| 1 | //===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "mlir/Bytecode/BytecodeReader.h" |
| 10 | #include "mlir/AsmParser/AsmParser.h" |
| 11 | #include "mlir/Bytecode/BytecodeImplementation.h" |
| 12 | #include "mlir/Bytecode/BytecodeOpInterface.h" |
| 13 | #include "mlir/Bytecode/Encoding.h" |
| 14 | #include "mlir/IR/BuiltinOps.h" |
| 15 | #include "mlir/IR/Diagnostics.h" |
| 16 | #include "mlir/IR/OpImplementation.h" |
| 17 | #include "mlir/IR/Verifier.h" |
| 18 | #include "mlir/IR/Visitors.h" |
| 19 | #include "mlir/Support/LLVM.h" |
| 20 | #include "llvm/ADT/ArrayRef.h" |
| 21 | #include "llvm/ADT/ScopeExit.h" |
| 22 | #include "llvm/ADT/StringExtras.h" |
| 23 | #include "llvm/ADT/StringRef.h" |
| 24 | #include "llvm/Support/Endian.h" |
| 25 | #include "llvm/Support/MemoryBufferRef.h" |
| 26 | #include "llvm/Support/SourceMgr.h" |
| 27 | |
| 28 | #include <cstddef> |
| 29 | #include <list> |
| 30 | #include <memory> |
| 31 | #include <numeric> |
| 32 | #include <optional> |
| 33 | |
| 34 | #define DEBUG_TYPE "mlir-bytecode-reader" |
| 35 | |
| 36 | using namespace mlir; |
| 37 | |
| 38 | /// Stringify the given section ID. |
| 39 | static std::string toString(bytecode::Section::ID sectionID) { |
| 40 | switch (sectionID) { |
| 41 | case bytecode::Section::kString: |
| 42 | return "String (0)" ; |
| 43 | case bytecode::Section::kDialect: |
| 44 | return "Dialect (1)" ; |
| 45 | case bytecode::Section::kAttrType: |
| 46 | return "AttrType (2)" ; |
| 47 | case bytecode::Section::kAttrTypeOffset: |
| 48 | return "AttrTypeOffset (3)" ; |
| 49 | case bytecode::Section::kIR: |
| 50 | return "IR (4)" ; |
| 51 | case bytecode::Section::kResource: |
| 52 | return "Resource (5)" ; |
| 53 | case bytecode::Section::kResourceOffset: |
| 54 | return "ResourceOffset (6)" ; |
| 55 | case bytecode::Section::kDialectVersions: |
| 56 | return "DialectVersions (7)" ; |
| 57 | case bytecode::Section::kProperties: |
| 58 | return "Properties (8)" ; |
| 59 | default: |
| 60 | return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")" ).str(); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | /// Returns true if the given top-level section ID is optional. |
| 65 | static bool isSectionOptional(bytecode::Section::ID sectionID, int version) { |
| 66 | switch (sectionID) { |
| 67 | case bytecode::Section::kString: |
| 68 | case bytecode::Section::kDialect: |
| 69 | case bytecode::Section::kAttrType: |
| 70 | case bytecode::Section::kAttrTypeOffset: |
| 71 | case bytecode::Section::kIR: |
| 72 | return false; |
| 73 | case bytecode::Section::kResource: |
| 74 | case bytecode::Section::kResourceOffset: |
| 75 | case bytecode::Section::kDialectVersions: |
| 76 | return true; |
| 77 | case bytecode::Section::kProperties: |
| 78 | return version < bytecode::kNativePropertiesEncoding; |
| 79 | default: |
| 80 | llvm_unreachable("unknown section ID" ); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | //===----------------------------------------------------------------------===// |
| 85 | // EncodingReader |
| 86 | //===----------------------------------------------------------------------===// |
| 87 | |
| 88 | namespace { |
| 89 | class EncodingReader { |
| 90 | public: |
| 91 | explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc) |
| 92 | : buffer(contents), dataIt(buffer.begin()), fileLoc(fileLoc) {} |
| 93 | explicit EncodingReader(StringRef contents, Location fileLoc) |
| 94 | : EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()), |
| 95 | contents.size()}, |
| 96 | fileLoc) {} |
| 97 | |
| 98 | /// Returns true if the entire section has been read. |
| 99 | bool empty() const { return dataIt == buffer.end(); } |
| 100 | |
| 101 | /// Returns the remaining size of the bytecode. |
| 102 | size_t size() const { return buffer.end() - dataIt; } |
| 103 | |
| 104 | /// Align the current reader position to the specified alignment. |
| 105 | LogicalResult alignTo(unsigned alignment) { |
| 106 | if (!llvm::isPowerOf2_32(Value: alignment)) |
| 107 | return emitError(args: "expected alignment to be a power-of-two" ); |
| 108 | |
| 109 | auto isUnaligned = [&](const uint8_t *ptr) { |
| 110 | return ((uintptr_t)ptr & (alignment - 1)) != 0; |
| 111 | }; |
| 112 | |
| 113 | // Shift the reader position to the next alignment boundary. |
| 114 | while (isUnaligned(dataIt)) { |
| 115 | uint8_t padding; |
| 116 | if (failed(Result: parseByte(value&: padding))) |
| 117 | return failure(); |
| 118 | if (padding != bytecode::kAlignmentByte) { |
| 119 | return emitError(args: "expected alignment byte (0xCB), but got: '0x" + |
| 120 | llvm::utohexstr(X: padding) + "'" ); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | // Ensure the data iterator is now aligned. This case is unlikely because we |
| 125 | // *just* went through the effort to align the data iterator. |
| 126 | if (LLVM_UNLIKELY(isUnaligned(dataIt))) { |
| 127 | return emitError(args: "expected data iterator aligned to " , args&: alignment, |
| 128 | args: ", but got pointer: '0x" + |
| 129 | llvm::utohexstr(X: (uintptr_t)dataIt) + "'" ); |
| 130 | } |
| 131 | |
| 132 | return success(); |
| 133 | } |
| 134 | |
| 135 | /// Emit an error using the given arguments. |
| 136 | template <typename... Args> |
| 137 | InFlightDiagnostic emitError(Args &&...args) const { |
| 138 | return ::emitError(loc: fileLoc).append(std::forward<Args>(args)...); |
| 139 | } |
| 140 | InFlightDiagnostic emitError() const { return ::emitError(loc: fileLoc); } |
| 141 | |
| 142 | /// Parse a single byte from the stream. |
| 143 | template <typename T> |
| 144 | LogicalResult parseByte(T &value) { |
| 145 | if (empty()) |
| 146 | return emitError(args: "attempting to parse a byte at the end of the bytecode" ); |
| 147 | value = static_cast<T>(*dataIt++); |
| 148 | return success(); |
| 149 | } |
| 150 | /// Parse a range of bytes of 'length' into the given result. |
| 151 | LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) { |
| 152 | if (length > size()) { |
| 153 | return emitError(args: "attempting to parse " , args&: length, args: " bytes when only " , |
| 154 | args: size(), args: " remain" ); |
| 155 | } |
| 156 | result = {dataIt, length}; |
| 157 | dataIt += length; |
| 158 | return success(); |
| 159 | } |
| 160 | /// Parse a range of bytes of 'length' into the given result, which can be |
| 161 | /// assumed to be large enough to hold `length`. |
| 162 | LogicalResult parseBytes(size_t length, uint8_t *result) { |
| 163 | if (length > size()) { |
| 164 | return emitError(args: "attempting to parse " , args&: length, args: " bytes when only " , |
| 165 | args: size(), args: " remain" ); |
| 166 | } |
| 167 | memcpy(dest: result, src: dataIt, n: length); |
| 168 | dataIt += length; |
| 169 | return success(); |
| 170 | } |
| 171 | |
| 172 | /// Parse an aligned blob of data, where the alignment was encoded alongside |
| 173 | /// the data. |
| 174 | LogicalResult parseBlobAndAlignment(ArrayRef<uint8_t> &data, |
| 175 | uint64_t &alignment) { |
| 176 | uint64_t dataSize; |
| 177 | if (failed(Result: parseVarInt(result&: alignment)) || failed(Result: parseVarInt(result&: dataSize)) || |
| 178 | failed(Result: alignTo(alignment))) |
| 179 | return failure(); |
| 180 | return parseBytes(length: dataSize, result&: data); |
| 181 | } |
| 182 | |
| 183 | /// Parse a variable length encoded integer from the byte stream. The first |
| 184 | /// encoded byte contains a prefix in the low bits indicating the encoded |
| 185 | /// length of the value. This length prefix is a bit sequence of '0's followed |
| 186 | /// by a '1'. The number of '0' bits indicate the number of _additional_ bytes |
| 187 | /// (not including the prefix byte). All remaining bits in the first byte, |
| 188 | /// along with all of the bits in additional bytes, provide the value of the |
| 189 | /// integer encoded in little-endian order. |
| 190 | LogicalResult parseVarInt(uint64_t &result) { |
| 191 | // Parse the first byte of the encoding, which contains the length prefix. |
| 192 | if (failed(Result: parseByte(value&: result))) |
| 193 | return failure(); |
| 194 | |
| 195 | // Handle the overwhelmingly common case where the value is stored in a |
| 196 | // single byte. In this case, the first bit is the `1` marker bit. |
| 197 | if (LLVM_LIKELY(result & 1)) { |
| 198 | result >>= 1; |
| 199 | return success(); |
| 200 | } |
| 201 | |
| 202 | // Handle the overwhelming uncommon case where the value required all 8 |
| 203 | // bytes (i.e. a really really big number). In this case, the marker byte is |
| 204 | // all zeros: `00000000`. |
| 205 | if (LLVM_UNLIKELY(result == 0)) { |
| 206 | llvm::support::ulittle64_t resultLE; |
| 207 | if (failed(Result: parseBytes(length: sizeof(resultLE), |
| 208 | result: reinterpret_cast<uint8_t *>(&resultLE)))) |
| 209 | return failure(); |
| 210 | result = resultLE; |
| 211 | return success(); |
| 212 | } |
| 213 | return parseMultiByteVarInt(result); |
| 214 | } |
| 215 | |
| 216 | /// Parse a signed variable length encoded integer from the byte stream. A |
| 217 | /// signed varint is encoded as a normal varint with zigzag encoding applied, |
| 218 | /// i.e. the low bit of the value is used to indicate the sign. |
| 219 | LogicalResult parseSignedVarInt(uint64_t &result) { |
| 220 | if (failed(Result: parseVarInt(result))) |
| 221 | return failure(); |
| 222 | // Essentially (but using unsigned): (x >> 1) ^ -(x & 1) |
| 223 | result = (result >> 1) ^ (~(result & 1) + 1); |
| 224 | return success(); |
| 225 | } |
| 226 | |
| 227 | /// Parse a variable length encoded integer whose low bit is used to encode an |
| 228 | /// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`. |
| 229 | LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) { |
| 230 | if (failed(Result: parseVarInt(result))) |
| 231 | return failure(); |
| 232 | flag = result & 1; |
| 233 | result >>= 1; |
| 234 | return success(); |
| 235 | } |
| 236 | |
| 237 | /// Skip the first `length` bytes within the reader. |
| 238 | LogicalResult skipBytes(size_t length) { |
| 239 | if (length > size()) { |
| 240 | return emitError(args: "attempting to skip " , args&: length, args: " bytes when only " , |
| 241 | args: size(), args: " remain" ); |
| 242 | } |
| 243 | dataIt += length; |
| 244 | return success(); |
| 245 | } |
| 246 | |
| 247 | /// Parse a null-terminated string into `result` (without including the NUL |
| 248 | /// terminator). |
| 249 | LogicalResult parseNullTerminatedString(StringRef &result) { |
| 250 | const char *startIt = (const char *)dataIt; |
| 251 | const char *nulIt = (const char *)memchr(s: startIt, c: 0, n: size()); |
| 252 | if (!nulIt) |
| 253 | return emitError( |
| 254 | args: "malformed null-terminated string, no null character found" ); |
| 255 | |
| 256 | result = StringRef(startIt, nulIt - startIt); |
| 257 | dataIt = (const uint8_t *)nulIt + 1; |
| 258 | return success(); |
| 259 | } |
| 260 | |
| 261 | /// Parse a section header, placing the kind of section in `sectionID` and the |
| 262 | /// contents of the section in `sectionData`. |
| 263 | LogicalResult parseSection(bytecode::Section::ID §ionID, |
| 264 | ArrayRef<uint8_t> §ionData) { |
| 265 | uint8_t sectionIDAndHasAlignment; |
| 266 | uint64_t length; |
| 267 | if (failed(Result: parseByte(value&: sectionIDAndHasAlignment)) || |
| 268 | failed(Result: parseVarInt(result&: length))) |
| 269 | return failure(); |
| 270 | |
| 271 | // Extract the section ID and whether the section is aligned. The high bit |
| 272 | // of the ID is the alignment flag. |
| 273 | sectionID = static_cast<bytecode::Section::ID>(sectionIDAndHasAlignment & |
| 274 | 0b01111111); |
| 275 | bool hasAlignment = sectionIDAndHasAlignment & 0b10000000; |
| 276 | |
| 277 | // Check that the section is actually valid before trying to process its |
| 278 | // data. |
| 279 | if (sectionID >= bytecode::Section::kNumSections) |
| 280 | return emitError(args: "invalid section ID: " , args: unsigned(sectionID)); |
| 281 | |
| 282 | // Process the section alignment if present. |
| 283 | if (hasAlignment) { |
| 284 | uint64_t alignment; |
| 285 | if (failed(Result: parseVarInt(result&: alignment)) || failed(Result: alignTo(alignment))) |
| 286 | return failure(); |
| 287 | } |
| 288 | |
| 289 | // Parse the actual section data. |
| 290 | return parseBytes(length: static_cast<size_t>(length), result&: sectionData); |
| 291 | } |
| 292 | |
| 293 | Location getLoc() const { return fileLoc; } |
| 294 | |
| 295 | private: |
| 296 | /// Parse a variable length encoded integer from the byte stream. This method |
| 297 | /// is a fallback when the number of bytes used to encode the value is greater |
| 298 | /// than 1, but less than the max (9). The provided `result` value can be |
| 299 | /// assumed to already contain the first byte of the value. |
| 300 | /// NOTE: This method is marked noinline to avoid pessimizing the common case |
| 301 | /// of single byte encoding. |
| 302 | LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) { |
| 303 | // Count the number of trailing zeros in the marker byte, this indicates the |
| 304 | // number of trailing bytes that are part of the value. We use `uint32_t` |
| 305 | // here because we only care about the first byte, and so that be actually |
| 306 | // get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop |
| 307 | // implementation). |
| 308 | uint32_t numBytes = llvm::countr_zero<uint32_t>(Val: result); |
| 309 | assert(numBytes > 0 && numBytes <= 7 && |
| 310 | "unexpected number of trailing zeros in varint encoding" ); |
| 311 | |
| 312 | // Parse in the remaining bytes of the value. |
| 313 | llvm::support::ulittle64_t resultLE(result); |
| 314 | if (failed( |
| 315 | Result: parseBytes(length: numBytes, result: reinterpret_cast<uint8_t *>(&resultLE) + 1))) |
| 316 | return failure(); |
| 317 | |
| 318 | // Shift out the low-order bits that were used to mark how the value was |
| 319 | // encoded. |
| 320 | result = resultLE >> (numBytes + 1); |
| 321 | return success(); |
| 322 | } |
| 323 | |
| 324 | /// The bytecode buffer. |
| 325 | ArrayRef<uint8_t> buffer; |
| 326 | |
| 327 | /// The current iterator within the 'buffer'. |
| 328 | const uint8_t *dataIt; |
| 329 | |
| 330 | /// A location for the bytecode used to report errors. |
| 331 | Location fileLoc; |
| 332 | }; |
| 333 | } // namespace |
| 334 | |
| 335 | /// Resolve an index into the given entry list. `entry` may either be a |
| 336 | /// reference, in which case it is assigned to the corresponding value in |
| 337 | /// `entries`, or a pointer, in which case it is assigned to the address of the |
| 338 | /// element in `entries`. |
| 339 | template <typename RangeT, typename T> |
| 340 | static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries, |
| 341 | uint64_t index, T &entry, |
| 342 | StringRef entryStr) { |
| 343 | if (index >= entries.size()) |
| 344 | return reader.emitError(args: "invalid " , args&: entryStr, args: " index: " , args&: index); |
| 345 | |
| 346 | // If the provided entry is a pointer, resolve to the address of the entry. |
| 347 | if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>) |
| 348 | entry = entries[index]; |
| 349 | else |
| 350 | entry = &entries[index]; |
| 351 | return success(); |
| 352 | } |
| 353 | |
| 354 | /// Parse and resolve an index into the given entry list. |
| 355 | template <typename RangeT, typename T> |
| 356 | static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries, |
| 357 | T &entry, StringRef entryStr) { |
| 358 | uint64_t entryIdx; |
| 359 | if (failed(Result: reader.parseVarInt(result&: entryIdx))) |
| 360 | return failure(); |
| 361 | return resolveEntry(reader, entries, entryIdx, entry, entryStr); |
| 362 | } |
| 363 | |
| 364 | //===----------------------------------------------------------------------===// |
| 365 | // StringSectionReader |
| 366 | //===----------------------------------------------------------------------===// |
| 367 | |
| 368 | namespace { |
| 369 | /// This class is used to read references to the string section from the |
| 370 | /// bytecode. |
| 371 | class StringSectionReader { |
| 372 | public: |
| 373 | /// Initialize the string section reader with the given section data. |
| 374 | LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData); |
| 375 | |
| 376 | /// Parse a shared string from the string section. The shared string is |
| 377 | /// encoded using an index to a corresponding string in the string section. |
| 378 | LogicalResult parseString(EncodingReader &reader, StringRef &result) const { |
| 379 | return parseEntry(reader, entries: strings, entry&: result, entryStr: "string" ); |
| 380 | } |
| 381 | |
| 382 | /// Parse a shared string from the string section. The shared string is |
| 383 | /// encoded using an index to a corresponding string in the string section. |
| 384 | /// This variant parses a flag compressed with the index. |
| 385 | LogicalResult parseStringWithFlag(EncodingReader &reader, StringRef &result, |
| 386 | bool &flag) const { |
| 387 | uint64_t entryIdx; |
| 388 | if (failed(Result: reader.parseVarIntWithFlag(result&: entryIdx, flag))) |
| 389 | return failure(); |
| 390 | return parseStringAtIndex(reader, index: entryIdx, result); |
| 391 | } |
| 392 | |
| 393 | /// Parse a shared string from the string section. The shared string is |
| 394 | /// encoded using an index to a corresponding string in the string section. |
| 395 | LogicalResult parseStringAtIndex(EncodingReader &reader, uint64_t index, |
| 396 | StringRef &result) const { |
| 397 | return resolveEntry(reader, entries: strings, index, entry&: result, entryStr: "string" ); |
| 398 | } |
| 399 | |
| 400 | private: |
| 401 | /// The table of strings referenced within the bytecode file. |
| 402 | SmallVector<StringRef> strings; |
| 403 | }; |
| 404 | } // namespace |
| 405 | |
| 406 | LogicalResult StringSectionReader::initialize(Location fileLoc, |
| 407 | ArrayRef<uint8_t> sectionData) { |
| 408 | EncodingReader stringReader(sectionData, fileLoc); |
| 409 | |
| 410 | // Parse the number of strings in the section. |
| 411 | uint64_t numStrings; |
| 412 | if (failed(Result: stringReader.parseVarInt(result&: numStrings))) |
| 413 | return failure(); |
| 414 | strings.resize(N: numStrings); |
| 415 | |
| 416 | // Parse each of the strings. The sizes of the strings are encoded in reverse |
| 417 | // order, so that's the order we populate the table. |
| 418 | size_t stringDataEndOffset = sectionData.size(); |
| 419 | for (StringRef &string : llvm::reverse(C&: strings)) { |
| 420 | uint64_t stringSize; |
| 421 | if (failed(Result: stringReader.parseVarInt(result&: stringSize))) |
| 422 | return failure(); |
| 423 | if (stringDataEndOffset < stringSize) { |
| 424 | return stringReader.emitError( |
| 425 | args: "string size exceeds the available data size" ); |
| 426 | } |
| 427 | |
| 428 | // Extract the string from the data, dropping the null character. |
| 429 | size_t stringOffset = stringDataEndOffset - stringSize; |
| 430 | string = StringRef( |
| 431 | reinterpret_cast<const char *>(sectionData.data() + stringOffset), |
| 432 | stringSize - 1); |
| 433 | stringDataEndOffset = stringOffset; |
| 434 | } |
| 435 | |
| 436 | // Check that the only remaining data was for the strings, i.e. the reader |
| 437 | // should be at the same offset as the first string. |
| 438 | if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) { |
| 439 | return stringReader.emitError(args: "unexpected trailing data between the " |
| 440 | "offsets for strings and their data" ); |
| 441 | } |
| 442 | return success(); |
| 443 | } |
| 444 | |
| 445 | //===----------------------------------------------------------------------===// |
| 446 | // BytecodeDialect |
| 447 | //===----------------------------------------------------------------------===// |
| 448 | |
| 449 | namespace { |
| 450 | class DialectReader; |
| 451 | |
| 452 | /// This struct represents a dialect entry within the bytecode. |
| 453 | struct BytecodeDialect { |
| 454 | /// Load the dialect into the provided context if it hasn't been loaded yet. |
| 455 | /// Returns failure if the dialect couldn't be loaded *and* the provided |
| 456 | /// context does not allow unregistered dialects. The provided reader is used |
| 457 | /// for error emission if necessary. |
| 458 | LogicalResult load(const DialectReader &reader, MLIRContext *ctx); |
| 459 | |
| 460 | /// Return the loaded dialect, or nullptr if the dialect is unknown. This can |
| 461 | /// only be called after `load`. |
| 462 | Dialect *getLoadedDialect() const { |
| 463 | assert(dialect && |
| 464 | "expected `load` to be invoked before `getLoadedDialect`" ); |
| 465 | return *dialect; |
| 466 | } |
| 467 | |
| 468 | /// The loaded dialect entry. This field is std::nullopt if we haven't |
| 469 | /// attempted to load, nullptr if we failed to load, otherwise the loaded |
| 470 | /// dialect. |
| 471 | std::optional<Dialect *> dialect; |
| 472 | |
| 473 | /// The bytecode interface of the dialect, or nullptr if the dialect does not |
| 474 | /// implement the bytecode interface. This field should only be checked if the |
| 475 | /// `dialect` field is not std::nullopt. |
| 476 | const BytecodeDialectInterface *interface = nullptr; |
| 477 | |
| 478 | /// The name of the dialect. |
| 479 | StringRef name; |
| 480 | |
| 481 | /// A buffer containing the encoding of the dialect version parsed. |
| 482 | ArrayRef<uint8_t> versionBuffer; |
| 483 | |
| 484 | /// Lazy loaded dialect version from the handle above. |
| 485 | std::unique_ptr<DialectVersion> loadedVersion; |
| 486 | }; |
| 487 | |
| 488 | /// This struct represents an operation name entry within the bytecode. |
| 489 | struct BytecodeOperationName { |
| 490 | BytecodeOperationName(BytecodeDialect *dialect, StringRef name, |
| 491 | std::optional<bool> wasRegistered) |
| 492 | : dialect(dialect), name(name), wasRegistered(wasRegistered) {} |
| 493 | |
| 494 | /// The loaded operation name, or std::nullopt if it hasn't been processed |
| 495 | /// yet. |
| 496 | std::optional<OperationName> opName; |
| 497 | |
| 498 | /// The dialect that owns this operation name. |
| 499 | BytecodeDialect *dialect; |
| 500 | |
| 501 | /// The name of the operation, without the dialect prefix. |
| 502 | StringRef name; |
| 503 | |
| 504 | /// Whether this operation was registered when the bytecode was produced. |
| 505 | /// This flag is populated when bytecode version >=kNativePropertiesEncoding. |
| 506 | std::optional<bool> wasRegistered; |
| 507 | }; |
| 508 | } // namespace |
| 509 | |
| 510 | /// Parse a single dialect group encoded in the byte stream. |
| 511 | static LogicalResult parseDialectGrouping( |
| 512 | EncodingReader &reader, |
| 513 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
| 514 | function_ref<LogicalResult(BytecodeDialect *)> entryCallback) { |
| 515 | // Parse the dialect and the number of entries in the group. |
| 516 | std::unique_ptr<BytecodeDialect> *dialect; |
| 517 | if (failed(Result: parseEntry(reader, entries&: dialects, entry&: dialect, entryStr: "dialect" ))) |
| 518 | return failure(); |
| 519 | uint64_t numEntries; |
| 520 | if (failed(Result: reader.parseVarInt(result&: numEntries))) |
| 521 | return failure(); |
| 522 | |
| 523 | for (uint64_t i = 0; i < numEntries; ++i) |
| 524 | if (failed(Result: entryCallback(dialect->get()))) |
| 525 | return failure(); |
| 526 | return success(); |
| 527 | } |
| 528 | |
| 529 | //===----------------------------------------------------------------------===// |
| 530 | // ResourceSectionReader |
| 531 | //===----------------------------------------------------------------------===// |
| 532 | |
| 533 | namespace { |
| 534 | /// This class is used to read the resource section from the bytecode. |
| 535 | class ResourceSectionReader { |
| 536 | public: |
| 537 | /// Initialize the resource section reader with the given section data. |
| 538 | LogicalResult |
| 539 | initialize(Location fileLoc, const ParserConfig &config, |
| 540 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
| 541 | StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData, |
| 542 | ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader, |
| 543 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef); |
| 544 | |
| 545 | /// Parse a dialect resource handle from the resource section. |
| 546 | LogicalResult parseResourceHandle(EncodingReader &reader, |
| 547 | AsmDialectResourceHandle &result) const { |
| 548 | return parseEntry(reader, entries: dialectResources, entry&: result, entryStr: "resource handle" ); |
| 549 | } |
| 550 | |
| 551 | private: |
| 552 | /// The table of dialect resources within the bytecode file. |
| 553 | SmallVector<AsmDialectResourceHandle> dialectResources; |
| 554 | llvm::StringMap<std::string> dialectResourceHandleRenamingMap; |
| 555 | }; |
| 556 | |
| 557 | class ParsedResourceEntry : public AsmParsedResourceEntry { |
| 558 | public: |
| 559 | ParsedResourceEntry(StringRef key, AsmResourceEntryKind kind, |
| 560 | EncodingReader &reader, StringSectionReader &stringReader, |
| 561 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) |
| 562 | : key(key), kind(kind), reader(reader), stringReader(stringReader), |
| 563 | bufferOwnerRef(bufferOwnerRef) {} |
| 564 | ~ParsedResourceEntry() override = default; |
| 565 | |
| 566 | StringRef getKey() const final { return key; } |
| 567 | |
| 568 | InFlightDiagnostic emitError() const final { return reader.emitError(); } |
| 569 | |
| 570 | AsmResourceEntryKind getKind() const final { return kind; } |
| 571 | |
| 572 | FailureOr<bool> parseAsBool() const final { |
| 573 | if (kind != AsmResourceEntryKind::Bool) |
| 574 | return emitError() << "expected a bool resource entry, but found a " |
| 575 | << toString(kind) << " entry instead" ; |
| 576 | |
| 577 | bool value; |
| 578 | if (failed(Result: reader.parseByte(value))) |
| 579 | return failure(); |
| 580 | return value; |
| 581 | } |
| 582 | FailureOr<std::string> parseAsString() const final { |
| 583 | if (kind != AsmResourceEntryKind::String) |
| 584 | return emitError() << "expected a string resource entry, but found a " |
| 585 | << toString(kind) << " entry instead" ; |
| 586 | |
| 587 | StringRef string; |
| 588 | if (failed(Result: stringReader.parseString(reader, result&: string))) |
| 589 | return failure(); |
| 590 | return string.str(); |
| 591 | } |
| 592 | |
| 593 | FailureOr<AsmResourceBlob> |
| 594 | parseAsBlob(BlobAllocatorFn allocator) const final { |
| 595 | if (kind != AsmResourceEntryKind::Blob) |
| 596 | return emitError() << "expected a blob resource entry, but found a " |
| 597 | << toString(kind) << " entry instead" ; |
| 598 | |
| 599 | ArrayRef<uint8_t> data; |
| 600 | uint64_t alignment; |
| 601 | if (failed(Result: reader.parseBlobAndAlignment(data, alignment))) |
| 602 | return failure(); |
| 603 | |
| 604 | // If we have an extendable reference to the buffer owner, we don't need to |
| 605 | // allocate a new buffer for the data, and can use the data directly. |
| 606 | if (bufferOwnerRef) { |
| 607 | ArrayRef<char> charData(reinterpret_cast<const char *>(data.data()), |
| 608 | data.size()); |
| 609 | |
| 610 | // Allocate an unmanager buffer which captures a reference to the owner. |
| 611 | // For now we just mark this as immutable, but in the future we should |
| 612 | // explore marking this as mutable when desired. |
| 613 | return UnmanagedAsmResourceBlob::allocateWithAlign( |
| 614 | data: charData, align: alignment, |
| 615 | deleter: [bufferOwnerRef = bufferOwnerRef](void *, size_t, size_t) {}); |
| 616 | } |
| 617 | |
| 618 | // Allocate memory for the blob using the provided allocator and copy the |
| 619 | // data into it. |
| 620 | AsmResourceBlob blob = allocator(data.size(), alignment); |
| 621 | assert(llvm::isAddrAligned(llvm::Align(alignment), blob.getData().data()) && |
| 622 | blob.isMutable() && |
| 623 | "blob allocator did not return a properly aligned address" ); |
| 624 | memcpy(dest: blob.getMutableData().data(), src: data.data(), n: data.size()); |
| 625 | return blob; |
| 626 | } |
| 627 | |
| 628 | private: |
| 629 | StringRef key; |
| 630 | AsmResourceEntryKind kind; |
| 631 | EncodingReader &reader; |
| 632 | StringSectionReader &stringReader; |
| 633 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef; |
| 634 | }; |
| 635 | } // namespace |
| 636 | |
| 637 | template <typename T> |
| 638 | static LogicalResult |
| 639 | parseResourceGroup(Location fileLoc, bool allowEmpty, |
| 640 | EncodingReader &offsetReader, EncodingReader &resourceReader, |
| 641 | StringSectionReader &stringReader, T *handler, |
| 642 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef, |
| 643 | function_ref<StringRef(StringRef)> remapKey = {}, |
| 644 | function_ref<LogicalResult(StringRef)> processKeyFn = {}) { |
| 645 | uint64_t numResources; |
| 646 | if (failed(Result: offsetReader.parseVarInt(result&: numResources))) |
| 647 | return failure(); |
| 648 | |
| 649 | for (uint64_t i = 0; i < numResources; ++i) { |
| 650 | StringRef key; |
| 651 | AsmResourceEntryKind kind; |
| 652 | uint64_t resourceOffset; |
| 653 | ArrayRef<uint8_t> data; |
| 654 | if (failed(Result: stringReader.parseString(reader&: offsetReader, result&: key)) || |
| 655 | failed(Result: offsetReader.parseVarInt(result&: resourceOffset)) || |
| 656 | failed(Result: offsetReader.parseByte(value&: kind)) || |
| 657 | failed(Result: resourceReader.parseBytes(length: resourceOffset, result&: data))) |
| 658 | return failure(); |
| 659 | |
| 660 | // Process the resource key. |
| 661 | if ((processKeyFn && failed(Result: processKeyFn(key)))) |
| 662 | return failure(); |
| 663 | |
| 664 | // If the resource data is empty and we allow it, don't error out when |
| 665 | // parsing below, just skip it. |
| 666 | if (allowEmpty && data.empty()) |
| 667 | continue; |
| 668 | |
| 669 | // Ignore the entry if we don't have a valid handler. |
| 670 | if (!handler) |
| 671 | continue; |
| 672 | |
| 673 | // Otherwise, parse the resource value. |
| 674 | EncodingReader entryReader(data, fileLoc); |
| 675 | key = remapKey(key); |
| 676 | ParsedResourceEntry entry(key, kind, entryReader, stringReader, |
| 677 | bufferOwnerRef); |
| 678 | if (failed(handler->parseResource(entry))) |
| 679 | return failure(); |
| 680 | if (!entryReader.empty()) { |
| 681 | return entryReader.emitError( |
| 682 | args: "unexpected trailing bytes in resource entry '" , args&: key, args: "'" ); |
| 683 | } |
| 684 | } |
| 685 | return success(); |
| 686 | } |
| 687 | |
| 688 | LogicalResult ResourceSectionReader::initialize( |
| 689 | Location fileLoc, const ParserConfig &config, |
| 690 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
| 691 | StringSectionReader &stringReader, ArrayRef<uint8_t> sectionData, |
| 692 | ArrayRef<uint8_t> offsetSectionData, DialectReader &dialectReader, |
| 693 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
| 694 | EncodingReader resourceReader(sectionData, fileLoc); |
| 695 | EncodingReader offsetReader(offsetSectionData, fileLoc); |
| 696 | |
| 697 | // Read the number of external resource providers. |
| 698 | uint64_t numExternalResourceGroups; |
| 699 | if (failed(Result: offsetReader.parseVarInt(result&: numExternalResourceGroups))) |
| 700 | return failure(); |
| 701 | |
| 702 | // Utility functor that dispatches to `parseResourceGroup`, but implicitly |
| 703 | // provides most of the arguments. |
| 704 | auto parseGroup = [&](auto *handler, bool allowEmpty = false, |
| 705 | function_ref<LogicalResult(StringRef)> keyFn = {}) { |
| 706 | auto resolveKey = [&](StringRef key) -> StringRef { |
| 707 | auto it = dialectResourceHandleRenamingMap.find(Key: key); |
| 708 | if (it == dialectResourceHandleRenamingMap.end()) |
| 709 | return key; |
| 710 | return it->second; |
| 711 | }; |
| 712 | |
| 713 | return parseResourceGroup(fileLoc, allowEmpty, offsetReader, resourceReader, |
| 714 | stringReader, handler, bufferOwnerRef, resolveKey, |
| 715 | keyFn); |
| 716 | }; |
| 717 | |
| 718 | // Read the external resources from the bytecode. |
| 719 | for (uint64_t i = 0; i < numExternalResourceGroups; ++i) { |
| 720 | StringRef key; |
| 721 | if (failed(Result: stringReader.parseString(reader&: offsetReader, result&: key))) |
| 722 | return failure(); |
| 723 | |
| 724 | // Get the handler for these resources. |
| 725 | // TODO: Should we require handling external resources in some scenarios? |
| 726 | AsmResourceParser *handler = config.getResourceParser(name: key); |
| 727 | if (!handler) { |
| 728 | emitWarning(loc: fileLoc) << "ignoring unknown external resources for '" << key |
| 729 | << "'" ; |
| 730 | } |
| 731 | |
| 732 | if (failed(Result: parseGroup(handler))) |
| 733 | return failure(); |
| 734 | } |
| 735 | |
| 736 | // Read the dialect resources from the bytecode. |
| 737 | MLIRContext *ctx = fileLoc->getContext(); |
| 738 | while (!offsetReader.empty()) { |
| 739 | std::unique_ptr<BytecodeDialect> *dialect; |
| 740 | if (failed(Result: parseEntry(reader&: offsetReader, entries&: dialects, entry&: dialect, entryStr: "dialect" )) || |
| 741 | failed(Result: (*dialect)->load(reader: dialectReader, ctx))) |
| 742 | return failure(); |
| 743 | Dialect *loadedDialect = (*dialect)->getLoadedDialect(); |
| 744 | if (!loadedDialect) { |
| 745 | return resourceReader.emitError() |
| 746 | << "dialect '" << (*dialect)->name << "' is unknown" ; |
| 747 | } |
| 748 | const auto *handler = dyn_cast<OpAsmDialectInterface>(Val: loadedDialect); |
| 749 | if (!handler) { |
| 750 | return resourceReader.emitError() |
| 751 | << "unexpected resources for dialect '" << (*dialect)->name << "'" ; |
| 752 | } |
| 753 | |
| 754 | // Ensure that each resource is declared before being processed. |
| 755 | auto processResourceKeyFn = [&](StringRef key) -> LogicalResult { |
| 756 | FailureOr<AsmDialectResourceHandle> handle = |
| 757 | handler->declareResource(key); |
| 758 | if (failed(Result: handle)) { |
| 759 | return resourceReader.emitError() |
| 760 | << "unknown 'resource' key '" << key << "' for dialect '" |
| 761 | << (*dialect)->name << "'" ; |
| 762 | } |
| 763 | dialectResourceHandleRenamingMap[key] = handler->getResourceKey(handle: *handle); |
| 764 | dialectResources.push_back(Elt: *handle); |
| 765 | return success(); |
| 766 | }; |
| 767 | |
| 768 | // Parse the resources for this dialect. We allow empty resources because we |
| 769 | // just treat these as declarations. |
| 770 | if (failed(Result: parseGroup(handler, /*allowEmpty=*/true, processResourceKeyFn))) |
| 771 | return failure(); |
| 772 | } |
| 773 | |
| 774 | return success(); |
| 775 | } |
| 776 | |
| 777 | //===----------------------------------------------------------------------===// |
| 778 | // Attribute/Type Reader |
| 779 | //===----------------------------------------------------------------------===// |
| 780 | |
| 781 | namespace { |
| 782 | /// This class provides support for reading attribute and type entries from the |
| 783 | /// bytecode. Attribute and Type entries are read lazily on demand, so we use |
| 784 | /// this reader to manage when to actually parse them from the bytecode. |
| 785 | class AttrTypeReader { |
| 786 | /// This class represents a single attribute or type entry. |
| 787 | template <typename T> |
| 788 | struct Entry { |
| 789 | /// The entry, or null if it hasn't been resolved yet. |
| 790 | T entry = {}; |
| 791 | /// The parent dialect of this entry. |
| 792 | BytecodeDialect *dialect = nullptr; |
| 793 | /// A flag indicating if the entry was encoded using a custom encoding, |
| 794 | /// instead of using the textual assembly format. |
| 795 | bool hasCustomEncoding = false; |
| 796 | /// The raw data of this entry in the bytecode. |
| 797 | ArrayRef<uint8_t> data; |
| 798 | }; |
| 799 | using AttrEntry = Entry<Attribute>; |
| 800 | using TypeEntry = Entry<Type>; |
| 801 | |
| 802 | public: |
| 803 | AttrTypeReader(const StringSectionReader &stringReader, |
| 804 | const ResourceSectionReader &resourceReader, |
| 805 | const llvm::StringMap<BytecodeDialect *> &dialectsMap, |
| 806 | uint64_t &bytecodeVersion, Location fileLoc, |
| 807 | const ParserConfig &config) |
| 808 | : stringReader(stringReader), resourceReader(resourceReader), |
| 809 | dialectsMap(dialectsMap), fileLoc(fileLoc), |
| 810 | bytecodeVersion(bytecodeVersion), parserConfig(config) {} |
| 811 | |
| 812 | /// Initialize the attribute and type information within the reader. |
| 813 | LogicalResult |
| 814 | initialize(MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
| 815 | ArrayRef<uint8_t> sectionData, |
| 816 | ArrayRef<uint8_t> offsetSectionData); |
| 817 | |
| 818 | /// Resolve the attribute or type at the given index. Returns nullptr on |
| 819 | /// failure. |
| 820 | Attribute resolveAttribute(size_t index) { |
| 821 | return resolveEntry(entries&: attributes, index, entryType: "Attribute" ); |
| 822 | } |
| 823 | Type resolveType(size_t index) { return resolveEntry(entries&: types, index, entryType: "Type" ); } |
| 824 | |
| 825 | /// Parse a reference to an attribute or type using the given reader. |
| 826 | LogicalResult parseAttribute(EncodingReader &reader, Attribute &result) { |
| 827 | uint64_t attrIdx; |
| 828 | if (failed(Result: reader.parseVarInt(result&: attrIdx))) |
| 829 | return failure(); |
| 830 | result = resolveAttribute(index: attrIdx); |
| 831 | return success(IsSuccess: !!result); |
| 832 | } |
| 833 | LogicalResult parseOptionalAttribute(EncodingReader &reader, |
| 834 | Attribute &result) { |
| 835 | uint64_t attrIdx; |
| 836 | bool flag; |
| 837 | if (failed(Result: reader.parseVarIntWithFlag(result&: attrIdx, flag))) |
| 838 | return failure(); |
| 839 | if (!flag) |
| 840 | return success(); |
| 841 | result = resolveAttribute(index: attrIdx); |
| 842 | return success(IsSuccess: !!result); |
| 843 | } |
| 844 | |
| 845 | LogicalResult parseType(EncodingReader &reader, Type &result) { |
| 846 | uint64_t typeIdx; |
| 847 | if (failed(Result: reader.parseVarInt(result&: typeIdx))) |
| 848 | return failure(); |
| 849 | result = resolveType(index: typeIdx); |
| 850 | return success(IsSuccess: !!result); |
| 851 | } |
| 852 | |
| 853 | template <typename T> |
| 854 | LogicalResult parseAttribute(EncodingReader &reader, T &result) { |
| 855 | Attribute baseResult; |
| 856 | if (failed(Result: parseAttribute(reader, result&: baseResult))) |
| 857 | return failure(); |
| 858 | if ((result = dyn_cast<T>(baseResult))) |
| 859 | return success(); |
| 860 | return reader.emitError("expected attribute of type: " , |
| 861 | llvm::getTypeName<T>(), ", but got: " , baseResult); |
| 862 | } |
| 863 | |
| 864 | private: |
| 865 | /// Resolve the given entry at `index`. |
| 866 | template <typename T> |
| 867 | T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index, |
| 868 | StringRef entryType); |
| 869 | |
| 870 | /// Parse an entry using the given reader that was encoded using the textual |
| 871 | /// assembly format. |
| 872 | template <typename T> |
| 873 | LogicalResult parseAsmEntry(T &result, EncodingReader &reader, |
| 874 | StringRef entryType); |
| 875 | |
| 876 | /// Parse an entry using the given reader that was encoded using a custom |
| 877 | /// bytecode format. |
| 878 | template <typename T> |
| 879 | LogicalResult parseCustomEntry(Entry<T> &entry, EncodingReader &reader, |
| 880 | StringRef entryType); |
| 881 | |
| 882 | /// The string section reader used to resolve string references when parsing |
| 883 | /// custom encoded attribute/type entries. |
| 884 | const StringSectionReader &stringReader; |
| 885 | |
| 886 | /// The resource section reader used to resolve resource references when |
| 887 | /// parsing custom encoded attribute/type entries. |
| 888 | const ResourceSectionReader &resourceReader; |
| 889 | |
| 890 | /// The map of the loaded dialects used to retrieve dialect information, such |
| 891 | /// as the dialect version. |
| 892 | const llvm::StringMap<BytecodeDialect *> &dialectsMap; |
| 893 | |
| 894 | /// The set of attribute and type entries. |
| 895 | SmallVector<AttrEntry> attributes; |
| 896 | SmallVector<TypeEntry> types; |
| 897 | |
| 898 | /// A location used for error emission. |
| 899 | Location fileLoc; |
| 900 | |
| 901 | /// Current bytecode version being used. |
| 902 | uint64_t &bytecodeVersion; |
| 903 | |
| 904 | /// Reference to the parser configuration. |
| 905 | const ParserConfig &parserConfig; |
| 906 | }; |
| 907 | |
| 908 | class DialectReader : public DialectBytecodeReader { |
| 909 | public: |
| 910 | DialectReader(AttrTypeReader &attrTypeReader, |
| 911 | const StringSectionReader &stringReader, |
| 912 | const ResourceSectionReader &resourceReader, |
| 913 | const llvm::StringMap<BytecodeDialect *> &dialectsMap, |
| 914 | EncodingReader &reader, uint64_t &bytecodeVersion) |
| 915 | : attrTypeReader(attrTypeReader), stringReader(stringReader), |
| 916 | resourceReader(resourceReader), dialectsMap(dialectsMap), |
| 917 | reader(reader), bytecodeVersion(bytecodeVersion) {} |
| 918 | |
| 919 | InFlightDiagnostic emitError(const Twine &msg) const override { |
| 920 | return reader.emitError(args: msg); |
| 921 | } |
| 922 | |
| 923 | FailureOr<const DialectVersion *> |
| 924 | getDialectVersion(StringRef dialectName) const override { |
| 925 | // First check if the dialect is available in the map. |
| 926 | auto dialectEntry = dialectsMap.find(Key: dialectName); |
| 927 | if (dialectEntry == dialectsMap.end()) |
| 928 | return failure(); |
| 929 | // If the dialect was found, try to load it. This will trigger reading the |
| 930 | // bytecode version from the version buffer if it wasn't already processed. |
| 931 | // Return failure if either of those two actions could not be completed. |
| 932 | if (failed(Result: dialectEntry->getValue()->load(reader: *this, ctx: getLoc().getContext())) || |
| 933 | dialectEntry->getValue()->loadedVersion == nullptr) |
| 934 | return failure(); |
| 935 | return dialectEntry->getValue()->loadedVersion.get(); |
| 936 | } |
| 937 | |
| 938 | MLIRContext *getContext() const override { return getLoc().getContext(); } |
| 939 | |
| 940 | uint64_t getBytecodeVersion() const override { return bytecodeVersion; } |
| 941 | |
| 942 | DialectReader withEncodingReader(EncodingReader &encReader) const { |
| 943 | return DialectReader(attrTypeReader, stringReader, resourceReader, |
| 944 | dialectsMap, encReader, bytecodeVersion); |
| 945 | } |
| 946 | |
| 947 | Location getLoc() const { return reader.getLoc(); } |
| 948 | |
| 949 | //===--------------------------------------------------------------------===// |
| 950 | // IR |
| 951 | //===--------------------------------------------------------------------===// |
| 952 | |
| 953 | LogicalResult readAttribute(Attribute &result) override { |
| 954 | return attrTypeReader.parseAttribute(reader, result); |
| 955 | } |
| 956 | LogicalResult readOptionalAttribute(Attribute &result) override { |
| 957 | return attrTypeReader.parseOptionalAttribute(reader, result); |
| 958 | } |
| 959 | LogicalResult readType(Type &result) override { |
| 960 | return attrTypeReader.parseType(reader, result); |
| 961 | } |
| 962 | |
| 963 | FailureOr<AsmDialectResourceHandle> readResourceHandle() override { |
| 964 | AsmDialectResourceHandle handle; |
| 965 | if (failed(Result: resourceReader.parseResourceHandle(reader, result&: handle))) |
| 966 | return failure(); |
| 967 | return handle; |
| 968 | } |
| 969 | |
| 970 | //===--------------------------------------------------------------------===// |
| 971 | // Primitives |
| 972 | //===--------------------------------------------------------------------===// |
| 973 | |
| 974 | LogicalResult readVarInt(uint64_t &result) override { |
| 975 | return reader.parseVarInt(result); |
| 976 | } |
| 977 | |
| 978 | LogicalResult readSignedVarInt(int64_t &result) override { |
| 979 | uint64_t unsignedResult; |
| 980 | if (failed(Result: reader.parseSignedVarInt(result&: unsignedResult))) |
| 981 | return failure(); |
| 982 | result = static_cast<int64_t>(unsignedResult); |
| 983 | return success(); |
| 984 | } |
| 985 | |
| 986 | FailureOr<APInt> readAPIntWithKnownWidth(unsigned bitWidth) override { |
| 987 | // Small values are encoded using a single byte. |
| 988 | if (bitWidth <= 8) { |
| 989 | uint8_t value; |
| 990 | if (failed(Result: reader.parseByte(value))) |
| 991 | return failure(); |
| 992 | return APInt(bitWidth, value); |
| 993 | } |
| 994 | |
| 995 | // Large values up to 64 bits are encoded using a single varint. |
| 996 | if (bitWidth <= 64) { |
| 997 | uint64_t value; |
| 998 | if (failed(Result: reader.parseSignedVarInt(result&: value))) |
| 999 | return failure(); |
| 1000 | return APInt(bitWidth, value); |
| 1001 | } |
| 1002 | |
| 1003 | // Otherwise, for really big values we encode the array of active words in |
| 1004 | // the value. |
| 1005 | uint64_t numActiveWords; |
| 1006 | if (failed(Result: reader.parseVarInt(result&: numActiveWords))) |
| 1007 | return failure(); |
| 1008 | SmallVector<uint64_t, 4> words(numActiveWords); |
| 1009 | for (uint64_t i = 0; i < numActiveWords; ++i) |
| 1010 | if (failed(Result: reader.parseSignedVarInt(result&: words[i]))) |
| 1011 | return failure(); |
| 1012 | return APInt(bitWidth, words); |
| 1013 | } |
| 1014 | |
| 1015 | FailureOr<APFloat> |
| 1016 | readAPFloatWithKnownSemantics(const llvm::fltSemantics &semantics) override { |
| 1017 | FailureOr<APInt> intVal = |
| 1018 | readAPIntWithKnownWidth(bitWidth: APFloat::getSizeInBits(Sem: semantics)); |
| 1019 | if (failed(Result: intVal)) |
| 1020 | return failure(); |
| 1021 | return APFloat(semantics, *intVal); |
| 1022 | } |
| 1023 | |
| 1024 | LogicalResult readString(StringRef &result) override { |
| 1025 | return stringReader.parseString(reader, result); |
| 1026 | } |
| 1027 | |
| 1028 | LogicalResult readBlob(ArrayRef<char> &result) override { |
| 1029 | uint64_t dataSize; |
| 1030 | ArrayRef<uint8_t> data; |
| 1031 | if (failed(Result: reader.parseVarInt(result&: dataSize)) || |
| 1032 | failed(Result: reader.parseBytes(length: dataSize, result&: data))) |
| 1033 | return failure(); |
| 1034 | result = llvm::ArrayRef(reinterpret_cast<const char *>(data.data()), |
| 1035 | data.size()); |
| 1036 | return success(); |
| 1037 | } |
| 1038 | |
| 1039 | LogicalResult readBool(bool &result) override { |
| 1040 | return reader.parseByte(value&: result); |
| 1041 | } |
| 1042 | |
| 1043 | private: |
| 1044 | AttrTypeReader &attrTypeReader; |
| 1045 | const StringSectionReader &stringReader; |
| 1046 | const ResourceSectionReader &resourceReader; |
| 1047 | const llvm::StringMap<BytecodeDialect *> &dialectsMap; |
| 1048 | EncodingReader &reader; |
| 1049 | uint64_t &bytecodeVersion; |
| 1050 | }; |
| 1051 | |
| 1052 | /// Wraps the properties section and handles reading properties out of it. |
| 1053 | class PropertiesSectionReader { |
| 1054 | public: |
| 1055 | /// Initialize the properties section reader with the given section data. |
| 1056 | LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData) { |
| 1057 | if (sectionData.empty()) |
| 1058 | return success(); |
| 1059 | EncodingReader propReader(sectionData, fileLoc); |
| 1060 | uint64_t count; |
| 1061 | if (failed(Result: propReader.parseVarInt(result&: count))) |
| 1062 | return failure(); |
| 1063 | // Parse the raw properties buffer. |
| 1064 | if (failed(Result: propReader.parseBytes(length: propReader.size(), result&: propertiesBuffers))) |
| 1065 | return failure(); |
| 1066 | |
| 1067 | EncodingReader offsetsReader(propertiesBuffers, fileLoc); |
| 1068 | offsetTable.reserve(N: count); |
| 1069 | for (auto idx : llvm::seq<int64_t>(Begin: 0, End: count)) { |
| 1070 | (void)idx; |
| 1071 | offsetTable.push_back(Elt: propertiesBuffers.size() - offsetsReader.size()); |
| 1072 | ArrayRef<uint8_t> rawProperties; |
| 1073 | uint64_t dataSize; |
| 1074 | if (failed(Result: offsetsReader.parseVarInt(result&: dataSize)) || |
| 1075 | failed(Result: offsetsReader.parseBytes(length: dataSize, result&: rawProperties))) |
| 1076 | return failure(); |
| 1077 | } |
| 1078 | if (!offsetsReader.empty()) |
| 1079 | return offsetsReader.emitError() |
| 1080 | << "Broken properties section: didn't exhaust the offsets table" ; |
| 1081 | return success(); |
| 1082 | } |
| 1083 | |
| 1084 | LogicalResult read(Location fileLoc, DialectReader &dialectReader, |
| 1085 | OperationName *opName, OperationState &opState) const { |
| 1086 | uint64_t propertiesIdx; |
| 1087 | if (failed(Result: dialectReader.readVarInt(result&: propertiesIdx))) |
| 1088 | return failure(); |
| 1089 | if (propertiesIdx >= offsetTable.size()) |
| 1090 | return dialectReader.emitError(msg: "Properties idx out-of-bound for " ) |
| 1091 | << opName->getStringRef(); |
| 1092 | size_t propertiesOffset = offsetTable[propertiesIdx]; |
| 1093 | if (propertiesIdx >= propertiesBuffers.size()) |
| 1094 | return dialectReader.emitError(msg: "Properties offset out-of-bound for " ) |
| 1095 | << opName->getStringRef(); |
| 1096 | |
| 1097 | // Acquire the sub-buffer that represent the requested properties. |
| 1098 | ArrayRef<char> rawProperties; |
| 1099 | { |
| 1100 | // "Seek" to the requested offset by getting a new reader with the right |
| 1101 | // sub-buffer. |
| 1102 | EncodingReader reader(propertiesBuffers.drop_front(N: propertiesOffset), |
| 1103 | fileLoc); |
| 1104 | // Properties are stored as a sequence of {size + raw_data}. |
| 1105 | if (failed( |
| 1106 | Result: dialectReader.withEncodingReader(encReader&: reader).readBlob(result&: rawProperties))) |
| 1107 | return failure(); |
| 1108 | } |
| 1109 | // Setup a new reader to read from the `rawProperties` sub-buffer. |
| 1110 | EncodingReader reader( |
| 1111 | StringRef(rawProperties.begin(), rawProperties.size()), fileLoc); |
| 1112 | DialectReader propReader = dialectReader.withEncodingReader(encReader&: reader); |
| 1113 | |
| 1114 | auto *iface = opName->getInterface<BytecodeOpInterface>(); |
| 1115 | if (iface) |
| 1116 | return iface->readProperties(propReader, opState); |
| 1117 | if (opName->isRegistered()) |
| 1118 | return propReader.emitError( |
| 1119 | msg: "has properties but missing BytecodeOpInterface for " ) |
| 1120 | << opName->getStringRef(); |
| 1121 | // Unregistered op are storing properties as an attribute. |
| 1122 | return propReader.readAttribute(result&: opState.propertiesAttr); |
| 1123 | } |
| 1124 | |
| 1125 | private: |
| 1126 | /// The properties buffer referenced within the bytecode file. |
| 1127 | ArrayRef<uint8_t> propertiesBuffers; |
| 1128 | |
| 1129 | /// Table of offset in the buffer above. |
| 1130 | SmallVector<int64_t> offsetTable; |
| 1131 | }; |
| 1132 | } // namespace |
| 1133 | |
| 1134 | LogicalResult AttrTypeReader::initialize( |
| 1135 | MutableArrayRef<std::unique_ptr<BytecodeDialect>> dialects, |
| 1136 | ArrayRef<uint8_t> sectionData, ArrayRef<uint8_t> offsetSectionData) { |
| 1137 | EncodingReader offsetReader(offsetSectionData, fileLoc); |
| 1138 | |
| 1139 | // Parse the number of attribute and type entries. |
| 1140 | uint64_t numAttributes, numTypes; |
| 1141 | if (failed(Result: offsetReader.parseVarInt(result&: numAttributes)) || |
| 1142 | failed(Result: offsetReader.parseVarInt(result&: numTypes))) |
| 1143 | return failure(); |
| 1144 | attributes.resize(N: numAttributes); |
| 1145 | types.resize(N: numTypes); |
| 1146 | |
| 1147 | // A functor used to accumulate the offsets for the entries in the given |
| 1148 | // range. |
| 1149 | uint64_t currentOffset = 0; |
| 1150 | auto parseEntries = [&](auto &&range) { |
| 1151 | size_t currentIndex = 0, endIndex = range.size(); |
| 1152 | |
| 1153 | // Parse an individual entry. |
| 1154 | auto parseEntryFn = [&](BytecodeDialect *dialect) -> LogicalResult { |
| 1155 | auto &entry = range[currentIndex++]; |
| 1156 | |
| 1157 | uint64_t entrySize; |
| 1158 | if (failed(offsetReader.parseVarIntWithFlag(result&: entrySize, |
| 1159 | flag&: entry.hasCustomEncoding))) |
| 1160 | return failure(); |
| 1161 | |
| 1162 | // Verify that the offset is actually valid. |
| 1163 | if (currentOffset + entrySize > sectionData.size()) { |
| 1164 | return offsetReader.emitError( |
| 1165 | args: "Attribute or Type entry offset points past the end of section" ); |
| 1166 | } |
| 1167 | |
| 1168 | entry.data = sectionData.slice(N: currentOffset, M: entrySize); |
| 1169 | entry.dialect = dialect; |
| 1170 | currentOffset += entrySize; |
| 1171 | return success(); |
| 1172 | }; |
| 1173 | while (currentIndex != endIndex) |
| 1174 | if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn))) |
| 1175 | return failure(); |
| 1176 | return success(); |
| 1177 | }; |
| 1178 | |
| 1179 | // Process each of the attributes, and then the types. |
| 1180 | if (failed(Result: parseEntries(attributes)) || failed(Result: parseEntries(types))) |
| 1181 | return failure(); |
| 1182 | |
| 1183 | // Ensure that we read everything from the section. |
| 1184 | if (!offsetReader.empty()) { |
| 1185 | return offsetReader.emitError( |
| 1186 | args: "unexpected trailing data in the Attribute/Type offset section" ); |
| 1187 | } |
| 1188 | |
| 1189 | return success(); |
| 1190 | } |
| 1191 | |
| 1192 | template <typename T> |
| 1193 | T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index, |
| 1194 | StringRef entryType) { |
| 1195 | if (index >= entries.size()) { |
| 1196 | emitError(loc: fileLoc) << "invalid " << entryType << " index: " << index; |
| 1197 | return {}; |
| 1198 | } |
| 1199 | |
| 1200 | // If the entry has already been resolved, there is nothing left to do. |
| 1201 | Entry<T> &entry = entries[index]; |
| 1202 | if (entry.entry) |
| 1203 | return entry.entry; |
| 1204 | |
| 1205 | // Parse the entry. |
| 1206 | EncodingReader reader(entry.data, fileLoc); |
| 1207 | |
| 1208 | // Parse based on how the entry was encoded. |
| 1209 | if (entry.hasCustomEncoding) { |
| 1210 | if (failed(parseCustomEntry(entry, reader, entryType))) |
| 1211 | return T(); |
| 1212 | } else if (failed(parseAsmEntry(entry.entry, reader, entryType))) { |
| 1213 | return T(); |
| 1214 | } |
| 1215 | |
| 1216 | if (!reader.empty()) { |
| 1217 | reader.emitError(args: "unexpected trailing bytes after " + entryType + " entry" ); |
| 1218 | return T(); |
| 1219 | } |
| 1220 | return entry.entry; |
| 1221 | } |
| 1222 | |
| 1223 | template <typename T> |
| 1224 | LogicalResult AttrTypeReader::parseAsmEntry(T &result, EncodingReader &reader, |
| 1225 | StringRef entryType) { |
| 1226 | StringRef asmStr; |
| 1227 | if (failed(Result: reader.parseNullTerminatedString(result&: asmStr))) |
| 1228 | return failure(); |
| 1229 | |
| 1230 | // Invoke the MLIR assembly parser to parse the entry text. |
| 1231 | size_t numRead = 0; |
| 1232 | MLIRContext *context = fileLoc->getContext(); |
| 1233 | if constexpr (std::is_same_v<T, Type>) |
| 1234 | result = |
| 1235 | ::parseType(typeStr: asmStr, context, numRead: &numRead, /*isKnownNullTerminated=*/true); |
| 1236 | else |
| 1237 | result = ::parseAttribute(attrStr: asmStr, context, type: Type(), numRead: &numRead, |
| 1238 | /*isKnownNullTerminated=*/true); |
| 1239 | if (!result) |
| 1240 | return failure(); |
| 1241 | |
| 1242 | // Ensure there weren't dangling characters after the entry. |
| 1243 | if (numRead != asmStr.size()) { |
| 1244 | return reader.emitError(args: "trailing characters found after " , args&: entryType, |
| 1245 | args: " assembly format: " , args: asmStr.drop_front(N: numRead)); |
| 1246 | } |
| 1247 | return success(); |
| 1248 | } |
| 1249 | |
| 1250 | template <typename T> |
| 1251 | LogicalResult AttrTypeReader::parseCustomEntry(Entry<T> &entry, |
| 1252 | EncodingReader &reader, |
| 1253 | StringRef entryType) { |
| 1254 | DialectReader dialectReader(*this, stringReader, resourceReader, dialectsMap, |
| 1255 | reader, bytecodeVersion); |
| 1256 | if (failed(entry.dialect->load(dialectReader, fileLoc.getContext()))) |
| 1257 | return failure(); |
| 1258 | |
| 1259 | if constexpr (std::is_same_v<T, Type>) { |
| 1260 | // Try parsing with callbacks first if available. |
| 1261 | for (const auto &callback : |
| 1262 | parserConfig.getBytecodeReaderConfig().getTypeCallbacks()) { |
| 1263 | if (failed( |
| 1264 | callback->read(reader&: dialectReader, dialectName: entry.dialect->name, entry&: entry.entry))) |
| 1265 | return failure(); |
| 1266 | // Early return if parsing was successful. |
| 1267 | if (!!entry.entry) |
| 1268 | return success(); |
| 1269 | |
| 1270 | // Reset the reader if we failed to parse, so we can fall through the |
| 1271 | // other parsing functions. |
| 1272 | reader = EncodingReader(entry.data, reader.getLoc()); |
| 1273 | } |
| 1274 | } else { |
| 1275 | // Try parsing with callbacks first if available. |
| 1276 | for (const auto &callback : |
| 1277 | parserConfig.getBytecodeReaderConfig().getAttributeCallbacks()) { |
| 1278 | if (failed( |
| 1279 | callback->read(reader&: dialectReader, dialectName: entry.dialect->name, entry&: entry.entry))) |
| 1280 | return failure(); |
| 1281 | // Early return if parsing was successful. |
| 1282 | if (!!entry.entry) |
| 1283 | return success(); |
| 1284 | |
| 1285 | // Reset the reader if we failed to parse, so we can fall through the |
| 1286 | // other parsing functions. |
| 1287 | reader = EncodingReader(entry.data, reader.getLoc()); |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | // Ensure that the dialect implements the bytecode interface. |
| 1292 | if (!entry.dialect->interface) { |
| 1293 | return reader.emitError("dialect '" , entry.dialect->name, |
| 1294 | "' does not implement the bytecode interface" ); |
| 1295 | } |
| 1296 | |
| 1297 | if constexpr (std::is_same_v<T, Type>) |
| 1298 | entry.entry = entry.dialect->interface->readType(dialectReader); |
| 1299 | else |
| 1300 | entry.entry = entry.dialect->interface->readAttribute(dialectReader); |
| 1301 | |
| 1302 | return success(!!entry.entry); |
| 1303 | } |
| 1304 | |
| 1305 | //===----------------------------------------------------------------------===// |
| 1306 | // Bytecode Reader |
| 1307 | //===----------------------------------------------------------------------===// |
| 1308 | |
| 1309 | /// This class is used to read a bytecode buffer and translate it into MLIR. |
| 1310 | class mlir::BytecodeReader::Impl { |
| 1311 | struct RegionReadState; |
| 1312 | using LazyLoadableOpsInfo = |
| 1313 | std::list<std::pair<Operation *, RegionReadState>>; |
| 1314 | using LazyLoadableOpsMap = |
| 1315 | DenseMap<Operation *, LazyLoadableOpsInfo::iterator>; |
| 1316 | |
| 1317 | public: |
| 1318 | Impl(Location fileLoc, const ParserConfig &config, bool lazyLoading, |
| 1319 | llvm::MemoryBufferRef buffer, |
| 1320 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) |
| 1321 | : config(config), fileLoc(fileLoc), lazyLoading(lazyLoading), |
| 1322 | attrTypeReader(stringReader, resourceReader, dialectsMap, version, |
| 1323 | fileLoc, config), |
| 1324 | // Use the builtin unrealized conversion cast operation to represent |
| 1325 | // forward references to values that aren't yet defined. |
| 1326 | forwardRefOpState(UnknownLoc::get(config.getContext()), |
| 1327 | "builtin.unrealized_conversion_cast" , ValueRange(), |
| 1328 | NoneType::get(config.getContext())), |
| 1329 | buffer(buffer), bufferOwnerRef(bufferOwnerRef) {} |
| 1330 | |
| 1331 | /// Read the bytecode defined within `buffer` into the given block. |
| 1332 | LogicalResult read(Block *block, |
| 1333 | llvm::function_ref<bool(Operation *)> lazyOps); |
| 1334 | |
| 1335 | /// Return the number of ops that haven't been materialized yet. |
| 1336 | int64_t getNumOpsToMaterialize() const { return lazyLoadableOpsMap.size(); } |
| 1337 | |
| 1338 | bool isMaterializable(Operation *op) { return lazyLoadableOpsMap.count(Val: op); } |
| 1339 | |
| 1340 | /// Materialize the provided operation, invoke the lazyOpsCallback on every |
| 1341 | /// newly found lazy operation. |
| 1342 | LogicalResult |
| 1343 | materialize(Operation *op, |
| 1344 | llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
| 1345 | this->lazyOpsCallback = lazyOpsCallback; |
| 1346 | auto resetlazyOpsCallback = |
| 1347 | llvm::make_scope_exit(F: [&] { this->lazyOpsCallback = nullptr; }); |
| 1348 | auto it = lazyLoadableOpsMap.find(Val: op); |
| 1349 | assert(it != lazyLoadableOpsMap.end() && |
| 1350 | "materialize called on non-materializable op" ); |
| 1351 | return materialize(it); |
| 1352 | } |
| 1353 | |
| 1354 | /// Materialize all operations. |
| 1355 | LogicalResult materializeAll() { |
| 1356 | while (!lazyLoadableOpsMap.empty()) { |
| 1357 | if (failed(Result: materialize(it: lazyLoadableOpsMap.begin()))) |
| 1358 | return failure(); |
| 1359 | } |
| 1360 | return success(); |
| 1361 | } |
| 1362 | |
| 1363 | /// Finalize the lazy-loading by calling back with every op that hasn't been |
| 1364 | /// materialized to let the client decide if the op should be deleted or |
| 1365 | /// materialized. The op is materialized if the callback returns true, deleted |
| 1366 | /// otherwise. |
| 1367 | LogicalResult finalize(function_ref<bool(Operation *)> shouldMaterialize) { |
| 1368 | while (!lazyLoadableOps.empty()) { |
| 1369 | Operation *op = lazyLoadableOps.begin()->first; |
| 1370 | if (shouldMaterialize(op)) { |
| 1371 | if (failed(Result: materialize(it: lazyLoadableOpsMap.find(Val: op)))) |
| 1372 | return failure(); |
| 1373 | continue; |
| 1374 | } |
| 1375 | op->dropAllReferences(); |
| 1376 | op->erase(); |
| 1377 | lazyLoadableOps.pop_front(); |
| 1378 | lazyLoadableOpsMap.erase(Val: op); |
| 1379 | } |
| 1380 | return success(); |
| 1381 | } |
| 1382 | |
| 1383 | private: |
| 1384 | LogicalResult materialize(LazyLoadableOpsMap::iterator it) { |
| 1385 | assert(it != lazyLoadableOpsMap.end() && |
| 1386 | "materialize called on non-materializable op" ); |
| 1387 | valueScopes.emplace_back(); |
| 1388 | std::vector<RegionReadState> regionStack; |
| 1389 | regionStack.push_back(x: std::move(it->getSecond()->second)); |
| 1390 | lazyLoadableOps.erase(position: it->getSecond()); |
| 1391 | lazyLoadableOpsMap.erase(I: it); |
| 1392 | |
| 1393 | while (!regionStack.empty()) |
| 1394 | if (failed(Result: parseRegions(regionStack, readState&: regionStack.back()))) |
| 1395 | return failure(); |
| 1396 | return success(); |
| 1397 | } |
| 1398 | |
| 1399 | /// Return the context for this config. |
| 1400 | MLIRContext *getContext() const { return config.getContext(); } |
| 1401 | |
| 1402 | /// Parse the bytecode version. |
| 1403 | LogicalResult parseVersion(EncodingReader &reader); |
| 1404 | |
| 1405 | //===--------------------------------------------------------------------===// |
| 1406 | // Dialect Section |
| 1407 | |
| 1408 | LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData); |
| 1409 | |
| 1410 | /// Parse an operation name reference using the given reader, and set the |
| 1411 | /// `wasRegistered` flag that indicates if the bytecode was produced by a |
| 1412 | /// context where opName was registered. |
| 1413 | FailureOr<OperationName> parseOpName(EncodingReader &reader, |
| 1414 | std::optional<bool> &wasRegistered); |
| 1415 | |
| 1416 | //===--------------------------------------------------------------------===// |
| 1417 | // Attribute/Type Section |
| 1418 | |
| 1419 | /// Parse an attribute or type using the given reader. |
| 1420 | template <typename T> |
| 1421 | LogicalResult parseAttribute(EncodingReader &reader, T &result) { |
| 1422 | return attrTypeReader.parseAttribute(reader, result); |
| 1423 | } |
| 1424 | LogicalResult parseType(EncodingReader &reader, Type &result) { |
| 1425 | return attrTypeReader.parseType(reader, result); |
| 1426 | } |
| 1427 | |
| 1428 | //===--------------------------------------------------------------------===// |
| 1429 | // Resource Section |
| 1430 | |
| 1431 | LogicalResult |
| 1432 | parseResourceSection(EncodingReader &reader, |
| 1433 | std::optional<ArrayRef<uint8_t>> resourceData, |
| 1434 | std::optional<ArrayRef<uint8_t>> resourceOffsetData); |
| 1435 | |
| 1436 | //===--------------------------------------------------------------------===// |
| 1437 | // IR Section |
| 1438 | |
| 1439 | /// This struct represents the current read state of a range of regions. This |
| 1440 | /// struct is used to enable iterative parsing of regions. |
| 1441 | struct RegionReadState { |
| 1442 | RegionReadState(Operation *op, EncodingReader *reader, |
| 1443 | bool isIsolatedFromAbove) |
| 1444 | : RegionReadState(op->getRegions(), reader, isIsolatedFromAbove) {} |
| 1445 | RegionReadState(MutableArrayRef<Region> regions, EncodingReader *reader, |
| 1446 | bool isIsolatedFromAbove) |
| 1447 | : curRegion(regions.begin()), endRegion(regions.end()), reader(reader), |
| 1448 | isIsolatedFromAbove(isIsolatedFromAbove) {} |
| 1449 | |
| 1450 | /// The current regions being read. |
| 1451 | MutableArrayRef<Region>::iterator curRegion, endRegion; |
| 1452 | /// This is the reader to use for this region, this pointer is pointing to |
| 1453 | /// the parent region reader unless the current region is IsolatedFromAbove, |
| 1454 | /// in which case the pointer is pointing to the `owningReader` which is a |
| 1455 | /// section dedicated to the current region. |
| 1456 | EncodingReader *reader; |
| 1457 | std::unique_ptr<EncodingReader> owningReader; |
| 1458 | |
| 1459 | /// The number of values defined immediately within this region. |
| 1460 | unsigned numValues = 0; |
| 1461 | |
| 1462 | /// The current blocks of the region being read. |
| 1463 | SmallVector<Block *> curBlocks; |
| 1464 | Region::iterator curBlock = {}; |
| 1465 | |
| 1466 | /// The number of operations remaining to be read from the current block |
| 1467 | /// being read. |
| 1468 | uint64_t numOpsRemaining = 0; |
| 1469 | |
| 1470 | /// A flag indicating if the regions being read are isolated from above. |
| 1471 | bool isIsolatedFromAbove = false; |
| 1472 | }; |
| 1473 | |
| 1474 | LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block); |
| 1475 | LogicalResult parseRegions(std::vector<RegionReadState> ®ionStack, |
| 1476 | RegionReadState &readState); |
| 1477 | FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader, |
| 1478 | RegionReadState &readState, |
| 1479 | bool &isIsolatedFromAbove); |
| 1480 | |
| 1481 | LogicalResult parseRegion(RegionReadState &readState); |
| 1482 | LogicalResult parseBlockHeader(EncodingReader &reader, |
| 1483 | RegionReadState &readState); |
| 1484 | LogicalResult parseBlockArguments(EncodingReader &reader, Block *block); |
| 1485 | |
| 1486 | //===--------------------------------------------------------------------===// |
| 1487 | // Value Processing |
| 1488 | |
| 1489 | /// Parse an operand reference using the given reader. Returns nullptr in the |
| 1490 | /// case of failure. |
| 1491 | Value parseOperand(EncodingReader &reader); |
| 1492 | |
| 1493 | /// Sequentially define the given value range. |
| 1494 | LogicalResult defineValues(EncodingReader &reader, ValueRange values); |
| 1495 | |
| 1496 | /// Create a value to use for a forward reference. |
| 1497 | Value createForwardRef(); |
| 1498 | |
| 1499 | //===--------------------------------------------------------------------===// |
| 1500 | // Use-list order helpers |
| 1501 | |
| 1502 | /// This struct is a simple storage that contains information required to |
| 1503 | /// reorder the use-list of a value with respect to the pre-order traversal |
| 1504 | /// ordering. |
| 1505 | struct UseListOrderStorage { |
| 1506 | UseListOrderStorage(bool isIndexPairEncoding, |
| 1507 | SmallVector<unsigned, 4> &&indices) |
| 1508 | : indices(std::move(indices)), |
| 1509 | isIndexPairEncoding(isIndexPairEncoding){}; |
| 1510 | /// The vector containing the information required to reorder the |
| 1511 | /// use-list of a value. |
| 1512 | SmallVector<unsigned, 4> indices; |
| 1513 | |
| 1514 | /// Whether indices represent a pair of type `(src, dst)` or it is a direct |
| 1515 | /// indexing, such as `dst = order[src]`. |
| 1516 | bool isIndexPairEncoding; |
| 1517 | }; |
| 1518 | |
| 1519 | /// Parse use-list order from bytecode for a range of values if available. The |
| 1520 | /// range is expected to be either a block argument or an op result range. On |
| 1521 | /// success, return a map of the position in the range and the use-list order |
| 1522 | /// encoding. The function assumes to know the size of the range it is |
| 1523 | /// processing. |
| 1524 | using UseListMapT = DenseMap<unsigned, UseListOrderStorage>; |
| 1525 | FailureOr<UseListMapT> parseUseListOrderForRange(EncodingReader &reader, |
| 1526 | uint64_t rangeSize); |
| 1527 | |
| 1528 | /// Shuffle the use-chain according to the order parsed. |
| 1529 | LogicalResult sortUseListOrder(Value value); |
| 1530 | |
| 1531 | /// Recursively visit all the values defined within topLevelOp and sort the |
| 1532 | /// use-list orders according to the indices parsed. |
| 1533 | LogicalResult processUseLists(Operation *topLevelOp); |
| 1534 | |
| 1535 | //===--------------------------------------------------------------------===// |
| 1536 | // Fields |
| 1537 | |
| 1538 | /// This class represents a single value scope, in which a value scope is |
| 1539 | /// delimited by isolated from above regions. |
| 1540 | struct ValueScope { |
| 1541 | /// Push a new region state onto this scope, reserving enough values for |
| 1542 | /// those defined within the current region of the provided state. |
| 1543 | void push(RegionReadState &readState) { |
| 1544 | nextValueIDs.push_back(Elt: values.size()); |
| 1545 | values.resize(new_size: values.size() + readState.numValues); |
| 1546 | } |
| 1547 | |
| 1548 | /// Pop the values defined for the current region within the provided region |
| 1549 | /// state. |
| 1550 | void pop(RegionReadState &readState) { |
| 1551 | values.resize(new_size: values.size() - readState.numValues); |
| 1552 | nextValueIDs.pop_back(); |
| 1553 | } |
| 1554 | |
| 1555 | /// The set of values defined in this scope. |
| 1556 | std::vector<Value> values; |
| 1557 | |
| 1558 | /// The ID for the next defined value for each region current being |
| 1559 | /// processed in this scope. |
| 1560 | SmallVector<unsigned, 4> nextValueIDs; |
| 1561 | }; |
| 1562 | |
| 1563 | /// The configuration of the parser. |
| 1564 | const ParserConfig &config; |
| 1565 | |
| 1566 | /// A location to use when emitting errors. |
| 1567 | Location fileLoc; |
| 1568 | |
| 1569 | /// Flag that indicates if lazyloading is enabled. |
| 1570 | bool lazyLoading; |
| 1571 | |
| 1572 | /// Keep track of operations that have been lazy loaded (their regions haven't |
| 1573 | /// been materialized), along with the `RegionReadState` that allows to |
| 1574 | /// lazy-load the regions nested under the operation. |
| 1575 | LazyLoadableOpsInfo lazyLoadableOps; |
| 1576 | LazyLoadableOpsMap lazyLoadableOpsMap; |
| 1577 | llvm::function_ref<bool(Operation *)> lazyOpsCallback; |
| 1578 | |
| 1579 | /// The reader used to process attribute and types within the bytecode. |
| 1580 | AttrTypeReader attrTypeReader; |
| 1581 | |
| 1582 | /// The version of the bytecode being read. |
| 1583 | uint64_t version = 0; |
| 1584 | |
| 1585 | /// The producer of the bytecode being read. |
| 1586 | StringRef producer; |
| 1587 | |
| 1588 | /// The table of IR units referenced within the bytecode file. |
| 1589 | SmallVector<std::unique_ptr<BytecodeDialect>> dialects; |
| 1590 | llvm::StringMap<BytecodeDialect *> dialectsMap; |
| 1591 | SmallVector<BytecodeOperationName> opNames; |
| 1592 | |
| 1593 | /// The reader used to process resources within the bytecode. |
| 1594 | ResourceSectionReader resourceReader; |
| 1595 | |
| 1596 | /// Worklist of values with custom use-list orders to process before the end |
| 1597 | /// of the parsing. |
| 1598 | DenseMap<void *, UseListOrderStorage> valueToUseListMap; |
| 1599 | |
| 1600 | /// The table of strings referenced within the bytecode file. |
| 1601 | StringSectionReader stringReader; |
| 1602 | |
| 1603 | /// The table of properties referenced by the operation in the bytecode file. |
| 1604 | PropertiesSectionReader propertiesReader; |
| 1605 | |
| 1606 | /// The current set of available IR value scopes. |
| 1607 | std::vector<ValueScope> valueScopes; |
| 1608 | |
| 1609 | /// The global pre-order operation ordering. |
| 1610 | DenseMap<Operation *, unsigned> operationIDs; |
| 1611 | |
| 1612 | /// A block containing the set of operations defined to create forward |
| 1613 | /// references. |
| 1614 | Block forwardRefOps; |
| 1615 | |
| 1616 | /// A block containing previously created, and no longer used, forward |
| 1617 | /// reference operations. |
| 1618 | Block openForwardRefOps; |
| 1619 | |
| 1620 | /// An operation state used when instantiating forward references. |
| 1621 | OperationState forwardRefOpState; |
| 1622 | |
| 1623 | /// Reference to the input buffer. |
| 1624 | llvm::MemoryBufferRef buffer; |
| 1625 | |
| 1626 | /// The optional owning source manager, which when present may be used to |
| 1627 | /// extend the lifetime of the input buffer. |
| 1628 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef; |
| 1629 | }; |
| 1630 | |
| 1631 | LogicalResult BytecodeReader::Impl::read( |
| 1632 | Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
| 1633 | EncodingReader reader(buffer.getBuffer(), fileLoc); |
| 1634 | this->lazyOpsCallback = lazyOpsCallback; |
| 1635 | auto resetlazyOpsCallback = |
| 1636 | llvm::make_scope_exit(F: [&] { this->lazyOpsCallback = nullptr; }); |
| 1637 | |
| 1638 | // Skip over the bytecode header, this should have already been checked. |
| 1639 | if (failed(Result: reader.skipBytes(length: StringRef("ML\xefR" ).size()))) |
| 1640 | return failure(); |
| 1641 | // Parse the bytecode version and producer. |
| 1642 | if (failed(Result: parseVersion(reader)) || |
| 1643 | failed(Result: reader.parseNullTerminatedString(result&: producer))) |
| 1644 | return failure(); |
| 1645 | |
| 1646 | // Add a diagnostic handler that attaches a note that includes the original |
| 1647 | // producer of the bytecode. |
| 1648 | ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) { |
| 1649 | diag.attachNote() << "in bytecode version " << version |
| 1650 | << " produced by: " << producer; |
| 1651 | return failure(); |
| 1652 | }); |
| 1653 | |
| 1654 | // Parse the raw data for each of the top-level sections of the bytecode. |
| 1655 | std::optional<ArrayRef<uint8_t>> |
| 1656 | sectionDatas[bytecode::Section::kNumSections]; |
| 1657 | while (!reader.empty()) { |
| 1658 | // Read the next section from the bytecode. |
| 1659 | bytecode::Section::ID sectionID; |
| 1660 | ArrayRef<uint8_t> sectionData; |
| 1661 | if (failed(Result: reader.parseSection(sectionID, sectionData))) |
| 1662 | return failure(); |
| 1663 | |
| 1664 | // Check for duplicate sections, we only expect one instance of each. |
| 1665 | if (sectionDatas[sectionID]) { |
| 1666 | return reader.emitError(args: "duplicate top-level section: " , |
| 1667 | args: ::toString(sectionID)); |
| 1668 | } |
| 1669 | sectionDatas[sectionID] = sectionData; |
| 1670 | } |
| 1671 | // Check that all of the required sections were found. |
| 1672 | for (int i = 0; i < bytecode::Section::kNumSections; ++i) { |
| 1673 | bytecode::Section::ID sectionID = static_cast<bytecode::Section::ID>(i); |
| 1674 | if (!sectionDatas[i] && !isSectionOptional(sectionID, version)) { |
| 1675 | return reader.emitError(args: "missing data for top-level section: " , |
| 1676 | args: ::toString(sectionID)); |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | // Process the string section first. |
| 1681 | if (failed(Result: stringReader.initialize( |
| 1682 | fileLoc, sectionData: *sectionDatas[bytecode::Section::kString]))) |
| 1683 | return failure(); |
| 1684 | |
| 1685 | // Process the properties section. |
| 1686 | if (sectionDatas[bytecode::Section::kProperties] && |
| 1687 | failed(Result: propertiesReader.initialize( |
| 1688 | fileLoc, sectionData: *sectionDatas[bytecode::Section::kProperties]))) |
| 1689 | return failure(); |
| 1690 | |
| 1691 | // Process the dialect section. |
| 1692 | if (failed(Result: parseDialectSection(sectionData: *sectionDatas[bytecode::Section::kDialect]))) |
| 1693 | return failure(); |
| 1694 | |
| 1695 | // Process the resource section if present. |
| 1696 | if (failed(Result: parseResourceSection( |
| 1697 | reader, resourceData: sectionDatas[bytecode::Section::kResource], |
| 1698 | resourceOffsetData: sectionDatas[bytecode::Section::kResourceOffset]))) |
| 1699 | return failure(); |
| 1700 | |
| 1701 | // Process the attribute and type section. |
| 1702 | if (failed(Result: attrTypeReader.initialize( |
| 1703 | dialects, sectionData: *sectionDatas[bytecode::Section::kAttrType], |
| 1704 | offsetSectionData: *sectionDatas[bytecode::Section::kAttrTypeOffset]))) |
| 1705 | return failure(); |
| 1706 | |
| 1707 | // Finally, process the IR section. |
| 1708 | return parseIRSection(sectionData: *sectionDatas[bytecode::Section::kIR], block); |
| 1709 | } |
| 1710 | |
| 1711 | LogicalResult BytecodeReader::Impl::parseVersion(EncodingReader &reader) { |
| 1712 | if (failed(Result: reader.parseVarInt(result&: version))) |
| 1713 | return failure(); |
| 1714 | |
| 1715 | // Validate the bytecode version. |
| 1716 | uint64_t currentVersion = bytecode::kVersion; |
| 1717 | uint64_t minSupportedVersion = bytecode::kMinSupportedVersion; |
| 1718 | if (version < minSupportedVersion) { |
| 1719 | return reader.emitError(args: "bytecode version " , args&: version, |
| 1720 | args: " is older than the current version of " , |
| 1721 | args&: currentVersion, args: ", and upgrade is not supported" ); |
| 1722 | } |
| 1723 | if (version > currentVersion) { |
| 1724 | return reader.emitError(args: "bytecode version " , args&: version, |
| 1725 | args: " is newer than the current version " , |
| 1726 | args&: currentVersion); |
| 1727 | } |
| 1728 | // Override any request to lazy-load if the bytecode version is too old. |
| 1729 | if (version < bytecode::kLazyLoading) |
| 1730 | lazyLoading = false; |
| 1731 | return success(); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // Dialect Section |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | LogicalResult BytecodeDialect::load(const DialectReader &reader, |
| 1739 | MLIRContext *ctx) { |
| 1740 | if (dialect) |
| 1741 | return success(); |
| 1742 | Dialect *loadedDialect = ctx->getOrLoadDialect(name); |
| 1743 | if (!loadedDialect && !ctx->allowsUnregisteredDialects()) { |
| 1744 | return reader.emitError(msg: "dialect '" ) |
| 1745 | << name |
| 1746 | << "' is unknown. If this is intended, please call " |
| 1747 | "allowUnregisteredDialects() on the MLIRContext, or use " |
| 1748 | "-allow-unregistered-dialect with the MLIR tool used." ; |
| 1749 | } |
| 1750 | dialect = loadedDialect; |
| 1751 | |
| 1752 | // If the dialect was actually loaded, check to see if it has a bytecode |
| 1753 | // interface. |
| 1754 | if (loadedDialect) |
| 1755 | interface = dyn_cast<BytecodeDialectInterface>(Val: loadedDialect); |
| 1756 | if (!versionBuffer.empty()) { |
| 1757 | if (!interface) |
| 1758 | return reader.emitError(msg: "dialect '" ) |
| 1759 | << name |
| 1760 | << "' does not implement the bytecode interface, " |
| 1761 | "but found a version entry" ; |
| 1762 | EncodingReader encReader(versionBuffer, reader.getLoc()); |
| 1763 | DialectReader versionReader = reader.withEncodingReader(encReader); |
| 1764 | loadedVersion = interface->readVersion(reader&: versionReader); |
| 1765 | if (!loadedVersion) |
| 1766 | return failure(); |
| 1767 | } |
| 1768 | return success(); |
| 1769 | } |
| 1770 | |
| 1771 | LogicalResult |
| 1772 | BytecodeReader::Impl::parseDialectSection(ArrayRef<uint8_t> sectionData) { |
| 1773 | EncodingReader sectionReader(sectionData, fileLoc); |
| 1774 | |
| 1775 | // Parse the number of dialects in the section. |
| 1776 | uint64_t numDialects; |
| 1777 | if (failed(Result: sectionReader.parseVarInt(result&: numDialects))) |
| 1778 | return failure(); |
| 1779 | dialects.resize(N: numDialects); |
| 1780 | |
| 1781 | // Parse each of the dialects. |
| 1782 | for (uint64_t i = 0; i < numDialects; ++i) { |
| 1783 | dialects[i] = std::make_unique<BytecodeDialect>(); |
| 1784 | /// Before version kDialectVersioning, there wasn't any versioning available |
| 1785 | /// for dialects, and the entryIdx represent the string itself. |
| 1786 | if (version < bytecode::kDialectVersioning) { |
| 1787 | if (failed(Result: stringReader.parseString(reader&: sectionReader, result&: dialects[i]->name))) |
| 1788 | return failure(); |
| 1789 | continue; |
| 1790 | } |
| 1791 | |
| 1792 | // Parse ID representing dialect and version. |
| 1793 | uint64_t dialectNameIdx; |
| 1794 | bool versionAvailable; |
| 1795 | if (failed(Result: sectionReader.parseVarIntWithFlag(result&: dialectNameIdx, |
| 1796 | flag&: versionAvailable))) |
| 1797 | return failure(); |
| 1798 | if (failed(Result: stringReader.parseStringAtIndex(reader&: sectionReader, index: dialectNameIdx, |
| 1799 | result&: dialects[i]->name))) |
| 1800 | return failure(); |
| 1801 | if (versionAvailable) { |
| 1802 | bytecode::Section::ID sectionID; |
| 1803 | if (failed(Result: sectionReader.parseSection(sectionID, |
| 1804 | sectionData&: dialects[i]->versionBuffer))) |
| 1805 | return failure(); |
| 1806 | if (sectionID != bytecode::Section::kDialectVersions) { |
| 1807 | emitError(loc: fileLoc, message: "expected dialect version section" ); |
| 1808 | return failure(); |
| 1809 | } |
| 1810 | } |
| 1811 | dialectsMap[dialects[i]->name] = dialects[i].get(); |
| 1812 | } |
| 1813 | |
| 1814 | // Parse the operation names, which are grouped by dialect. |
| 1815 | auto parseOpName = [&](BytecodeDialect *dialect) { |
| 1816 | StringRef opName; |
| 1817 | std::optional<bool> wasRegistered; |
| 1818 | // Prior to version kNativePropertiesEncoding, the information about wheter |
| 1819 | // an op was registered or not wasn't encoded. |
| 1820 | if (version < bytecode::kNativePropertiesEncoding) { |
| 1821 | if (failed(Result: stringReader.parseString(reader&: sectionReader, result&: opName))) |
| 1822 | return failure(); |
| 1823 | } else { |
| 1824 | bool wasRegisteredFlag; |
| 1825 | if (failed(Result: stringReader.parseStringWithFlag(reader&: sectionReader, result&: opName, |
| 1826 | flag&: wasRegisteredFlag))) |
| 1827 | return failure(); |
| 1828 | wasRegistered = wasRegisteredFlag; |
| 1829 | } |
| 1830 | opNames.emplace_back(Args&: dialect, Args&: opName, Args&: wasRegistered); |
| 1831 | return success(); |
| 1832 | }; |
| 1833 | // Avoid re-allocation in bytecode version >=kElideUnknownBlockArgLocation |
| 1834 | // where the number of ops are known. |
| 1835 | if (version >= bytecode::kElideUnknownBlockArgLocation) { |
| 1836 | uint64_t numOps; |
| 1837 | if (failed(Result: sectionReader.parseVarInt(result&: numOps))) |
| 1838 | return failure(); |
| 1839 | opNames.reserve(N: numOps); |
| 1840 | } |
| 1841 | while (!sectionReader.empty()) |
| 1842 | if (failed(Result: parseDialectGrouping(reader&: sectionReader, dialects, entryCallback: parseOpName))) |
| 1843 | return failure(); |
| 1844 | return success(); |
| 1845 | } |
| 1846 | |
| 1847 | FailureOr<OperationName> |
| 1848 | BytecodeReader::Impl::parseOpName(EncodingReader &reader, |
| 1849 | std::optional<bool> &wasRegistered) { |
| 1850 | BytecodeOperationName *opName = nullptr; |
| 1851 | if (failed(Result: parseEntry(reader, entries&: opNames, entry&: opName, entryStr: "operation name" ))) |
| 1852 | return failure(); |
| 1853 | wasRegistered = opName->wasRegistered; |
| 1854 | // Check to see if this operation name has already been resolved. If we |
| 1855 | // haven't, load the dialect and build the operation name. |
| 1856 | if (!opName->opName) { |
| 1857 | // If the opName is empty, this is because we use to accept names such as |
| 1858 | // `foo` without any `.` separator. We shouldn't tolerate this in textual |
| 1859 | // format anymore but for now we'll be backward compatible. This can only |
| 1860 | // happen with unregistered dialects. |
| 1861 | if (opName->name.empty()) { |
| 1862 | opName->opName.emplace(args&: opName->dialect->name, args: getContext()); |
| 1863 | } else { |
| 1864 | // Load the dialect and its version. |
| 1865 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
| 1866 | dialectsMap, reader, version); |
| 1867 | if (failed(Result: opName->dialect->load(reader: dialectReader, ctx: getContext()))) |
| 1868 | return failure(); |
| 1869 | opName->opName.emplace(args: (opName->dialect->name + "." + opName->name).str(), |
| 1870 | args: getContext()); |
| 1871 | } |
| 1872 | } |
| 1873 | return *opName->opName; |
| 1874 | } |
| 1875 | |
| 1876 | //===----------------------------------------------------------------------===// |
| 1877 | // Resource Section |
| 1878 | //===----------------------------------------------------------------------===// |
| 1879 | |
| 1880 | LogicalResult BytecodeReader::Impl::parseResourceSection( |
| 1881 | EncodingReader &reader, std::optional<ArrayRef<uint8_t>> resourceData, |
| 1882 | std::optional<ArrayRef<uint8_t>> resourceOffsetData) { |
| 1883 | // Ensure both sections are either present or not. |
| 1884 | if (resourceData.has_value() != resourceOffsetData.has_value()) { |
| 1885 | if (resourceOffsetData) |
| 1886 | return emitError(loc: fileLoc, message: "unexpected resource offset section when " |
| 1887 | "resource section is not present" ); |
| 1888 | return emitError( |
| 1889 | loc: fileLoc, |
| 1890 | message: "expected resource offset section when resource section is present" ); |
| 1891 | } |
| 1892 | |
| 1893 | // If the resource sections are absent, there is nothing to do. |
| 1894 | if (!resourceData) |
| 1895 | return success(); |
| 1896 | |
| 1897 | // Initialize the resource reader with the resource sections. |
| 1898 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
| 1899 | dialectsMap, reader, version); |
| 1900 | return resourceReader.initialize(fileLoc, config, dialects, stringReader, |
| 1901 | sectionData: *resourceData, offsetSectionData: *resourceOffsetData, |
| 1902 | dialectReader, bufferOwnerRef); |
| 1903 | } |
| 1904 | |
| 1905 | //===----------------------------------------------------------------------===// |
| 1906 | // UseListOrder Helpers |
| 1907 | //===----------------------------------------------------------------------===// |
| 1908 | |
| 1909 | FailureOr<BytecodeReader::Impl::UseListMapT> |
| 1910 | BytecodeReader::Impl::parseUseListOrderForRange(EncodingReader &reader, |
| 1911 | uint64_t numResults) { |
| 1912 | BytecodeReader::Impl::UseListMapT map; |
| 1913 | uint64_t numValuesToRead = 1; |
| 1914 | if (numResults > 1 && failed(Result: reader.parseVarInt(result&: numValuesToRead))) |
| 1915 | return failure(); |
| 1916 | |
| 1917 | for (size_t valueIdx = 0; valueIdx < numValuesToRead; valueIdx++) { |
| 1918 | uint64_t resultIdx = 0; |
| 1919 | if (numResults > 1 && failed(Result: reader.parseVarInt(result&: resultIdx))) |
| 1920 | return failure(); |
| 1921 | |
| 1922 | uint64_t numValues; |
| 1923 | bool indexPairEncoding; |
| 1924 | if (failed(Result: reader.parseVarIntWithFlag(result&: numValues, flag&: indexPairEncoding))) |
| 1925 | return failure(); |
| 1926 | |
| 1927 | SmallVector<unsigned, 4> useListOrders; |
| 1928 | for (size_t idx = 0; idx < numValues; idx++) { |
| 1929 | uint64_t index; |
| 1930 | if (failed(Result: reader.parseVarInt(result&: index))) |
| 1931 | return failure(); |
| 1932 | useListOrders.push_back(Elt: index); |
| 1933 | } |
| 1934 | |
| 1935 | // Store in a map the result index |
| 1936 | map.try_emplace(Key: resultIdx, Args: UseListOrderStorage(indexPairEncoding, |
| 1937 | std::move(useListOrders))); |
| 1938 | } |
| 1939 | |
| 1940 | return map; |
| 1941 | } |
| 1942 | |
| 1943 | /// Sorts each use according to the order specified in the use-list parsed. If |
| 1944 | /// the custom use-list is not found, this means that the order needs to be |
| 1945 | /// consistent with the reverse pre-order walk of the IR. If multiple uses lie |
| 1946 | /// on the same operation, the order will follow the reverse operand number |
| 1947 | /// ordering. |
| 1948 | LogicalResult BytecodeReader::Impl::sortUseListOrder(Value value) { |
| 1949 | // Early return for trivial use-lists. |
| 1950 | if (value.use_empty() || value.hasOneUse()) |
| 1951 | return success(); |
| 1952 | |
| 1953 | bool hasIncomingOrder = |
| 1954 | valueToUseListMap.contains(Val: value.getAsOpaquePointer()); |
| 1955 | |
| 1956 | // Compute the current order of the use-list with respect to the global |
| 1957 | // ordering. Detect if the order is already sorted while doing so. |
| 1958 | bool alreadySorted = true; |
| 1959 | auto &firstUse = *value.use_begin(); |
| 1960 | uint64_t prevID = |
| 1961 | bytecode::getUseID(val&: firstUse, ownerID: operationIDs.at(Val: firstUse.getOwner())); |
| 1962 | llvm::SmallVector<std::pair<unsigned, uint64_t>> currentOrder = {{0, prevID}}; |
| 1963 | for (auto item : llvm::drop_begin(RangeOrContainer: llvm::enumerate(First: value.getUses()))) { |
| 1964 | uint64_t currentID = bytecode::getUseID( |
| 1965 | val&: item.value(), ownerID: operationIDs.at(Val: item.value().getOwner())); |
| 1966 | alreadySorted &= prevID > currentID; |
| 1967 | currentOrder.push_back(Elt: {item.index(), currentID}); |
| 1968 | prevID = currentID; |
| 1969 | } |
| 1970 | |
| 1971 | // If the order is already sorted, and there wasn't a custom order to apply |
| 1972 | // from the bytecode file, we are done. |
| 1973 | if (alreadySorted && !hasIncomingOrder) |
| 1974 | return success(); |
| 1975 | |
| 1976 | // If not already sorted, sort the indices of the current order by descending |
| 1977 | // useIDs. |
| 1978 | if (!alreadySorted) |
| 1979 | std::sort( |
| 1980 | first: currentOrder.begin(), last: currentOrder.end(), |
| 1981 | comp: [](auto elem1, auto elem2) { return elem1.second > elem2.second; }); |
| 1982 | |
| 1983 | if (!hasIncomingOrder) { |
| 1984 | // If the bytecode file did not contain any custom use-list order, it means |
| 1985 | // that the order was descending useID. Hence, shuffle by the first index |
| 1986 | // of the `currentOrder` pair. |
| 1987 | SmallVector<unsigned> shuffle(llvm::make_first_range(c&: currentOrder)); |
| 1988 | value.shuffleUseList(indices: shuffle); |
| 1989 | return success(); |
| 1990 | } |
| 1991 | |
| 1992 | // Pull the custom order info from the map. |
| 1993 | UseListOrderStorage customOrder = |
| 1994 | valueToUseListMap.at(Val: value.getAsOpaquePointer()); |
| 1995 | SmallVector<unsigned, 4> shuffle = std::move(customOrder.indices); |
| 1996 | uint64_t numUses = value.getNumUses(); |
| 1997 | |
| 1998 | // If the encoding was a pair of indices `(src, dst)` for every permutation, |
| 1999 | // reconstruct the shuffle vector for every use. Initialize the shuffle vector |
| 2000 | // as identity, and then apply the mapping encoded in the indices. |
| 2001 | if (customOrder.isIndexPairEncoding) { |
| 2002 | // Return failure if the number of indices was not representing pairs. |
| 2003 | if (shuffle.size() & 1) |
| 2004 | return failure(); |
| 2005 | |
| 2006 | SmallVector<unsigned, 4> newShuffle(numUses); |
| 2007 | size_t idx = 0; |
| 2008 | std::iota(first: newShuffle.begin(), last: newShuffle.end(), value: idx); |
| 2009 | for (idx = 0; idx < shuffle.size(); idx += 2) |
| 2010 | newShuffle[shuffle[idx]] = shuffle[idx + 1]; |
| 2011 | |
| 2012 | shuffle = std::move(newShuffle); |
| 2013 | } |
| 2014 | |
| 2015 | // Make sure that the indices represent a valid mapping. That is, the sum of |
| 2016 | // all the values needs to be equal to (numUses - 1) * numUses / 2, and no |
| 2017 | // duplicates are allowed in the list. |
| 2018 | DenseSet<unsigned> set; |
| 2019 | uint64_t accumulator = 0; |
| 2020 | for (const auto &elem : shuffle) { |
| 2021 | if (!set.insert(V: elem).second) |
| 2022 | return failure(); |
| 2023 | accumulator += elem; |
| 2024 | } |
| 2025 | if (numUses != shuffle.size() || |
| 2026 | accumulator != (((numUses - 1) * numUses) >> 1)) |
| 2027 | return failure(); |
| 2028 | |
| 2029 | // Apply the current ordering map onto the shuffle vector to get the final |
| 2030 | // use-list sorting indices before shuffling. |
| 2031 | shuffle = SmallVector<unsigned, 4>(llvm::map_range( |
| 2032 | C&: currentOrder, F: [&](auto item) { return shuffle[item.first]; })); |
| 2033 | value.shuffleUseList(indices: shuffle); |
| 2034 | return success(); |
| 2035 | } |
| 2036 | |
| 2037 | LogicalResult BytecodeReader::Impl::processUseLists(Operation *topLevelOp) { |
| 2038 | // Precompute operation IDs according to the pre-order walk of the IR. We |
| 2039 | // can't do this while parsing since parseRegions ordering is not strictly |
| 2040 | // equal to the pre-order walk. |
| 2041 | unsigned operationID = 0; |
| 2042 | topLevelOp->walk<mlir::WalkOrder::PreOrder>( |
| 2043 | callback: [&](Operation *op) { operationIDs.try_emplace(Key: op, Args: operationID++); }); |
| 2044 | |
| 2045 | auto blockWalk = topLevelOp->walk(callback: [this](Block *block) { |
| 2046 | for (auto arg : block->getArguments()) |
| 2047 | if (failed(Result: sortUseListOrder(value: arg))) |
| 2048 | return WalkResult::interrupt(); |
| 2049 | return WalkResult::advance(); |
| 2050 | }); |
| 2051 | |
| 2052 | auto resultWalk = topLevelOp->walk(callback: [this](Operation *op) { |
| 2053 | for (auto result : op->getResults()) |
| 2054 | if (failed(Result: sortUseListOrder(value: result))) |
| 2055 | return WalkResult::interrupt(); |
| 2056 | return WalkResult::advance(); |
| 2057 | }); |
| 2058 | |
| 2059 | return failure(IsFailure: blockWalk.wasInterrupted() || resultWalk.wasInterrupted()); |
| 2060 | } |
| 2061 | |
| 2062 | //===----------------------------------------------------------------------===// |
| 2063 | // IR Section |
| 2064 | //===----------------------------------------------------------------------===// |
| 2065 | |
| 2066 | LogicalResult |
| 2067 | BytecodeReader::Impl::parseIRSection(ArrayRef<uint8_t> sectionData, |
| 2068 | Block *block) { |
| 2069 | EncodingReader reader(sectionData, fileLoc); |
| 2070 | |
| 2071 | // A stack of operation regions currently being read from the bytecode. |
| 2072 | std::vector<RegionReadState> regionStack; |
| 2073 | |
| 2074 | // Parse the top-level block using a temporary module operation. |
| 2075 | OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc); |
| 2076 | regionStack.emplace_back(*moduleOp, &reader, /*isIsolatedFromAbove=*/true); |
| 2077 | regionStack.back().curBlocks.push_back(Elt: moduleOp->getBody()); |
| 2078 | regionStack.back().curBlock = regionStack.back().curRegion->begin(); |
| 2079 | if (failed(Result: parseBlockHeader(reader, readState&: regionStack.back()))) |
| 2080 | return failure(); |
| 2081 | valueScopes.emplace_back(); |
| 2082 | valueScopes.back().push(readState&: regionStack.back()); |
| 2083 | |
| 2084 | // Iteratively parse regions until everything has been resolved. |
| 2085 | while (!regionStack.empty()) |
| 2086 | if (failed(Result: parseRegions(regionStack, readState&: regionStack.back()))) |
| 2087 | return failure(); |
| 2088 | if (!forwardRefOps.empty()) { |
| 2089 | return reader.emitError( |
| 2090 | args: "not all forward unresolved forward operand references" ); |
| 2091 | } |
| 2092 | |
| 2093 | // Sort use-lists according to what specified in bytecode. |
| 2094 | if (failed(processUseLists(topLevelOp: *moduleOp))) |
| 2095 | return reader.emitError( |
| 2096 | args: "parsed use-list orders were invalid and could not be applied" ); |
| 2097 | |
| 2098 | // Resolve dialect version. |
| 2099 | for (const std::unique_ptr<BytecodeDialect> &byteCodeDialect : dialects) { |
| 2100 | // Parsing is complete, give an opportunity to each dialect to visit the |
| 2101 | // IR and perform upgrades. |
| 2102 | if (!byteCodeDialect->loadedVersion) |
| 2103 | continue; |
| 2104 | if (byteCodeDialect->interface && |
| 2105 | failed(byteCodeDialect->interface->upgradeFromVersion( |
| 2106 | topLevelOp: *moduleOp, version: *byteCodeDialect->loadedVersion))) |
| 2107 | return failure(); |
| 2108 | } |
| 2109 | |
| 2110 | // Verify that the parsed operations are valid. |
| 2111 | if (config.shouldVerifyAfterParse() && failed(verify(*moduleOp))) |
| 2112 | return failure(); |
| 2113 | |
| 2114 | // Splice the parsed operations over to the provided top-level block. |
| 2115 | auto &parsedOps = moduleOp->getBody()->getOperations(); |
| 2116 | auto &destOps = block->getOperations(); |
| 2117 | destOps.splice(destOps.end(), parsedOps, parsedOps.begin(), parsedOps.end()); |
| 2118 | return success(); |
| 2119 | } |
| 2120 | |
| 2121 | LogicalResult |
| 2122 | BytecodeReader::Impl::parseRegions(std::vector<RegionReadState> ®ionStack, |
| 2123 | RegionReadState &readState) { |
| 2124 | // Process regions, blocks, and operations until the end or if a nested |
| 2125 | // region is encountered. In this case we push a new state in regionStack and |
| 2126 | // return, the processing of the current region will resume afterward. |
| 2127 | for (; readState.curRegion != readState.endRegion; ++readState.curRegion) { |
| 2128 | // If the current block hasn't been setup yet, parse the header for this |
| 2129 | // region. The current block is already setup when this function was |
| 2130 | // interrupted to recurse down in a nested region and we resume the current |
| 2131 | // block after processing the nested region. |
| 2132 | if (readState.curBlock == Region::iterator()) { |
| 2133 | if (failed(Result: parseRegion(readState))) |
| 2134 | return failure(); |
| 2135 | |
| 2136 | // If the region is empty, there is nothing to more to do. |
| 2137 | if (readState.curRegion->empty()) |
| 2138 | continue; |
| 2139 | } |
| 2140 | |
| 2141 | // Parse the blocks within the region. |
| 2142 | EncodingReader &reader = *readState.reader; |
| 2143 | do { |
| 2144 | while (readState.numOpsRemaining--) { |
| 2145 | // Read in the next operation. We don't read its regions directly, we |
| 2146 | // handle those afterwards as necessary. |
| 2147 | bool isIsolatedFromAbove = false; |
| 2148 | FailureOr<Operation *> op = |
| 2149 | parseOpWithoutRegions(reader, readState, isIsolatedFromAbove); |
| 2150 | if (failed(Result: op)) |
| 2151 | return failure(); |
| 2152 | |
| 2153 | // If the op has regions, add it to the stack for processing and return: |
| 2154 | // we stop the processing of the current region and resume it after the |
| 2155 | // inner one is completed. Unless LazyLoading is activated in which case |
| 2156 | // nested region parsing is delayed. |
| 2157 | if ((*op)->getNumRegions()) { |
| 2158 | RegionReadState childState(*op, &reader, isIsolatedFromAbove); |
| 2159 | |
| 2160 | // Isolated regions are encoded as a section in version 2 and above. |
| 2161 | if (version >= bytecode::kLazyLoading && isIsolatedFromAbove) { |
| 2162 | bytecode::Section::ID sectionID; |
| 2163 | ArrayRef<uint8_t> sectionData; |
| 2164 | if (failed(Result: reader.parseSection(sectionID, sectionData))) |
| 2165 | return failure(); |
| 2166 | if (sectionID != bytecode::Section::kIR) |
| 2167 | return emitError(loc: fileLoc, message: "expected IR section for region" ); |
| 2168 | childState.owningReader = |
| 2169 | std::make_unique<EncodingReader>(args&: sectionData, args&: fileLoc); |
| 2170 | childState.reader = childState.owningReader.get(); |
| 2171 | |
| 2172 | // If the user has a callback set, they have the opportunity to |
| 2173 | // control lazyloading as we go. |
| 2174 | if (lazyLoading && (!lazyOpsCallback || !lazyOpsCallback(*op))) { |
| 2175 | lazyLoadableOps.emplace_back(args&: *op, args: std::move(childState)); |
| 2176 | lazyLoadableOpsMap.try_emplace(Key: *op, |
| 2177 | Args: std::prev(x: lazyLoadableOps.end())); |
| 2178 | continue; |
| 2179 | } |
| 2180 | } |
| 2181 | regionStack.push_back(x: std::move(childState)); |
| 2182 | |
| 2183 | // If the op is isolated from above, push a new value scope. |
| 2184 | if (isIsolatedFromAbove) |
| 2185 | valueScopes.emplace_back(); |
| 2186 | return success(); |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | // Move to the next block of the region. |
| 2191 | if (++readState.curBlock == readState.curRegion->end()) |
| 2192 | break; |
| 2193 | if (failed(Result: parseBlockHeader(reader, readState))) |
| 2194 | return failure(); |
| 2195 | } while (true); |
| 2196 | |
| 2197 | // Reset the current block and any values reserved for this region. |
| 2198 | readState.curBlock = {}; |
| 2199 | valueScopes.back().pop(readState); |
| 2200 | } |
| 2201 | |
| 2202 | // When the regions have been fully parsed, pop them off of the read stack. If |
| 2203 | // the regions were isolated from above, we also pop the last value scope. |
| 2204 | if (readState.isIsolatedFromAbove) { |
| 2205 | assert(!valueScopes.empty() && "Expect a valueScope after reading region" ); |
| 2206 | valueScopes.pop_back(); |
| 2207 | } |
| 2208 | assert(!regionStack.empty() && "Expect a regionStack after reading region" ); |
| 2209 | regionStack.pop_back(); |
| 2210 | return success(); |
| 2211 | } |
| 2212 | |
| 2213 | FailureOr<Operation *> |
| 2214 | BytecodeReader::Impl::parseOpWithoutRegions(EncodingReader &reader, |
| 2215 | RegionReadState &readState, |
| 2216 | bool &isIsolatedFromAbove) { |
| 2217 | // Parse the name of the operation. |
| 2218 | std::optional<bool> wasRegistered; |
| 2219 | FailureOr<OperationName> opName = parseOpName(reader, wasRegistered); |
| 2220 | if (failed(Result: opName)) |
| 2221 | return failure(); |
| 2222 | |
| 2223 | // Parse the operation mask, which indicates which components of the operation |
| 2224 | // are present. |
| 2225 | uint8_t opMask; |
| 2226 | if (failed(Result: reader.parseByte(value&: opMask))) |
| 2227 | return failure(); |
| 2228 | |
| 2229 | /// Parse the location. |
| 2230 | LocationAttr opLoc; |
| 2231 | if (failed(Result: parseAttribute(reader, result&: opLoc))) |
| 2232 | return failure(); |
| 2233 | |
| 2234 | // With the location and name resolved, we can start building the operation |
| 2235 | // state. |
| 2236 | OperationState opState(opLoc, *opName); |
| 2237 | |
| 2238 | // Parse the attributes of the operation. |
| 2239 | if (opMask & bytecode::OpEncodingMask::kHasAttrs) { |
| 2240 | DictionaryAttr dictAttr; |
| 2241 | if (failed(parseAttribute(reader, dictAttr))) |
| 2242 | return failure(); |
| 2243 | opState.attributes = dictAttr; |
| 2244 | } |
| 2245 | |
| 2246 | if (opMask & bytecode::OpEncodingMask::kHasProperties) { |
| 2247 | // kHasProperties wasn't emitted in older bytecode, we should never get |
| 2248 | // there without also having the `wasRegistered` flag available. |
| 2249 | if (!wasRegistered) |
| 2250 | return emitError(loc: fileLoc, |
| 2251 | message: "Unexpected missing `wasRegistered` opname flag at " |
| 2252 | "bytecode version " ) |
| 2253 | << version << " with properties." ; |
| 2254 | // When an operation is emitted without being registered, the properties are |
| 2255 | // stored as an attribute. Otherwise the op must implement the bytecode |
| 2256 | // interface and control the serialization. |
| 2257 | if (wasRegistered) { |
| 2258 | DialectReader dialectReader(attrTypeReader, stringReader, resourceReader, |
| 2259 | dialectsMap, reader, version); |
| 2260 | if (failed( |
| 2261 | Result: propertiesReader.read(fileLoc, dialectReader, opName: &*opName, opState))) |
| 2262 | return failure(); |
| 2263 | } else { |
| 2264 | // If the operation wasn't registered when it was emitted, the properties |
| 2265 | // was serialized as an attribute. |
| 2266 | if (failed(Result: parseAttribute(reader, result&: opState.propertiesAttr))) |
| 2267 | return failure(); |
| 2268 | } |
| 2269 | } |
| 2270 | |
| 2271 | /// Parse the results of the operation. |
| 2272 | if (opMask & bytecode::OpEncodingMask::kHasResults) { |
| 2273 | uint64_t numResults; |
| 2274 | if (failed(Result: reader.parseVarInt(result&: numResults))) |
| 2275 | return failure(); |
| 2276 | opState.types.resize(N: numResults); |
| 2277 | for (int i = 0, e = numResults; i < e; ++i) |
| 2278 | if (failed(Result: parseType(reader, result&: opState.types[i]))) |
| 2279 | return failure(); |
| 2280 | } |
| 2281 | |
| 2282 | /// Parse the operands of the operation. |
| 2283 | if (opMask & bytecode::OpEncodingMask::kHasOperands) { |
| 2284 | uint64_t numOperands; |
| 2285 | if (failed(Result: reader.parseVarInt(result&: numOperands))) |
| 2286 | return failure(); |
| 2287 | opState.operands.resize(N: numOperands); |
| 2288 | for (int i = 0, e = numOperands; i < e; ++i) |
| 2289 | if (!(opState.operands[i] = parseOperand(reader))) |
| 2290 | return failure(); |
| 2291 | } |
| 2292 | |
| 2293 | /// Parse the successors of the operation. |
| 2294 | if (opMask & bytecode::OpEncodingMask::kHasSuccessors) { |
| 2295 | uint64_t numSuccs; |
| 2296 | if (failed(Result: reader.parseVarInt(result&: numSuccs))) |
| 2297 | return failure(); |
| 2298 | opState.successors.resize(N: numSuccs); |
| 2299 | for (int i = 0, e = numSuccs; i < e; ++i) { |
| 2300 | if (failed(Result: parseEntry(reader, entries&: readState.curBlocks, entry&: opState.successors[i], |
| 2301 | entryStr: "successor" ))) |
| 2302 | return failure(); |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | /// Parse the use-list orders for the results of the operation. Use-list |
| 2307 | /// orders are available since version 3 of the bytecode. |
| 2308 | std::optional<UseListMapT> resultIdxToUseListMap = std::nullopt; |
| 2309 | if (version >= bytecode::kUseListOrdering && |
| 2310 | (opMask & bytecode::OpEncodingMask::kHasUseListOrders)) { |
| 2311 | size_t numResults = opState.types.size(); |
| 2312 | auto parseResult = parseUseListOrderForRange(reader, numResults); |
| 2313 | if (failed(Result: parseResult)) |
| 2314 | return failure(); |
| 2315 | resultIdxToUseListMap = std::move(*parseResult); |
| 2316 | } |
| 2317 | |
| 2318 | /// Parse the regions of the operation. |
| 2319 | if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) { |
| 2320 | uint64_t numRegions; |
| 2321 | if (failed(Result: reader.parseVarIntWithFlag(result&: numRegions, flag&: isIsolatedFromAbove))) |
| 2322 | return failure(); |
| 2323 | |
| 2324 | opState.regions.reserve(N: numRegions); |
| 2325 | for (int i = 0, e = numRegions; i < e; ++i) |
| 2326 | opState.regions.push_back(Elt: std::make_unique<Region>()); |
| 2327 | } |
| 2328 | |
| 2329 | // Create the operation at the back of the current block. |
| 2330 | Operation *op = Operation::create(state: opState); |
| 2331 | readState.curBlock->push_back(op); |
| 2332 | |
| 2333 | // If the operation had results, update the value references. We don't need to |
| 2334 | // do this if the current value scope is empty. That is, the op was not |
| 2335 | // encoded within a parent region. |
| 2336 | if (readState.numValues && op->getNumResults() && |
| 2337 | failed(Result: defineValues(reader, values: op->getResults()))) |
| 2338 | return failure(); |
| 2339 | |
| 2340 | /// Store a map for every value that received a custom use-list order from the |
| 2341 | /// bytecode file. |
| 2342 | if (resultIdxToUseListMap.has_value()) { |
| 2343 | for (size_t idx = 0; idx < op->getNumResults(); idx++) { |
| 2344 | if (resultIdxToUseListMap->contains(Val: idx)) { |
| 2345 | valueToUseListMap.try_emplace(Key: op->getResult(idx).getAsOpaquePointer(), |
| 2346 | Args: resultIdxToUseListMap->at(Val: idx)); |
| 2347 | } |
| 2348 | } |
| 2349 | } |
| 2350 | return op; |
| 2351 | } |
| 2352 | |
| 2353 | LogicalResult BytecodeReader::Impl::parseRegion(RegionReadState &readState) { |
| 2354 | EncodingReader &reader = *readState.reader; |
| 2355 | |
| 2356 | // Parse the number of blocks in the region. |
| 2357 | uint64_t numBlocks; |
| 2358 | if (failed(Result: reader.parseVarInt(result&: numBlocks))) |
| 2359 | return failure(); |
| 2360 | |
| 2361 | // If the region is empty, there is nothing else to do. |
| 2362 | if (numBlocks == 0) |
| 2363 | return success(); |
| 2364 | |
| 2365 | // Parse the number of values defined in this region. |
| 2366 | uint64_t numValues; |
| 2367 | if (failed(Result: reader.parseVarInt(result&: numValues))) |
| 2368 | return failure(); |
| 2369 | readState.numValues = numValues; |
| 2370 | |
| 2371 | // Create the blocks within this region. We do this before processing so that |
| 2372 | // we can rely on the blocks existing when creating operations. |
| 2373 | readState.curBlocks.clear(); |
| 2374 | readState.curBlocks.reserve(N: numBlocks); |
| 2375 | for (uint64_t i = 0; i < numBlocks; ++i) { |
| 2376 | readState.curBlocks.push_back(Elt: new Block()); |
| 2377 | readState.curRegion->push_back(block: readState.curBlocks.back()); |
| 2378 | } |
| 2379 | |
| 2380 | // Prepare the current value scope for this region. |
| 2381 | valueScopes.back().push(readState); |
| 2382 | |
| 2383 | // Parse the entry block of the region. |
| 2384 | readState.curBlock = readState.curRegion->begin(); |
| 2385 | return parseBlockHeader(reader, readState); |
| 2386 | } |
| 2387 | |
| 2388 | LogicalResult |
| 2389 | BytecodeReader::Impl::(EncodingReader &reader, |
| 2390 | RegionReadState &readState) { |
| 2391 | bool hasArgs; |
| 2392 | if (failed(Result: reader.parseVarIntWithFlag(result&: readState.numOpsRemaining, flag&: hasArgs))) |
| 2393 | return failure(); |
| 2394 | |
| 2395 | // Parse the arguments of the block. |
| 2396 | if (hasArgs && failed(Result: parseBlockArguments(reader, block: &*readState.curBlock))) |
| 2397 | return failure(); |
| 2398 | |
| 2399 | // Uselist orders are available since version 3 of the bytecode. |
| 2400 | if (version < bytecode::kUseListOrdering) |
| 2401 | return success(); |
| 2402 | |
| 2403 | uint8_t hasUseListOrders = 0; |
| 2404 | if (hasArgs && failed(Result: reader.parseByte(value&: hasUseListOrders))) |
| 2405 | return failure(); |
| 2406 | |
| 2407 | if (!hasUseListOrders) |
| 2408 | return success(); |
| 2409 | |
| 2410 | Block &blk = *readState.curBlock; |
| 2411 | auto argIdxToUseListMap = |
| 2412 | parseUseListOrderForRange(reader, numResults: blk.getNumArguments()); |
| 2413 | if (failed(Result: argIdxToUseListMap) || argIdxToUseListMap->empty()) |
| 2414 | return failure(); |
| 2415 | |
| 2416 | for (size_t idx = 0; idx < blk.getNumArguments(); idx++) |
| 2417 | if (argIdxToUseListMap->contains(Val: idx)) |
| 2418 | valueToUseListMap.try_emplace(Key: blk.getArgument(i: idx).getAsOpaquePointer(), |
| 2419 | Args: argIdxToUseListMap->at(Val: idx)); |
| 2420 | |
| 2421 | // We don't parse the operations of the block here, that's done elsewhere. |
| 2422 | return success(); |
| 2423 | } |
| 2424 | |
| 2425 | LogicalResult BytecodeReader::Impl::parseBlockArguments(EncodingReader &reader, |
| 2426 | Block *block) { |
| 2427 | // Parse the value ID for the first argument, and the number of arguments. |
| 2428 | uint64_t numArgs; |
| 2429 | if (failed(Result: reader.parseVarInt(result&: numArgs))) |
| 2430 | return failure(); |
| 2431 | |
| 2432 | SmallVector<Type> argTypes; |
| 2433 | SmallVector<Location> argLocs; |
| 2434 | argTypes.reserve(N: numArgs); |
| 2435 | argLocs.reserve(N: numArgs); |
| 2436 | |
| 2437 | Location unknownLoc = UnknownLoc::get(config.getContext()); |
| 2438 | while (numArgs--) { |
| 2439 | Type argType; |
| 2440 | LocationAttr argLoc = unknownLoc; |
| 2441 | if (version >= bytecode::kElideUnknownBlockArgLocation) { |
| 2442 | // Parse the type with hasLoc flag to determine if it has type. |
| 2443 | uint64_t typeIdx; |
| 2444 | bool hasLoc; |
| 2445 | if (failed(Result: reader.parseVarIntWithFlag(result&: typeIdx, flag&: hasLoc)) || |
| 2446 | !(argType = attrTypeReader.resolveType(index: typeIdx))) |
| 2447 | return failure(); |
| 2448 | if (hasLoc && failed(Result: parseAttribute(reader, result&: argLoc))) |
| 2449 | return failure(); |
| 2450 | } else { |
| 2451 | // All args has type and location. |
| 2452 | if (failed(Result: parseType(reader, result&: argType)) || |
| 2453 | failed(Result: parseAttribute(reader, result&: argLoc))) |
| 2454 | return failure(); |
| 2455 | } |
| 2456 | argTypes.push_back(Elt: argType); |
| 2457 | argLocs.push_back(Elt: argLoc); |
| 2458 | } |
| 2459 | block->addArguments(types: argTypes, locs: argLocs); |
| 2460 | return defineValues(reader, values: block->getArguments()); |
| 2461 | } |
| 2462 | |
| 2463 | //===----------------------------------------------------------------------===// |
| 2464 | // Value Processing |
| 2465 | //===----------------------------------------------------------------------===// |
| 2466 | |
| 2467 | Value BytecodeReader::Impl::parseOperand(EncodingReader &reader) { |
| 2468 | std::vector<Value> &values = valueScopes.back().values; |
| 2469 | Value *value = nullptr; |
| 2470 | if (failed(Result: parseEntry(reader, entries&: values, entry&: value, entryStr: "value" ))) |
| 2471 | return Value(); |
| 2472 | |
| 2473 | // Create a new forward reference if necessary. |
| 2474 | if (!*value) |
| 2475 | *value = createForwardRef(); |
| 2476 | return *value; |
| 2477 | } |
| 2478 | |
| 2479 | LogicalResult BytecodeReader::Impl::defineValues(EncodingReader &reader, |
| 2480 | ValueRange newValues) { |
| 2481 | ValueScope &valueScope = valueScopes.back(); |
| 2482 | std::vector<Value> &values = valueScope.values; |
| 2483 | |
| 2484 | unsigned &valueID = valueScope.nextValueIDs.back(); |
| 2485 | unsigned valueIDEnd = valueID + newValues.size(); |
| 2486 | if (valueIDEnd > values.size()) { |
| 2487 | return reader.emitError( |
| 2488 | args: "value index range was outside of the expected range for " |
| 2489 | "the parent region, got [" , |
| 2490 | args&: valueID, args: ", " , args&: valueIDEnd, args: "), but the maximum index was " , |
| 2491 | args: values.size() - 1); |
| 2492 | } |
| 2493 | |
| 2494 | // Assign the values and update any forward references. |
| 2495 | for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) { |
| 2496 | Value newValue = newValues[i]; |
| 2497 | |
| 2498 | // Check to see if a definition for this value already exists. |
| 2499 | if (Value oldValue = std::exchange(obj&: values[valueID], new_val&: newValue)) { |
| 2500 | Operation *forwardRefOp = oldValue.getDefiningOp(); |
| 2501 | |
| 2502 | // Assert that this is a forward reference operation. Given how we compute |
| 2503 | // definition ids (incrementally as we parse), it shouldn't be possible |
| 2504 | // for the value to be defined any other way. |
| 2505 | assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps && |
| 2506 | "value index was already defined?" ); |
| 2507 | |
| 2508 | oldValue.replaceAllUsesWith(newValue); |
| 2509 | forwardRefOp->moveBefore(block: &openForwardRefOps, iterator: openForwardRefOps.end()); |
| 2510 | } |
| 2511 | } |
| 2512 | return success(); |
| 2513 | } |
| 2514 | |
| 2515 | Value BytecodeReader::Impl::createForwardRef() { |
| 2516 | // Check for an available existing operation to use. Otherwise, create a new |
| 2517 | // fake operation to use for the reference. |
| 2518 | if (!openForwardRefOps.empty()) { |
| 2519 | Operation *op = &openForwardRefOps.back(); |
| 2520 | op->moveBefore(block: &forwardRefOps, iterator: forwardRefOps.end()); |
| 2521 | } else { |
| 2522 | forwardRefOps.push_back(op: Operation::create(state: forwardRefOpState)); |
| 2523 | } |
| 2524 | return forwardRefOps.back().getResult(idx: 0); |
| 2525 | } |
| 2526 | |
| 2527 | //===----------------------------------------------------------------------===// |
| 2528 | // Entry Points |
| 2529 | //===----------------------------------------------------------------------===// |
| 2530 | |
| 2531 | BytecodeReader::~BytecodeReader() { assert(getNumOpsToMaterialize() == 0); } |
| 2532 | |
| 2533 | BytecodeReader::BytecodeReader( |
| 2534 | llvm::MemoryBufferRef buffer, const ParserConfig &config, bool lazyLoading, |
| 2535 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
| 2536 | Location sourceFileLoc = |
| 2537 | FileLineColLoc::get(context: config.getContext(), fileName: buffer.getBufferIdentifier(), |
| 2538 | /*line=*/0, /*column=*/0); |
| 2539 | impl = std::make_unique<Impl>(args&: sourceFileLoc, args: config, args&: lazyLoading, args&: buffer, |
| 2540 | args: bufferOwnerRef); |
| 2541 | } |
| 2542 | |
| 2543 | LogicalResult BytecodeReader::readTopLevel( |
| 2544 | Block *block, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
| 2545 | return impl->read(block, lazyOpsCallback); |
| 2546 | } |
| 2547 | |
| 2548 | int64_t BytecodeReader::getNumOpsToMaterialize() const { |
| 2549 | return impl->getNumOpsToMaterialize(); |
| 2550 | } |
| 2551 | |
| 2552 | bool BytecodeReader::isMaterializable(Operation *op) { |
| 2553 | return impl->isMaterializable(op); |
| 2554 | } |
| 2555 | |
| 2556 | LogicalResult BytecodeReader::materialize( |
| 2557 | Operation *op, llvm::function_ref<bool(Operation *)> lazyOpsCallback) { |
| 2558 | return impl->materialize(op, lazyOpsCallback); |
| 2559 | } |
| 2560 | |
| 2561 | LogicalResult |
| 2562 | BytecodeReader::finalize(function_ref<bool(Operation *)> shouldMaterialize) { |
| 2563 | return impl->finalize(shouldMaterialize); |
| 2564 | } |
| 2565 | |
| 2566 | bool mlir::isBytecode(llvm::MemoryBufferRef buffer) { |
| 2567 | return buffer.getBuffer().starts_with(Prefix: "ML\xefR" ); |
| 2568 | } |
| 2569 | |
| 2570 | /// Read the bytecode from the provided memory buffer reference. |
| 2571 | /// `bufferOwnerRef` if provided is the owning source manager for the buffer, |
| 2572 | /// and may be used to extend the lifetime of the buffer. |
| 2573 | static LogicalResult |
| 2574 | readBytecodeFileImpl(llvm::MemoryBufferRef buffer, Block *block, |
| 2575 | const ParserConfig &config, |
| 2576 | const std::shared_ptr<llvm::SourceMgr> &bufferOwnerRef) { |
| 2577 | Location sourceFileLoc = |
| 2578 | FileLineColLoc::get(context: config.getContext(), fileName: buffer.getBufferIdentifier(), |
| 2579 | /*line=*/0, /*column=*/0); |
| 2580 | if (!isBytecode(buffer)) { |
| 2581 | return emitError(loc: sourceFileLoc, |
| 2582 | message: "input buffer is not an MLIR bytecode file" ); |
| 2583 | } |
| 2584 | |
| 2585 | BytecodeReader::Impl reader(sourceFileLoc, config, /*lazyLoading=*/false, |
| 2586 | buffer, bufferOwnerRef); |
| 2587 | return reader.read(block, /*lazyOpsCallback=*/nullptr); |
| 2588 | } |
| 2589 | |
| 2590 | LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block, |
| 2591 | const ParserConfig &config) { |
| 2592 | return readBytecodeFileImpl(buffer, block, config, /*bufferOwnerRef=*/{}); |
| 2593 | } |
| 2594 | LogicalResult |
| 2595 | mlir::readBytecodeFile(const std::shared_ptr<llvm::SourceMgr> &sourceMgr, |
| 2596 | Block *block, const ParserConfig &config) { |
| 2597 | return readBytecodeFileImpl( |
| 2598 | buffer: *sourceMgr->getMemoryBuffer(i: sourceMgr->getMainFileID()), block, config, |
| 2599 | bufferOwnerRef: sourceMgr); |
| 2600 | } |
| 2601 | |