| 1 | //===- SimplexTest.cpp - Tests for Simplex --------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Parser.h" |
| 10 | #include "Utils.h" |
| 11 | |
| 12 | #include "mlir/Analysis/Presburger/Simplex.h" |
| 13 | #include "mlir/IR/MLIRContext.h" |
| 14 | |
| 15 | #include <gmock/gmock.h> |
| 16 | #include <gtest/gtest.h> |
| 17 | #include <optional> |
| 18 | |
| 19 | using namespace mlir; |
| 20 | using namespace presburger; |
| 21 | |
| 22 | /// Convenience functions to pass literals to Simplex. |
| 23 | void addInequality(SimplexBase &simplex, ArrayRef<int64_t> coeffs) { |
| 24 | simplex.addInequality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 25 | } |
| 26 | void addEquality(SimplexBase &simplex, ArrayRef<int64_t> coeffs) { |
| 27 | simplex.addEquality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 28 | } |
| 29 | bool isRedundantInequality(Simplex &simplex, ArrayRef<int64_t> coeffs) { |
| 30 | return simplex.isRedundantInequality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 31 | } |
| 32 | bool isRedundantInequality(LexSimplex &simplex, ArrayRef<int64_t> coeffs) { |
| 33 | return simplex.isRedundantInequality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 34 | } |
| 35 | bool isRedundantEquality(Simplex &simplex, ArrayRef<int64_t> coeffs) { |
| 36 | return simplex.isRedundantEquality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 37 | } |
| 38 | bool isSeparateInequality(LexSimplex &simplex, ArrayRef<int64_t> coeffs) { |
| 39 | return simplex.isSeparateInequality(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 40 | } |
| 41 | |
| 42 | Simplex::IneqType findIneqType(Simplex &simplex, ArrayRef<int64_t> coeffs) { |
| 43 | return simplex.findIneqType(coeffs: getDynamicAPIntVec(range: coeffs)); |
| 44 | } |
| 45 | |
| 46 | /// Take a snapshot, add constraints making the set empty, and rollback. |
| 47 | /// The set should not be empty after rolling back. We add additional |
| 48 | /// constraints after the set is already empty and roll back the addition |
| 49 | /// of these. The set should be marked non-empty only once we rollback |
| 50 | /// past the addition of the first constraint that made it empty. |
| 51 | TEST(SimplexTest, emptyRollback) { |
| 52 | Simplex simplex(2); |
| 53 | // (u - v) >= 0 |
| 54 | addInequality(simplex, coeffs: {1, -1, 0}); |
| 55 | ASSERT_FALSE(simplex.isEmpty()); |
| 56 | |
| 57 | unsigned snapshot = simplex.getSnapshot(); |
| 58 | // (u - v) <= -1 |
| 59 | addInequality(simplex, coeffs: {-1, 1, -1}); |
| 60 | ASSERT_TRUE(simplex.isEmpty()); |
| 61 | |
| 62 | unsigned snapshot2 = simplex.getSnapshot(); |
| 63 | // (u - v) <= -3 |
| 64 | addInequality(simplex, coeffs: {-1, 1, -3}); |
| 65 | ASSERT_TRUE(simplex.isEmpty()); |
| 66 | |
| 67 | simplex.rollback(snapshot: snapshot2); |
| 68 | ASSERT_TRUE(simplex.isEmpty()); |
| 69 | |
| 70 | simplex.rollback(snapshot); |
| 71 | ASSERT_FALSE(simplex.isEmpty()); |
| 72 | } |
| 73 | |
| 74 | /// Check that the set gets marked as empty when we add contradictory |
| 75 | /// constraints. |
| 76 | TEST(SimplexTest, addEquality_separate) { |
| 77 | Simplex simplex(1); |
| 78 | addInequality(simplex, coeffs: {1, -1}); // x >= 1. |
| 79 | ASSERT_FALSE(simplex.isEmpty()); |
| 80 | addEquality(simplex, coeffs: {1, 0}); // x == 0. |
| 81 | EXPECT_TRUE(simplex.isEmpty()); |
| 82 | } |
| 83 | |
| 84 | void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef<int64_t> coeffs, |
| 85 | bool expect) { |
| 86 | ASSERT_FALSE(simplex.isEmpty()); |
| 87 | unsigned snapshot = simplex.getSnapshot(); |
| 88 | addInequality(simplex, coeffs); |
| 89 | EXPECT_EQ(simplex.isEmpty(), expect); |
| 90 | simplex.rollback(snapshot); |
| 91 | } |
| 92 | |
| 93 | TEST(SimplexTest, addInequality_rollback) { |
| 94 | Simplex simplex(3); |
| 95 | SmallVector<int64_t, 4> coeffs[]{{1, 0, 0, 0}, // u >= 0. |
| 96 | {-1, 0, 0, 0}, // u <= 0. |
| 97 | {1, -1, 1, 0}, // u - v + w >= 0. |
| 98 | {1, 1, -1, 0}}; // u + v - w >= 0. |
| 99 | // The above constraints force u = 0 and v = w. |
| 100 | // The constraints below violate v = w. |
| 101 | SmallVector<int64_t, 4> checkCoeffs[]{{0, 1, -1, -1}, // v - w >= 1. |
| 102 | {0, -1, 1, -1}}; // v - w <= -1. |
| 103 | |
| 104 | for (int run = 0; run < 4; run++) { |
| 105 | unsigned snapshot = simplex.getSnapshot(); |
| 106 | |
| 107 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[0], expect: false); |
| 108 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[1], expect: false); |
| 109 | |
| 110 | for (int i = 0; i < 4; i++) |
| 111 | addInequality(simplex, coeffs: coeffs[(run + i) % 4]); |
| 112 | |
| 113 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[0], expect: true); |
| 114 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[1], expect: true); |
| 115 | |
| 116 | simplex.rollback(snapshot); |
| 117 | EXPECT_EQ(simplex.getNumConstraints(), 0u); |
| 118 | |
| 119 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[0], expect: false); |
| 120 | expectInequalityMakesSetEmpty(simplex, coeffs: checkCoeffs[1], expect: false); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | Simplex simplexFromConstraints(unsigned nDim, |
| 125 | ArrayRef<SmallVector<int64_t, 8>> ineqs, |
| 126 | ArrayRef<SmallVector<int64_t, 8>> eqs) { |
| 127 | Simplex simplex(nDim); |
| 128 | for (const auto &ineq : ineqs) |
| 129 | addInequality(simplex, coeffs: ineq); |
| 130 | for (const auto &eq : eqs) |
| 131 | addEquality(simplex, coeffs: eq); |
| 132 | return simplex; |
| 133 | } |
| 134 | |
| 135 | TEST(SimplexTest, isUnbounded) { |
| 136 | EXPECT_FALSE(simplexFromConstraints( |
| 137 | 2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) |
| 138 | .isUnbounded()); |
| 139 | |
| 140 | EXPECT_TRUE( |
| 141 | simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) |
| 142 | .isUnbounded()); |
| 143 | |
| 144 | EXPECT_TRUE( |
| 145 | simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) |
| 146 | .isUnbounded()); |
| 147 | |
| 148 | EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded()); |
| 149 | |
| 150 | EXPECT_FALSE(simplexFromConstraints(3, |
| 151 | { |
| 152 | {2, 0, 0, -1}, |
| 153 | {-2, 0, 0, 1}, |
| 154 | {0, 2, 0, -1}, |
| 155 | {0, -2, 0, 1}, |
| 156 | {0, 0, 2, -1}, |
| 157 | {0, 0, -2, 1}, |
| 158 | }, |
| 159 | {}) |
| 160 | .isUnbounded()); |
| 161 | |
| 162 | EXPECT_TRUE(simplexFromConstraints(3, |
| 163 | { |
| 164 | {2, 0, 0, -1}, |
| 165 | {-2, 0, 0, 1}, |
| 166 | {0, 2, 0, -1}, |
| 167 | {0, -2, 0, 1}, |
| 168 | {0, 0, -2, 1}, |
| 169 | }, |
| 170 | {}) |
| 171 | .isUnbounded()); |
| 172 | |
| 173 | EXPECT_TRUE(simplexFromConstraints(3, |
| 174 | { |
| 175 | {2, 0, 0, -1}, |
| 176 | {-2, 0, 0, 1}, |
| 177 | {0, 2, 0, -1}, |
| 178 | {0, -2, 0, 1}, |
| 179 | {0, 0, 2, -1}, |
| 180 | }, |
| 181 | {}) |
| 182 | .isUnbounded()); |
| 183 | |
| 184 | // Bounded set with equalities. |
| 185 | EXPECT_FALSE(simplexFromConstraints(2, |
| 186 | {{1, 1, 1}, // x + y >= -1. |
| 187 | {-1, -1, 1}}, // x + y <= 1. |
| 188 | {{1, -1, 0}} // x = y. |
| 189 | ) |
| 190 | .isUnbounded()); |
| 191 | |
| 192 | // Unbounded set with equalities. |
| 193 | EXPECT_TRUE(simplexFromConstraints(3, |
| 194 | {{1, 1, 1, 1}, // x + y + z >= -1. |
| 195 | {-1, -1, -1, 1}}, // x + y + z <= 1. |
| 196 | {{1, -1, -1, 0}} // x = y + z. |
| 197 | ) |
| 198 | .isUnbounded()); |
| 199 | |
| 200 | // Rational empty set. |
| 201 | EXPECT_FALSE(simplexFromConstraints(3, |
| 202 | { |
| 203 | {2, 0, 0, -1}, |
| 204 | {-2, 0, 0, 1}, |
| 205 | {0, 2, 2, -1}, |
| 206 | {0, -2, -2, 1}, |
| 207 | {3, 3, 3, -4}, |
| 208 | }, |
| 209 | {}) |
| 210 | .isUnbounded()); |
| 211 | } |
| 212 | |
| 213 | TEST(SimplexTest, getSamplePointIfIntegral) { |
| 214 | // Empty set. |
| 215 | EXPECT_FALSE(simplexFromConstraints(3, |
| 216 | { |
| 217 | {2, 0, 0, -1}, |
| 218 | {-2, 0, 0, 1}, |
| 219 | {0, 2, 2, -1}, |
| 220 | {0, -2, -2, 1}, |
| 221 | {3, 3, 3, -4}, |
| 222 | }, |
| 223 | {}) |
| 224 | .getSamplePointIfIntegral() |
| 225 | .has_value()); |
| 226 | |
| 227 | auto maybeSample = simplexFromConstraints(nDim: 2, |
| 228 | ineqs: {// x = y - 2. |
| 229 | {1, -1, 2}, |
| 230 | {-1, 1, -2}, |
| 231 | // x + y = 2. |
| 232 | {1, 1, -2}, |
| 233 | {-1, -1, 2}}, |
| 234 | eqs: {}) |
| 235 | .getSamplePointIfIntegral(); |
| 236 | |
| 237 | EXPECT_TRUE(maybeSample.has_value()); |
| 238 | EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2)); |
| 239 | |
| 240 | auto maybeSample2 = simplexFromConstraints(nDim: 2, |
| 241 | ineqs: { |
| 242 | {1, 0, 0}, // x >= 0. |
| 243 | {-1, 0, 0}, // x <= 0. |
| 244 | }, |
| 245 | eqs: { |
| 246 | {0, 1, -2} // y = 2. |
| 247 | }) |
| 248 | .getSamplePointIfIntegral(); |
| 249 | EXPECT_TRUE(maybeSample2.has_value()); |
| 250 | EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2)); |
| 251 | |
| 252 | EXPECT_FALSE(simplexFromConstraints(1, |
| 253 | {// 2x = 1. (no integer solutions) |
| 254 | {2, -1}, |
| 255 | {-2, +1}}, |
| 256 | {}) |
| 257 | .getSamplePointIfIntegral() |
| 258 | .has_value()); |
| 259 | } |
| 260 | |
| 261 | /// Some basic sanity checks involving zero or one variables. |
| 262 | TEST(SimplexTest, isMarkedRedundant_no_var_ge_zero) { |
| 263 | Simplex simplex(0); |
| 264 | addInequality(simplex, coeffs: {0}); // 0 >= 0. |
| 265 | |
| 266 | simplex.detectRedundant(); |
| 267 | ASSERT_FALSE(simplex.isEmpty()); |
| 268 | EXPECT_TRUE(simplex.isMarkedRedundant(0)); |
| 269 | } |
| 270 | |
| 271 | TEST(SimplexTest, isMarkedRedundant_no_var_eq) { |
| 272 | Simplex simplex(0); |
| 273 | addEquality(simplex, coeffs: {0}); // 0 == 0. |
| 274 | simplex.detectRedundant(); |
| 275 | ASSERT_FALSE(simplex.isEmpty()); |
| 276 | EXPECT_TRUE(simplex.isMarkedRedundant(0)); |
| 277 | } |
| 278 | |
| 279 | TEST(SimplexTest, isMarkedRedundant_pos_var_eq) { |
| 280 | Simplex simplex(1); |
| 281 | addEquality(simplex, coeffs: {1, 0}); // x == 0. |
| 282 | |
| 283 | simplex.detectRedundant(); |
| 284 | ASSERT_FALSE(simplex.isEmpty()); |
| 285 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 286 | } |
| 287 | |
| 288 | TEST(SimplexTest, isMarkedRedundant_zero_var_eq) { |
| 289 | Simplex simplex(1); |
| 290 | addEquality(simplex, coeffs: {0, 0}); // 0x == 0. |
| 291 | simplex.detectRedundant(); |
| 292 | ASSERT_FALSE(simplex.isEmpty()); |
| 293 | EXPECT_TRUE(simplex.isMarkedRedundant(0)); |
| 294 | } |
| 295 | |
| 296 | TEST(SimplexTest, isMarkedRedundant_neg_var_eq) { |
| 297 | Simplex simplex(1); |
| 298 | addEquality(simplex, coeffs: {-1, 0}); // -x == 0. |
| 299 | simplex.detectRedundant(); |
| 300 | ASSERT_FALSE(simplex.isEmpty()); |
| 301 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 302 | } |
| 303 | |
| 304 | TEST(SimplexTest, isMarkedRedundant_pos_var_ge) { |
| 305 | Simplex simplex(1); |
| 306 | addInequality(simplex, coeffs: {1, 0}); // x >= 0. |
| 307 | simplex.detectRedundant(); |
| 308 | ASSERT_FALSE(simplex.isEmpty()); |
| 309 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 310 | } |
| 311 | |
| 312 | TEST(SimplexTest, isMarkedRedundant_zero_var_ge) { |
| 313 | Simplex simplex(1); |
| 314 | addInequality(simplex, coeffs: {0, 0}); // 0x >= 0. |
| 315 | simplex.detectRedundant(); |
| 316 | ASSERT_FALSE(simplex.isEmpty()); |
| 317 | EXPECT_TRUE(simplex.isMarkedRedundant(0)); |
| 318 | } |
| 319 | |
| 320 | TEST(SimplexTest, isMarkedRedundant_neg_var_ge) { |
| 321 | Simplex simplex(1); |
| 322 | addInequality(simplex, coeffs: {-1, 0}); // x <= 0. |
| 323 | simplex.detectRedundant(); |
| 324 | ASSERT_FALSE(simplex.isEmpty()); |
| 325 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 326 | } |
| 327 | |
| 328 | /// None of the constraints are redundant. Slightly more complicated test |
| 329 | /// involving an equality. |
| 330 | TEST(SimplexTest, isMarkedRedundant_no_redundant) { |
| 331 | Simplex simplex(3); |
| 332 | |
| 333 | addEquality(simplex, coeffs: {-1, 0, 1, 0}); // u = w. |
| 334 | addInequality(simplex, coeffs: {-1, 16, 0, 15}); // 15 - (u - 16v) >= 0. |
| 335 | addInequality(simplex, coeffs: {1, -16, 0, 0}); // (u - 16v) >= 0. |
| 336 | |
| 337 | simplex.detectRedundant(); |
| 338 | ASSERT_FALSE(simplex.isEmpty()); |
| 339 | |
| 340 | for (unsigned i = 0; i < simplex.getNumConstraints(); ++i) |
| 341 | EXPECT_FALSE(simplex.isMarkedRedundant(i)) << "i = " << i << "\n" ; |
| 342 | } |
| 343 | |
| 344 | TEST(SimplexTest, isMarkedRedundant_repeated_constraints) { |
| 345 | Simplex simplex(3); |
| 346 | |
| 347 | // [4] to [7] are repeats of [0] to [3]. |
| 348 | addInequality(simplex, coeffs: {0, -1, 0, 1}); // [0]: y <= 1. |
| 349 | addInequality(simplex, coeffs: {-1, 0, 8, 7}); // [1]: 8z >= x - 7. |
| 350 | addInequality(simplex, coeffs: {1, 0, -8, 0}); // [2]: 8z <= x. |
| 351 | addInequality(simplex, coeffs: {0, 1, 0, 0}); // [3]: y >= 0. |
| 352 | addInequality(simplex, coeffs: {-1, 0, 8, 7}); // [4]: 8z >= 7 - x. |
| 353 | addInequality(simplex, coeffs: {1, 0, -8, 0}); // [5]: 8z <= x. |
| 354 | addInequality(simplex, coeffs: {0, 1, 0, 0}); // [6]: y >= 0. |
| 355 | addInequality(simplex, coeffs: {0, -1, 0, 1}); // [7]: y <= 1. |
| 356 | |
| 357 | simplex.detectRedundant(); |
| 358 | ASSERT_FALSE(simplex.isEmpty()); |
| 359 | |
| 360 | EXPECT_EQ(simplex.isMarkedRedundant(0), true); |
| 361 | EXPECT_EQ(simplex.isMarkedRedundant(1), true); |
| 362 | EXPECT_EQ(simplex.isMarkedRedundant(2), true); |
| 363 | EXPECT_EQ(simplex.isMarkedRedundant(3), true); |
| 364 | EXPECT_EQ(simplex.isMarkedRedundant(4), false); |
| 365 | EXPECT_EQ(simplex.isMarkedRedundant(5), false); |
| 366 | EXPECT_EQ(simplex.isMarkedRedundant(6), false); |
| 367 | EXPECT_EQ(simplex.isMarkedRedundant(7), false); |
| 368 | } |
| 369 | |
| 370 | TEST(SimplexTest, isMarkedRedundant) { |
| 371 | Simplex simplex(3); |
| 372 | addInequality(simplex, coeffs: {0, -1, 0, 1}); // [0]: y <= 1. |
| 373 | addInequality(simplex, coeffs: {1, 0, 0, -1}); // [1]: x >= 1. |
| 374 | addInequality(simplex, coeffs: {-1, 0, 0, 2}); // [2]: x <= 2. |
| 375 | addInequality(simplex, coeffs: {-1, 0, 2, 7}); // [3]: 2z >= x - 7. |
| 376 | addInequality(simplex, coeffs: {1, 0, -2, 0}); // [4]: 2z <= x. |
| 377 | addInequality(simplex, coeffs: {0, 1, 0, 0}); // [5]: y >= 0. |
| 378 | addInequality(simplex, coeffs: {0, 1, -2, 1}); // [6]: y >= 2z - 1. |
| 379 | addInequality(simplex, coeffs: {-1, 1, 0, 1}); // [7]: y >= x - 1. |
| 380 | |
| 381 | simplex.detectRedundant(); |
| 382 | ASSERT_FALSE(simplex.isEmpty()); |
| 383 | |
| 384 | // [0], [1], [3], [4], [7] together imply [2], [5], [6] must hold. |
| 385 | // |
| 386 | // From [7], [0]: x <= y + 1 <= 2, so we have [2]. |
| 387 | // From [7], [1]: y >= x - 1 >= 0, so we have [5]. |
| 388 | // From [4], [7]: 2z - 1 <= x - 1 <= y, so we have [6]. |
| 389 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 390 | EXPECT_FALSE(simplex.isMarkedRedundant(1)); |
| 391 | EXPECT_TRUE(simplex.isMarkedRedundant(2)); |
| 392 | EXPECT_FALSE(simplex.isMarkedRedundant(3)); |
| 393 | EXPECT_FALSE(simplex.isMarkedRedundant(4)); |
| 394 | EXPECT_TRUE(simplex.isMarkedRedundant(5)); |
| 395 | EXPECT_TRUE(simplex.isMarkedRedundant(6)); |
| 396 | EXPECT_FALSE(simplex.isMarkedRedundant(7)); |
| 397 | } |
| 398 | |
| 399 | TEST(SimplexTest, isMarkedRedundantTiledLoopNestConstraints) { |
| 400 | Simplex simplex(3); // Variables are x, y, N. |
| 401 | addInequality(simplex, coeffs: {1, 0, 0, 0}); // [0]: x >= 0. |
| 402 | addInequality(simplex, coeffs: {-32, 0, 1, -1}); // [1]: 32x <= N - 1. |
| 403 | addInequality(simplex, coeffs: {0, 1, 0, 0}); // [2]: y >= 0. |
| 404 | addInequality(simplex, coeffs: {-32, 1, 0, 0}); // [3]: y >= 32x. |
| 405 | addInequality(simplex, coeffs: {32, -1, 0, 31}); // [4]: y <= 32x + 31. |
| 406 | addInequality(simplex, coeffs: {0, -1, 1, -1}); // [5]: y <= N - 1. |
| 407 | // [3] and [0] imply [2], as we have y >= 32x >= 0. |
| 408 | // [3] and [5] imply [1], as we have 32x <= y <= N - 1. |
| 409 | simplex.detectRedundant(); |
| 410 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 411 | EXPECT_TRUE(simplex.isMarkedRedundant(1)); |
| 412 | EXPECT_TRUE(simplex.isMarkedRedundant(2)); |
| 413 | EXPECT_FALSE(simplex.isMarkedRedundant(3)); |
| 414 | EXPECT_FALSE(simplex.isMarkedRedundant(4)); |
| 415 | EXPECT_FALSE(simplex.isMarkedRedundant(5)); |
| 416 | } |
| 417 | |
| 418 | TEST(SimplexTest, pivotRedundantRegressionTest) { |
| 419 | Simplex simplex(2); |
| 420 | addInequality(simplex, coeffs: {-1, 0, -1}); // x <= -1. |
| 421 | unsigned snapshot = simplex.getSnapshot(); |
| 422 | |
| 423 | addInequality(simplex, coeffs: {-1, 0, -2}); // x <= -2. |
| 424 | addInequality(simplex, coeffs: {-3, 0, -6}); |
| 425 | |
| 426 | // This first marks x <= -1 as redundant. Then it performs some more pivots |
| 427 | // to check if the other constraints are redundant. Pivot must update the |
| 428 | // non-redundant rows as well, otherwise these pivots result in an incorrect |
| 429 | // tableau state. In particular, after the rollback below, some rows that are |
| 430 | // NOT marked redundant will have an incorrect state. |
| 431 | simplex.detectRedundant(); |
| 432 | |
| 433 | // After the rollback, the only remaining constraint is x <= -1. |
| 434 | // The maximum value of x should be -1. |
| 435 | simplex.rollback(snapshot); |
| 436 | MaybeOptimum<Fraction> maxX = simplex.computeOptimum( |
| 437 | direction: Simplex::Direction::Up, coeffs: getDynamicAPIntVec(range: {1, 0, 0})); |
| 438 | EXPECT_TRUE(maxX.isBounded() && *maxX == Fraction(-1, 1)); |
| 439 | } |
| 440 | |
| 441 | TEST(SimplexTest, addInequality_already_redundant) { |
| 442 | Simplex simplex(1); |
| 443 | addInequality(simplex, coeffs: {1, -1}); // x >= 1. |
| 444 | addInequality(simplex, coeffs: {1, 0}); // x >= 0. |
| 445 | simplex.detectRedundant(); |
| 446 | ASSERT_FALSE(simplex.isEmpty()); |
| 447 | EXPECT_FALSE(simplex.isMarkedRedundant(0)); |
| 448 | EXPECT_TRUE(simplex.isMarkedRedundant(1)); |
| 449 | } |
| 450 | |
| 451 | TEST(SimplexTest, appendVariable) { |
| 452 | Simplex simplex(1); |
| 453 | |
| 454 | unsigned snapshot1 = simplex.getSnapshot(); |
| 455 | simplex.appendVariable(); |
| 456 | simplex.appendVariable(count: 0); |
| 457 | EXPECT_EQ(simplex.getNumVariables(), 2u); |
| 458 | |
| 459 | int64_t yMin = 2, yMax = 5; |
| 460 | addInequality(simplex, coeffs: {0, 1, -yMin}); // y >= 2. |
| 461 | addInequality(simplex, coeffs: {0, -1, yMax}); // y <= 5. |
| 462 | |
| 463 | unsigned snapshot2 = simplex.getSnapshot(); |
| 464 | simplex.appendVariable(count: 2); |
| 465 | EXPECT_EQ(simplex.getNumVariables(), 4u); |
| 466 | simplex.rollback(snapshot: snapshot2); |
| 467 | |
| 468 | EXPECT_EQ(simplex.getNumVariables(), 2u); |
| 469 | EXPECT_EQ(simplex.getNumConstraints(), 2u); |
| 470 | EXPECT_EQ(simplex.computeIntegerBounds(getDynamicAPIntVec({0, 1, 0})), |
| 471 | std::make_pair(MaybeOptimum<DynamicAPInt>(DynamicAPInt(yMin)), |
| 472 | MaybeOptimum<DynamicAPInt>(DynamicAPInt(yMax)))); |
| 473 | |
| 474 | simplex.rollback(snapshot: snapshot1); |
| 475 | EXPECT_EQ(simplex.getNumVariables(), 1u); |
| 476 | EXPECT_EQ(simplex.getNumConstraints(), 0u); |
| 477 | } |
| 478 | |
| 479 | TEST(SimplexTest, isRedundantInequality) { |
| 480 | Simplex simplex(2); |
| 481 | addInequality(simplex, coeffs: {0, -1, 2}); // y <= 2. |
| 482 | addInequality(simplex, coeffs: {1, 0, 0}); // x >= 0. |
| 483 | addEquality(simplex, coeffs: {-1, 1, 0}); // y = x. |
| 484 | |
| 485 | EXPECT_TRUE(isRedundantInequality(simplex, {-1, 0, 2})); // x <= 2. |
| 486 | EXPECT_TRUE(isRedundantInequality(simplex, {0, 1, 0})); // y >= 0. |
| 487 | |
| 488 | EXPECT_FALSE(isRedundantInequality(simplex, {-1, 0, -1})); // x <= -1. |
| 489 | EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -2})); // y >= 2. |
| 490 | EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -1})); // y >= 1. |
| 491 | } |
| 492 | |
| 493 | TEST(SimplexTest, ineqType) { |
| 494 | Simplex simplex(2); |
| 495 | addInequality(simplex, coeffs: {0, -1, 2}); // y <= 2. |
| 496 | addInequality(simplex, coeffs: {1, 0, 0}); // x >= 0. |
| 497 | addEquality(simplex, coeffs: {-1, 1, 0}); // y = x. |
| 498 | |
| 499 | EXPECT_EQ(findIneqType(simplex, {-1, 0, 2}), |
| 500 | Simplex::IneqType::Redundant); // x <= 2. |
| 501 | EXPECT_EQ(findIneqType(simplex, {0, 1, 0}), |
| 502 | Simplex::IneqType::Redundant); // y >= 0. |
| 503 | |
| 504 | EXPECT_EQ(findIneqType(simplex, {0, 1, -1}), |
| 505 | Simplex::IneqType::Cut); // y >= 1. |
| 506 | EXPECT_EQ(findIneqType(simplex, {-1, 0, 1}), |
| 507 | Simplex::IneqType::Cut); // x <= 1. |
| 508 | EXPECT_EQ(findIneqType(simplex, {0, 1, -2}), |
| 509 | Simplex::IneqType::Cut); // y >= 2. |
| 510 | |
| 511 | EXPECT_EQ(findIneqType(simplex, {-1, 0, -1}), |
| 512 | Simplex::IneqType::Separate); // x <= -1. |
| 513 | } |
| 514 | |
| 515 | TEST(SimplexTest, isRedundantEquality) { |
| 516 | Simplex simplex(2); |
| 517 | addInequality(simplex, coeffs: {0, -1, 2}); // y <= 2. |
| 518 | addInequality(simplex, coeffs: {1, 0, 0}); // x >= 0. |
| 519 | addEquality(simplex, coeffs: {-1, 1, 0}); // y = x. |
| 520 | |
| 521 | EXPECT_TRUE(isRedundantEquality(simplex, {-1, 1, 0})); // y = x. |
| 522 | EXPECT_TRUE(isRedundantEquality(simplex, {1, -1, 0})); // x = y. |
| 523 | |
| 524 | EXPECT_FALSE(isRedundantEquality(simplex, {0, 1, -1})); // y = 1. |
| 525 | |
| 526 | addEquality(simplex, coeffs: {0, -1, 2}); // y = 2. |
| 527 | |
| 528 | EXPECT_TRUE(isRedundantEquality(simplex, {-1, 0, 2})); // x = 2. |
| 529 | } |
| 530 | |
| 531 | TEST(SimplexTest, IsRationalSubsetOf) { |
| 532 | IntegerPolyhedron univ = parseIntegerPolyhedron(str: "(x) : ()" ); |
| 533 | IntegerPolyhedron empty = |
| 534 | parseIntegerPolyhedron(str: "(x) : (x + 0 >= 0, -x - 1 >= 0)" ); |
| 535 | IntegerPolyhedron s1 = parseIntegerPolyhedron(str: "(x) : ( x >= 0, -x + 4 >= 0)" ); |
| 536 | IntegerPolyhedron s2 = |
| 537 | parseIntegerPolyhedron(str: "(x) : (x - 1 >= 0, -x + 3 >= 0)" ); |
| 538 | |
| 539 | Simplex simUniv(univ); |
| 540 | Simplex simEmpty(empty); |
| 541 | Simplex sim1(s1); |
| 542 | Simplex sim2(s2); |
| 543 | |
| 544 | EXPECT_TRUE(simUniv.isRationalSubsetOf(univ)); |
| 545 | EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty)); |
| 546 | EXPECT_TRUE(sim1.isRationalSubsetOf(s1)); |
| 547 | EXPECT_TRUE(sim2.isRationalSubsetOf(s2)); |
| 548 | |
| 549 | EXPECT_TRUE(simEmpty.isRationalSubsetOf(univ)); |
| 550 | EXPECT_TRUE(simEmpty.isRationalSubsetOf(s1)); |
| 551 | EXPECT_TRUE(simEmpty.isRationalSubsetOf(s2)); |
| 552 | EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty)); |
| 553 | |
| 554 | EXPECT_TRUE(simUniv.isRationalSubsetOf(univ)); |
| 555 | EXPECT_FALSE(simUniv.isRationalSubsetOf(s1)); |
| 556 | EXPECT_FALSE(simUniv.isRationalSubsetOf(s2)); |
| 557 | EXPECT_FALSE(simUniv.isRationalSubsetOf(empty)); |
| 558 | |
| 559 | EXPECT_TRUE(sim1.isRationalSubsetOf(univ)); |
| 560 | EXPECT_TRUE(sim1.isRationalSubsetOf(s1)); |
| 561 | EXPECT_FALSE(sim1.isRationalSubsetOf(s2)); |
| 562 | EXPECT_FALSE(sim1.isRationalSubsetOf(empty)); |
| 563 | |
| 564 | EXPECT_TRUE(sim2.isRationalSubsetOf(univ)); |
| 565 | EXPECT_TRUE(sim2.isRationalSubsetOf(s1)); |
| 566 | EXPECT_TRUE(sim2.isRationalSubsetOf(s2)); |
| 567 | EXPECT_FALSE(sim2.isRationalSubsetOf(empty)); |
| 568 | } |
| 569 | |
| 570 | TEST(SimplexTest, addDivisionVariable) { |
| 571 | Simplex simplex(/*nVar=*/1); |
| 572 | simplex.addDivisionVariable(coeffs: getDynamicAPIntVec(range: {1, 0}), denom: DynamicAPInt(2)); |
| 573 | addInequality(simplex, coeffs: {1, 0, -3}); // x >= 3. |
| 574 | addInequality(simplex, coeffs: {-1, 0, 9}); // x <= 9. |
| 575 | std::optional<SmallVector<DynamicAPInt, 8>> sample = |
| 576 | simplex.findIntegerSample(); |
| 577 | ASSERT_TRUE(sample.has_value()); |
| 578 | EXPECT_EQ((*sample)[0] / 2, (*sample)[1]); |
| 579 | } |
| 580 | |
| 581 | TEST(SimplexTest, LexIneqType) { |
| 582 | LexSimplex simplex(/*nVar=*/1); |
| 583 | addInequality(simplex, coeffs: {2, -1}); // x >= 1/2. |
| 584 | |
| 585 | // Redundant inequality x >= 2/3. |
| 586 | EXPECT_TRUE(isRedundantInequality(simplex, {3, -2})); |
| 587 | EXPECT_FALSE(isSeparateInequality(simplex, {3, -2})); |
| 588 | |
| 589 | // Separate inequality x <= 2/3. |
| 590 | EXPECT_FALSE(isRedundantInequality(simplex, {-3, 2})); |
| 591 | EXPECT_TRUE(isSeparateInequality(simplex, {-3, 2})); |
| 592 | |
| 593 | // Cut inequality x <= 1. |
| 594 | EXPECT_FALSE(isRedundantInequality(simplex, {-1, 1})); |
| 595 | EXPECT_FALSE(isSeparateInequality(simplex, {-1, 1})); |
| 596 | } |
| 597 | |