1 | //===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
10 | |
11 | #include "mlir/IR/BuiltinTypes.h" |
12 | #include "mlir/IR/Matchers.h" |
13 | #include "mlir/Interfaces/DestinationStyleOpInterface.h" |
14 | #include "mlir/Interfaces/ViewLikeInterface.h" |
15 | #include "llvm/ADT/APSInt.h" |
16 | #include "llvm/Support/Debug.h" |
17 | |
18 | #define DEBUG_TYPE "value-bounds-op-interface" |
19 | |
20 | using namespace mlir; |
21 | using presburger::BoundType; |
22 | using presburger::VarKind; |
23 | |
24 | namespace mlir { |
25 | #include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc" |
26 | } // namespace mlir |
27 | |
28 | static Operation *getOwnerOfValue(Value value) { |
29 | if (auto bbArg = dyn_cast<BlockArgument>(value)) |
30 | return bbArg.getOwner()->getParentOp(); |
31 | return value.getDefiningOp(); |
32 | } |
33 | |
34 | HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets, |
35 | ArrayRef<OpFoldResult> sizes, |
36 | ArrayRef<OpFoldResult> strides) |
37 | : mixedOffsets(offsets), mixedSizes(sizes), mixedStrides(strides) { |
38 | assert(offsets.size() == sizes.size() && |
39 | "expected same number of offsets, sizes, strides"); |
40 | assert(offsets.size() == strides.size() && |
41 | "expected same number of offsets, sizes, strides"); |
42 | } |
43 | |
44 | HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets, |
45 | ArrayRef<OpFoldResult> sizes) |
46 | : mixedOffsets(offsets), mixedSizes(sizes) { |
47 | assert(offsets.size() == sizes.size() && |
48 | "expected same number of offsets and sizes"); |
49 | // Assume that all strides are 1. |
50 | if (offsets.empty()) |
51 | return; |
52 | MLIRContext *ctx = offsets.front().getContext(); |
53 | mixedStrides.append(offsets.size(), Builder(ctx).getIndexAttr(1)); |
54 | } |
55 | |
56 | HyperrectangularSlice::HyperrectangularSlice(OffsetSizeAndStrideOpInterface op) |
57 | : HyperrectangularSlice(op.getMixedOffsets(), op.getMixedSizes(), |
58 | op.getMixedStrides()) {} |
59 | |
60 | /// If ofr is a constant integer or an IntegerAttr, return the integer. |
61 | static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) { |
62 | // Case 1: Check for Constant integer. |
63 | if (auto val = llvm::dyn_cast_if_present<Value>(Val&: ofr)) { |
64 | APSInt intVal; |
65 | if (matchPattern(val, m_ConstantInt(&intVal))) |
66 | return intVal.getSExtValue(); |
67 | return std::nullopt; |
68 | } |
69 | // Case 2: Check for IntegerAttr. |
70 | Attribute attr = llvm::dyn_cast_if_present<Attribute>(Val&: ofr); |
71 | if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr)) |
72 | return intAttr.getValue().getSExtValue(); |
73 | return std::nullopt; |
74 | } |
75 | |
76 | ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr) |
77 | : Variable(ofr, std::nullopt) {} |
78 | |
79 | ValueBoundsConstraintSet::Variable::Variable(Value indexValue) |
80 | : Variable(static_cast<OpFoldResult>(indexValue)) {} |
81 | |
82 | ValueBoundsConstraintSet::Variable::Variable(Value shapedValue, int64_t dim) |
83 | : Variable(static_cast<OpFoldResult>(shapedValue), std::optional(dim)) {} |
84 | |
85 | ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr, |
86 | std::optional<int64_t> dim) { |
87 | Builder b(ofr.getContext()); |
88 | if (auto constInt = ::getConstantIntValue(ofr)) { |
89 | assert(!dim && "expected no dim for index-typed values"); |
90 | map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0, |
91 | result: b.getAffineConstantExpr(constant: *constInt)); |
92 | return; |
93 | } |
94 | Value value = cast<Value>(Val&: ofr); |
95 | #ifndef NDEBUG |
96 | if (dim) { |
97 | assert(isa<ShapedType>(value.getType()) && "expected shaped type"); |
98 | } else { |
99 | assert(value.getType().isIndex() && "expected index type"); |
100 | } |
101 | #endif // NDEBUG |
102 | map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1, |
103 | result: b.getAffineSymbolExpr(position: 0)); |
104 | mapOperands.emplace_back(Args&: value, Args&: dim); |
105 | } |
106 | |
107 | ValueBoundsConstraintSet::Variable::Variable(AffineMap map, |
108 | ArrayRef<Variable> mapOperands) { |
109 | assert(map.getNumResults() == 1 && "expected single result"); |
110 | |
111 | // Turn all dims into symbols. |
112 | Builder b(map.getContext()); |
113 | SmallVector<AffineExpr> dimReplacements, symReplacements; |
114 | for (int64_t i = 0, e = map.getNumDims(); i < e; ++i) |
115 | dimReplacements.push_back(Elt: b.getAffineSymbolExpr(position: i)); |
116 | for (int64_t i = 0, e = map.getNumSymbols(); i < e; ++i) |
117 | symReplacements.push_back(Elt: b.getAffineSymbolExpr(position: i + map.getNumDims())); |
118 | AffineMap tmpMap = map.replaceDimsAndSymbols( |
119 | dimReplacements, symReplacements, /*numResultDims=*/0, |
120 | /*numResultSyms=*/map.getNumSymbols() + map.getNumDims()); |
121 | |
122 | // Inline operands. |
123 | DenseMap<AffineExpr, AffineExpr> replacements; |
124 | for (auto [index, var] : llvm::enumerate(First&: mapOperands)) { |
125 | assert(var.map.getNumResults() == 1 && "expected single result"); |
126 | assert(var.map.getNumDims() == 0 && "expected only symbols"); |
127 | SmallVector<AffineExpr> symReplacements; |
128 | for (auto valueDim : var.mapOperands) { |
129 | auto it = llvm::find(Range&: this->mapOperands, Val: valueDim); |
130 | if (it != this->mapOperands.end()) { |
131 | // There is already a symbol for this operand. |
132 | symReplacements.push_back(Elt: b.getAffineSymbolExpr( |
133 | position: std::distance(first: this->mapOperands.begin(), last: it))); |
134 | } else { |
135 | // This is a new operand: add a new symbol. |
136 | symReplacements.push_back( |
137 | Elt: b.getAffineSymbolExpr(position: this->mapOperands.size())); |
138 | this->mapOperands.push_back(Elt: valueDim); |
139 | } |
140 | } |
141 | replacements[b.getAffineSymbolExpr(position: index)] = |
142 | var.map.getResult(idx: 0).replaceSymbols(symReplacements); |
143 | } |
144 | this->map = tmpMap.replace(map: replacements, /*numResultDims=*/0, |
145 | /*numResultSyms=*/this->mapOperands.size()); |
146 | } |
147 | |
148 | ValueBoundsConstraintSet::Variable::Variable(AffineMap map, |
149 | ArrayRef<Value> mapOperands) |
150 | : Variable(map, llvm::map_to_vector(C&: mapOperands, |
151 | F: [](Value v) { return Variable(v); })) {} |
152 | |
153 | ValueBoundsConstraintSet::ValueBoundsConstraintSet( |
154 | MLIRContext *ctx, StopConditionFn stopCondition, |
155 | bool addConservativeSemiAffineBounds) |
156 | : builder(ctx), stopCondition(stopCondition), |
157 | addConservativeSemiAffineBounds(addConservativeSemiAffineBounds) { |
158 | assert(stopCondition && "expected non-null stop condition"); |
159 | } |
160 | |
161 | char ValueBoundsConstraintSet::ID = 0; |
162 | |
163 | #ifndef NDEBUG |
164 | static void assertValidValueDim(Value value, std::optional<int64_t> dim) { |
165 | if (value.getType().isIndex()) { |
166 | assert(!dim.has_value() && "invalid dim value"); |
167 | } else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) { |
168 | assert(*dim >= 0 && "invalid dim value"); |
169 | if (shapedType.hasRank()) |
170 | assert(*dim < shapedType.getRank() && "invalid dim value"); |
171 | } else { |
172 | llvm_unreachable("unsupported type"); |
173 | } |
174 | } |
175 | #endif // NDEBUG |
176 | |
177 | void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos, |
178 | AffineExpr expr) { |
179 | // Note: If `addConservativeSemiAffineBounds` is true then the bound |
180 | // computation function needs to handle the case that the constraints set |
181 | // could become empty. This is because the conservative bounds add assumptions |
182 | // (e.g. for `mod` it assumes `rhs > 0`). If these constraints are later found |
183 | // not to hold, then the bound is invalid. |
184 | LogicalResult status = cstr.addBound( |
185 | type, pos, |
186 | boundMap: AffineMap::get(dimCount: cstr.getNumDimVars(), symbolCount: cstr.getNumSymbolVars(), result: expr), |
187 | addConservativeSemiAffineBounds |
188 | ? FlatLinearConstraints::AddConservativeSemiAffineBounds::Yes |
189 | : FlatLinearConstraints::AddConservativeSemiAffineBounds::No); |
190 | if (failed(Result: status)) { |
191 | // Not all semi-affine expressions are not yet supported by |
192 | // FlatLinearConstraints. However, we can just ignore such failures here. |
193 | // Even without this bound, there may be enough information in the |
194 | // constraint system to compute the requested bound. In case this bound is |
195 | // actually needed, `computeBound` will return `failure`. |
196 | LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: "<< expr << "\n"); |
197 | } |
198 | } |
199 | |
200 | AffineExpr ValueBoundsConstraintSet::getExpr(Value value, |
201 | std::optional<int64_t> dim) { |
202 | #ifndef NDEBUG |
203 | assertValidValueDim(value, dim); |
204 | #endif // NDEBUG |
205 | |
206 | // Check if the value/dim is statically known. In that case, an affine |
207 | // constant expression should be returned. This allows us to support |
208 | // multiplications with constants. (Multiplications of two columns in the |
209 | // constraint set is not supported.) |
210 | std::optional<int64_t> constSize = std::nullopt; |
211 | auto shapedType = dyn_cast<ShapedType>(value.getType()); |
212 | if (shapedType) { |
213 | if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim)) |
214 | constSize = shapedType.getDimSize(*dim); |
215 | } else if (auto constInt = ::getConstantIntValue(ofr: value)) { |
216 | constSize = *constInt; |
217 | } |
218 | |
219 | // If the value/dim is already mapped, return the corresponding expression |
220 | // directly. |
221 | ValueDim valueDim = std::make_pair(x&: value, y: dim.value_or(u: kIndexValue)); |
222 | if (valueDimToPosition.contains(Val: valueDim)) { |
223 | // If it is a constant, return an affine constant expression. Otherwise, |
224 | // return an affine expression that represents the respective column in the |
225 | // constraint set. |
226 | if (constSize) |
227 | return builder.getAffineConstantExpr(constant: *constSize); |
228 | return getPosExpr(pos: getPos(value, dim)); |
229 | } |
230 | |
231 | if (constSize) { |
232 | // Constant index value/dim: add column to the constraint set, add EQ bound |
233 | // and return an affine constant expression without pushing the newly added |
234 | // column to the worklist. |
235 | (void)insert(value, dim, /*isSymbol=*/true, /*addToWorklist=*/false); |
236 | if (shapedType) |
237 | bound(value)[*dim] == *constSize; |
238 | else |
239 | bound(value) == *constSize; |
240 | return builder.getAffineConstantExpr(constant: *constSize); |
241 | } |
242 | |
243 | // Dynamic value/dim: insert column to the constraint set and put it on the |
244 | // worklist. Return an affine expression that represents the newly inserted |
245 | // column in the constraint set. |
246 | return getPosExpr(pos: insert(value, dim, /*isSymbol=*/true)); |
247 | } |
248 | |
249 | AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) { |
250 | if (Value value = llvm::dyn_cast_if_present<Value>(Val&: ofr)) |
251 | return getExpr(value, /*dim=*/std::nullopt); |
252 | auto constInt = ::getConstantIntValue(ofr); |
253 | assert(constInt.has_value() && "expected Integer constant"); |
254 | return builder.getAffineConstantExpr(constant: *constInt); |
255 | } |
256 | |
257 | AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) { |
258 | return builder.getAffineConstantExpr(constant); |
259 | } |
260 | |
261 | int64_t ValueBoundsConstraintSet::insert(Value value, |
262 | std::optional<int64_t> dim, |
263 | bool isSymbol, bool addToWorklist) { |
264 | #ifndef NDEBUG |
265 | assertValidValueDim(value, dim); |
266 | #endif // NDEBUG |
267 | |
268 | ValueDim valueDim = std::make_pair(x&: value, y: dim.value_or(u: kIndexValue)); |
269 | assert(!valueDimToPosition.contains(valueDim) && "already mapped"); |
270 | int64_t pos = isSymbol ? cstr.appendVar(kind: VarKind::Symbol) |
271 | : cstr.appendVar(kind: VarKind::SetDim); |
272 | LLVM_DEBUG(llvm::dbgs() << "Inserting constraint set column "<< pos |
273 | << " for: "<< value |
274 | << " (dim: "<< dim.value_or(kIndexValue) |
275 | << ", owner: "<< getOwnerOfValue(value)->getName() |
276 | << ")\n"); |
277 | positionToValueDim.insert(I: positionToValueDim.begin() + pos, Elt: valueDim); |
278 | // Update reverse mapping. |
279 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
280 | if (positionToValueDim[i].has_value()) |
281 | valueDimToPosition[*positionToValueDim[i]] = i; |
282 | |
283 | if (addToWorklist) { |
284 | LLVM_DEBUG(llvm::dbgs() << "Push to worklist: "<< value |
285 | << " (dim: "<< dim.value_or(kIndexValue) << ")\n"); |
286 | worklist.push(x: pos); |
287 | } |
288 | |
289 | return pos; |
290 | } |
291 | |
292 | int64_t ValueBoundsConstraintSet::insert(bool isSymbol) { |
293 | int64_t pos = isSymbol ? cstr.appendVar(kind: VarKind::Symbol) |
294 | : cstr.appendVar(kind: VarKind::SetDim); |
295 | LLVM_DEBUG(llvm::dbgs() << "Inserting anonymous constraint set column "<< pos |
296 | << "\n"); |
297 | positionToValueDim.insert(I: positionToValueDim.begin() + pos, Elt: std::nullopt); |
298 | // Update reverse mapping. |
299 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
300 | if (positionToValueDim[i].has_value()) |
301 | valueDimToPosition[*positionToValueDim[i]] = i; |
302 | return pos; |
303 | } |
304 | |
305 | int64_t ValueBoundsConstraintSet::insert(AffineMap map, ValueDimList operands, |
306 | bool isSymbol) { |
307 | assert(map.getNumResults() == 1 && "expected affine map with one result"); |
308 | int64_t pos = insert(isSymbol); |
309 | |
310 | // Add map and operands to the constraint set. Dimensions are converted to |
311 | // symbols. All operands are added to the worklist (unless they were already |
312 | // processed). |
313 | auto mapper = [&](std::pair<Value, std::optional<int64_t>> v) { |
314 | return getExpr(value: v.first, dim: v.second); |
315 | }; |
316 | SmallVector<AffineExpr> dimReplacements = llvm::to_vector( |
317 | Range: llvm::map_range(C: ArrayRef(operands).take_front(N: map.getNumDims()), F: mapper)); |
318 | SmallVector<AffineExpr> symReplacements = llvm::to_vector( |
319 | Range: llvm::map_range(C: ArrayRef(operands).drop_front(N: map.getNumDims()), F: mapper)); |
320 | addBound( |
321 | type: presburger::BoundType::EQ, pos, |
322 | expr: map.getResult(idx: 0).replaceDimsAndSymbols(dimReplacements, symReplacements)); |
323 | |
324 | return pos; |
325 | } |
326 | |
327 | int64_t ValueBoundsConstraintSet::insert(const Variable &var, bool isSymbol) { |
328 | return insert(map: var.map, operands: var.mapOperands, isSymbol); |
329 | } |
330 | |
331 | int64_t ValueBoundsConstraintSet::getPos(Value value, |
332 | std::optional<int64_t> dim) const { |
333 | #ifndef NDEBUG |
334 | assertValidValueDim(value, dim); |
335 | assert((isa<OpResult>(value) || |
336 | cast<BlockArgument>(value).getOwner()->isEntryBlock()) && |
337 | "unstructured control flow is not supported"); |
338 | #endif // NDEBUG |
339 | LLVM_DEBUG(llvm::dbgs() << "Getting pos for: "<< value |
340 | << " (dim: "<< dim.value_or(kIndexValue) |
341 | << ", owner: "<< getOwnerOfValue(value)->getName() |
342 | << ")\n"); |
343 | auto it = |
344 | valueDimToPosition.find(Val: std::make_pair(x&: value, y: dim.value_or(u: kIndexValue))); |
345 | assert(it != valueDimToPosition.end() && "expected mapped entry"); |
346 | return it->second; |
347 | } |
348 | |
349 | AffineExpr ValueBoundsConstraintSet::getPosExpr(int64_t pos) { |
350 | assert(pos >= 0 && pos < cstr.getNumDimAndSymbolVars() && "invalid position"); |
351 | return pos < cstr.getNumDimVars() |
352 | ? builder.getAffineDimExpr(position: pos) |
353 | : builder.getAffineSymbolExpr(position: pos - cstr.getNumDimVars()); |
354 | } |
355 | |
356 | bool ValueBoundsConstraintSet::isMapped(Value value, |
357 | std::optional<int64_t> dim) const { |
358 | auto it = |
359 | valueDimToPosition.find(Val: std::make_pair(x&: value, y: dim.value_or(u: kIndexValue))); |
360 | return it != valueDimToPosition.end(); |
361 | } |
362 | |
363 | void ValueBoundsConstraintSet::processWorklist() { |
364 | LLVM_DEBUG(llvm::dbgs() << "Processing value bounds worklist...\n"); |
365 | while (!worklist.empty()) { |
366 | int64_t pos = worklist.front(); |
367 | worklist.pop(); |
368 | assert(positionToValueDim[pos].has_value() && |
369 | "did not expect std::nullopt on worklist"); |
370 | ValueDim valueDim = *positionToValueDim[pos]; |
371 | Value value = valueDim.first; |
372 | int64_t dim = valueDim.second; |
373 | |
374 | // Check for static dim size. |
375 | if (dim != kIndexValue) { |
376 | auto shapedType = cast<ShapedType>(value.getType()); |
377 | if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) { |
378 | bound(value)[dim] == getExpr(shapedType.getDimSize(dim)); |
379 | continue; |
380 | } |
381 | } |
382 | |
383 | // Do not process any further if the stop condition is met. |
384 | auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(t&: dim); |
385 | if (stopCondition(value, maybeDim, *this)) { |
386 | LLVM_DEBUG(llvm::dbgs() << "Stop condition met for: "<< value |
387 | << " (dim: "<< maybeDim << ")\n"); |
388 | continue; |
389 | } |
390 | |
391 | // Query `ValueBoundsOpInterface` for constraints. New items may be added to |
392 | // the worklist. |
393 | auto valueBoundsOp = |
394 | dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value)); |
395 | LLVM_DEBUG(llvm::dbgs() |
396 | << "Query value bounds for: "<< value |
397 | << " (owner: "<< getOwnerOfValue(value)->getName() << ")\n"); |
398 | if (valueBoundsOp) { |
399 | if (dim == kIndexValue) { |
400 | valueBoundsOp.populateBoundsForIndexValue(value, *this); |
401 | } else { |
402 | valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this); |
403 | } |
404 | continue; |
405 | } |
406 | LLVM_DEBUG(llvm::dbgs() << "--> ValueBoundsOpInterface not implemented\n"); |
407 | |
408 | // If the op does not implement `ValueBoundsOpInterface`, check if it |
409 | // implements the `DestinationStyleOpInterface`. OpResults of such ops are |
410 | // tied to OpOperands. Tied values have the same shape. |
411 | auto dstOp = value.getDefiningOp<DestinationStyleOpInterface>(); |
412 | if (!dstOp || dim == kIndexValue) |
413 | continue; |
414 | Value tiedOperand = dstOp.getTiedOpOperand(cast<OpResult>(Val&: value))->get(); |
415 | bound(value)[dim] == getExpr(value: tiedOperand, dim); |
416 | } |
417 | } |
418 | |
419 | void ValueBoundsConstraintSet::projectOut(int64_t pos) { |
420 | assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) && |
421 | "invalid position"); |
422 | cstr.projectOut(pos); |
423 | if (positionToValueDim[pos].has_value()) { |
424 | bool erased = valueDimToPosition.erase(Val: *positionToValueDim[pos]); |
425 | (void)erased; |
426 | assert(erased && "inconsistent reverse mapping"); |
427 | } |
428 | positionToValueDim.erase(CI: positionToValueDim.begin() + pos); |
429 | // Update reverse mapping. |
430 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
431 | if (positionToValueDim[i].has_value()) |
432 | valueDimToPosition[*positionToValueDim[i]] = i; |
433 | } |
434 | |
435 | void ValueBoundsConstraintSet::projectOut( |
436 | function_ref<bool(ValueDim)> condition) { |
437 | int64_t nextPos = 0; |
438 | while (nextPos < static_cast<int64_t>(positionToValueDim.size())) { |
439 | if (positionToValueDim[nextPos].has_value() && |
440 | condition(*positionToValueDim[nextPos])) { |
441 | projectOut(pos: nextPos); |
442 | // The column was projected out so another column is now at that position. |
443 | // Do not increase the counter. |
444 | } else { |
445 | ++nextPos; |
446 | } |
447 | } |
448 | } |
449 | |
450 | void ValueBoundsConstraintSet::projectOutAnonymous( |
451 | std::optional<int64_t> except) { |
452 | int64_t nextPos = 0; |
453 | while (nextPos < static_cast<int64_t>(positionToValueDim.size())) { |
454 | if (positionToValueDim[nextPos].has_value() || except == nextPos) { |
455 | ++nextPos; |
456 | } else { |
457 | projectOut(pos: nextPos); |
458 | // The column was projected out so another column is now at that position. |
459 | // Do not increase the counter. |
460 | } |
461 | } |
462 | } |
463 | |
464 | LogicalResult ValueBoundsConstraintSet::computeBound( |
465 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
466 | const Variable &var, StopConditionFn stopCondition, bool closedUB) { |
467 | MLIRContext *ctx = var.getContext(); |
468 | int64_t ubAdjustment = closedUB ? 0 : 1; |
469 | Builder b(ctx); |
470 | mapOperands.clear(); |
471 | |
472 | // Process the backward slice of `value` (i.e., reverse use-def chain) until |
473 | // `stopCondition` is met. |
474 | ValueBoundsConstraintSet cstr(ctx, stopCondition); |
475 | int64_t pos = cstr.insert(var, /*isSymbol=*/false); |
476 | assert(pos == 0 && "expected first column"); |
477 | cstr.processWorklist(); |
478 | |
479 | // Project out all variables (apart from `valueDim`) that do not match the |
480 | // stop condition. |
481 | cstr.projectOut(condition: [&](ValueDim p) { |
482 | auto maybeDim = |
483 | p.second == kIndexValue ? std::nullopt : std::make_optional(t&: p.second); |
484 | return !stopCondition(p.first, maybeDim, cstr); |
485 | }); |
486 | cstr.projectOutAnonymous(/*except=*/pos); |
487 | |
488 | // Compute lower and upper bounds for `valueDim`. |
489 | SmallVector<AffineMap> lb(1), ub(1); |
490 | cstr.cstr.getSliceBounds(offset: pos, num: 1, context: ctx, lbMaps: &lb, ubMaps: &ub, |
491 | /*closedUB=*/true); |
492 | |
493 | // Note: There are TODOs in the implementation of `getSliceBounds`. In such a |
494 | // case, no lower/upper bound can be computed at the moment. |
495 | // EQ, UB bounds: upper bound is needed. |
496 | if ((type != BoundType::LB) && |
497 | (ub.empty() || !ub[0] || ub[0].getNumResults() == 0)) |
498 | return failure(); |
499 | // EQ, LB bounds: lower bound is needed. |
500 | if ((type != BoundType::UB) && |
501 | (lb.empty() || !lb[0] || lb[0].getNumResults() == 0)) |
502 | return failure(); |
503 | |
504 | // TODO: Generate an affine map with multiple results. |
505 | if (type != BoundType::LB) |
506 | assert(ub.size() == 1 && ub[0].getNumResults() == 1 && |
507 | "multiple bounds not supported"); |
508 | if (type != BoundType::UB) |
509 | assert(lb.size() == 1 && lb[0].getNumResults() == 1 && |
510 | "multiple bounds not supported"); |
511 | |
512 | // EQ bound: lower and upper bound must match. |
513 | if (type == BoundType::EQ && ub[0] != lb[0]) |
514 | return failure(); |
515 | |
516 | AffineMap bound; |
517 | if (type == BoundType::EQ || type == BoundType::LB) { |
518 | bound = lb[0]; |
519 | } else { |
520 | // Computed UB is a closed bound. |
521 | bound = AffineMap::get(dimCount: ub[0].getNumDims(), symbolCount: ub[0].getNumSymbols(), |
522 | result: ub[0].getResult(idx: 0) + ubAdjustment); |
523 | } |
524 | |
525 | // Gather all SSA values that are used in the computed bound. |
526 | assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() && |
527 | "inconsistent mapping state"); |
528 | SmallVector<AffineExpr> replacementDims, replacementSymbols; |
529 | int64_t numDims = 0, numSymbols = 0; |
530 | for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) { |
531 | // Skip `value`. |
532 | if (i == pos) |
533 | continue; |
534 | // Check if the position `i` is used in the generated bound. If so, it must |
535 | // be included in the generated affine.apply op. |
536 | bool used = false; |
537 | bool isDim = i < cstr.cstr.getNumDimVars(); |
538 | if (isDim) { |
539 | if (bound.isFunctionOfDim(position: i)) |
540 | used = true; |
541 | } else { |
542 | if (bound.isFunctionOfSymbol(position: i - cstr.cstr.getNumDimVars())) |
543 | used = true; |
544 | } |
545 | |
546 | if (!used) { |
547 | // Not used: Remove dim/symbol from the result. |
548 | if (isDim) { |
549 | replacementDims.push_back(Elt: b.getAffineConstantExpr(constant: 0)); |
550 | } else { |
551 | replacementSymbols.push_back(Elt: b.getAffineConstantExpr(constant: 0)); |
552 | } |
553 | continue; |
554 | } |
555 | |
556 | if (isDim) { |
557 | replacementDims.push_back(Elt: b.getAffineDimExpr(position: numDims++)); |
558 | } else { |
559 | replacementSymbols.push_back(Elt: b.getAffineSymbolExpr(position: numSymbols++)); |
560 | } |
561 | |
562 | assert(cstr.positionToValueDim[i].has_value() && |
563 | "cannot build affine map in terms of anonymous column"); |
564 | ValueBoundsConstraintSet::ValueDim valueDim = *cstr.positionToValueDim[i]; |
565 | Value value = valueDim.first; |
566 | int64_t dim = valueDim.second; |
567 | if (dim == ValueBoundsConstraintSet::kIndexValue) { |
568 | // An index-type value is used: can be used directly in the affine.apply |
569 | // op. |
570 | assert(value.getType().isIndex() && "expected index type"); |
571 | mapOperands.push_back(Elt: std::make_pair(x&: value, y: std::nullopt)); |
572 | continue; |
573 | } |
574 | |
575 | assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) && |
576 | "expected dynamic dim"); |
577 | mapOperands.push_back(Elt: std::make_pair(x&: value, y&: dim)); |
578 | } |
579 | |
580 | resultMap = bound.replaceDimsAndSymbols(dimReplacements: replacementDims, symReplacements: replacementSymbols, |
581 | numResultDims: numDims, numResultSyms: numSymbols); |
582 | return success(); |
583 | } |
584 | |
585 | LogicalResult ValueBoundsConstraintSet::computeDependentBound( |
586 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
587 | const Variable &var, ValueDimList dependencies, bool closedUB) { |
588 | return computeBound( |
589 | resultMap, mapOperands, type, var, |
590 | stopCondition: [&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) { |
591 | return llvm::is_contained(Range&: dependencies, Element: std::make_pair(x&: v, y&: d)); |
592 | }, |
593 | closedUB); |
594 | } |
595 | |
596 | LogicalResult ValueBoundsConstraintSet::computeIndependentBound( |
597 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
598 | const Variable &var, ValueRange independencies, bool closedUB) { |
599 | // Return "true" if the given value is independent of all values in |
600 | // `independencies`. I.e., neither the value itself nor any value in the |
601 | // backward slice (reverse use-def chain) is contained in `independencies`. |
602 | auto isIndependent = [&](Value v) { |
603 | SmallVector<Value> worklist; |
604 | DenseSet<Value> visited; |
605 | worklist.push_back(Elt: v); |
606 | while (!worklist.empty()) { |
607 | Value next = worklist.pop_back_val(); |
608 | if (!visited.insert(V: next).second) |
609 | continue; |
610 | if (llvm::is_contained(Range&: independencies, Element: next)) |
611 | return false; |
612 | // TODO: DominanceInfo could be used to stop the traversal early. |
613 | Operation *op = next.getDefiningOp(); |
614 | if (!op) |
615 | continue; |
616 | worklist.append(in_start: op->getOperands().begin(), in_end: op->getOperands().end()); |
617 | } |
618 | return true; |
619 | }; |
620 | |
621 | // Reify bounds in terms of any independent values. |
622 | return computeBound( |
623 | resultMap, mapOperands, type, var, |
624 | stopCondition: [&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) { |
625 | return isIndependent(v); |
626 | }, |
627 | closedUB); |
628 | } |
629 | |
630 | FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound( |
631 | presburger::BoundType type, const Variable &var, |
632 | StopConditionFn stopCondition, bool closedUB) { |
633 | // Default stop condition if none was specified: Keep adding constraints until |
634 | // a bound could be computed. |
635 | int64_t pos = 0; |
636 | auto defaultStopCondition = [&](Value v, std::optional<int64_t> dim, |
637 | ValueBoundsConstraintSet &cstr) { |
638 | return cstr.cstr.getConstantBound64(type, pos).has_value(); |
639 | }; |
640 | |
641 | ValueBoundsConstraintSet cstr( |
642 | var.getContext(), stopCondition ? stopCondition : defaultStopCondition); |
643 | pos = cstr.populateConstraints(map: var.map, mapOperands: var.mapOperands); |
644 | assert(pos == 0 && "expected `map` is the first column"); |
645 | |
646 | // Compute constant bound for `valueDim`. |
647 | int64_t ubAdjustment = closedUB ? 0 : 1; |
648 | if (auto bound = cstr.cstr.getConstantBound64(type, pos)) |
649 | return type == BoundType::UB ? *bound + ubAdjustment : *bound; |
650 | return failure(); |
651 | } |
652 | |
653 | void ValueBoundsConstraintSet::populateConstraints(Value value, |
654 | std::optional<int64_t> dim) { |
655 | #ifndef NDEBUG |
656 | assertValidValueDim(value, dim); |
657 | #endif // NDEBUG |
658 | |
659 | // `getExpr` pushes the value/dim onto the worklist (unless it was already |
660 | // analyzed). |
661 | (void)getExpr(value, dim); |
662 | // Process all values/dims on the worklist. This may traverse and analyze |
663 | // additional IR, depending the current stop function. |
664 | processWorklist(); |
665 | } |
666 | |
667 | int64_t ValueBoundsConstraintSet::populateConstraints(AffineMap map, |
668 | ValueDimList operands) { |
669 | int64_t pos = insert(map, operands, /*isSymbol=*/false); |
670 | // Process the backward slice of `operands` (i.e., reverse use-def chain) |
671 | // until `stopCondition` is met. |
672 | processWorklist(); |
673 | return pos; |
674 | } |
675 | |
676 | FailureOr<int64_t> |
677 | ValueBoundsConstraintSet::computeConstantDelta(Value value1, Value value2, |
678 | std::optional<int64_t> dim1, |
679 | std::optional<int64_t> dim2) { |
680 | #ifndef NDEBUG |
681 | assertValidValueDim(value: value1, dim: dim1); |
682 | assertValidValueDim(value: value2, dim: dim2); |
683 | #endif // NDEBUG |
684 | |
685 | Builder b(value1.getContext()); |
686 | AffineMap map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0, |
687 | result: b.getAffineDimExpr(position: 0) - b.getAffineDimExpr(position: 1)); |
688 | return computeConstantBound(type: presburger::BoundType::EQ, |
689 | var: Variable(map, {{value1, dim1}, {value2, dim2}})); |
690 | } |
691 | |
692 | bool ValueBoundsConstraintSet::comparePos(int64_t lhsPos, |
693 | ComparisonOperator cmp, |
694 | int64_t rhsPos) { |
695 | // This function returns "true" if "lhs CMP rhs" is proven to hold. |
696 | // |
697 | // Example for ComparisonOperator::LE and index-typed values: We would like to |
698 | // prove that lhs <= rhs. Proof by contradiction: add the inverse |
699 | // relation (lhs > rhs) to the constraint set and check if the resulting |
700 | // constraint set is "empty" (i.e. has no solution). In that case, |
701 | // lhs > rhs must be incorrect and we can deduce that lhs <= rhs holds. |
702 | |
703 | // We cannot prove anything if the constraint set is already empty. |
704 | if (cstr.isEmpty()) { |
705 | LLVM_DEBUG( |
706 | llvm::dbgs() |
707 | << "cannot compare value/dims: constraint system is already empty"); |
708 | return false; |
709 | } |
710 | |
711 | // EQ can be expressed as LE and GE. |
712 | if (cmp == EQ) |
713 | return comparePos(lhsPos, cmp: ComparisonOperator::LE, rhsPos) && |
714 | comparePos(lhsPos, cmp: ComparisonOperator::GE, rhsPos); |
715 | |
716 | // Construct inequality. |
717 | SmallVector<int64_t> eq(cstr.getNumCols(), 0); |
718 | if (cmp == LT || cmp == LE) { |
719 | ++eq[lhsPos]; |
720 | --eq[rhsPos]; |
721 | } else if (cmp == GT || cmp == GE) { |
722 | --eq[lhsPos]; |
723 | ++eq[rhsPos]; |
724 | } else { |
725 | llvm_unreachable("unsupported comparison operator"); |
726 | } |
727 | if (cmp == LE || cmp == GE) |
728 | eq[cstr.getNumCols() - 1] -= 1; |
729 | |
730 | // Add inequality to the constraint set and check if it made the constraint |
731 | // set empty. |
732 | int64_t ineqPos = cstr.getNumInequalities(); |
733 | cstr.addInequality(inEq: eq); |
734 | bool isEmpty = cstr.isEmpty(); |
735 | cstr.removeInequality(pos: ineqPos); |
736 | return isEmpty; |
737 | } |
738 | |
739 | bool ValueBoundsConstraintSet::populateAndCompare(const Variable &lhs, |
740 | ComparisonOperator cmp, |
741 | const Variable &rhs) { |
742 | int64_t lhsPos = populateConstraints(map: lhs.map, operands: lhs.mapOperands); |
743 | int64_t rhsPos = populateConstraints(map: rhs.map, operands: rhs.mapOperands); |
744 | return comparePos(lhsPos, cmp, rhsPos); |
745 | } |
746 | |
747 | bool ValueBoundsConstraintSet::compare(const Variable &lhs, |
748 | ComparisonOperator cmp, |
749 | const Variable &rhs) { |
750 | int64_t lhsPos = -1, rhsPos = -1; |
751 | auto stopCondition = [&](Value v, std::optional<int64_t> dim, |
752 | ValueBoundsConstraintSet &cstr) { |
753 | // Keep processing as long as lhs/rhs were not processed. |
754 | if (size_t(lhsPos) >= cstr.positionToValueDim.size() || |
755 | size_t(rhsPos) >= cstr.positionToValueDim.size()) |
756 | return false; |
757 | // Keep processing as long as the relation cannot be proven. |
758 | return cstr.comparePos(lhsPos, cmp, rhsPos); |
759 | }; |
760 | ValueBoundsConstraintSet cstr(lhs.getContext(), stopCondition); |
761 | lhsPos = cstr.populateConstraints(map: lhs.map, operands: lhs.mapOperands); |
762 | rhsPos = cstr.populateConstraints(map: rhs.map, operands: rhs.mapOperands); |
763 | return cstr.comparePos(lhsPos, cmp, rhsPos); |
764 | } |
765 | |
766 | FailureOr<bool> ValueBoundsConstraintSet::areEqual(const Variable &var1, |
767 | const Variable &var2) { |
768 | if (ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::EQ, rhs: var2)) |
769 | return true; |
770 | if (ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::LT, rhs: var2) || |
771 | ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::GT, rhs: var2)) |
772 | return false; |
773 | return failure(); |
774 | } |
775 | |
776 | FailureOr<bool> |
777 | ValueBoundsConstraintSet::areOverlappingSlices(MLIRContext *ctx, |
778 | HyperrectangularSlice slice1, |
779 | HyperrectangularSlice slice2) { |
780 | assert(slice1.getMixedOffsets().size() == slice2.getMixedOffsets().size() && |
781 | "expected slices of same rank"); |
782 | assert(slice1.getMixedSizes().size() == slice2.getMixedSizes().size() && |
783 | "expected slices of same rank"); |
784 | assert(slice1.getMixedStrides().size() == slice2.getMixedStrides().size() && |
785 | "expected slices of same rank"); |
786 | |
787 | Builder b(ctx); |
788 | bool foundUnknownBound = false; |
789 | for (int64_t i = 0, e = slice1.getMixedOffsets().size(); i < e; ++i) { |
790 | AffineMap map = |
791 | AffineMap::get(/*dimCount=*/0, /*symbolCount=*/4, |
792 | result: b.getAffineSymbolExpr(position: 0) + |
793 | b.getAffineSymbolExpr(position: 1) * b.getAffineSymbolExpr(position: 2) - |
794 | b.getAffineSymbolExpr(position: 3)); |
795 | { |
796 | // Case 1: Slices are guaranteed to be non-overlapping if |
797 | // offset1 + size1 * stride1 <= offset2 (for at least one dimension). |
798 | SmallVector<OpFoldResult> ofrOperands; |
799 | ofrOperands.push_back(Elt: slice1.getMixedOffsets()[i]); |
800 | ofrOperands.push_back(Elt: slice1.getMixedSizes()[i]); |
801 | ofrOperands.push_back(Elt: slice1.getMixedStrides()[i]); |
802 | ofrOperands.push_back(Elt: slice2.getMixedOffsets()[i]); |
803 | SmallVector<Value> valueOperands; |
804 | AffineMap foldedMap = |
805 | foldAttributesIntoMap(b, map, operands: ofrOperands, remainingValues&: valueOperands); |
806 | FailureOr<int64_t> constBound = computeConstantBound( |
807 | type: presburger::BoundType::EQ, var: Variable(foldedMap, valueOperands)); |
808 | foundUnknownBound |= failed(Result: constBound); |
809 | if (succeeded(Result: constBound) && *constBound <= 0) |
810 | return false; |
811 | } |
812 | { |
813 | // Case 2: Slices are guaranteed to be non-overlapping if |
814 | // offset2 + size2 * stride2 <= offset1 (for at least one dimension). |
815 | SmallVector<OpFoldResult> ofrOperands; |
816 | ofrOperands.push_back(Elt: slice2.getMixedOffsets()[i]); |
817 | ofrOperands.push_back(Elt: slice2.getMixedSizes()[i]); |
818 | ofrOperands.push_back(Elt: slice2.getMixedStrides()[i]); |
819 | ofrOperands.push_back(Elt: slice1.getMixedOffsets()[i]); |
820 | SmallVector<Value> valueOperands; |
821 | AffineMap foldedMap = |
822 | foldAttributesIntoMap(b, map, operands: ofrOperands, remainingValues&: valueOperands); |
823 | FailureOr<int64_t> constBound = computeConstantBound( |
824 | type: presburger::BoundType::EQ, var: Variable(foldedMap, valueOperands)); |
825 | foundUnknownBound |= failed(Result: constBound); |
826 | if (succeeded(Result: constBound) && *constBound <= 0) |
827 | return false; |
828 | } |
829 | } |
830 | |
831 | // If at least one bound could not be computed, we cannot be certain that the |
832 | // slices are really overlapping. |
833 | if (foundUnknownBound) |
834 | return failure(); |
835 | |
836 | // All bounds could be computed and none of the above cases applied. |
837 | // Therefore, the slices are guaranteed to overlap. |
838 | return true; |
839 | } |
840 | |
841 | FailureOr<bool> |
842 | ValueBoundsConstraintSet::areEquivalentSlices(MLIRContext *ctx, |
843 | HyperrectangularSlice slice1, |
844 | HyperrectangularSlice slice2) { |
845 | assert(slice1.getMixedOffsets().size() == slice2.getMixedOffsets().size() && |
846 | "expected slices of same rank"); |
847 | assert(slice1.getMixedSizes().size() == slice2.getMixedSizes().size() && |
848 | "expected slices of same rank"); |
849 | assert(slice1.getMixedStrides().size() == slice2.getMixedStrides().size() && |
850 | "expected slices of same rank"); |
851 | |
852 | // The two slices are equivalent if all of their offsets, sizes and strides |
853 | // are equal. If equality cannot be determined for at least one of those |
854 | // values, equivalence cannot be determined and this function returns |
855 | // "failure". |
856 | for (auto [offset1, offset2] : |
857 | llvm::zip_equal(t: slice1.getMixedOffsets(), u: slice2.getMixedOffsets())) { |
858 | FailureOr<bool> equal = areEqual(var1: offset1, var2: offset2); |
859 | if (failed(Result: equal)) |
860 | return failure(); |
861 | if (!equal.value()) |
862 | return false; |
863 | } |
864 | for (auto [size1, size2] : |
865 | llvm::zip_equal(t: slice1.getMixedSizes(), u: slice2.getMixedSizes())) { |
866 | FailureOr<bool> equal = areEqual(var1: size1, var2: size2); |
867 | if (failed(Result: equal)) |
868 | return failure(); |
869 | if (!equal.value()) |
870 | return false; |
871 | } |
872 | for (auto [stride1, stride2] : |
873 | llvm::zip_equal(t: slice1.getMixedStrides(), u: slice2.getMixedStrides())) { |
874 | FailureOr<bool> equal = areEqual(var1: stride1, var2: stride2); |
875 | if (failed(Result: equal)) |
876 | return failure(); |
877 | if (!equal.value()) |
878 | return false; |
879 | } |
880 | return true; |
881 | } |
882 | |
883 | void ValueBoundsConstraintSet::dump() const { |
884 | llvm::errs() << "==========\nColumns:\n"; |
885 | llvm::errs() << "(column\tdim\tvalue)\n"; |
886 | for (auto [index, valueDim] : llvm::enumerate(First: positionToValueDim)) { |
887 | llvm::errs() << " "<< index << "\t"; |
888 | if (valueDim) { |
889 | if (valueDim->second == kIndexValue) { |
890 | llvm::errs() << "n/a\t"; |
891 | } else { |
892 | llvm::errs() << valueDim->second << "\t"; |
893 | } |
894 | llvm::errs() << getOwnerOfValue(value: valueDim->first)->getName() << " "; |
895 | if (OpResult result = dyn_cast<OpResult>(Val: valueDim->first)) { |
896 | llvm::errs() << "(result "<< result.getResultNumber() << ")"; |
897 | } else { |
898 | llvm::errs() << "(bbarg " |
899 | << cast<BlockArgument>(Val: valueDim->first).getArgNumber() |
900 | << ")"; |
901 | } |
902 | llvm::errs() << "\n"; |
903 | } else { |
904 | llvm::errs() << "n/a\tn/a\n"; |
905 | } |
906 | } |
907 | llvm::errs() << "\nConstraint set:\n"; |
908 | cstr.dump(); |
909 | llvm::errs() << "==========\n"; |
910 | } |
911 | |
912 | ValueBoundsConstraintSet::BoundBuilder & |
913 | ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) { |
914 | assert(!this->dim.has_value() && "dim was already set"); |
915 | this->dim = dim; |
916 | #ifndef NDEBUG |
917 | assertValidValueDim(value, dim: this->dim); |
918 | #endif // NDEBUG |
919 | return *this; |
920 | } |
921 | |
922 | void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) { |
923 | #ifndef NDEBUG |
924 | assertValidValueDim(value, dim: this->dim); |
925 | #endif // NDEBUG |
926 | cstr.addBound(type: BoundType::UB, pos: cstr.getPos(value, dim: this->dim), expr); |
927 | } |
928 | |
929 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) { |
930 | operator<(expr: expr + 1); |
931 | } |
932 | |
933 | void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) { |
934 | operator>=(expr: expr + 1); |
935 | } |
936 | |
937 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) { |
938 | #ifndef NDEBUG |
939 | assertValidValueDim(value, dim: this->dim); |
940 | #endif // NDEBUG |
941 | cstr.addBound(type: BoundType::LB, pos: cstr.getPos(value, dim: this->dim), expr); |
942 | } |
943 | |
944 | void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) { |
945 | #ifndef NDEBUG |
946 | assertValidValueDim(value, dim: this->dim); |
947 | #endif // NDEBUG |
948 | cstr.addBound(type: BoundType::EQ, pos: cstr.getPos(value, dim: this->dim), expr); |
949 | } |
950 | |
951 | void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) { |
952 | operator<(expr: cstr.getExpr(ofr)); |
953 | } |
954 | |
955 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) { |
956 | operator<=(expr: cstr.getExpr(ofr)); |
957 | } |
958 | |
959 | void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) { |
960 | operator>(expr: cstr.getExpr(ofr)); |
961 | } |
962 | |
963 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) { |
964 | operator>=(expr: cstr.getExpr(ofr)); |
965 | } |
966 | |
967 | void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) { |
968 | operator==(expr: cstr.getExpr(ofr)); |
969 | } |
970 | |
971 | void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) { |
972 | operator<(expr: cstr.getExpr(constant: i)); |
973 | } |
974 | |
975 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) { |
976 | operator<=(expr: cstr.getExpr(constant: i)); |
977 | } |
978 | |
979 | void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) { |
980 | operator>(expr: cstr.getExpr(constant: i)); |
981 | } |
982 | |
983 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) { |
984 | operator>=(expr: cstr.getExpr(constant: i)); |
985 | } |
986 | |
987 | void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) { |
988 | operator==(expr: cstr.getExpr(constant: i)); |
989 | } |
990 |
Definitions
- getOwnerOfValue
- HyperrectangularSlice
- HyperrectangularSlice
- HyperrectangularSlice
- getConstantIntValue
- Variable
- Variable
- Variable
- Variable
- Variable
- Variable
- ValueBoundsConstraintSet
- ID
- assertValidValueDim
- addBound
- getExpr
- getExpr
- getExpr
- insert
- insert
- insert
- insert
- getPos
- getPosExpr
- isMapped
- processWorklist
- projectOut
- projectOut
- projectOutAnonymous
- computeBound
- computeDependentBound
- computeIndependentBound
- computeConstantBound
- populateConstraints
- populateConstraints
- computeConstantDelta
- comparePos
- populateAndCompare
- compare
- areEqual
- areOverlappingSlices
- areEquivalentSlices
- dump
- operator[]
- operator<
- operator<=
- operator>
- operator>=
- operator==
- operator<
- operator<=
- operator>
- operator>=
- operator==
- operator<
- operator<=
- operator>
- operator>=
Improve your Profiling and Debugging skills
Find out more