicBlock *CommonDest = nullptr;
6662
6663 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6664 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6665
6666 SmallDenseMap<PHINode *, Constant *> DefaultResults;
6667 SmallDenseMap<PHINode *, Type *> ResultTypes;
6668 SmallVector<PHINode *, 4> PHIs;
6669
6670 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6671 ConstantInt *CaseVal = CI->getCaseValue();
6672 if (CaseVal->getValue().slt(RHS: MinCaseVal->getValue()))
6673 MinCaseVal = CaseVal;
6674 if (CaseVal->getValue().sgt(RHS: MaxCaseVal->getValue()))
6675 MaxCaseVal = CaseVal;
6676
6677 // Resulting value at phi nodes for this case value.
6678 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6679 ResultsTy Results;
6680 if (!getCaseResults(SI, CaseVal, CaseDest: CI->getCaseSuccessor(), CommonDest: &CommonDest,
6681 Res&: Results, DL, TTI))
6682 return false;
6683
6684 // Append the result from this case to the list for each phi.
6685 for (const auto &I : Results) {
6686 PHINode *PHI = I.first;
6687 Constant *Value = I.second;
6688 if (!ResultLists.count(Val: PHI))
6689 PHIs.push_back(Elt: PHI);
6690 ResultLists[PHI].push_back(Elt: std::make_pair(x&: CaseVal, y&: Value));
6691 }
6692 }
6693
6694 // Keep track of the result types.
6695 for (PHINode *PHI : PHIs) {
6696 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6697 }
6698
6699 uint64_t NumResults = ResultLists[PHIs[0]].size();
6700
6701 // If the table has holes, we need a constant result for the default case
6702 // or a bitmask that fits in a register.
6703 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6704 bool HasDefaultResults =
6705 getCaseResults(SI, CaseVal: nullptr, CaseDest: SI->getDefaultDest(), CommonDest: &CommonDest,
6706 Res&: DefaultResultsList, DL, TTI);
6707
6708 for (const auto &I : DefaultResultsList) {
6709 PHINode *PHI = I.first;
6710 Constant *Result = I.second;
6711 DefaultResults[PHI] = Result;
6712 }
6713
6714 bool UseSwitchConditionAsTableIndex = ShouldUseSwitchConditionAsTableIndex(
6715 MinCaseVal&: *MinCaseVal, MaxCaseVal: *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6716 uint64_t TableSize;
6717 if (UseSwitchConditionAsTableIndex)
6718 TableSize = MaxCaseVal->getLimitedValue() + 1;
6719 else
6720 TableSize =
6721 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6722
6723 bool TableHasHoles = (NumResults < TableSize);
6724 bool NeedMask = (TableHasHoles && !HasDefaultResults);
6725 if (NeedMask) {
6726 // As an extra penalty for the validity test we require more cases.
6727 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6728 return false;
6729 if (!DL.fitsInLegalInteger(Width: TableSize))
6730 return false;
6731 }
6732
6733 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6734 return false;
6735
6736 std::vector<DominatorTree::UpdateType> Updates;
6737
6738 // Compute the maximum table size representable by the integer type we are
6739 // switching upon.
6740 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6741 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6742 assert(MaxTableSize >= TableSize &&
6743 "It is impossible for a switch to have more entries than the max "
6744 "representable value of its input integer type's size.");
6745
6746 // If the default destination is unreachable, or if the lookup table covers
6747 // all values of the conditional variable, branch directly to the lookup table
6748 // BB. Otherwise, check that the condition is within the case range.
6749 bool DefaultIsReachable =
6750 !isa<UnreachableInst>(Val: SI->getDefaultDest()->getFirstNonPHIOrDbg());
6751
6752 // Create the BB that does the lookups.
6753 Module &Mod = *CommonDest->getParent()->getParent();
6754 BasicBlock *LookupBB = BasicBlock::Create(
6755 Context&: Mod.getContext(), Name: "switch.lookup", Parent: CommonDest->getParent(), InsertBefore: CommonDest);
6756
6757 // Compute the table index value.
6758 Builder.SetInsertPoint(SI);
6759 Value *TableIndex;
6760 ConstantInt *TableIndexOffset;
6761 if (UseSwitchConditionAsTableIndex) {
6762 TableIndexOffset = ConstantInt::get(Ty: MaxCaseVal->getIntegerType(), V: 0);
6763 TableIndex = SI->getCondition();
6764 } else {
6765 TableIndexOffset = MinCaseVal;
6766 // If the default is unreachable, all case values are s>= MinCaseVal. Then
6767 // we can try to attach nsw.
6768 bool MayWrap = true;
6769 if (!DefaultIsReachable) {
6770 APInt Res = MaxCaseVal->getValue().ssub_ov(RHS: MinCaseVal->getValue(), Overflow&: MayWrap);
6771 (void)Res;
6772 }
6773
6774 TableIndex = Builder.CreateSub(LHS: SI->getCondition(), RHS: TableIndexOffset,
6775 Name: "switch.tableidx", /*HasNUW =*/false,
6776 /*HasNSW =*/!MayWrap);
6777 }
6778
6779 BranchInst *RangeCheckBranch = nullptr;
6780
6781 // Grow the table to cover all possible index values to avoid the range check.
6782 // It will use the default result to fill in the table hole later, so make
6783 // sure it exist.
6784 if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
6785 ConstantRange CR = computeConstantRange(V: TableIndex, /* ForSigned */ false);
6786 // Grow the table shouldn't have any size impact by checking
6787 // WouldFitInRegister.
6788 // TODO: Consider growing the table also when it doesn't fit in a register
6789 // if no optsize is specified.
6790 const uint64_t UpperBound = CR.getUpper().getLimitedValue();
6791 if (!CR.isUpperWrapped() && all_of(Range&: ResultTypes, P: [&](const auto &KV) {
6792 return SwitchLookupTable::WouldFitInRegister(
6793 DL, TableSize: UpperBound, ElementType: KV.second /* ResultType */);
6794 })) {
6795 // There may be some case index larger than the UpperBound (unreachable
6796 // case), so make sure the table size does not get smaller.
6797 TableSize = std::max(a: UpperBound, b: TableSize);
6798 // The default branch is unreachable after we enlarge the lookup table.
6799 // Adjust DefaultIsReachable to reuse code path.
6800 DefaultIsReachable = false;
6801 }
6802 }
6803
6804 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6805 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6806 Builder.CreateBr(Dest: LookupBB);
6807 if (DTU)
6808 Updates.push_back(x: {DominatorTree::Insert, BB, LookupBB});
6809 // Note: We call removeProdecessor later since we need to be able to get the
6810 // PHI value for the default case in case we're using a bit mask.
6811 } else {
6812 Value *Cmp = Builder.CreateICmpULT(
6813 LHS: TableIndex, RHS: ConstantInt::get(Ty: MinCaseVal->getType(), V: TableSize));
6814 RangeCheckBranch =
6815 Builder.CreateCondBr(Cond: Cmp, True: LookupBB, False: SI->getDefaultDest());
6816 if (DTU)
6817 Updates.push_back(x: {DominatorTree::Insert, BB, LookupBB});
6818 }
6819
6820 // Populate the BB that does the lookups.
6821 Builder.SetInsertPoint(LookupBB);
6822
6823 if (NeedMask) {
6824 // Before doing the lookup, we do the hole check. The LookupBB is therefore
6825 // re-purposed to do the hole check, and we create a new LookupBB.
6826 BasicBlock *MaskBB = LookupBB;
6827 MaskBB->setName("switch.hole_check");
6828 LookupBB = BasicBlock::Create(Context&: Mod.getContext(), Name: "switch.lookup",
6829 Parent: CommonDest->getParent(), InsertBefore: CommonDest);
6830
6831 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6832 // unnecessary illegal types.
6833 uint64_t TableSizePowOf2 = NextPowerOf2(A: std::max(a: 7ULL, b: TableSize - 1ULL));
6834 APInt MaskInt(TableSizePowOf2, 0);
6835 APInt One(TableSizePowOf2, 1);
6836 // Build bitmask; fill in a 1 bit for every case.
6837 const ResultListTy &ResultList = ResultLists[PHIs[0]];
6838 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6839 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
6840 .getLimitedValue();
6841 MaskInt |= One << Idx;
6842 }
6843 ConstantInt *TableMask = ConstantInt::get(Context&: Mod.getContext(), V: MaskInt);
6844
6845 // Get the TableIndex'th bit of the bitmask.
6846 // If this bit is 0 (meaning hole) jump to the default destination,
6847 // else continue with table lookup.
6848 IntegerType *MapTy = TableMask->getIntegerType();
6849 Value *MaskIndex =
6850 Builder.CreateZExtOrTrunc(V: TableIndex, DestTy: MapTy, Name: "switch.maskindex");
6851 Value *Shifted = Builder.CreateLShr(LHS: TableMask, RHS: MaskIndex, Name: "switch.shifted");
6852 Value *LoBit = Builder.CreateTrunc(
6853 V: Shifted, DestTy: Type::getInt1Ty(C&: Mod.getContext()), Name: "switch.lobit");
6854 Builder.CreateCondBr(Cond: LoBit, True: LookupBB, False: SI->getDefaultDest());
6855 if (DTU) {
6856 Updates.push_back(x: {DominatorTree::Insert, MaskBB, LookupBB});
6857 Updates.push_back(x: {DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6858 }
6859 Builder.SetInsertPoint(LookupBB);
6860 AddPredecessorToBlock(Succ: SI->getDefaultDest(), NewPred: MaskBB, ExistPred: BB);
6861 }
6862
6863 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6864 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6865 // do not delete PHINodes here.
6866 SI->getDefaultDest()->removePredecessor(Pred: BB,
6867 /*KeepOneInputPHIs=*/true);
6868 if (DTU)
6869 Updates.push_back(x: {DominatorTree::Delete, BB, SI->getDefaultDest()});
6870 }
6871
6872 for (PHINode *PHI : PHIs) {
6873 const ResultListTy &ResultList = ResultLists[PHI];
6874
6875 // If using a bitmask, use any value to fill the lookup table holes.
6876 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6877 StringRef FuncName = Fn->getName();
6878 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
6879 DL, FuncName);
6880
6881 Value *Result = Table.BuildLookup(Index: TableIndex, Builder);
6882
6883 // Do a small peephole optimization: re-use the switch table compare if
6884 // possible.
6885 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6886 BasicBlock *PhiBlock = PHI->getParent();
6887 // Search for compare instructions which use the phi.
6888 for (auto *User : PHI->users()) {
6889 reuseTableCompare(PhiUser: User, PhiBlock, RangeCheckBranch, DefaultValue: DV, Values: ResultList);
6890 }
6891 }
6892
6893 PHI->addIncoming(V: Result, BB: LookupBB);
6894 }
6895
6896 Builder.CreateBr(Dest: CommonDest);
6897 if (DTU)
6898 Updates.push_back(x: {DominatorTree::Insert, LookupBB, CommonDest});
6899
6900 // Remove the switch.
6901 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6902 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6903 BasicBlock *Succ = SI->getSuccessor(idx: i);
6904
6905 if (Succ == SI->getDefaultDest())
6906 continue;
6907 Succ->removePredecessor(Pred: BB);
6908 if (DTU && RemovedSuccessors.insert(Ptr: Succ).second)
6909 Updates.push_back(x: {DominatorTree::Delete, BB, Succ});
6910 }
6911 SI->eraseFromParent();
6912
6913 if (DTU)
6914 DTU->applyUpdates(Updates);
6915
6916 ++NumLookupTables;
6917 if (NeedMask)
6918 ++NumLookupTablesHoles;
6919 return true;
6920}
6921
6922/// Try to transform a switch that has "holes" in it to a contiguous sequence
6923/// of cases.
6924///
6925/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6926/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6927///
6928/// This converts a sparse switch into a dense switch which allows better
6929/// lowering and could also allow transforming into a lookup table.
6930static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6931 const DataLayout &DL,
6932 const TargetTransformInfo &TTI) {
6933 auto *CondTy = cast<IntegerType>(Val: SI->getCondition()->getType());
6934 if (CondTy->getIntegerBitWidth() > 64 ||
6935 !DL.fitsInLegalInteger(Width: CondTy->getIntegerBitWidth()))
6936 return false;
6937 // Only bother with this optimization if there are more than 3 switch cases;
6938 // SDAG will only bother creating jump tables for 4 or more cases.
6939 if (SI->getNumCases() < 4)
6940 return false;
6941
6942 // This transform is agnostic to the signedness of the input or case values. We
6943 // can treat the case values as signed or unsigned. We can optimize more common
6944 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6945 // as signed.
6946 SmallVector<int64_t,4> Values;
6947 for (const auto &C : SI->cases())
6948 Values.push_back(Elt: C.getCaseValue()->getValue().getSExtValue());
6949 llvm::sort(C&: Values);
6950
6951 // If the switch is already dense, there's nothing useful to do here.
6952 if (isSwitchDense(Values))
6953 return false;
6954
6955 // First, transform the values such that they start at zero and ascend.
6956 int64_t Base = Values[0];
6957 for (auto &V : Values)
6958 V -= (uint64_t)(Base);
6959
6960 // Now we have signed numbers that have been shifted so that, given enough
6961 // precision, there are no negative values. Since the rest of the transform
6962 // is bitwise only, we switch now to an unsigned representation.
6963
6964 // This transform can be done speculatively because it is so cheap - it
6965 // results in a single rotate operation being inserted.
6966
6967 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6968 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6969 // less than 64.
6970 unsigned Shift = 64;
6971 for (auto &V : Values)
6972 Shift = std::min(a: Shift, b: (unsigned)llvm::countr_zero(Val: (uint64_t)V));
6973 assert(Shift < 64);
6974 if (Shift > 0)
6975 for (auto &V : Values)
6976 V = (int64_t)((uint64_t)V >> Shift);
6977
6978 if (!isSwitchDense(Values))
6979 // Transform didn't create a dense switch.
6980 return false;
6981
6982 // The obvious transform is to shift the switch condition right and emit a
6983 // check that the condition actually cleanly divided by GCD, i.e.
6984 // C & (1 << Shift - 1) == 0
6985 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6986 //
6987 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6988 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6989 // are nonzero then the switch condition will be very large and will hit the
6990 // default case.
6991
6992 auto *Ty = cast<IntegerType>(Val: SI->getCondition()->getType());
6993 Builder.SetInsertPoint(SI);
6994 Value *Sub =
6995 Builder.CreateSub(LHS: SI->getCondition(), RHS: ConstantInt::get(Ty, V: Base));
6996 Value *Rot = Builder.CreateIntrinsic(
6997 Ty, Intrinsic::fshl,
6998 {Sub, Sub, ConstantInt::get(Ty, V: Ty->getBitWidth() - Shift)});
6999 SI->replaceUsesOfWith(From: SI->getCondition(), To: Rot);
7000
7001 for (auto Case : SI->cases()) {
7002 auto *Orig = Case.getCaseValue();
7003 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
7004 Case.setValue(cast<ConstantInt>(Val: ConstantInt::get(Ty, V: Sub.lshr(shiftAmt: Shift))));
7005 }
7006 return true;
7007}
7008
7009/// Tries to transform switch of powers of two to reduce switch range.
7010/// For example, switch like:
7011/// switch (C) { case 1: case 2: case 64: case 128: }
7012/// will be transformed to:
7013/// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7014///
7015/// This transformation allows better lowering and could allow transforming into
7016/// a lookup table.
7017static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7018 const DataLayout &DL,
7019 const TargetTransformInfo &TTI) {
7020 Value *Condition = SI->getCondition();
7021 LLVMContext &Context = SI->getContext();
7022 auto *CondTy = cast<IntegerType>(Val: Condition->getType());
7023
7024 if (CondTy->getIntegerBitWidth() > 64 ||
7025 !DL.fitsInLegalInteger(Width: CondTy->getIntegerBitWidth()))
7026 return false;
7027
7028 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7029 IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7030 {Condition, ConstantInt::getTrue(Context)}),
7031 TTI::TCK_SizeAndLatency);
7032
7033 if (CttzIntrinsicCost > TTI::TCC_Basic)
7034 // Inserting intrinsic is too expensive.
7035 return false;
7036
7037 // Only bother with this optimization if there are more than 3 switch cases.
7038 // SDAG will only bother creating jump tables for 4 or more cases.
7039 if (SI->getNumCases() < 4)
7040 return false;
7041
7042 // We perform this optimization only for switches with
7043 // unreachable default case.
7044 // This assumtion will save us from checking if `Condition` is a power of two.
7045 if (!isa<UnreachableInst>(Val: SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7046 return false;
7047
7048 // Check that switch cases are powers of two.
7049 SmallVector<uint64_t, 4> Values;
7050 for (const auto &Case : SI->cases()) {
7051 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7052 if (llvm::has_single_bit(Value: CaseValue))
7053 Values.push_back(Elt: CaseValue);
7054 else
7055 return false;
7056 }
7057
7058 // isSwichDense requires case values to be sorted.
7059 llvm::sort(C&: Values);
7060 if (!isSwitchDense(NumCases: Values.size(), CaseRange: llvm::countr_zero(Val: Values.back()) -
7061 llvm::countr_zero(Val: Values.front()) + 1))
7062 // Transform is unable to generate dense switch.
7063 return false;
7064
7065 Builder.SetInsertPoint(SI);
7066
7067 // Replace each case with its trailing zeros number.
7068 for (auto &Case : SI->cases()) {
7069 auto *OrigValue = Case.getCaseValue();
7070 Case.setValue(ConstantInt::get(Ty: OrigValue->getIntegerType(),
7071 V: OrigValue->getValue().countr_zero()));
7072 }
7073
7074 // Replace condition with its trailing zeros number.
7075 auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7076 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7077
7078 SI->setCondition(ConditionTrailingZeros);
7079
7080 return true;
7081}
7082
7083bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7084 BasicBlock *BB = SI->getParent();
7085
7086 if (isValueEqualityComparison(TI: SI)) {
7087 // If we only have one predecessor, and if it is a branch on this value,
7088 // see if that predecessor totally determines the outcome of this switch.
7089 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7090 if (SimplifyEqualityComparisonWithOnlyPredecessor(TI: SI, Pred: OnlyPred, Builder))
7091 return requestResimplify();
7092
7093 Value *Cond = SI->getCondition();
7094 if (SelectInst *Select = dyn_cast<SelectInst>(Val: Cond))
7095 if (SimplifySwitchOnSelect(SI, Select))
7096 return requestResimplify();
7097
7098 // If the block only contains the switch, see if we can fold the block
7099 // away into any preds.
7100 if (SI == &*BB->instructionsWithoutDebug(SkipPseudoOp: false).begin())
7101 if (FoldValueComparisonIntoPredecessors(TI: SI, Builder))
7102 return requestResimplify();
7103 }
7104
7105 // Try to transform the switch into an icmp and a branch.
7106 // The conversion from switch to comparison may lose information on
7107 // impossible switch values, so disable it early in the pipeline.
7108 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
7109 return requestResimplify();
7110
7111 // Remove unreachable cases.
7112 if (eliminateDeadSwitchCases(SI, DTU, AC: Options.AC, DL))
7113 return requestResimplify();
7114
7115 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7116 return requestResimplify();
7117
7118 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
7119 return requestResimplify();
7120
7121 // The conversion from switch to lookup tables results in difficult-to-analyze
7122 // code and makes pruning branches much harder. This is a problem if the
7123 // switch expression itself can still be restricted as a result of inlining or
7124 // CVP. Therefore, only apply this transformation during late stages of the
7125 // optimisation pipeline.
7126 if (Options.ConvertSwitchToLookupTable &&
7127 SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
7128 return requestResimplify();
7129
7130 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7131 return requestResimplify();
7132
7133 if (ReduceSwitchRange(SI, Builder, DL, TTI))
7134 return requestResimplify();
7135
7136 if (HoistCommon &&
7137 hoistCommonCodeFromSuccessors(BB: SI->getParent(), EqTermsOnly: !Options.HoistCommonInsts))
7138 return requestResimplify();
7139
7140 return false;
7141}
7142
7143bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7144 BasicBlock *BB = IBI->getParent();
7145 bool Changed = false;
7146
7147 // Eliminate redundant destinations.
7148 SmallPtrSet<Value *, 8> Succs;
7149 SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7150 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7151 BasicBlock *Dest = IBI->getDestination(i);
7152 if (!Dest->hasAddressTaken() || !Succs.insert(Ptr: Dest).second) {
7153 if (!Dest->hasAddressTaken())
7154 RemovedSuccs.insert(X: Dest);
7155 Dest->removePredecessor(Pred: BB);
7156 IBI->removeDestination(i);
7157 --i;
7158 --e;
7159 Changed = true;
7160 }
7161 }
7162
7163 if (DTU) {
7164 std::vector<DominatorTree::UpdateType> Updates;
7165 Updates.reserve(n: RemovedSuccs.size());
7166 for (auto *RemovedSucc : RemovedSuccs)
7167 Updates.push_back(x: {DominatorTree::Delete, BB, RemovedSucc});
7168 DTU->applyUpdates(Updates);
7169 }
7170
7171 if (IBI->getNumDestinations() == 0) {
7172 // If the indirectbr has no successors, change it to unreachable.
7173 new UnreachableInst(IBI->getContext(), IBI->getIterator());
7174 EraseTerminatorAndDCECond(TI: IBI);
7175 return true;
7176 }
7177
7178 if (IBI->getNumDestinations() == 1) {
7179 // If the indirectbr has one successor, change it to a direct branch.
7180 BranchInst::Create(IfTrue: IBI->getDestination(i: 0), InsertBefore: IBI->getIterator());
7181 EraseTerminatorAndDCECond(TI: IBI);
7182 return true;
7183 }
7184
7185 if (SelectInst *SI = dyn_cast<SelectInst>(Val: IBI->getAddress())) {
7186 if (SimplifyIndirectBrOnSelect(IBI, SI))
7187 return requestResimplify();
7188 }
7189 return Changed;
7190}
7191
7192/// Given an block with only a single landing pad and a unconditional branch
7193/// try to find another basic block which this one can be merged with. This
7194/// handles cases where we have multiple invokes with unique landing pads, but
7195/// a shared handler.
7196///
7197/// We specifically choose to not worry about merging non-empty blocks
7198/// here. That is a PRE/scheduling problem and is best solved elsewhere. In
7199/// practice, the optimizer produces empty landing pad blocks quite frequently
7200/// when dealing with exception dense code. (see: instcombine, gvn, if-else
7201/// sinking in this file)
7202///
7203/// This is primarily a code size optimization. We need to avoid performing
7204/// any transform which might inhibit optimization (such as our ability to
7205/// specialize a particular handler via tail commoning). We do this by not
7206/// merging any blocks which require us to introduce a phi. Since the same
7207/// values are flowing through both blocks, we don't lose any ability to
7208/// specialize. If anything, we make such specialization more likely.
7209///
7210/// TODO - This transformation could remove entries from a phi in the target
7211/// block when the inputs in the phi are the same for the two blocks being
7212/// merged. In some cases, this could result in removal of the PHI entirely.
7213static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7214 BasicBlock *BB, DomTreeUpdater *DTU) {
7215 auto Succ = BB->getUniqueSuccessor();
7216 assert(Succ);
7217 // If there's a phi in the successor block, we'd likely have to introduce
7218 // a phi into the merged landing pad block.
7219 if (isa<PHINode>(Val: *Succ->begin()))
7220 return false;
7221
7222 for (BasicBlock *OtherPred : predecessors(BB: Succ)) {
7223 if (BB == OtherPred)
7224 continue;
7225 BasicBlock::iterator I = OtherPred->begin();
7226 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(Val&: I);
7227 if (!LPad2 || !LPad2->isIdenticalTo(I: LPad))
7228 continue;
7229 for (++I; isa<DbgInfoIntrinsic>(Val: I); ++I)
7230 ;
7231 BranchInst *BI2 = dyn_cast<BranchInst>(Val&: I);
7232 if (!BI2 || !BI2->isIdenticalTo(I: BI))
7233 continue;
7234
7235 std::vector<DominatorTree::UpdateType> Updates;
7236
7237 // We've found an identical block. Update our predecessors to take that
7238 // path instead and make ourselves dead.
7239 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7240 for (BasicBlock *Pred : UniquePreds) {
7241 InvokeInst *II = cast<InvokeInst>(Val: Pred->getTerminator());
7242 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7243 "unexpected successor");
7244 II->setUnwindDest(OtherPred);
7245 if (DTU) {
7246 Updates.push_back(x: {DominatorTree::Insert, Pred, OtherPred});
7247 Updates.push_back(x: {DominatorTree::Delete, Pred, BB});
7248 }
7249 }
7250
7251 // The debug info in OtherPred doesn't cover the merged control flow that
7252 // used to go through BB. We need to delete it or update it.
7253 for (Instruction &Inst : llvm::make_early_inc_range(Range&: *OtherPred))
7254 if (isa<DbgInfoIntrinsic>(Val: Inst))
7255 Inst.eraseFromParent();
7256
7257 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7258 for (BasicBlock *Succ : UniqueSuccs) {
7259 Succ->removePredecessor(Pred: BB);
7260 if (DTU)
7261 Updates.push_back(x: {DominatorTree::Delete, BB, Succ});
7262 }
7263
7264 IRBuilder<> Builder(BI);
7265 Builder.CreateUnreachable();
7266 BI->eraseFromParent();
7267 if (DTU)
7268 DTU->applyUpdates(Updates);
7269 return true;
7270 }
7271 return false;
7272}
7273
7274bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7275 return Branch->isUnconditional() ? simplifyUncondBranch(BI: Branch, Builder)
7276 : simplifyCondBranch(BI: Branch, Builder);
7277}
7278
7279bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7280 IRBuilder<> &Builder) {
7281 BasicBlock *BB = BI->getParent();
7282 BasicBlock *Succ = BI->getSuccessor(i: 0);
7283
7284 // If the Terminator is the only non-phi instruction, simplify the block.
7285 // If LoopHeader is provided, check if the block or its successor is a loop
7286 // header. (This is for early invocations before loop simplify and
7287 // vectorization to keep canonical loop forms for nested loops. These blocks
7288 // can be eliminated when the pass is invoked later in the back-end.)
7289 // Note that if BB has only one predecessor then we do not introduce new
7290 // backedge, so we can eliminate BB.
7291 bool NeedCanonicalLoop =
7292 Options.NeedCanonicalLoop &&
7293 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(N: 2) &&
7294 (is_contained(Range&: LoopHeaders, Element: BB) || is_contained(Range&: LoopHeaders, Element: Succ)));
7295 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(SkipPseudoOp: true)->getIterator();
7296 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7297 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7298 return true;
7299
7300 // If the only instruction in the block is a seteq/setne comparison against a
7301 // constant, try to simplify the block.
7302 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Val&: I))
7303 if (ICI->isEquality() && isa<ConstantInt>(Val: ICI->getOperand(i_nocapture: 1))) {
7304 for (++I; isa<DbgInfoIntrinsic>(Val: I); ++I)
7305 ;
7306 if (I->isTerminator() &&
7307 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7308 return true;
7309 }
7310
7311 // See if we can merge an empty landing pad block with another which is
7312 // equivalent.
7313 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(Val&: I)) {
7314 for (++I; isa<DbgInfoIntrinsic>(Val: I); ++I)
7315 ;
7316 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
7317 return true;
7318 }
7319
7320 // If this basic block is ONLY a compare and a branch, and if a predecessor
7321 // branches to us and our successor, fold the comparison into the
7322 // predecessor and use logical operations to update the incoming value
7323 // for PHI nodes in common successor.
7324 if (Options.SpeculateBlocks &&
7325 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, TTI: &TTI,
7326 BonusInstThreshold: Options.BonusInstThreshold))
7327 return requestResimplify();
7328 return false;
7329}
7330
7331static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7332 BasicBlock *PredPred = nullptr;
7333 for (auto *P : predecessors(BB)) {
7334 BasicBlock *PPred = P->getSinglePredecessor();
7335 if (!PPred || (PredPred && PredPred != PPred))
7336 return nullptr;
7337 PredPred = PPred;
7338 }
7339 return PredPred;
7340}
7341
7342bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7343 assert(
7344 !isa<ConstantInt>(BI->getCondition()) &&
7345 BI->getSuccessor(0) != BI->getSuccessor(1) &&
7346 "Tautological conditional branch should have been eliminated already.");
7347
7348 BasicBlock *BB = BI->getParent();
7349 if (!Options.SimplifyCondBranch ||
7350 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7351 return false;
7352
7353 // Conditional branch
7354 if (isValueEqualityComparison(TI: BI)) {
7355 // If we only have one predecessor, and if it is a branch on this value,
7356 // see if that predecessor totally determines the outcome of this
7357 // switch.
7358 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7359 if (SimplifyEqualityComparisonWithOnlyPredecessor(TI: BI, Pred: OnlyPred, Builder))
7360 return requestResimplify();
7361
7362 // This block must be empty, except for the setcond inst, if it exists.
7363 // Ignore dbg and pseudo intrinsics.
7364 auto I = BB->instructionsWithoutDebug(SkipPseudoOp: true).begin();
7365 if (&*I == BI) {
7366 if (FoldValueComparisonIntoPredecessors(TI: BI, Builder))
7367 return requestResimplify();
7368 } else if (&*I == cast<Instruction>(Val: BI->getCondition())) {
7369 ++I;
7370 if (&*I == BI && FoldValueComparisonIntoPredecessors(TI: BI, Builder))
7371 return requestResimplify();
7372 }
7373 }
7374
7375 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7376 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
7377 return true;
7378
7379 // If this basic block has dominating predecessor blocks and the dominating
7380 // blocks' conditions imply BI's condition, we know the direction of BI.
7381 std::optional<bool> Imp = isImpliedByDomCondition(Cond: BI->getCondition(), ContextI: BI, DL);
7382 if (Imp) {
7383 // Turn this into a branch on constant.
7384 auto *OldCond = BI->getCondition();
7385 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(Context&: BB->getContext())
7386 : ConstantInt::getFalse(Context&: BB->getContext());
7387 BI->setCondition(TorF);
7388 RecursivelyDeleteTriviallyDeadInstructions(V: OldCond);
7389 return requestResimplify();
7390 }
7391
7392 // If this basic block is ONLY a compare and a branch, and if a predecessor
7393 // branches to us and one of our successors, fold the comparison into the
7394 // predecessor and use logical operations to pick the right destination.
7395 if (Options.SpeculateBlocks &&
7396 FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, TTI: &TTI,
7397 BonusInstThreshold: Options.BonusInstThreshold))
7398 return requestResimplify();
7399
7400 // We have a conditional branch to two blocks that are only reachable
7401 // from BI. We know that the condbr dominates the two blocks, so see if
7402 // there is any identical code in the "then" and "else" blocks. If so, we
7403 // can hoist it up to the branching block.
7404 if (BI->getSuccessor(i: 0)->getSinglePredecessor()) {
7405 if (BI->getSuccessor(i: 1)->getSinglePredecessor()) {
7406 if (HoistCommon && hoistCommonCodeFromSuccessors(
7407 BB: BI->getParent(), EqTermsOnly: !Options.HoistCommonInsts))
7408 return requestResimplify();
7409 } else {
7410 // If Successor #1 has multiple preds, we may be able to conditionally
7411 // execute Successor #0 if it branches to Successor #1.
7412 Instruction *Succ0TI = BI->getSuccessor(i: 0)->getTerminator();
7413 if (Succ0TI->getNumSuccessors() == 1 &&
7414 Succ0TI->getSuccessor(Idx: 0) == BI->getSuccessor(i: 1))
7415 if (SpeculativelyExecuteBB(BI, ThenBB: BI->getSuccessor(i: 0)))
7416 return requestResimplify();
7417 }
7418 } else if (BI->getSuccessor(i: 1)->getSinglePredecessor()) {
7419 // If Successor #0 has multiple preds, we may be able to conditionally
7420 // execute Successor #1 if it branches to Successor #0.
7421 Instruction *Succ1TI = BI->getSuccessor(i: 1)->getTerminator();
7422 if (Succ1TI->getNumSuccessors() == 1 &&
7423 Succ1TI->getSuccessor(Idx: 0) == BI->getSuccessor(i: 0))
7424 if (SpeculativelyExecuteBB(BI, ThenBB: BI->getSuccessor(i: 1)))
7425 return requestResimplify();
7426 }
7427
7428 // If this is a branch on something for which we know the constant value in
7429 // predecessors (e.g. a phi node in the current block), thread control
7430 // through this block.
7431 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, AC: Options.AC))
7432 return requestResimplify();
7433
7434 // Scan predecessor blocks for conditional branches.
7435 for (BasicBlock *Pred : predecessors(BB))
7436 if (BranchInst *PBI = dyn_cast<BranchInst>(Val: Pred->getTerminator()))
7437 if (PBI != BI && PBI->isConditional())
7438 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7439 return requestResimplify();
7440
7441 // Look for diamond patterns.
7442 if (MergeCondStores)
7443 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7444 if (BranchInst *PBI = dyn_cast<BranchInst>(Val: PrevBB->getTerminator()))
7445 if (PBI != BI && PBI->isConditional())
7446 if (mergeConditionalStores(PBI, QBI: BI, DTU, DL, TTI))
7447 return requestResimplify();
7448
7449 return false;
7450}
7451
7452/// Check if passing a value to an instruction will cause undefined behavior.
7453static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7454 Constant *C = dyn_cast<Constant>(Val: V);
7455 if (!C)
7456 return false;
7457
7458 if (I->use_empty())
7459 return false;
7460
7461 if (C->isNullValue() || isa<UndefValue>(Val: C)) {
7462 // Only look at the first use, avoid hurting compile time with long uselists
7463 auto *Use = cast<Instruction>(Val: *I->user_begin());
7464 // Bail out if Use is not in the same BB as I or Use == I or Use comes
7465 // before I in the block. The latter two can be the case if Use is a PHI
7466 // node.
7467 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(Other: I))
7468 return false;
7469
7470 // Now make sure that there are no instructions in between that can alter
7471 // control flow (eg. calls)
7472 auto InstrRange =
7473 make_range(x: std::next(x: I->getIterator()), y: Use->getIterator());
7474 if (any_of(Range&: InstrRange, P: [](Instruction &I) {
7475 return !isGuaranteedToTransferExecutionToSuccessor(I: &I);
7476 }))
7477 return false;
7478
7479 // Look through GEPs. A load from a GEP derived from NULL is still undefined
7480 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Use))
7481 if (GEP->getPointerOperand() == I) {
7482 // The current base address is null, there are four cases to consider:
7483 // getelementptr (TY, null, 0) -> null
7484 // getelementptr (TY, null, not zero) -> may be modified
7485 // getelementptr inbounds (TY, null, 0) -> null
7486 // getelementptr inbounds (TY, null, not zero) -> poison iff null is
7487 // undefined?
7488 if (!GEP->hasAllZeroIndices() &&
7489 (!GEP->isInBounds() ||
7490 NullPointerIsDefined(F: GEP->getFunction(),
7491 AS: GEP->getPointerAddressSpace())))
7492 PtrValueMayBeModified = true;
7493 return passingValueIsAlwaysUndefined(V, I: GEP, PtrValueMayBeModified);
7494 }
7495
7496 // Look through return.
7497 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Val: Use)) {
7498 bool HasNoUndefAttr =
7499 Ret->getFunction()->hasRetAttribute(Attribute::Kind: NoUndef);
7500 // Return undefined to a noundef return value is undefined.
7501 if (isa<UndefValue>(Val: C) && HasNoUndefAttr)
7502 return true;
7503 // Return null to a nonnull+noundef return value is undefined.
7504 if (C->isNullValue() && HasNoUndefAttr &&
7505 Ret->getFunction()->hasRetAttribute(Attribute::Kind: NonNull)) {
7506 return !PtrValueMayBeModified;
7507 }
7508 }
7509
7510 // Look through bitcasts.
7511 if (BitCastInst *BC = dyn_cast<BitCastInst>(Val: Use))
7512 return passingValueIsAlwaysUndefined(V, I: BC, PtrValueMayBeModified);
7513
7514 // Load from null is undefined.
7515 if (LoadInst *LI = dyn_cast<LoadInst>(Val: Use))
7516 if (!LI->isVolatile())
7517 return !NullPointerIsDefined(F: LI->getFunction(),
7518 AS: LI->getPointerAddressSpace());
7519
7520 // Store to null is undefined.
7521 if (StoreInst *SI = dyn_cast<StoreInst>(Val: Use))
7522 if (!SI->isVolatile())
7523 return (!NullPointerIsDefined(F: SI->getFunction(),
7524 AS: SI->getPointerAddressSpace())) &&
7525 SI->getPointerOperand() == I;
7526
7527 if (auto *CB = dyn_cast<CallBase>(Val: Use)) {
7528 if (C->isNullValue() && NullPointerIsDefined(F: CB->getFunction()))
7529 return false;
7530 // A call to null is undefined.
7531 if (CB->getCalledOperand() == I)
7532 return true;
7533
7534 if (C->isNullValue()) {
7535 for (const llvm::Use &Arg : CB->args())
7536 if (Arg == I) {
7537 unsigned ArgIdx = CB->getArgOperandNo(U: &Arg);
7538 if (CB->isPassingUndefUB(ArgNo: ArgIdx) &&
7539 CB->paramHasAttr(ArgNo: ArgIdx, Attribute::Kind: NonNull)) {
7540 // Passing null to a nonnnull+noundef argument is undefined.
7541 return !PtrValueMayBeModified;
7542 }
7543 }
7544 } else if (isa<UndefValue>(Val: C)) {
7545 // Passing undef to a noundef argument is undefined.
7546 for (const llvm::Use &Arg : CB->args())
7547 if (Arg == I) {
7548 unsigned ArgIdx = CB->getArgOperandNo(U: &Arg);
7549 if (CB->isPassingUndefUB(ArgNo: ArgIdx)) {
7550 // Passing undef to a noundef argument is undefined.
7551 return true;
7552 }
7553 }
7554 }
7555 }
7556 }
7557 return false;
7558}
7559
7560/// If BB has an incoming value that will always trigger undefined behavior
7561/// (eg. null pointer dereference), remove the branch leading here.
7562static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7563 DomTreeUpdater *DTU,
7564 AssumptionCache *AC) {
7565 for (PHINode &PHI : BB->phis())
7566 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7567 if (passingValueIsAlwaysUndefined(V: PHI.getIncomingValue(i), I: &PHI)) {
7568 BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7569 Instruction *T = Predecessor->getTerminator();
7570 IRBuilder<> Builder(T);
7571 if (BranchInst *BI = dyn_cast<BranchInst>(Val: T)) {
7572 BB->removePredecessor(Pred: Predecessor);
7573 // Turn unconditional branches into unreachables and remove the dead
7574 // destination from conditional branches.
7575 if (BI->isUnconditional())
7576 Builder.CreateUnreachable();
7577 else {
7578 // Preserve guarding condition in assume, because it might not be
7579 // inferrable from any dominating condition.
7580 Value *Cond = BI->getCondition();
7581 CallInst *Assumption;
7582 if (BI->getSuccessor(i: 0) == BB)
7583 Assumption = Builder.CreateAssumption(Cond: Builder.CreateNot(V: Cond));
7584 else
7585 Assumption = Builder.CreateAssumption(Cond);
7586 if (AC)
7587 AC->registerAssumption(CI: cast<AssumeInst>(Val: Assumption));
7588 Builder.CreateBr(Dest: BI->getSuccessor(i: 0) == BB ? BI->getSuccessor(i: 1)
7589 : BI->getSuccessor(i: 0));
7590 }
7591 BI->eraseFromParent();
7592 if (DTU)
7593 DTU->applyUpdates(Updates: {{DominatorTree::Delete, Predecessor, BB}});
7594 return true;
7595 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: T)) {
7596 // Redirect all branches leading to UB into
7597 // a newly created unreachable block.
7598 BasicBlock *Unreachable = BasicBlock::Create(
7599 Context&: Predecessor->getContext(), Name: "unreachable", Parent: BB->getParent(), InsertBefore: BB);
7600 Builder.SetInsertPoint(Unreachable);
7601 // The new block contains only one instruction: Unreachable
7602 Builder.CreateUnreachable();
7603 for (const auto &Case : SI->cases())
7604 if (Case.getCaseSuccessor() == BB) {
7605 BB->removePredecessor(Pred: Predecessor);
7606 Case.setSuccessor(Unreachable);
7607 }
7608 if (SI->getDefaultDest() == BB) {
7609 BB->removePredecessor(Pred: Predecessor);
7610 SI->setDefaultDest(Unreachable);
7611 }
7612
7613 if (DTU)
7614 DTU->applyUpdates(
7615 Updates: { { DominatorTree::Insert, Predecessor, Unreachable },
7616 { DominatorTree::Delete, Predecessor, BB } });
7617 return true;
7618 }
7619 }
7620
7621 return false;
7622}
7623
7624bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7625 bool Changed = false;
7626
7627 assert(BB && BB->getParent() && "Block not embedded in function!");
7628 assert(BB->getTerminator() && "Degenerate basic block encountered!");
7629
7630 // Remove basic blocks that have no predecessors (except the entry block)...
7631 // or that just have themself as a predecessor. These are unreachable.
7632 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7633 BB->getSinglePredecessor() == BB) {
7634 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7635 DeleteDeadBlock(BB, DTU);
7636 return true;
7637 }
7638
7639 // Check to see if we can constant propagate this terminator instruction
7640 // away...
7641 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7642 /*TLI=*/nullptr, DTU);
7643
7644 // Check for and eliminate duplicate PHI nodes in this block.
7645 Changed |= EliminateDuplicatePHINodes(BB);
7646
7647 // Check for and remove branches that will always cause undefined behavior.
7648 if (removeUndefIntroducingPredecessor(BB, DTU, AC: Options.AC))
7649 return requestResimplify();
7650
7651 // Merge basic blocks into their predecessor if there is only one distinct
7652 // pred, and if there is only one distinct successor of the predecessor, and
7653 // if there are no PHI nodes.
7654 if (MergeBlockIntoPredecessor(BB, DTU))
7655 return true;
7656
7657 if (SinkCommon && Options.SinkCommonInsts)
7658 if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7659 MergeCompatibleInvokes(BB, DTU)) {
7660 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7661 // so we may now how duplicate PHI's.
7662 // Let's rerun EliminateDuplicatePHINodes() first,
7663 // before FoldTwoEntryPHINode() potentially converts them into select's,
7664 // after which we'd need a whole EarlyCSE pass run to cleanup them.
7665 return true;
7666 }
7667
7668 IRBuilder<> Builder(BB);
7669
7670 if (Options.SpeculateBlocks &&
7671 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
7672 // If there is a trivial two-entry PHI node in this basic block, and we can
7673 // eliminate it, do so now.
7674 if (auto *PN = dyn_cast<PHINode>(Val: BB->begin()))
7675 if (PN->getNumIncomingValues() == 2)
7676 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7677 return true;
7678 }
7679
7680 Instruction *Terminator = BB->getTerminator();
7681 Builder.SetInsertPoint(Terminator);
7682 switch (Terminator->getOpcode()) {
7683 case Instruction::Br:
7684 Changed |= simplifyBranch(Branch: cast<BranchInst>(Val: Terminator), Builder);
7685 break;
7686 case Instruction::Resume:
7687 Changed |= simplifyResume(RI: cast<ResumeInst>(Val: Terminator), Builder);
7688 break;
7689 case Instruction::CleanupRet:
7690 Changed |= simplifyCleanupReturn(RI: cast<CleanupReturnInst>(Val: Terminator));
7691 break;
7692 case Instruction::Switch:
7693 Changed |= simplifySwitch(SI: cast<SwitchInst>(Val: Terminator), Builder);
7694 break;
7695 case Instruction::Unreachable:
7696 Changed |= simplifyUnreachable(UI: cast<UnreachableInst>(Val: Terminator));
7697 break;
7698 case Instruction::IndirectBr:
7699 Changed |= simplifyIndirectBr(IBI: cast<IndirectBrInst>(Val: Terminator));
7700 break;
7701 }
7702
7703 return Changed;
7704}
7705
7706bool SimplifyCFGOpt::run(BasicBlock *BB) {
7707 bool Changed = false;
7708
7709 // Repeated simplify BB as long as resimplification is requested.
7710 do {
7711 Resimplify = false;
7712
7713 // Perform one round of simplifcation. Resimplify flag will be set if
7714 // another iteration is requested.
7715 Changed |= simplifyOnce(BB);
7716 } while (Resimplify);
7717
7718 return Changed;
7719}
7720
7721bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7722 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7723 ArrayRef<WeakVH> LoopHeaders) {
7724 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7725 Options)
7726 .run(BB);
7727}
7728

source code of llvm/lib/Transforms/Utils/SimplifyCFG.cpp