1 | //===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Bytecode/BytecodeReader.h" |
10 | #include "mlir/AsmParser/AsmParser.h" |
11 | #include "mlir/Bytecode/BytecodeImplementation.h" |
12 | #include "mlir/Bytecode/BytecodeOpInterface.h" |
13 | #include "mlir/Bytecode/Encoding.h" |
14 | #include "mlir/IR/BuiltinOps.h" |
15 | #include "mlir/IR/Diagnostics.h" |
16 | #include "mlir/IR/OpImplementation.h" |
17 | #include "mlir/IR/Verifier.h" |
18 | #include "mlir/IR/Visitors.h" |
19 | #include "mlir/Support/LLVM.h" |
20 | #include "mlir/Support/LogicalResult.h" |
21 | #include "llvm/ADT/ArrayRef.h" |
22 | #include "llvm/ADT/ScopeExit.h" |
23 | #include "llvm/ADT/StringExtras.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/Support/Endian.h" |
26 | #include "llvm/Support/MemoryBufferRef.h" |
27 | #include "llvm/Support/SourceMgr.h" |
28 | |
29 | #include <cstddef> |
30 | #include <list> |
31 | #include <memory> |
32 | #include <numeric> |
33 | #include <optional> |
34 | |
35 | #define DEBUG_TYPE "mlir-bytecode-reader" |
36 | |
37 | using namespace mlir; |
38 | |
39 | /// Stringify the given section ID. |
40 | static std::string toString(bytecode::Section::ID sectionID) { |
41 | switch (sectionID) { |
42 | case bytecode::Section::kString: |
43 | return "String (0)" ; |
44 | case bytecode::Section::kDialect: |
45 | return "Dialect (1)" ; |
46 | case bytecode::Section::kAttrType: |
47 | return "AttrType (2)" ; |
48 | case bytecode::Section::kAttrTypeOffset: |
49 | return "AttrTypeOffset (3)" ; |
50 | case bytecode::Section::kIR: |
51 | return "IR (4)" ; |
52 | case bytecode::Section::kResource: |
53 | return "Resource (5)" ; |
54 | case bytecode::Section::kResourceOffset: |
55 | return "ResourceOffset (6)" ; |
56 | case bytecode::Section::kDialectVersions: |
57 | return "DialectVersions (7)" ; |
58 | case bytecode::Section::kProperties: |
59 | return "Properties (8)" ; |
60 | default: |
61 | return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")" ).str(); |
62 | } |
63 | } |
64 | |
65 | /// Returns true if the given top-level section ID is optional. |
66 | static bool isSectionOptional(bytecode::Section::ID sectionID, int version) { |
67 | switch (sectionID) { |
68 | case bytecode::Section::kString: |
69 | case bytecode::Section::kDialect: |
70 | case bytecode::Section::kAttrType: |
71 | case bytecode::Section::kAttrTypeOffset: |
72 | case bytecode::Section::kIR: |
73 | return false; |
74 | case bytecode::Section::kResource: |
75 | case bytecode::Section::kResourceOffset: |
76 | case bytecode::Section::kDialectVersions: |
77 | return true; |
78 | case bytecode::Section::kProperties: |
79 | return version < bytecode::kNativePropertiesEncoding; |
80 | default: |
81 | llvm_unreachable("unknown section ID" ); |
82 | } |
83 | } |
84 | |
85 | //===----------------------------------------------------------------------===// |
86 | // EncodingReader |
87 | //===----------------------------------------------------------------------===// |
88 | |
89 | namespace { |
90 | class EncodingReader { |
91 | public: |
92 | explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc) |
93 | : buffer(contents), dataIt(buffer.begin()), fileLoc(fileLoc) {} |
94 | explicit EncodingReader(StringRef contents, Location fileLoc) |
95 | : EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()), |
96 | contents.size()}, |
97 | fileLoc) {} |
98 | |
99 | /// Returns true if the entire section has been read. |
100 | bool empty() const { return dataIt == buffer.end(); } |
101 | |
102 | /// Returns the remaining size of the bytecode. |
103 | size_t size() const { return buffer.end() - dataIt; } |
104 | |
105 | /// Align the current reader position to the specified alignment. |
106 | LogicalResult alignTo(unsigned alignment) { |
107 | if (!llvm::isPowerOf2_32(Value: alignment)) |
108 | return emitError(args: "expected alignment to be a power-of-two" ); |
109 | |
110 | auto isUnaligned = [&](const uint8_t *ptr) { |
111 | return ((uintptr_t)ptr & (alignment - 1)) != 0; |
112 | }; |
113 | |
114 | // Shift the reader position to the next alignment boundary. |
115 | while (isUnaligned(dataIt)) { |
116 | uint8_t padding; |
117 | if (failed(result: parseByte(value&: padding))) |
118 | return failure(); |
119 | if (padding != bytecode::kAlignmentByte) { |
120 | return emitError(args: "expected alignment byte (0xCB), but got: '0x" + |
121 | llvm::utohexstr(X: padding) + "'" ); |
122 | } |
123 | } |
124 | |
125 | // Ensure the data iterator is now aligned. This case is unlikely because we |
126 | // *just* went through the effort to align the data iterator. |
127 | if (LLVM_UNLIKELY(isUnaligned(dataIt))) { |
128 | return emitError(args: "expected data iterator aligned to " , args&: alignment, |
129 | args: ", but got pointer: '0x" + |
130 | llvm::utohexstr(X: (uintptr_t)dataIt) + "'" ); |
131 | } |
132 | |
133 | return success(); |
134 | } |
135 | |
136 | /// Emit an error using the given arguments. |
137 | template <typename... Args> |
138 | InFlightDiagnostic emitError(Args &&...args) const { |
139 | return ::emitError(loc: fileLoc).append(std::forward<Args>(args)...); |
140 | } |
141 | InFlightDiagnostic emitError() const { return ::emitError(loc: fileLoc); } |
142 | |
143 | /// Parse a single byte from the stream. |
144 | template <typename T> |
145 | LogicalResult parseByte(T &value) { |
146 | if (empty()) |
147 | return emitError(args: "attempting to parse a byte at the end of the bytecode" ); |
148 | value = static_cast<T>(*dataIt++); |
149 | return success(); |
150 | } |
151 | /// Parse a range of bytes of 'length' into the given result. |
152 | LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) { |
153 | if (length > size()) { |
154 | return emitError(args: "attempting to parse " , args&: length, args: " bytes when only " , |
155 | args: size(), args: " remain" ); |
156 | } |
157 | result = {dataIt, length}; |
158 | dataIt += length; |
159 | return success(); |
160 | } |
161 | /// Parse a range of bytes of 'length' into the given result, which can be |
162 | /// assumed to be large enough to hold `length`. |
163 | LogicalResult parseBytes(size_t length, uint8_t *result) { |
164 | if (length > size()) { |
165 | return emitError(args: "attempting to parse " , args&: length, args: " bytes when only " , |
166 | args: size(), args: " remain" ); |
167 | } |
168 | memcpy(dest: result, src: dataIt, n: length); |
169 | dataIt += length; |
170 | return success(); |
171 | } |
172 | |
173 | /// Parse an aligned blob of data, where the alignment was encoded alongside |
174 | /// the data. |
175 | LogicalResult parseBlobAndAlignment(ArrayRef<uint8_t> &data, |
176 | uint64_t &alignment) { |
177 | uint64_t dataSize; |
178 | if (failed(result: parseVarInt(result&: alignment)) || failed(result: parseVarInt(result&: dataSize)) || |
179 | failed(result: alignTo(alignment))) |
180 | return failure(); |
181 | return parseBytes(length: dataSize, result&: data); |
182 | } |
183 | |
184 | /// Parse a variable length encoded integer from the byte stream. The first |
185 | /// encoded byte contains a prefix in the low bits indicating the encoded |
186 | /// length of the value. This length prefix is a bit sequence of '0's followed |
187 | /// by a '1'. The number of '0' bits indicate the number of _additional_ bytes |
188 | /// (not including the prefix byte). All remaining bits in the first byte, |
189 | /// along with all of the bits in additional bytes, provide the value of the |
190 | /// integer encoded in little-endian order. |
191 | LogicalResult parseVarInt(uint64_t &result) { |
192 | // Parse the first byte of the encoding, which contains the length prefix. |
193 | if (failed(result: parseByte(value&: result))) |
194 | return failure(); |
195 | |
196 | // Handle the overwhelmingly common case where the value is stored in a |
197 | // single byte. In this case, the first bit is the `1` marker bit. |
198 | if (LLVM_LIKELY(result & 1)) { |
199 | result >>= 1; |
200 | return success(); |
201 | } |
202 | |
203 | // Handle the overwhelming uncommon case where the value required all 8 |
204 | // bytes (i.e. a really really big number). In this case, the marker byte is |
205 | // all zeros: `00000000`. |
206 | if (LLVM_UNLIKELY(result == 0)) { |
207 | llvm::support::ulittle64_t resultLE; |
208 | if (failed(result: parseBytes(length: sizeof(resultLE), |
209 | result: reinterpret_cast<uint8_t *>(&resultLE)))) |
210 | return failure(); |
211 | result = resultLE; |
212 | return success(); |
213 | } |
214 | return parseMultiByteVarInt(result); |
215 | } |
216 | |
217 | /// Parse a signed variable length encoded integer from the byte stream. A |
218 | /// signed varint is encoded as a normal varint with zigzag encoding applied, |
219 | /// i.e. the low bit of the value is used to indicate the sign. |
220 | LogicalResult parseSignedVarInt(uint64_t &result) { |
221 | if (failed(result: parseVarInt(result))) |
222 | return failure(); |
223 | // Essentially (but using unsigned): (x >> 1) ^ -(x & 1) |
224 | result = (result >> 1) ^ (~(result & 1) + 1); |
225 | return success(); |
226 | } |
227 | |
228 | /// Parse a variable length encoded integer whose low bit is used to encode an |
229 | /// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`. |
230 | LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) { |
231 | if (failed(result: parseVarInt(result))) |
232 | return failure(); |
233 | flag = result & 1; |
234 | result >>= 1; |
235 | return success(); |
236 | } |
237 | |
238 | /// Skip the first `length` bytes within the reader. |
239 | LogicalResult skipBytes(size_t length) { |
240 | if (length > size()) { |
241 | return emitError(args: "attempting to skip " , args&: length, args: " bytes when only " , |
242 | args: size(), args: " remain" ); |
243 | } |
244 | dataIt += length; |
245 | return success(); |
246 | } |
247 | |
248 | /// Parse a null-terminated string into `result` (without including the NUL |
249 | /// terminator). |
250 | LogicalResult parseNullTerminatedString(StringRef &result) { |
251 | const char *startIt = (const char *)dataIt; |
252 | const char *nulIt = (const char *)memchr(s: startIt, c: 0, n: size()); |
253 | if (!nulIt) |
254 | return emitError( |
255 | args: "malformed null-terminated string, no null character found" ); |
256 | |
257 | result = StringRef(startIt, nulIt - startIt); |
258 | dataIt = (const uint8_t *)nulIt + 1; |
259 | return success(); |
260 | } |
261 | |
262 | /// Parse a section header, placing the kind of section in `sectionID` and the |
263 | /// contents of the section in `sectionData`. |
264 | LogicalResult parseSection(bytecode::Section::ID §ionID, |
265 | ArrayRef<uint8_t> §ionData) { |
266 | uint8_t sectionIDAndHasAlignment; |
267 | uint64_t length; |
268 | if (failed(result: parseByte(value&: sectionIDAndHasAlignment)) || |
269 | failed(result: parseVarInt(result&: length))) |
270 | return failure(); |
271 | |
272 | // Extract the section ID and whether the section is aligned. The high bit |
273 | // of the ID is the alignment flag. |
274 | sectionID = static_cast<bytecode::Section::ID>(sectionIDAndHasAlignment & |
275 | 0b01111111); |
276 | bool hasAlignment = sectionIDAndHasAlignment & 0b10000000; |
277 | |
278 | // Check that the section is actually valid before trying to process its |
279 | // data. |
280 | if (sectionID >= bytecode::Section::kNumSections) |
281 | return emitError(args: "invalid section ID: " , args: unsigned(sectionID)); |
282 | |
283 | // Process the section alignment if present. |
284 | if (hasAlignment) { |
285 | uint64_t alignment; |
286 | if (failed(result: parseVarInt(result&: alignment)) || failed(result: alignTo(alignment))) |
287 | return failure(); |
288 | } |
289 | |
290 | // Parse the actual section data. |
291 | return parseBytes(length: static_cast<size_t>(length), result&: sectionData); |
292 | } |
293 | |
294 | Location getLoc() const { return fileLoc; } |
295 | |
296 | private: |
297 | /// Parse a variable length encoded integer from the byte stream. This method |
298 | /// is a fallback when the number of bytes used to encode the value is greater |
299 | /// than 1, but less than the max (9). The provided `result` value can be |
300 | /// assumed to already contain the first byte of the value. |
301 | /// NOTE: This method is marked noinline to avoid pessimizing the common case |
302 | /// of single byte encoding. |
303 | LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) { |
304 | // Count the number of trailing zeros in the marker byte, this indicates the |
305 | // number of trailing bytes that are part of the value. We use `uint32_t` |
306 | // here because we only care about the first byte, and so that be actually |
307 | // get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop |
308 | // implementation). |
309 | uint32_t numBytes = llvm::countr_zero<uint32_t>(Val: result); |
310 | assert(numBytes > 0 && numBytes <= 7 && |
311 | "unexpected number of trailing zeros in varint encoding" ); |
312 | |
313 | // Parse in the remaining bytes of the value. |
314 | llvm::support::ulittle64_t resultLE(result); |
315 | if (failed( |
316 | result: parseBytes(length: numBytes, result: reinterpret_cast<uint8_t *>(&resultLE) + 1))) |
317 | return failure(); |
318 | |
319 | // Shift out the low-order bits that were used to mark how the value was |
320 | // encoded. |
321 | result = resultLE >> (numBytes + 1); |
322 | return success(); |
323 | } |
324 | |
325 | /// The bytecode buffer. |
326 | ArrayRef<uint8_t> buffer; |
327 | |
328 | /// The current iterator within the 'buffer'. |
329 | const uint8_t *dataIt; |
330 | |
331 | /// A location for the bytecode used to report errors. |
332 | Location fileLoc; |
333 | }; |
334 | } // namespace |
335 | |
336 | /// Resolve an index into the given entry list. `entry` may either be a |
337 | /// reference, in which case it is assigned to the corresponding value in |
338 | /// `entries`, or a pointer, in which case it is assigned to the address of the |
339 | /// element in `entries`. |
340 | template <typename RangeT, typename T> |
341 | static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries, |
342 | uint64_t index, T &entry, |
343 | StringRef entryStr) { |
344 | if (index >= entries.size()) |
345 | return reader.emitError(args: "invalid " , args&: entryStr, args: " index: " , args&: index); |
346 | |
347 | // If the provided entry is a pointer, resolve to the address of the entry. |
348 | if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>) |
349 | entry = entries[index]; |
350 | else |
351 | entry = &entries[index]; |
352 | return success(); |
353 | } |
354 | |
355 | /// Parse and resolve an index into the given entry list. |
356 | template <typename RangeT, typename T> |
357 | static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries, |
358 | T &entry, StringRef entryStr) { |
359 | uint64_t entryIdx; |
360 | if (failed(result: reader.parseVarInt(result&: entryIdx))) |
361 | return failure(); |
362 | return resolveEntry(reader, entries, entryIdx, entry, entryStr); |
363 | } |
364 | |
365 | //===----------------------------------------------------------------------===// |
366 | // StringSectionReader |
367 | //===----------------------------------------------------------------------===// |
368 | |
369 | namespace { |
370 | /// This class is used to read references to the string section from the |
371 | /// bytecode. |
372 | class StringSectionReader { |
373 | public: |
374 | /// Initialize the string section reader with the given section data. |
375 | LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData); |
376 | |
377 | /// Parse a shared string from the string section. The shared string is |
378 | /// encoded using an index to a corresponding string in the string section. |
379 | LogicalResult parseString(EncodingReader &reader, StringRef &result) { |
380 | return parseEntry(reader, entries&: strings, entry&: result, entryStr: "string" ); |
381 | } |
382 | |
383 | /// Parse a shared string from the string section. The shared string is |
384 | /// encoded using an index to a corresponding string in the string section. |
385 | /// This variant parses a flag compressed with the index. |
386 | LogicalResult parseStringWithFlag(EncodingReader &reader, StringRef &result, |
387 | bool &flag) { |
388 | uint64_t entryIdx; |
389 | if (failed(result: reader.parseVarIntWithFlag(result&: entryIdx, flag))) |
390 | return failure(); |
391 | return parseStringAtIndex(reader, index: entryIdx, result); |
392 | } |
393 | |
394 | /// Parse a shared string from the string section. The shared string is |
395 | /// encoded using an index to a corresponding string in the string section. |
396 | LogicalResult parseStringAtIndex(EncodingReader &reader, uint64_t index, |
397 | StringRef &result) { |
398 | return resolveEntry(reader, entries&: strings, index, entry&: result, entryStr: "string" ); |
399 | } |
400 | |
401 | private: |
402 | /// The table of strings referenced within the bytecode file. |
403 | SmallVector<StringRef> strings; |
404 | }; |
405 | } // namespace |
406 | |
407 | LogicalResult StringSectionReader::initialize(Location fileLoc, |
408 | ArrayRef<uint8_t> sectionData) { |
409 | EncodingReader stringReader(sectionData, fileLoc); |
410 | |
411 | // Parse the number of strings in the section. |
412 | uint64_t numStrings; |
413 | if (failed(result: stringReader.parseVarInt(result&: numStrings))) |
414 | return failure(); |
415 | strings.resize(N: numStrings); |
416 | |
417 | // Parse each of the strings. The sizes of the strings are encoded in reverse |
418 | // order, so that's the order we populate the table. |
419 | size_t stringDataEndOffset = sectionData.size(); |
420 | for (StringRef &string : llvm::reverse(C&: strings)) { |
421 | uint64_t stringSize; |
422 | if (failed(result: stringReader.parseVarInt(result&: stringSize))) |
423 | return failure(); |
424 | if (stringDataEndOffset < stringSize) { |
425 | return stringReader.emitError( |
426 | args: "string size exceeds the available data size" ); |
427 | } |
428 | |
429 | // Extract the string from the data, dropping the null character. |
430 | size_t stringOffset = stringDataEndOffset - stringSize; |
431 | string = StringRef( |
432 | reinterpret_cast<const char *>(sectionData.data() + stringOffset), |
433 | stringSize - 1); |
434 | stringDataEndOffset = stringOffset; |
435 | } |
436 | |
437 | // Check that the only remaining data was for the strings, i.e. the reader |
438 | // should be at the same offset as the first string. |
439 | if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) { |
440 | return stringReader.emitError(args: "unexpected trailing data between the " |
441 | "offsets for strings and their data" ); |
442 | } |
443 | return success(); |
444 | } |
445 | |
446 | //===----------------------------------------------------------------------===// |
447 | // BytecodeDialect |
448 | //===----------------------------------------------------------------------===// |
449 | |
450 | namespace { |
451 | class DialectReader; |
452 | |
453 | /// This struct represents a dialect entry within the bytecode. |
454 | struct BytecodeDialect { |
455 | /// Load the dialect into the provided context if it hasn't been loaded yet. |
456 | /// Returns failure if the dialect couldn't be loaded *and* the provided |
457 | /// context does not allow unregistered dialects. The provided reader is used |
458 | /// for error emission if necessary. |
459 | LogicalResult load(const DialectReader &reader, MLIRContext *ctx); |
460 | |
461 | /// Return the loaded dialect, or nullptr if the dialect is unknown. This can |
462 | /// only be called after `load`. |
463 | Dialect *getLoadedDialect() const { |
464 | assert(dialect && |
465 | "expected `load` to be invoked before `getLoadedDialect`" ); |
466 | return *dialect; |
467 | } |
468 | |
469 | /// The loaded dialect entry. This field is std::nullopt if we haven't |
470 | /// attempted to load, nullptr if we failed to load, otherwise the loaded |
471 | /// dialect. |
472 | std::optional<Dialect *> dialect; |
473 | |
474 | /// The bytecode interface of the dialect, or nullptr if the dialect does not |
475 | /// implement the bytecode interface. This field should only be checked if the |
476 | /// `dialect` field is not std::nullopt. |
477 | const BytecodeDialectInterface *interface = nullptr; |
478 | |
479 | /// The name of the dialect. |
480 | StringRef name; |
481 | |
482 | /// A buffer containing the encoding of the dialect version parsed. |
483 | ArrayRef<uint8_t> versionBuffer; |
484 | |
485 | /// Lazy loaded dialect version from the handle above. |
486 | std::unique_ptr<DialectVersion> loadedVersion; |
487 | }; |
488 | |
489 | /// This struct represents an operation name entry within the bytecode. |
490 | struct BytecodeOperationName { |
491 | BytecodeOperationName(BytecodeDialect *dialect, StringRef name, |
492 | std::optional<bool> wasRegistered) |
493 | : dialect(dialect), name(name), wasRegistered(wasRegistered) {} |
494 | |
495 | /// The loaded operation name, or std::nullopt if it hasn't been processed |
496 | /// yet. |
497 | std::optional<OperationName> opName; |
498 | |
499 | /// The dialect that owns this operation name. |
500 | BytecodeDialect *dialect; |
501 | |
502 | /// The name of the operation, without the dialect prefix. |
503 | StringRef name; |
504 | |
505 | /// Whether this operation was registered when the bytecode was produced. |
506 | /// This flag is populated when bytecode version >=kNativePropertiesEncoding. |
507 | std::optional<bool> wasRegistered; |
508 | }; |
509 | } // namespace |
510 | |
511 | /// Parse a single dialect group encoded in the byte stream. |
512 | static LogicalResult parseDialectGrouping( |
513 | EncodingReader &reader, |
514 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
515 | function_ref<LogicalResult(BytecodeDialect *)> entryCallback) { |
516 | // Parse the dialect and the number of entries in the group. |
517 | std::unique_ptr<BytecodeDialect> *dialect; |
518 | if (failed(result: parseEntry(reader, entries&: dialects, entry&: dialect, entryStr: "dialect" ))) |
519 | return failure(); |
520 | uint64_t numEntries; |
521 | if (failed(result: reader.parseVarInt(result&: numEntries))) |
522 | return failure(); |
523 | |
524 | for (uint64_t i = 0; i < numEntries; ++i) |
525 | if (failed(result: entryCallback(dialect->get()))) |
526 | return failure(); |
527 | return success(); |
528 | } |
529 | |
530 | //===----------------------------------------------------------------------===// |
531 | // ResourceSectionReader |
532 | //===----------------------------------------------------------------------===// |
533 | |
534 | namespace { |
535 | /// This class is used to read the resource section from the bytecode. |
536 | class ResourceSectionReader { |
537 | public: |
538 | /// Initialize the resource section reader with the given section data. |
539 | LogicalResult |
540 | initialize(Location fileLoc, const ParserConfig &config, |
541 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
542 | StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData, |
543 | ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader, |
544 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef); |
545 | |
546 | /// Parse a dialect resource handle from the resource section. |
547 | LogicalResult parseResourceHandle(EncodingReader &reader, |
548 | AsmDialectResourceHandle &result) { |
549 | return parseEntry(reader, entries&: dialectResources, entry&: result, entryStr: "resource handle" ); |
550 | } |
551 | |
552 | private: |
553 | /// The table of dialect resources within the bytecode file. |
554 | SmallVector<AsmDialectResourceHandle> dialectResources; |
555 | llvm::StringMap<std::string> dialectResourceHandleRenamingMap; |
556 | }; |
557 | |
558 | class ParsedResourceEntry : public AsmParsedResourceEntry { |
559 | public: |
560 | ParsedResourceEntry(StringRef key, AsmResourceEntryKind kind, |
561 | EncodingReader &reader, StringSectionReader &stringReader, |
562 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) |
563 | : key(key), kind(kind), reader(reader), stringReader(stringReader), |
564 | bufferOwnerRef(bufferOwnerRef) {} |
565 | ~ParsedResourceEntry() override = default; |
566 | |
567 | StringRef getKey() const final { return key; } |
568 | |
569 | InFlightDiagnostic emitError() const final { return reader.emitError(); } |
570 | |
571 | AsmResourceEntryKind getKind() const final { return kind; } |
572 | |
573 | FailureOr<bool> parseAsBool() const final { |
574 | if (kind != AsmResourceEntryKind::Bool) |
575 | return emitError() << "expected a bool resource entry, but found a " |
576 | << toString(kind) << " entry instead" ; |
577 | |
578 | bool value; |
579 | if (failed(result: reader.parseByte(value))) |
580 | return failure(); |
581 | return value; |
582 | } |
583 | FailureOr<std::string> parseAsString() const final { |
584 | if (kind != AsmResourceEntryKind::String) |
585 | return emitError() << "expected a string resource entry, but found a " |
586 | << toString(kind) << " entry instead" ; |
587 | |
588 | StringRef string; |
589 | if (failed(result: stringReader.parseString(reader, result&: string))) |
590 | return failure(); |
591 | return string.str(); |
592 | } |
593 | |
594 | FailureOr<AsmResourceBlob> |
595 | parseAsBlob(BlobAllocatorFn allocator) const final { |
596 | if (kind != AsmResourceEntryKind::Blob) |
597 | return emitError() << "expected a blob resource entry, but found a " |
598 | << toString(kind) << " entry instead" ; |
599 | |
600 | ArrayRef<uint8_t> data; |
601 | uint64_t alignment; |
602 | if (failed(result: reader.parseBlobAndAlignment(data, alignment))) |
603 | return failure(); |
604 | |
605 | // If we have an extendable reference to the buffer owner, we don't need to |
606 | // allocate a new buffer for the data, and can use the data directly. |
607 | if (bufferOwnerRef) { |
608 | ArrayRef<char> charData(reinterpret_cast<const char *>(data.data()), |
609 | data.size()); |
610 | |
611 | // Allocate an unmanager buffer which captures a reference to the owner. |
612 | // For now we just mark this as immutable, but in the future we should |
613 | // explore marking this as mutable when desired. |
614 | return UnmanagedAsmResourceBlob::allocateWithAlign( |
615 | data: charData, align: alignment, |
616 | deleter: [bufferOwnerRef = bufferOwnerRef](void *, size_t, size_t) {}); |
617 | } |
618 | |
619 | // Allocate memory for the blob using the provided allocator and copy the |
620 | // data into it. |
621 | AsmResourceBlob blob = allocator(data.size(), alignment); |
622 | assert(llvm::isAddrAligned(llvm::Align(alignment), blob.getData().data()) && |
623 | blob.isMutable() && |
624 | "blob allocator did not return a properly aligned address" ); |
625 | memcpy(dest: blob.getMutableData().data(), src: data.data(), n: data.size()); |
626 | return blob; |
627 | } |
628 | |
629 | private: |
630 | StringRef key; |
631 | AsmResourceEntryKind kind; |
632 | EncodingReader &reader; |
633 | StringSectionReader &stringReader; |
634 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef; |
635 | }; |
636 | } // namespace |
637 | |
638 | template <typename T> |
639 | static LogicalResult |
640 | parseResourceGroup(Location fileLoc, bool allowEmpty, |
641 | EncodingReader &offsetReader, EncodingReader &resourceReader, |
642 | StringSectionReader &stringReader, T *handler, |
643 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef, |
644 | function_ref<StringRef(StringRef)> remapKey = {}, |
645 | function_ref<LogicalResult(StringRef)> processKeyFn = {}) { |
646 | uint64_t numResources; |
647 | if (failed(result: offsetReader.parseVarInt(result&: numResources))) |
648 | return failure(); |
649 | |
650 | for (uint64_t i = 0; i < numResources; ++i) { |
651 | StringRef key; |
652 | AsmResourceEntryKind kind; |
653 | uint64_t resourceOffset; |
654 | ArrayRef<uint8_t> data; |
655 | if (failed(result: stringReader.parseString(reader&: offsetReader, result&: key)) || |
656 | failed(result: offsetReader.parseVarInt(result&: resourceOffset)) || |
657 | failed(result: offsetReader.parseByte(value&: kind)) || |
658 | failed(result: resourceReader.parseBytes(length: resourceOffset, result&: data))) |
659 | return failure(); |
660 | |
661 | // Process the resource key. |
662 | if ((processKeyFn && failed(result: processKeyFn(key)))) |
663 | return failure(); |
664 | |
665 | // If the resource data is empty and we allow it, don't error out when |
666 | // parsing below, just skip it. |
667 | if (allowEmpty && data.empty()) |
668 | continue; |
669 | |
670 | // Ignore the entry if we don't have a valid handler. |
671 | if (!handler) |
672 | continue; |
673 | |
674 | // Otherwise, parse the resource value. |
675 | EncodingReader entryReader(data, fileLoc); |
676 | key = remapKey(key); |
677 | ParsedResourceEntry entry(key, kind, entryReader, stringReader, |
678 | bufferOwnerRef); |
679 | if (failed(handler->parseResource(entry))) |
680 | return failure(); |
681 | if (!entryReader.empty()) { |
682 | return entryReader.emitError( |
683 | args: "unexpected trailing bytes in resource entry '" , args&: key, args: "'" ); |
684 | } |
685 | } |
686 | return success(); |
687 | } |
688 | |
689 | LogicalResult ResourceSectionReader::initialize( |
690 | Location fileLoc, const ParserConfig &config, |
691 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
692 | StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData, |
693 | ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader, |
694 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
695 | EncodingReader resourceReader(sectionData, fileLoc); |
696 | EncodingReader offsetReader(offsetSectionData, fileLoc); |
697 | |
698 | // Read the number of external resource providers. |
699 | uint64_t numExternalResourceGroups; |
700 | if (failed(result: offsetReader.parseVarInt(result&: numExternalResourceGroups))) |
701 | return failure(); |
702 | |
703 | // Utility functor that dispatches to `parseResourceGroup`, but implicitly |
704 | // provides most of the arguments. |
705 | auto parseGroup = [&](auto *handler, bool allowEmpty = false, |
706 | function_ref<LogicalResult(StringRef)> keyFn = {}) { |
707 | auto resolveKey = [&](StringRef key) -> StringRef { |
708 | auto it = dialectResourceHandleRenamingMap.find(Key: key); |
709 | if (it == dialectResourceHandleRenamingMap.end()) |
710 | return "" ; |
711 | return it->second; |
712 | }; |
713 | |
714 | return parseResourceGroup(fileLoc, allowEmpty, offsetReader, resourceReader, |
715 | stringReader, handler, bufferOwnerRef, resolveKey, |
716 | keyFn); |
717 | }; |
718 | |
719 | // Read the external resources from the bytecode. |
720 | for (uint64_t i = 0; i < numExternalResourceGroups; ++i) { |
721 | StringRef key; |
722 | if (failed(result: stringReader.parseString(reader&: offsetReader, result&: key))) |
723 | return failure(); |
724 | |
725 | // Get the handler for these resources. |
726 | // TODO: Should we require handling external resources in some scenarios? |
727 | AsmResourceParser *handler = config.getResourceParser(name: key); |
728 | if (!handler) { |
729 | emitWarning(loc: fileLoc) << "ignoring unknown external resources for '" << key |
730 | << "'" ; |
731 | } |
732 | |
733 | if (failed(result: parseGroup(handler))) |
734 | return failure(); |
735 | } |
736 | |
737 | // Read the dialect resources from the bytecode. |
738 | MLIRContext *ctx = fileLoc->getContext(); |
739 | while (!offsetReader.empty()) { |
740 | std::unique_ptr<BytecodeDialect> *dialect; |
741 | if (failed(result: parseEntry(reader&: offsetReader, entries&: dialects, entry&: dialect, entryStr: "dialect" )) || |
742 | failed(result: (*dialect)->load(reader: dialectReader, ctx))) |
743 | return failure(); |
744 | Dialect *loadedDialect = (*dialect)->getLoadedDialect(); |
745 | if (!loadedDialect) { |
746 | return resourceReader.emitError() |
747 | << "dialect '" << (*dialect)->name << "' is unknown" ; |
748 | } |
749 | const auto *handler = dyn_cast<OpAsmDialectInterface>(Val: loadedDialect); |
750 | if (!handler) { |
751 | return resourceReader.emitError() |
752 | << "unexpected resources for dialect '" << (*dialect)->name << "'" ; |
753 | } |
754 | |
755 | // Ensure that each resource is declared before being processed. |
756 | auto processResourceKeyFn = [&](StringRef key) -> LogicalResult { |
757 | FailureOr<AsmDialectResourceHandle> handle = |
758 | handler->declareResource(key); |
759 | if (failed(result: handle)) { |
760 | return resourceReader.emitError() |
761 | << "unknown 'resource' key '" << key << "' for dialect '" |
762 | << (*dialect)->name << "'" ; |
763 | } |
764 | dialectResourceHandleRenamingMap[key] = handler->getResourceKey(handle: *handle); |
765 | dialectResources.push_back(Elt: *handle); |
766 | return success(); |
767 | }; |
768 | |
769 | // Parse the resources for this dialect. We allow empty resources because we |
770 | // just treat these as declarations. |
771 | if (failed(result: parseGroup(handler, /*allowEmpty=*/true, processResourceKeyFn))) |
772 | return failure(); |
773 | } |
774 | |
775 | return success(); |
776 | } |
777 | |
778 | //===----------------------------------------------------------------------===// |
779 | // Attribute/Type Reader |
780 | //===----------------------------------------------------------------------===// |
781 | |
782 | namespace { |
783 | /// This class provides support for reading attribute and type entries from the |
784 | /// bytecode. Attribute and Type entries are read lazily on demand, so we use |
785 | /// this reader to manage when to actually parse them from the bytecode. |
786 | class AttrTypeReader { |
787 | /// This class represents a single attribute or type entry. |
788 | template <typename T> |
789 | struct Entry { |
790 | /// The entry, or null if it hasn't been resolved yet. |
791 | T entry = {}; |
792 | /// The parent dialect of this entry. |
793 | BytecodeDialect *dialect = nullptr; |
794 | /// A flag indicating if the entry was encoded using a custom encoding, |
795 | /// instead of using the textual assembly format. |
796 | bool hasCustomEncoding = false; |
797 | /// The raw data of this entry in the bytecode. |
798 | ArrayRef<uint8_t> data; |
799 | }; |
800 | using AttrEntry = Entry<Attribute>; |
801 | using TypeEntry = Entry<Type>; |
802 | |
803 | public: |
804 | AttrTypeReader(StringSectionReader &stringReader, |
805 | ResourceSectionReader &resourceReader, |
806 | const llvm::StringMap<BytecodeDialect *> &dialectsMap, |
807 | uint64_t &bytecodeVersion, Location fileLoc, |
808 | const ParserConfig &config) |
809 | : stringReader(stringReader), resourceReader(resourceReader), |
810 | dialectsMap(dialectsMap), fileLoc(fileLoc), |
811 | bytecodeVersion(bytecodeVersion), parserConfig(config) {} |
812 | |
813 | /// Initialize the attribute and type information within the reader. |
814 | LogicalResult |
815 | initialize(MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
816 | ArrayRef<uint8_t> sectionData, |
817 | ArrayRef<uint8_t> offsetSectionData); |
818 | |
819 | /// Resolve the attribute or type at the given index. Returns nullptr on |
820 | /// failure. |
821 | Attribute resolveAttribute(size_t index) { |
822 | return resolveEntry(entries&: attributes, index, entryType: "Attribute" ); |
823 | } |
824 | Type resolveType(size_t index) { return resolveEntry(entries&: types, index, entryType: "Type" ); } |
825 | |
826 | /// Parse a reference to an attribute or type using the given reader. |
827 | LogicalResult parseAttribute(EncodingReader &reader, Attribute &result) { |
828 | uint64_t attrIdx; |
829 | if (failed(result: reader.parseVarInt(result&: attrIdx))) |
830 | return failure(); |
831 | result = resolveAttribute(index: attrIdx); |
832 | return success(isSuccess: !!result); |
833 | } |
834 | LogicalResult parseOptionalAttribute(EncodingReader &reader, |
835 | Attribute &result) { |
836 | uint64_t attrIdx; |
837 | bool flag; |
838 | if (failed(result: reader.parseVarIntWithFlag(result&: attrIdx, flag))) |
839 | return failure(); |
840 | if (!flag) |
841 | return success(); |
842 | result = resolveAttribute(index: attrIdx); |
843 | return success(isSuccess: !!result); |
844 | } |
845 | |
846 | LogicalResult parseType(EncodingReader &reader, Type &result) { |
847 | uint64_t typeIdx; |
848 | if (failed(result: reader.parseVarInt(result&: typeIdx))) |
849 | return failure(); |
850 | result = resolveType(index: typeIdx); |
851 | return success(isSuccess: !!result); |
852 | } |
853 | |
854 | template <typename T> |
855 | LogicalResult parseAttribute(EncodingReader &reader, T &result) { |
856 | Attribute baseResult; |
857 | if (failed(result: parseAttribute(reader, result&: baseResult))) |
858 | return failure(); |
859 | if ((result = dyn_cast<T>(baseResult))) |
860 | return success(); |
861 | return reader.emitError("expected attribute of type: " , |
862 | llvm::getTypeName<T>(), ", but got: " , baseResult); |
863 | } |
864 | |
865 | private: |
866 | /// Resolve the given entry at `index`. |
867 | template <typename T> |
868 | T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index, |
869 | StringRef entryType); |
870 | |
871 | /// Parse an entry using the given reader that was encoded using the textual |
872 | /// assembly format. |
873 | template <typename T> |
874 | LogicalResult parseAsmEntry(T &result, EncodingReader &reader, |
875 | StringRef entryType); |
876 | |
877 | /// Parse an entry using the given reader that was encoded using a custom |
878 | /// bytecode format. |
879 | template <typename T> |
880 | LogicalResult parseCustomEntry(Entry<T> &entry, EncodingReader &reader, |
881 | StringRef entryType); |
882 | |
883 | /// The string section reader used to resolve string references when parsing |
884 | /// custom encoded attribute/type entries. |
885 | StringSectionReader &stringReader; |
886 | |
887 | /// The resource section reader used to resolve resource references when |
888 | /// parsing custom encoded attribute/type entries. |
889 | ResourceSectionReader &resourceReader; |
890 | |
891 | /// The map of the loaded dialects used to retrieve dialect information, such |
892 | /// as the dialect version. |
893 | const llvm::StringMap<BytecodeDialect *> &dialectsMap; |
894 | |
895 | /// The set of attribute and type entries. |
896 | SmallVector<AttrEntry> attributes; |
897 | SmallVector<TypeEntry> types; |
898 | |
899 | /// A location used for error emission. |
900 | Location fileLoc; |
901 | |
902 | /// Current bytecode version being used. |
903 | uint64_t &bytecodeVersion; |
904 | |
905 | /// Reference to the parser configuration. |
906 | const ParserConfig &parserConfig; |
907 | }; |
908 | |
909 | class DialectReader : public DialectBytecodeReader { |
910 | public: |
911 | DialectReader(AttrTypeReader &attrTypeReader, |
912 | StringSectionReader &stringReader, |
913 | ResourceSectionReader &resourceReader, |
914 | const llvm::StringMap<BytecodeDialect *> &dialectsMap, |
915 | EncodingReader &reader, uint64_t &bytecodeVersion) |
916 | : attrTypeReader(attrTypeReader), stringReader(stringReader), |
917 | resourceReader(resourceReader), dialectsMap(dialectsMap), |
918 | reader(reader), bytecodeVersion(bytecodeVersion) {} |
919 | |
920 | InFlightDiagnostic emitError(const Twine &msg) const override { |
921 | return reader.emitError(args: msg); |
922 | } |
923 | |
924 | FailureOr<const DialectVersion *> |
925 | getDialectVersion(StringRef dialectName) const override { |
926 | // First check if the dialect is available in the map. |
927 | auto dialectEntry = dialectsMap.find(Key: dialectName); |
928 | if (dialectEntry == dialectsMap.end()) |
929 | return failure(); |
930 | // If the dialect was found, try to load it. This will trigger reading the |
931 | // bytecode version from the version buffer if it wasn't already processed. |
932 | // Return failure if either of those two actions could not be completed. |
933 | if (failed(result: dialectEntry->getValue()->load(reader: *this, ctx: getLoc().getContext())) || |
934 | dialectEntry->getValue()->loadedVersion == nullptr) |
935 | return failure(); |
936 | return dialectEntry->getValue()->loadedVersion.get(); |
937 | } |
938 | |
939 | MLIRContext *getContext() const override { return getLoc().getContext(); } |
940 | |
941 | uint64_t getBytecodeVersion() const override { return bytecodeVersion; } |
942 | |
943 | DialectReader withEncodingReader(EncodingReader &encReader) const { |
944 | return DialectReader(attrTypeReader, stringReader, resourceReader, |
945 | dialectsMap, encReader, bytecodeVersion); |
946 | } |
947 | |
948 | Location getLoc() const { return reader.getLoc(); } |
949 | |
950 | //===--------------------------------------------------------------------===// |
951 | // IR |
952 | //===--------------------------------------------------------------------===// |
953 | |
954 | LogicalResult readAttribute(Attribute &result) override { |
955 | return attrTypeReader.parseAttribute(reader, result); |
956 | } |
957 | LogicalResult readOptionalAttribute(Attribute &result) override { |
958 | return attrTypeReader.parseOptionalAttribute(reader, result); |
959 | } |
960 | LogicalResult readType(Type &result) override { |
961 | return attrTypeReader.parseType(reader, result); |
962 | } |
963 | |
964 | FailureOr<AsmDialectResourceHandle> readResourceHandle() override { |
965 | AsmDialectResourceHandle handle; |
966 | if (failed(result: resourceReader.parseResourceHandle(reader, result&: handle))) |
967 | return failure(); |
968 | return handle; |
969 | } |
970 | |
971 | //===--------------------------------------------------------------------===// |
972 | // Primitives |
973 | //===--------------------------------------------------------------------===// |
974 | |
975 | LogicalResult readVarInt(uint64_t &result) override { |
976 | return reader.parseVarInt(result); |
977 | } |
978 | |
979 | LogicalResult readSignedVarInt(int64_t &result) override { |
980 | uint64_t unsignedResult; |
981 | if (failed(result: reader.parseSignedVarInt(result&: unsignedResult))) |
982 | return failure(); |
983 | result = static_cast<int64_t>(unsignedResult); |
984 | return success(); |
985 | } |
986 | |
987 | FailureOr<APInt> readAPIntWithKnownWidth(unsigned bitWidth) override { |
988 | // Small values are encoded using a single byte. |
989 | if (bitWidth <= 8) { |
990 | uint8_t value; |
991 | if (failed(result: reader.parseByte(value))) |
992 | return failure(); |
993 | return APInt(bitWidth, value); |
994 | } |
995 | |
996 | // Large values up to 64 bits are encoded using a single varint. |
997 | if (bitWidth <= 64) { |
998 | uint64_t value; |
999 | if (failed(result: reader.parseSignedVarInt(result&: value))) |
1000 | return failure(); |
1001 | return APInt(bitWidth, value); |
1002 | } |
1003 | |
1004 | // Otherwise, for really big values we encode the array of active words in |
1005 | // the value. |
1006 | uint64_t numActiveWords; |
1007 | if (failed(result: reader.parseVarInt(result&: numActiveWords))) |
1008 | return failure(); |
1009 | SmallVector<uint64_t, 4> words(numActiveWords); |
1010 | for (uint64_t i = 0; i < numActiveWords; ++i) |
1011 | if (failed(result: reader.parseSignedVarInt(result&: words[i]))) |
1012 | return failure(); |
1013 | return APInt(bitWidth, words); |
1014 | } |
1015 | |
1016 | FailureOr<APFloat> |
1017 | readAPFloatWithKnownSemantics(const llvm::fltSemantics &semantics) override { |
1018 | FailureOr<APInt> intVal = |
1019 | readAPIntWithKnownWidth(bitWidth: APFloat::getSizeInBits(Sem: semantics)); |
1020 | if (failed(result: intVal)) |
1021 | return failure(); |
1022 | return APFloat(semantics, *intVal); |
1023 | } |
1024 | |
1025 | LogicalResult readString(StringRef &result) override { |
1026 | return stringReader.parseString(reader, result); |
1027 | } |
1028 | |
1029 | LogicalResult readBlob(ArrayRef<char> &result) override { |
1030 | uint64_t dataSize; |
1031 | ArrayRef<uint8_t> data; |
1032 | if (failed(result: reader.parseVarInt(result&: dataSize)) || |
1033 | failed(result: reader.parseBytes(length: dataSize, result&: data))) |
1034 | return failure(); |
1035 | result = llvm::ArrayRef(reinterpret_cast<const char *>(data.data()), |
1036 | data.size()); |
1037 | return success(); |
1038 | } |
1039 | |
1040 | LogicalResult readBool(bool &result) override { |
1041 | return reader.parseByte(value&: result); |
1042 | } |
1043 | |
1044 | private: |
1045 | AttrTypeReader &attrTypeReader; |
1046 | StringSectionReader &stringReader; |
1047 | ResourceSectionReader &resourceReader; |
1048 | const llvm::StringMap<BytecodeDialect *> &dialectsMap; |
1049 | EncodingReader &reader; |
1050 | uint64_t &bytecodeVersion; |
1051 | }; |
1052 | |
1053 | /// Wraps the properties section and handles reading properties out of it. |
1054 | class PropertiesSectionReader { |
1055 | public: |
1056 | /// Initialize the properties section reader with the given section data. |
1057 | LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData) { |
1058 | if (sectionData.empty()) |
1059 | return success(); |
1060 | EncodingReader propReader(sectionData, fileLoc); |
1061 | uint64_t count; |
1062 | if (failed(result: propReader.parseVarInt(result&: count))) |
1063 | return failure(); |
1064 | // Parse the raw properties buffer. |
1065 | if (failed(result: propReader.parseBytes(length: propReader.size(), result&: propertiesBuffers))) |
1066 | return failure(); |
1067 | |
1068 | EncodingReader offsetsReader(propertiesBuffers, fileLoc); |
1069 | offsetTable.reserve(N: count); |
1070 | for (auto idx : llvm::seq<int64_t>(Begin: 0, End: count)) { |
1071 | (void)idx; |
1072 | offsetTable.push_back(Elt: propertiesBuffers.size() - offsetsReader.size()); |
1073 | ArrayRef<uint8_t> rawProperties; |
1074 | uint64_t dataSize; |
1075 | if (failed(result: offsetsReader.parseVarInt(result&: dataSize)) || |
1076 | failed(result: offsetsReader.parseBytes(length: dataSize, result&: rawProperties))) |
1077 | return failure(); |
1078 | } |
1079 | if (!offsetsReader.empty()) |
1080 | return offsetsReader.emitError() |
1081 | << "Broken properties section: didn't exhaust the offsets table" ; |
1082 | return success(); |
1083 | } |
1084 | |
1085 | LogicalResult read(Location fileLoc, DialectReader &dialectReader, |
1086 | OperationName *opName, OperationState &opState) { |
1087 | uint64_t propertiesIdx; |
1088 | if (failed(result: dialectReader.readVarInt(result&: propertiesIdx))) |
1089 | return failure(); |
1090 | if (propertiesIdx >= offsetTable.size()) |
1091 | return dialectReader.emitError(msg: "Properties idx out-of-bound for " ) |
1092 | << opName->getStringRef(); |
1093 | size_t propertiesOffset = offsetTable[propertiesIdx]; |
1094 | if (propertiesIdx >= propertiesBuffers.size()) |
1095 | return dialectReader.emitError(msg: "Properties offset out-of-bound for " ) |
1096 | << opName->getStringRef(); |
1097 | |
1098 | // Acquire the sub-buffer that represent the requested properties. |
1099 | ArrayRef<char> rawProperties; |
1100 | { |
1101 | // "Seek" to the requested offset by getting a new reader with the right |
1102 | // sub-buffer. |
1103 | EncodingReader reader(propertiesBuffers.drop_front(N: propertiesOffset), |
1104 | fileLoc); |
1105 | // Properties are stored as a sequence of {size + raw_data}. |
1106 | if (failed( |
1107 | result: dialectReader.withEncodingReader(encReader&: reader).readBlob(result&: rawProperties))) |
1108 | return failure(); |
1109 | } |
1110 | // Setup a new reader to read from the `rawProperties` sub-buffer. |
1111 | EncodingReader reader( |
1112 | StringRef(rawProperties.begin(), rawProperties.size()), fileLoc); |
1113 | DialectReader propReader = dialectReader.withEncodingReader(encReader&: reader); |
1114 | |
1115 | auto *iface = opName->getInterface<BytecodeOpInterface>(); |
1116 | if (iface) |
1117 | return iface->readProperties(propReader, opState); |
1118 | if (opName->isRegistered()) |
1119 | return propReader.emitError( |
1120 | msg: "has properties but missing BytecodeOpInterface for " ) |
1121 | << opName->getStringRef(); |
1122 | // Unregistered op are storing properties as an attribute. |
1123 | return propReader.readAttribute(result&: opState.propertiesAttr); |
1124 | } |
1125 | |
1126 | private: |
1127 | /// The properties buffer referenced within the bytecode file. |
1128 | ArrayRef<uint8_t> propertiesBuffers; |
1129 | |
1130 | /// Table of offset in the buffer above. |
1131 | SmallVector<int64_t> offsetTable; |
1132 | }; |
1133 | } // namespace |
1134 | |
1135 | LogicalResult AttrTypeReader::initialize( |
1136 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
1137 | ArrayRef<uint8_t> sectionData, ArrayRef<uint8_t> offsetSectionData) { |
1138 | EncodingReader offsetReader(offsetSectionData, fileLoc); |
1139 | |
1140 | // Parse the number of attribute and type entries. |
1141 | uint64_t numAttributes, numTypes; |
1142 | if (failed(result: offsetReader.parseVarInt(result&: numAttributes)) || |
1143 | failed(result: offsetReader.parseVarInt(result&: numTypes))) |
1144 | return failure(); |
1145 | attributes.resize(N: numAttributes); |
1146 | types.resize(N: numTypes); |
1147 | |
1148 | // A functor used to accumulate the offsets for the entries in the given |
1149 | // range. |
1150 | uint64_t currentOffset = 0; |
1151 | auto parseEntries = [&](auto &&range) { |
1152 | size_t currentIndex = 0, endIndex = range.size(); |
1153 | |
1154 | // Parse an individual entry. |
1155 | auto parseEntryFn = [&](BytecodeDialect *dialect) -> LogicalResult { |
1156 | auto &entry = range[currentIndex++]; |
1157 | |
1158 | uint64_t entrySize; |
1159 | if (failed(offsetReader.parseVarIntWithFlag(result&: entrySize, |
1160 | flag&: entry.hasCustomEncoding))) |
1161 | return failure(); |
1162 | |
1163 | // Verify that the offset is actually valid. |
1164 | if (currentOffset + entrySize > sectionData.size()) { |
1165 | return offsetReader.emitError( |
1166 | args: "Attribute or Type entry offset points past the end of section" ); |
1167 | } |
1168 | |
1169 | entry.data = sectionData.slice(N: currentOffset, M: entrySize); |
1170 | entry.dialect = dialect; |
1171 | currentOffset += entrySize; |
1172 | return success(); |
1173 | }; |
1174 | while (currentIndex != endIndex) |
1175 | if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn))) |
1176 | return failure(); |
1177 | return success(); |
1178 | }; |
1179 | |
1180 | // Process each of the attributes, and then the types. |
1181 | if (failed(result: parseEntries(attributes)) || failed(result: parseEntries(types))) |
1182 | return failure(); |
1183 | |
1184 | // Ensure that we read everything from the section. |
1185 | if (!offsetReader.empty()) { |
1186 | return offsetReader.emitError( |
1187 | args: "unexpected trailing data in the Attribute/Type offset section" ); |
1188 | } |
1189 | |
1190 | return success(); |
1191 | } |
1192 | |
1193 | template <typename T> |
1194 | T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index, |
1195 | StringRef entryType) { |
1196 | if (index >= entries.size()) { |
1197 | emitError(loc: fileLoc) << "invalid " << entryType << " index: " << index; |
1198 | return {}; |
1199 | } |
1200 | |
1201 | // If the entry has already been resolved, there is nothing left to do. |
1202 | Entry<T> &entry = entries[index]; |
1203 | if (entry.entry) |
1204 | return entry.entry; |
1205 | |
1206 | // Parse the entry. |
1207 | EncodingReader reader(entry.data, fileLoc); |
1208 | |
1209 | // Parse based on how the entry was encoded. |
1210 | if (entry.hasCustomEncoding) { |
1211 | if (failed(parseCustomEntry(entry, reader, entryType))) |
1212 | return T(); |
1213 | } else if (failed(parseAsmEntry(entry.entry, reader, entryType))) { |
1214 | return T(); |
1215 | } |
1216 | |
1217 | if (!reader.empty()) { |
1218 | reader.emitError(args: "unexpected trailing bytes after " + entryType + " entry" ); |
1219 | return T(); |
1220 | } |
1221 | return entry.entry; |
1222 | } |
1223 | |
1224 | template <typename T> |
1225 | LogicalResult AttrTypeReader::parseAsmEntry(T &result, EncodingReader &reader, |
1226 | StringRef entryType) { |
1227 | StringRef asmStr; |
1228 | if (failed(result: reader.parseNullTerminatedString(result&: asmStr))) |
1229 | return failure(); |
1230 | |
1231 | // Invoke the MLIR assembly parser to parse the entry text. |
1232 | size_t numRead = 0; |
1233 | MLIRContext *context = fileLoc->getContext(); |
1234 | if constexpr (std::is_same_v<T, Type>) |
1235 | result = |
1236 | ::parseType(typeStr: asmStr, context, numRead: &numRead, /*isKnownNullTerminated=*/true); |
1237 | else |
1238 | result = ::parseAttribute(attrStr: asmStr, context, type: Type(), numRead: &numRead, |
1239 | /*isKnownNullTerminated=*/true); |
1240 | if (!result) |
1241 | return failure(); |
1242 | |
1243 | // Ensure there weren't dangling characters after the entry. |
1244 | if (numRead != asmStr.size()) { |
1245 | return reader.emitError(args: "trailing characters found after " , args&: entryType, |
1246 | args: " assembly format: " , args: asmStr.drop_front(N: numRead)); |
1247 | } |
1248 | return success(); |
1249 | } |
1250 | |
1251 | template <typename T> |
1252 | LogicalResult AttrTypeReader::parseCustomEntry(Entry<T> &entry, |
1253 | EncodingReader &reader, |
1254 | StringRef entryType) { |
1255 | DialectReader dialectReader(*this, stringReader, resourceReader, dialectsMap, |
1256 | reader, bytecodeVersion); |
1257 | if (failed(entry.dialect->load(dialectReader, fileLoc.getContext()))) |
1258 | return failure(); |
1259 | |
1260 | if constexpr (std::is_same_v<T, Type>) { |
1261 | // Try parsing with callbacks first if available. |
1262 | for (const auto &callback : |
1263 | parserConfig.getBytecodeReaderConfig().getTypeCallbacks()) { |
1264 | if (failed( |
1265 | callback->read(reader&: dialectReader, dialectName: entry.dialect->name, entry&: entry.entry))) |
1266 | return failure(); |
1267 | // Early return if parsing was successful. |
1268 | if (!!entry.entry) |
1269 | return success(); |
1270 | |
1271 | // Reset the reader if we failed to parse, so we can fall through the |
1272 | // other parsing functions. |
1273 | reader = EncodingReader(entry.data, reader.getLoc()); |
1274 | } |
1275 | } else { |
1276 | // Try parsing with callbacks first if available. |
1277 | for (const auto &callback : |
1278 | parserConfig.getBytecodeReaderConfig().getAttributeCallbacks()) { |
1279 | if (failed( |
1280 | callback->read(reader&: dialectReader, dialectName: entry.dialect->name, entry&: entry.entry))) |
1281 | return failure(); |
1282 | // Early return if parsing was successful. |
1283 | if (!!entry.entry) |
1284 | return success(); |
1285 | |
1286 | // Reset the reader if we failed to parse, so we can fall through the |
1287 | // other parsing functions. |
1288 | reader = EncodingReader(entry.data, reader.getLoc()); |
1289 | } |
1290 | } |
1291 | |
1292 | // Ensure that the dialect implements the bytecode interface. |
1293 | if (!entry.dialect->interface) { |
1294 | return reader.emitError("dialect '" , entry.dialect->name, |
1295 | "' does not implement the bytecode interface" ); |
1296 | } |
1297 | |
1298 | if constexpr (std::is_same_v<T, Type>) |
1299 | entry.entry = entry.dialect->interface->readType(dialectReader); |
1300 | else |
1301 | entry.entry = entry.dialect->interface->readAttribute(dialectReader); |
1302 | |
1303 | return success(!!entry.entry); |
1304 | } |
1305 | |
1306 | //===----------------------------------------------------------------------===// |
1307 | // Bytecode Reader |
1308 | //===----------------------------------------------------------------------===// |
1309 | |
1310 | /// This class is used to read a bytecode buffer and translate it into MLIR. |
1311 | class mlir::BytecodeReader::Impl { |
1312 | struct RegionReadState; |
1313 | using LazyLoadableOpsInfo = |
1314 | std::list<std::pair<Operation *, RegionReadState>>; |
1315 | using LazyLoadableOpsMap = |
1316 | DenseMap<Operation *, LazyLoadableOpsInfo::iterator>; |
1317 | |
1318 | public: |
1319 | Impl(Location fileLoc, const ParserConfig &config, bool lazyLoading, |
1320 | llvm::MemoryBufferRef buffer, |
1321 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) |
1322 | : config(config), fileLoc(fileLoc), lazyLoading(lazyLoading), |
1323 | attrTypeReader(stringReader, resourceReader, dialectsMap, version, |
1324 | fileLoc, config), |
1325 | // Use the builtin unrealized conversion cast operation to represent |
1326 | // forward references to values that aren't yet defined. |
1327 | forwardRefOpState(UnknownLoc::get(config.getContext()), |
1328 | "builtin.unrealized_conversion_cast" , ValueRange(), |
1329 | NoneType::get(config.getContext())), |
1330 | buffer(buffer), bufferOwnerRef(bufferOwnerRef) {} |
1331 | |
1332 | /// Read the bytecode defined within `buffer` into the given block. |
1333 | LogicalResult read(Block *block, |
1334 | llvm::function_ref<bool(Operation *)> lazyOps); |
1335 | |
1336 | /// Return the number of ops that haven't been materialized yet. |
1337 | int64_t getNumOpsToMaterialize() const { return lazyLoadableOpsMap.size(); } |
1338 | |
1339 | bool isMaterializable(Operation *op) { return lazyLoadableOpsMap.count(Val: op); } |
1340 | |
1341 | /// Materialize the provided operation, invoke the lazyOpsCallback on every |
1342 | /// newly found lazy operation. |
1343 | LogicalResult |
1344 | materialize(Operation *op, |
1345 | llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
1346 | this->lazyOpsCallback = lazyOpsCallback; |
1347 | auto resetlazyOpsCallback = |
1348 | llvm::make_scope_exit(F: [&] { this->lazyOpsCallback = nullptr; }); |
1349 | auto it = lazyLoadableOpsMap.find(Val: op); |
1350 | assert(it != lazyLoadableOpsMap.end() && |
1351 | "materialize called on non-materializable op" ); |
1352 | return materialize(it); |
1353 | } |
1354 | |
1355 | /// Materialize all operations. |
1356 | LogicalResult materializeAll() { |
1357 | while (!lazyLoadableOpsMap.empty()) { |
1358 | if (failed(result: materialize(it: lazyLoadableOpsMap.begin()))) |
1359 | return failure(); |
1360 | } |
1361 | return success(); |
1362 | } |
1363 | |
1364 | /// Finalize the lazy-loading by calling back with every op that hasn't been |
1365 | /// materialized to let the client decide if the op should be deleted or |
1366 | /// materialized. The op is materialized if the callback returns true, deleted |
1367 | /// otherwise. |
1368 | LogicalResult finalize(function_ref<bool(Operation *)> shouldMaterialize) { |
1369 | while (!lazyLoadableOps.empty()) { |
1370 | Operation *op = lazyLoadableOps.begin()->first; |
1371 | if (shouldMaterialize(op)) { |
1372 | if (failed(result: materialize(it: lazyLoadableOpsMap.find(Val: op)))) |
1373 | return failure(); |
1374 | continue; |
1375 | } |
1376 | op->dropAllReferences(); |
1377 | op->erase(); |
1378 | lazyLoadableOps.pop_front(); |
1379 | lazyLoadableOpsMap.erase(Val: op); |
1380 | } |
1381 | return success(); |
1382 | } |
1383 | |
1384 | private: |
1385 | LogicalResult materialize(LazyLoadableOpsMap::iterator it) { |
1386 | assert(it != lazyLoadableOpsMap.end() && |
1387 | "materialize called on non-materializable op" ); |
1388 | valueScopes.emplace_back(); |
1389 | std::vector<RegionReadState> regionStack; |
1390 | regionStack.push_back(x: std::move(it->getSecond()->second)); |
1391 | lazyLoadableOps.erase(position: it->getSecond()); |
1392 | lazyLoadableOpsMap.erase(I: it); |
1393 | |
1394 | while (!regionStack.empty()) |
1395 | if (failed(result: parseRegions(regionStack, readState&: regionStack.back()))) |
1396 | return failure(); |
1397 | return success(); |
1398 | } |
1399 | |
1400 | /// Return the context for this config. |
1401 | MLIRContext *getContext() const { return config.getContext(); } |
1402 | |
1403 | /// Parse the bytecode version. |
1404 | LogicalResult parseVersion(EncodingReader &reader); |
1405 | |
1406 | //===--------------------------------------------------------------------===// |
1407 | // Dialect Section |
1408 | |
1409 | LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData); |
1410 | |
1411 | /// Parse an operation name reference using the given reader, and set the |
1412 | /// `wasRegistered` flag that indicates if the bytecode was produced by a |
1413 | /// context where opName was registered. |
1414 | FailureOr<OperationName> parseOpName(EncodingReader &reader, |
1415 | std::optional<bool> &wasRegistered); |
1416 | |
1417 | //===--------------------------------------------------------------------===// |
1418 | // Attribute/Type Section |
1419 | |
1420 | /// Parse an attribute or type using the given reader. |
1421 | template <typename T> |
1422 | LogicalResult parseAttribute(EncodingReader &reader, T &result) { |
1423 | return attrTypeReader.parseAttribute(reader, result); |
1424 | } |
1425 | LogicalResult parseType(EncodingReader &reader, Type &result) { |
1426 | return attrTypeReader.parseType(reader, result); |
1427 | } |
1428 | |
1429 | //===--------------------------------------------------------------------===// |
1430 | // Resource Section |
1431 | |
1432 | LogicalResult |
1433 | parseResourceSection(EncodingReader &reader, |
1434 | std::optional<ArrayRef<uint8_t>> resourceData, |
1435 | std::optional<ArrayRef<uint8_t>> resourceOffsetData); |
1436 | |
1437 | //===--------------------------------------------------------------------===// |
1438 | // IR Section |
1439 | |
1440 | /// This struct represents the current read state of a range of regions. This |
1441 | /// struct is used to enable iterative parsing of regions. |
1442 | struct RegionReadState { |
1443 | RegionReadState(Operation *op, EncodingReader *reader, |
1444 | bool isIsolatedFromAbove) |
1445 | : RegionReadState(op->getRegions(), reader, isIsolatedFromAbove) {} |
1446 | RegionReadState(MutableArrayRef<Region> regions, EncodingReader *reader, |
1447 | bool isIsolatedFromAbove) |
1448 | : curRegion(regions.begin()), endRegion(regions.end()), reader(reader), |
1449 | isIsolatedFromAbove(isIsolatedFromAbove) {} |
1450 | |
1451 | /// The current regions being read. |
1452 | MutableArrayRef<Region>::iterator curRegion, endRegion; |
1453 | /// This is the reader to use for this region, this pointer is pointing to |
1454 | /// the parent region reader unless the current region is IsolatedFromAbove, |
1455 | /// in which case the pointer is pointing to the `owningReader` which is a |
1456 | /// section dedicated to the current region. |
1457 | EncodingReader *reader; |
1458 | std::unique_ptr<EncodingReader> owningReader; |
1459 | |
1460 | /// The number of values defined immediately within this region. |
1461 | unsigned numValues = 0; |
1462 | |
1463 | /// The current blocks of the region being read. |
1464 | SmallVector<Block *> curBlocks; |
1465 | Region::iterator curBlock = {}; |
1466 | |
1467 | /// The number of operations remaining to be read from the current block |
1468 | /// being read. |
1469 | uint64_t numOpsRemaining = 0; |
1470 | |
1471 | /// A flag indicating if the regions being read are isolated from above. |
1472 | bool isIsolatedFromAbove = false; |
1473 | }; |
1474 | |
1475 | LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block); |
1476 | LogicalResult parseRegions(std::vector<RegionReadState> ®ionStack, |
1477 | RegionReadState &readState); |
1478 | FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader, |
1479 | RegionReadState &readState, |
1480 | bool &isIsolatedFromAbove); |
1481 | |
1482 | LogicalResult parseRegion(RegionReadState &readState); |
1483 | LogicalResult parseBlockHeader(EncodingReader &reader, |
1484 | RegionReadState &readState); |
1485 | LogicalResult parseBlockArguments(EncodingReader &reader, Block *block); |
1486 | |
1487 | //===--------------------------------------------------------------------===// |
1488 | // Value Processing |
1489 | |
1490 | /// Parse an operand reference using the given reader. Returns nullptr in the |
1491 | /// case of failure. |
1492 | Value parseOperand(EncodingReader &reader); |
1493 | |
1494 | /// Sequentially define the given value range. |
1495 | LogicalResult defineValues(EncodingReader &reader, ValueRange values); |
1496 | |
1497 | /// Create a value to use for a forward reference. |
1498 | Value createForwardRef(); |
1499 | |
1500 | //===--------------------------------------------------------------------===// |
1501 | // Use-list order helpers |
1502 | |
1503 | /// This struct is a simple storage that contains information required to |
1504 | /// reorder the use-list of a value with respect to the pre-order traversal |
1505 | /// ordering. |
1506 | struct UseListOrderStorage { |
1507 | UseListOrderStorage(bool isIndexPairEncoding, |
1508 | SmallVector<unsigned, 4> &&indices) |
1509 | : indices(std::move(indices)), |
1510 | isIndexPairEncoding(isIndexPairEncoding){}; |
1511 | /// The vector containing the information required to reorder the |
1512 | /// use-list of a value. |
1513 | SmallVector<unsigned, 4> indices; |
1514 | |
1515 | /// Whether indices represent a pair of type `(src, dst)` or it is a direct |
1516 | /// indexing, such as `dst = order[src]`. |
1517 | bool isIndexPairEncoding; |
1518 | }; |
1519 | |
1520 | /// Parse use-list order from bytecode for a range of values if available. The |
1521 | /// range is expected to be either a block argument or an op result range. On |
1522 | /// success, return a map of the position in the range and the use-list order |
1523 | /// encoding. The function assumes to know the size of the range it is |
1524 | /// processing. |
1525 | using UseListMapT = DenseMap<unsigned, UseListOrderStorage>; |
1526 | FailureOr<UseListMapT> parseUseListOrderForRange(EncodingReader &reader, |
1527 | uint64_t rangeSize); |
1528 | |
1529 | /// Shuffle the use-chain according to the order parsed. |
1530 | LogicalResult sortUseListOrder(Value value); |
1531 | |
1532 | /// Recursively visit all the values defined within topLevelOp and sort the |
1533 | /// use-list orders according to the indices parsed. |
1534 | LogicalResult processUseLists(Operation *topLevelOp); |
1535 | |
1536 | //===--------------------------------------------------------------------===// |
1537 | // Fields |
1538 | |
1539 | /// This class represents a single value scope, in which a value scope is |
1540 | /// delimited by isolated from above regions. |
1541 | struct ValueScope { |
1542 | /// Push a new region state onto this scope, reserving enough values for |
1543 | /// those defined within the current region of the provided state. |
1544 | void push(RegionReadState &readState) { |
1545 | nextValueIDs.push_back(Elt: values.size()); |
1546 | values.resize(new_size: values.size() + readState.numValues); |
1547 | } |
1548 | |
1549 | /// Pop the values defined for the current region within the provided region |
1550 | /// state. |
1551 | void pop(RegionReadState &readState) { |
1552 | values.resize(new_size: values.size() - readState.numValues); |
1553 | nextValueIDs.pop_back(); |
1554 | } |
1555 | |
1556 | /// The set of values defined in this scope. |
1557 | std::vector<Value> values; |
1558 | |
1559 | /// The ID for the next defined value for each region current being |
1560 | /// processed in this scope. |
1561 | SmallVector<unsigned, 4> nextValueIDs; |
1562 | }; |
1563 | |
1564 | /// The configuration of the parser. |
1565 | const ParserConfig &config; |
1566 | |
1567 | /// A location to use when emitting errors. |
1568 | Location fileLoc; |
1569 | |
1570 | /// Flag that indicates if lazyloading is enabled. |
1571 | bool lazyLoading; |
1572 | |
1573 | /// Keep track of operations that have been lazy loaded (their regions haven't |
1574 | /// been materialized), along with the `RegionReadState` that allows to |
1575 | /// lazy-load the regions nested under the operation. |
1576 | LazyLoadableOpsInfo lazyLoadableOps; |
1577 | LazyLoadableOpsMap lazyLoadableOpsMap; |
1578 | llvm::function_ref<bool(Operation *)> lazyOpsCallback; |
1579 | |
1580 | /// The reader used to process attribute and types within the bytecode. |
1581 | AttrTypeReader attrTypeReader; |
1582 | |
1583 | /// The version of the bytecode being read. |
1584 | uint64_t version = 0; |
1585 | |
1586 | /// The producer of the bytecode being read. |
1587 | StringRef producer; |
1588 | |
1589 | /// The table of IR units referenced within the bytecode file. |
1590 | SmallVector<std::unique_ptr<BytecodeDialect>> dialects; |
1591 | llvm::StringMap<BytecodeDialect *> dialectsMap; |
1592 | SmallVector<BytecodeOperationName> opNames; |
1593 | |
1594 | /// The reader used to process resources within the bytecode. |
1595 | ResourceSectionReader resourceReader; |
1596 | |
1597 | /// Worklist of values with custom use-list orders to process before the end |
1598 | /// of the parsing. |
1599 | DenseMap<void *, UseListOrderStorage> valueToUseListMap; |
1600 | |
1601 | /// The table of strings referenced within the bytecode file. |
1602 | StringSectionReader stringReader; |
1603 | |
1604 | /// The table of properties referenced by the operation in the bytecode file. |
1605 | PropertiesSectionReader propertiesReader; |
1606 | |
1607 | /// The current set of available IR value scopes. |
1608 | std::vector<ValueScope> valueScopes; |
1609 | |
1610 | /// The global pre-order operation ordering. |
1611 | DenseMap<Operation *, unsigned> operationIDs; |
1612 | |
1613 | /// A block containing the set of operations defined to create forward |
1614 | /// references. |
1615 | Block forwardRefOps; |
1616 | |
1617 | /// A block containing previously created, and no longer used, forward |
1618 | /// reference operations. |
1619 | Block openForwardRefOps; |
1620 | |
1621 | /// An operation state used when instantiating forward references. |
1622 | OperationState forwardRefOpState; |
1623 | |
1624 | /// Reference to the input buffer. |
1625 | llvm::MemoryBufferRef buffer; |
1626 | |
1627 | /// The optional owning source manager, which when present may be used to |
1628 | /// extend the lifetime of the input buffer. |
1629 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef; |
1630 | }; |
1631 | |
1632 | LogicalResult BytecodeReader::Impl::read( |
1633 | Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
1634 | EncodingReader reader(buffer.getBuffer(), fileLoc); |
1635 | this->lazyOpsCallback = lazyOpsCallback; |
1636 | auto resetlazyOpsCallback = |
1637 | llvm::make_scope_exit(F: [&] { this->lazyOpsCallback = nullptr; }); |
1638 | |
1639 | // Skip over the bytecode header, this should have already been checked. |
1640 | if (failed(result: reader.skipBytes(length: StringRef("ML\xefR" ).size()))) |
1641 | return failure(); |
1642 | // Parse the bytecode version and producer. |
1643 | if (failed(result: parseVersion(reader)) || |
1644 | failed(result: reader.parseNullTerminatedString(result&: producer))) |
1645 | return failure(); |
1646 | |
1647 | // Add a diagnostic handler that attaches a note that includes the original |
1648 | // producer of the bytecode. |
1649 | ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) { |
1650 | diag.attachNote() << "in bytecode version " << version |
1651 | << " produced by: " << producer; |
1652 | return failure(); |
1653 | }); |
1654 | |
1655 | // Parse the raw data for each of the top-level sections of the bytecode. |
1656 | std::optional<ArrayRef<uint8_t>> |
1657 | sectionDatas[bytecode::Section::kNumSections]; |
1658 | while (!reader.empty()) { |
1659 | // Read the next section from the bytecode. |
1660 | bytecode::Section::ID sectionID; |
1661 | ArrayRef<uint8_t> sectionData; |
1662 | if (failed(result: reader.parseSection(sectionID, sectionData))) |
1663 | return failure(); |
1664 | |
1665 | // Check for duplicate sections, we only expect one instance of each. |
1666 | if (sectionDatas[sectionID]) { |
1667 | return reader.emitError(args: "duplicate top-level section: " , |
1668 | args: ::toString(sectionID)); |
1669 | } |
1670 | sectionDatas[sectionID] = sectionData; |
1671 | } |
1672 | // Check that all of the required sections were found. |
1673 | for (int i = 0; i < bytecode::Section::kNumSections; ++i) { |
1674 | bytecode::Section::ID sectionID = static_cast<bytecode::Section::ID>(i); |
1675 | if (!sectionDatas[i] && !isSectionOptional(sectionID, version)) { |
1676 | return reader.emitError(args: "missing data for top-level section: " , |
1677 | args: ::toString(sectionID)); |
1678 | } |
1679 | } |
1680 | |
1681 | // Process the string section first. |
1682 | if (failed(result: stringReader.initialize( |
1683 | fileLoc, sectionData: *sectionDatas[bytecode::Section::kString]))) |
1684 | return failure(); |
1685 | |
1686 | // Process the properties section. |
1687 | if (sectionDatas[bytecode::Section::kProperties] && |
1688 | failed(result: propertiesReader.initialize( |
1689 | fileLoc, sectionData: *sectionDatas[bytecode::Section::kProperties]))) |
1690 | return failure(); |
1691 | |
1692 | // Process the dialect section. |
1693 | if (failed(result: parseDialectSection(sectionData: *sectionDatas[bytecode::Section::kDialect]))) |
1694 | return failure(); |
1695 | |
1696 | // Process the resource section if present. |
1697 | if (failed(result: parseResourceSection( |
1698 | reader, resourceData: sectionDatas[bytecode::Section::kResource], |
1699 | resourceOffsetData: sectionDatas[bytecode::Section::kResourceOffset]))) |
1700 | return failure(); |
1701 | |
1702 | // Process the attribute and type section. |
1703 | if (failed(result: attrTypeReader.initialize( |
1704 | dialects, sectionData: *sectionDatas[bytecode::Section::kAttrType], |
1705 | offsetSectionData: *sectionDatas[bytecode::Section::kAttrTypeOffset]))) |
1706 | return failure(); |
1707 | |
1708 | // Finally, process the IR section. |
1709 | return parseIRSection(sectionData: *sectionDatas[bytecode::Section::kIR], block); |
1710 | } |
1711 | |
1712 | LogicalResult BytecodeReader::Impl::parseVersion(EncodingReader &reader) { |
1713 | if (failed(result: reader.parseVarInt(result&: version))) |
1714 | return failure(); |
1715 | |
1716 | // Validate the bytecode version. |
1717 | uint64_t currentVersion = bytecode::kVersion; |
1718 | uint64_t minSupportedVersion = bytecode::kMinSupportedVersion; |
1719 | if (version < minSupportedVersion) { |
1720 | return reader.emitError(args: "bytecode version " , args&: version, |
1721 | args: " is older than the current version of " , |
1722 | args&: currentVersion, args: ", and upgrade is not supported" ); |
1723 | } |
1724 | if (version > currentVersion) { |
1725 | return reader.emitError(args: "bytecode version " , args&: version, |
1726 | args: " is newer than the current version " , |
1727 | args&: currentVersion); |
1728 | } |
1729 | // Override any request to lazy-load if the bytecode version is too old. |
1730 | if (version < bytecode::kLazyLoading) |
1731 | lazyLoading = false; |
1732 | return success(); |
1733 | } |
1734 | |
1735 | //===----------------------------------------------------------------------===// |
1736 | // Dialect Section |
1737 | |
1738 | LogicalResult BytecodeDialect::load(const DialectReader &reader, |
1739 | MLIRContext *ctx) { |
1740 | if (dialect) |
1741 | return success(); |
1742 | Dialect *loadedDialect = ctx->getOrLoadDialect(name); |
1743 | if (!loadedDialect && !ctx->allowsUnregisteredDialects()) { |
1744 | return reader.emitError(msg: "dialect '" ) |
1745 | << name |
1746 | << "' is unknown. If this is intended, please call " |
1747 | "allowUnregisteredDialects() on the MLIRContext, or use " |
1748 | "-allow-unregistered-dialect with the MLIR tool used." ; |
1749 | } |
1750 | dialect = loadedDialect; |
1751 | |
1752 | // If the dialect was actually loaded, check to see if it has a bytecode |
1753 | // interface. |
1754 | if (loadedDialect) |
1755 | interface = dyn_cast<BytecodeDialectInterface>(Val: loadedDialect); |
1756 | if (!versionBuffer.empty()) { |
1757 | if (!interface) |
1758 | return reader.emitError(msg: "dialect '" ) |
1759 | << name |
1760 | << "' does not implement the bytecode interface, " |
1761 | "but found a version entry" ; |
1762 | EncodingReader encReader(versionBuffer, reader.getLoc()); |
1763 | DialectReader versionReader = reader.withEncodingReader(encReader); |
1764 | loadedVersion = interface->readVersion(reader&: versionReader); |
1765 | if (!loadedVersion) |
1766 | return failure(); |
1767 | } |
1768 | return success(); |
1769 | } |
1770 | |
1771 | LogicalResult |
1772 | BytecodeReader::Impl::parseDialectSection(ArrayRef<uint8_t> sectionData) { |
1773 | EncodingReader sectionReader(sectionData, fileLoc); |
1774 | |
1775 | // Parse the number of dialects in the section. |
1776 | uint64_t numDialects; |
1777 | if (failed(result: sectionReader.parseVarInt(result&: numDialects))) |
1778 | return failure(); |
1779 | dialects.resize(N: numDialects); |
1780 | |
1781 | // Parse each of the dialects. |
1782 | for (uint64_t i = 0; i < numDialects; ++i) { |
1783 | dialects[i] = std::make_unique<BytecodeDialect>(); |
1784 | /// Before version kDialectVersioning, there wasn't any versioning available |
1785 | /// for dialects, and the entryIdx represent the string itself. |
1786 | if (version < bytecode::kDialectVersioning) { |
1787 | if (failed(result: stringReader.parseString(reader&: sectionReader, result&: dialects[i]->name))) |
1788 | return failure(); |
1789 | continue; |
1790 | } |
1791 | |
1792 | // Parse ID representing dialect and version. |
1793 | uint64_t dialectNameIdx; |
1794 | bool versionAvailable; |
1795 | if (failed(result: sectionReader.parseVarIntWithFlag(result&: dialectNameIdx, |
1796 | flag&: versionAvailable))) |
1797 | return failure(); |
1798 | if (failed(result: stringReader.parseStringAtIndex(reader&: sectionReader, index: dialectNameIdx, |
1799 | result&: dialects[i]->name))) |
1800 | return failure(); |
1801 | if (versionAvailable) { |
1802 | bytecode::Section::ID sectionID; |
1803 | if (failed(result: sectionReader.parseSection(sectionID, |
1804 | sectionData&: dialects[i]->versionBuffer))) |
1805 | return failure(); |
1806 | if (sectionID != bytecode::Section::kDialectVersions) { |
1807 | emitError(loc: fileLoc, message: "expected dialect version section" ); |
1808 | return failure(); |
1809 | } |
1810 | } |
1811 | dialectsMap[dialects[i]->name] = dialects[i].get(); |
1812 | } |
1813 | |
1814 | // Parse the operation names, which are grouped by dialect. |
1815 | auto parseOpName = [&](BytecodeDialect *dialect) { |
1816 | StringRef opName; |
1817 | std::optional<bool> wasRegistered; |
1818 | // Prior to version kNativePropertiesEncoding, the information about wheter |
1819 | // an op was registered or not wasn't encoded. |
1820 | if (version < bytecode::kNativePropertiesEncoding) { |
1821 | if (failed(result: stringReader.parseString(reader&: sectionReader, result&: opName))) |
1822 | return failure(); |
1823 | } else { |
1824 | bool wasRegisteredFlag; |
1825 | if (failed(result: stringReader.parseStringWithFlag(reader&: sectionReader, result&: opName, |
1826 | flag&: wasRegisteredFlag))) |
1827 | return failure(); |
1828 | wasRegistered = wasRegisteredFlag; |
1829 | } |
1830 | opNames.emplace_back(Args&: dialect, Args&: opName, Args&: wasRegistered); |
1831 | return success(); |
1832 | }; |
1833 | // Avoid re-allocation in bytecode version >=kElideUnknownBlockArgLocation |
1834 | // where the number of ops are known. |
1835 | if (version >= bytecode::kElideUnknownBlockArgLocation) { |
1836 | uint64_t numOps; |
1837 | if (failed(result: sectionReader.parseVarInt(result&: numOps))) |
1838 | return failure(); |
1839 | opNames.reserve(N: numOps); |
1840 | } |
1841 | while (!sectionReader.empty()) |
1842 | if (failed(result: parseDialectGrouping(reader&: sectionReader, dialects, entryCallback: parseOpName))) |
1843 | return failure(); |
1844 | return success(); |
1845 | } |
1846 | |
1847 | FailureOr<OperationName> |
1848 | BytecodeReader::Impl::parseOpName(EncodingReader &reader, |
1849 | std::optional<bool> &wasRegistered) { |
1850 | BytecodeOperationName *opName = nullptr; |
1851 | if (failed(result: parseEntry(reader, entries&: opNames, entry&: opName, entryStr: "operation name" ))) |
1852 | return failure(); |
1853 | wasRegistered = opName->wasRegistered; |
1854 | // Check to see if this operation name has already been resolved. If we |
1855 | // haven't, load the dialect and build the operation name. |
1856 | if (!opName->opName) { |
1857 | // If the opName is empty, this is because we use to accept names such as |
1858 | // `foo` without any `.` separator. We shouldn't tolerate this in textual |
1859 | // format anymore but for now we'll be backward compatible. This can only |
1860 | // happen with unregistered dialects. |
1861 | if (opName->name.empty()) { |
1862 | opName->opName.emplace(args&: opName->dialect->name, args: getContext()); |
1863 | } else { |
1864 | // Load the dialect and its version. |
1865 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
1866 | dialectsMap, reader, version); |
1867 | if (failed(result: opName->dialect->load(reader: dialectReader, ctx: getContext()))) |
1868 | return failure(); |
1869 | opName->opName.emplace(args: (opName->dialect->name + "." + opName->name).str(), |
1870 | args: getContext()); |
1871 | } |
1872 | } |
1873 | return *opName->opName; |
1874 | } |
1875 | |
1876 | //===----------------------------------------------------------------------===// |
1877 | // Resource Section |
1878 | |
1879 | LogicalResult BytecodeReader::Impl::parseResourceSection( |
1880 | EncodingReader &reader, std::optional<ArrayRef<uint8_t>> resourceData, |
1881 | std::optional<ArrayRef<uint8_t>> resourceOffsetData) { |
1882 | // Ensure both sections are either present or not. |
1883 | if (resourceData.has_value() != resourceOffsetData.has_value()) { |
1884 | if (resourceOffsetData) |
1885 | return emitError(loc: fileLoc, message: "unexpected resource offset section when " |
1886 | "resource section is not present" ); |
1887 | return emitError( |
1888 | loc: fileLoc, |
1889 | message: "expected resource offset section when resource section is present" ); |
1890 | } |
1891 | |
1892 | // If the resource sections are absent, there is nothing to do. |
1893 | if (!resourceData) |
1894 | return success(); |
1895 | |
1896 | // Initialize the resource reader with the resource sections. |
1897 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
1898 | dialectsMap, reader, version); |
1899 | return resourceReader.initialize(fileLoc, config, dialects, stringReader, |
1900 | sectionData: *resourceData, offsetSectionData: *resourceOffsetData, |
1901 | dialectReader, bufferOwnerRef); |
1902 | } |
1903 | |
1904 | //===----------------------------------------------------------------------===// |
1905 | // UseListOrder Helpers |
1906 | |
1907 | FailureOr<BytecodeReader::Impl::UseListMapT> |
1908 | BytecodeReader::Impl::parseUseListOrderForRange(EncodingReader &reader, |
1909 | uint64_t numResults) { |
1910 | BytecodeReader::Impl::UseListMapT map; |
1911 | uint64_t numValuesToRead = 1; |
1912 | if (numResults > 1 && failed(result: reader.parseVarInt(result&: numValuesToRead))) |
1913 | return failure(); |
1914 | |
1915 | for (size_t valueIdx = 0; valueIdx < numValuesToRead; valueIdx++) { |
1916 | uint64_t resultIdx = 0; |
1917 | if (numResults > 1 && failed(result: reader.parseVarInt(result&: resultIdx))) |
1918 | return failure(); |
1919 | |
1920 | uint64_t numValues; |
1921 | bool indexPairEncoding; |
1922 | if (failed(result: reader.parseVarIntWithFlag(result&: numValues, flag&: indexPairEncoding))) |
1923 | return failure(); |
1924 | |
1925 | SmallVector<unsigned, 4> useListOrders; |
1926 | for (size_t idx = 0; idx < numValues; idx++) { |
1927 | uint64_t index; |
1928 | if (failed(result: reader.parseVarInt(result&: index))) |
1929 | return failure(); |
1930 | useListOrders.push_back(Elt: index); |
1931 | } |
1932 | |
1933 | // Store in a map the result index |
1934 | map.try_emplace(Key: resultIdx, Args: UseListOrderStorage(indexPairEncoding, |
1935 | std::move(useListOrders))); |
1936 | } |
1937 | |
1938 | return map; |
1939 | } |
1940 | |
1941 | /// Sorts each use according to the order specified in the use-list parsed. If |
1942 | /// the custom use-list is not found, this means that the order needs to be |
1943 | /// consistent with the reverse pre-order walk of the IR. If multiple uses lie |
1944 | /// on the same operation, the order will follow the reverse operand number |
1945 | /// ordering. |
1946 | LogicalResult BytecodeReader::Impl::sortUseListOrder(Value value) { |
1947 | // Early return for trivial use-lists. |
1948 | if (value.use_empty() || value.hasOneUse()) |
1949 | return success(); |
1950 | |
1951 | bool hasIncomingOrder = |
1952 | valueToUseListMap.contains(Val: value.getAsOpaquePointer()); |
1953 | |
1954 | // Compute the current order of the use-list with respect to the global |
1955 | // ordering. Detect if the order is already sorted while doing so. |
1956 | bool alreadySorted = true; |
1957 | auto &firstUse = *value.use_begin(); |
1958 | uint64_t prevID = |
1959 | bytecode::getUseID(val&: firstUse, ownerID: operationIDs.at(Val: firstUse.getOwner())); |
1960 | llvm::SmallVector<std::pair<unsigned, uint64_t>> currentOrder = {{0, prevID}}; |
1961 | for (auto item : llvm::drop_begin(RangeOrContainer: llvm::enumerate(First: value.getUses()))) { |
1962 | uint64_t currentID = bytecode::getUseID( |
1963 | val&: item.value(), ownerID: operationIDs.at(Val: item.value().getOwner())); |
1964 | alreadySorted &= prevID > currentID; |
1965 | currentOrder.push_back(Elt: {item.index(), currentID}); |
1966 | prevID = currentID; |
1967 | } |
1968 | |
1969 | // If the order is already sorted, and there wasn't a custom order to apply |
1970 | // from the bytecode file, we are done. |
1971 | if (alreadySorted && !hasIncomingOrder) |
1972 | return success(); |
1973 | |
1974 | // If not already sorted, sort the indices of the current order by descending |
1975 | // useIDs. |
1976 | if (!alreadySorted) |
1977 | std::sort( |
1978 | first: currentOrder.begin(), last: currentOrder.end(), |
1979 | comp: [](auto elem1, auto elem2) { return elem1.second > elem2.second; }); |
1980 | |
1981 | if (!hasIncomingOrder) { |
1982 | // If the bytecode file did not contain any custom use-list order, it means |
1983 | // that the order was descending useID. Hence, shuffle by the first index |
1984 | // of the `currentOrder` pair. |
1985 | SmallVector<unsigned> shuffle = SmallVector<unsigned>( |
1986 | llvm::map_range(C&: currentOrder, F: [&](auto item) { return item.first; })); |
1987 | value.shuffleUseList(indices: shuffle); |
1988 | return success(); |
1989 | } |
1990 | |
1991 | // Pull the custom order info from the map. |
1992 | UseListOrderStorage customOrder = |
1993 | valueToUseListMap.at(Val: value.getAsOpaquePointer()); |
1994 | SmallVector<unsigned, 4> shuffle = std::move(customOrder.indices); |
1995 | uint64_t numUses = |
1996 | std::distance(first: value.getUses().begin(), last: value.getUses().end()); |
1997 | |
1998 | // If the encoding was a pair of indices `(src, dst)` for every permutation, |
1999 | // reconstruct the shuffle vector for every use. Initialize the shuffle vector |
2000 | // as identity, and then apply the mapping encoded in the indices. |
2001 | if (customOrder.isIndexPairEncoding) { |
2002 | // Return failure if the number of indices was not representing pairs. |
2003 | if (shuffle.size() & 1) |
2004 | return failure(); |
2005 | |
2006 | SmallVector<unsigned, 4> newShuffle(numUses); |
2007 | size_t idx = 0; |
2008 | std::iota(first: newShuffle.begin(), last: newShuffle.end(), value: idx); |
2009 | for (idx = 0; idx < shuffle.size(); idx += 2) |
2010 | newShuffle[shuffle[idx]] = shuffle[idx + 1]; |
2011 | |
2012 | shuffle = std::move(newShuffle); |
2013 | } |
2014 | |
2015 | // Make sure that the indices represent a valid mapping. That is, the sum of |
2016 | // all the values needs to be equal to (numUses - 1) * numUses / 2, and no |
2017 | // duplicates are allowed in the list. |
2018 | DenseSet<unsigned> set; |
2019 | uint64_t accumulator = 0; |
2020 | for (const auto &elem : shuffle) { |
2021 | if (set.contains(V: elem)) |
2022 | return failure(); |
2023 | accumulator += elem; |
2024 | set.insert(V: elem); |
2025 | } |
2026 | if (numUses != shuffle.size() || |
2027 | accumulator != (((numUses - 1) * numUses) >> 1)) |
2028 | return failure(); |
2029 | |
2030 | // Apply the current ordering map onto the shuffle vector to get the final |
2031 | // use-list sorting indices before shuffling. |
2032 | shuffle = SmallVector<unsigned, 4>(llvm::map_range( |
2033 | C&: currentOrder, F: [&](auto item) { return shuffle[item.first]; })); |
2034 | value.shuffleUseList(indices: shuffle); |
2035 | return success(); |
2036 | } |
2037 | |
2038 | LogicalResult BytecodeReader::Impl::processUseLists(Operation *topLevelOp) { |
2039 | // Precompute operation IDs according to the pre-order walk of the IR. We |
2040 | // can't do this while parsing since parseRegions ordering is not strictly |
2041 | // equal to the pre-order walk. |
2042 | unsigned operationID = 0; |
2043 | topLevelOp->walk<mlir::WalkOrder::PreOrder>( |
2044 | callback: [&](Operation *op) { operationIDs.try_emplace(Key: op, Args: operationID++); }); |
2045 | |
2046 | auto blockWalk = topLevelOp->walk(callback: [this](Block *block) { |
2047 | for (auto arg : block->getArguments()) |
2048 | if (failed(result: sortUseListOrder(value: arg))) |
2049 | return WalkResult::interrupt(); |
2050 | return WalkResult::advance(); |
2051 | }); |
2052 | |
2053 | auto resultWalk = topLevelOp->walk(callback: [this](Operation *op) { |
2054 | for (auto result : op->getResults()) |
2055 | if (failed(result: sortUseListOrder(value: result))) |
2056 | return WalkResult::interrupt(); |
2057 | return WalkResult::advance(); |
2058 | }); |
2059 | |
2060 | return failure(isFailure: blockWalk.wasInterrupted() || resultWalk.wasInterrupted()); |
2061 | } |
2062 | |
2063 | //===----------------------------------------------------------------------===// |
2064 | // IR Section |
2065 | |
2066 | LogicalResult |
2067 | BytecodeReader::Impl::parseIRSection(ArrayRef<uint8_t> sectionData, |
2068 | Block *block) { |
2069 | EncodingReader reader(sectionData, fileLoc); |
2070 | |
2071 | // A stack of operation regions currently being read from the bytecode. |
2072 | std::vector<RegionReadState> regionStack; |
2073 | |
2074 | // Parse the top-level block using a temporary module operation. |
2075 | OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc); |
2076 | regionStack.emplace_back(*moduleOp, &reader, /*isIsolatedFromAbove=*/true); |
2077 | regionStack.back().curBlocks.push_back(Elt: moduleOp->getBody()); |
2078 | regionStack.back().curBlock = regionStack.back().curRegion->begin(); |
2079 | if (failed(result: parseBlockHeader(reader, readState&: regionStack.back()))) |
2080 | return failure(); |
2081 | valueScopes.emplace_back(); |
2082 | valueScopes.back().push(readState&: regionStack.back()); |
2083 | |
2084 | // Iteratively parse regions until everything has been resolved. |
2085 | while (!regionStack.empty()) |
2086 | if (failed(result: parseRegions(regionStack, readState&: regionStack.back()))) |
2087 | return failure(); |
2088 | if (!forwardRefOps.empty()) { |
2089 | return reader.emitError( |
2090 | args: "not all forward unresolved forward operand references" ); |
2091 | } |
2092 | |
2093 | // Sort use-lists according to what specified in bytecode. |
2094 | if (failed(processUseLists(topLevelOp: *moduleOp))) |
2095 | return reader.emitError( |
2096 | args: "parsed use-list orders were invalid and could not be applied" ); |
2097 | |
2098 | // Resolve dialect version. |
2099 | for (const std::unique_ptr<BytecodeDialect> &byteCodeDialect : dialects) { |
2100 | // Parsing is complete, give an opportunity to each dialect to visit the |
2101 | // IR and perform upgrades. |
2102 | if (!byteCodeDialect->loadedVersion) |
2103 | continue; |
2104 | if (byteCodeDialect->interface && |
2105 | failed(byteCodeDialect->interface->upgradeFromVersion( |
2106 | topLevelOp: *moduleOp, version: *byteCodeDialect->loadedVersion))) |
2107 | return failure(); |
2108 | } |
2109 | |
2110 | // Verify that the parsed operations are valid. |
2111 | if (config.shouldVerifyAfterParse() && failed(verify(*moduleOp))) |
2112 | return failure(); |
2113 | |
2114 | // Splice the parsed operations over to the provided top-level block. |
2115 | auto &parsedOps = moduleOp->getBody()->getOperations(); |
2116 | auto &destOps = block->getOperations(); |
2117 | destOps.splice(destOps.end(), parsedOps, parsedOps.begin(), parsedOps.end()); |
2118 | return success(); |
2119 | } |
2120 | |
2121 | LogicalResult |
2122 | BytecodeReader::Impl::parseRegions(std::vector<RegionReadState> ®ionStack, |
2123 | RegionReadState &readState) { |
2124 | // Process regions, blocks, and operations until the end or if a nested |
2125 | // region is encountered. In this case we push a new state in regionStack and |
2126 | // return, the processing of the current region will resume afterward. |
2127 | for (; readState.curRegion != readState.endRegion; ++readState.curRegion) { |
2128 | // If the current block hasn't been setup yet, parse the header for this |
2129 | // region. The current block is already setup when this function was |
2130 | // interrupted to recurse down in a nested region and we resume the current |
2131 | // block after processing the nested region. |
2132 | if (readState.curBlock == Region::iterator()) { |
2133 | if (failed(result: parseRegion(readState))) |
2134 | return failure(); |
2135 | |
2136 | // If the region is empty, there is nothing to more to do. |
2137 | if (readState.curRegion->empty()) |
2138 | continue; |
2139 | } |
2140 | |
2141 | // Parse the blocks within the region. |
2142 | EncodingReader &reader = *readState.reader; |
2143 | do { |
2144 | while (readState.numOpsRemaining--) { |
2145 | // Read in the next operation. We don't read its regions directly, we |
2146 | // handle those afterwards as necessary. |
2147 | bool isIsolatedFromAbove = false; |
2148 | FailureOr<Operation *> op = |
2149 | parseOpWithoutRegions(reader, readState, isIsolatedFromAbove); |
2150 | if (failed(result: op)) |
2151 | return failure(); |
2152 | |
2153 | // If the op has regions, add it to the stack for processing and return: |
2154 | // we stop the processing of the current region and resume it after the |
2155 | // inner one is completed. Unless LazyLoading is activated in which case |
2156 | // nested region parsing is delayed. |
2157 | if ((*op)->getNumRegions()) { |
2158 | RegionReadState childState(*op, &reader, isIsolatedFromAbove); |
2159 | |
2160 | // Isolated regions are encoded as a section in version 2 and above. |
2161 | if (version >= bytecode::kLazyLoading && isIsolatedFromAbove) { |
2162 | bytecode::Section::ID sectionID; |
2163 | ArrayRef<uint8_t> sectionData; |
2164 | if (failed(result: reader.parseSection(sectionID, sectionData))) |
2165 | return failure(); |
2166 | if (sectionID != bytecode::Section::kIR) |
2167 | return emitError(loc: fileLoc, message: "expected IR section for region" ); |
2168 | childState.owningReader = |
2169 | std::make_unique<EncodingReader>(args&: sectionData, args&: fileLoc); |
2170 | childState.reader = childState.owningReader.get(); |
2171 | |
2172 | // If the user has a callback set, they have the opportunity to |
2173 | // control lazyloading as we go. |
2174 | if (lazyLoading && (!lazyOpsCallback || !lazyOpsCallback(*op))) { |
2175 | lazyLoadableOps.emplace_back(args&: *op, args: std::move(childState)); |
2176 | lazyLoadableOpsMap.try_emplace(Key: *op, |
2177 | Args: std::prev(x: lazyLoadableOps.end())); |
2178 | continue; |
2179 | } |
2180 | } |
2181 | regionStack.push_back(x: std::move(childState)); |
2182 | |
2183 | // If the op is isolated from above, push a new value scope. |
2184 | if (isIsolatedFromAbove) |
2185 | valueScopes.emplace_back(); |
2186 | return success(); |
2187 | } |
2188 | } |
2189 | |
2190 | // Move to the next block of the region. |
2191 | if (++readState.curBlock == readState.curRegion->end()) |
2192 | break; |
2193 | if (failed(result: parseBlockHeader(reader, readState))) |
2194 | return failure(); |
2195 | } while (true); |
2196 | |
2197 | // Reset the current block and any values reserved for this region. |
2198 | readState.curBlock = {}; |
2199 | valueScopes.back().pop(readState); |
2200 | } |
2201 | |
2202 | // When the regions have been fully parsed, pop them off of the read stack. If |
2203 | // the regions were isolated from above, we also pop the last value scope. |
2204 | if (readState.isIsolatedFromAbove) { |
2205 | assert(!valueScopes.empty() && "Expect a valueScope after reading region" ); |
2206 | valueScopes.pop_back(); |
2207 | } |
2208 | assert(!regionStack.empty() && "Expect a regionStack after reading region" ); |
2209 | regionStack.pop_back(); |
2210 | return success(); |
2211 | } |
2212 | |
2213 | FailureOr<Operation *> |
2214 | BytecodeReader::Impl::parseOpWithoutRegions(EncodingReader &reader, |
2215 | RegionReadState &readState, |
2216 | bool &isIsolatedFromAbove) { |
2217 | // Parse the name of the operation. |
2218 | std::optional<bool> wasRegistered; |
2219 | FailureOr<OperationName> opName = parseOpName(reader, wasRegistered); |
2220 | if (failed(result: opName)) |
2221 | return failure(); |
2222 | |
2223 | // Parse the operation mask, which indicates which components of the operation |
2224 | // are present. |
2225 | uint8_t opMask; |
2226 | if (failed(result: reader.parseByte(value&: opMask))) |
2227 | return failure(); |
2228 | |
2229 | /// Parse the location. |
2230 | LocationAttr opLoc; |
2231 | if (failed(result: parseAttribute(reader, result&: opLoc))) |
2232 | return failure(); |
2233 | |
2234 | // With the location and name resolved, we can start building the operation |
2235 | // state. |
2236 | OperationState opState(opLoc, *opName); |
2237 | |
2238 | // Parse the attributes of the operation. |
2239 | if (opMask & bytecode::OpEncodingMask::kHasAttrs) { |
2240 | DictionaryAttr dictAttr; |
2241 | if (failed(parseAttribute(reader, dictAttr))) |
2242 | return failure(); |
2243 | opState.attributes = dictAttr; |
2244 | } |
2245 | |
2246 | if (opMask & bytecode::OpEncodingMask::kHasProperties) { |
2247 | // kHasProperties wasn't emitted in older bytecode, we should never get |
2248 | // there without also having the `wasRegistered` flag available. |
2249 | if (!wasRegistered) |
2250 | return emitError(loc: fileLoc, |
2251 | message: "Unexpected missing `wasRegistered` opname flag at " |
2252 | "bytecode version " ) |
2253 | << version << " with properties." ; |
2254 | // When an operation is emitted without being registered, the properties are |
2255 | // stored as an attribute. Otherwise the op must implement the bytecode |
2256 | // interface and control the serialization. |
2257 | if (wasRegistered) { |
2258 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
2259 | dialectsMap, reader, version); |
2260 | if (failed( |
2261 | result: propertiesReader.read(fileLoc, dialectReader, opName: &*opName, opState))) |
2262 | return failure(); |
2263 | } else { |
2264 | // If the operation wasn't registered when it was emitted, the properties |
2265 | // was serialized as an attribute. |
2266 | if (failed(result: parseAttribute(reader, result&: opState.propertiesAttr))) |
2267 | return failure(); |
2268 | } |
2269 | } |
2270 | |
2271 | /// Parse the results of the operation. |
2272 | if (opMask & bytecode::OpEncodingMask::kHasResults) { |
2273 | uint64_t numResults; |
2274 | if (failed(result: reader.parseVarInt(result&: numResults))) |
2275 | return failure(); |
2276 | opState.types.resize(N: numResults); |
2277 | for (int i = 0, e = numResults; i < e; ++i) |
2278 | if (failed(result: parseType(reader, result&: opState.types[i]))) |
2279 | return failure(); |
2280 | } |
2281 | |
2282 | /// Parse the operands of the operation. |
2283 | if (opMask & bytecode::OpEncodingMask::kHasOperands) { |
2284 | uint64_t numOperands; |
2285 | if (failed(result: reader.parseVarInt(result&: numOperands))) |
2286 | return failure(); |
2287 | opState.operands.resize(N: numOperands); |
2288 | for (int i = 0, e = numOperands; i < e; ++i) |
2289 | if (!(opState.operands[i] = parseOperand(reader))) |
2290 | return failure(); |
2291 | } |
2292 | |
2293 | /// Parse the successors of the operation. |
2294 | if (opMask & bytecode::OpEncodingMask::kHasSuccessors) { |
2295 | uint64_t numSuccs; |
2296 | if (failed(result: reader.parseVarInt(result&: numSuccs))) |
2297 | return failure(); |
2298 | opState.successors.resize(N: numSuccs); |
2299 | for (int i = 0, e = numSuccs; i < e; ++i) { |
2300 | if (failed(result: parseEntry(reader, entries&: readState.curBlocks, entry&: opState.successors[i], |
2301 | entryStr: "successor" ))) |
2302 | return failure(); |
2303 | } |
2304 | } |
2305 | |
2306 | /// Parse the use-list orders for the results of the operation. Use-list |
2307 | /// orders are available since version 3 of the bytecode. |
2308 | std::optional<UseListMapT> resultIdxToUseListMap = std::nullopt; |
2309 | if (version >= bytecode::kUseListOrdering && |
2310 | (opMask & bytecode::OpEncodingMask::kHasUseListOrders)) { |
2311 | size_t numResults = opState.types.size(); |
2312 | auto parseResult = parseUseListOrderForRange(reader, numResults); |
2313 | if (failed(result: parseResult)) |
2314 | return failure(); |
2315 | resultIdxToUseListMap = std::move(*parseResult); |
2316 | } |
2317 | |
2318 | /// Parse the regions of the operation. |
2319 | if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) { |
2320 | uint64_t numRegions; |
2321 | if (failed(result: reader.parseVarIntWithFlag(result&: numRegions, flag&: isIsolatedFromAbove))) |
2322 | return failure(); |
2323 | |
2324 | opState.regions.reserve(N: numRegions); |
2325 | for (int i = 0, e = numRegions; i < e; ++i) |
2326 | opState.regions.push_back(Elt: std::make_unique<Region>()); |
2327 | } |
2328 | |
2329 | // Create the operation at the back of the current block. |
2330 | Operation *op = Operation::create(state: opState); |
2331 | readState.curBlock->push_back(op); |
2332 | |
2333 | // If the operation had results, update the value references. We don't need to |
2334 | // do this if the current value scope is empty. That is, the op was not |
2335 | // encoded within a parent region. |
2336 | if (readState.numValues && op->getNumResults() && |
2337 | failed(result: defineValues(reader, values: op->getResults()))) |
2338 | return failure(); |
2339 | |
2340 | /// Store a map for every value that received a custom use-list order from the |
2341 | /// bytecode file. |
2342 | if (resultIdxToUseListMap.has_value()) { |
2343 | for (size_t idx = 0; idx < op->getNumResults(); idx++) { |
2344 | if (resultIdxToUseListMap->contains(Val: idx)) { |
2345 | valueToUseListMap.try_emplace(Key: op->getResult(idx).getAsOpaquePointer(), |
2346 | Args: resultIdxToUseListMap->at(Val: idx)); |
2347 | } |
2348 | } |
2349 | } |
2350 | return op; |
2351 | } |
2352 | |
2353 | LogicalResult BytecodeReader::Impl::parseRegion(RegionReadState &readState) { |
2354 | EncodingReader &reader = *readState.reader; |
2355 | |
2356 | // Parse the number of blocks in the region. |
2357 | uint64_t numBlocks; |
2358 | if (failed(result: reader.parseVarInt(result&: numBlocks))) |
2359 | return failure(); |
2360 | |
2361 | // If the region is empty, there is nothing else to do. |
2362 | if (numBlocks == 0) |
2363 | return success(); |
2364 | |
2365 | // Parse the number of values defined in this region. |
2366 | uint64_t numValues; |
2367 | if (failed(result: reader.parseVarInt(result&: numValues))) |
2368 | return failure(); |
2369 | readState.numValues = numValues; |
2370 | |
2371 | // Create the blocks within this region. We do this before processing so that |
2372 | // we can rely on the blocks existing when creating operations. |
2373 | readState.curBlocks.clear(); |
2374 | readState.curBlocks.reserve(N: numBlocks); |
2375 | for (uint64_t i = 0; i < numBlocks; ++i) { |
2376 | readState.curBlocks.push_back(Elt: new Block()); |
2377 | readState.curRegion->push_back(block: readState.curBlocks.back()); |
2378 | } |
2379 | |
2380 | // Prepare the current value scope for this region. |
2381 | valueScopes.back().push(readState); |
2382 | |
2383 | // Parse the entry block of the region. |
2384 | readState.curBlock = readState.curRegion->begin(); |
2385 | return parseBlockHeader(reader, readState); |
2386 | } |
2387 | |
2388 | LogicalResult |
2389 | BytecodeReader::Impl::(EncodingReader &reader, |
2390 | RegionReadState &readState) { |
2391 | bool hasArgs; |
2392 | if (failed(result: reader.parseVarIntWithFlag(result&: readState.numOpsRemaining, flag&: hasArgs))) |
2393 | return failure(); |
2394 | |
2395 | // Parse the arguments of the block. |
2396 | if (hasArgs && failed(result: parseBlockArguments(reader, block: &*readState.curBlock))) |
2397 | return failure(); |
2398 | |
2399 | // Uselist orders are available since version 3 of the bytecode. |
2400 | if (version < bytecode::kUseListOrdering) |
2401 | return success(); |
2402 | |
2403 | uint8_t hasUseListOrders = 0; |
2404 | if (hasArgs && failed(result: reader.parseByte(value&: hasUseListOrders))) |
2405 | return failure(); |
2406 | |
2407 | if (!hasUseListOrders) |
2408 | return success(); |
2409 | |
2410 | Block &blk = *readState.curBlock; |
2411 | auto argIdxToUseListMap = |
2412 | parseUseListOrderForRange(reader, numResults: blk.getNumArguments()); |
2413 | if (failed(result: argIdxToUseListMap) || argIdxToUseListMap->empty()) |
2414 | return failure(); |
2415 | |
2416 | for (size_t idx = 0; idx < blk.getNumArguments(); idx++) |
2417 | if (argIdxToUseListMap->contains(Val: idx)) |
2418 | valueToUseListMap.try_emplace(Key: blk.getArgument(i: idx).getAsOpaquePointer(), |
2419 | Args: argIdxToUseListMap->at(Val: idx)); |
2420 | |
2421 | // We don't parse the operations of the block here, that's done elsewhere. |
2422 | return success(); |
2423 | } |
2424 | |
2425 | LogicalResult BytecodeReader::Impl::parseBlockArguments(EncodingReader &reader, |
2426 | Block *block) { |
2427 | // Parse the value ID for the first argument, and the number of arguments. |
2428 | uint64_t numArgs; |
2429 | if (failed(result: reader.parseVarInt(result&: numArgs))) |
2430 | return failure(); |
2431 | |
2432 | SmallVector<Type> argTypes; |
2433 | SmallVector<Location> argLocs; |
2434 | argTypes.reserve(N: numArgs); |
2435 | argLocs.reserve(N: numArgs); |
2436 | |
2437 | Location unknownLoc = UnknownLoc::get(config.getContext()); |
2438 | while (numArgs--) { |
2439 | Type argType; |
2440 | LocationAttr argLoc = unknownLoc; |
2441 | if (version >= bytecode::kElideUnknownBlockArgLocation) { |
2442 | // Parse the type with hasLoc flag to determine if it has type. |
2443 | uint64_t typeIdx; |
2444 | bool hasLoc; |
2445 | if (failed(result: reader.parseVarIntWithFlag(result&: typeIdx, flag&: hasLoc)) || |
2446 | !(argType = attrTypeReader.resolveType(index: typeIdx))) |
2447 | return failure(); |
2448 | if (hasLoc && failed(result: parseAttribute(reader, result&: argLoc))) |
2449 | return failure(); |
2450 | } else { |
2451 | // All args has type and location. |
2452 | if (failed(result: parseType(reader, result&: argType)) || |
2453 | failed(result: parseAttribute(reader, result&: argLoc))) |
2454 | return failure(); |
2455 | } |
2456 | argTypes.push_back(Elt: argType); |
2457 | argLocs.push_back(Elt: argLoc); |
2458 | } |
2459 | block->addArguments(types: argTypes, locs: argLocs); |
2460 | return defineValues(reader, values: block->getArguments()); |
2461 | } |
2462 | |
2463 | //===----------------------------------------------------------------------===// |
2464 | // Value Processing |
2465 | |
2466 | Value BytecodeReader::Impl::parseOperand(EncodingReader &reader) { |
2467 | std::vector<Value> &values = valueScopes.back().values; |
2468 | Value *value = nullptr; |
2469 | if (failed(result: parseEntry(reader, entries&: values, entry&: value, entryStr: "value" ))) |
2470 | return Value(); |
2471 | |
2472 | // Create a new forward reference if necessary. |
2473 | if (!*value) |
2474 | *value = createForwardRef(); |
2475 | return *value; |
2476 | } |
2477 | |
2478 | LogicalResult BytecodeReader::Impl::defineValues(EncodingReader &reader, |
2479 | ValueRange newValues) { |
2480 | ValueScope &valueScope = valueScopes.back(); |
2481 | std::vector<Value> &values = valueScope.values; |
2482 | |
2483 | unsigned &valueID = valueScope.nextValueIDs.back(); |
2484 | unsigned valueIDEnd = valueID + newValues.size(); |
2485 | if (valueIDEnd > values.size()) { |
2486 | return reader.emitError( |
2487 | args: "value index range was outside of the expected range for " |
2488 | "the parent region, got [" , |
2489 | args&: valueID, args: ", " , args&: valueIDEnd, args: "), but the maximum index was " , |
2490 | args: values.size() - 1); |
2491 | } |
2492 | |
2493 | // Assign the values and update any forward references. |
2494 | for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) { |
2495 | Value newValue = newValues[i]; |
2496 | |
2497 | // Check to see if a definition for this value already exists. |
2498 | if (Value oldValue = std::exchange(obj&: values[valueID], new_val&: newValue)) { |
2499 | Operation *forwardRefOp = oldValue.getDefiningOp(); |
2500 | |
2501 | // Assert that this is a forward reference operation. Given how we compute |
2502 | // definition ids (incrementally as we parse), it shouldn't be possible |
2503 | // for the value to be defined any other way. |
2504 | assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps && |
2505 | "value index was already defined?" ); |
2506 | |
2507 | oldValue.replaceAllUsesWith(newValue); |
2508 | forwardRefOp->moveBefore(block: &openForwardRefOps, iterator: openForwardRefOps.end()); |
2509 | } |
2510 | } |
2511 | return success(); |
2512 | } |
2513 | |
2514 | Value BytecodeReader::Impl::createForwardRef() { |
2515 | // Check for an avaliable existing operation to use. Otherwise, create a new |
2516 | // fake operation to use for the reference. |
2517 | if (!openForwardRefOps.empty()) { |
2518 | Operation *op = &openForwardRefOps.back(); |
2519 | op->moveBefore(block: &forwardRefOps, iterator: forwardRefOps.end()); |
2520 | } else { |
2521 | forwardRefOps.push_back(op: Operation::create(state: forwardRefOpState)); |
2522 | } |
2523 | return forwardRefOps.back().getResult(idx: 0); |
2524 | } |
2525 | |
2526 | //===----------------------------------------------------------------------===// |
2527 | // Entry Points |
2528 | //===----------------------------------------------------------------------===// |
2529 | |
2530 | BytecodeReader::~BytecodeReader() { assert(getNumOpsToMaterialize() == 0); } |
2531 | |
2532 | BytecodeReader::BytecodeReader( |
2533 | llvm::MemoryBufferRef buffer, const ParserConfig &config, bool lazyLoading, |
2534 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
2535 | Location sourceFileLoc = |
2536 | FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(), |
2537 | /*line=*/0, /*column=*/0); |
2538 | impl = std::make_unique<Impl>(args&: sourceFileLoc, args: config, args&: lazyLoading, args&: buffer, |
2539 | args: bufferOwnerRef); |
2540 | } |
2541 | |
2542 | LogicalResult BytecodeReader::readTopLevel( |
2543 | Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
2544 | return impl->read(block, lazyOpsCallback); |
2545 | } |
2546 | |
2547 | int64_t BytecodeReader::getNumOpsToMaterialize() const { |
2548 | return impl->getNumOpsToMaterialize(); |
2549 | } |
2550 | |
2551 | bool BytecodeReader::isMaterializable(Operation *op) { |
2552 | return impl->isMaterializable(op); |
2553 | } |
2554 | |
2555 | LogicalResult BytecodeReader::materialize( |
2556 | Operation *op, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
2557 | return impl->materialize(op, lazyOpsCallback); |
2558 | } |
2559 | |
2560 | LogicalResult |
2561 | BytecodeReader::finalize(function_ref<bool(Operation *)> shouldMaterialize) { |
2562 | return impl->finalize(shouldMaterialize); |
2563 | } |
2564 | |
2565 | bool mlir::isBytecode(llvm::MemoryBufferRef buffer) { |
2566 | return buffer.getBuffer().starts_with(Prefix: "ML\xefR" ); |
2567 | } |
2568 | |
2569 | /// Read the bytecode from the provided memory buffer reference. |
2570 | /// `bufferOwnerRef` if provided is the owning source manager for the buffer, |
2571 | /// and may be used to extend the lifetime of the buffer. |
2572 | static LogicalResult |
2573 | readBytecodeFileImpl(llvm::MemoryBufferRef buffer, Block *block, |
2574 | const ParserConfig &config, |
2575 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
2576 | Location sourceFileLoc = |
2577 | FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(), |
2578 | /*line=*/0, /*column=*/0); |
2579 | if (!isBytecode(buffer)) { |
2580 | return emitError(loc: sourceFileLoc, |
2581 | message: "input buffer is not an MLIR bytecode file" ); |
2582 | } |
2583 | |
2584 | BytecodeReader::Impl reader(sourceFileLoc, config, /*lazyLoading=*/false, |
2585 | buffer, bufferOwnerRef); |
2586 | return reader.read(block, /*lazyOpsCallback=*/nullptr); |
2587 | } |
2588 | |
2589 | LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block, |
2590 | const ParserConfig &config) { |
2591 | return readBytecodeFileImpl(buffer, block, config, /*bufferOwnerRef=*/{}); |
2592 | } |
2593 | LogicalResult |
2594 | mlir::readBytecodeFile(const std::shared_ptr<llvm::SourceMgr> &sourceMgr, |
2595 | Block *block, const ParserConfig &config) { |
2596 | return readBytecodeFileImpl( |
2597 | buffer: *sourceMgr->getMemoryBuffer(i: sourceMgr->getMainFileID()), block, config, |
2598 | bufferOwnerRef: sourceMgr); |
2599 | } |
2600 | |