| 1 | //===- IntegerPolyhedron.cpp - Tests for IntegerPolyhedron class ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Parser.h" |
| 10 | #include "Utils.h" |
| 11 | #include "mlir/Analysis/Presburger/IntegerRelation.h" |
| 12 | #include "mlir/Analysis/Presburger/PWMAFunction.h" |
| 13 | #include "mlir/Analysis/Presburger/Simplex.h" |
| 14 | |
| 15 | #include <gmock/gmock.h> |
| 16 | #include <gtest/gtest.h> |
| 17 | |
| 18 | #include <numeric> |
| 19 | #include <optional> |
| 20 | |
| 21 | using namespace mlir; |
| 22 | using namespace presburger; |
| 23 | |
| 24 | using testing::ElementsAre; |
| 25 | |
| 26 | enum class TestFunction { Sample, Empty }; |
| 27 | |
| 28 | /// Construct a IntegerPolyhedron from a set of inequality and |
| 29 | /// equality constraints. |
| 30 | static IntegerPolyhedron |
| 31 | makeSetFromConstraints(unsigned ids, ArrayRef<SmallVector<int64_t, 4>> ineqs, |
| 32 | ArrayRef<SmallVector<int64_t, 4>> eqs, |
| 33 | unsigned syms = 0) { |
| 34 | IntegerPolyhedron set( |
| 35 | ineqs.size(), eqs.size(), ids + 1, |
| 36 | PresburgerSpace::getSetSpace(numDims: ids - syms, numSymbols: syms, /*numLocals=*/0)); |
| 37 | for (const auto &eq : eqs) |
| 38 | set.addEquality(eq); |
| 39 | for (const auto &ineq : ineqs) |
| 40 | set.addInequality(inEq: ineq); |
| 41 | return set; |
| 42 | } |
| 43 | |
| 44 | static void dump(ArrayRef<DynamicAPInt> vec) { |
| 45 | for (const DynamicAPInt &x : vec) |
| 46 | llvm::errs() << x << ' '; |
| 47 | llvm::errs() << '\n'; |
| 48 | } |
| 49 | |
| 50 | /// If fn is TestFunction::Sample (default): |
| 51 | /// |
| 52 | /// If hasSample is true, check that findIntegerSample returns a valid sample |
| 53 | /// for the IntegerPolyhedron poly. Also check that getIntegerLexmin finds a |
| 54 | /// non-empty lexmin. |
| 55 | /// |
| 56 | /// If hasSample is false, check that findIntegerSample returns std::nullopt |
| 57 | /// and findIntegerLexMin returns Empty. |
| 58 | /// |
| 59 | /// If fn is TestFunction::Empty, check that isIntegerEmpty returns the |
| 60 | /// opposite of hasSample. |
| 61 | static void checkSample(bool hasSample, const IntegerPolyhedron &poly, |
| 62 | TestFunction fn = TestFunction::Sample) { |
| 63 | std::optional<SmallVector<DynamicAPInt, 8>> maybeSample; |
| 64 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> maybeLexMin; |
| 65 | switch (fn) { |
| 66 | case TestFunction::Sample: |
| 67 | maybeSample = poly.findIntegerSample(); |
| 68 | maybeLexMin = poly.findIntegerLexMin(); |
| 69 | |
| 70 | if (!hasSample) { |
| 71 | EXPECT_FALSE(maybeSample.has_value()); |
| 72 | if (maybeSample.has_value()) { |
| 73 | llvm::errs() << "findIntegerSample gave sample: " ; |
| 74 | dump(vec: *maybeSample); |
| 75 | } |
| 76 | |
| 77 | EXPECT_TRUE(maybeLexMin.isEmpty()); |
| 78 | if (maybeLexMin.isBounded()) { |
| 79 | llvm::errs() << "findIntegerLexMin gave sample: " ; |
| 80 | dump(vec: *maybeLexMin); |
| 81 | } |
| 82 | } else { |
| 83 | ASSERT_TRUE(maybeSample.has_value()); |
| 84 | EXPECT_TRUE(poly.containsPoint(*maybeSample)); |
| 85 | |
| 86 | ASSERT_FALSE(maybeLexMin.isEmpty()); |
| 87 | if (maybeLexMin.isUnbounded()) { |
| 88 | EXPECT_TRUE(Simplex(poly).isUnbounded()); |
| 89 | } |
| 90 | if (maybeLexMin.isBounded()) { |
| 91 | EXPECT_TRUE(poly.containsPointNoLocal(*maybeLexMin)); |
| 92 | } |
| 93 | } |
| 94 | break; |
| 95 | case TestFunction::Empty: |
| 96 | EXPECT_EQ(!hasSample, poly.isIntegerEmpty()); |
| 97 | break; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | /// Check sampling for all the permutations of the dimensions for the given |
| 102 | /// constraint set. Since the GBR algorithm progresses dimension-wise, different |
| 103 | /// orderings may cause the algorithm to proceed differently. At least some of |
| 104 | ///.these permutations should make it past the heuristics and test the |
| 105 | /// implementation of the GBR algorithm itself. |
| 106 | /// Use TestFunction fn to test. |
| 107 | static void checkPermutationsSample(bool hasSample, unsigned nDim, |
| 108 | ArrayRef<SmallVector<int64_t, 4>> ineqs, |
| 109 | ArrayRef<SmallVector<int64_t, 4>> eqs, |
| 110 | TestFunction fn = TestFunction::Sample) { |
| 111 | SmallVector<unsigned, 4> perm(nDim); |
| 112 | std::iota(first: perm.begin(), last: perm.end(), value: 0); |
| 113 | auto permute = [&perm](ArrayRef<int64_t> coeffs) { |
| 114 | SmallVector<int64_t, 4> permuted; |
| 115 | for (unsigned id : perm) |
| 116 | permuted.push_back(Elt: coeffs[id]); |
| 117 | permuted.push_back(Elt: coeffs.back()); |
| 118 | return permuted; |
| 119 | }; |
| 120 | do { |
| 121 | SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs; |
| 122 | for (const auto &ineq : ineqs) |
| 123 | permutedIneqs.push_back(Elt: permute(ineq)); |
| 124 | for (const auto &eq : eqs) |
| 125 | permutedEqs.push_back(Elt: permute(eq)); |
| 126 | |
| 127 | checkSample(hasSample, |
| 128 | poly: makeSetFromConstraints(ids: nDim, ineqs: permutedIneqs, eqs: permutedEqs), fn); |
| 129 | } while (std::next_permutation(first: perm.begin(), last: perm.end())); |
| 130 | } |
| 131 | |
| 132 | TEST(IntegerPolyhedronTest, removeInequality) { |
| 133 | IntegerPolyhedron set = |
| 134 | makeSetFromConstraints(ids: 1, ineqs: {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}, eqs: {}); |
| 135 | |
| 136 | set.removeInequalityRange(start: 0, end: 0); |
| 137 | EXPECT_EQ(set.getNumInequalities(), 5u); |
| 138 | |
| 139 | set.removeInequalityRange(start: 1, end: 3); |
| 140 | EXPECT_EQ(set.getNumInequalities(), 3u); |
| 141 | EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0)); |
| 142 | EXPECT_THAT(set.getInequality(1), ElementsAre(3, 3)); |
| 143 | EXPECT_THAT(set.getInequality(2), ElementsAre(4, 4)); |
| 144 | |
| 145 | set.removeInequality(pos: 1); |
| 146 | EXPECT_EQ(set.getNumInequalities(), 2u); |
| 147 | EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0)); |
| 148 | EXPECT_THAT(set.getInequality(1), ElementsAre(4, 4)); |
| 149 | } |
| 150 | |
| 151 | TEST(IntegerPolyhedronTest, removeEquality) { |
| 152 | IntegerPolyhedron set = |
| 153 | makeSetFromConstraints(ids: 1, ineqs: {}, eqs: {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}); |
| 154 | |
| 155 | set.removeEqualityRange(start: 0, end: 0); |
| 156 | EXPECT_EQ(set.getNumEqualities(), 5u); |
| 157 | |
| 158 | set.removeEqualityRange(start: 1, end: 3); |
| 159 | EXPECT_EQ(set.getNumEqualities(), 3u); |
| 160 | EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0)); |
| 161 | EXPECT_THAT(set.getEquality(1), ElementsAre(3, 3)); |
| 162 | EXPECT_THAT(set.getEquality(2), ElementsAre(4, 4)); |
| 163 | |
| 164 | set.removeEquality(pos: 1); |
| 165 | EXPECT_EQ(set.getNumEqualities(), 2u); |
| 166 | EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0)); |
| 167 | EXPECT_THAT(set.getEquality(1), ElementsAre(4, 4)); |
| 168 | } |
| 169 | |
| 170 | TEST(IntegerPolyhedronTest, clearConstraints) { |
| 171 | IntegerPolyhedron set = makeSetFromConstraints(ids: 1, ineqs: {}, eqs: {}); |
| 172 | |
| 173 | set.addInequality(inEq: {1, 0}); |
| 174 | EXPECT_EQ(set.atIneq(0, 0), 1); |
| 175 | EXPECT_EQ(set.atIneq(0, 1), 0); |
| 176 | |
| 177 | set.clearConstraints(); |
| 178 | |
| 179 | set.addInequality(inEq: {1, 0}); |
| 180 | EXPECT_EQ(set.atIneq(0, 0), 1); |
| 181 | EXPECT_EQ(set.atIneq(0, 1), 0); |
| 182 | } |
| 183 | |
| 184 | TEST(IntegerPolyhedronTest, removeIdRange) { |
| 185 | IntegerPolyhedron set(PresburgerSpace::getSetSpace(numDims: 3, numSymbols: 2, numLocals: 1)); |
| 186 | |
| 187 | set.addInequality(inEq: {10, 11, 12, 20, 21, 30, 40}); |
| 188 | set.removeVar(kind: VarKind::Symbol, pos: 1); |
| 189 | EXPECT_THAT(set.getInequality(0), |
| 190 | testing::ElementsAre(10, 11, 12, 20, 30, 40)); |
| 191 | |
| 192 | set.removeVarRange(kind: VarKind::SetDim, varStart: 0, varLimit: 2); |
| 193 | EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40)); |
| 194 | |
| 195 | set.removeVarRange(kind: VarKind::Local, varStart: 1, varLimit: 1); |
| 196 | EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40)); |
| 197 | |
| 198 | set.removeVarRange(kind: VarKind::Local, varStart: 0, varLimit: 1); |
| 199 | EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 40)); |
| 200 | } |
| 201 | |
| 202 | TEST(IntegerPolyhedronTest, FindSampleTest) { |
| 203 | // Bounded sets with only inequalities. |
| 204 | // 0 <= 7x <= 5 |
| 205 | checkSample(hasSample: true, |
| 206 | poly: parseIntegerPolyhedron(str: "(x) : (7 * x >= 0, -7 * x + 5 >= 0)" )); |
| 207 | |
| 208 | // 1 <= 5x and 5x <= 4 (no solution). |
| 209 | checkSample( |
| 210 | hasSample: false, poly: parseIntegerPolyhedron(str: "(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)" )); |
| 211 | |
| 212 | // 1 <= 5x and 5x <= 9 (solution: x = 1). |
| 213 | checkSample( |
| 214 | hasSample: true, poly: parseIntegerPolyhedron(str: "(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)" )); |
| 215 | |
| 216 | // Bounded sets with equalities. |
| 217 | // x >= 8 and 40 >= y and x = y. |
| 218 | checkSample(hasSample: true, poly: parseIntegerPolyhedron( |
| 219 | str: "(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)" )); |
| 220 | |
| 221 | // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z. |
| 222 | // solution: x = y = z = 10. |
| 223 | checkSample(hasSample: true, |
| 224 | poly: parseIntegerPolyhedron(str: "(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, " |
| 225 | "z - 10 >= 0, x + 2 * y - 3 * z == 0)" )); |
| 226 | |
| 227 | // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z. |
| 228 | // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution. |
| 229 | checkSample(hasSample: false, |
| 230 | poly: parseIntegerPolyhedron(str: "(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, " |
| 231 | "z - 11 >= 0, x + 2 * y - 3 * z == 0)" )); |
| 232 | |
| 233 | // 0 <= r and r <= 3 and 4q + r = 7. |
| 234 | // Solution: q = 1, r = 3. |
| 235 | checkSample(hasSample: true, poly: parseIntegerPolyhedron( |
| 236 | str: "(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)" )); |
| 237 | |
| 238 | // 4q + r = 7 and r = 0. |
| 239 | // Solution: q = 1, r = 3. |
| 240 | checkSample(hasSample: false, |
| 241 | poly: parseIntegerPolyhedron(str: "(q,r) : (4 * q + r - 7 == 0, r == 0)" )); |
| 242 | |
| 243 | // The next two sets are large sets that should take a long time to sample |
| 244 | // with a naive branch and bound algorithm but can be sampled efficiently with |
| 245 | // the GBR algorithm. |
| 246 | // |
| 247 | // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000). |
| 248 | checkSample( |
| 249 | hasSample: true, poly: parseIntegerPolyhedron(str: "(x,y) : (y >= 0, " |
| 250 | "300000 * x - 299999 * y - 100000 >= 0, " |
| 251 | "-300000 * x + 299998 * y + 200000 >= 0)" )); |
| 252 | |
| 253 | // This is a tetrahedron with vertices at |
| 254 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000). |
| 255 | // The first three points form a triangular base on the xz plane with the |
| 256 | // apex at the fourth point, which is the only integer point. |
| 257 | checkPermutationsSample( |
| 258 | hasSample: true, nDim: 3, |
| 259 | ineqs: { |
| 260 | {0, 1, 0, 0}, // y >= 0 |
| 261 | {0, -1, 1, 0}, // z >= y |
| 262 | {300000, -299998, -1, |
| 263 | -100000}, // -300000x + 299998y + 100000 + z <= 0. |
| 264 | {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0. |
| 265 | }, |
| 266 | eqs: {}); |
| 267 | |
| 268 | // Same thing with some spurious extra dimensions equated to constants. |
| 269 | checkSample(hasSample: true, |
| 270 | poly: parseIntegerPolyhedron( |
| 271 | str: "(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, " |
| 272 | "300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, " |
| 273 | "-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, " |
| 274 | "d - e == 0, d + e - 2000 == 0)" )); |
| 275 | |
| 276 | // This is a tetrahedron with vertices at |
| 277 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100). |
| 278 | checkPermutationsSample(hasSample: false, nDim: 3, |
| 279 | ineqs: { |
| 280 | {0, 1, 0, 0}, |
| 281 | {0, -300, 299, 0}, |
| 282 | {300 * 299, -89400, -299, -100 * 299}, |
| 283 | {-897, 894, 0, 598}, |
| 284 | }, |
| 285 | eqs: {}); |
| 286 | |
| 287 | // Two tests involving equalities that are integer empty but not rational |
| 288 | // empty. |
| 289 | |
| 290 | // This is a line segment from (0, 1/3) to (100, 100 + 1/3). |
| 291 | checkSample(hasSample: false, |
| 292 | poly: parseIntegerPolyhedron( |
| 293 | str: "(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)" )); |
| 294 | |
| 295 | // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3. |
| 296 | checkSample(hasSample: false, poly: parseIntegerPolyhedron( |
| 297 | str: "(x,y) : (x >= 0, -x + 100 >= 0, " |
| 298 | "3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)" )); |
| 299 | |
| 300 | checkSample(hasSample: true, |
| 301 | poly: parseIntegerPolyhedron(str: "(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, " |
| 302 | "2 * y >= 0, -2 * y + 99 >= 0)" )); |
| 303 | |
| 304 | // 2D cone with apex at (10000, 10000) and |
| 305 | // edges passing through (1/3, 0) and (2/3, 0). |
| 306 | checkSample(hasSample: true, poly: parseIntegerPolyhedron( |
| 307 | str: "(x,y) : (300000 * x - 299999 * y - 100000 >= 0, " |
| 308 | "-300000 * x + 299998 * y + 200000 >= 0)" )); |
| 309 | |
| 310 | // Cartesian product of a tetrahedron and a 2D cone. |
| 311 | // The tetrahedron has vertices at |
| 312 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000). |
| 313 | // The first three points form a triangular base on the xz plane with the |
| 314 | // apex at the fourth point, which is the only integer point. |
| 315 | // The cone has apex at (10000, 10000) and |
| 316 | // edges passing through (1/3, 0) and (2/3, 0). |
| 317 | checkPermutationsSample( |
| 318 | hasSample: true /* not empty */, nDim: 5, |
| 319 | ineqs: { |
| 320 | // Tetrahedron contraints: |
| 321 | {0, 1, 0, 0, 0, 0}, // y >= 0 |
| 322 | {0, -1, 1, 0, 0, 0}, // z >= y |
| 323 | // -300000x + 299998y + 100000 + z <= 0. |
| 324 | {300000, -299998, -1, 0, 0, -100000}, |
| 325 | // -150000x + 149999y + 100000 >= 0. |
| 326 | {-150000, 149999, 0, 0, 0, 100000}, |
| 327 | |
| 328 | // Triangle constraints: |
| 329 | // 300000p - 299999q >= 100000 |
| 330 | {0, 0, 0, 300000, -299999, -100000}, |
| 331 | // -300000p + 299998q + 200000 >= 0 |
| 332 | {0, 0, 0, -300000, 299998, 200000}, |
| 333 | }, |
| 334 | eqs: {}); |
| 335 | |
| 336 | // Cartesian product of same tetrahedron as above and {(p, q) : 1/3 <= p <= |
| 337 | // 2/3}. Since the second set is empty, the whole set is too. |
| 338 | checkPermutationsSample( |
| 339 | hasSample: false /* empty */, nDim: 5, |
| 340 | ineqs: { |
| 341 | // Tetrahedron contraints: |
| 342 | {0, 1, 0, 0, 0, 0}, // y >= 0 |
| 343 | {0, -1, 1, 0, 0, 0}, // z >= y |
| 344 | // -300000x + 299998y + 100000 + z <= 0. |
| 345 | {300000, -299998, -1, 0, 0, -100000}, |
| 346 | // -150000x + 149999y + 100000 >= 0. |
| 347 | {-150000, 149999, 0, 0, 0, 100000}, |
| 348 | |
| 349 | // Second set constraints: |
| 350 | // 3p >= 1 |
| 351 | {0, 0, 0, 3, 0, -1}, |
| 352 | // 3p <= 2 |
| 353 | {0, 0, 0, -3, 0, 2}, |
| 354 | }, |
| 355 | eqs: {}); |
| 356 | |
| 357 | // Cartesian product of same tetrahedron as above and |
| 358 | // {(p, q, r) : 1 <= p <= 2 and p = 3q + 3r}. |
| 359 | // Since the second set is empty, the whole set is too. |
| 360 | checkPermutationsSample( |
| 361 | hasSample: false /* empty */, nDim: 5, |
| 362 | ineqs: { |
| 363 | // Tetrahedron contraints: |
| 364 | {0, 1, 0, 0, 0, 0, 0}, // y >= 0 |
| 365 | {0, -1, 1, 0, 0, 0, 0}, // z >= y |
| 366 | // -300000x + 299998y + 100000 + z <= 0. |
| 367 | {300000, -299998, -1, 0, 0, 0, -100000}, |
| 368 | // -150000x + 149999y + 100000 >= 0. |
| 369 | {-150000, 149999, 0, 0, 0, 0, 100000}, |
| 370 | |
| 371 | // Second set constraints: |
| 372 | // p >= 1 |
| 373 | {0, 0, 0, 1, 0, 0, -1}, |
| 374 | // p <= 2 |
| 375 | {0, 0, 0, -1, 0, 0, 2}, |
| 376 | }, |
| 377 | eqs: { |
| 378 | {0, 0, 0, 1, -3, -3, 0}, // p = 3q + 3r |
| 379 | }); |
| 380 | |
| 381 | // Cartesian product of a tetrahedron and a 2D cone. |
| 382 | // The tetrahedron is empty and has vertices at |
| 383 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), and (100, 100 - 1/3, 100). |
| 384 | // The cone has apex at (10000, 10000) and |
| 385 | // edges passing through (1/3, 0) and (2/3, 0). |
| 386 | // Since the tetrahedron is empty, the Cartesian product is too. |
| 387 | checkPermutationsSample(hasSample: false /* empty */, nDim: 5, |
| 388 | ineqs: { |
| 389 | // Tetrahedron contraints: |
| 390 | {0, 1, 0, 0, 0, 0}, |
| 391 | {0, -300, 299, 0, 0, 0}, |
| 392 | {300 * 299, -89400, -299, 0, 0, -100 * 299}, |
| 393 | {-897, 894, 0, 0, 0, 598}, |
| 394 | |
| 395 | // Triangle constraints: |
| 396 | // 300000p - 299999q >= 100000 |
| 397 | {0, 0, 0, 300000, -299999, -100000}, |
| 398 | // -300000p + 299998q + 200000 >= 0 |
| 399 | {0, 0, 0, -300000, 299998, 200000}, |
| 400 | }, |
| 401 | eqs: {}); |
| 402 | |
| 403 | // Cartesian product of same tetrahedron as above and |
| 404 | // {(p, q) : 1/3 <= p <= 2/3}. |
| 405 | checkPermutationsSample(hasSample: false /* empty */, nDim: 5, |
| 406 | ineqs: { |
| 407 | // Tetrahedron contraints: |
| 408 | {0, 1, 0, 0, 0, 0}, |
| 409 | {0, -300, 299, 0, 0, 0}, |
| 410 | {300 * 299, -89400, -299, 0, 0, -100 * 299}, |
| 411 | {-897, 894, 0, 0, 0, 598}, |
| 412 | |
| 413 | // Second set constraints: |
| 414 | // 3p >= 1 |
| 415 | {0, 0, 0, 3, 0, -1}, |
| 416 | // 3p <= 2 |
| 417 | {0, 0, 0, -3, 0, 2}, |
| 418 | }, |
| 419 | eqs: {}); |
| 420 | |
| 421 | checkSample(hasSample: true, poly: parseIntegerPolyhedron( |
| 422 | str: "(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, " |
| 423 | "y - z == 0)" )); |
| 424 | |
| 425 | // Test with a local id. |
| 426 | checkSample(hasSample: true, poly: parseIntegerPolyhedron(str: "(x) : (x == 5*(x floordiv 2))" )); |
| 427 | |
| 428 | // Regression tests for the computation of dual coefficients. |
| 429 | checkSample(hasSample: false, poly: parseIntegerPolyhedron(str: "(x, y, z) : (" |
| 430 | "6*x - 4*y + 9*z + 2 >= 0," |
| 431 | "x + 5*y + z + 5 >= 0," |
| 432 | "-4*x + y + 2*z - 1 >= 0," |
| 433 | "-3*x - 2*y - 7*z - 1 >= 0," |
| 434 | "-7*x - 5*y - 9*z - 1 >= 0)" )); |
| 435 | checkSample(hasSample: true, poly: parseIntegerPolyhedron(str: "(x, y, z) : (" |
| 436 | "3*x + 3*y + 3 >= 0," |
| 437 | "-4*x - 8*y - z + 4 >= 0," |
| 438 | "-7*x - 4*y + z + 1 >= 0," |
| 439 | "2*x - 7*y - 8*z - 7 >= 0," |
| 440 | "9*x + 8*y - 9*z - 7 >= 0)" )); |
| 441 | } |
| 442 | |
| 443 | TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) { |
| 444 | // 1 <= 5x and 5x <= 4 (no solution). |
| 445 | EXPECT_TRUE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)" ) |
| 446 | .isIntegerEmpty()); |
| 447 | // 1 <= 5x and 5x <= 9 (solution: x = 1). |
| 448 | EXPECT_FALSE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)" ) |
| 449 | .isIntegerEmpty()); |
| 450 | |
| 451 | // Unbounded sets. |
| 452 | EXPECT_TRUE( |
| 453 | parseIntegerPolyhedron("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, " |
| 454 | "2 * z - 1 >= 0, 2 * x - 1 == 0)" ) |
| 455 | .isIntegerEmpty()); |
| 456 | |
| 457 | EXPECT_FALSE(parseIntegerPolyhedron( |
| 458 | "(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, " |
| 459 | "5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)" ) |
| 460 | .isIntegerEmpty()); |
| 461 | |
| 462 | EXPECT_FALSE(parseIntegerPolyhedron( |
| 463 | "(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)" ) |
| 464 | .isIntegerEmpty()); |
| 465 | |
| 466 | // IntegerPolyhedron::isEmpty() does not detect the following sets to be |
| 467 | // empty. |
| 468 | |
| 469 | // 3x + 7y = 1 and 0 <= x, y <= 10. |
| 470 | // Since x and y are non-negative, 3x + 7y can never be 1. |
| 471 | EXPECT_TRUE(parseIntegerPolyhedron( |
| 472 | "(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, " |
| 473 | "3 * x + 7 * y - 1 == 0)" ) |
| 474 | .isIntegerEmpty()); |
| 475 | |
| 476 | // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100. |
| 477 | // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2. |
| 478 | // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty. |
| 479 | EXPECT_TRUE(parseIntegerPolyhedron( |
| 480 | "(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, " |
| 481 | "2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)" ) |
| 482 | .isIntegerEmpty()); |
| 483 | |
| 484 | // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100. |
| 485 | // 2x = 3y implies x is a multiple of 3 and y is even. |
| 486 | // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have |
| 487 | // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying |
| 488 | // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty. |
| 489 | EXPECT_TRUE( |
| 490 | parseIntegerPolyhedron( |
| 491 | "(x,y,z,q) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, " |
| 492 | "2 * x - 3 * y == 0, x - y + 6 * z - 1 == 0, x + y - 6 * q - 2 == 0)" ) |
| 493 | .isIntegerEmpty()); |
| 494 | |
| 495 | // Set with symbols. |
| 496 | EXPECT_FALSE(parseIntegerPolyhedron("(x)[s] : (x + s >= 0, x - s == 0)" ) |
| 497 | .isIntegerEmpty()); |
| 498 | } |
| 499 | |
| 500 | TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) { |
| 501 | IntegerPolyhedron poly = |
| 502 | parseIntegerPolyhedron(str: "(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)" ); |
| 503 | poly.removeRedundantConstraints(); |
| 504 | |
| 505 | // Both inequalities are redundant given the equality. Both have been removed. |
| 506 | EXPECT_EQ(poly.getNumInequalities(), 0u); |
| 507 | EXPECT_EQ(poly.getNumEqualities(), 1u); |
| 508 | |
| 509 | IntegerPolyhedron poly2 = |
| 510 | parseIntegerPolyhedron(str: "(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)" ); |
| 511 | poly2.removeRedundantConstraints(); |
| 512 | |
| 513 | // The second inequality is redundant and should have been removed. The |
| 514 | // remaining inequality should be the first one. |
| 515 | EXPECT_EQ(poly2.getNumInequalities(), 1u); |
| 516 | EXPECT_THAT(poly2.getInequality(0), ElementsAre(1, 0, -3)); |
| 517 | EXPECT_EQ(poly2.getNumEqualities(), 1u); |
| 518 | |
| 519 | IntegerPolyhedron poly3 = |
| 520 | parseIntegerPolyhedron(str: "(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)" ); |
| 521 | poly3.removeRedundantConstraints(); |
| 522 | |
| 523 | // One of the three equalities can be removed. |
| 524 | EXPECT_EQ(poly3.getNumInequalities(), 0u); |
| 525 | EXPECT_EQ(poly3.getNumEqualities(), 2u); |
| 526 | |
| 527 | IntegerPolyhedron poly4 = parseIntegerPolyhedron( |
| 528 | str: "(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : (" |
| 529 | "b - 1 >= 0," |
| 530 | "-b + 500 >= 0," |
| 531 | "-16 * d + f >= 0," |
| 532 | "f - 1 >= 0," |
| 533 | "-f + 998 >= 0," |
| 534 | "16 * d - f + 15 >= 0," |
| 535 | "-16 * e + g >= 0," |
| 536 | "g - 1 >= 0," |
| 537 | "-g + 998 >= 0," |
| 538 | "16 * e - g + 15 >= 0," |
| 539 | "h >= 0," |
| 540 | "-h + 1 >= 0," |
| 541 | "j - 1 >= 0," |
| 542 | "-j + 500 >= 0," |
| 543 | "-f + 16 * l + 15 >= 0," |
| 544 | "f - 16 * l >= 0," |
| 545 | "-16 * m + o >= 0," |
| 546 | "o - 1 >= 0," |
| 547 | "-o + 998 >= 0," |
| 548 | "16 * m - o + 15 >= 0," |
| 549 | "p >= 0," |
| 550 | "-p + 1 >= 0," |
| 551 | "-g - h + 8 * q + 8 >= 0," |
| 552 | "-o - p + 8 * q + 8 >= 0," |
| 553 | "o + p - 8 * q - 1 >= 0," |
| 554 | "g + h - 8 * q - 1 >= 0," |
| 555 | "-f + n >= 0," |
| 556 | "f - n >= 0," |
| 557 | "k - 10 >= 0," |
| 558 | "-k + 10 >= 0," |
| 559 | "i - 13 >= 0," |
| 560 | "-i + 13 >= 0," |
| 561 | "c - 10 >= 0," |
| 562 | "-c + 10 >= 0," |
| 563 | "a - 13 >= 0," |
| 564 | "-a + 13 >= 0" |
| 565 | ")" ); |
| 566 | |
| 567 | // The above is a large set of constraints without any redundant constraints, |
| 568 | // as verified by the Fourier-Motzkin based removeRedundantInequalities. |
| 569 | unsigned nIneq = poly4.getNumInequalities(); |
| 570 | unsigned nEq = poly4.getNumEqualities(); |
| 571 | poly4.removeRedundantInequalities(); |
| 572 | ASSERT_EQ(poly4.getNumInequalities(), nIneq); |
| 573 | ASSERT_EQ(poly4.getNumEqualities(), nEq); |
| 574 | // Now we test that removeRedundantConstraints does not find any constraints |
| 575 | // to be redundant either. |
| 576 | poly4.removeRedundantConstraints(); |
| 577 | EXPECT_EQ(poly4.getNumInequalities(), nIneq); |
| 578 | EXPECT_EQ(poly4.getNumEqualities(), nEq); |
| 579 | |
| 580 | IntegerPolyhedron poly5 = parseIntegerPolyhedron( |
| 581 | str: "(x,y) : (128 * x + 127 >= 0, -x + 7 >= 0, -128 * x + y >= 0, y >= 0)" ); |
| 582 | // 128x + 127 >= 0 implies that 128x >= 0, since x has to be an integer. |
| 583 | // (This should be caught by GCDTightenInqualities().) |
| 584 | // So -128x + y >= 0 and 128x + 127 >= 0 imply y >= 0 since we have |
| 585 | // y >= 128x >= 0. |
| 586 | poly5.removeRedundantConstraints(); |
| 587 | EXPECT_EQ(poly5.getNumInequalities(), 3u); |
| 588 | SmallVector<DynamicAPInt, 8> redundantConstraint = |
| 589 | getDynamicAPIntVec(range: {0, 1, 0}); |
| 590 | for (unsigned i = 0; i < 3; ++i) { |
| 591 | // Ensure that the removed constraint was the redundant constraint [3]. |
| 592 | EXPECT_NE(poly5.getInequality(i), |
| 593 | ArrayRef<DynamicAPInt>(redundantConstraint)); |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | TEST(IntegerPolyhedronTest, addConstantUpperBound) { |
| 598 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 2)); |
| 599 | poly.addBound(type: BoundType::UB, pos: 0, value: 1); |
| 600 | EXPECT_EQ(poly.atIneq(0, 0), -1); |
| 601 | EXPECT_EQ(poly.atIneq(0, 1), 0); |
| 602 | EXPECT_EQ(poly.atIneq(0, 2), 1); |
| 603 | |
| 604 | poly.addBound(type: BoundType::UB, expr: {1, 2, 3}, value: 1); |
| 605 | EXPECT_EQ(poly.atIneq(1, 0), -1); |
| 606 | EXPECT_EQ(poly.atIneq(1, 1), -2); |
| 607 | EXPECT_EQ(poly.atIneq(1, 2), -2); |
| 608 | } |
| 609 | |
| 610 | TEST(IntegerPolyhedronTest, addConstantLowerBound) { |
| 611 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 2)); |
| 612 | poly.addBound(type: BoundType::LB, pos: 0, value: 1); |
| 613 | EXPECT_EQ(poly.atIneq(0, 0), 1); |
| 614 | EXPECT_EQ(poly.atIneq(0, 1), 0); |
| 615 | EXPECT_EQ(poly.atIneq(0, 2), -1); |
| 616 | |
| 617 | poly.addBound(type: BoundType::LB, expr: {1, 2, 3}, value: 1); |
| 618 | EXPECT_EQ(poly.atIneq(1, 0), 1); |
| 619 | EXPECT_EQ(poly.atIneq(1, 1), 2); |
| 620 | EXPECT_EQ(poly.atIneq(1, 2), 2); |
| 621 | } |
| 622 | |
| 623 | /// Check if the expected division representation of local variables matches the |
| 624 | /// computed representation. The expected division representation is given as |
| 625 | /// a vector of expressions set in `expectedDividends` and the corressponding |
| 626 | /// denominator in `expectedDenominators`. The `denominators` and `dividends` |
| 627 | /// obtained through `getLocalRepr` function is verified against the |
| 628 | /// `expectedDenominators` and `expectedDividends` respectively. |
| 629 | static void checkDivisionRepresentation( |
| 630 | IntegerPolyhedron &poly, |
| 631 | const std::vector<SmallVector<int64_t, 8>> &expectedDividends, |
| 632 | ArrayRef<int64_t> expectedDenominators) { |
| 633 | DivisionRepr divs = poly.getLocalReprs(); |
| 634 | |
| 635 | // Check that the `denominators` and `expectedDenominators` match. |
| 636 | EXPECT_EQ(ArrayRef<DynamicAPInt>(getDynamicAPIntVec(expectedDenominators)), |
| 637 | divs.getDenoms()); |
| 638 | |
| 639 | // Check that the `dividends` and `expectedDividends` match. If the |
| 640 | // denominator for a division is zero, we ignore its dividend. |
| 641 | EXPECT_TRUE(divs.getNumDivs() == expectedDividends.size()); |
| 642 | for (unsigned i = 0, e = divs.getNumDivs(); i < e; ++i) { |
| 643 | if (divs.hasRepr(i)) { |
| 644 | for (unsigned j = 0, f = divs.getNumVars() + 1; j < f; ++j) { |
| 645 | EXPECT_TRUE(expectedDividends[i][j] == divs.getDividend(i)[j]); |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | TEST(IntegerPolyhedronTest, computeLocalReprSimple) { |
| 652 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 1)); |
| 653 | |
| 654 | poly.addLocalFloorDiv(dividend: {1, 4}, divisor: 10); |
| 655 | poly.addLocalFloorDiv(dividend: {1, 0, 100}, divisor: 10); |
| 656 | |
| 657 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 0, 0, 4}, |
| 658 | {1, 0, 0, 100}}; |
| 659 | SmallVector<int64_t, 8> denoms = {10, 10}; |
| 660 | |
| 661 | // Check if floordivs can be computed when no other inequalities exist |
| 662 | // and floor divs do not depend on each other. |
| 663 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 664 | } |
| 665 | |
| 666 | TEST(IntegerPolyhedronTest, computeLocalReprConstantFloorDiv) { |
| 667 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 4)); |
| 668 | |
| 669 | poly.addInequality(inEq: {1, 0, 3, 1, 2}); |
| 670 | poly.addInequality(inEq: {1, 2, -8, 1, 10}); |
| 671 | poly.addEquality(eq: {1, 2, -4, 1, 10}); |
| 672 | |
| 673 | poly.addLocalFloorDiv(dividend: {0, 0, 0, 0, 100}, divisor: 30); |
| 674 | poly.addLocalFloorDiv(dividend: {0, 0, 0, 0, 0, 206}, divisor: 101); |
| 675 | |
| 676 | std::vector<SmallVector<int64_t, 8>> divisions = {{0, 0, 0, 0, 0, 0, 3}, |
| 677 | {0, 0, 0, 0, 0, 0, 2}}; |
| 678 | SmallVector<int64_t, 8> denoms = {1, 1}; |
| 679 | |
| 680 | // Check if floordivs with constant numerator can be computed. |
| 681 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 682 | } |
| 683 | |
| 684 | TEST(IntegerPolyhedronTest, computeLocalReprRecursive) { |
| 685 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 4)); |
| 686 | poly.addInequality(inEq: {1, 0, 3, 1, 2}); |
| 687 | poly.addInequality(inEq: {1, 2, -8, 1, 10}); |
| 688 | poly.addEquality(eq: {1, 2, -4, 1, 10}); |
| 689 | |
| 690 | poly.addLocalFloorDiv(dividend: {0, -2, 7, 2, 10}, divisor: 3); |
| 691 | poly.addLocalFloorDiv(dividend: {3, 0, 9, 2, 2, 10}, divisor: 5); |
| 692 | poly.addLocalFloorDiv(dividend: {0, 1, -123, 2, 0, -4, 10}, divisor: 3); |
| 693 | |
| 694 | poly.addInequality(inEq: {1, 2, -2, 1, -5, 0, 6, 100}); |
| 695 | poly.addInequality(inEq: {1, 2, -8, 1, 3, 7, 0, -9}); |
| 696 | |
| 697 | std::vector<SmallVector<int64_t, 8>> divisions = { |
| 698 | {0, -2, 7, 2, 0, 0, 0, 10}, |
| 699 | {3, 0, 9, 2, 2, 0, 0, 10}, |
| 700 | {0, 1, -123, 2, 0, -4, 0, 10}}; |
| 701 | |
| 702 | SmallVector<int64_t, 8> denoms = {3, 5, 3}; |
| 703 | |
| 704 | // Check if floordivs which may depend on other floordivs can be computed. |
| 705 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 706 | } |
| 707 | |
| 708 | TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) { |
| 709 | { |
| 710 | IntegerPolyhedron poly = parseIntegerPolyhedron(str: "(i) : (i mod 3 - 1 >= 0)" ); |
| 711 | |
| 712 | // The set formed by the poly is: |
| 713 | // 3q - i + 2 >= 0 <-- Division lower bound |
| 714 | // -3q + i - 1 >= 0 |
| 715 | // -3q + i >= 0 <-- Division upper bound |
| 716 | // We remove redundant constraints to get the set: |
| 717 | // 3q - i + 2 >= 0 <-- Division lower bound |
| 718 | // -3q + i - 1 >= 0 <-- Tighter division upper bound |
| 719 | // thus, making the upper bound tighter. |
| 720 | poly.removeRedundantConstraints(); |
| 721 | |
| 722 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 0, 0}}; |
| 723 | SmallVector<int64_t, 8> denoms = {3}; |
| 724 | |
| 725 | // Check if the divisions can be computed even with a tighter upper bound. |
| 726 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 727 | } |
| 728 | |
| 729 | { |
| 730 | IntegerPolyhedron poly = parseIntegerPolyhedron( |
| 731 | str: "(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)" ); |
| 732 | // Convert `q` to a local variable. |
| 733 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 2, varLimit: 3); |
| 734 | |
| 735 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 1}}; |
| 736 | SmallVector<int64_t, 8> denoms = {4}; |
| 737 | |
| 738 | // Check if the divisions can be computed even with a tighter upper bound. |
| 739 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) { |
| 744 | { |
| 745 | IntegerPolyhedron poly = |
| 746 | parseIntegerPolyhedron(str: "(i, j, q) : (-4*q + i + j == 0)" ); |
| 747 | // Convert `q` to a local variable. |
| 748 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 2, varLimit: 3); |
| 749 | |
| 750 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0}}; |
| 751 | SmallVector<int64_t, 8> denoms = {4}; |
| 752 | |
| 753 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 754 | } |
| 755 | { |
| 756 | IntegerPolyhedron poly = |
| 757 | parseIntegerPolyhedron(str: "(i, j, q) : (4*q - i - j == 0)" ); |
| 758 | // Convert `q` to a local variable. |
| 759 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 2, varLimit: 3); |
| 760 | |
| 761 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0}}; |
| 762 | SmallVector<int64_t, 8> denoms = {4}; |
| 763 | |
| 764 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 765 | } |
| 766 | { |
| 767 | IntegerPolyhedron poly = |
| 768 | parseIntegerPolyhedron(str: "(i, j, q) : (3*q + i + j - 2 == 0)" ); |
| 769 | // Convert `q` to a local variable. |
| 770 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 2, varLimit: 3); |
| 771 | |
| 772 | std::vector<SmallVector<int64_t, 8>> divisions = {{-1, -1, 0, 2}}; |
| 773 | SmallVector<int64_t, 8> denoms = {3}; |
| 774 | |
| 775 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) { |
| 780 | { |
| 781 | IntegerPolyhedron poly = |
| 782 | parseIntegerPolyhedron(str: "(i, j, q, k) : (-3*k + i + j == 0, 4*q - " |
| 783 | "i - j + 2 >= 0, -4*q + i + j >= 0)" ); |
| 784 | // Convert `q` and `k` to local variables. |
| 785 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 2, varLimit: 4); |
| 786 | |
| 787 | std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0, 1}, |
| 788 | {1, 1, 0, 0, 0}}; |
| 789 | SmallVector<int64_t, 8> denoms = {4, 3}; |
| 790 | |
| 791 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) { |
| 796 | IntegerPolyhedron poly = |
| 797 | parseIntegerPolyhedron(str: "(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)" ); |
| 798 | // Convert q to a local variable. |
| 799 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 1, varLimit: 2); |
| 800 | |
| 801 | std::vector<SmallVector<int64_t, 8>> divisions = {{0, 0, 0}}; |
| 802 | SmallVector<int64_t, 8> denoms = {0}; |
| 803 | |
| 804 | // Check that no division is computed. |
| 805 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 806 | } |
| 807 | |
| 808 | TEST(IntegerPolyhedronTest, computeLocalReprNegConstNormalize) { |
| 809 | IntegerPolyhedron poly = parseIntegerPolyhedron( |
| 810 | str: "(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)" ); |
| 811 | // Convert q to a local variable. |
| 812 | poly.convertToLocal(kind: VarKind::SetDim, varStart: 1, varLimit: 2); |
| 813 | |
| 814 | // q = floor((-1/3 - x)/2) |
| 815 | // = floor((1/3) + (-1 - x)/2) |
| 816 | // = floor((-1 - x)/2). |
| 817 | std::vector<SmallVector<int64_t, 8>> divisions = {{-1, 0, -1}}; |
| 818 | SmallVector<int64_t, 8> denoms = {2}; |
| 819 | checkDivisionRepresentation(poly, expectedDividends: divisions, expectedDenominators: denoms); |
| 820 | } |
| 821 | |
| 822 | TEST(IntegerPolyhedronTest, simplifyLocalsTest) { |
| 823 | // (x) : (exists y: 2x + y = 1 and y = 2). |
| 824 | IntegerPolyhedron poly(PresburgerSpace::getSetSpace(numDims: 1, numSymbols: 0, numLocals: 1)); |
| 825 | poly.addEquality(eq: {2, 1, -1}); |
| 826 | poly.addEquality(eq: {0, 1, -2}); |
| 827 | |
| 828 | EXPECT_TRUE(poly.isEmpty()); |
| 829 | |
| 830 | // (x) : (exists y, z, w: 3x + y = 1 and 2y = z and 3y = w and z = w). |
| 831 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1, numSymbols: 0, numLocals: 3)); |
| 832 | poly2.addEquality(eq: {3, 1, 0, 0, -1}); |
| 833 | poly2.addEquality(eq: {0, 2, -1, 0, 0}); |
| 834 | poly2.addEquality(eq: {0, 3, 0, -1, 0}); |
| 835 | poly2.addEquality(eq: {0, 0, 1, -1, 0}); |
| 836 | |
| 837 | EXPECT_TRUE(poly2.isEmpty()); |
| 838 | |
| 839 | // (x) : (exists y: x >= y + 1 and 2x + y = 0 and y >= -1). |
| 840 | IntegerPolyhedron poly3(PresburgerSpace::getSetSpace(numDims: 1, numSymbols: 0, numLocals: 1)); |
| 841 | poly3.addInequality(inEq: {1, -1, -1}); |
| 842 | poly3.addInequality(inEq: {0, 1, 1}); |
| 843 | poly3.addEquality(eq: {2, 1, 0}); |
| 844 | |
| 845 | EXPECT_TRUE(poly3.isEmpty()); |
| 846 | } |
| 847 | |
| 848 | TEST(IntegerPolyhedronTest, mergeDivisionsSimple) { |
| 849 | { |
| 850 | // (x) : (exists z, y = [x / 2] : x = 3y and x + z + 1 >= 0). |
| 851 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1, numSymbols: 0, numLocals: 1)); |
| 852 | poly1.addLocalFloorDiv(dividend: {1, 0, 0}, divisor: 2); // y = [x / 2]. |
| 853 | poly1.addEquality(eq: {1, 0, -3, 0}); // x = 3y. |
| 854 | poly1.addInequality(inEq: {1, 1, 0, 1}); // x + z + 1 >= 0. |
| 855 | |
| 856 | // (x) : (exists y = [x / 2], z : x = 5y). |
| 857 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 858 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 859 | poly2.addEquality(eq: {1, -5, 0}); // x = 5y. |
| 860 | poly2.appendVar(kind: VarKind::Local); // Add local id z. |
| 861 | |
| 862 | poly1.mergeLocalVars(other&: poly2); |
| 863 | |
| 864 | // Local space should be same. |
| 865 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 866 | |
| 867 | // 1 division should be matched + 2 unmatched local ids. |
| 868 | EXPECT_EQ(poly1.getNumLocalVars(), 3u); |
| 869 | EXPECT_EQ(poly2.getNumLocalVars(), 3u); |
| 870 | } |
| 871 | |
| 872 | { |
| 873 | // (x) : (exists z = [x / 5], y = [x / 2] : x = 3y). |
| 874 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 875 | poly1.addLocalFloorDiv(dividend: {1, 0}, divisor: 5); // z = [x / 5]. |
| 876 | poly1.addLocalFloorDiv(dividend: {1, 0, 0}, divisor: 2); // y = [x / 2]. |
| 877 | poly1.addEquality(eq: {1, 0, -3, 0}); // x = 3y. |
| 878 | |
| 879 | // (x) : (exists y = [x / 2], z = [x / 5]: x = 5z). |
| 880 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 881 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 882 | poly2.addLocalFloorDiv(dividend: {1, 0, 0}, divisor: 5); // z = [x / 5]. |
| 883 | poly2.addEquality(eq: {1, 0, -5, 0}); // x = 5z. |
| 884 | |
| 885 | poly1.mergeLocalVars(other&: poly2); |
| 886 | |
| 887 | // Local space should be same. |
| 888 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 889 | |
| 890 | // 2 divisions should be matched. |
| 891 | EXPECT_EQ(poly1.getNumLocalVars(), 2u); |
| 892 | EXPECT_EQ(poly2.getNumLocalVars(), 2u); |
| 893 | } |
| 894 | |
| 895 | { |
| 896 | // Division Normalization test. |
| 897 | // (x) : (exists z, y = [x / 2] : x = 3y and x + z + 1 >= 0). |
| 898 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1, numSymbols: 0, numLocals: 1)); |
| 899 | // This division would be normalized. |
| 900 | poly1.addLocalFloorDiv(dividend: {3, 0, 0}, divisor: 6); // y = [3x / 6] -> [x/2]. |
| 901 | poly1.addEquality(eq: {1, 0, -3, 0}); // x = 3z. |
| 902 | poly1.addInequality(inEq: {1, 1, 0, 1}); // x + y + 1 >= 0. |
| 903 | |
| 904 | // (x) : (exists y = [x / 2], z : x = 5y). |
| 905 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 906 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 907 | poly2.addEquality(eq: {1, -5, 0}); // x = 5y. |
| 908 | poly2.appendVar(kind: VarKind::Local); // Add local id z. |
| 909 | |
| 910 | poly1.mergeLocalVars(other&: poly2); |
| 911 | |
| 912 | // Local space should be same. |
| 913 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 914 | |
| 915 | // One division should be matched + 2 unmatched local ids. |
| 916 | EXPECT_EQ(poly1.getNumLocalVars(), 3u); |
| 917 | EXPECT_EQ(poly2.getNumLocalVars(), 3u); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | TEST(IntegerPolyhedronTest, mergeDivisionsNestedDivsions) { |
| 922 | { |
| 923 | // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x). |
| 924 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 925 | poly1.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 926 | poly1.addLocalFloorDiv(dividend: {1, 1, 0}, divisor: 3); // z = [x + y / 3]. |
| 927 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 928 | |
| 929 | // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x). |
| 930 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 931 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 932 | poly2.addLocalFloorDiv(dividend: {1, 1, 0}, divisor: 3); // z = [x + y / 3]. |
| 933 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 934 | |
| 935 | poly1.mergeLocalVars(other&: poly2); |
| 936 | |
| 937 | // Local space should be same. |
| 938 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 939 | |
| 940 | // 2 divisions should be matched. |
| 941 | EXPECT_EQ(poly1.getNumLocalVars(), 2u); |
| 942 | EXPECT_EQ(poly2.getNumLocalVars(), 2u); |
| 943 | } |
| 944 | |
| 945 | { |
| 946 | // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z >= x). |
| 947 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 948 | poly1.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 949 | poly1.addLocalFloorDiv(dividend: {1, 1, 0}, divisor: 3); // z = [x + y / 3]. |
| 950 | poly1.addLocalFloorDiv(dividend: {0, 0, 1, 1}, divisor: 5); // w = [z + 1 / 5]. |
| 951 | poly1.addInequality(inEq: {-1, 1, 1, 0, 0}); // y + z >= x. |
| 952 | |
| 953 | // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z <= x). |
| 954 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 955 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 956 | poly2.addLocalFloorDiv(dividend: {1, 1, 0}, divisor: 3); // z = [x + y / 3]. |
| 957 | poly2.addLocalFloorDiv(dividend: {0, 0, 1, 1}, divisor: 5); // w = [z + 1 / 5]. |
| 958 | poly2.addInequality(inEq: {1, -1, -1, 0, 0}); // y + z <= x. |
| 959 | |
| 960 | poly1.mergeLocalVars(other&: poly2); |
| 961 | |
| 962 | // Local space should be same. |
| 963 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 964 | |
| 965 | // 3 divisions should be matched. |
| 966 | EXPECT_EQ(poly1.getNumLocalVars(), 3u); |
| 967 | EXPECT_EQ(poly2.getNumLocalVars(), 3u); |
| 968 | } |
| 969 | { |
| 970 | // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x). |
| 971 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 972 | poly1.addLocalFloorDiv(dividend: {2, 0}, divisor: 4); // y = [2x / 4] -> [x / 2]. |
| 973 | poly1.addLocalFloorDiv(dividend: {1, 1, 0}, divisor: 3); // z = [x + y / 3]. |
| 974 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 975 | |
| 976 | // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x). |
| 977 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 978 | poly2.addLocalFloorDiv(dividend: {1, 0}, divisor: 2); // y = [x / 2]. |
| 979 | // This division would be normalized. |
| 980 | poly2.addLocalFloorDiv(dividend: {3, 3, 0}, divisor: 9); // z = [3x + 3y / 9] -> [x + y / 3]. |
| 981 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 982 | |
| 983 | poly1.mergeLocalVars(other&: poly2); |
| 984 | |
| 985 | // Local space should be same. |
| 986 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 987 | |
| 988 | // 2 divisions should be matched. |
| 989 | EXPECT_EQ(poly1.getNumLocalVars(), 2u); |
| 990 | EXPECT_EQ(poly2.getNumLocalVars(), 2u); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | TEST(IntegerPolyhedronTest, mergeDivisionsConstants) { |
| 995 | { |
| 996 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x). |
| 997 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 998 | poly1.addLocalFloorDiv(dividend: {1, 1}, divisor: 2); // y = [x + 1 / 2]. |
| 999 | poly1.addLocalFloorDiv(dividend: {1, 0, 2}, divisor: 3); // z = [x + 2 / 3]. |
| 1000 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 1001 | |
| 1002 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). |
| 1003 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1004 | poly2.addLocalFloorDiv(dividend: {1, 1}, divisor: 2); // y = [x + 1 / 2]. |
| 1005 | poly2.addLocalFloorDiv(dividend: {1, 0, 2}, divisor: 3); // z = [x + 2 / 3]. |
| 1006 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 1007 | |
| 1008 | poly1.mergeLocalVars(other&: poly2); |
| 1009 | |
| 1010 | // Local space should be same. |
| 1011 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 1012 | |
| 1013 | // 2 divisions should be matched. |
| 1014 | EXPECT_EQ(poly1.getNumLocalVars(), 2u); |
| 1015 | EXPECT_EQ(poly2.getNumLocalVars(), 2u); |
| 1016 | } |
| 1017 | { |
| 1018 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x). |
| 1019 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1020 | poly1.addLocalFloorDiv(dividend: {1, 1}, divisor: 2); // y = [x + 1 / 2]. |
| 1021 | // Normalization test. |
| 1022 | poly1.addLocalFloorDiv(dividend: {3, 0, 6}, divisor: 9); // z = [3x + 6 / 9] -> [x + 2 / 3]. |
| 1023 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 1024 | |
| 1025 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). |
| 1026 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1027 | // Normalization test. |
| 1028 | poly2.addLocalFloorDiv(dividend: {2, 2}, divisor: 4); // y = [2x + 2 / 4] -> [x + 1 / 2]. |
| 1029 | poly2.addLocalFloorDiv(dividend: {1, 0, 2}, divisor: 3); // z = [x + 2 / 3]. |
| 1030 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 1031 | |
| 1032 | poly1.mergeLocalVars(other&: poly2); |
| 1033 | |
| 1034 | // Local space should be same. |
| 1035 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 1036 | |
| 1037 | // 2 divisions should be matched. |
| 1038 | EXPECT_EQ(poly1.getNumLocalVars(), 2u); |
| 1039 | EXPECT_EQ(poly2.getNumLocalVars(), 2u); |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | TEST(IntegerPolyhedronTest, mergeDivisionsDuplicateInSameSet) { |
| 1044 | // (x) : (exists y = [x + 1 / 3], z = [x + 1 / 3]: y + z >= x). |
| 1045 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1046 | poly1.addLocalFloorDiv(dividend: {1, 1}, divisor: 3); // y = [x + 1 / 2]. |
| 1047 | poly1.addLocalFloorDiv(dividend: {1, 0, 1}, divisor: 3); // z = [x + 1 / 3]. |
| 1048 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 1049 | |
| 1050 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). |
| 1051 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1052 | poly2.addLocalFloorDiv(dividend: {1, 1}, divisor: 3); // y = [x + 1 / 3]. |
| 1053 | poly2.addLocalFloorDiv(dividend: {1, 0, 2}, divisor: 3); // z = [x + 2 / 3]. |
| 1054 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 1055 | |
| 1056 | poly1.mergeLocalVars(other&: poly2); |
| 1057 | |
| 1058 | // Local space should be same. |
| 1059 | EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars()); |
| 1060 | |
| 1061 | // 1 divisions should be matched. |
| 1062 | EXPECT_EQ(poly1.getNumLocalVars(), 3u); |
| 1063 | EXPECT_EQ(poly2.getNumLocalVars(), 3u); |
| 1064 | } |
| 1065 | |
| 1066 | TEST(IntegerPolyhedronTest, negativeDividends) { |
| 1067 | // (x) : (exists y = [-x + 1 / 2], z = [-x - 2 / 3]: y + z >= x). |
| 1068 | IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1069 | poly1.addLocalFloorDiv(dividend: {-1, 1}, divisor: 2); // y = [x + 1 / 2]. |
| 1070 | // Normalization test with negative dividends |
| 1071 | poly1.addLocalFloorDiv(dividend: {-3, 0, -6}, divisor: 9); // z = [3x + 6 / 9] -> [x + 2 / 3]. |
| 1072 | poly1.addInequality(inEq: {-1, 1, 1, 0}); // y + z >= x. |
| 1073 | |
| 1074 | // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). |
| 1075 | IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1076 | // Normalization test. |
| 1077 | poly2.addLocalFloorDiv(dividend: {-2, 2}, divisor: 4); // y = [-2x + 2 / 4] -> [-x + 1 / 2]. |
| 1078 | poly2.addLocalFloorDiv(dividend: {-1, 0, -2}, divisor: 3); // z = [-x - 2 / 3]. |
| 1079 | poly2.addInequality(inEq: {1, -1, -1, 0}); // y + z <= x. |
| 1080 | |
| 1081 | poly1.mergeLocalVars(other&: poly2); |
| 1082 | |
| 1083 | // Merging triggers normalization. |
| 1084 | std::vector<SmallVector<int64_t, 8>> divisions = {{-1, 0, 0, 1}, |
| 1085 | {-1, 0, 0, -2}}; |
| 1086 | SmallVector<int64_t, 8> denoms = {2, 3}; |
| 1087 | checkDivisionRepresentation(poly&: poly1, expectedDividends: divisions, expectedDenominators: denoms); |
| 1088 | } |
| 1089 | |
| 1090 | void expectRationalLexMin(const IntegerPolyhedron &poly, |
| 1091 | ArrayRef<Fraction> min) { |
| 1092 | auto lexMin = poly.findRationalLexMin(); |
| 1093 | ASSERT_TRUE(lexMin.isBounded()); |
| 1094 | EXPECT_EQ(ArrayRef<Fraction>(*lexMin), min); |
| 1095 | } |
| 1096 | |
| 1097 | void expectNoRationalLexMin(OptimumKind kind, const IntegerPolyhedron &poly) { |
| 1098 | ASSERT_NE(kind, OptimumKind::Bounded) |
| 1099 | << "Use expectRationalLexMin for bounded min" ; |
| 1100 | EXPECT_EQ(poly.findRationalLexMin().getKind(), kind); |
| 1101 | } |
| 1102 | |
| 1103 | TEST(IntegerPolyhedronTest, findRationalLexMin) { |
| 1104 | expectRationalLexMin( |
| 1105 | poly: parseIntegerPolyhedron( |
| 1106 | str: "(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)" ), |
| 1107 | min: {{-10, 1}, {-40, 1}, {-30, 1}}); |
| 1108 | expectRationalLexMin( |
| 1109 | poly: parseIntegerPolyhedron( |
| 1110 | str: "(x, y, z) : (2*x + 7 >= 0, 3*y - 5 >= 0, 8*z + 10 >= 0, 9*z >= 0)" ), |
| 1111 | min: {{-7, 2}, {5, 3}, {0, 1}}); |
| 1112 | expectRationalLexMin( |
| 1113 | poly: parseIntegerPolyhedron(str: "(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= " |
| 1114 | "0, 4*x - 7*y - 10 >= 0)" ), |
| 1115 | min: {{-50, 29}, {-70, 29}}); |
| 1116 | |
| 1117 | // Test with some locals. This is basically x >= 11, 0 <= x - 2e <= 1. |
| 1118 | // It'll just choose x = 11, e = 5.5 since it's rational lexmin. |
| 1119 | expectRationalLexMin( |
| 1120 | poly: parseIntegerPolyhedron( |
| 1121 | str: "(x, y) : (x - 2*(x floordiv 2) == 0, y - 2*x >= 0, x - 11 >= 0)" ), |
| 1122 | min: {{11, 1}, {22, 1}}); |
| 1123 | |
| 1124 | expectRationalLexMin( |
| 1125 | poly: parseIntegerPolyhedron(str: "(x, y) : (3*x + 2*y + 10 >= 0," |
| 1126 | "-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)" ), |
| 1127 | min: {{-50, 9}, {10, 3}}); |
| 1128 | |
| 1129 | // Cartesian product of above with itself. |
| 1130 | expectRationalLexMin( |
| 1131 | poly: parseIntegerPolyhedron( |
| 1132 | str: "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0," |
| 1133 | "-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0," |
| 1134 | "-3*w + 10 >= 0)" ), |
| 1135 | min: {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}}); |
| 1136 | |
| 1137 | // Same as above but for the constraints on z and w, we express "10" in terms |
| 1138 | // of x and y. We know that x and y still have to take the values |
| 1139 | // -50/9 and 10/3 since their constraints are the same and their values are |
| 1140 | // minimized first. Accordingly, the values -9x - 12y, -9x - 0y - 10, |
| 1141 | // and -9x - 15y + 10 are all equal to 10. |
| 1142 | expectRationalLexMin( |
| 1143 | poly: parseIntegerPolyhedron( |
| 1144 | str: "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0, " |
| 1145 | "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0," |
| 1146 | "-4*z + 7*w + - 9*x - 9*y - 10 >= 0, -3*w - 9*x - 15*y + 10 >= 0)" ), |
| 1147 | min: {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}}); |
| 1148 | |
| 1149 | // Same as above with one constraint removed, making the lexmin unbounded. |
| 1150 | expectNoRationalLexMin( |
| 1151 | kind: OptimumKind::Unbounded, |
| 1152 | poly: parseIntegerPolyhedron( |
| 1153 | str: "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0," |
| 1154 | "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0," |
| 1155 | "-4*z + 7*w + - 9*x - 9*y - 10>= 0)" )); |
| 1156 | |
| 1157 | // Again, the lexmin is unbounded. |
| 1158 | expectNoRationalLexMin( |
| 1159 | kind: OptimumKind::Unbounded, |
| 1160 | poly: parseIntegerPolyhedron( |
| 1161 | str: "(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0," |
| 1162 | "2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)" )); |
| 1163 | |
| 1164 | // The set is empty. |
| 1165 | expectNoRationalLexMin( |
| 1166 | kind: OptimumKind::Empty, |
| 1167 | poly: parseIntegerPolyhedron(str: "(x) : (2*x >= 0, -x - 1 >= 0)" )); |
| 1168 | } |
| 1169 | |
| 1170 | void expectIntegerLexMin(const IntegerPolyhedron &poly, ArrayRef<int64_t> min) { |
| 1171 | MaybeOptimum<SmallVector<DynamicAPInt, 8>> lexMin = poly.findIntegerLexMin(); |
| 1172 | ASSERT_TRUE(lexMin.isBounded()); |
| 1173 | EXPECT_EQ(*lexMin, getDynamicAPIntVec(min)); |
| 1174 | } |
| 1175 | |
| 1176 | void expectNoIntegerLexMin(OptimumKind kind, const IntegerPolyhedron &poly) { |
| 1177 | ASSERT_NE(kind, OptimumKind::Bounded) |
| 1178 | << "Use expectRationalLexMin for bounded min" ; |
| 1179 | EXPECT_EQ(poly.findRationalLexMin().getKind(), kind); |
| 1180 | } |
| 1181 | |
| 1182 | TEST(IntegerPolyhedronTest, findIntegerLexMin) { |
| 1183 | expectIntegerLexMin( |
| 1184 | poly: parseIntegerPolyhedron(str: "(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= " |
| 1185 | "0, 11*z + 5*y - 3*x + 7 >= 0)" ), |
| 1186 | min: {-6, -4, 0}); |
| 1187 | // Similar to above but no lower bound on z. |
| 1188 | expectNoIntegerLexMin( |
| 1189 | kind: OptimumKind::Unbounded, |
| 1190 | poly: parseIntegerPolyhedron(str: "(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 " |
| 1191 | ">= 0, -11*z + 5*y - 3*x + 7 >= 0)" )); |
| 1192 | } |
| 1193 | |
| 1194 | void expectSymbolicIntegerLexMin( |
| 1195 | StringRef polyStr, |
| 1196 | ArrayRef<std::pair<StringRef, StringRef>> expectedLexminRepr, |
| 1197 | ArrayRef<StringRef> expectedUnboundedDomainRepr) { |
| 1198 | IntegerPolyhedron poly = parseIntegerPolyhedron(str: polyStr); |
| 1199 | |
| 1200 | ASSERT_NE(poly.getNumDimVars(), 0u); |
| 1201 | ASSERT_NE(poly.getNumSymbolVars(), 0u); |
| 1202 | |
| 1203 | SymbolicLexOpt result = poly.findSymbolicIntegerLexMin(); |
| 1204 | |
| 1205 | if (expectedLexminRepr.empty()) { |
| 1206 | EXPECT_TRUE(result.lexopt.getDomain().isIntegerEmpty()); |
| 1207 | } else { |
| 1208 | PWMAFunction expectedLexmin = parsePWMAF(pieces: expectedLexminRepr); |
| 1209 | EXPECT_TRUE(result.lexopt.isEqual(expectedLexmin)); |
| 1210 | } |
| 1211 | |
| 1212 | if (expectedUnboundedDomainRepr.empty()) { |
| 1213 | EXPECT_TRUE(result.unboundedDomain.isIntegerEmpty()); |
| 1214 | } else { |
| 1215 | PresburgerSet expectedUnboundedDomain = |
| 1216 | parsePresburgerSet(strs: expectedUnboundedDomainRepr); |
| 1217 | EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain)); |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | void expectSymbolicIntegerLexMin( |
| 1222 | StringRef polyStr, ArrayRef<std::pair<StringRef, StringRef>> result) { |
| 1223 | expectSymbolicIntegerLexMin(polyStr, expectedLexminRepr: result, expectedUnboundedDomainRepr: {}); |
| 1224 | } |
| 1225 | |
| 1226 | TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) { |
| 1227 | expectSymbolicIntegerLexMin(polyStr: "(x)[a] : (x - a >= 0)" , |
| 1228 | result: { |
| 1229 | {"()[a] : ()" , "()[a] -> (a)" }, |
| 1230 | }); |
| 1231 | |
| 1232 | expectSymbolicIntegerLexMin( |
| 1233 | polyStr: "(x)[a, b] : (x - a >= 0, x - b >= 0)" , |
| 1234 | result: { |
| 1235 | {"()[a, b] : (a - b >= 0)" , "()[a, b] -> (a)" }, |
| 1236 | {"()[a, b] : (b - a - 1 >= 0)" , "()[a, b] -> (b)" }, |
| 1237 | }); |
| 1238 | |
| 1239 | expectSymbolicIntegerLexMin( |
| 1240 | polyStr: "(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)" , |
| 1241 | result: { |
| 1242 | {"()[a, b, c] : (a - b >= 0, a - c >= 0)" , "()[a, b, c] -> (a)" }, |
| 1243 | {"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)" , "()[a, b, c] -> (b)" }, |
| 1244 | {"()[a, b, c] : (c - a - 1 >= 0, c - b - 1 >= 0)" , |
| 1245 | "()[a, b, c] -> (c)" }, |
| 1246 | }); |
| 1247 | |
| 1248 | expectSymbolicIntegerLexMin(polyStr: "(x, y)[a] : (x - a >= 0, x + y >= 0)" , |
| 1249 | result: { |
| 1250 | {"()[a] : ()" , "()[a] -> (a, -a)" }, |
| 1251 | }); |
| 1252 | |
| 1253 | expectSymbolicIntegerLexMin(polyStr: "(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)" , |
| 1254 | result: { |
| 1255 | {"()[a] : (a >= 0)" , "()[a] -> (a, 0)" }, |
| 1256 | {"()[a] : (-a - 1 >= 0)" , "()[a] -> (a, -a)" }, |
| 1257 | }); |
| 1258 | |
| 1259 | expectSymbolicIntegerLexMin( |
| 1260 | polyStr: "(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)" , |
| 1261 | result: { |
| 1262 | {"()[a, b, c] : (c - a - b >= 0)" , "()[a, b, c] -> (a, b)" }, |
| 1263 | }); |
| 1264 | |
| 1265 | expectSymbolicIntegerLexMin( |
| 1266 | polyStr: "(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)" , |
| 1267 | result: { |
| 1268 | {"()[a, b, c] : ()" , "()[a, b, c] -> (a - b - c, b, c)" }, |
| 1269 | }); |
| 1270 | |
| 1271 | expectSymbolicIntegerLexMin( |
| 1272 | polyStr: "(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)" , |
| 1273 | result: { |
| 1274 | {"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)" , "()[a, b] -> (0)" }, |
| 1275 | {"()[a, b] : (a == 0, b == 0)" , "()[a, b] -> (1)" }, |
| 1276 | }); |
| 1277 | |
| 1278 | expectSymbolicIntegerLexMin( |
| 1279 | polyStr: "(x)[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, 1 - x >= 0, x >= " |
| 1280 | "0, a + b + x - 1 >= 0)" , |
| 1281 | result: { |
| 1282 | {"()[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= " |
| 1283 | "0)" , |
| 1284 | "()[a, b] -> (0)" }, |
| 1285 | {"()[a, b] : (a == 0, b == 0)" , "()[a, b] -> (1)" }, |
| 1286 | }); |
| 1287 | |
| 1288 | expectSymbolicIntegerLexMin( |
| 1289 | polyStr: "(x, y, z)[a, b] : (x - a == 0, y - b == 0, x >= 0, y >= 0, z >= 0, x + " |
| 1290 | "y + z - 1 >= 0)" , |
| 1291 | result: { |
| 1292 | {"()[a, b] : (a >= 0, b >= 0, 1 - a - b >= 0)" , |
| 1293 | "()[a, b] -> (a, b, 1 - a - b)" }, |
| 1294 | {"()[a, b] : (a >= 0, b >= 0, a + b - 2 >= 0)" , |
| 1295 | "()[a, b] -> (a, b, 0)" }, |
| 1296 | }); |
| 1297 | |
| 1298 | expectSymbolicIntegerLexMin( |
| 1299 | polyStr: "(x)[a, b] : (x - a == 0, x - b >= 0)" , |
| 1300 | result: { |
| 1301 | {"()[a, b] : (a - b >= 0)" , "()[a, b] -> (a)" }, |
| 1302 | }); |
| 1303 | |
| 1304 | expectSymbolicIntegerLexMin( |
| 1305 | polyStr: "(q)[a] : (a - 1 - 3*q == 0, q >= 0)" , |
| 1306 | result: { |
| 1307 | {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1308 | "()[a] -> (a floordiv 3)" }, |
| 1309 | }); |
| 1310 | |
| 1311 | expectSymbolicIntegerLexMin( |
| 1312 | polyStr: "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)" , |
| 1313 | result: { |
| 1314 | {"()[a] : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1315 | "()[a] -> (0, a floordiv 3)" }, |
| 1316 | {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1317 | "()[a] -> (1, a floordiv 3)" }, // (1 a floordiv 3) |
| 1318 | }); |
| 1319 | |
| 1320 | expectSymbolicIntegerLexMin( |
| 1321 | polyStr: "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)" , |
| 1322 | result: { |
| 1323 | {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1324 | "()[a] -> (1, a floordiv 3)" }, |
| 1325 | {"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1326 | "()[a] -> (2, a floordiv 3)" }, |
| 1327 | }); |
| 1328 | |
| 1329 | expectSymbolicIntegerLexMin( |
| 1330 | polyStr: "(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)" , |
| 1331 | result: { |
| 1332 | {"()[a] : (a - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1333 | "()[a] -> (0, a floordiv 3)" }, |
| 1334 | {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1335 | "()[a] -> (1, a floordiv 3)" }, |
| 1336 | {"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)" , |
| 1337 | "()[a] -> (2, a floordiv 3)" }, |
| 1338 | }); |
| 1339 | |
| 1340 | expectSymbolicIntegerLexMin( |
| 1341 | polyStr: "(x, y, z, w)[g] : (" |
| 1342 | // x, y, z, w are boolean variables. |
| 1343 | "1 - x >= 0, x >= 0, 1 - y >= 0, y >= 0," |
| 1344 | "1 - z >= 0, z >= 0, 1 - w >= 0, w >= 0," |
| 1345 | // We have some constraints on them: |
| 1346 | "x + y + z - 1 >= 0," // x or y or z |
| 1347 | "x + y + w - 1 >= 0," // x or y or w |
| 1348 | "1 - x + 1 - y + 1 - w - 1 >= 0," // ~x or ~y or ~w |
| 1349 | // What's the lexmin solution using exactly g true vars? |
| 1350 | "g - x - y - z - w == 0)" , |
| 1351 | result: { |
| 1352 | {"()[g] : (g - 1 == 0)" , "()[g] -> (0, 1, 0, 0)" }, |
| 1353 | {"()[g] : (g - 2 == 0)" , "()[g] -> (0, 0, 1, 1)" }, |
| 1354 | {"()[g] : (g - 3 == 0)" , "()[g] -> (0, 1, 1, 1)" }, |
| 1355 | }); |
| 1356 | |
| 1357 | // Bezout's lemma: if a, b are constants, |
| 1358 | // the set of values that ax + by can take is all multiples of gcd(a, b). |
| 1359 | expectSymbolicIntegerLexMin( |
| 1360 | // If (x, y) is a solution for a given [a, r], then so is (x - 5, y + 2). |
| 1361 | // So the lexmin is unbounded if it exists. |
| 1362 | polyStr: "(x, y)[a, r] : (a >= 0, r - a + 14*x + 35*y == 0)" , expectedLexminRepr: {}, |
| 1363 | // According to Bezout's lemma, 14x + 35y can take on all multiples |
| 1364 | // of 7 and no other values. So the solution exists iff r - a is a |
| 1365 | // multiple of 7. |
| 1366 | expectedUnboundedDomainRepr: {"()[a, r] : (a >= 0, r - a - 7*((r - a) floordiv 7) == 0)" }); |
| 1367 | |
| 1368 | // The lexmins are unbounded. |
| 1369 | expectSymbolicIntegerLexMin(polyStr: "(x, y)[a] : (9*x - 4*y - 2*a >= 0)" , expectedLexminRepr: {}, |
| 1370 | expectedUnboundedDomainRepr: {"()[a] : ()" }); |
| 1371 | |
| 1372 | // Test cases adapted from isl. |
| 1373 | expectSymbolicIntegerLexMin( |
| 1374 | // a = 2b - 2(c - b), c - b >= 0. |
| 1375 | // So b is minimized when c = b. |
| 1376 | polyStr: "(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)" , |
| 1377 | result: { |
| 1378 | {"()[a] : (a - 2*(a floordiv 2) == 0)" , |
| 1379 | "()[a] -> (a floordiv 2, a floordiv 2)" }, |
| 1380 | }); |
| 1381 | |
| 1382 | expectSymbolicIntegerLexMin( |
| 1383 | // 0 <= b <= 255, 1 <= a - 512b <= 509, |
| 1384 | // b + 8 >= 1 + 16*(b + 8 floordiv 16) // i.e. b % 16 != 8 |
| 1385 | polyStr: "(b)[a] : (255 - b >= 0, b >= 0, a - 512*b - 1 >= 0, 512*b -a + 509 >= " |
| 1386 | "0, b + 7 - 16*((8 + b) floordiv 16) >= 0)" , |
| 1387 | result: { |
| 1388 | {"()[a] : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv " |
| 1389 | "512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv " |
| 1390 | "512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)" , |
| 1391 | "()[a] -> (a floordiv 512)" }, |
| 1392 | }); |
| 1393 | |
| 1394 | expectSymbolicIntegerLexMin( |
| 1395 | polyStr: "(a, b)[K, N, x, y] : (N - K - 2 >= 0, K + 4 - N >= 0, x - 4 >= 0, x + 6 " |
| 1396 | "- 2*N >= 0, K+N - x - 1 >= 0, a - N + 1 >= 0, K+N-1-a >= 0,a + 6 - b - " |
| 1397 | "N >= 0, 2*N - 4 - a >= 0," |
| 1398 | "2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 " |
| 1399 | ">= 0)" , |
| 1400 | result: { |
| 1401 | {"()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + " |
| 1402 | "N >= 0, N + K - 2 - x >= 0, x - 4 >= 0)" , |
| 1403 | "()[K, N, x, y] -> (1 + x, N)" }, |
| 1404 | }); |
| 1405 | } |
| 1406 | |
| 1407 | static void |
| 1408 | expectComputedVolumeIsValidOverapprox(const IntegerPolyhedron &poly, |
| 1409 | std::optional<int64_t> trueVolume, |
| 1410 | std::optional<int64_t> resultBound) { |
| 1411 | expectComputedVolumeIsValidOverapprox(computedVolume: poly.computeVolume(), trueVolume, |
| 1412 | resultBound); |
| 1413 | } |
| 1414 | |
| 1415 | TEST(IntegerPolyhedronTest, computeVolume) { |
| 1416 | // 0 <= x <= 3 + 1/3, -5.5 <= y <= 2 + 3/5, 3 <= z <= 1.75. |
| 1417 | // i.e. 0 <= x <= 3, -5 <= y <= 2, 3 <= z <= 3 + 1/4. |
| 1418 | // So volume is 4 * 8 * 1 = 32. |
| 1419 | expectComputedVolumeIsValidOverapprox( |
| 1420 | poly: parseIntegerPolyhedron( |
| 1421 | str: "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0," |
| 1422 | "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)" ), |
| 1423 | /*trueVolume=*/32ull, /*resultBound=*/32ull); |
| 1424 | |
| 1425 | // Same as above but y has bounds 2 + 1/5 <= y <= 2 + 3/5. So the volume is |
| 1426 | // zero. |
| 1427 | expectComputedVolumeIsValidOverapprox( |
| 1428 | poly: parseIntegerPolyhedron( |
| 1429 | str: "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0," |
| 1430 | "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)" ), |
| 1431 | /*trueVolume=*/0ull, /*resultBound=*/0ull); |
| 1432 | |
| 1433 | // Now x is unbounded below but y still has no integer values. |
| 1434 | expectComputedVolumeIsValidOverapprox( |
| 1435 | poly: parseIntegerPolyhedron(str: "(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0," |
| 1436 | "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)" ), |
| 1437 | /*trueVolume=*/0ull, /*resultBound=*/0ull); |
| 1438 | |
| 1439 | // A diamond shape, 0 <= x + y <= 10, 0 <= x - y <= 10, |
| 1440 | // with vertices at (0, 0), (5, 5), (5, 5), (10, 0). |
| 1441 | // x and y can take 11 possible values so result computed is 11*11 = 121. |
| 1442 | expectComputedVolumeIsValidOverapprox( |
| 1443 | poly: parseIntegerPolyhedron( |
| 1444 | str: "(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0," |
| 1445 | "-x + y + 10 >= 0)" ), |
| 1446 | /*trueVolume=*/61ull, /*resultBound=*/121ull); |
| 1447 | |
| 1448 | // Effectively the same diamond as above; constrain the variables to be even |
| 1449 | // and double the constant terms of the constraints. The algorithm can't |
| 1450 | // eliminate locals exactly, so the result is an overapproximation by |
| 1451 | // computing that x and y can take 21 possible values so result is 21*21 = |
| 1452 | // 441. |
| 1453 | expectComputedVolumeIsValidOverapprox( |
| 1454 | poly: parseIntegerPolyhedron( |
| 1455 | str: "(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0," |
| 1456 | " -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0," |
| 1457 | "y - 2*(y floordiv 2) == 0)" ), |
| 1458 | /*trueVolume=*/61ull, /*resultBound=*/441ull); |
| 1459 | |
| 1460 | // Unbounded polytope. |
| 1461 | expectComputedVolumeIsValidOverapprox( |
| 1462 | poly: parseIntegerPolyhedron(str: "(x, y) : (2*x - y >= 0, y - 3*x >= 0)" ), |
| 1463 | /*trueVolume=*/{}, /*resultBound=*/{}); |
| 1464 | } |
| 1465 | |
| 1466 | bool containsPointNoLocal(const IntegerPolyhedron &poly, |
| 1467 | ArrayRef<int64_t> point) { |
| 1468 | return poly.containsPointNoLocal(point: getDynamicAPIntVec(range: point)).has_value(); |
| 1469 | } |
| 1470 | |
| 1471 | TEST(IntegerPolyhedronTest, containsPointNoLocal) { |
| 1472 | IntegerPolyhedron poly1 = |
| 1473 | parseIntegerPolyhedron(str: "(x) : ((x floordiv 2) - x == 0)" ); |
| 1474 | EXPECT_TRUE(poly1.containsPointNoLocal({0})); |
| 1475 | EXPECT_FALSE(poly1.containsPointNoLocal({1})); |
| 1476 | |
| 1477 | IntegerPolyhedron poly2 = parseIntegerPolyhedron( |
| 1478 | str: "(x) : (x - 2*(x floordiv 2) == 0, x - 4*(x floordiv 4) - 2 == 0)" ); |
| 1479 | EXPECT_TRUE(containsPointNoLocal(poly2, {6})); |
| 1480 | EXPECT_FALSE(containsPointNoLocal(poly2, {4})); |
| 1481 | |
| 1482 | IntegerPolyhedron poly3 = |
| 1483 | parseIntegerPolyhedron(str: "(x, y) : (2*x - y >= 0, y - 3*x >= 0)" ); |
| 1484 | |
| 1485 | EXPECT_TRUE(poly3.containsPointNoLocal(ArrayRef<int64_t>({0, 0}))); |
| 1486 | EXPECT_FALSE(poly3.containsPointNoLocal({1, 0})); |
| 1487 | } |
| 1488 | |
| 1489 | TEST(IntegerPolyhedronTest, truncateEqualityRegressionTest) { |
| 1490 | // IntegerRelation::truncate was truncating inequalities to the number of |
| 1491 | // equalities. |
| 1492 | IntegerRelation set(PresburgerSpace::getSetSpace(numDims: 1)); |
| 1493 | IntegerRelation::CountsSnapshot snapshot = set.getCounts(); |
| 1494 | set.addEquality(eq: {1, 0}); |
| 1495 | set.truncate(counts: snapshot); |
| 1496 | EXPECT_EQ(set.getNumEqualities(), 0u); |
| 1497 | } |
| 1498 | |