1 | //===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
10 | |
11 | #include "mlir/IR/BuiltinTypes.h" |
12 | #include "mlir/IR/Matchers.h" |
13 | #include "mlir/Interfaces/DestinationStyleOpInterface.h" |
14 | #include "mlir/Interfaces/ViewLikeInterface.h" |
15 | #include "llvm/ADT/APSInt.h" |
16 | #include "llvm/Support/Debug.h" |
17 | |
18 | #define DEBUG_TYPE "value-bounds-op-interface" |
19 | |
20 | using namespace mlir; |
21 | using presburger::BoundType; |
22 | using presburger::VarKind; |
23 | |
24 | namespace mlir { |
25 | #include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc" |
26 | } // namespace mlir |
27 | |
28 | static Operation *getOwnerOfValue(Value value) { |
29 | if (auto bbArg = dyn_cast<BlockArgument>(value)) |
30 | return bbArg.getOwner()->getParentOp(); |
31 | return value.getDefiningOp(); |
32 | } |
33 | |
34 | HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets, |
35 | ArrayRef<OpFoldResult> sizes, |
36 | ArrayRef<OpFoldResult> strides) |
37 | : mixedOffsets(offsets), mixedSizes(sizes), mixedStrides(strides) { |
38 | assert(offsets.size() == sizes.size() && |
39 | "expected same number of offsets, sizes, strides" ); |
40 | assert(offsets.size() == strides.size() && |
41 | "expected same number of offsets, sizes, strides" ); |
42 | } |
43 | |
44 | HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets, |
45 | ArrayRef<OpFoldResult> sizes) |
46 | : mixedOffsets(offsets), mixedSizes(sizes) { |
47 | assert(offsets.size() == sizes.size() && |
48 | "expected same number of offsets and sizes" ); |
49 | // Assume that all strides are 1. |
50 | if (offsets.empty()) |
51 | return; |
52 | MLIRContext *ctx = offsets.front().getContext(); |
53 | mixedStrides.append(offsets.size(), Builder(ctx).getIndexAttr(1)); |
54 | } |
55 | |
56 | HyperrectangularSlice::HyperrectangularSlice(OffsetSizeAndStrideOpInterface op) |
57 | : HyperrectangularSlice(op.getMixedOffsets(), op.getMixedSizes(), |
58 | op.getMixedStrides()) {} |
59 | |
60 | /// If ofr is a constant integer or an IntegerAttr, return the integer. |
61 | static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) { |
62 | // Case 1: Check for Constant integer. |
63 | if (auto val = llvm::dyn_cast_if_present<Value>(Val&: ofr)) { |
64 | APSInt intVal; |
65 | if (matchPattern(val, m_ConstantInt(&intVal))) |
66 | return intVal.getSExtValue(); |
67 | return std::nullopt; |
68 | } |
69 | // Case 2: Check for IntegerAttr. |
70 | Attribute attr = llvm::dyn_cast_if_present<Attribute>(Val&: ofr); |
71 | if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr)) |
72 | return intAttr.getValue().getSExtValue(); |
73 | return std::nullopt; |
74 | } |
75 | |
76 | ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr) |
77 | : Variable(ofr, std::nullopt) {} |
78 | |
79 | ValueBoundsConstraintSet::Variable::Variable(Value indexValue) |
80 | : Variable(static_cast<OpFoldResult>(indexValue)) {} |
81 | |
82 | ValueBoundsConstraintSet::Variable::Variable(Value shapedValue, int64_t dim) |
83 | : Variable(static_cast<OpFoldResult>(shapedValue), std::optional(dim)) {} |
84 | |
85 | ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr, |
86 | std::optional<int64_t> dim) { |
87 | Builder b(ofr.getContext()); |
88 | if (auto constInt = ::getConstantIntValue(ofr)) { |
89 | assert(!dim && "expected no dim for index-typed values" ); |
90 | map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0, |
91 | result: b.getAffineConstantExpr(constant: *constInt)); |
92 | return; |
93 | } |
94 | Value value = cast<Value>(Val&: ofr); |
95 | #ifndef NDEBUG |
96 | if (dim) { |
97 | assert(isa<ShapedType>(value.getType()) && "expected shaped type" ); |
98 | } else { |
99 | assert(value.getType().isIndex() && "expected index type" ); |
100 | } |
101 | #endif // NDEBUG |
102 | map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1, |
103 | result: b.getAffineSymbolExpr(position: 0)); |
104 | mapOperands.emplace_back(Args&: value, Args&: dim); |
105 | } |
106 | |
107 | ValueBoundsConstraintSet::Variable::Variable(AffineMap map, |
108 | ArrayRef<Variable> mapOperands) { |
109 | assert(map.getNumResults() == 1 && "expected single result" ); |
110 | |
111 | // Turn all dims into symbols. |
112 | Builder b(map.getContext()); |
113 | SmallVector<AffineExpr> dimReplacements, symReplacements; |
114 | for (int64_t i = 0, e = map.getNumDims(); i < e; ++i) |
115 | dimReplacements.push_back(Elt: b.getAffineSymbolExpr(position: i)); |
116 | for (int64_t i = 0, e = map.getNumSymbols(); i < e; ++i) |
117 | symReplacements.push_back(Elt: b.getAffineSymbolExpr(position: i + map.getNumDims())); |
118 | AffineMap tmpMap = map.replaceDimsAndSymbols( |
119 | dimReplacements, symReplacements, /*numResultDims=*/0, |
120 | /*numResultSyms=*/map.getNumSymbols() + map.getNumDims()); |
121 | |
122 | // Inline operands. |
123 | DenseMap<AffineExpr, AffineExpr> replacements; |
124 | for (auto [index, var] : llvm::enumerate(First&: mapOperands)) { |
125 | assert(var.map.getNumResults() == 1 && "expected single result" ); |
126 | assert(var.map.getNumDims() == 0 && "expected only symbols" ); |
127 | SmallVector<AffineExpr> symReplacements; |
128 | for (auto valueDim : var.mapOperands) { |
129 | auto it = llvm::find(Range&: this->mapOperands, Val: valueDim); |
130 | if (it != this->mapOperands.end()) { |
131 | // There is already a symbol for this operand. |
132 | symReplacements.push_back(Elt: b.getAffineSymbolExpr( |
133 | position: std::distance(first: this->mapOperands.begin(), last: it))); |
134 | } else { |
135 | // This is a new operand: add a new symbol. |
136 | symReplacements.push_back( |
137 | Elt: b.getAffineSymbolExpr(position: this->mapOperands.size())); |
138 | this->mapOperands.push_back(Elt: valueDim); |
139 | } |
140 | } |
141 | replacements[b.getAffineSymbolExpr(position: index)] = |
142 | var.map.getResult(idx: 0).replaceSymbols(symReplacements); |
143 | } |
144 | this->map = tmpMap.replace(map: replacements, /*numResultDims=*/0, |
145 | /*numResultSyms=*/this->mapOperands.size()); |
146 | } |
147 | |
148 | ValueBoundsConstraintSet::Variable::Variable(AffineMap map, |
149 | ArrayRef<Value> mapOperands) |
150 | : Variable(map, llvm::map_to_vector(C&: mapOperands, |
151 | F: [](Value v) { return Variable(v); })) {} |
152 | |
153 | ValueBoundsConstraintSet::ValueBoundsConstraintSet( |
154 | MLIRContext *ctx, StopConditionFn stopCondition) |
155 | : builder(ctx), stopCondition(stopCondition) { |
156 | assert(stopCondition && "expected non-null stop condition" ); |
157 | } |
158 | |
159 | char ValueBoundsConstraintSet::ID = 0; |
160 | |
161 | #ifndef NDEBUG |
162 | static void assertValidValueDim(Value value, std::optional<int64_t> dim) { |
163 | if (value.getType().isIndex()) { |
164 | assert(!dim.has_value() && "invalid dim value" ); |
165 | } else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) { |
166 | assert(*dim >= 0 && "invalid dim value" ); |
167 | if (shapedType.hasRank()) |
168 | assert(*dim < shapedType.getRank() && "invalid dim value" ); |
169 | } else { |
170 | llvm_unreachable("unsupported type" ); |
171 | } |
172 | } |
173 | #endif // NDEBUG |
174 | |
175 | void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos, |
176 | AffineExpr expr) { |
177 | LogicalResult status = cstr.addBound( |
178 | type, pos, |
179 | boundMap: AffineMap::get(dimCount: cstr.getNumDimVars(), symbolCount: cstr.getNumSymbolVars(), result: expr)); |
180 | if (failed(result: status)) { |
181 | // Non-pure (e.g., semi-affine) expressions are not yet supported by |
182 | // FlatLinearConstraints. However, we can just ignore such failures here. |
183 | // Even without this bound, there may be enough information in the |
184 | // constraint system to compute the requested bound. In case this bound is |
185 | // actually needed, `computeBound` will return `failure`. |
186 | LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: " << expr << "\n" ); |
187 | } |
188 | } |
189 | |
190 | AffineExpr ValueBoundsConstraintSet::getExpr(Value value, |
191 | std::optional<int64_t> dim) { |
192 | #ifndef NDEBUG |
193 | assertValidValueDim(value, dim); |
194 | #endif // NDEBUG |
195 | |
196 | // Check if the value/dim is statically known. In that case, an affine |
197 | // constant expression should be returned. This allows us to support |
198 | // multiplications with constants. (Multiplications of two columns in the |
199 | // constraint set is not supported.) |
200 | std::optional<int64_t> constSize = std::nullopt; |
201 | auto shapedType = dyn_cast<ShapedType>(value.getType()); |
202 | if (shapedType) { |
203 | if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim)) |
204 | constSize = shapedType.getDimSize(*dim); |
205 | } else if (auto constInt = ::getConstantIntValue(ofr: value)) { |
206 | constSize = *constInt; |
207 | } |
208 | |
209 | // If the value/dim is already mapped, return the corresponding expression |
210 | // directly. |
211 | ValueDim valueDim = std::make_pair(x&: value, y: dim.value_or(u: kIndexValue)); |
212 | if (valueDimToPosition.contains(Val: valueDim)) { |
213 | // If it is a constant, return an affine constant expression. Otherwise, |
214 | // return an affine expression that represents the respective column in the |
215 | // constraint set. |
216 | if (constSize) |
217 | return builder.getAffineConstantExpr(constant: *constSize); |
218 | return getPosExpr(pos: getPos(value, dim)); |
219 | } |
220 | |
221 | if (constSize) { |
222 | // Constant index value/dim: add column to the constraint set, add EQ bound |
223 | // and return an affine constant expression without pushing the newly added |
224 | // column to the worklist. |
225 | (void)insert(value, dim, /*isSymbol=*/true, /*addToWorklist=*/false); |
226 | if (shapedType) |
227 | bound(value)[*dim] == *constSize; |
228 | else |
229 | bound(value) == *constSize; |
230 | return builder.getAffineConstantExpr(constant: *constSize); |
231 | } |
232 | |
233 | // Dynamic value/dim: insert column to the constraint set and put it on the |
234 | // worklist. Return an affine expression that represents the newly inserted |
235 | // column in the constraint set. |
236 | return getPosExpr(pos: insert(value, dim, /*isSymbol=*/true)); |
237 | } |
238 | |
239 | AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) { |
240 | if (Value value = llvm::dyn_cast_if_present<Value>(Val&: ofr)) |
241 | return getExpr(value, /*dim=*/std::nullopt); |
242 | auto constInt = ::getConstantIntValue(ofr); |
243 | assert(constInt.has_value() && "expected Integer constant" ); |
244 | return builder.getAffineConstantExpr(constant: *constInt); |
245 | } |
246 | |
247 | AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) { |
248 | return builder.getAffineConstantExpr(constant); |
249 | } |
250 | |
251 | int64_t ValueBoundsConstraintSet::insert(Value value, |
252 | std::optional<int64_t> dim, |
253 | bool isSymbol, bool addToWorklist) { |
254 | #ifndef NDEBUG |
255 | assertValidValueDim(value, dim); |
256 | #endif // NDEBUG |
257 | |
258 | ValueDim valueDim = std::make_pair(x&: value, y: dim.value_or(u: kIndexValue)); |
259 | assert(!valueDimToPosition.contains(valueDim) && "already mapped" ); |
260 | int64_t pos = isSymbol ? cstr.appendVar(kind: VarKind::Symbol) |
261 | : cstr.appendVar(kind: VarKind::SetDim); |
262 | LLVM_DEBUG(llvm::dbgs() << "Inserting constraint set column " << pos |
263 | << " for: " << value |
264 | << " (dim: " << dim.value_or(kIndexValue) |
265 | << ", owner: " << getOwnerOfValue(value)->getName() |
266 | << ")\n" ); |
267 | positionToValueDim.insert(I: positionToValueDim.begin() + pos, Elt: valueDim); |
268 | // Update reverse mapping. |
269 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
270 | if (positionToValueDim[i].has_value()) |
271 | valueDimToPosition[*positionToValueDim[i]] = i; |
272 | |
273 | if (addToWorklist) { |
274 | LLVM_DEBUG(llvm::dbgs() << "Push to worklist: " << value |
275 | << " (dim: " << dim.value_or(kIndexValue) << ")\n" ); |
276 | worklist.push(x: pos); |
277 | } |
278 | |
279 | return pos; |
280 | } |
281 | |
282 | int64_t ValueBoundsConstraintSet::insert(bool isSymbol) { |
283 | int64_t pos = isSymbol ? cstr.appendVar(kind: VarKind::Symbol) |
284 | : cstr.appendVar(kind: VarKind::SetDim); |
285 | LLVM_DEBUG(llvm::dbgs() << "Inserting anonymous constraint set column " << pos |
286 | << "\n" ); |
287 | positionToValueDim.insert(I: positionToValueDim.begin() + pos, Elt: std::nullopt); |
288 | // Update reverse mapping. |
289 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
290 | if (positionToValueDim[i].has_value()) |
291 | valueDimToPosition[*positionToValueDim[i]] = i; |
292 | return pos; |
293 | } |
294 | |
295 | int64_t ValueBoundsConstraintSet::insert(AffineMap map, ValueDimList operands, |
296 | bool isSymbol) { |
297 | assert(map.getNumResults() == 1 && "expected affine map with one result" ); |
298 | int64_t pos = insert(isSymbol); |
299 | |
300 | // Add map and operands to the constraint set. Dimensions are converted to |
301 | // symbols. All operands are added to the worklist (unless they were already |
302 | // processed). |
303 | auto mapper = [&](std::pair<Value, std::optional<int64_t>> v) { |
304 | return getExpr(value: v.first, dim: v.second); |
305 | }; |
306 | SmallVector<AffineExpr> dimReplacements = llvm::to_vector( |
307 | Range: llvm::map_range(C: ArrayRef(operands).take_front(N: map.getNumDims()), F: mapper)); |
308 | SmallVector<AffineExpr> symReplacements = llvm::to_vector( |
309 | Range: llvm::map_range(C: ArrayRef(operands).drop_front(N: map.getNumDims()), F: mapper)); |
310 | addBound( |
311 | type: presburger::BoundType::EQ, pos, |
312 | expr: map.getResult(idx: 0).replaceDimsAndSymbols(dimReplacements, symReplacements)); |
313 | |
314 | return pos; |
315 | } |
316 | |
317 | int64_t ValueBoundsConstraintSet::insert(const Variable &var, bool isSymbol) { |
318 | return insert(map: var.map, operands: var.mapOperands, isSymbol); |
319 | } |
320 | |
321 | int64_t ValueBoundsConstraintSet::getPos(Value value, |
322 | std::optional<int64_t> dim) const { |
323 | #ifndef NDEBUG |
324 | assertValidValueDim(value, dim); |
325 | assert((isa<OpResult>(value) || |
326 | cast<BlockArgument>(value).getOwner()->isEntryBlock()) && |
327 | "unstructured control flow is not supported" ); |
328 | #endif // NDEBUG |
329 | LLVM_DEBUG(llvm::dbgs() << "Getting pos for: " << value |
330 | << " (dim: " << dim.value_or(kIndexValue) |
331 | << ", owner: " << getOwnerOfValue(value)->getName() |
332 | << ")\n" ); |
333 | auto it = |
334 | valueDimToPosition.find(Val: std::make_pair(x&: value, y: dim.value_or(u: kIndexValue))); |
335 | assert(it != valueDimToPosition.end() && "expected mapped entry" ); |
336 | return it->second; |
337 | } |
338 | |
339 | AffineExpr ValueBoundsConstraintSet::getPosExpr(int64_t pos) { |
340 | assert(pos >= 0 && pos < cstr.getNumDimAndSymbolVars() && "invalid position" ); |
341 | return pos < cstr.getNumDimVars() |
342 | ? builder.getAffineDimExpr(position: pos) |
343 | : builder.getAffineSymbolExpr(position: pos - cstr.getNumDimVars()); |
344 | } |
345 | |
346 | bool ValueBoundsConstraintSet::isMapped(Value value, |
347 | std::optional<int64_t> dim) const { |
348 | auto it = |
349 | valueDimToPosition.find(Val: std::make_pair(x&: value, y: dim.value_or(u: kIndexValue))); |
350 | return it != valueDimToPosition.end(); |
351 | } |
352 | |
353 | void ValueBoundsConstraintSet::processWorklist() { |
354 | LLVM_DEBUG(llvm::dbgs() << "Processing value bounds worklist...\n" ); |
355 | while (!worklist.empty()) { |
356 | int64_t pos = worklist.front(); |
357 | worklist.pop(); |
358 | assert(positionToValueDim[pos].has_value() && |
359 | "did not expect std::nullopt on worklist" ); |
360 | ValueDim valueDim = *positionToValueDim[pos]; |
361 | Value value = valueDim.first; |
362 | int64_t dim = valueDim.second; |
363 | |
364 | // Check for static dim size. |
365 | if (dim != kIndexValue) { |
366 | auto shapedType = cast<ShapedType>(value.getType()); |
367 | if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) { |
368 | bound(value)[dim] == getExpr(shapedType.getDimSize(dim)); |
369 | continue; |
370 | } |
371 | } |
372 | |
373 | // Do not process any further if the stop condition is met. |
374 | auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(t&: dim); |
375 | if (stopCondition(value, maybeDim, *this)) { |
376 | LLVM_DEBUG(llvm::dbgs() << "Stop condition met for: " << value |
377 | << " (dim: " << maybeDim << ")\n" ); |
378 | continue; |
379 | } |
380 | |
381 | // Query `ValueBoundsOpInterface` for constraints. New items may be added to |
382 | // the worklist. |
383 | auto valueBoundsOp = |
384 | dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value)); |
385 | LLVM_DEBUG(llvm::dbgs() |
386 | << "Query value bounds for: " << value |
387 | << " (owner: " << getOwnerOfValue(value)->getName() << ")\n" ); |
388 | if (valueBoundsOp) { |
389 | if (dim == kIndexValue) { |
390 | valueBoundsOp.populateBoundsForIndexValue(value, *this); |
391 | } else { |
392 | valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this); |
393 | } |
394 | continue; |
395 | } |
396 | LLVM_DEBUG(llvm::dbgs() << "--> ValueBoundsOpInterface not implemented\n" ); |
397 | |
398 | // If the op does not implement `ValueBoundsOpInterface`, check if it |
399 | // implements the `DestinationStyleOpInterface`. OpResults of such ops are |
400 | // tied to OpOperands. Tied values have the same shape. |
401 | auto dstOp = value.getDefiningOp<DestinationStyleOpInterface>(); |
402 | if (!dstOp || dim == kIndexValue) |
403 | continue; |
404 | Value tiedOperand = dstOp.getTiedOpOperand(cast<OpResult>(Val&: value))->get(); |
405 | bound(value)[dim] == getExpr(value: tiedOperand, dim); |
406 | } |
407 | } |
408 | |
409 | void ValueBoundsConstraintSet::projectOut(int64_t pos) { |
410 | assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) && |
411 | "invalid position" ); |
412 | cstr.projectOut(pos); |
413 | if (positionToValueDim[pos].has_value()) { |
414 | bool erased = valueDimToPosition.erase(Val: *positionToValueDim[pos]); |
415 | (void)erased; |
416 | assert(erased && "inconsistent reverse mapping" ); |
417 | } |
418 | positionToValueDim.erase(CI: positionToValueDim.begin() + pos); |
419 | // Update reverse mapping. |
420 | for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i) |
421 | if (positionToValueDim[i].has_value()) |
422 | valueDimToPosition[*positionToValueDim[i]] = i; |
423 | } |
424 | |
425 | void ValueBoundsConstraintSet::projectOut( |
426 | function_ref<bool(ValueDim)> condition) { |
427 | int64_t nextPos = 0; |
428 | while (nextPos < static_cast<int64_t>(positionToValueDim.size())) { |
429 | if (positionToValueDim[nextPos].has_value() && |
430 | condition(*positionToValueDim[nextPos])) { |
431 | projectOut(pos: nextPos); |
432 | // The column was projected out so another column is now at that position. |
433 | // Do not increase the counter. |
434 | } else { |
435 | ++nextPos; |
436 | } |
437 | } |
438 | } |
439 | |
440 | void ValueBoundsConstraintSet::projectOutAnonymous( |
441 | std::optional<int64_t> except) { |
442 | int64_t nextPos = 0; |
443 | while (nextPos < static_cast<int64_t>(positionToValueDim.size())) { |
444 | if (positionToValueDim[nextPos].has_value() || except == nextPos) { |
445 | ++nextPos; |
446 | } else { |
447 | projectOut(pos: nextPos); |
448 | // The column was projected out so another column is now at that position. |
449 | // Do not increase the counter. |
450 | } |
451 | } |
452 | } |
453 | |
454 | LogicalResult ValueBoundsConstraintSet::computeBound( |
455 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
456 | const Variable &var, StopConditionFn stopCondition, bool closedUB) { |
457 | MLIRContext *ctx = var.getContext(); |
458 | int64_t ubAdjustment = closedUB ? 0 : 1; |
459 | Builder b(ctx); |
460 | mapOperands.clear(); |
461 | |
462 | // Process the backward slice of `value` (i.e., reverse use-def chain) until |
463 | // `stopCondition` is met. |
464 | ValueBoundsConstraintSet cstr(ctx, stopCondition); |
465 | int64_t pos = cstr.insert(var, /*isSymbol=*/false); |
466 | assert(pos == 0 && "expected first column" ); |
467 | cstr.processWorklist(); |
468 | |
469 | // Project out all variables (apart from `valueDim`) that do not match the |
470 | // stop condition. |
471 | cstr.projectOut(condition: [&](ValueDim p) { |
472 | auto maybeDim = |
473 | p.second == kIndexValue ? std::nullopt : std::make_optional(t&: p.second); |
474 | return !stopCondition(p.first, maybeDim, cstr); |
475 | }); |
476 | cstr.projectOutAnonymous(/*except=*/pos); |
477 | |
478 | // Compute lower and upper bounds for `valueDim`. |
479 | SmallVector<AffineMap> lb(1), ub(1); |
480 | cstr.cstr.getSliceBounds(offset: pos, num: 1, context: ctx, lbMaps: &lb, ubMaps: &ub, |
481 | /*closedUB=*/true); |
482 | |
483 | // Note: There are TODOs in the implementation of `getSliceBounds`. In such a |
484 | // case, no lower/upper bound can be computed at the moment. |
485 | // EQ, UB bounds: upper bound is needed. |
486 | if ((type != BoundType::LB) && |
487 | (ub.empty() || !ub[0] || ub[0].getNumResults() == 0)) |
488 | return failure(); |
489 | // EQ, LB bounds: lower bound is needed. |
490 | if ((type != BoundType::UB) && |
491 | (lb.empty() || !lb[0] || lb[0].getNumResults() == 0)) |
492 | return failure(); |
493 | |
494 | // TODO: Generate an affine map with multiple results. |
495 | if (type != BoundType::LB) |
496 | assert(ub.size() == 1 && ub[0].getNumResults() == 1 && |
497 | "multiple bounds not supported" ); |
498 | if (type != BoundType::UB) |
499 | assert(lb.size() == 1 && lb[0].getNumResults() == 1 && |
500 | "multiple bounds not supported" ); |
501 | |
502 | // EQ bound: lower and upper bound must match. |
503 | if (type == BoundType::EQ && ub[0] != lb[0]) |
504 | return failure(); |
505 | |
506 | AffineMap bound; |
507 | if (type == BoundType::EQ || type == BoundType::LB) { |
508 | bound = lb[0]; |
509 | } else { |
510 | // Computed UB is a closed bound. |
511 | bound = AffineMap::get(dimCount: ub[0].getNumDims(), symbolCount: ub[0].getNumSymbols(), |
512 | result: ub[0].getResult(idx: 0) + ubAdjustment); |
513 | } |
514 | |
515 | // Gather all SSA values that are used in the computed bound. |
516 | assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() && |
517 | "inconsistent mapping state" ); |
518 | SmallVector<AffineExpr> replacementDims, replacementSymbols; |
519 | int64_t numDims = 0, numSymbols = 0; |
520 | for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) { |
521 | // Skip `value`. |
522 | if (i == pos) |
523 | continue; |
524 | // Check if the position `i` is used in the generated bound. If so, it must |
525 | // be included in the generated affine.apply op. |
526 | bool used = false; |
527 | bool isDim = i < cstr.cstr.getNumDimVars(); |
528 | if (isDim) { |
529 | if (bound.isFunctionOfDim(position: i)) |
530 | used = true; |
531 | } else { |
532 | if (bound.isFunctionOfSymbol(position: i - cstr.cstr.getNumDimVars())) |
533 | used = true; |
534 | } |
535 | |
536 | if (!used) { |
537 | // Not used: Remove dim/symbol from the result. |
538 | if (isDim) { |
539 | replacementDims.push_back(Elt: b.getAffineConstantExpr(constant: 0)); |
540 | } else { |
541 | replacementSymbols.push_back(Elt: b.getAffineConstantExpr(constant: 0)); |
542 | } |
543 | continue; |
544 | } |
545 | |
546 | if (isDim) { |
547 | replacementDims.push_back(Elt: b.getAffineDimExpr(position: numDims++)); |
548 | } else { |
549 | replacementSymbols.push_back(Elt: b.getAffineSymbolExpr(position: numSymbols++)); |
550 | } |
551 | |
552 | assert(cstr.positionToValueDim[i].has_value() && |
553 | "cannot build affine map in terms of anonymous column" ); |
554 | ValueBoundsConstraintSet::ValueDim valueDim = *cstr.positionToValueDim[i]; |
555 | Value value = valueDim.first; |
556 | int64_t dim = valueDim.second; |
557 | if (dim == ValueBoundsConstraintSet::kIndexValue) { |
558 | // An index-type value is used: can be used directly in the affine.apply |
559 | // op. |
560 | assert(value.getType().isIndex() && "expected index type" ); |
561 | mapOperands.push_back(Elt: std::make_pair(x&: value, y: std::nullopt)); |
562 | continue; |
563 | } |
564 | |
565 | assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) && |
566 | "expected dynamic dim" ); |
567 | mapOperands.push_back(Elt: std::make_pair(x&: value, y&: dim)); |
568 | } |
569 | |
570 | resultMap = bound.replaceDimsAndSymbols(dimReplacements: replacementDims, symReplacements: replacementSymbols, |
571 | numResultDims: numDims, numResultSyms: numSymbols); |
572 | return success(); |
573 | } |
574 | |
575 | LogicalResult ValueBoundsConstraintSet::computeDependentBound( |
576 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
577 | const Variable &var, ValueDimList dependencies, bool closedUB) { |
578 | return computeBound( |
579 | resultMap, mapOperands, type, var, |
580 | stopCondition: [&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) { |
581 | return llvm::is_contained(Range&: dependencies, Element: std::make_pair(x&: v, y&: d)); |
582 | }, |
583 | closedUB); |
584 | } |
585 | |
586 | LogicalResult ValueBoundsConstraintSet::computeIndependentBound( |
587 | AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type, |
588 | const Variable &var, ValueRange independencies, bool closedUB) { |
589 | // Return "true" if the given value is independent of all values in |
590 | // `independencies`. I.e., neither the value itself nor any value in the |
591 | // backward slice (reverse use-def chain) is contained in `independencies`. |
592 | auto isIndependent = [&](Value v) { |
593 | SmallVector<Value> worklist; |
594 | DenseSet<Value> visited; |
595 | worklist.push_back(Elt: v); |
596 | while (!worklist.empty()) { |
597 | Value next = worklist.pop_back_val(); |
598 | if (visited.contains(V: next)) |
599 | continue; |
600 | visited.insert(V: next); |
601 | if (llvm::is_contained(Range&: independencies, Element: next)) |
602 | return false; |
603 | // TODO: DominanceInfo could be used to stop the traversal early. |
604 | Operation *op = next.getDefiningOp(); |
605 | if (!op) |
606 | continue; |
607 | worklist.append(in_start: op->getOperands().begin(), in_end: op->getOperands().end()); |
608 | } |
609 | return true; |
610 | }; |
611 | |
612 | // Reify bounds in terms of any independent values. |
613 | return computeBound( |
614 | resultMap, mapOperands, type, var, |
615 | stopCondition: [&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) { |
616 | return isIndependent(v); |
617 | }, |
618 | closedUB); |
619 | } |
620 | |
621 | FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound( |
622 | presburger::BoundType type, const Variable &var, |
623 | StopConditionFn stopCondition, bool closedUB) { |
624 | // Default stop condition if none was specified: Keep adding constraints until |
625 | // a bound could be computed. |
626 | int64_t pos = 0; |
627 | auto defaultStopCondition = [&](Value v, std::optional<int64_t> dim, |
628 | ValueBoundsConstraintSet &cstr) { |
629 | return cstr.cstr.getConstantBound64(type, pos).has_value(); |
630 | }; |
631 | |
632 | ValueBoundsConstraintSet cstr( |
633 | var.getContext(), stopCondition ? stopCondition : defaultStopCondition); |
634 | pos = cstr.populateConstraints(map: var.map, mapOperands: var.mapOperands); |
635 | assert(pos == 0 && "expected `map` is the first column" ); |
636 | |
637 | // Compute constant bound for `valueDim`. |
638 | int64_t ubAdjustment = closedUB ? 0 : 1; |
639 | if (auto bound = cstr.cstr.getConstantBound64(type, pos)) |
640 | return type == BoundType::UB ? *bound + ubAdjustment : *bound; |
641 | return failure(); |
642 | } |
643 | |
644 | void ValueBoundsConstraintSet::populateConstraints(Value value, |
645 | std::optional<int64_t> dim) { |
646 | #ifndef NDEBUG |
647 | assertValidValueDim(value, dim); |
648 | #endif // NDEBUG |
649 | |
650 | // `getExpr` pushes the value/dim onto the worklist (unless it was already |
651 | // analyzed). |
652 | (void)getExpr(value, dim); |
653 | // Process all values/dims on the worklist. This may traverse and analyze |
654 | // additional IR, depending the current stop function. |
655 | processWorklist(); |
656 | } |
657 | |
658 | int64_t ValueBoundsConstraintSet::populateConstraints(AffineMap map, |
659 | ValueDimList operands) { |
660 | int64_t pos = insert(map, operands, /*isSymbol=*/false); |
661 | // Process the backward slice of `operands` (i.e., reverse use-def chain) |
662 | // until `stopCondition` is met. |
663 | processWorklist(); |
664 | return pos; |
665 | } |
666 | |
667 | FailureOr<int64_t> |
668 | ValueBoundsConstraintSet::computeConstantDelta(Value value1, Value value2, |
669 | std::optional<int64_t> dim1, |
670 | std::optional<int64_t> dim2) { |
671 | #ifndef NDEBUG |
672 | assertValidValueDim(value: value1, dim: dim1); |
673 | assertValidValueDim(value: value2, dim: dim2); |
674 | #endif // NDEBUG |
675 | |
676 | Builder b(value1.getContext()); |
677 | AffineMap map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0, |
678 | result: b.getAffineDimExpr(position: 0) - b.getAffineDimExpr(position: 1)); |
679 | return computeConstantBound(type: presburger::BoundType::EQ, |
680 | var: Variable(map, {{value1, dim1}, {value2, dim2}})); |
681 | } |
682 | |
683 | bool ValueBoundsConstraintSet::comparePos(int64_t lhsPos, |
684 | ComparisonOperator cmp, |
685 | int64_t rhsPos) { |
686 | // This function returns "true" if "lhs CMP rhs" is proven to hold. |
687 | // |
688 | // Example for ComparisonOperator::LE and index-typed values: We would like to |
689 | // prove that lhs <= rhs. Proof by contradiction: add the inverse |
690 | // relation (lhs > rhs) to the constraint set and check if the resulting |
691 | // constraint set is "empty" (i.e. has no solution). In that case, |
692 | // lhs > rhs must be incorrect and we can deduce that lhs <= rhs holds. |
693 | |
694 | // We cannot prove anything if the constraint set is already empty. |
695 | if (cstr.isEmpty()) { |
696 | LLVM_DEBUG( |
697 | llvm::dbgs() |
698 | << "cannot compare value/dims: constraint system is already empty" ); |
699 | return false; |
700 | } |
701 | |
702 | // EQ can be expressed as LE and GE. |
703 | if (cmp == EQ) |
704 | return comparePos(lhsPos, cmp: ComparisonOperator::LE, rhsPos) && |
705 | comparePos(lhsPos, cmp: ComparisonOperator::GE, rhsPos); |
706 | |
707 | // Construct inequality. |
708 | SmallVector<int64_t> eq(cstr.getNumCols(), 0); |
709 | if (cmp == LT || cmp == LE) { |
710 | ++eq[lhsPos]; |
711 | --eq[rhsPos]; |
712 | } else if (cmp == GT || cmp == GE) { |
713 | --eq[lhsPos]; |
714 | ++eq[rhsPos]; |
715 | } else { |
716 | llvm_unreachable("unsupported comparison operator" ); |
717 | } |
718 | if (cmp == LE || cmp == GE) |
719 | eq[cstr.getNumCols() - 1] -= 1; |
720 | |
721 | // Add inequality to the constraint set and check if it made the constraint |
722 | // set empty. |
723 | int64_t ineqPos = cstr.getNumInequalities(); |
724 | cstr.addInequality(inEq: eq); |
725 | bool isEmpty = cstr.isEmpty(); |
726 | cstr.removeInequality(pos: ineqPos); |
727 | return isEmpty; |
728 | } |
729 | |
730 | bool ValueBoundsConstraintSet::populateAndCompare(const Variable &lhs, |
731 | ComparisonOperator cmp, |
732 | const Variable &rhs) { |
733 | int64_t lhsPos = populateConstraints(map: lhs.map, operands: lhs.mapOperands); |
734 | int64_t rhsPos = populateConstraints(map: rhs.map, operands: rhs.mapOperands); |
735 | return comparePos(lhsPos, cmp, rhsPos); |
736 | } |
737 | |
738 | bool ValueBoundsConstraintSet::compare(const Variable &lhs, |
739 | ComparisonOperator cmp, |
740 | const Variable &rhs) { |
741 | int64_t lhsPos = -1, rhsPos = -1; |
742 | auto stopCondition = [&](Value v, std::optional<int64_t> dim, |
743 | ValueBoundsConstraintSet &cstr) { |
744 | // Keep processing as long as lhs/rhs were not processed. |
745 | if (size_t(lhsPos) >= cstr.positionToValueDim.size() || |
746 | size_t(rhsPos) >= cstr.positionToValueDim.size()) |
747 | return false; |
748 | // Keep processing as long as the relation cannot be proven. |
749 | return cstr.comparePos(lhsPos, cmp, rhsPos); |
750 | }; |
751 | ValueBoundsConstraintSet cstr(lhs.getContext(), stopCondition); |
752 | lhsPos = cstr.populateConstraints(map: lhs.map, operands: lhs.mapOperands); |
753 | rhsPos = cstr.populateConstraints(map: rhs.map, operands: rhs.mapOperands); |
754 | return cstr.comparePos(lhsPos, cmp, rhsPos); |
755 | } |
756 | |
757 | FailureOr<bool> ValueBoundsConstraintSet::areEqual(const Variable &var1, |
758 | const Variable &var2) { |
759 | if (ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::EQ, rhs: var2)) |
760 | return true; |
761 | if (ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::LT, rhs: var2) || |
762 | ValueBoundsConstraintSet::compare(lhs: var1, cmp: ComparisonOperator::GT, rhs: var2)) |
763 | return false; |
764 | return failure(); |
765 | } |
766 | |
767 | FailureOr<bool> |
768 | ValueBoundsConstraintSet::areOverlappingSlices(MLIRContext *ctx, |
769 | HyperrectangularSlice slice1, |
770 | HyperrectangularSlice slice2) { |
771 | assert(slice1.getMixedOffsets().size() == slice1.getMixedOffsets().size() && |
772 | "expected slices of same rank" ); |
773 | assert(slice1.getMixedSizes().size() == slice1.getMixedSizes().size() && |
774 | "expected slices of same rank" ); |
775 | assert(slice1.getMixedStrides().size() == slice1.getMixedStrides().size() && |
776 | "expected slices of same rank" ); |
777 | |
778 | Builder b(ctx); |
779 | bool foundUnknownBound = false; |
780 | for (int64_t i = 0, e = slice1.getMixedOffsets().size(); i < e; ++i) { |
781 | AffineMap map = |
782 | AffineMap::get(/*dimCount=*/0, /*symbolCount=*/4, |
783 | result: b.getAffineSymbolExpr(position: 0) + |
784 | b.getAffineSymbolExpr(position: 1) * b.getAffineSymbolExpr(position: 2) - |
785 | b.getAffineSymbolExpr(position: 3)); |
786 | { |
787 | // Case 1: Slices are guaranteed to be non-overlapping if |
788 | // offset1 + size1 * stride1 <= offset2 (for at least one dimension). |
789 | SmallVector<OpFoldResult> ofrOperands; |
790 | ofrOperands.push_back(Elt: slice1.getMixedOffsets()[i]); |
791 | ofrOperands.push_back(Elt: slice1.getMixedSizes()[i]); |
792 | ofrOperands.push_back(Elt: slice1.getMixedStrides()[i]); |
793 | ofrOperands.push_back(Elt: slice2.getMixedOffsets()[i]); |
794 | SmallVector<Value> valueOperands; |
795 | AffineMap foldedMap = |
796 | foldAttributesIntoMap(b, map, operands: ofrOperands, remainingValues&: valueOperands); |
797 | FailureOr<int64_t> constBound = computeConstantBound( |
798 | type: presburger::BoundType::EQ, var: Variable(foldedMap, valueOperands)); |
799 | foundUnknownBound |= failed(result: constBound); |
800 | if (succeeded(result: constBound) && *constBound <= 0) |
801 | return false; |
802 | } |
803 | { |
804 | // Case 2: Slices are guaranteed to be non-overlapping if |
805 | // offset2 + size2 * stride2 <= offset1 (for at least one dimension). |
806 | SmallVector<OpFoldResult> ofrOperands; |
807 | ofrOperands.push_back(Elt: slice2.getMixedOffsets()[i]); |
808 | ofrOperands.push_back(Elt: slice2.getMixedSizes()[i]); |
809 | ofrOperands.push_back(Elt: slice2.getMixedStrides()[i]); |
810 | ofrOperands.push_back(Elt: slice1.getMixedOffsets()[i]); |
811 | SmallVector<Value> valueOperands; |
812 | AffineMap foldedMap = |
813 | foldAttributesIntoMap(b, map, operands: ofrOperands, remainingValues&: valueOperands); |
814 | FailureOr<int64_t> constBound = computeConstantBound( |
815 | type: presburger::BoundType::EQ, var: Variable(foldedMap, valueOperands)); |
816 | foundUnknownBound |= failed(result: constBound); |
817 | if (succeeded(result: constBound) && *constBound <= 0) |
818 | return false; |
819 | } |
820 | } |
821 | |
822 | // If at least one bound could not be computed, we cannot be certain that the |
823 | // slices are really overlapping. |
824 | if (foundUnknownBound) |
825 | return failure(); |
826 | |
827 | // All bounds could be computed and none of the above cases applied. |
828 | // Therefore, the slices are guaranteed to overlap. |
829 | return true; |
830 | } |
831 | |
832 | FailureOr<bool> |
833 | ValueBoundsConstraintSet::areEquivalentSlices(MLIRContext *ctx, |
834 | HyperrectangularSlice slice1, |
835 | HyperrectangularSlice slice2) { |
836 | assert(slice1.getMixedOffsets().size() == slice1.getMixedOffsets().size() && |
837 | "expected slices of same rank" ); |
838 | assert(slice1.getMixedSizes().size() == slice1.getMixedSizes().size() && |
839 | "expected slices of same rank" ); |
840 | assert(slice1.getMixedStrides().size() == slice1.getMixedStrides().size() && |
841 | "expected slices of same rank" ); |
842 | |
843 | // The two slices are equivalent if all of their offsets, sizes and strides |
844 | // are equal. If equality cannot be determined for at least one of those |
845 | // values, equivalence cannot be determined and this function returns |
846 | // "failure". |
847 | for (auto [offset1, offset2] : |
848 | llvm::zip_equal(t: slice1.getMixedOffsets(), u: slice2.getMixedOffsets())) { |
849 | FailureOr<bool> equal = areEqual(var1: offset1, var2: offset2); |
850 | if (failed(result: equal)) |
851 | return failure(); |
852 | if (!equal.value()) |
853 | return false; |
854 | } |
855 | for (auto [size1, size2] : |
856 | llvm::zip_equal(t: slice1.getMixedSizes(), u: slice2.getMixedSizes())) { |
857 | FailureOr<bool> equal = areEqual(var1: size1, var2: size2); |
858 | if (failed(result: equal)) |
859 | return failure(); |
860 | if (!equal.value()) |
861 | return false; |
862 | } |
863 | for (auto [stride1, stride2] : |
864 | llvm::zip_equal(t: slice1.getMixedStrides(), u: slice2.getMixedStrides())) { |
865 | FailureOr<bool> equal = areEqual(var1: stride1, var2: stride2); |
866 | if (failed(result: equal)) |
867 | return failure(); |
868 | if (!equal.value()) |
869 | return false; |
870 | } |
871 | return true; |
872 | } |
873 | |
874 | void ValueBoundsConstraintSet::dump() const { |
875 | llvm::errs() << "==========\nColumns:\n" ; |
876 | llvm::errs() << "(column\tdim\tvalue)\n" ; |
877 | for (auto [index, valueDim] : llvm::enumerate(First: positionToValueDim)) { |
878 | llvm::errs() << " " << index << "\t" ; |
879 | if (valueDim) { |
880 | if (valueDim->second == kIndexValue) { |
881 | llvm::errs() << "n/a\t" ; |
882 | } else { |
883 | llvm::errs() << valueDim->second << "\t" ; |
884 | } |
885 | llvm::errs() << getOwnerOfValue(value: valueDim->first)->getName() << " " ; |
886 | if (OpResult result = dyn_cast<OpResult>(Val: valueDim->first)) { |
887 | llvm::errs() << "(result " << result.getResultNumber() << ")" ; |
888 | } else { |
889 | llvm::errs() << "(bbarg " |
890 | << cast<BlockArgument>(Val: valueDim->first).getArgNumber() |
891 | << ")" ; |
892 | } |
893 | llvm::errs() << "\n" ; |
894 | } else { |
895 | llvm::errs() << "n/a\tn/a\n" ; |
896 | } |
897 | } |
898 | llvm::errs() << "\nConstraint set:\n" ; |
899 | cstr.dump(); |
900 | llvm::errs() << "==========\n" ; |
901 | } |
902 | |
903 | ValueBoundsConstraintSet::BoundBuilder & |
904 | ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) { |
905 | assert(!this->dim.has_value() && "dim was already set" ); |
906 | this->dim = dim; |
907 | #ifndef NDEBUG |
908 | assertValidValueDim(value, dim: this->dim); |
909 | #endif // NDEBUG |
910 | return *this; |
911 | } |
912 | |
913 | void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) { |
914 | #ifndef NDEBUG |
915 | assertValidValueDim(value, dim: this->dim); |
916 | #endif // NDEBUG |
917 | cstr.addBound(type: BoundType::UB, pos: cstr.getPos(value, dim: this->dim), expr); |
918 | } |
919 | |
920 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) { |
921 | operator<(expr: expr + 1); |
922 | } |
923 | |
924 | void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) { |
925 | operator>=(expr: expr + 1); |
926 | } |
927 | |
928 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) { |
929 | #ifndef NDEBUG |
930 | assertValidValueDim(value, dim: this->dim); |
931 | #endif // NDEBUG |
932 | cstr.addBound(type: BoundType::LB, pos: cstr.getPos(value, dim: this->dim), expr); |
933 | } |
934 | |
935 | void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) { |
936 | #ifndef NDEBUG |
937 | assertValidValueDim(value, dim: this->dim); |
938 | #endif // NDEBUG |
939 | cstr.addBound(type: BoundType::EQ, pos: cstr.getPos(value, dim: this->dim), expr); |
940 | } |
941 | |
942 | void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) { |
943 | operator<(expr: cstr.getExpr(ofr)); |
944 | } |
945 | |
946 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) { |
947 | operator<=(expr: cstr.getExpr(ofr)); |
948 | } |
949 | |
950 | void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) { |
951 | operator>(expr: cstr.getExpr(ofr)); |
952 | } |
953 | |
954 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) { |
955 | operator>=(expr: cstr.getExpr(ofr)); |
956 | } |
957 | |
958 | void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) { |
959 | operator==(expr: cstr.getExpr(ofr)); |
960 | } |
961 | |
962 | void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) { |
963 | operator<(expr: cstr.getExpr(constant: i)); |
964 | } |
965 | |
966 | void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) { |
967 | operator<=(expr: cstr.getExpr(constant: i)); |
968 | } |
969 | |
970 | void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) { |
971 | operator>(expr: cstr.getExpr(constant: i)); |
972 | } |
973 | |
974 | void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) { |
975 | operator>=(expr: cstr.getExpr(constant: i)); |
976 | } |
977 | |
978 | void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) { |
979 | operator==(expr: cstr.getExpr(constant: i)); |
980 | } |
981 | |