| 1 | //===- ScopBuilder.cpp ----------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Create a polyhedral description for a static control flow region. |
| 10 | // |
| 11 | // The pass creates a polyhedral description of the Scops detected by the SCoP |
| 12 | // detection derived from their LLVM-IR code. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "polly/ScopBuilder.h" |
| 17 | #include "polly/Options.h" |
| 18 | #include "polly/ScopDetection.h" |
| 19 | #include "polly/ScopInfo.h" |
| 20 | #include "polly/Support/GICHelper.h" |
| 21 | #include "polly/Support/ISLTools.h" |
| 22 | #include "polly/Support/SCEVValidator.h" |
| 23 | #include "polly/Support/ScopHelper.h" |
| 24 | #include "polly/Support/VirtualInstruction.h" |
| 25 | #include "llvm/ADT/ArrayRef.h" |
| 26 | #include "llvm/ADT/EquivalenceClasses.h" |
| 27 | #include "llvm/ADT/PostOrderIterator.h" |
| 28 | #include "llvm/ADT/Sequence.h" |
| 29 | #include "llvm/ADT/SmallSet.h" |
| 30 | #include "llvm/ADT/Statistic.h" |
| 31 | #include "llvm/Analysis/AliasAnalysis.h" |
| 32 | #include "llvm/Analysis/AssumptionCache.h" |
| 33 | #include "llvm/Analysis/Delinearization.h" |
| 34 | #include "llvm/Analysis/Loads.h" |
| 35 | #include "llvm/Analysis/LoopInfo.h" |
| 36 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 37 | #include "llvm/Analysis/RegionInfo.h" |
| 38 | #include "llvm/Analysis/RegionIterator.h" |
| 39 | #include "llvm/Analysis/ScalarEvolution.h" |
| 40 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 41 | #include "llvm/IR/BasicBlock.h" |
| 42 | #include "llvm/IR/DataLayout.h" |
| 43 | #include "llvm/IR/DebugLoc.h" |
| 44 | #include "llvm/IR/DerivedTypes.h" |
| 45 | #include "llvm/IR/Dominators.h" |
| 46 | #include "llvm/IR/Function.h" |
| 47 | #include "llvm/IR/InstrTypes.h" |
| 48 | #include "llvm/IR/Instruction.h" |
| 49 | #include "llvm/IR/Instructions.h" |
| 50 | #include "llvm/IR/Type.h" |
| 51 | #include "llvm/IR/Use.h" |
| 52 | #include "llvm/IR/Value.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Compiler.h" |
| 55 | #include "llvm/Support/Debug.h" |
| 56 | #include "llvm/Support/ErrorHandling.h" |
| 57 | #include "llvm/Support/raw_ostream.h" |
| 58 | #include <cassert> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | using namespace polly; |
| 62 | |
| 63 | #include "polly/Support/PollyDebug.h" |
| 64 | #define DEBUG_TYPE "polly-scops" |
| 65 | |
| 66 | STATISTIC(ScopFound, "Number of valid Scops" ); |
| 67 | STATISTIC(RichScopFound, "Number of Scops containing a loop" ); |
| 68 | STATISTIC(InfeasibleScops, |
| 69 | "Number of SCoPs with statically infeasible context." ); |
| 70 | |
| 71 | bool polly::ModelReadOnlyScalars; |
| 72 | |
| 73 | // The maximal number of dimensions we allow during invariant load construction. |
| 74 | // More complex access ranges will result in very high compile time and are also |
| 75 | // unlikely to result in good code. This value is very high and should only |
| 76 | // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006). |
| 77 | static unsigned const MaxDimensionsInAccessRange = 9; |
| 78 | |
| 79 | static cl::opt<bool, true> XModelReadOnlyScalars( |
| 80 | "polly-analyze-read-only-scalars" , |
| 81 | cl::desc("Model read-only scalar values in the scop description" ), |
| 82 | cl::location(L&: ModelReadOnlyScalars), cl::Hidden, cl::init(Val: true), |
| 83 | cl::cat(PollyCategory)); |
| 84 | |
| 85 | static cl::opt<int> |
| 86 | OptComputeOut("polly-analysis-computeout" , |
| 87 | cl::desc("Bound the scop analysis by a maximal amount of " |
| 88 | "computational steps (0 means no bound)" ), |
| 89 | cl::Hidden, cl::init(Val: 800000), cl::cat(PollyCategory)); |
| 90 | |
| 91 | static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams( |
| 92 | "polly-allow-dereference-of-all-function-parameters" , |
| 93 | cl::desc( |
| 94 | "Treat all parameters to functions that are pointers as dereferencible." |
| 95 | " This is useful for invariant load hoisting, since we can generate" |
| 96 | " less runtime checks. This is only valid if all pointers to functions" |
| 97 | " are always initialized, so that Polly can choose to hoist" |
| 98 | " their loads. " ), |
| 99 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
| 100 | |
| 101 | static cl::opt<bool> |
| 102 | PollyIgnoreInbounds("polly-ignore-inbounds" , |
| 103 | cl::desc("Do not take inbounds assumptions at all" ), |
| 104 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
| 105 | |
| 106 | static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup( |
| 107 | "polly-rtc-max-arrays-per-group" , |
| 108 | cl::desc("The maximal number of arrays to compare in each alias group." ), |
| 109 | cl::Hidden, cl::init(Val: 20), cl::cat(PollyCategory)); |
| 110 | |
| 111 | static cl::opt<unsigned> RunTimeChecksMaxAccessDisjuncts( |
| 112 | "polly-rtc-max-array-disjuncts" , |
| 113 | cl::desc("The maximal number of disjunts allowed in memory accesses to " |
| 114 | "to build RTCs." ), |
| 115 | cl::Hidden, cl::init(Val: 8), cl::cat(PollyCategory)); |
| 116 | |
| 117 | static cl::opt<unsigned> RunTimeChecksMaxParameters( |
| 118 | "polly-rtc-max-parameters" , |
| 119 | cl::desc("The maximal number of parameters allowed in RTCs." ), cl::Hidden, |
| 120 | cl::init(Val: 8), cl::cat(PollyCategory)); |
| 121 | |
| 122 | static cl::opt<bool> UnprofitableScalarAccs( |
| 123 | "polly-unprofitable-scalar-accs" , |
| 124 | cl::desc("Count statements with scalar accesses as not optimizable" ), |
| 125 | cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory)); |
| 126 | |
| 127 | static cl::opt<std::string> UserContextStr( |
| 128 | "polly-context" , cl::value_desc("isl parameter set" ), |
| 129 | cl::desc("Provide additional constraints on the context parameters" ), |
| 130 | cl::init(Val: "" ), cl::cat(PollyCategory)); |
| 131 | |
| 132 | static cl::opt<bool> DetectReductions("polly-detect-reductions" , |
| 133 | cl::desc("Detect and exploit reductions" ), |
| 134 | cl::Hidden, cl::init(Val: true), |
| 135 | cl::cat(PollyCategory)); |
| 136 | |
| 137 | // Multiplicative reductions can be disabled separately as these kind of |
| 138 | // operations can overflow easily. Additive reductions and bit operations |
| 139 | // are in contrast pretty stable. |
| 140 | static cl::opt<bool> DisableMultiplicativeReductions( |
| 141 | "polly-disable-multiplicative-reductions" , |
| 142 | cl::desc("Disable multiplicative reductions" ), cl::Hidden, |
| 143 | cl::cat(PollyCategory)); |
| 144 | |
| 145 | enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores }; |
| 146 | |
| 147 | static cl::opt<GranularityChoice> StmtGranularity( |
| 148 | "polly-stmt-granularity" , |
| 149 | cl::desc( |
| 150 | "Algorithm to use for splitting basic blocks into multiple statements" ), |
| 151 | cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb" , |
| 152 | "One statement per basic block" ), |
| 153 | clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep" , |
| 154 | "Scalar independence heuristic" ), |
| 155 | clEnumValN(GranularityChoice::Stores, "store" , |
| 156 | "Store-level granularity" )), |
| 157 | cl::init(Val: GranularityChoice::ScalarIndependence), cl::cat(PollyCategory)); |
| 158 | |
| 159 | /// Helper to treat non-affine regions and basic blocks the same. |
| 160 | /// |
| 161 | ///{ |
| 162 | |
| 163 | /// Return the block that is the representing block for @p RN. |
| 164 | static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) { |
| 165 | return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry() |
| 166 | : RN->getNodeAs<BasicBlock>(); |
| 167 | } |
| 168 | |
| 169 | /// Return the @p idx'th block that is executed after @p RN. |
| 170 | static inline BasicBlock * |
| 171 | getRegionNodeSuccessor(RegionNode *RN, Instruction *TI, unsigned idx) { |
| 172 | if (RN->isSubRegion()) { |
| 173 | assert(idx == 0); |
| 174 | return RN->getNodeAs<Region>()->getExit(); |
| 175 | } |
| 176 | return TI->getSuccessor(Idx: idx); |
| 177 | } |
| 178 | |
| 179 | static bool containsErrorBlock(RegionNode *RN, const Region &R, |
| 180 | ScopDetection *SD) { |
| 181 | if (!RN->isSubRegion()) |
| 182 | return SD->isErrorBlock(BB&: *RN->getNodeAs<BasicBlock>(), R); |
| 183 | for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks()) |
| 184 | if (SD->isErrorBlock(BB&: *BB, R)) |
| 185 | return true; |
| 186 | return false; |
| 187 | } |
| 188 | |
| 189 | ///} |
| 190 | |
| 191 | /// Create a map to map from a given iteration to a subsequent iteration. |
| 192 | /// |
| 193 | /// This map maps from SetSpace -> SetSpace where the dimensions @p Dim |
| 194 | /// is incremented by one and all other dimensions are equal, e.g., |
| 195 | /// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3] |
| 196 | /// |
| 197 | /// if @p Dim is 2 and @p SetSpace has 4 dimensions. |
| 198 | static isl::map createNextIterationMap(isl::space SetSpace, unsigned Dim) { |
| 199 | isl::space MapSpace = SetSpace.map_from_set(); |
| 200 | isl::map NextIterationMap = isl::map::universe(space: MapSpace); |
| 201 | for (unsigned u : rangeIslSize(Begin: 0, End: NextIterationMap.domain_tuple_dim())) |
| 202 | if (u != Dim) |
| 203 | NextIterationMap = |
| 204 | NextIterationMap.equate(type1: isl::dim::in, pos1: u, type2: isl::dim::out, pos2: u); |
| 205 | isl::constraint C = |
| 206 | isl::constraint::alloc_equality(ls: isl::local_space(MapSpace)); |
| 207 | C = C.set_constant_si(1); |
| 208 | C = C.set_coefficient_si(type: isl::dim::in, pos: Dim, v: 1); |
| 209 | C = C.set_coefficient_si(type: isl::dim::out, pos: Dim, v: -1); |
| 210 | NextIterationMap = NextIterationMap.add_constraint(constraint: C); |
| 211 | return NextIterationMap; |
| 212 | } |
| 213 | |
| 214 | /// Add @p BSet to set @p BoundedParts if @p BSet is bounded. |
| 215 | static isl::set collectBoundedParts(isl::set S) { |
| 216 | isl::set BoundedParts = isl::set::empty(space: S.get_space()); |
| 217 | for (isl::basic_set BSet : S.get_basic_set_list()) |
| 218 | if (BSet.is_bounded()) |
| 219 | BoundedParts = BoundedParts.unite(set2: isl::set(BSet)); |
| 220 | return BoundedParts; |
| 221 | } |
| 222 | |
| 223 | /// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim. |
| 224 | /// |
| 225 | /// @returns A separation of @p S into first an unbounded then a bounded subset, |
| 226 | /// both with regards to the dimension @p Dim. |
| 227 | static std::pair<isl::set, isl::set> partitionSetParts(isl::set S, |
| 228 | unsigned Dim) { |
| 229 | for (unsigned u : rangeIslSize(Begin: 0, End: S.tuple_dim())) |
| 230 | S = S.lower_bound_si(type: isl::dim::set, pos: u, value: 0); |
| 231 | |
| 232 | unsigned NumDimsS = unsignedFromIslSize(Size: S.tuple_dim()); |
| 233 | isl::set OnlyDimS = S; |
| 234 | |
| 235 | // Remove dimensions that are greater than Dim as they are not interesting. |
| 236 | assert(NumDimsS >= Dim + 1); |
| 237 | OnlyDimS = OnlyDimS.project_out(type: isl::dim::set, first: Dim + 1, n: NumDimsS - Dim - 1); |
| 238 | |
| 239 | // Create artificial parametric upper bounds for dimensions smaller than Dim |
| 240 | // as we are not interested in them. |
| 241 | OnlyDimS = OnlyDimS.insert_dims(type: isl::dim::param, pos: 0, n: Dim); |
| 242 | |
| 243 | for (unsigned u = 0; u < Dim; u++) { |
| 244 | isl::constraint C = isl::constraint::alloc_inequality( |
| 245 | ls: isl::local_space(OnlyDimS.get_space())); |
| 246 | C = C.set_coefficient_si(type: isl::dim::param, pos: u, v: 1); |
| 247 | C = C.set_coefficient_si(type: isl::dim::set, pos: u, v: -1); |
| 248 | OnlyDimS = OnlyDimS.add_constraint(constraint: C); |
| 249 | } |
| 250 | |
| 251 | // Collect all bounded parts of OnlyDimS. |
| 252 | isl::set BoundedParts = collectBoundedParts(S: OnlyDimS); |
| 253 | |
| 254 | // Create the dimensions greater than Dim again. |
| 255 | BoundedParts = |
| 256 | BoundedParts.insert_dims(type: isl::dim::set, pos: Dim + 1, n: NumDimsS - Dim - 1); |
| 257 | |
| 258 | // Remove the artificial upper bound parameters again. |
| 259 | BoundedParts = BoundedParts.remove_dims(type: isl::dim::param, first: 0, n: Dim); |
| 260 | |
| 261 | isl::set UnboundedParts = S.subtract(set2: BoundedParts); |
| 262 | return std::make_pair(x&: UnboundedParts, y&: BoundedParts); |
| 263 | } |
| 264 | |
| 265 | /// Create the conditions under which @p L @p Pred @p R is true. |
| 266 | static isl::set buildConditionSet(ICmpInst::Predicate Pred, isl::pw_aff L, |
| 267 | isl::pw_aff R) { |
| 268 | switch (Pred) { |
| 269 | case ICmpInst::ICMP_EQ: |
| 270 | return L.eq_set(pwaff2: R); |
| 271 | case ICmpInst::ICMP_NE: |
| 272 | return L.ne_set(pwaff2: R); |
| 273 | case ICmpInst::ICMP_SLT: |
| 274 | return L.lt_set(pwaff2: R); |
| 275 | case ICmpInst::ICMP_SLE: |
| 276 | return L.le_set(pwaff2: R); |
| 277 | case ICmpInst::ICMP_SGT: |
| 278 | return L.gt_set(pwaff2: R); |
| 279 | case ICmpInst::ICMP_SGE: |
| 280 | return L.ge_set(pwaff2: R); |
| 281 | case ICmpInst::ICMP_ULT: |
| 282 | return L.lt_set(pwaff2: R); |
| 283 | case ICmpInst::ICMP_UGT: |
| 284 | return L.gt_set(pwaff2: R); |
| 285 | case ICmpInst::ICMP_ULE: |
| 286 | return L.le_set(pwaff2: R); |
| 287 | case ICmpInst::ICMP_UGE: |
| 288 | return L.ge_set(pwaff2: R); |
| 289 | default: |
| 290 | llvm_unreachable("Non integer predicate not supported" ); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | isl::set ScopBuilder::adjustDomainDimensions(isl::set Dom, Loop *OldL, |
| 295 | Loop *NewL) { |
| 296 | // If the loops are the same there is nothing to do. |
| 297 | if (NewL == OldL) |
| 298 | return Dom; |
| 299 | |
| 300 | int OldDepth = scop->getRelativeLoopDepth(L: OldL); |
| 301 | int NewDepth = scop->getRelativeLoopDepth(L: NewL); |
| 302 | // If both loops are non-affine loops there is nothing to do. |
| 303 | if (OldDepth == -1 && NewDepth == -1) |
| 304 | return Dom; |
| 305 | |
| 306 | // Distinguish three cases: |
| 307 | // 1) The depth is the same but the loops are not. |
| 308 | // => One loop was left one was entered. |
| 309 | // 2) The depth increased from OldL to NewL. |
| 310 | // => One loop was entered, none was left. |
| 311 | // 3) The depth decreased from OldL to NewL. |
| 312 | // => Loops were left were difference of the depths defines how many. |
| 313 | if (OldDepth == NewDepth) { |
| 314 | assert(OldL->getParentLoop() == NewL->getParentLoop()); |
| 315 | Dom = Dom.project_out(type: isl::dim::set, first: NewDepth, n: 1); |
| 316 | Dom = Dom.add_dims(type: isl::dim::set, n: 1); |
| 317 | } else if (OldDepth < NewDepth) { |
| 318 | assert(OldDepth + 1 == NewDepth); |
| 319 | auto &R = scop->getRegion(); |
| 320 | (void)R; |
| 321 | assert(NewL->getParentLoop() == OldL || |
| 322 | ((!OldL || !R.contains(OldL)) && R.contains(NewL))); |
| 323 | Dom = Dom.add_dims(type: isl::dim::set, n: 1); |
| 324 | } else { |
| 325 | assert(OldDepth > NewDepth); |
| 326 | unsigned Diff = OldDepth - NewDepth; |
| 327 | unsigned NumDim = unsignedFromIslSize(Size: Dom.tuple_dim()); |
| 328 | assert(NumDim >= Diff); |
| 329 | Dom = Dom.project_out(type: isl::dim::set, first: NumDim - Diff, n: Diff); |
| 330 | } |
| 331 | |
| 332 | return Dom; |
| 333 | } |
| 334 | |
| 335 | /// Compute the isl representation for the SCEV @p E in this BB. |
| 336 | /// |
| 337 | /// @param BB The BB for which isl representation is to be |
| 338 | /// computed. |
| 339 | /// @param InvalidDomainMap A map of BB to their invalid domains. |
| 340 | /// @param E The SCEV that should be translated. |
| 341 | /// @param NonNegative Flag to indicate the @p E has to be non-negative. |
| 342 | /// |
| 343 | /// Note that this function will also adjust the invalid context accordingly. |
| 344 | |
| 345 | __isl_give isl_pw_aff * |
| 346 | ScopBuilder::getPwAff(BasicBlock *BB, |
| 347 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, |
| 348 | const SCEV *E, bool NonNegative) { |
| 349 | PWACtx PWAC = scop->getPwAff(E, BB, NonNegative, RecordedAssumptions: &RecordedAssumptions); |
| 350 | InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(set2: PWAC.second); |
| 351 | return PWAC.first.release(); |
| 352 | } |
| 353 | |
| 354 | /// Build condition sets for unsigned ICmpInst(s). |
| 355 | /// Special handling is required for unsigned operands to ensure that if |
| 356 | /// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst |
| 357 | /// it should wrap around. |
| 358 | /// |
| 359 | /// @param IsStrictUpperBound holds information on the predicate relation |
| 360 | /// between TestVal and UpperBound, i.e, |
| 361 | /// TestVal < UpperBound OR TestVal <= UpperBound |
| 362 | __isl_give isl_set *ScopBuilder::buildUnsignedConditionSets( |
| 363 | BasicBlock *BB, Value *Condition, __isl_keep isl_set *Domain, |
| 364 | const SCEV *SCEV_TestVal, const SCEV *SCEV_UpperBound, |
| 365 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, |
| 366 | bool IsStrictUpperBound) { |
| 367 | // Do not take NonNeg assumption on TestVal |
| 368 | // as it might have MSB (Sign bit) set. |
| 369 | isl_pw_aff *TestVal = getPwAff(BB, InvalidDomainMap, E: SCEV_TestVal, NonNegative: false); |
| 370 | // Take NonNeg assumption on UpperBound. |
| 371 | isl_pw_aff *UpperBound = |
| 372 | getPwAff(BB, InvalidDomainMap, E: SCEV_UpperBound, NonNegative: true); |
| 373 | |
| 374 | // 0 <= TestVal |
| 375 | isl_set *First = |
| 376 | isl_pw_aff_le_set(pwaff1: isl_pw_aff_zero_on_domain(ls: isl_local_space_from_space( |
| 377 | space: isl_pw_aff_get_domain_space(pwaff: TestVal))), |
| 378 | pwaff2: isl_pw_aff_copy(pwaff: TestVal)); |
| 379 | |
| 380 | isl_set *Second; |
| 381 | if (IsStrictUpperBound) |
| 382 | // TestVal < UpperBound |
| 383 | Second = isl_pw_aff_lt_set(pwaff1: TestVal, pwaff2: UpperBound); |
| 384 | else |
| 385 | // TestVal <= UpperBound |
| 386 | Second = isl_pw_aff_le_set(pwaff1: TestVal, pwaff2: UpperBound); |
| 387 | |
| 388 | isl_set *ConsequenceCondSet = isl_set_intersect(set1: First, set2: Second); |
| 389 | return ConsequenceCondSet; |
| 390 | } |
| 391 | |
| 392 | bool ScopBuilder::buildConditionSets( |
| 393 | BasicBlock *BB, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain, |
| 394 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, |
| 395 | SmallVectorImpl<__isl_give isl_set *> &ConditionSets) { |
| 396 | Value *Condition = getConditionFromTerminator(TI: SI); |
| 397 | assert(Condition && "No condition for switch" ); |
| 398 | |
| 399 | isl_pw_aff *LHS, *RHS; |
| 400 | LHS = getPwAff(BB, InvalidDomainMap, E: SE.getSCEVAtScope(V: Condition, L)); |
| 401 | |
| 402 | unsigned NumSuccessors = SI->getNumSuccessors(); |
| 403 | ConditionSets.resize(N: NumSuccessors); |
| 404 | for (auto &Case : SI->cases()) { |
| 405 | unsigned Idx = Case.getSuccessorIndex(); |
| 406 | ConstantInt *CaseValue = Case.getCaseValue(); |
| 407 | |
| 408 | RHS = getPwAff(BB, InvalidDomainMap, E: SE.getSCEV(V: CaseValue)); |
| 409 | isl_set *CaseConditionSet = |
| 410 | buildConditionSet(Pred: ICmpInst::ICMP_EQ, L: isl::manage_copy(ptr: LHS), |
| 411 | R: isl::manage(ptr: RHS)) |
| 412 | .release(); |
| 413 | ConditionSets[Idx] = isl_set_coalesce( |
| 414 | set: isl_set_intersect(set1: CaseConditionSet, set2: isl_set_copy(set: Domain))); |
| 415 | } |
| 416 | |
| 417 | assert(ConditionSets[0] == nullptr && "Default condition set was set" ); |
| 418 | isl_set *ConditionSetUnion = isl_set_copy(set: ConditionSets[1]); |
| 419 | for (unsigned u = 2; u < NumSuccessors; u++) |
| 420 | ConditionSetUnion = |
| 421 | isl_set_union(set1: ConditionSetUnion, set2: isl_set_copy(set: ConditionSets[u])); |
| 422 | ConditionSets[0] = isl_set_subtract(set1: isl_set_copy(set: Domain), set2: ConditionSetUnion); |
| 423 | |
| 424 | isl_pw_aff_free(pwaff: LHS); |
| 425 | |
| 426 | return true; |
| 427 | } |
| 428 | |
| 429 | bool ScopBuilder::buildConditionSets( |
| 430 | BasicBlock *BB, Value *Condition, Instruction *TI, Loop *L, |
| 431 | __isl_keep isl_set *Domain, |
| 432 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, |
| 433 | SmallVectorImpl<__isl_give isl_set *> &ConditionSets) { |
| 434 | isl_set *ConsequenceCondSet = nullptr; |
| 435 | |
| 436 | if (auto Load = dyn_cast<LoadInst>(Val: Condition)) { |
| 437 | const SCEV *LHSSCEV = SE.getSCEVAtScope(V: Load, L); |
| 438 | const SCEV *RHSSCEV = SE.getZero(Ty: LHSSCEV->getType()); |
| 439 | bool NonNeg = false; |
| 440 | isl_pw_aff *LHS = getPwAff(BB, InvalidDomainMap, E: LHSSCEV, NonNegative: NonNeg); |
| 441 | isl_pw_aff *RHS = getPwAff(BB, InvalidDomainMap, E: RHSSCEV, NonNegative: NonNeg); |
| 442 | ConsequenceCondSet = buildConditionSet(Pred: ICmpInst::ICMP_SLE, L: isl::manage(ptr: LHS), |
| 443 | R: isl::manage(ptr: RHS)) |
| 444 | .release(); |
| 445 | } else if (auto *PHI = dyn_cast<PHINode>(Val: Condition)) { |
| 446 | auto *Unique = dyn_cast<ConstantInt>( |
| 447 | Val: getUniqueNonErrorValue(PHI, R: &scop->getRegion(), SD: &SD)); |
| 448 | assert(Unique && |
| 449 | "A PHINode condition should only be accepted by ScopDetection if " |
| 450 | "getUniqueNonErrorValue returns non-NULL" ); |
| 451 | |
| 452 | if (Unique->isZero()) |
| 453 | ConsequenceCondSet = isl_set_empty(space: isl_set_get_space(set: Domain)); |
| 454 | else |
| 455 | ConsequenceCondSet = isl_set_universe(space: isl_set_get_space(set: Domain)); |
| 456 | } else if (auto *CCond = dyn_cast<ConstantInt>(Val: Condition)) { |
| 457 | if (CCond->isZero()) |
| 458 | ConsequenceCondSet = isl_set_empty(space: isl_set_get_space(set: Domain)); |
| 459 | else |
| 460 | ConsequenceCondSet = isl_set_universe(space: isl_set_get_space(set: Domain)); |
| 461 | } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Condition)) { |
| 462 | auto Opcode = BinOp->getOpcode(); |
| 463 | assert(Opcode == Instruction::And || Opcode == Instruction::Or); |
| 464 | |
| 465 | bool Valid = buildConditionSets(BB, Condition: BinOp->getOperand(i_nocapture: 0), TI, L, Domain, |
| 466 | InvalidDomainMap, ConditionSets) && |
| 467 | buildConditionSets(BB, Condition: BinOp->getOperand(i_nocapture: 1), TI, L, Domain, |
| 468 | InvalidDomainMap, ConditionSets); |
| 469 | if (!Valid) { |
| 470 | while (!ConditionSets.empty()) |
| 471 | isl_set_free(set: ConditionSets.pop_back_val()); |
| 472 | return false; |
| 473 | } |
| 474 | |
| 475 | isl_set_free(set: ConditionSets.pop_back_val()); |
| 476 | isl_set *ConsCondPart0 = ConditionSets.pop_back_val(); |
| 477 | isl_set_free(set: ConditionSets.pop_back_val()); |
| 478 | isl_set *ConsCondPart1 = ConditionSets.pop_back_val(); |
| 479 | |
| 480 | if (Opcode == Instruction::And) |
| 481 | ConsequenceCondSet = isl_set_intersect(set1: ConsCondPart0, set2: ConsCondPart1); |
| 482 | else |
| 483 | ConsequenceCondSet = isl_set_union(set1: ConsCondPart0, set2: ConsCondPart1); |
| 484 | } else { |
| 485 | auto *ICond = dyn_cast<ICmpInst>(Val: Condition); |
| 486 | assert(ICond && |
| 487 | "Condition of exiting branch was neither constant nor ICmp!" ); |
| 488 | |
| 489 | Region &R = scop->getRegion(); |
| 490 | |
| 491 | isl_pw_aff *LHS, *RHS; |
| 492 | // For unsigned comparisons we assumed the signed bit of neither operand |
| 493 | // to be set. The comparison is equal to a signed comparison under this |
| 494 | // assumption. |
| 495 | bool NonNeg = ICond->isUnsigned(); |
| 496 | const SCEV *LeftOperand = SE.getSCEVAtScope(V: ICond->getOperand(i_nocapture: 0), L), |
| 497 | *RightOperand = SE.getSCEVAtScope(V: ICond->getOperand(i_nocapture: 1), L); |
| 498 | |
| 499 | LeftOperand = tryForwardThroughPHI(Expr: LeftOperand, R, SE, SD: &SD); |
| 500 | RightOperand = tryForwardThroughPHI(Expr: RightOperand, R, SE, SD: &SD); |
| 501 | |
| 502 | switch (ICond->getPredicate()) { |
| 503 | case ICmpInst::ICMP_ULT: |
| 504 | ConsequenceCondSet = |
| 505 | buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: LeftOperand, |
| 506 | SCEV_UpperBound: RightOperand, InvalidDomainMap, IsStrictUpperBound: true); |
| 507 | break; |
| 508 | case ICmpInst::ICMP_ULE: |
| 509 | ConsequenceCondSet = |
| 510 | buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: LeftOperand, |
| 511 | SCEV_UpperBound: RightOperand, InvalidDomainMap, IsStrictUpperBound: false); |
| 512 | break; |
| 513 | case ICmpInst::ICMP_UGT: |
| 514 | ConsequenceCondSet = |
| 515 | buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: RightOperand, |
| 516 | SCEV_UpperBound: LeftOperand, InvalidDomainMap, IsStrictUpperBound: true); |
| 517 | break; |
| 518 | case ICmpInst::ICMP_UGE: |
| 519 | ConsequenceCondSet = |
| 520 | buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: RightOperand, |
| 521 | SCEV_UpperBound: LeftOperand, InvalidDomainMap, IsStrictUpperBound: false); |
| 522 | break; |
| 523 | default: |
| 524 | LHS = getPwAff(BB, InvalidDomainMap, E: LeftOperand, NonNegative: NonNeg); |
| 525 | RHS = getPwAff(BB, InvalidDomainMap, E: RightOperand, NonNegative: NonNeg); |
| 526 | ConsequenceCondSet = buildConditionSet(Pred: ICond->getPredicate(), |
| 527 | L: isl::manage(ptr: LHS), R: isl::manage(ptr: RHS)) |
| 528 | .release(); |
| 529 | break; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | // If no terminator was given we are only looking for parameter constraints |
| 534 | // under which @p Condition is true/false. |
| 535 | if (!TI) |
| 536 | ConsequenceCondSet = isl_set_params(set: ConsequenceCondSet); |
| 537 | assert(ConsequenceCondSet); |
| 538 | ConsequenceCondSet = isl_set_coalesce( |
| 539 | set: isl_set_intersect(set1: ConsequenceCondSet, set2: isl_set_copy(set: Domain))); |
| 540 | |
| 541 | isl_set *AlternativeCondSet = nullptr; |
| 542 | bool TooComplex = |
| 543 | isl_set_n_basic_set(set: ConsequenceCondSet) >= (int)MaxDisjunctsInDomain; |
| 544 | |
| 545 | if (!TooComplex) { |
| 546 | AlternativeCondSet = isl_set_subtract(set1: isl_set_copy(set: Domain), |
| 547 | set2: isl_set_copy(set: ConsequenceCondSet)); |
| 548 | TooComplex = |
| 549 | isl_set_n_basic_set(set: AlternativeCondSet) >= (int)MaxDisjunctsInDomain; |
| 550 | } |
| 551 | |
| 552 | if (TooComplex) { |
| 553 | scop->invalidate(Kind: COMPLEXITY, Loc: TI ? TI->getDebugLoc() : DebugLoc(), |
| 554 | BB: TI ? TI->getParent() : nullptr /* BasicBlock */); |
| 555 | isl_set_free(set: AlternativeCondSet); |
| 556 | isl_set_free(set: ConsequenceCondSet); |
| 557 | return false; |
| 558 | } |
| 559 | |
| 560 | ConditionSets.push_back(Elt: ConsequenceCondSet); |
| 561 | ConditionSets.push_back(Elt: isl_set_coalesce(set: AlternativeCondSet)); |
| 562 | |
| 563 | return true; |
| 564 | } |
| 565 | |
| 566 | bool ScopBuilder::buildConditionSets( |
| 567 | BasicBlock *BB, Instruction *TI, Loop *L, __isl_keep isl_set *Domain, |
| 568 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, |
| 569 | SmallVectorImpl<__isl_give isl_set *> &ConditionSets) { |
| 570 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) |
| 571 | return buildConditionSets(BB, SI, L, Domain, InvalidDomainMap, |
| 572 | ConditionSets); |
| 573 | |
| 574 | assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch." ); |
| 575 | |
| 576 | if (TI->getNumSuccessors() == 1) { |
| 577 | ConditionSets.push_back(Elt: isl_set_copy(set: Domain)); |
| 578 | return true; |
| 579 | } |
| 580 | |
| 581 | Value *Condition = getConditionFromTerminator(TI); |
| 582 | assert(Condition && "No condition for Terminator" ); |
| 583 | |
| 584 | return buildConditionSets(BB, Condition, TI, L, Domain, InvalidDomainMap, |
| 585 | ConditionSets); |
| 586 | } |
| 587 | |
| 588 | bool ScopBuilder::propagateDomainConstraints( |
| 589 | Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 590 | // Iterate over the region R and propagate the domain constrains from the |
| 591 | // predecessors to the current node. In contrast to the |
| 592 | // buildDomainsWithBranchConstraints function, this one will pull the domain |
| 593 | // information from the predecessors instead of pushing it to the successors. |
| 594 | // Additionally, we assume the domains to be already present in the domain |
| 595 | // map here. However, we iterate again in reverse post order so we know all |
| 596 | // predecessors have been visited before a block or non-affine subregion is |
| 597 | // visited. |
| 598 | |
| 599 | ReversePostOrderTraversal<Region *> RTraversal(R); |
| 600 | for (auto *RN : RTraversal) { |
| 601 | // Recurse for affine subregions but go on for basic blocks and non-affine |
| 602 | // subregions. |
| 603 | if (RN->isSubRegion()) { |
| 604 | Region *SubRegion = RN->getNodeAs<Region>(); |
| 605 | if (!scop->isNonAffineSubRegion(R: SubRegion)) { |
| 606 | if (!propagateDomainConstraints(R: SubRegion, InvalidDomainMap)) |
| 607 | return false; |
| 608 | continue; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| 613 | isl::set &Domain = scop->getOrInitEmptyDomain(BB); |
| 614 | assert(!Domain.is_null()); |
| 615 | |
| 616 | // Under the union of all predecessor conditions we can reach this block. |
| 617 | isl::set PredDom = getPredecessorDomainConstraints(BB, Domain); |
| 618 | Domain = Domain.intersect(set2: PredDom).coalesce(); |
| 619 | Domain = Domain.align_params(model: scop->getParamSpace()); |
| 620 | |
| 621 | Loop *BBLoop = getRegionNodeLoop(RN, LI); |
| 622 | if (BBLoop && BBLoop->getHeader() == BB && scop->contains(L: BBLoop)) |
| 623 | if (!addLoopBoundsToHeaderDomain(L: BBLoop, InvalidDomainMap)) |
| 624 | return false; |
| 625 | } |
| 626 | |
| 627 | return true; |
| 628 | } |
| 629 | |
| 630 | void ScopBuilder::propagateDomainConstraintsToRegionExit( |
| 631 | BasicBlock *BB, Loop *BBLoop, |
| 632 | SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, |
| 633 | DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 634 | // Check if the block @p BB is the entry of a region. If so we propagate it's |
| 635 | // domain to the exit block of the region. Otherwise we are done. |
| 636 | auto *RI = scop->getRegion().getRegionInfo(); |
| 637 | auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr; |
| 638 | auto *ExitBB = BBReg ? BBReg->getExit() : nullptr; |
| 639 | if (!BBReg || BBReg->getEntry() != BB || !scop->contains(BB: ExitBB)) |
| 640 | return; |
| 641 | |
| 642 | // Do not propagate the domain if there is a loop backedge inside the region |
| 643 | // that would prevent the exit block from being executed. |
| 644 | auto *L = BBLoop; |
| 645 | while (L && scop->contains(L)) { |
| 646 | SmallVector<BasicBlock *, 4> LatchBBs; |
| 647 | BBLoop->getLoopLatches(LoopLatches&: LatchBBs); |
| 648 | for (auto *LatchBB : LatchBBs) |
| 649 | if (BB != LatchBB && BBReg->contains(BB: LatchBB)) |
| 650 | return; |
| 651 | L = L->getParentLoop(); |
| 652 | } |
| 653 | |
| 654 | isl::set Domain = scop->getOrInitEmptyDomain(BB); |
| 655 | assert(!Domain.is_null() && "Cannot propagate a nullptr" ); |
| 656 | |
| 657 | Loop *ExitBBLoop = getFirstNonBoxedLoopFor(BB: ExitBB, LI, BoxedLoops: scop->getBoxedLoops()); |
| 658 | |
| 659 | // Since the dimensions of @p BB and @p ExitBB might be different we have to |
| 660 | // adjust the domain before we can propagate it. |
| 661 | isl::set AdjustedDomain = adjustDomainDimensions(Dom: Domain, OldL: BBLoop, NewL: ExitBBLoop); |
| 662 | isl::set &ExitDomain = scop->getOrInitEmptyDomain(BB: ExitBB); |
| 663 | |
| 664 | // If the exit domain is not yet created we set it otherwise we "add" the |
| 665 | // current domain. |
| 666 | ExitDomain = |
| 667 | !ExitDomain.is_null() ? AdjustedDomain.unite(set2: ExitDomain) : AdjustedDomain; |
| 668 | |
| 669 | // Initialize the invalid domain. |
| 670 | InvalidDomainMap[ExitBB] = ExitDomain.empty(space: ExitDomain.get_space()); |
| 671 | |
| 672 | FinishedExitBlocks.insert(Ptr: ExitBB); |
| 673 | } |
| 674 | |
| 675 | isl::set ScopBuilder::getPredecessorDomainConstraints(BasicBlock *BB, |
| 676 | isl::set Domain) { |
| 677 | // If @p BB is the ScopEntry we are done |
| 678 | if (scop->getRegion().getEntry() == BB) |
| 679 | return isl::set::universe(space: Domain.get_space()); |
| 680 | |
| 681 | // The region info of this function. |
| 682 | auto &RI = *scop->getRegion().getRegionInfo(); |
| 683 | |
| 684 | Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, BoxedLoops: scop->getBoxedLoops()); |
| 685 | |
| 686 | // A domain to collect all predecessor domains, thus all conditions under |
| 687 | // which the block is executed. To this end we start with the empty domain. |
| 688 | isl::set PredDom = isl::set::empty(space: Domain.get_space()); |
| 689 | |
| 690 | // Set of regions of which the entry block domain has been propagated to BB. |
| 691 | // all predecessors inside any of the regions can be skipped. |
| 692 | SmallSet<Region *, 8> PropagatedRegions; |
| 693 | |
| 694 | for (auto *PredBB : predecessors(BB)) { |
| 695 | // Skip backedges. |
| 696 | if (DT.dominates(A: BB, B: PredBB)) |
| 697 | continue; |
| 698 | |
| 699 | // If the predecessor is in a region we used for propagation we can skip it. |
| 700 | auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(BB: PredBB); }; |
| 701 | if (llvm::any_of(Range&: PropagatedRegions, P: PredBBInRegion)) { |
| 702 | continue; |
| 703 | } |
| 704 | |
| 705 | // Check if there is a valid region we can use for propagation, thus look |
| 706 | // for a region that contains the predecessor and has @p BB as exit block. |
| 707 | // FIXME: This was an side-effect-free (and possibly infinite) loop when |
| 708 | // committed and seems not to be needed. |
| 709 | auto *PredR = RI.getRegionFor(BB: PredBB); |
| 710 | while (PredR->getExit() != BB && !PredR->contains(BB)) |
| 711 | PredR = PredR->getParent(); |
| 712 | |
| 713 | // If a valid region for propagation was found use the entry of that region |
| 714 | // for propagation, otherwise the PredBB directly. |
| 715 | if (PredR->getExit() == BB) { |
| 716 | PredBB = PredR->getEntry(); |
| 717 | PropagatedRegions.insert(Ptr: PredR); |
| 718 | } |
| 719 | |
| 720 | isl::set PredBBDom = scop->getDomainConditions(BB: PredBB); |
| 721 | Loop *PredBBLoop = |
| 722 | getFirstNonBoxedLoopFor(BB: PredBB, LI, BoxedLoops: scop->getBoxedLoops()); |
| 723 | PredBBDom = adjustDomainDimensions(Dom: PredBBDom, OldL: PredBBLoop, NewL: BBLoop); |
| 724 | PredDom = PredDom.unite(set2: PredBBDom); |
| 725 | } |
| 726 | |
| 727 | return PredDom; |
| 728 | } |
| 729 | |
| 730 | bool ScopBuilder::addLoopBoundsToHeaderDomain( |
| 731 | Loop *L, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 732 | int LoopDepth = scop->getRelativeLoopDepth(L); |
| 733 | assert(LoopDepth >= 0 && "Loop in region should have at least depth one" ); |
| 734 | |
| 735 | BasicBlock * = L->getHeader(); |
| 736 | assert(scop->isDomainDefined(HeaderBB)); |
| 737 | isl::set & = scop->getOrInitEmptyDomain(BB: HeaderBB); |
| 738 | |
| 739 | isl::map NextIterationMap = |
| 740 | createNextIterationMap(SetSpace: HeaderBBDom.get_space(), Dim: LoopDepth); |
| 741 | |
| 742 | isl::set UnionBackedgeCondition = HeaderBBDom.empty(space: HeaderBBDom.get_space()); |
| 743 | |
| 744 | SmallVector<BasicBlock *, 4> LatchBlocks; |
| 745 | L->getLoopLatches(LoopLatches&: LatchBlocks); |
| 746 | |
| 747 | for (BasicBlock *LatchBB : LatchBlocks) { |
| 748 | // If the latch is only reachable via error statements we skip it. |
| 749 | if (!scop->isDomainDefined(BB: LatchBB)) |
| 750 | continue; |
| 751 | |
| 752 | isl::set LatchBBDom = scop->getDomainConditions(BB: LatchBB); |
| 753 | |
| 754 | isl::set BackedgeCondition; |
| 755 | |
| 756 | Instruction *TI = LatchBB->getTerminator(); |
| 757 | BranchInst *BI = dyn_cast<BranchInst>(Val: TI); |
| 758 | assert(BI && "Only branch instructions allowed in loop latches" ); |
| 759 | |
| 760 | if (BI->isUnconditional()) |
| 761 | BackedgeCondition = LatchBBDom; |
| 762 | else { |
| 763 | SmallVector<isl_set *, 8> ConditionSets; |
| 764 | int idx = BI->getSuccessor(i: 0) != HeaderBB; |
| 765 | if (!buildConditionSets(BB: LatchBB, TI, L, Domain: LatchBBDom.get(), |
| 766 | InvalidDomainMap, ConditionSets)) |
| 767 | return false; |
| 768 | |
| 769 | // Free the non back edge condition set as we do not need it. |
| 770 | isl_set_free(set: ConditionSets[1 - idx]); |
| 771 | |
| 772 | BackedgeCondition = isl::manage(ptr: ConditionSets[idx]); |
| 773 | } |
| 774 | |
| 775 | int LatchLoopDepth = scop->getRelativeLoopDepth(L: LI.getLoopFor(BB: LatchBB)); |
| 776 | assert(LatchLoopDepth >= LoopDepth); |
| 777 | BackedgeCondition = BackedgeCondition.project_out( |
| 778 | type: isl::dim::set, first: LoopDepth + 1, n: LatchLoopDepth - LoopDepth); |
| 779 | UnionBackedgeCondition = UnionBackedgeCondition.unite(set2: BackedgeCondition); |
| 780 | } |
| 781 | |
| 782 | isl::map ForwardMap = ForwardMap.lex_le(set_space: HeaderBBDom.get_space()); |
| 783 | for (int i = 0; i < LoopDepth; i++) |
| 784 | ForwardMap = ForwardMap.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
| 785 | |
| 786 | isl::set UnionBackedgeConditionComplement = |
| 787 | UnionBackedgeCondition.complement(); |
| 788 | UnionBackedgeConditionComplement = |
| 789 | UnionBackedgeConditionComplement.lower_bound_si(type: isl::dim::set, pos: LoopDepth, |
| 790 | value: 0); |
| 791 | UnionBackedgeConditionComplement = |
| 792 | UnionBackedgeConditionComplement.apply(map: ForwardMap); |
| 793 | HeaderBBDom = HeaderBBDom.subtract(set2: UnionBackedgeConditionComplement); |
| 794 | HeaderBBDom = HeaderBBDom.apply(map: NextIterationMap); |
| 795 | |
| 796 | auto Parts = partitionSetParts(S: HeaderBBDom, Dim: LoopDepth); |
| 797 | HeaderBBDom = Parts.second; |
| 798 | |
| 799 | // Check if there is a <nsw> tagged AddRec for this loop and if so do not |
| 800 | // require a runtime check. The assumption is already implied by the <nsw> |
| 801 | // tag. |
| 802 | bool RequiresRTC = !scop->hasNSWAddRecForLoop(L); |
| 803 | |
| 804 | isl::set UnboundedCtx = Parts.first.params(); |
| 805 | recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: INFINITELOOP, Set: UnboundedCtx, |
| 806 | Loc: HeaderBB->getTerminator()->getDebugLoc(), Sign: AS_RESTRICTION, |
| 807 | BB: nullptr, RTC: RequiresRTC); |
| 808 | return true; |
| 809 | } |
| 810 | |
| 811 | void ScopBuilder::buildInvariantEquivalenceClasses() { |
| 812 | DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses; |
| 813 | |
| 814 | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
| 815 | for (LoadInst *LInst : RIL) { |
| 816 | const SCEV *PointerSCEV = SE.getSCEV(V: LInst->getPointerOperand()); |
| 817 | |
| 818 | Type *Ty = LInst->getType(); |
| 819 | LoadInst *&ClassRep = EquivClasses[std::make_pair(x&: PointerSCEV, y&: Ty)]; |
| 820 | if (ClassRep) { |
| 821 | scop->addInvariantLoadMapping(LoadInst: LInst, ClassRep); |
| 822 | continue; |
| 823 | } |
| 824 | |
| 825 | ClassRep = LInst; |
| 826 | scop->addInvariantEquivClass( |
| 827 | InvariantEquivClass: InvariantEquivClassTy{.IdentifyingPointer: PointerSCEV, .InvariantAccesses: MemoryAccessList(), .ExecutionContext: {}, .AccessType: Ty}); |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | bool ScopBuilder::buildDomains( |
| 832 | Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 833 | bool IsOnlyNonAffineRegion = scop->isNonAffineSubRegion(R); |
| 834 | auto *EntryBB = R->getEntry(); |
| 835 | auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(BB: EntryBB); |
| 836 | int LD = scop->getRelativeLoopDepth(L); |
| 837 | auto *S = |
| 838 | isl_set_universe(space: isl_space_set_alloc(ctx: scop->getIslCtx().get(), nparam: 0, dim: LD + 1)); |
| 839 | |
| 840 | InvalidDomainMap[EntryBB] = isl::manage(ptr: isl_set_empty(space: isl_set_get_space(set: S))); |
| 841 | isl::set Domain = isl::manage(ptr: S); |
| 842 | scop->setDomain(BB: EntryBB, Domain); |
| 843 | |
| 844 | if (IsOnlyNonAffineRegion) |
| 845 | return !containsErrorBlock(RN: R->getNode(), R: *R, SD: &SD); |
| 846 | |
| 847 | if (!buildDomainsWithBranchConstraints(R, InvalidDomainMap)) |
| 848 | return false; |
| 849 | |
| 850 | if (!propagateDomainConstraints(R, InvalidDomainMap)) |
| 851 | return false; |
| 852 | |
| 853 | // Error blocks and blocks dominated by them have been assumed to never be |
| 854 | // executed. Representing them in the Scop does not add any value. In fact, |
| 855 | // it is likely to cause issues during construction of the ScopStmts. The |
| 856 | // contents of error blocks have not been verified to be expressible and |
| 857 | // will cause problems when building up a ScopStmt for them. |
| 858 | // Furthermore, basic blocks dominated by error blocks may reference |
| 859 | // instructions in the error block which, if the error block is not modeled, |
| 860 | // can themselves not be constructed properly. To this end we will replace |
| 861 | // the domains of error blocks and those only reachable via error blocks |
| 862 | // with an empty set. Additionally, we will record for each block under which |
| 863 | // parameter combination it would be reached via an error block in its |
| 864 | // InvalidDomain. This information is needed during load hoisting. |
| 865 | if (!propagateInvalidStmtDomains(R, InvalidDomainMap)) |
| 866 | return false; |
| 867 | |
| 868 | return true; |
| 869 | } |
| 870 | |
| 871 | bool ScopBuilder::buildDomainsWithBranchConstraints( |
| 872 | Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 873 | // To create the domain for each block in R we iterate over all blocks and |
| 874 | // subregions in R and propagate the conditions under which the current region |
| 875 | // element is executed. To this end we iterate in reverse post order over R as |
| 876 | // it ensures that we first visit all predecessors of a region node (either a |
| 877 | // basic block or a subregion) before we visit the region node itself. |
| 878 | // Initially, only the domain for the SCoP region entry block is set and from |
| 879 | // there we propagate the current domain to all successors, however we add the |
| 880 | // condition that the successor is actually executed next. |
| 881 | // As we are only interested in non-loop carried constraints here we can |
| 882 | // simply skip loop back edges. |
| 883 | |
| 884 | SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks; |
| 885 | ReversePostOrderTraversal<Region *> RTraversal(R); |
| 886 | for (auto *RN : RTraversal) { |
| 887 | // Recurse for affine subregions but go on for basic blocks and non-affine |
| 888 | // subregions. |
| 889 | if (RN->isSubRegion()) { |
| 890 | Region *SubRegion = RN->getNodeAs<Region>(); |
| 891 | if (!scop->isNonAffineSubRegion(R: SubRegion)) { |
| 892 | if (!buildDomainsWithBranchConstraints(R: SubRegion, InvalidDomainMap)) |
| 893 | return false; |
| 894 | continue; |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | if (containsErrorBlock(RN, R: scop->getRegion(), SD: &SD)) |
| 899 | scop->notifyErrorBlock(); |
| 900 | ; |
| 901 | |
| 902 | BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| 903 | Instruction *TI = BB->getTerminator(); |
| 904 | |
| 905 | if (isa<UnreachableInst>(Val: TI)) |
| 906 | continue; |
| 907 | |
| 908 | if (!scop->isDomainDefined(BB)) |
| 909 | continue; |
| 910 | isl::set Domain = scop->getDomainConditions(BB); |
| 911 | |
| 912 | scop->updateMaxLoopDepth(Depth: unsignedFromIslSize(Size: Domain.tuple_dim())); |
| 913 | |
| 914 | auto *BBLoop = getRegionNodeLoop(RN, LI); |
| 915 | // Propagate the domain from BB directly to blocks that have a superset |
| 916 | // domain, at the moment only region exit nodes of regions that start in BB. |
| 917 | propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks, |
| 918 | InvalidDomainMap); |
| 919 | |
| 920 | // If all successors of BB have been set a domain through the propagation |
| 921 | // above we do not need to build condition sets but can just skip this |
| 922 | // block. However, it is important to note that this is a local property |
| 923 | // with regards to the region @p R. To this end FinishedExitBlocks is a |
| 924 | // local variable. |
| 925 | auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) { |
| 926 | return FinishedExitBlocks.count(Ptr: SuccBB); |
| 927 | }; |
| 928 | if (std::all_of(first: succ_begin(BB), last: succ_end(BB), pred: IsFinishedRegionExit)) |
| 929 | continue; |
| 930 | |
| 931 | // Build the condition sets for the successor nodes of the current region |
| 932 | // node. If it is a non-affine subregion we will always execute the single |
| 933 | // exit node, hence the single entry node domain is the condition set. For |
| 934 | // basic blocks we use the helper function buildConditionSets. |
| 935 | SmallVector<isl_set *, 8> ConditionSets; |
| 936 | if (RN->isSubRegion()) |
| 937 | ConditionSets.push_back(Elt: Domain.copy()); |
| 938 | else if (!buildConditionSets(BB, TI, L: BBLoop, Domain: Domain.get(), InvalidDomainMap, |
| 939 | ConditionSets)) |
| 940 | return false; |
| 941 | |
| 942 | // Now iterate over the successors and set their initial domain based on |
| 943 | // their condition set. We skip back edges here and have to be careful when |
| 944 | // we leave a loop not to keep constraints over a dimension that doesn't |
| 945 | // exist anymore. |
| 946 | assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size()); |
| 947 | for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) { |
| 948 | isl::set CondSet = isl::manage(ptr: ConditionSets[u]); |
| 949 | BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, idx: u); |
| 950 | |
| 951 | // Skip blocks outside the region. |
| 952 | if (!scop->contains(BB: SuccBB)) |
| 953 | continue; |
| 954 | |
| 955 | // If we propagate the domain of some block to "SuccBB" we do not have to |
| 956 | // adjust the domain. |
| 957 | if (FinishedExitBlocks.count(Ptr: SuccBB)) |
| 958 | continue; |
| 959 | |
| 960 | // Skip back edges. |
| 961 | if (DT.dominates(A: SuccBB, B: BB)) |
| 962 | continue; |
| 963 | |
| 964 | Loop *SuccBBLoop = |
| 965 | getFirstNonBoxedLoopFor(BB: SuccBB, LI, BoxedLoops: scop->getBoxedLoops()); |
| 966 | |
| 967 | CondSet = adjustDomainDimensions(Dom: CondSet, OldL: BBLoop, NewL: SuccBBLoop); |
| 968 | |
| 969 | // Set the domain for the successor or merge it with an existing domain in |
| 970 | // case there are multiple paths (without loop back edges) to the |
| 971 | // successor block. |
| 972 | isl::set &SuccDomain = scop->getOrInitEmptyDomain(BB: SuccBB); |
| 973 | |
| 974 | if (!SuccDomain.is_null()) { |
| 975 | SuccDomain = SuccDomain.unite(set2: CondSet).coalesce(); |
| 976 | } else { |
| 977 | // Initialize the invalid domain. |
| 978 | InvalidDomainMap[SuccBB] = CondSet.empty(space: CondSet.get_space()); |
| 979 | SuccDomain = CondSet; |
| 980 | } |
| 981 | |
| 982 | SuccDomain = SuccDomain.detect_equalities(); |
| 983 | |
| 984 | // Check if the maximal number of domain disjunctions was reached. |
| 985 | // In case this happens we will clean up and bail. |
| 986 | if (unsignedFromIslSize(Size: SuccDomain.n_basic_set()) < MaxDisjunctsInDomain) |
| 987 | continue; |
| 988 | |
| 989 | scop->invalidate(Kind: COMPLEXITY, Loc: DebugLoc()); |
| 990 | while (++u < ConditionSets.size()) |
| 991 | isl_set_free(set: ConditionSets[u]); |
| 992 | return false; |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | return true; |
| 997 | } |
| 998 | |
| 999 | bool ScopBuilder::propagateInvalidStmtDomains( |
| 1000 | Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 1001 | ReversePostOrderTraversal<Region *> RTraversal(R); |
| 1002 | for (auto *RN : RTraversal) { |
| 1003 | |
| 1004 | // Recurse for affine subregions but go on for basic blocks and non-affine |
| 1005 | // subregions. |
| 1006 | if (RN->isSubRegion()) { |
| 1007 | Region *SubRegion = RN->getNodeAs<Region>(); |
| 1008 | if (!scop->isNonAffineSubRegion(R: SubRegion)) { |
| 1009 | propagateInvalidStmtDomains(R: SubRegion, InvalidDomainMap); |
| 1010 | continue; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | bool ContainsErrorBlock = containsErrorBlock(RN, R: scop->getRegion(), SD: &SD); |
| 1015 | BasicBlock *BB = getRegionNodeBasicBlock(RN); |
| 1016 | isl::set &Domain = scop->getOrInitEmptyDomain(BB); |
| 1017 | assert(!Domain.is_null() && "Cannot propagate a nullptr" ); |
| 1018 | |
| 1019 | isl::set InvalidDomain = InvalidDomainMap[BB]; |
| 1020 | |
| 1021 | bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(set2: InvalidDomain); |
| 1022 | |
| 1023 | if (!IsInvalidBlock) { |
| 1024 | InvalidDomain = InvalidDomain.intersect(set2: Domain); |
| 1025 | } else { |
| 1026 | InvalidDomain = Domain; |
| 1027 | isl::set DomPar = Domain.params(); |
| 1028 | recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: ERRORBLOCK, Set: DomPar, |
| 1029 | Loc: BB->getTerminator()->getDebugLoc(), Sign: AS_RESTRICTION); |
| 1030 | Domain = isl::set::empty(space: Domain.get_space()); |
| 1031 | } |
| 1032 | |
| 1033 | if (InvalidDomain.is_empty()) { |
| 1034 | InvalidDomainMap[BB] = InvalidDomain; |
| 1035 | continue; |
| 1036 | } |
| 1037 | |
| 1038 | auto *BBLoop = getRegionNodeLoop(RN, LI); |
| 1039 | auto *TI = BB->getTerminator(); |
| 1040 | unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors(); |
| 1041 | for (unsigned u = 0; u < NumSuccs; u++) { |
| 1042 | auto *SuccBB = getRegionNodeSuccessor(RN, TI, idx: u); |
| 1043 | |
| 1044 | // Skip successors outside the SCoP. |
| 1045 | if (!scop->contains(BB: SuccBB)) |
| 1046 | continue; |
| 1047 | |
| 1048 | // Skip backedges. |
| 1049 | if (DT.dominates(A: SuccBB, B: BB)) |
| 1050 | continue; |
| 1051 | |
| 1052 | Loop *SuccBBLoop = |
| 1053 | getFirstNonBoxedLoopFor(BB: SuccBB, LI, BoxedLoops: scop->getBoxedLoops()); |
| 1054 | |
| 1055 | auto AdjustedInvalidDomain = |
| 1056 | adjustDomainDimensions(Dom: InvalidDomain, OldL: BBLoop, NewL: SuccBBLoop); |
| 1057 | |
| 1058 | isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB]; |
| 1059 | SuccInvalidDomain = SuccInvalidDomain.unite(set2: AdjustedInvalidDomain); |
| 1060 | SuccInvalidDomain = SuccInvalidDomain.coalesce(); |
| 1061 | |
| 1062 | InvalidDomainMap[SuccBB] = SuccInvalidDomain; |
| 1063 | |
| 1064 | // Check if the maximal number of domain disjunctions was reached. |
| 1065 | // In case this happens we will bail. |
| 1066 | if (unsignedFromIslSize(Size: SuccInvalidDomain.n_basic_set()) < |
| 1067 | MaxDisjunctsInDomain) |
| 1068 | continue; |
| 1069 | |
| 1070 | InvalidDomainMap.erase(Val: BB); |
| 1071 | scop->invalidate(Kind: COMPLEXITY, Loc: TI->getDebugLoc(), BB: TI->getParent()); |
| 1072 | return false; |
| 1073 | } |
| 1074 | |
| 1075 | InvalidDomainMap[BB] = InvalidDomain; |
| 1076 | } |
| 1077 | |
| 1078 | return true; |
| 1079 | } |
| 1080 | |
| 1081 | void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI, |
| 1082 | Region *NonAffineSubRegion, |
| 1083 | bool IsExitBlock) { |
| 1084 | // PHI nodes that are in the exit block of the region, hence if IsExitBlock is |
| 1085 | // true, are not modeled as ordinary PHI nodes as they are not part of the |
| 1086 | // region. However, we model the operands in the predecessor blocks that are |
| 1087 | // part of the region as regular scalar accesses. |
| 1088 | |
| 1089 | // If we can synthesize a PHI we can skip it, however only if it is in |
| 1090 | // the region. If it is not it can only be in the exit block of the region. |
| 1091 | // In this case we model the operands but not the PHI itself. |
| 1092 | auto *Scope = LI.getLoopFor(BB: PHI->getParent()); |
| 1093 | if (!IsExitBlock && canSynthesize(V: PHI, S: *scop, SE: &SE, Scope)) |
| 1094 | return; |
| 1095 | |
| 1096 | // PHI nodes are modeled as if they had been demoted prior to the SCoP |
| 1097 | // detection. Hence, the PHI is a load of a new memory location in which the |
| 1098 | // incoming value was written at the end of the incoming basic block. |
| 1099 | bool OnlyNonAffineSubRegionOperands = true; |
| 1100 | for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) { |
| 1101 | Value *Op = PHI->getIncomingValue(i: u); |
| 1102 | BasicBlock *OpBB = PHI->getIncomingBlock(i: u); |
| 1103 | ScopStmt *OpStmt = scop->getIncomingStmtFor(U: PHI->getOperandUse(i: u)); |
| 1104 | |
| 1105 | // Do not build PHI dependences inside a non-affine subregion, but make |
| 1106 | // sure that the necessary scalar values are still made available. |
| 1107 | if (NonAffineSubRegion && NonAffineSubRegion->contains(BB: OpBB)) { |
| 1108 | auto *OpInst = dyn_cast<Instruction>(Val: Op); |
| 1109 | if (!OpInst || !NonAffineSubRegion->contains(Inst: OpInst)) |
| 1110 | ensureValueRead(V: Op, UserStmt: OpStmt); |
| 1111 | continue; |
| 1112 | } |
| 1113 | |
| 1114 | OnlyNonAffineSubRegionOperands = false; |
| 1115 | ensurePHIWrite(PHI, IncomintStmt: OpStmt, IncomingBlock: OpBB, IncomingValue: Op, IsExitBlock); |
| 1116 | } |
| 1117 | |
| 1118 | if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) { |
| 1119 | addPHIReadAccess(PHIStmt, PHI); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt, |
| 1124 | Instruction *Inst) { |
| 1125 | assert(!isa<PHINode>(Inst)); |
| 1126 | |
| 1127 | // Pull-in required operands. |
| 1128 | for (Use &Op : Inst->operands()) |
| 1129 | ensureValueRead(V: Op.get(), UserStmt); |
| 1130 | } |
| 1131 | |
| 1132 | // Create a sequence of two schedules. Either argument may be null and is |
| 1133 | // interpreted as the empty schedule. Can also return null if both schedules are |
| 1134 | // empty. |
| 1135 | static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) { |
| 1136 | if (Prev.is_null()) |
| 1137 | return Succ; |
| 1138 | if (Succ.is_null()) |
| 1139 | return Prev; |
| 1140 | |
| 1141 | return Prev.sequence(schedule2: Succ); |
| 1142 | } |
| 1143 | |
| 1144 | // Create an isl_multi_union_aff that defines an identity mapping from the |
| 1145 | // elements of USet to their N-th dimension. |
| 1146 | // |
| 1147 | // # Example: |
| 1148 | // |
| 1149 | // Domain: { A[i,j]; B[i,j,k] } |
| 1150 | // N: 1 |
| 1151 | // |
| 1152 | // Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] } |
| 1153 | // |
| 1154 | // @param USet A union set describing the elements for which to generate a |
| 1155 | // mapping. |
| 1156 | // @param N The dimension to map to. |
| 1157 | // @returns A mapping from USet to its N-th dimension. |
| 1158 | static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, unsigned N) { |
| 1159 | assert(!USet.is_null()); |
| 1160 | assert(!USet.is_empty()); |
| 1161 | |
| 1162 | auto Result = isl::union_pw_multi_aff::empty(space: USet.get_space()); |
| 1163 | |
| 1164 | for (isl::set S : USet.get_set_list()) { |
| 1165 | unsigned Dim = unsignedFromIslSize(Size: S.tuple_dim()); |
| 1166 | assert(Dim >= N); |
| 1167 | auto PMA = isl::pw_multi_aff::project_out_map(space: S.get_space(), type: isl::dim::set, |
| 1168 | first: N, n: Dim - N); |
| 1169 | if (N > 1) |
| 1170 | PMA = PMA.drop_dims(type: isl::dim::out, first: 0, n: N - 1); |
| 1171 | |
| 1172 | Result = Result.add_pw_multi_aff(pma: PMA); |
| 1173 | } |
| 1174 | |
| 1175 | return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result)); |
| 1176 | } |
| 1177 | |
| 1178 | void ScopBuilder::buildSchedule() { |
| 1179 | Loop *L = getLoopSurroundingScop(S&: *scop, LI); |
| 1180 | LoopStackTy LoopStack({LoopStackElementTy(L, {}, 0)}); |
| 1181 | buildSchedule(RN: scop->getRegion().getNode(), LoopStack); |
| 1182 | assert(LoopStack.size() == 1 && LoopStack.back().L == L); |
| 1183 | scop->setScheduleTree(LoopStack[0].Schedule); |
| 1184 | } |
| 1185 | |
| 1186 | /// To generate a schedule for the elements in a Region we traverse the Region |
| 1187 | /// in reverse-post-order and add the contained RegionNodes in traversal order |
| 1188 | /// to the schedule of the loop that is currently at the top of the LoopStack. |
| 1189 | /// For loop-free codes, this results in a correct sequential ordering. |
| 1190 | /// |
| 1191 | /// Example: |
| 1192 | /// bb1(0) |
| 1193 | /// / \. |
| 1194 | /// bb2(1) bb3(2) |
| 1195 | /// \ / \. |
| 1196 | /// bb4(3) bb5(4) |
| 1197 | /// \ / |
| 1198 | /// bb6(5) |
| 1199 | /// |
| 1200 | /// Including loops requires additional processing. Whenever a loop header is |
| 1201 | /// encountered, the corresponding loop is added to the @p LoopStack. Starting |
| 1202 | /// from an empty schedule, we first process all RegionNodes that are within |
| 1203 | /// this loop and complete the sequential schedule at this loop-level before |
| 1204 | /// processing about any other nodes. To implement this |
| 1205 | /// loop-nodes-first-processing, the reverse post-order traversal is |
| 1206 | /// insufficient. Hence, we additionally check if the traversal yields |
| 1207 | /// sub-regions or blocks that are outside the last loop on the @p LoopStack. |
| 1208 | /// These region-nodes are then queue and only traverse after the all nodes |
| 1209 | /// within the current loop have been processed. |
| 1210 | void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) { |
| 1211 | Loop *OuterScopLoop = getLoopSurroundingScop(S&: *scop, LI); |
| 1212 | |
| 1213 | ReversePostOrderTraversal<Region *> RTraversal(R); |
| 1214 | std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end()); |
| 1215 | std::deque<RegionNode *> DelayList; |
| 1216 | bool LastRNWaiting = false; |
| 1217 | |
| 1218 | // Iterate over the region @p R in reverse post-order but queue |
| 1219 | // sub-regions/blocks iff they are not part of the last encountered but not |
| 1220 | // completely traversed loop. The variable LastRNWaiting is a flag to indicate |
| 1221 | // that we queued the last sub-region/block from the reverse post-order |
| 1222 | // iterator. If it is set we have to explore the next sub-region/block from |
| 1223 | // the iterator (if any) to guarantee progress. If it is not set we first try |
| 1224 | // the next queued sub-region/blocks. |
| 1225 | while (!WorkList.empty() || !DelayList.empty()) { |
| 1226 | RegionNode *RN; |
| 1227 | |
| 1228 | if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) { |
| 1229 | RN = WorkList.front(); |
| 1230 | WorkList.pop_front(); |
| 1231 | LastRNWaiting = false; |
| 1232 | } else { |
| 1233 | RN = DelayList.front(); |
| 1234 | DelayList.pop_front(); |
| 1235 | } |
| 1236 | |
| 1237 | Loop *L = getRegionNodeLoop(RN, LI); |
| 1238 | if (!scop->contains(L)) |
| 1239 | L = OuterScopLoop; |
| 1240 | |
| 1241 | Loop *LastLoop = LoopStack.back().L; |
| 1242 | if (LastLoop != L) { |
| 1243 | if (LastLoop && !LastLoop->contains(L)) { |
| 1244 | LastRNWaiting = true; |
| 1245 | DelayList.push_back(x: RN); |
| 1246 | continue; |
| 1247 | } |
| 1248 | LoopStack.push_back(Elt: {L, {}, 0}); |
| 1249 | } |
| 1250 | buildSchedule(RN, LoopStack); |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) { |
| 1255 | if (RN->isSubRegion()) { |
| 1256 | auto *LocalRegion = RN->getNodeAs<Region>(); |
| 1257 | if (!scop->isNonAffineSubRegion(R: LocalRegion)) { |
| 1258 | buildSchedule(R: LocalRegion, LoopStack); |
| 1259 | return; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | assert(LoopStack.rbegin() != LoopStack.rend()); |
| 1264 | auto LoopData = LoopStack.rbegin(); |
| 1265 | LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN); |
| 1266 | |
| 1267 | for (auto *Stmt : scop->getStmtListFor(RN)) { |
| 1268 | isl::union_set UDomain{Stmt->getDomain()}; |
| 1269 | auto StmtSchedule = isl::schedule::from_domain(domain: UDomain); |
| 1270 | LoopData->Schedule = combineInSequence(Prev: LoopData->Schedule, Succ: StmtSchedule); |
| 1271 | } |
| 1272 | |
| 1273 | // Check if we just processed the last node in this loop. If we did, finalize |
| 1274 | // the loop by: |
| 1275 | // |
| 1276 | // - adding new schedule dimensions |
| 1277 | // - folding the resulting schedule into the parent loop schedule |
| 1278 | // - dropping the loop schedule from the LoopStack. |
| 1279 | // |
| 1280 | // Then continue to check surrounding loops, which might also have been |
| 1281 | // completed by this node. |
| 1282 | size_t Dimension = LoopStack.size(); |
| 1283 | while (LoopData->L && |
| 1284 | LoopData->NumBlocksProcessed == getNumBlocksInLoop(L: LoopData->L)) { |
| 1285 | isl::schedule Schedule = LoopData->Schedule; |
| 1286 | auto NumBlocksProcessed = LoopData->NumBlocksProcessed; |
| 1287 | |
| 1288 | assert(std::next(LoopData) != LoopStack.rend()); |
| 1289 | Loop *L = LoopData->L; |
| 1290 | ++LoopData; |
| 1291 | --Dimension; |
| 1292 | |
| 1293 | if (!Schedule.is_null()) { |
| 1294 | isl::union_set Domain = Schedule.get_domain(); |
| 1295 | isl::multi_union_pw_aff MUPA = mapToDimension(USet: Domain, N: Dimension); |
| 1296 | Schedule = Schedule.insert_partial_schedule(partial: MUPA); |
| 1297 | |
| 1298 | if (hasDisableAllTransformsHint(L)) { |
| 1299 | /// If any of the loops has a disable_nonforced heuristic, mark the |
| 1300 | /// entire SCoP as such. The ISL rescheduler can only reschedule the |
| 1301 | /// SCoP in its entirety. |
| 1302 | /// TODO: ScopDetection could avoid including such loops or warp them as |
| 1303 | /// boxed loop. It still needs to pass-through loop with user-defined |
| 1304 | /// metadata. |
| 1305 | scop->markDisableHeuristics(); |
| 1306 | } |
| 1307 | |
| 1308 | // It is easier to insert the marks here that do it retroactively. |
| 1309 | isl::id IslLoopId = createIslLoopAttr(Ctx: scop->getIslCtx(), L); |
| 1310 | if (!IslLoopId.is_null()) |
| 1311 | Schedule = |
| 1312 | Schedule.get_root().child(pos: 0).insert_mark(mark: IslLoopId).get_schedule(); |
| 1313 | |
| 1314 | LoopData->Schedule = combineInSequence(Prev: LoopData->Schedule, Succ: Schedule); |
| 1315 | } |
| 1316 | |
| 1317 | LoopData->NumBlocksProcessed += NumBlocksProcessed; |
| 1318 | } |
| 1319 | // Now pop all loops processed up there from the LoopStack |
| 1320 | LoopStack.erase(CS: LoopStack.begin() + Dimension, CE: LoopStack.end()); |
| 1321 | } |
| 1322 | |
| 1323 | void ScopBuilder::buildEscapingDependences(Instruction *Inst) { |
| 1324 | // Check for uses of this instruction outside the scop. Because we do not |
| 1325 | // iterate over such instructions and therefore did not "ensure" the existence |
| 1326 | // of a write, we must determine such use here. |
| 1327 | if (scop->isEscaping(Inst)) |
| 1328 | ensureValueWrite(Inst); |
| 1329 | } |
| 1330 | |
| 1331 | void ScopBuilder::addRecordedAssumptions() { |
| 1332 | for (auto &AS : llvm::reverse(C&: RecordedAssumptions)) { |
| 1333 | |
| 1334 | if (!AS.BB) { |
| 1335 | scop->addAssumption(Kind: AS.Kind, Set: AS.Set, Loc: AS.Loc, Sign: AS.Sign, |
| 1336 | BB: nullptr /* BasicBlock */, RTC: AS.RequiresRTC); |
| 1337 | continue; |
| 1338 | } |
| 1339 | |
| 1340 | // If the domain was deleted the assumptions are void. |
| 1341 | isl_set *Dom = scop->getDomainConditions(BB: AS.BB).release(); |
| 1342 | if (!Dom) |
| 1343 | continue; |
| 1344 | |
| 1345 | // If a basic block was given use its domain to simplify the assumption. |
| 1346 | // In case of restrictions we know they only have to hold on the domain, |
| 1347 | // thus we can intersect them with the domain of the block. However, for |
| 1348 | // assumptions the domain has to imply them, thus: |
| 1349 | // _ _____ |
| 1350 | // Dom => S <==> A v B <==> A - B |
| 1351 | // |
| 1352 | // To avoid the complement we will register A - B as a restriction not an |
| 1353 | // assumption. |
| 1354 | isl_set *S = AS.Set.copy(); |
| 1355 | if (AS.Sign == AS_RESTRICTION) |
| 1356 | S = isl_set_params(set: isl_set_intersect(set1: S, set2: Dom)); |
| 1357 | else /* (AS.Sign == AS_ASSUMPTION) */ |
| 1358 | S = isl_set_params(set: isl_set_subtract(set1: Dom, set2: S)); |
| 1359 | |
| 1360 | scop->addAssumption(Kind: AS.Kind, Set: isl::manage(ptr: S), Loc: AS.Loc, Sign: AS_RESTRICTION, BB: AS.BB, |
| 1361 | RTC: AS.RequiresRTC); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | void ScopBuilder::addUserAssumptions( |
| 1366 | AssumptionCache &AC, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) { |
| 1367 | for (auto &Assumption : AC.assumptions()) { |
| 1368 | auto *CI = dyn_cast_or_null<CallInst>(Val&: Assumption); |
| 1369 | if (!CI || CI->arg_size() != 1) |
| 1370 | continue; |
| 1371 | |
| 1372 | bool InScop = scop->contains(I: CI); |
| 1373 | if (!InScop && !scop->isDominatedBy(DT, BB: CI->getParent())) |
| 1374 | continue; |
| 1375 | |
| 1376 | auto *L = LI.getLoopFor(BB: CI->getParent()); |
| 1377 | auto *Val = CI->getArgOperand(i: 0); |
| 1378 | ParameterSetTy DetectedParams; |
| 1379 | auto &R = scop->getRegion(); |
| 1380 | if (!isAffineConstraint(V: Val, R: &R, Scope: L, SE, Params&: DetectedParams)) { |
| 1381 | ORE.emit( |
| 1382 | OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption" , CI) |
| 1383 | << "Non-affine user assumption ignored." ); |
| 1384 | continue; |
| 1385 | } |
| 1386 | |
| 1387 | // Collect all newly introduced parameters. |
| 1388 | ParameterSetTy NewParams; |
| 1389 | for (auto *Param : DetectedParams) { |
| 1390 | Param = extractConstantFactor(M: Param, SE).second; |
| 1391 | Param = scop->getRepresentingInvariantLoadSCEV(S: Param); |
| 1392 | if (scop->isParam(Param)) |
| 1393 | continue; |
| 1394 | NewParams.insert(X: Param); |
| 1395 | } |
| 1396 | |
| 1397 | SmallVector<isl_set *, 2> ConditionSets; |
| 1398 | auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr; |
| 1399 | BasicBlock *BB = InScop ? CI->getParent() : R.getEntry(); |
| 1400 | auto *Dom = InScop ? isl_set_copy(set: scop->getDomainConditions(BB).get()) |
| 1401 | : isl_set_copy(set: scop->getContext().get()); |
| 1402 | assert(Dom && "Cannot propagate a nullptr." ); |
| 1403 | bool Valid = buildConditionSets(BB, Condition: Val, TI, L, Domain: Dom, InvalidDomainMap, |
| 1404 | ConditionSets); |
| 1405 | isl_set_free(set: Dom); |
| 1406 | |
| 1407 | if (!Valid) |
| 1408 | continue; |
| 1409 | |
| 1410 | isl_set *AssumptionCtx = nullptr; |
| 1411 | if (InScop) { |
| 1412 | AssumptionCtx = isl_set_complement(set: isl_set_params(set: ConditionSets[1])); |
| 1413 | isl_set_free(set: ConditionSets[0]); |
| 1414 | } else { |
| 1415 | AssumptionCtx = isl_set_complement(set: ConditionSets[1]); |
| 1416 | AssumptionCtx = isl_set_intersect(set1: AssumptionCtx, set2: ConditionSets[0]); |
| 1417 | } |
| 1418 | |
| 1419 | // Project out newly introduced parameters as they are not otherwise useful. |
| 1420 | if (!NewParams.empty()) { |
| 1421 | for (isl_size u = 0; u < isl_set_n_param(set: AssumptionCtx); u++) { |
| 1422 | auto *Id = isl_set_get_dim_id(set: AssumptionCtx, type: isl_dim_param, pos: u); |
| 1423 | auto *Param = static_cast<const SCEV *>(isl_id_get_user(id: Id)); |
| 1424 | isl_id_free(id: Id); |
| 1425 | |
| 1426 | if (!NewParams.count(key: Param)) |
| 1427 | continue; |
| 1428 | |
| 1429 | AssumptionCtx = |
| 1430 | isl_set_project_out(set: AssumptionCtx, type: isl_dim_param, first: u--, n: 1); |
| 1431 | } |
| 1432 | } |
| 1433 | ORE.emit(OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption" , CI) |
| 1434 | << "Use user assumption: " |
| 1435 | << stringFromIslObj(Obj: AssumptionCtx, DefaultValue: "null" )); |
| 1436 | isl::set newContext = |
| 1437 | scop->getContext().intersect(set2: isl::manage(ptr: AssumptionCtx)); |
| 1438 | scop->setContext(newContext); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) { |
| 1443 | // Memory builtins are not considered in this function. |
| 1444 | if (!Inst.isLoad() && !Inst.isStore()) |
| 1445 | return false; |
| 1446 | |
| 1447 | Value *Val = Inst.getValueOperand(); |
| 1448 | Type *ElementType = Val->getType(); |
| 1449 | Value *Address = Inst.getPointerOperand(); |
| 1450 | const SCEV *AccessFunction = |
| 1451 | SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent())); |
| 1452 | const SCEVUnknown *BasePointer = |
| 1453 | dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction)); |
| 1454 | enum MemoryAccess::AccessType AccType = |
| 1455 | isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE; |
| 1456 | |
| 1457 | if (auto *BitCast = dyn_cast<BitCastInst>(Val: Address)) |
| 1458 | Address = BitCast->getOperand(i_nocapture: 0); |
| 1459 | |
| 1460 | auto *GEP = dyn_cast<GetElementPtrInst>(Val: Address); |
| 1461 | if (!GEP || DL.getTypeAllocSize(Ty: GEP->getResultElementType()) != |
| 1462 | DL.getTypeAllocSize(Ty: ElementType)) |
| 1463 | return false; |
| 1464 | |
| 1465 | SmallVector<const SCEV *, 4> Subscripts; |
| 1466 | SmallVector<int, 4> Sizes; |
| 1467 | getIndexExpressionsFromGEP(SE, GEP, Subscripts, Sizes); |
| 1468 | auto *BasePtr = GEP->getOperand(i_nocapture: 0); |
| 1469 | |
| 1470 | if (auto *BasePtrCast = dyn_cast<BitCastInst>(Val: BasePtr)) |
| 1471 | BasePtr = BasePtrCast->getOperand(i_nocapture: 0); |
| 1472 | |
| 1473 | // Check for identical base pointers to ensure that we do not miss index |
| 1474 | // offsets that have been added before this GEP is applied. |
| 1475 | if (BasePtr != BasePointer->getValue()) |
| 1476 | return false; |
| 1477 | |
| 1478 | std::vector<const SCEV *> SizesSCEV; |
| 1479 | |
| 1480 | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
| 1481 | |
| 1482 | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
| 1483 | for (auto *Subscript : Subscripts) { |
| 1484 | InvariantLoadsSetTy AccessILS; |
| 1485 | if (!isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop, Expression: Subscript, SE, |
| 1486 | ILS: &AccessILS)) |
| 1487 | return false; |
| 1488 | |
| 1489 | for (LoadInst *LInst : AccessILS) |
| 1490 | if (!ScopRIL.count(key: LInst)) |
| 1491 | return false; |
| 1492 | } |
| 1493 | |
| 1494 | if (Sizes.empty()) |
| 1495 | return false; |
| 1496 | |
| 1497 | SizesSCEV.push_back(x: nullptr); |
| 1498 | |
| 1499 | for (auto V : Sizes) |
| 1500 | SizesSCEV.push_back(x: SE.getSCEV( |
| 1501 | V: ConstantInt::get(Ty: IntegerType::getInt64Ty(C&: BasePtr->getContext()), V))); |
| 1502 | |
| 1503 | addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType, |
| 1504 | IsAffine: true, Subscripts, Sizes: SizesSCEV, AccessValue: Val); |
| 1505 | return true; |
| 1506 | } |
| 1507 | |
| 1508 | bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) { |
| 1509 | // Memory builtins are not considered by this function. |
| 1510 | if (!Inst.isLoad() && !Inst.isStore()) |
| 1511 | return false; |
| 1512 | |
| 1513 | if (!PollyDelinearize) |
| 1514 | return false; |
| 1515 | |
| 1516 | Value *Address = Inst.getPointerOperand(); |
| 1517 | Value *Val = Inst.getValueOperand(); |
| 1518 | Type *ElementType = Val->getType(); |
| 1519 | unsigned ElementSize = DL.getTypeAllocSize(Ty: ElementType); |
| 1520 | enum MemoryAccess::AccessType AccType = |
| 1521 | isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE; |
| 1522 | |
| 1523 | const SCEV *AccessFunction = |
| 1524 | SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent())); |
| 1525 | const SCEVUnknown *BasePointer = |
| 1526 | dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction)); |
| 1527 | |
| 1528 | assert(BasePointer && "Could not find base pointer" ); |
| 1529 | |
| 1530 | auto &InsnToMemAcc = scop->getInsnToMemAccMap(); |
| 1531 | auto AccItr = InsnToMemAcc.find(x: Inst); |
| 1532 | if (AccItr == InsnToMemAcc.end()) |
| 1533 | return false; |
| 1534 | |
| 1535 | std::vector<const SCEV *> Sizes = {nullptr}; |
| 1536 | |
| 1537 | Sizes.insert(position: Sizes.end(), first: AccItr->second.Shape->DelinearizedSizes.begin(), |
| 1538 | last: AccItr->second.Shape->DelinearizedSizes.end()); |
| 1539 | |
| 1540 | // In case only the element size is contained in the 'Sizes' array, the |
| 1541 | // access does not access a real multi-dimensional array. Hence, we allow |
| 1542 | // the normal single-dimensional access construction to handle this. |
| 1543 | if (Sizes.size() == 1) |
| 1544 | return false; |
| 1545 | |
| 1546 | // Remove the element size. This information is already provided by the |
| 1547 | // ElementSize parameter. In case the element size of this access and the |
| 1548 | // element size used for delinearization differs the delinearization is |
| 1549 | // incorrect. Hence, we invalidate the scop. |
| 1550 | // |
| 1551 | // TODO: Handle delinearization with differing element sizes. |
| 1552 | auto DelinearizedSize = |
| 1553 | cast<SCEVConstant>(Val: Sizes.back())->getAPInt().getSExtValue(); |
| 1554 | Sizes.pop_back(); |
| 1555 | if (ElementSize != DelinearizedSize) |
| 1556 | scop->invalidate(Kind: DELINEARIZATION, Loc: Inst->getDebugLoc(), BB: Inst->getParent()); |
| 1557 | |
| 1558 | addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType, |
| 1559 | IsAffine: true, Subscripts: AccItr->second.DelinearizedSubscripts, Sizes, AccessValue: Val); |
| 1560 | return true; |
| 1561 | } |
| 1562 | |
| 1563 | bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) { |
| 1564 | auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Val&: Inst); |
| 1565 | |
| 1566 | if (MemIntr == nullptr) |
| 1567 | return false; |
| 1568 | |
| 1569 | auto *L = LI.getLoopFor(BB: Inst->getParent()); |
| 1570 | const SCEV *LengthVal = SE.getSCEVAtScope(V: MemIntr->getLength(), L); |
| 1571 | assert(LengthVal); |
| 1572 | |
| 1573 | // Check if the length val is actually affine or if we overapproximate it |
| 1574 | InvariantLoadsSetTy AccessILS; |
| 1575 | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
| 1576 | |
| 1577 | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
| 1578 | bool LengthIsAffine = isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop, |
| 1579 | Expression: LengthVal, SE, ILS: &AccessILS); |
| 1580 | for (LoadInst *LInst : AccessILS) |
| 1581 | if (!ScopRIL.count(key: LInst)) |
| 1582 | LengthIsAffine = false; |
| 1583 | if (!LengthIsAffine) |
| 1584 | LengthVal = nullptr; |
| 1585 | |
| 1586 | auto *DestPtrVal = MemIntr->getDest(); |
| 1587 | assert(DestPtrVal); |
| 1588 | |
| 1589 | const SCEV *DestAccFunc = SE.getSCEVAtScope(V: DestPtrVal, L); |
| 1590 | assert(DestAccFunc); |
| 1591 | // Ignore accesses to "NULL". |
| 1592 | // TODO: We could use this to optimize the region further, e.g., intersect |
| 1593 | // the context with |
| 1594 | // isl_set_complement(isl_set_params(getDomain())) |
| 1595 | // as we know it would be undefined to execute this instruction anyway. |
| 1596 | if (DestAccFunc->isZero()) |
| 1597 | return true; |
| 1598 | |
| 1599 | if (auto *U = dyn_cast<SCEVUnknown>(Val: DestAccFunc)) { |
| 1600 | if (isa<ConstantPointerNull>(Val: U->getValue())) |
| 1601 | return true; |
| 1602 | } |
| 1603 | |
| 1604 | auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: DestAccFunc)); |
| 1605 | assert(DestPtrSCEV); |
| 1606 | DestAccFunc = SE.getMinusSCEV(LHS: DestAccFunc, RHS: DestPtrSCEV); |
| 1607 | addArrayAccess(Stmt, MemAccInst: Inst, AccType: MemoryAccess::MUST_WRITE, BaseAddress: DestPtrSCEV->getValue(), |
| 1608 | ElemType: IntegerType::getInt8Ty(C&: DestPtrVal->getContext()), |
| 1609 | IsAffine: LengthIsAffine, Subscripts: {DestAccFunc, LengthVal}, Sizes: {nullptr}, |
| 1610 | AccessValue: Inst.getValueOperand()); |
| 1611 | |
| 1612 | auto *MemTrans = dyn_cast<MemTransferInst>(Val: MemIntr); |
| 1613 | if (!MemTrans) |
| 1614 | return true; |
| 1615 | |
| 1616 | auto *SrcPtrVal = MemTrans->getSource(); |
| 1617 | assert(SrcPtrVal); |
| 1618 | |
| 1619 | const SCEV *SrcAccFunc = SE.getSCEVAtScope(V: SrcPtrVal, L); |
| 1620 | assert(SrcAccFunc); |
| 1621 | // Ignore accesses to "NULL". |
| 1622 | // TODO: See above TODO |
| 1623 | if (SrcAccFunc->isZero()) |
| 1624 | return true; |
| 1625 | |
| 1626 | auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: SrcAccFunc)); |
| 1627 | assert(SrcPtrSCEV); |
| 1628 | SrcAccFunc = SE.getMinusSCEV(LHS: SrcAccFunc, RHS: SrcPtrSCEV); |
| 1629 | addArrayAccess(Stmt, MemAccInst: Inst, AccType: MemoryAccess::READ, BaseAddress: SrcPtrSCEV->getValue(), |
| 1630 | ElemType: IntegerType::getInt8Ty(C&: SrcPtrVal->getContext()), |
| 1631 | IsAffine: LengthIsAffine, Subscripts: {SrcAccFunc, LengthVal}, Sizes: {nullptr}, |
| 1632 | AccessValue: Inst.getValueOperand()); |
| 1633 | |
| 1634 | return true; |
| 1635 | } |
| 1636 | |
| 1637 | bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) { |
| 1638 | auto *CI = dyn_cast_or_null<CallInst>(Val&: Inst); |
| 1639 | |
| 1640 | if (CI == nullptr) |
| 1641 | return false; |
| 1642 | |
| 1643 | if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(V: CI) || isDebugCall(Inst: CI)) |
| 1644 | return true; |
| 1645 | |
| 1646 | const SCEV *AF = SE.getConstant(Ty: IntegerType::getInt64Ty(C&: CI->getContext()), V: 0); |
| 1647 | auto *CalledFunction = CI->getCalledFunction(); |
| 1648 | MemoryEffects ME = AA.getMemoryEffects(F: CalledFunction); |
| 1649 | if (ME.doesNotAccessMemory()) |
| 1650 | return true; |
| 1651 | |
| 1652 | if (ME.onlyAccessesArgPointees()) { |
| 1653 | ModRefInfo ArgMR = ME.getModRef(Loc: IRMemLocation::ArgMem); |
| 1654 | auto AccType = |
| 1655 | !isModSet(MRI: ArgMR) ? MemoryAccess::READ : MemoryAccess::MAY_WRITE; |
| 1656 | Loop *L = LI.getLoopFor(BB: Inst->getParent()); |
| 1657 | for (const auto &Arg : CI->args()) { |
| 1658 | if (!Arg->getType()->isPointerTy()) |
| 1659 | continue; |
| 1660 | |
| 1661 | const SCEV *ArgSCEV = SE.getSCEVAtScope(V: Arg, L); |
| 1662 | if (ArgSCEV->isZero()) |
| 1663 | continue; |
| 1664 | |
| 1665 | if (auto *U = dyn_cast<SCEVUnknown>(Val: ArgSCEV)) { |
| 1666 | if (isa<ConstantPointerNull>(Val: U->getValue())) |
| 1667 | return true; |
| 1668 | } |
| 1669 | |
| 1670 | auto *ArgBasePtr = cast<SCEVUnknown>(Val: SE.getPointerBase(V: ArgSCEV)); |
| 1671 | addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: ArgBasePtr->getValue(), |
| 1672 | ElemType: ArgBasePtr->getType(), IsAffine: false, Subscripts: {AF}, Sizes: {nullptr}, AccessValue: CI); |
| 1673 | } |
| 1674 | return true; |
| 1675 | } |
| 1676 | |
| 1677 | if (ME.onlyReadsMemory()) { |
| 1678 | GlobalReads.emplace_back(Args&: Stmt, Args&: CI); |
| 1679 | return true; |
| 1680 | } |
| 1681 | return false; |
| 1682 | } |
| 1683 | |
| 1684 | bool ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) { |
| 1685 | // Memory builtins are not considered by this function. |
| 1686 | if (!Inst.isLoad() && !Inst.isStore()) |
| 1687 | return false; |
| 1688 | |
| 1689 | Value *Address = Inst.getPointerOperand(); |
| 1690 | Value *Val = Inst.getValueOperand(); |
| 1691 | Type *ElementType = Val->getType(); |
| 1692 | enum MemoryAccess::AccessType AccType = |
| 1693 | isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE; |
| 1694 | |
| 1695 | const SCEV *AccessFunction = |
| 1696 | SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent())); |
| 1697 | const SCEVUnknown *BasePointer = |
| 1698 | dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction)); |
| 1699 | |
| 1700 | assert(BasePointer && "Could not find base pointer" ); |
| 1701 | AccessFunction = SE.getMinusSCEV(LHS: AccessFunction, RHS: BasePointer); |
| 1702 | |
| 1703 | // Check if the access depends on a loop contained in a non-affine subregion. |
| 1704 | bool isVariantInNonAffineLoop = false; |
| 1705 | SetVector<const Loop *> Loops; |
| 1706 | findLoops(Expr: AccessFunction, Loops); |
| 1707 | for (const Loop *L : Loops) |
| 1708 | if (Stmt->contains(L)) { |
| 1709 | isVariantInNonAffineLoop = true; |
| 1710 | break; |
| 1711 | } |
| 1712 | |
| 1713 | InvariantLoadsSetTy AccessILS; |
| 1714 | |
| 1715 | Loop *SurroundingLoop = Stmt->getSurroundingLoop(); |
| 1716 | bool IsAffine = !isVariantInNonAffineLoop && |
| 1717 | isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop, |
| 1718 | Expression: AccessFunction, SE, ILS: &AccessILS); |
| 1719 | |
| 1720 | const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads(); |
| 1721 | for (LoadInst *LInst : AccessILS) |
| 1722 | if (!ScopRIL.count(key: LInst)) |
| 1723 | IsAffine = false; |
| 1724 | |
| 1725 | if (!IsAffine && AccType == MemoryAccess::MUST_WRITE) |
| 1726 | AccType = MemoryAccess::MAY_WRITE; |
| 1727 | |
| 1728 | addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType, |
| 1729 | IsAffine, Subscripts: {AccessFunction}, Sizes: {nullptr}, AccessValue: Val); |
| 1730 | return true; |
| 1731 | } |
| 1732 | |
| 1733 | void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) { |
| 1734 | if (buildAccessMemIntrinsic(Inst, Stmt)) |
| 1735 | return; |
| 1736 | |
| 1737 | if (buildAccessCallInst(Inst, Stmt)) |
| 1738 | return; |
| 1739 | |
| 1740 | if (buildAccessMultiDimFixed(Inst, Stmt)) |
| 1741 | return; |
| 1742 | |
| 1743 | if (buildAccessMultiDimParam(Inst, Stmt)) |
| 1744 | return; |
| 1745 | |
| 1746 | if (buildAccessSingleDim(Inst, Stmt)) |
| 1747 | return; |
| 1748 | |
| 1749 | llvm_unreachable( |
| 1750 | "At least one of the buildAccess functions must handled this access, or " |
| 1751 | "ScopDetection should have rejected this SCoP" ); |
| 1752 | } |
| 1753 | |
| 1754 | void ScopBuilder::buildAccessFunctions() { |
| 1755 | for (auto &Stmt : *scop) { |
| 1756 | if (Stmt.isBlockStmt()) { |
| 1757 | buildAccessFunctions(Stmt: &Stmt, BB&: *Stmt.getBasicBlock()); |
| 1758 | continue; |
| 1759 | } |
| 1760 | |
| 1761 | Region *R = Stmt.getRegion(); |
| 1762 | for (BasicBlock *BB : R->blocks()) |
| 1763 | buildAccessFunctions(Stmt: &Stmt, BB&: *BB, NonAffineSubRegion: R); |
| 1764 | } |
| 1765 | |
| 1766 | // Build write accesses for values that are used after the SCoP. |
| 1767 | // The instructions defining them might be synthesizable and therefore not |
| 1768 | // contained in any statement, hence we iterate over the original instructions |
| 1769 | // to identify all escaping values. |
| 1770 | for (BasicBlock *BB : scop->getRegion().blocks()) { |
| 1771 | for (Instruction &Inst : *BB) |
| 1772 | buildEscapingDependences(Inst: &Inst); |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) { |
| 1777 | return !Inst->isTerminator() && !isIgnoredIntrinsic(V: Inst) && |
| 1778 | !canSynthesize(V: Inst, S: *scop, SE: &SE, Scope: L); |
| 1779 | } |
| 1780 | |
| 1781 | /// Generate a name for a statement. |
| 1782 | /// |
| 1783 | /// @param BB The basic block the statement will represent. |
| 1784 | /// @param BBIdx The index of the @p BB relative to other BBs/regions. |
| 1785 | /// @param Count The index of the created statement in @p BB. |
| 1786 | /// @param IsMain Whether this is the main of all statement for @p BB. If true, |
| 1787 | /// no suffix will be added. |
| 1788 | /// @param IsLast Uses a special indicator for the last statement of a BB. |
| 1789 | static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count, |
| 1790 | bool IsMain, bool IsLast = false) { |
| 1791 | std::string Suffix; |
| 1792 | if (!IsMain) { |
| 1793 | if (UseInstructionNames) |
| 1794 | Suffix = '_'; |
| 1795 | if (IsLast) |
| 1796 | Suffix += "last" ; |
| 1797 | else if (Count < 26) |
| 1798 | Suffix += 'a' + Count; |
| 1799 | else |
| 1800 | Suffix += std::to_string(val: Count); |
| 1801 | } |
| 1802 | return getIslCompatibleName(Prefix: "Stmt" , Val: BB, Number: BBIdx, Suffix, UseInstructionNames); |
| 1803 | } |
| 1804 | |
| 1805 | /// Generate a name for a statement that represents a non-affine subregion. |
| 1806 | /// |
| 1807 | /// @param R The region the statement will represent. |
| 1808 | /// @param RIdx The index of the @p R relative to other BBs/regions. |
| 1809 | static std::string makeStmtName(Region *R, long RIdx) { |
| 1810 | return getIslCompatibleName(Prefix: "Stmt" , Middle: R->getNameStr(), Number: RIdx, Suffix: "" , |
| 1811 | UseInstructionNames); |
| 1812 | } |
| 1813 | |
| 1814 | void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) { |
| 1815 | Loop *SurroundingLoop = LI.getLoopFor(BB); |
| 1816 | |
| 1817 | int Count = 0; |
| 1818 | long BBIdx = scop->getNextStmtIdx(); |
| 1819 | std::vector<Instruction *> Instructions; |
| 1820 | for (Instruction &Inst : *BB) { |
| 1821 | if (shouldModelInst(Inst: &Inst, L: SurroundingLoop)) |
| 1822 | Instructions.push_back(x: &Inst); |
| 1823 | if (Inst.getMetadata(Kind: "polly_split_after" ) || |
| 1824 | (SplitOnStore && isa<StoreInst>(Val: Inst))) { |
| 1825 | std::string Name = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0); |
| 1826 | scop->addScopStmt(BB, Name, SurroundingLoop, Instructions); |
| 1827 | Count++; |
| 1828 | Instructions.clear(); |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | std::string Name = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0); |
| 1833 | scop->addScopStmt(BB, Name, SurroundingLoop, Instructions); |
| 1834 | } |
| 1835 | |
| 1836 | /// Is @p Inst an ordered instruction? |
| 1837 | /// |
| 1838 | /// An unordered instruction is an instruction, such that a sequence of |
| 1839 | /// unordered instructions can be permuted without changing semantics. Any |
| 1840 | /// instruction for which this is not always the case is ordered. |
| 1841 | static bool isOrderedInstruction(Instruction *Inst) { |
| 1842 | return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory(); |
| 1843 | } |
| 1844 | |
| 1845 | /// Join instructions to the same statement if one uses the scalar result of the |
| 1846 | /// other. |
| 1847 | static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind, |
| 1848 | ArrayRef<Instruction *> ModeledInsts) { |
| 1849 | for (Instruction *Inst : ModeledInsts) { |
| 1850 | if (isa<PHINode>(Val: Inst)) |
| 1851 | continue; |
| 1852 | |
| 1853 | for (Use &Op : Inst->operands()) { |
| 1854 | Instruction *OpInst = dyn_cast<Instruction>(Val: Op.get()); |
| 1855 | if (!OpInst) |
| 1856 | continue; |
| 1857 | |
| 1858 | // Check if OpInst is in the BB and is a modeled instruction. |
| 1859 | if (!UnionFind.contains(V: OpInst)) |
| 1860 | continue; |
| 1861 | |
| 1862 | UnionFind.unionSets(V1: Inst, V2: OpInst); |
| 1863 | } |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | /// Ensure that the order of ordered instructions does not change. |
| 1868 | /// |
| 1869 | /// If we encounter an ordered instruction enclosed in instructions belonging to |
| 1870 | /// a different statement (which might as well contain ordered instructions, but |
| 1871 | /// this is not tested here), join them. |
| 1872 | static void |
| 1873 | joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind, |
| 1874 | ArrayRef<Instruction *> ModeledInsts) { |
| 1875 | SetVector<Instruction *> SeenLeaders; |
| 1876 | for (Instruction *Inst : ModeledInsts) { |
| 1877 | if (!isOrderedInstruction(Inst)) |
| 1878 | continue; |
| 1879 | |
| 1880 | Instruction *Leader = UnionFind.getLeaderValue(V: Inst); |
| 1881 | // Since previous iterations might have merged sets, some items in |
| 1882 | // SeenLeaders are not leaders anymore. However, The new leader of |
| 1883 | // previously merged instructions must be one of the former leaders of |
| 1884 | // these merged instructions. |
| 1885 | bool Inserted = SeenLeaders.insert(X: Leader); |
| 1886 | if (Inserted) |
| 1887 | continue; |
| 1888 | |
| 1889 | // Merge statements to close holes. Say, we have already seen statements A |
| 1890 | // and B, in this order. Then we see an instruction of A again and we would |
| 1891 | // see the pattern "A B A". This function joins all statements until the |
| 1892 | // only seen occurrence of A. |
| 1893 | for (Instruction *Prev : reverse(C&: SeenLeaders)) { |
| 1894 | // We are backtracking from the last element until we see Inst's leader |
| 1895 | // in SeenLeaders and merge all into one set. Although leaders of |
| 1896 | // instructions change during the execution of this loop, it's irrelevant |
| 1897 | // as we are just searching for the element that we already confirmed is |
| 1898 | // in the list. |
| 1899 | if (Prev == Leader) |
| 1900 | break; |
| 1901 | UnionFind.unionSets(V1: Prev, V2: Leader); |
| 1902 | } |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | /// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for |
| 1907 | /// the incoming values from this block are executed after the PHI READ. |
| 1908 | /// |
| 1909 | /// Otherwise it could overwrite the incoming value from before the BB with the |
| 1910 | /// value for the next execution. This can happen if the PHI WRITE is added to |
| 1911 | /// the statement with the instruction that defines the incoming value (instead |
| 1912 | /// of the last statement of the same BB). To ensure that the PHI READ and WRITE |
| 1913 | /// are in order, we put both into the statement. PHI WRITEs are always executed |
| 1914 | /// after PHI READs when they are in the same statement. |
| 1915 | /// |
| 1916 | /// TODO: This is an overpessimization. We only have to ensure that the PHI |
| 1917 | /// WRITE is not put into a statement containing the PHI itself. That could also |
| 1918 | /// be done by |
| 1919 | /// - having all (strongly connected) PHIs in a single statement, |
| 1920 | /// - unite only the PHIs in the operand tree of the PHI WRITE (because it only |
| 1921 | /// has a chance of being lifted before a PHI by being in a statement with a |
| 1922 | /// PHI that comes before in the basic block), or |
| 1923 | /// - when uniting statements, ensure that no (relevant) PHIs are overtaken. |
| 1924 | static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind, |
| 1925 | ArrayRef<Instruction *> ModeledInsts) { |
| 1926 | for (Instruction *Inst : ModeledInsts) { |
| 1927 | PHINode *PHI = dyn_cast<PHINode>(Val: Inst); |
| 1928 | if (!PHI) |
| 1929 | continue; |
| 1930 | |
| 1931 | int Idx = PHI->getBasicBlockIndex(BB: PHI->getParent()); |
| 1932 | if (Idx < 0) |
| 1933 | continue; |
| 1934 | |
| 1935 | Instruction *IncomingVal = |
| 1936 | dyn_cast<Instruction>(Val: PHI->getIncomingValue(i: Idx)); |
| 1937 | if (!IncomingVal) |
| 1938 | continue; |
| 1939 | |
| 1940 | UnionFind.unionSets(V1: PHI, V2: IncomingVal); |
| 1941 | } |
| 1942 | } |
| 1943 | |
| 1944 | void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) { |
| 1945 | Loop *L = LI.getLoopFor(BB); |
| 1946 | |
| 1947 | // Extracting out modeled instructions saves us from checking |
| 1948 | // shouldModelInst() repeatedly. |
| 1949 | SmallVector<Instruction *, 32> ModeledInsts; |
| 1950 | EquivalenceClasses<Instruction *> UnionFind; |
| 1951 | Instruction *MainInst = nullptr, *MainLeader = nullptr; |
| 1952 | for (Instruction &Inst : *BB) { |
| 1953 | if (!shouldModelInst(Inst: &Inst, L)) |
| 1954 | continue; |
| 1955 | ModeledInsts.push_back(Elt: &Inst); |
| 1956 | UnionFind.insert(Data: &Inst); |
| 1957 | |
| 1958 | // When a BB is split into multiple statements, the main statement is the |
| 1959 | // one containing the 'main' instruction. We select the first instruction |
| 1960 | // that is unlikely to be removed (because it has side-effects) as the main |
| 1961 | // one. It is used to ensure that at least one statement from the bb has the |
| 1962 | // same name as with -polly-stmt-granularity=bb. |
| 1963 | if (!MainInst && (isa<StoreInst>(Val: Inst) || |
| 1964 | (isa<CallInst>(Val: Inst) && !isa<IntrinsicInst>(Val: Inst)))) |
| 1965 | MainInst = &Inst; |
| 1966 | } |
| 1967 | |
| 1968 | joinOperandTree(UnionFind, ModeledInsts); |
| 1969 | joinOrderedInstructions(UnionFind, ModeledInsts); |
| 1970 | joinOrderedPHIs(UnionFind, ModeledInsts); |
| 1971 | |
| 1972 | // The list of instructions for statement (statement represented by the leader |
| 1973 | // instruction). |
| 1974 | MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList; |
| 1975 | |
| 1976 | // The order of statements must be preserved w.r.t. their ordered |
| 1977 | // instructions. Without this explicit scan, we would also use non-ordered |
| 1978 | // instructions (whose order is arbitrary) to determine statement order. |
| 1979 | for (Instruction *Inst : ModeledInsts) { |
| 1980 | if (!isOrderedInstruction(Inst)) |
| 1981 | continue; |
| 1982 | |
| 1983 | auto LeaderIt = UnionFind.findLeader(V: Inst); |
| 1984 | if (LeaderIt == UnionFind.member_end()) |
| 1985 | continue; |
| 1986 | |
| 1987 | // Insert element for the leader instruction. |
| 1988 | (void)LeaderToInstList[*LeaderIt]; |
| 1989 | } |
| 1990 | |
| 1991 | // Collect the instructions of all leaders. UnionFind's member iterator |
| 1992 | // unfortunately are not in any specific order. |
| 1993 | for (Instruction *Inst : ModeledInsts) { |
| 1994 | auto LeaderIt = UnionFind.findLeader(V: Inst); |
| 1995 | if (LeaderIt == UnionFind.member_end()) |
| 1996 | continue; |
| 1997 | |
| 1998 | if (Inst == MainInst) |
| 1999 | MainLeader = *LeaderIt; |
| 2000 | std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt]; |
| 2001 | InstList.push_back(x: Inst); |
| 2002 | } |
| 2003 | |
| 2004 | // Finally build the statements. |
| 2005 | int Count = 0; |
| 2006 | long BBIdx = scop->getNextStmtIdx(); |
| 2007 | for (auto &Instructions : LeaderToInstList) { |
| 2008 | std::vector<Instruction *> &InstList = Instructions.second; |
| 2009 | |
| 2010 | // If there is no main instruction, make the first statement the main. |
| 2011 | bool IsMain = (MainInst ? MainLeader == Instructions.first : Count == 0); |
| 2012 | |
| 2013 | std::string Name = makeStmtName(BB, BBIdx, Count, IsMain); |
| 2014 | scop->addScopStmt(BB, Name, SurroundingLoop: L, Instructions: std::move(InstList)); |
| 2015 | Count += 1; |
| 2016 | } |
| 2017 | |
| 2018 | // Unconditionally add an epilogue (last statement). It contains no |
| 2019 | // instructions, but holds the PHI write accesses for successor basic blocks, |
| 2020 | // if the incoming value is not defined in another statement if the same BB. |
| 2021 | // The epilogue becomes the main statement only if there is no other |
| 2022 | // statement that could become main. |
| 2023 | // The epilogue will be removed if no PHIWrite is added to it. |
| 2024 | std::string EpilogueName = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0, IsLast: true); |
| 2025 | scop->addScopStmt(BB, Name: EpilogueName, SurroundingLoop: L, Instructions: {}); |
| 2026 | } |
| 2027 | |
| 2028 | void ScopBuilder::buildStmts(Region &SR) { |
| 2029 | if (scop->isNonAffineSubRegion(R: &SR)) { |
| 2030 | std::vector<Instruction *> Instructions; |
| 2031 | Loop *SurroundingLoop = |
| 2032 | getFirstNonBoxedLoopFor(BB: SR.getEntry(), LI, BoxedLoops: scop->getBoxedLoops()); |
| 2033 | for (Instruction &Inst : *SR.getEntry()) |
| 2034 | if (shouldModelInst(Inst: &Inst, L: SurroundingLoop)) |
| 2035 | Instructions.push_back(x: &Inst); |
| 2036 | long RIdx = scop->getNextStmtIdx(); |
| 2037 | std::string Name = makeStmtName(R: &SR, RIdx); |
| 2038 | scop->addScopStmt(R: &SR, Name, SurroundingLoop, EntryBlockInstructions: Instructions); |
| 2039 | return; |
| 2040 | } |
| 2041 | |
| 2042 | for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I) |
| 2043 | if (I->isSubRegion()) |
| 2044 | buildStmts(SR&: *I->getNodeAs<Region>()); |
| 2045 | else { |
| 2046 | BasicBlock *BB = I->getNodeAs<BasicBlock>(); |
| 2047 | switch (StmtGranularity) { |
| 2048 | case GranularityChoice::BasicBlocks: |
| 2049 | buildSequentialBlockStmts(BB); |
| 2050 | break; |
| 2051 | case GranularityChoice::ScalarIndependence: |
| 2052 | buildEqivClassBlockStmts(BB); |
| 2053 | break; |
| 2054 | case GranularityChoice::Stores: |
| 2055 | buildSequentialBlockStmts(BB, SplitOnStore: true); |
| 2056 | break; |
| 2057 | } |
| 2058 | } |
| 2059 | } |
| 2060 | |
| 2061 | void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB, |
| 2062 | Region *NonAffineSubRegion) { |
| 2063 | assert( |
| 2064 | Stmt && |
| 2065 | "The exit BB is the only one that cannot be represented by a statement" ); |
| 2066 | assert(Stmt->represents(&BB)); |
| 2067 | |
| 2068 | // We do not build access functions for error blocks, as they may contain |
| 2069 | // instructions we can not model. |
| 2070 | if (SD.isErrorBlock(BB, R: scop->getRegion())) |
| 2071 | return; |
| 2072 | |
| 2073 | auto BuildAccessesForInst = [this, Stmt, |
| 2074 | NonAffineSubRegion](Instruction *Inst) { |
| 2075 | PHINode *PHI = dyn_cast<PHINode>(Val: Inst); |
| 2076 | if (PHI) |
| 2077 | buildPHIAccesses(PHIStmt: Stmt, PHI, NonAffineSubRegion, IsExitBlock: false); |
| 2078 | |
| 2079 | if (auto MemInst = MemAccInst::dyn_cast(V&: *Inst)) { |
| 2080 | assert(Stmt && "Cannot build access function in non-existing statement" ); |
| 2081 | buildMemoryAccess(Inst: MemInst, Stmt); |
| 2082 | } |
| 2083 | |
| 2084 | // PHI nodes have already been modeled above and terminators that are |
| 2085 | // not part of a non-affine subregion are fully modeled and regenerated |
| 2086 | // from the polyhedral domains. Hence, they do not need to be modeled as |
| 2087 | // explicit data dependences. |
| 2088 | if (!PHI) |
| 2089 | buildScalarDependences(UserStmt: Stmt, Inst); |
| 2090 | }; |
| 2091 | |
| 2092 | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
| 2093 | bool IsEntryBlock = (Stmt->getEntryBlock() == &BB); |
| 2094 | if (IsEntryBlock) { |
| 2095 | for (Instruction *Inst : Stmt->getInstructions()) |
| 2096 | BuildAccessesForInst(Inst); |
| 2097 | if (Stmt->isRegionStmt()) |
| 2098 | BuildAccessesForInst(BB.getTerminator()); |
| 2099 | } else { |
| 2100 | for (Instruction &Inst : BB) { |
| 2101 | if (isIgnoredIntrinsic(V: &Inst)) |
| 2102 | continue; |
| 2103 | |
| 2104 | // Invariant loads already have been processed. |
| 2105 | if (isa<LoadInst>(Val: Inst) && RIL.count(key: cast<LoadInst>(Val: &Inst))) |
| 2106 | continue; |
| 2107 | |
| 2108 | BuildAccessesForInst(&Inst); |
| 2109 | } |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | MemoryAccess *ScopBuilder::addMemoryAccess( |
| 2114 | ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType, |
| 2115 | Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue, |
| 2116 | ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes, |
| 2117 | MemoryKind Kind) { |
| 2118 | bool isKnownMustAccess = false; |
| 2119 | |
| 2120 | // Accesses in single-basic block statements are always executed. |
| 2121 | if (Stmt->isBlockStmt()) |
| 2122 | isKnownMustAccess = true; |
| 2123 | |
| 2124 | if (Stmt->isRegionStmt()) { |
| 2125 | // Accesses that dominate the exit block of a non-affine region are always |
| 2126 | // executed. In non-affine regions there may exist MemoryKind::Values that |
| 2127 | // do not dominate the exit. MemoryKind::Values will always dominate the |
| 2128 | // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the |
| 2129 | // non-affine region. |
| 2130 | if (Inst && DT.dominates(A: Inst->getParent(), B: Stmt->getRegion()->getExit())) |
| 2131 | isKnownMustAccess = true; |
| 2132 | } |
| 2133 | |
| 2134 | // Non-affine PHI writes do not "happen" at a particular instruction, but |
| 2135 | // after exiting the statement. Therefore they are guaranteed to execute and |
| 2136 | // overwrite the old value. |
| 2137 | if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI) |
| 2138 | isKnownMustAccess = true; |
| 2139 | |
| 2140 | if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE) |
| 2141 | AccType = MemoryAccess::MAY_WRITE; |
| 2142 | |
| 2143 | auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType, |
| 2144 | Affine, Subscripts, Sizes, AccessValue, Kind); |
| 2145 | |
| 2146 | scop->addAccessFunction(Access); |
| 2147 | Stmt->addAccess(Access); |
| 2148 | return Access; |
| 2149 | } |
| 2150 | |
| 2151 | void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst, |
| 2152 | MemoryAccess::AccessType AccType, |
| 2153 | Value *BaseAddress, Type *ElementType, |
| 2154 | bool IsAffine, |
| 2155 | ArrayRef<const SCEV *> Subscripts, |
| 2156 | ArrayRef<const SCEV *> Sizes, |
| 2157 | Value *AccessValue) { |
| 2158 | ArrayBasePointers.insert(X: BaseAddress); |
| 2159 | addMemoryAccess(Stmt, Inst: MemAccInst, AccType, BaseAddress, ElementType, Affine: IsAffine, |
| 2160 | AccessValue, Subscripts, Sizes, Kind: MemoryKind::Array); |
| 2161 | } |
| 2162 | |
| 2163 | /// Check if @p Expr is divisible by @p Size. |
| 2164 | static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) { |
| 2165 | assert(Size != 0); |
| 2166 | if (Size == 1) |
| 2167 | return true; |
| 2168 | |
| 2169 | // Only one factor needs to be divisible. |
| 2170 | if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Val: Expr)) { |
| 2171 | for (const SCEV *FactorExpr : MulExpr->operands()) |
| 2172 | if (isDivisible(Expr: FactorExpr, Size, SE)) |
| 2173 | return true; |
| 2174 | return false; |
| 2175 | } |
| 2176 | |
| 2177 | // For other n-ary expressions (Add, AddRec, Max,...) all operands need |
| 2178 | // to be divisible. |
| 2179 | if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Val: Expr)) { |
| 2180 | for (const SCEV *OpExpr : NAryExpr->operands()) |
| 2181 | if (!isDivisible(Expr: OpExpr, Size, SE)) |
| 2182 | return false; |
| 2183 | return true; |
| 2184 | } |
| 2185 | |
| 2186 | const SCEV *SizeSCEV = SE.getConstant(Ty: Expr->getType(), V: Size); |
| 2187 | const SCEV *UDivSCEV = SE.getUDivExpr(LHS: Expr, RHS: SizeSCEV); |
| 2188 | const SCEV *MulSCEV = SE.getMulExpr(LHS: UDivSCEV, RHS: SizeSCEV); |
| 2189 | return MulSCEV == Expr; |
| 2190 | } |
| 2191 | |
| 2192 | void ScopBuilder::foldSizeConstantsToRight() { |
| 2193 | isl::union_set Accessed = scop->getAccesses().range(); |
| 2194 | |
| 2195 | for (auto Array : scop->arrays()) { |
| 2196 | if (Array->getNumberOfDimensions() <= 1) |
| 2197 | continue; |
| 2198 | |
| 2199 | isl::space Space = Array->getSpace(); |
| 2200 | Space = Space.align_params(space2: Accessed.get_space()); |
| 2201 | |
| 2202 | if (!Accessed.contains(space: Space)) |
| 2203 | continue; |
| 2204 | |
| 2205 | isl::set Elements = Accessed.extract_set(space: Space); |
| 2206 | isl::map Transform = isl::map::universe(space: Array->getSpace().map_from_set()); |
| 2207 | |
| 2208 | std::vector<int> Int; |
| 2209 | unsigned Dims = unsignedFromIslSize(Size: Elements.tuple_dim()); |
| 2210 | for (unsigned i = 0; i < Dims; i++) { |
| 2211 | isl::set DimOnly = isl::set(Elements).project_out(type: isl::dim::set, first: 0, n: i); |
| 2212 | DimOnly = DimOnly.project_out(type: isl::dim::set, first: 1, n: Dims - i - 1); |
| 2213 | DimOnly = DimOnly.lower_bound_si(type: isl::dim::set, pos: 0, value: 0); |
| 2214 | |
| 2215 | isl::basic_set DimHull = DimOnly.affine_hull(); |
| 2216 | |
| 2217 | if (i == Dims - 1) { |
| 2218 | Int.push_back(x: 1); |
| 2219 | Transform = Transform.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
| 2220 | continue; |
| 2221 | } |
| 2222 | |
| 2223 | if (unsignedFromIslSize(Size: DimHull.dim(type: isl::dim::div)) == 1) { |
| 2224 | isl::aff Diff = DimHull.get_div(pos: 0); |
| 2225 | isl::val Val = Diff.get_denominator_val(); |
| 2226 | |
| 2227 | int ValInt = 1; |
| 2228 | if (Val.is_int()) { |
| 2229 | auto ValAPInt = APIntFromVal(V: Val); |
| 2230 | if (ValAPInt.isSignedIntN(N: 32)) |
| 2231 | ValInt = ValAPInt.getSExtValue(); |
| 2232 | } else { |
| 2233 | } |
| 2234 | |
| 2235 | Int.push_back(x: ValInt); |
| 2236 | isl::constraint C = isl::constraint::alloc_equality( |
| 2237 | ls: isl::local_space(Transform.get_space())); |
| 2238 | C = C.set_coefficient_si(type: isl::dim::out, pos: i, v: ValInt); |
| 2239 | C = C.set_coefficient_si(type: isl::dim::in, pos: i, v: -1); |
| 2240 | Transform = Transform.add_constraint(constraint: C); |
| 2241 | continue; |
| 2242 | } |
| 2243 | |
| 2244 | isl::basic_set ZeroSet = isl::basic_set(DimHull); |
| 2245 | ZeroSet = ZeroSet.fix_si(type: isl::dim::set, pos: 0, value: 0); |
| 2246 | |
| 2247 | int ValInt = 1; |
| 2248 | if (ZeroSet.is_equal(bset2: DimHull)) { |
| 2249 | ValInt = 0; |
| 2250 | } |
| 2251 | |
| 2252 | Int.push_back(x: ValInt); |
| 2253 | Transform = Transform.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i); |
| 2254 | } |
| 2255 | |
| 2256 | isl::set MappedElements = isl::map(Transform).domain(); |
| 2257 | if (!Elements.is_subset(set2: MappedElements)) |
| 2258 | continue; |
| 2259 | |
| 2260 | bool CanFold = true; |
| 2261 | if (Int[0] <= 1) |
| 2262 | CanFold = false; |
| 2263 | |
| 2264 | unsigned NumDims = Array->getNumberOfDimensions(); |
| 2265 | for (unsigned i = 1; i < NumDims - 1; i++) |
| 2266 | if (Int[0] != Int[i] && Int[i]) |
| 2267 | CanFold = false; |
| 2268 | |
| 2269 | if (!CanFold) |
| 2270 | continue; |
| 2271 | |
| 2272 | for (auto &Access : scop->access_functions()) |
| 2273 | if (Access->getScopArrayInfo() == Array) |
| 2274 | Access->setAccessRelation( |
| 2275 | Access->getAccessRelation().apply_range(map2: Transform)); |
| 2276 | |
| 2277 | std::vector<const SCEV *> Sizes; |
| 2278 | for (unsigned i = 0; i < NumDims; i++) { |
| 2279 | auto Size = Array->getDimensionSize(Dim: i); |
| 2280 | |
| 2281 | if (i == NumDims - 1) |
| 2282 | Size = SE.getMulExpr(LHS: Size, RHS: SE.getConstant(Ty: Size->getType(), V: Int[0])); |
| 2283 | Sizes.push_back(x: Size); |
| 2284 | } |
| 2285 | |
| 2286 | Array->updateSizes(Sizes, CheckConsistency: false /* CheckConsistency */); |
| 2287 | } |
| 2288 | } |
| 2289 | |
| 2290 | void ScopBuilder::finalizeAccesses() { |
| 2291 | updateAccessDimensionality(); |
| 2292 | foldSizeConstantsToRight(); |
| 2293 | foldAccessRelations(); |
| 2294 | assumeNoOutOfBounds(); |
| 2295 | } |
| 2296 | |
| 2297 | void ScopBuilder::updateAccessDimensionality() { |
| 2298 | // Check all array accesses for each base pointer and find a (virtual) element |
| 2299 | // size for the base pointer that divides all access functions. |
| 2300 | for (ScopStmt &Stmt : *scop) |
| 2301 | for (MemoryAccess *Access : Stmt) { |
| 2302 | if (!Access->isArrayKind()) |
| 2303 | continue; |
| 2304 | ScopArrayInfo *Array = |
| 2305 | const_cast<ScopArrayInfo *>(Access->getScopArrayInfo()); |
| 2306 | |
| 2307 | if (Array->getNumberOfDimensions() != 1) |
| 2308 | continue; |
| 2309 | unsigned DivisibleSize = Array->getElemSizeInBytes(); |
| 2310 | const SCEV *Subscript = Access->getSubscript(Dim: 0); |
| 2311 | while (!isDivisible(Expr: Subscript, Size: DivisibleSize, SE)) |
| 2312 | DivisibleSize /= 2; |
| 2313 | auto *Ty = IntegerType::get(C&: SE.getContext(), NumBits: DivisibleSize * 8); |
| 2314 | Array->updateElementType(NewElementType: Ty); |
| 2315 | } |
| 2316 | |
| 2317 | for (auto &Stmt : *scop) |
| 2318 | for (auto &Access : Stmt) |
| 2319 | Access->updateDimensionality(); |
| 2320 | } |
| 2321 | |
| 2322 | void ScopBuilder::foldAccessRelations() { |
| 2323 | for (auto &Stmt : *scop) |
| 2324 | for (auto &Access : Stmt) |
| 2325 | Access->foldAccessRelation(); |
| 2326 | } |
| 2327 | |
| 2328 | void ScopBuilder::assumeNoOutOfBounds() { |
| 2329 | if (PollyIgnoreInbounds) |
| 2330 | return; |
| 2331 | for (auto &Stmt : *scop) |
| 2332 | for (auto &Access : Stmt) { |
| 2333 | isl::set Outside = Access->assumeNoOutOfBound(); |
| 2334 | const auto &Loc = Access->getAccessInstruction() |
| 2335 | ? Access->getAccessInstruction()->getDebugLoc() |
| 2336 | : DebugLoc(); |
| 2337 | recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: INBOUNDS, Set: Outside, Loc, |
| 2338 | Sign: AS_ASSUMPTION); |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | void ScopBuilder::ensureValueWrite(Instruction *Inst) { |
| 2343 | // Find the statement that defines the value of Inst. That statement has to |
| 2344 | // write the value to make it available to those statements that read it. |
| 2345 | ScopStmt *Stmt = scop->getStmtFor(Inst); |
| 2346 | |
| 2347 | // It is possible that the value is synthesizable within a loop (such that it |
| 2348 | // is not part of any statement), but not after the loop (where you need the |
| 2349 | // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will |
| 2350 | // avoid this. In case the IR has no such PHI, use the last statement (where |
| 2351 | // the value is synthesizable) to write the value. |
| 2352 | if (!Stmt) |
| 2353 | Stmt = scop->getLastStmtFor(BB: Inst->getParent()); |
| 2354 | |
| 2355 | // Inst not defined within this SCoP. |
| 2356 | if (!Stmt) |
| 2357 | return; |
| 2358 | |
| 2359 | // Do not process further if the instruction is already written. |
| 2360 | if (Stmt->lookupValueWriteOf(Inst)) |
| 2361 | return; |
| 2362 | |
| 2363 | addMemoryAccess(Stmt, Inst, AccType: MemoryAccess::MUST_WRITE, BaseAddress: Inst, ElementType: Inst->getType(), |
| 2364 | Affine: true, AccessValue: Inst, Subscripts: ArrayRef<const SCEV *>(), |
| 2365 | Sizes: ArrayRef<const SCEV *>(), Kind: MemoryKind::Value); |
| 2366 | } |
| 2367 | |
| 2368 | void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) { |
| 2369 | // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality |
| 2370 | // to be able to replace this one. Currently, there is a split responsibility. |
| 2371 | // In a first step, the MemoryAccess is created, but without the |
| 2372 | // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the |
| 2373 | // AccessRelation is created. At least for scalar accesses, there is no new |
| 2374 | // information available at ScopStmt::buildAccessRelations(), so we could |
| 2375 | // create the AccessRelation right away. This is what |
| 2376 | // ScopStmt::ensureValueRead(Value*) does. |
| 2377 | |
| 2378 | auto *Scope = UserStmt->getSurroundingLoop(); |
| 2379 | auto VUse = VirtualUse::create(S: scop.get(), UserStmt, UserScope: Scope, Val: V, Virtual: false); |
| 2380 | switch (VUse.getKind()) { |
| 2381 | case VirtualUse::Constant: |
| 2382 | case VirtualUse::Block: |
| 2383 | case VirtualUse::Synthesizable: |
| 2384 | case VirtualUse::Hoisted: |
| 2385 | case VirtualUse::Intra: |
| 2386 | // Uses of these kinds do not need a MemoryAccess. |
| 2387 | break; |
| 2388 | |
| 2389 | case VirtualUse::ReadOnly: |
| 2390 | // Add MemoryAccess for invariant values only if requested. |
| 2391 | if (!ModelReadOnlyScalars) |
| 2392 | break; |
| 2393 | |
| 2394 | [[fallthrough]]; |
| 2395 | case VirtualUse::Inter: |
| 2396 | |
| 2397 | // Do not create another MemoryAccess for reloading the value if one already |
| 2398 | // exists. |
| 2399 | if (UserStmt->lookupValueReadOf(Inst: V)) |
| 2400 | break; |
| 2401 | |
| 2402 | addMemoryAccess(Stmt: UserStmt, Inst: nullptr, AccType: MemoryAccess::READ, BaseAddress: V, ElementType: V->getType(), |
| 2403 | Affine: true, AccessValue: V, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(), |
| 2404 | Kind: MemoryKind::Value); |
| 2405 | |
| 2406 | // Inter-statement uses need to write the value in their defining statement. |
| 2407 | if (VUse.isInter()) |
| 2408 | ensureValueWrite(Inst: cast<Instruction>(Val: V)); |
| 2409 | break; |
| 2410 | } |
| 2411 | } |
| 2412 | |
| 2413 | void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt, |
| 2414 | BasicBlock *IncomingBlock, |
| 2415 | Value *IncomingValue, bool IsExitBlock) { |
| 2416 | // As the incoming block might turn out to be an error statement ensure we |
| 2417 | // will create an exit PHI SAI object. It is needed during code generation |
| 2418 | // and would be created later anyway. |
| 2419 | if (IsExitBlock) |
| 2420 | scop->getOrCreateScopArrayInfo(BasePtr: PHI, ElementType: PHI->getType(), Sizes: {}, |
| 2421 | Kind: MemoryKind::ExitPHI); |
| 2422 | |
| 2423 | // This is possible if PHI is in the SCoP's entry block. The incoming blocks |
| 2424 | // from outside the SCoP's region have no statement representation. |
| 2425 | if (!IncomingStmt) |
| 2426 | return; |
| 2427 | |
| 2428 | // Take care for the incoming value being available in the incoming block. |
| 2429 | // This must be done before the check for multiple PHI writes because multiple |
| 2430 | // exiting edges from subregion each can be the effective written value of the |
| 2431 | // subregion. As such, all of them must be made available in the subregion |
| 2432 | // statement. |
| 2433 | ensureValueRead(V: IncomingValue, UserStmt: IncomingStmt); |
| 2434 | |
| 2435 | // Do not add more than one MemoryAccess per PHINode and ScopStmt. |
| 2436 | if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) { |
| 2437 | assert(Acc->getAccessInstruction() == PHI); |
| 2438 | Acc->addIncoming(IncomingBlock, IncomingValue); |
| 2439 | return; |
| 2440 | } |
| 2441 | |
| 2442 | MemoryAccess *Acc = addMemoryAccess( |
| 2443 | Stmt: IncomingStmt, Inst: PHI, AccType: MemoryAccess::MUST_WRITE, BaseAddress: PHI, ElementType: PHI->getType(), Affine: true, |
| 2444 | AccessValue: PHI, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(), |
| 2445 | Kind: IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI); |
| 2446 | assert(Acc); |
| 2447 | Acc->addIncoming(IncomingBlock, IncomingValue); |
| 2448 | } |
| 2449 | |
| 2450 | void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) { |
| 2451 | addMemoryAccess(Stmt: PHIStmt, Inst: PHI, AccType: MemoryAccess::READ, BaseAddress: PHI, ElementType: PHI->getType(), Affine: true, |
| 2452 | AccessValue: PHI, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(), |
| 2453 | Kind: MemoryKind::PHI); |
| 2454 | } |
| 2455 | |
| 2456 | void ScopBuilder::buildDomain(ScopStmt &Stmt) { |
| 2457 | isl::id Id = isl::id::alloc(ctx: scop->getIslCtx(), name: Stmt.getBaseName(), user: &Stmt); |
| 2458 | |
| 2459 | Stmt.Domain = scop->getDomainConditions(Stmt: &Stmt); |
| 2460 | Stmt.Domain = Stmt.Domain.set_tuple_id(Id); |
| 2461 | } |
| 2462 | |
| 2463 | void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) { |
| 2464 | isl::set Domain = Stmt.getDomain(); |
| 2465 | BasicBlock *BB = Stmt.getEntryBlock(); |
| 2466 | |
| 2467 | Loop *L = LI.getLoopFor(BB); |
| 2468 | |
| 2469 | while (L && Stmt.isRegionStmt() && Stmt.getRegion()->contains(L)) |
| 2470 | L = L->getParentLoop(); |
| 2471 | |
| 2472 | SmallVector<llvm::Loop *, 8> Loops; |
| 2473 | |
| 2474 | while (L && Stmt.getParent()->getRegion().contains(L)) { |
| 2475 | Loops.push_back(Elt: L); |
| 2476 | L = L->getParentLoop(); |
| 2477 | } |
| 2478 | |
| 2479 | Stmt.NestLoops.insert(I: Stmt.NestLoops.begin(), From: Loops.rbegin(), To: Loops.rend()); |
| 2480 | } |
| 2481 | |
| 2482 | /// Return the reduction type for a given binary operator. |
| 2483 | static MemoryAccess::ReductionType |
| 2484 | getReductionType(const BinaryOperator *BinOp) { |
| 2485 | if (!BinOp) |
| 2486 | return MemoryAccess::RT_NONE; |
| 2487 | switch (BinOp->getOpcode()) { |
| 2488 | case Instruction::FAdd: |
| 2489 | if (!BinOp->isFast()) |
| 2490 | return MemoryAccess::RT_NONE; |
| 2491 | [[fallthrough]]; |
| 2492 | case Instruction::Add: |
| 2493 | return MemoryAccess::RT_ADD; |
| 2494 | case Instruction::Or: |
| 2495 | return MemoryAccess::RT_BOR; |
| 2496 | case Instruction::Xor: |
| 2497 | return MemoryAccess::RT_BXOR; |
| 2498 | case Instruction::And: |
| 2499 | return MemoryAccess::RT_BAND; |
| 2500 | case Instruction::FMul: |
| 2501 | if (!BinOp->isFast()) |
| 2502 | return MemoryAccess::RT_NONE; |
| 2503 | [[fallthrough]]; |
| 2504 | case Instruction::Mul: |
| 2505 | if (DisableMultiplicativeReductions) |
| 2506 | return MemoryAccess::RT_NONE; |
| 2507 | return MemoryAccess::RT_MUL; |
| 2508 | default: |
| 2509 | return MemoryAccess::RT_NONE; |
| 2510 | } |
| 2511 | } |
| 2512 | |
| 2513 | /// @brief Combine two reduction types |
| 2514 | static MemoryAccess::ReductionType |
| 2515 | combineReductionType(MemoryAccess::ReductionType RT0, |
| 2516 | MemoryAccess::ReductionType RT1) { |
| 2517 | if (RT0 == MemoryAccess::RT_BOTTOM) |
| 2518 | return RT1; |
| 2519 | if (RT0 == RT1) |
| 2520 | return RT1; |
| 2521 | return MemoryAccess::RT_NONE; |
| 2522 | } |
| 2523 | |
| 2524 | /// True if @p AllAccs intersects with @p MemAccs except @p LoadMA and @p |
| 2525 | /// StoreMA |
| 2526 | bool hasIntersectingAccesses(isl::set AllAccs, MemoryAccess *LoadMA, |
| 2527 | MemoryAccess *StoreMA, isl::set Domain, |
| 2528 | SmallVector<MemoryAccess *, 8> &MemAccs) { |
| 2529 | bool HasIntersectingAccs = false; |
| 2530 | auto AllAccsNoParams = AllAccs.project_out_all_params(); |
| 2531 | |
| 2532 | for (MemoryAccess *MA : MemAccs) { |
| 2533 | if (MA == LoadMA || MA == StoreMA) |
| 2534 | continue; |
| 2535 | auto AccRel = MA->getAccessRelation().intersect_domain(set: Domain); |
| 2536 | auto Accs = AccRel.range(); |
| 2537 | auto AccsNoParams = Accs.project_out_all_params(); |
| 2538 | |
| 2539 | bool CompatibleSpace = AllAccsNoParams.has_equal_space(set2: AccsNoParams); |
| 2540 | |
| 2541 | if (CompatibleSpace) { |
| 2542 | auto OverlapAccs = Accs.intersect(set2: AllAccs); |
| 2543 | bool DoesIntersect = !OverlapAccs.is_empty(); |
| 2544 | HasIntersectingAccs |= DoesIntersect; |
| 2545 | } |
| 2546 | } |
| 2547 | return HasIntersectingAccs; |
| 2548 | } |
| 2549 | |
| 2550 | /// Test if the accesses of @p LoadMA and @p StoreMA can form a reduction |
| 2551 | bool checkCandidatePairAccesses(MemoryAccess *LoadMA, MemoryAccess *StoreMA, |
| 2552 | isl::set Domain, |
| 2553 | SmallVector<MemoryAccess *, 8> &MemAccs) { |
| 2554 | // First check if the base value is the same. |
| 2555 | isl::map LoadAccs = LoadMA->getAccessRelation(); |
| 2556 | isl::map StoreAccs = StoreMA->getAccessRelation(); |
| 2557 | bool Valid = LoadAccs.has_equal_space(map2: StoreAccs); |
| 2558 | POLLY_DEBUG(dbgs() << " == The accessed space below is " |
| 2559 | << (Valid ? "" : "not " ) << "equal!\n" ); |
| 2560 | POLLY_DEBUG(LoadMA->dump(); StoreMA->dump()); |
| 2561 | |
| 2562 | if (Valid) { |
| 2563 | // Then check if they actually access the same memory. |
| 2564 | isl::map R = isl::manage(ptr: LoadAccs.copy()) |
| 2565 | .intersect_domain(set: isl::manage(ptr: Domain.copy())); |
| 2566 | isl::map W = isl::manage(ptr: StoreAccs.copy()) |
| 2567 | .intersect_domain(set: isl::manage(ptr: Domain.copy())); |
| 2568 | isl::set RS = R.range(); |
| 2569 | isl::set WS = W.range(); |
| 2570 | |
| 2571 | isl::set InterAccs = |
| 2572 | isl::manage(ptr: RS.copy()).intersect(set2: isl::manage(ptr: WS.copy())); |
| 2573 | Valid = !InterAccs.is_empty(); |
| 2574 | POLLY_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "" : "not " ) |
| 2575 | << "overlapping!\n" ); |
| 2576 | } |
| 2577 | |
| 2578 | if (Valid) { |
| 2579 | // Finally, check if they are no other instructions accessing this memory |
| 2580 | isl::map AllAccsRel = LoadAccs.unite(map2: StoreAccs); |
| 2581 | AllAccsRel = AllAccsRel.intersect_domain(set: Domain); |
| 2582 | isl::set AllAccs = AllAccsRel.range(); |
| 2583 | Valid = !hasIntersectingAccesses(AllAccs, LoadMA, StoreMA, Domain, MemAccs); |
| 2584 | POLLY_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "not " : "" ) |
| 2585 | << "accessed by other instructions!\n" ); |
| 2586 | } |
| 2587 | |
| 2588 | return Valid; |
| 2589 | } |
| 2590 | |
| 2591 | void ScopBuilder::checkForReductions(ScopStmt &Stmt) { |
| 2592 | // Perform a data flow analysis on the current scop statement to propagate the |
| 2593 | // uses of loaded values. Then check and mark the memory accesses which are |
| 2594 | // part of reduction like chains. |
| 2595 | // During the data flow analysis we use the State variable to keep track of |
| 2596 | // the used "load-instructions" for each instruction in the scop statement. |
| 2597 | // This includes the LLVM-IR of the load and the "number of uses" (or the |
| 2598 | // number of paths in the operand tree which end in this load). |
| 2599 | using StatePairTy = std::pair<unsigned, MemoryAccess::ReductionType>; |
| 2600 | using FlowInSetTy = MapVector<const LoadInst *, StatePairTy>; |
| 2601 | using StateTy = MapVector<const Instruction *, FlowInSetTy>; |
| 2602 | StateTy State; |
| 2603 | |
| 2604 | // Invalid loads are loads which have uses we can't track properly in the |
| 2605 | // state map. This includes loads which: |
| 2606 | // o do not form a reduction when they flow into a memory location: |
| 2607 | // (e.g., A[i] = B[i] * 3 and A[i] = A[i] * A[i] + A[i]) |
| 2608 | // o are used by a non binary operator or one which is not commutative |
| 2609 | // and associative (e.g., A[i] = A[i] % 3) |
| 2610 | // o might change the control flow (e.g., if (A[i])) |
| 2611 | // o are used in indirect memory accesses (e.g., A[B[i]]) |
| 2612 | // o are used outside the current scop statement |
| 2613 | SmallPtrSet<const Instruction *, 8> InvalidLoads; |
| 2614 | SmallVector<BasicBlock *, 8> ScopBlocks; |
| 2615 | BasicBlock *BB = Stmt.getBasicBlock(); |
| 2616 | if (BB) |
| 2617 | ScopBlocks.push_back(Elt: BB); |
| 2618 | else |
| 2619 | for (BasicBlock *Block : Stmt.getRegion()->blocks()) |
| 2620 | ScopBlocks.push_back(Elt: Block); |
| 2621 | // Run the data flow analysis for all values in the scop statement |
| 2622 | for (BasicBlock *Block : ScopBlocks) { |
| 2623 | for (Instruction &Inst : *Block) { |
| 2624 | if ((Stmt.getParent())->getStmtFor(Inst: &Inst) != &Stmt) |
| 2625 | continue; |
| 2626 | bool UsedOutsideStmt = any_of(Range: Inst.users(), P: [&Stmt](User *U) { |
| 2627 | return (Stmt.getParent())->getStmtFor(Inst: cast<Instruction>(Val: U)) != &Stmt; |
| 2628 | }); |
| 2629 | // Treat loads and stores special |
| 2630 | if (auto *Load = dyn_cast<LoadInst>(Val: &Inst)) { |
| 2631 | // Invalidate all loads used which feed into the address of this load. |
| 2632 | if (auto *Ptr = dyn_cast<Instruction>(Val: Load->getPointerOperand())) { |
| 2633 | const auto &It = State.find(Key: Ptr); |
| 2634 | if (It != State.end()) |
| 2635 | InvalidLoads.insert_range(R: llvm::make_first_range(c&: It->second)); |
| 2636 | } |
| 2637 | |
| 2638 | // If this load is used outside this stmt, invalidate it. |
| 2639 | if (UsedOutsideStmt) |
| 2640 | InvalidLoads.insert(Ptr: Load); |
| 2641 | |
| 2642 | // And indicate that this load uses itself once but without specifying |
| 2643 | // any reduction operator. |
| 2644 | State[Load].insert( |
| 2645 | KV: std::make_pair(x&: Load, y: std::make_pair(x: 1, y: MemoryAccess::RT_BOTTOM))); |
| 2646 | continue; |
| 2647 | } |
| 2648 | |
| 2649 | if (auto *Store = dyn_cast<StoreInst>(Val: &Inst)) { |
| 2650 | // Invalidate all loads which feed into the address of this store. |
| 2651 | if (const Instruction *Ptr = |
| 2652 | dyn_cast<Instruction>(Val: Store->getPointerOperand())) { |
| 2653 | const auto &It = State.find(Key: Ptr); |
| 2654 | if (It != State.end()) |
| 2655 | InvalidLoads.insert_range(R: llvm::make_first_range(c&: It->second)); |
| 2656 | } |
| 2657 | |
| 2658 | // Propagate the uses of the value operand to the store |
| 2659 | if (auto *ValueInst = dyn_cast<Instruction>(Val: Store->getValueOperand())) |
| 2660 | State.insert(KV: std::make_pair(x&: Store, y&: State[ValueInst])); |
| 2661 | continue; |
| 2662 | } |
| 2663 | |
| 2664 | // Non load and store instructions are either binary operators or they |
| 2665 | // will invalidate all used loads. |
| 2666 | auto *BinOp = dyn_cast<BinaryOperator>(Val: &Inst); |
| 2667 | MemoryAccess::ReductionType CurRedType = getReductionType(BinOp); |
| 2668 | POLLY_DEBUG(dbgs() << "CurInst: " << Inst << " RT: " << CurRedType |
| 2669 | << "\n" ); |
| 2670 | |
| 2671 | // Iterate over all operands and propagate their input loads to |
| 2672 | // instruction. |
| 2673 | FlowInSetTy &InstInFlowSet = State[&Inst]; |
| 2674 | for (Use &Op : Inst.operands()) { |
| 2675 | auto *OpInst = dyn_cast<Instruction>(Val&: Op); |
| 2676 | if (!OpInst) |
| 2677 | continue; |
| 2678 | |
| 2679 | POLLY_DEBUG(dbgs().indent(4) << "Op Inst: " << *OpInst << "\n" ); |
| 2680 | const StateTy::iterator &OpInFlowSetIt = State.find(Key: OpInst); |
| 2681 | if (OpInFlowSetIt == State.end()) |
| 2682 | continue; |
| 2683 | |
| 2684 | // Iterate over all the input loads of the operand and combine them |
| 2685 | // with the input loads of current instruction. |
| 2686 | FlowInSetTy &OpInFlowSet = OpInFlowSetIt->second; |
| 2687 | for (auto &OpInFlowPair : OpInFlowSet) { |
| 2688 | unsigned OpFlowIn = OpInFlowPair.second.first; |
| 2689 | unsigned InstFlowIn = InstInFlowSet[OpInFlowPair.first].first; |
| 2690 | |
| 2691 | MemoryAccess::ReductionType OpRedType = OpInFlowPair.second.second; |
| 2692 | MemoryAccess::ReductionType InstRedType = |
| 2693 | InstInFlowSet[OpInFlowPair.first].second; |
| 2694 | |
| 2695 | MemoryAccess::ReductionType NewRedType = |
| 2696 | combineReductionType(RT0: OpRedType, RT1: CurRedType); |
| 2697 | if (InstFlowIn) |
| 2698 | NewRedType = combineReductionType(RT0: NewRedType, RT1: InstRedType); |
| 2699 | |
| 2700 | POLLY_DEBUG(dbgs().indent(8) << "OpRedType: " << OpRedType << "\n" ); |
| 2701 | POLLY_DEBUG(dbgs().indent(8) << "NewRedType: " << NewRedType << "\n" ); |
| 2702 | InstInFlowSet[OpInFlowPair.first] = |
| 2703 | std::make_pair(x: OpFlowIn + InstFlowIn, y&: NewRedType); |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | // If this operation is used outside the stmt, invalidate all the loads |
| 2708 | // which feed into it. |
| 2709 | if (UsedOutsideStmt) |
| 2710 | InvalidLoads.insert_range(R: llvm::make_first_range(c&: InstInFlowSet)); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | // All used loads are propagated through the whole basic block; now try to |
| 2715 | // find valid reduction-like candidate pairs. These load-store pairs fulfill |
| 2716 | // all reduction like properties with regards to only this load-store chain. |
| 2717 | // We later have to check if the loaded value was invalidated by an |
| 2718 | // instruction not in that chain. |
| 2719 | using MemAccPair = std::pair<MemoryAccess *, MemoryAccess *>; |
| 2720 | DenseMap<MemAccPair, MemoryAccess::ReductionType> ValidCandidates; |
| 2721 | |
| 2722 | // Iterate over all write memory accesses and check the loads flowing into |
| 2723 | // it for reduction candidate pairs. |
| 2724 | for (MemoryAccess *WriteMA : Stmt.MemAccs) { |
| 2725 | if (WriteMA->isRead()) |
| 2726 | continue; |
| 2727 | StoreInst *St = dyn_cast<StoreInst>(Val: WriteMA->getAccessInstruction()); |
| 2728 | if (!St) |
| 2729 | continue; |
| 2730 | assert(!St->isVolatile()); |
| 2731 | |
| 2732 | FlowInSetTy &MaInFlowSet = State[WriteMA->getAccessInstruction()]; |
| 2733 | for (auto &MaInFlowSetElem : MaInFlowSet) { |
| 2734 | MemoryAccess *ReadMA = &Stmt.getArrayAccessFor(Inst: MaInFlowSetElem.first); |
| 2735 | assert(ReadMA && "Couldn't find memory access for incoming load!" ); |
| 2736 | |
| 2737 | POLLY_DEBUG(dbgs() << "'" << *ReadMA->getAccessInstruction() |
| 2738 | << "'\n\tflows into\n'" |
| 2739 | << *WriteMA->getAccessInstruction() << "'\n\t #" |
| 2740 | << MaInFlowSetElem.second.first << " times & RT: " |
| 2741 | << MaInFlowSetElem.second.second << "\n" ); |
| 2742 | |
| 2743 | MemoryAccess::ReductionType RT = MaInFlowSetElem.second.second; |
| 2744 | unsigned NumAllowableInFlow = 1; |
| 2745 | |
| 2746 | // We allow the load to flow in exactly once for binary reductions |
| 2747 | bool Valid = (MaInFlowSetElem.second.first == NumAllowableInFlow); |
| 2748 | |
| 2749 | // Check if we saw a valid chain of binary operators. |
| 2750 | Valid = Valid && RT != MemoryAccess::RT_BOTTOM; |
| 2751 | Valid = Valid && RT != MemoryAccess::RT_NONE; |
| 2752 | |
| 2753 | // Then check if the memory accesses allow a reduction. |
| 2754 | Valid = Valid && checkCandidatePairAccesses( |
| 2755 | LoadMA: ReadMA, StoreMA: WriteMA, Domain: Stmt.getDomain(), MemAccs&: Stmt.MemAccs); |
| 2756 | |
| 2757 | // Finally, mark the pair as a candidate or the load as a invalid one. |
| 2758 | if (Valid) |
| 2759 | ValidCandidates[std::make_pair(x&: ReadMA, y&: WriteMA)] = RT; |
| 2760 | else |
| 2761 | InvalidLoads.insert(Ptr: ReadMA->getAccessInstruction()); |
| 2762 | } |
| 2763 | } |
| 2764 | |
| 2765 | // In the last step mark the memory accesses of candidate pairs as reduction |
| 2766 | // like if the load wasn't marked invalid in the previous step. |
| 2767 | for (auto &CandidatePair : ValidCandidates) { |
| 2768 | MemoryAccess *LoadMA = CandidatePair.first.first; |
| 2769 | if (InvalidLoads.count(Ptr: LoadMA->getAccessInstruction())) |
| 2770 | continue; |
| 2771 | POLLY_DEBUG( |
| 2772 | dbgs() << " Load :: " |
| 2773 | << *((CandidatePair.first.first)->getAccessInstruction()) |
| 2774 | << "\n Store :: " |
| 2775 | << *((CandidatePair.first.second)->getAccessInstruction()) |
| 2776 | << "\n are marked as reduction like\n" ); |
| 2777 | MemoryAccess::ReductionType RT = CandidatePair.second; |
| 2778 | CandidatePair.first.first->markAsReductionLike(RT); |
| 2779 | CandidatePair.first.second->markAsReductionLike(RT); |
| 2780 | } |
| 2781 | } |
| 2782 | |
| 2783 | void ScopBuilder::verifyInvariantLoads() { |
| 2784 | auto &RIL = scop->getRequiredInvariantLoads(); |
| 2785 | for (LoadInst *LI : RIL) { |
| 2786 | assert(LI && scop->contains(LI)); |
| 2787 | // If there exists a statement in the scop which has a memory access for |
| 2788 | // @p LI, then mark this scop as infeasible for optimization. |
| 2789 | for (ScopStmt &Stmt : *scop) |
| 2790 | if (Stmt.getArrayAccessOrNULLFor(Inst: LI)) { |
| 2791 | scop->invalidate(Kind: INVARIANTLOAD, Loc: LI->getDebugLoc(), BB: LI->getParent()); |
| 2792 | return; |
| 2793 | } |
| 2794 | } |
| 2795 | } |
| 2796 | |
| 2797 | void ScopBuilder::hoistInvariantLoads() { |
| 2798 | if (!PollyInvariantLoadHoisting) |
| 2799 | return; |
| 2800 | |
| 2801 | isl::union_map Writes = scop->getWrites(); |
| 2802 | for (ScopStmt &Stmt : *scop) { |
| 2803 | InvariantAccessesTy InvariantAccesses; |
| 2804 | |
| 2805 | for (MemoryAccess *Access : Stmt) { |
| 2806 | isl::set NHCtx = getNonHoistableCtx(Access, Writes); |
| 2807 | if (!NHCtx.is_null()) |
| 2808 | InvariantAccesses.push_back(Elt: {.MA: Access, .NonHoistableCtx: NHCtx}); |
| 2809 | } |
| 2810 | |
| 2811 | // Transfer the memory access from the statement to the SCoP. |
| 2812 | for (auto InvMA : InvariantAccesses) |
| 2813 | Stmt.removeMemoryAccess(MA: InvMA.MA); |
| 2814 | addInvariantLoads(Stmt, InvMAs&: InvariantAccesses); |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | /// Check if an access range is too complex. |
| 2819 | /// |
| 2820 | /// An access range is too complex, if it contains either many disjuncts or |
| 2821 | /// very complex expressions. As a simple heuristic, we assume if a set to |
| 2822 | /// be too complex if the sum of existentially quantified dimensions and |
| 2823 | /// set dimensions is larger than a threshold. This reliably detects both |
| 2824 | /// sets with many disjuncts as well as sets with many divisions as they |
| 2825 | /// arise in h264. |
| 2826 | /// |
| 2827 | /// @param AccessRange The range to check for complexity. |
| 2828 | /// |
| 2829 | /// @returns True if the access range is too complex. |
| 2830 | static bool isAccessRangeTooComplex(isl::set AccessRange) { |
| 2831 | unsigned NumTotalDims = 0; |
| 2832 | |
| 2833 | for (isl::basic_set BSet : AccessRange.get_basic_set_list()) { |
| 2834 | NumTotalDims += unsignedFromIslSize(Size: BSet.dim(type: isl::dim::div)); |
| 2835 | NumTotalDims += unsignedFromIslSize(Size: BSet.dim(type: isl::dim::set)); |
| 2836 | } |
| 2837 | |
| 2838 | if (NumTotalDims > MaxDimensionsInAccessRange) |
| 2839 | return true; |
| 2840 | |
| 2841 | return false; |
| 2842 | } |
| 2843 | |
| 2844 | bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA, |
| 2845 | isl::union_map Writes) { |
| 2846 | if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) { |
| 2847 | return getNonHoistableCtx(Access: BasePtrMA, Writes).is_null(); |
| 2848 | } |
| 2849 | |
| 2850 | Value *BaseAddr = MA->getOriginalBaseAddr(); |
| 2851 | if (auto *BasePtrInst = dyn_cast<Instruction>(Val: BaseAddr)) |
| 2852 | if (!isa<LoadInst>(Val: BasePtrInst)) |
| 2853 | return scop->contains(I: BasePtrInst); |
| 2854 | |
| 2855 | return false; |
| 2856 | } |
| 2857 | |
| 2858 | void ScopBuilder::addUserContext() { |
| 2859 | if (UserContextStr.empty()) |
| 2860 | return; |
| 2861 | |
| 2862 | isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str()); |
| 2863 | isl::space Space = scop->getParamSpace(); |
| 2864 | isl::size SpaceParams = Space.dim(type: isl::dim::param); |
| 2865 | if (unsignedFromIslSize(Size: SpaceParams) != |
| 2866 | unsignedFromIslSize(Size: UserContext.dim(type: isl::dim::param))) { |
| 2867 | std::string SpaceStr = stringFromIslObj(Obj: Space, DefaultValue: "null" ); |
| 2868 | errs() << "Error: the context provided in -polly-context has not the same " |
| 2869 | << "number of dimensions than the computed context. Due to this " |
| 2870 | << "mismatch, the -polly-context option is ignored. Please provide " |
| 2871 | << "the context in the parameter space: " << SpaceStr << ".\n" ; |
| 2872 | return; |
| 2873 | } |
| 2874 | |
| 2875 | for (auto i : rangeIslSize(Begin: 0, End: SpaceParams)) { |
| 2876 | std::string NameContext = |
| 2877 | scop->getContext().get_dim_name(type: isl::dim::param, pos: i); |
| 2878 | std::string NameUserContext = UserContext.get_dim_name(type: isl::dim::param, pos: i); |
| 2879 | |
| 2880 | if (NameContext != NameUserContext) { |
| 2881 | std::string SpaceStr = stringFromIslObj(Obj: Space, DefaultValue: "null" ); |
| 2882 | errs() << "Error: the name of dimension " << i |
| 2883 | << " provided in -polly-context " |
| 2884 | << "is '" << NameUserContext << "', but the name in the computed " |
| 2885 | << "context is '" << NameContext |
| 2886 | << "'. Due to this name mismatch, " |
| 2887 | << "the -polly-context option is ignored. Please provide " |
| 2888 | << "the context in the parameter space: " << SpaceStr << ".\n" ; |
| 2889 | return; |
| 2890 | } |
| 2891 | |
| 2892 | UserContext = UserContext.set_dim_id(type: isl::dim::param, pos: i, |
| 2893 | id: Space.get_dim_id(type: isl::dim::param, pos: i)); |
| 2894 | } |
| 2895 | isl::set newContext = scop->getContext().intersect(set2: UserContext); |
| 2896 | scop->setContext(newContext); |
| 2897 | } |
| 2898 | |
| 2899 | isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access, |
| 2900 | isl::union_map Writes) { |
| 2901 | // TODO: Loads that are not loop carried, hence are in a statement with |
| 2902 | // zero iterators, are by construction invariant, though we |
| 2903 | // currently "hoist" them anyway. This is necessary because we allow |
| 2904 | // them to be treated as parameters (e.g., in conditions) and our code |
| 2905 | // generation would otherwise use the old value. |
| 2906 | |
| 2907 | auto &Stmt = *Access->getStatement(); |
| 2908 | BasicBlock *BB = Stmt.getEntryBlock(); |
| 2909 | |
| 2910 | if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() || |
| 2911 | Access->isMemoryIntrinsic()) |
| 2912 | return {}; |
| 2913 | |
| 2914 | // Skip accesses that have an invariant base pointer which is defined but |
| 2915 | // not loaded inside the SCoP. This can happened e.g., if a readnone call |
| 2916 | // returns a pointer that is used as a base address. However, as we want |
| 2917 | // to hoist indirect pointers, we allow the base pointer to be defined in |
| 2918 | // the region if it is also a memory access. Each ScopArrayInfo object |
| 2919 | // that has a base pointer origin has a base pointer that is loaded and |
| 2920 | // that it is invariant, thus it will be hoisted too. However, if there is |
| 2921 | // no base pointer origin we check that the base pointer is defined |
| 2922 | // outside the region. |
| 2923 | auto *LI = cast<LoadInst>(Val: Access->getAccessInstruction()); |
| 2924 | if (hasNonHoistableBasePtrInScop(MA: Access, Writes)) |
| 2925 | return {}; |
| 2926 | |
| 2927 | isl::map AccessRelation = Access->getAccessRelation(); |
| 2928 | assert(!AccessRelation.is_empty()); |
| 2929 | |
| 2930 | if (AccessRelation.involves_dims(type: isl::dim::in, first: 0, n: Stmt.getNumIterators())) |
| 2931 | return {}; |
| 2932 | |
| 2933 | AccessRelation = AccessRelation.intersect_domain(set: Stmt.getDomain()); |
| 2934 | isl::set SafeToLoad; |
| 2935 | |
| 2936 | auto &DL = scop->getFunction().getDataLayout(); |
| 2937 | if (isSafeToLoadUnconditionally(V: LI->getPointerOperand(), Ty: LI->getType(), |
| 2938 | Alignment: LI->getAlign(), DL, ScanFrom: nullptr)) { |
| 2939 | SafeToLoad = isl::set::universe(space: AccessRelation.get_space().range()); |
| 2940 | } else if (BB != LI->getParent()) { |
| 2941 | // Skip accesses in non-affine subregions as they might not be executed |
| 2942 | // under the same condition as the entry of the non-affine subregion. |
| 2943 | return {}; |
| 2944 | } else { |
| 2945 | SafeToLoad = AccessRelation.range(); |
| 2946 | } |
| 2947 | |
| 2948 | if (isAccessRangeTooComplex(AccessRange: AccessRelation.range())) |
| 2949 | return {}; |
| 2950 | |
| 2951 | isl::union_map Written = Writes.intersect_range(uset: SafeToLoad); |
| 2952 | isl::set WrittenCtx = Written.params(); |
| 2953 | bool IsWritten = !WrittenCtx.is_empty(); |
| 2954 | |
| 2955 | if (!IsWritten) |
| 2956 | return WrittenCtx; |
| 2957 | |
| 2958 | WrittenCtx = WrittenCtx.remove_divs(); |
| 2959 | bool TooComplex = |
| 2960 | unsignedFromIslSize(Size: WrittenCtx.n_basic_set()) >= MaxDisjunctsInDomain; |
| 2961 | if (TooComplex || !isRequiredInvariantLoad(LI)) |
| 2962 | return {}; |
| 2963 | |
| 2964 | scop->addAssumption(Kind: INVARIANTLOAD, Set: WrittenCtx, Loc: LI->getDebugLoc(), |
| 2965 | Sign: AS_RESTRICTION, BB: LI->getParent()); |
| 2966 | return WrittenCtx; |
| 2967 | } |
| 2968 | |
| 2969 | static bool isAParameter(llvm::Value *maybeParam, const Function &F) { |
| 2970 | for (const llvm::Argument &Arg : F.args()) |
| 2971 | if (&Arg == maybeParam) |
| 2972 | return true; |
| 2973 | |
| 2974 | return false; |
| 2975 | } |
| 2976 | |
| 2977 | bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA, |
| 2978 | bool StmtInvalidCtxIsEmpty, |
| 2979 | bool MAInvalidCtxIsEmpty, |
| 2980 | bool NonHoistableCtxIsEmpty) { |
| 2981 | LoadInst *LInst = cast<LoadInst>(Val: MA->getAccessInstruction()); |
| 2982 | const DataLayout &DL = LInst->getDataLayout(); |
| 2983 | if (PollyAllowDereferenceOfAllFunctionParams && |
| 2984 | isAParameter(maybeParam: LInst->getPointerOperand(), F: scop->getFunction())) |
| 2985 | return true; |
| 2986 | |
| 2987 | // TODO: We can provide more information for better but more expensive |
| 2988 | // results. |
| 2989 | if (!isDereferenceableAndAlignedPointer( |
| 2990 | V: LInst->getPointerOperand(), Ty: LInst->getType(), Alignment: LInst->getAlign(), DL)) |
| 2991 | return false; |
| 2992 | |
| 2993 | // If the location might be overwritten we do not hoist it unconditionally. |
| 2994 | // |
| 2995 | // TODO: This is probably too conservative. |
| 2996 | if (!NonHoistableCtxIsEmpty) |
| 2997 | return false; |
| 2998 | |
| 2999 | // If a dereferenceable load is in a statement that is modeled precisely we |
| 3000 | // can hoist it. |
| 3001 | if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty) |
| 3002 | return true; |
| 3003 | |
| 3004 | // Even if the statement is not modeled precisely we can hoist the load if it |
| 3005 | // does not involve any parameters that might have been specialized by the |
| 3006 | // statement domain. |
| 3007 | for (const SCEV *Subscript : MA->subscripts()) |
| 3008 | if (!isa<SCEVConstant>(Val: Subscript)) |
| 3009 | return false; |
| 3010 | return true; |
| 3011 | } |
| 3012 | |
| 3013 | void ScopBuilder::addInvariantLoads(ScopStmt &Stmt, |
| 3014 | InvariantAccessesTy &InvMAs) { |
| 3015 | if (InvMAs.empty()) |
| 3016 | return; |
| 3017 | |
| 3018 | isl::set StmtInvalidCtx = Stmt.getInvalidContext(); |
| 3019 | bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty(); |
| 3020 | |
| 3021 | // Get the context under which the statement is executed but remove the error |
| 3022 | // context under which this statement is reached. |
| 3023 | isl::set DomainCtx = Stmt.getDomain().params(); |
| 3024 | DomainCtx = DomainCtx.subtract(set2: StmtInvalidCtx); |
| 3025 | |
| 3026 | if (unsignedFromIslSize(Size: DomainCtx.n_basic_set()) >= MaxDisjunctsInDomain) { |
| 3027 | auto *AccInst = InvMAs.front().MA->getAccessInstruction(); |
| 3028 | scop->invalidate(Kind: COMPLEXITY, Loc: AccInst->getDebugLoc(), BB: AccInst->getParent()); |
| 3029 | return; |
| 3030 | } |
| 3031 | |
| 3032 | // Project out all parameters that relate to loads in the statement. Otherwise |
| 3033 | // we could have cyclic dependences on the constraints under which the |
| 3034 | // hoisted loads are executed and we could not determine an order in which to |
| 3035 | // pre-load them. This happens because not only lower bounds are part of the |
| 3036 | // domain but also upper bounds. |
| 3037 | for (auto &InvMA : InvMAs) { |
| 3038 | auto *MA = InvMA.MA; |
| 3039 | Instruction *AccInst = MA->getAccessInstruction(); |
| 3040 | if (SE.isSCEVable(Ty: AccInst->getType())) { |
| 3041 | SetVector<Value *> Values; |
| 3042 | for (const SCEV *Parameter : scop->parameters()) { |
| 3043 | Values.clear(); |
| 3044 | findValues(Expr: Parameter, SE, Values); |
| 3045 | if (!Values.count(key: AccInst)) |
| 3046 | continue; |
| 3047 | |
| 3048 | isl::id ParamId = scop->getIdForParam(Parameter); |
| 3049 | if (!ParamId.is_null()) { |
| 3050 | int Dim = DomainCtx.find_dim_by_id(type: isl::dim::param, id: ParamId); |
| 3051 | if (Dim >= 0) |
| 3052 | DomainCtx = DomainCtx.eliminate(type: isl::dim::param, first: Dim, n: 1); |
| 3053 | } |
| 3054 | } |
| 3055 | } |
| 3056 | } |
| 3057 | |
| 3058 | for (auto &InvMA : InvMAs) { |
| 3059 | auto *MA = InvMA.MA; |
| 3060 | isl::set NHCtx = InvMA.NonHoistableCtx; |
| 3061 | |
| 3062 | // Check for another invariant access that accesses the same location as |
| 3063 | // MA and if found consolidate them. Otherwise create a new equivalence |
| 3064 | // class at the end of InvariantEquivClasses. |
| 3065 | LoadInst *LInst = cast<LoadInst>(Val: MA->getAccessInstruction()); |
| 3066 | Type *Ty = LInst->getType(); |
| 3067 | const SCEV *PointerSCEV = SE.getSCEV(V: LInst->getPointerOperand()); |
| 3068 | |
| 3069 | isl::set MAInvalidCtx = MA->getInvalidContext(); |
| 3070 | bool NonHoistableCtxIsEmpty = NHCtx.is_empty(); |
| 3071 | bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty(); |
| 3072 | |
| 3073 | isl::set MACtx; |
| 3074 | // Check if we know that this pointer can be speculatively accessed. |
| 3075 | if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty, |
| 3076 | NonHoistableCtxIsEmpty)) { |
| 3077 | MACtx = isl::set::universe(space: DomainCtx.get_space()); |
| 3078 | } else { |
| 3079 | MACtx = DomainCtx; |
| 3080 | MACtx = MACtx.subtract(set2: MAInvalidCtx.unite(set2: NHCtx)); |
| 3081 | MACtx = MACtx.gist_params(context: scop->getContext()); |
| 3082 | } |
| 3083 | |
| 3084 | bool Consolidated = false; |
| 3085 | for (auto &IAClass : scop->invariantEquivClasses()) { |
| 3086 | if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType) |
| 3087 | continue; |
| 3088 | |
| 3089 | // If the pointer and the type is equal check if the access function wrt. |
| 3090 | // to the domain is equal too. It can happen that the domain fixes |
| 3091 | // parameter values and these can be different for distinct part of the |
| 3092 | // SCoP. If this happens we cannot consolidate the loads but need to |
| 3093 | // create a new invariant load equivalence class. |
| 3094 | auto &MAs = IAClass.InvariantAccesses; |
| 3095 | if (!MAs.empty()) { |
| 3096 | auto *LastMA = MAs.front(); |
| 3097 | |
| 3098 | isl::set AR = MA->getAccessRelation().range(); |
| 3099 | isl::set LastAR = LastMA->getAccessRelation().range(); |
| 3100 | bool SameAR = AR.is_equal(set2: LastAR); |
| 3101 | |
| 3102 | if (!SameAR) |
| 3103 | continue; |
| 3104 | } |
| 3105 | |
| 3106 | // Add MA to the list of accesses that are in this class. |
| 3107 | MAs.push_front(val: MA); |
| 3108 | |
| 3109 | Consolidated = true; |
| 3110 | |
| 3111 | // Unify the execution context of the class and this statement. |
| 3112 | isl::set IAClassDomainCtx = IAClass.ExecutionContext; |
| 3113 | if (!IAClassDomainCtx.is_null()) |
| 3114 | IAClassDomainCtx = IAClassDomainCtx.unite(set2: MACtx).coalesce(); |
| 3115 | else |
| 3116 | IAClassDomainCtx = MACtx; |
| 3117 | IAClass.ExecutionContext = IAClassDomainCtx; |
| 3118 | break; |
| 3119 | } |
| 3120 | |
| 3121 | if (Consolidated) |
| 3122 | continue; |
| 3123 | |
| 3124 | MACtx = MACtx.coalesce(); |
| 3125 | |
| 3126 | // If we did not consolidate MA, thus did not find an equivalence class |
| 3127 | // for it, we create a new one. |
| 3128 | scop->addInvariantEquivClass( |
| 3129 | InvariantEquivClass: InvariantEquivClassTy{.IdentifyingPointer: PointerSCEV, .InvariantAccesses: MemoryAccessList{MA}, .ExecutionContext: MACtx, .AccessType: Ty}); |
| 3130 | } |
| 3131 | } |
| 3132 | |
| 3133 | /// Find the canonical scop array info object for a set of invariant load |
| 3134 | /// hoisted loads. The canonical array is the one that corresponds to the |
| 3135 | /// first load in the list of accesses which is used as base pointer of a |
| 3136 | /// scop array. |
| 3137 | static const ScopArrayInfo *findCanonicalArray(Scop &S, |
| 3138 | MemoryAccessList &Accesses) { |
| 3139 | for (MemoryAccess *Access : Accesses) { |
| 3140 | const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull( |
| 3141 | BasePtr: Access->getAccessInstruction(), Kind: MemoryKind::Array); |
| 3142 | if (CanonicalArray) |
| 3143 | return CanonicalArray; |
| 3144 | } |
| 3145 | return nullptr; |
| 3146 | } |
| 3147 | |
| 3148 | /// Check if @p Array severs as base array in an invariant load. |
| 3149 | static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) { |
| 3150 | for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses()) |
| 3151 | for (MemoryAccess *Access2 : EqClass2.InvariantAccesses) |
| 3152 | if (Access2->getScopArrayInfo() == Array) |
| 3153 | return true; |
| 3154 | return false; |
| 3155 | } |
| 3156 | |
| 3157 | /// Replace the base pointer arrays in all memory accesses referencing @p Old, |
| 3158 | /// with a reference to @p New. |
| 3159 | static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old, |
| 3160 | const ScopArrayInfo *New) { |
| 3161 | for (ScopStmt &Stmt : S) |
| 3162 | for (MemoryAccess *Access : Stmt) { |
| 3163 | if (Access->getLatestScopArrayInfo() != Old) |
| 3164 | continue; |
| 3165 | |
| 3166 | isl::id Id = New->getBasePtrId(); |
| 3167 | isl::map Map = Access->getAccessRelation(); |
| 3168 | Map = Map.set_tuple_id(type: isl::dim::out, id: Id); |
| 3169 | Access->setAccessRelation(Map); |
| 3170 | } |
| 3171 | } |
| 3172 | |
| 3173 | void ScopBuilder::canonicalizeDynamicBasePtrs() { |
| 3174 | for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) { |
| 3175 | MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses; |
| 3176 | |
| 3177 | const ScopArrayInfo *CanonicalBasePtrSAI = |
| 3178 | findCanonicalArray(S&: *scop, Accesses&: BasePtrAccesses); |
| 3179 | |
| 3180 | if (!CanonicalBasePtrSAI) |
| 3181 | continue; |
| 3182 | |
| 3183 | for (MemoryAccess *BasePtrAccess : BasePtrAccesses) { |
| 3184 | const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull( |
| 3185 | BasePtr: BasePtrAccess->getAccessInstruction(), Kind: MemoryKind::Array); |
| 3186 | if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI || |
| 3187 | !BasePtrSAI->isCompatibleWith(Array: CanonicalBasePtrSAI)) |
| 3188 | continue; |
| 3189 | |
| 3190 | // we currently do not canonicalize arrays where some accesses are |
| 3191 | // hoisted as invariant loads. If we would, we need to update the access |
| 3192 | // function of the invariant loads as well. However, as this is not a |
| 3193 | // very common situation, we leave this for now to avoid further |
| 3194 | // complexity increases. |
| 3195 | if (isUsedForIndirectHoistedLoad(S&: *scop, Array: BasePtrSAI)) |
| 3196 | continue; |
| 3197 | |
| 3198 | replaceBasePtrArrays(S&: *scop, Old: BasePtrSAI, New: CanonicalBasePtrSAI); |
| 3199 | } |
| 3200 | } |
| 3201 | } |
| 3202 | |
| 3203 | void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) { |
| 3204 | for (MemoryAccess *Access : Stmt.MemAccs) { |
| 3205 | Type *ElementType = Access->getElementType(); |
| 3206 | |
| 3207 | MemoryKind Ty; |
| 3208 | if (Access->isPHIKind()) |
| 3209 | Ty = MemoryKind::PHI; |
| 3210 | else if (Access->isExitPHIKind()) |
| 3211 | Ty = MemoryKind::ExitPHI; |
| 3212 | else if (Access->isValueKind()) |
| 3213 | Ty = MemoryKind::Value; |
| 3214 | else |
| 3215 | Ty = MemoryKind::Array; |
| 3216 | |
| 3217 | // Create isl::pw_aff for SCEVs which describe sizes. Collect all |
| 3218 | // assumptions which are taken. isl::pw_aff objects are cached internally |
| 3219 | // and they are used later by scop. |
| 3220 | for (const SCEV *Size : Access->Sizes) { |
| 3221 | if (!Size) |
| 3222 | continue; |
| 3223 | scop->getPwAff(E: Size, BB: nullptr, NonNegative: false, RecordedAssumptions: &RecordedAssumptions); |
| 3224 | } |
| 3225 | auto *SAI = scop->getOrCreateScopArrayInfo(BasePtr: Access->getOriginalBaseAddr(), |
| 3226 | ElementType, Sizes: Access->Sizes, Kind: Ty); |
| 3227 | |
| 3228 | // Create isl::pw_aff for SCEVs which describe subscripts. Collect all |
| 3229 | // assumptions which are taken. isl::pw_aff objects are cached internally |
| 3230 | // and they are used later by scop. |
| 3231 | for (const SCEV *Subscript : Access->subscripts()) { |
| 3232 | if (!Access->isAffine() || !Subscript) |
| 3233 | continue; |
| 3234 | scop->getPwAff(E: Subscript, BB: Stmt.getEntryBlock(), NonNegative: false, |
| 3235 | RecordedAssumptions: &RecordedAssumptions); |
| 3236 | } |
| 3237 | Access->buildAccessRelation(SAI); |
| 3238 | scop->addAccessData(Access); |
| 3239 | } |
| 3240 | } |
| 3241 | |
| 3242 | /// Add the minimal/maximal access in @p Set to @p User. |
| 3243 | /// |
| 3244 | /// @return True if more accesses should be added, false if we reached the |
| 3245 | /// maximal number of run-time checks to be generated. |
| 3246 | static bool buildMinMaxAccess(isl::set Set, |
| 3247 | Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) { |
| 3248 | isl::pw_multi_aff MinPMA, MaxPMA; |
| 3249 | isl::pw_aff LastDimAff; |
| 3250 | isl::aff OneAff; |
| 3251 | unsigned Pos; |
| 3252 | |
| 3253 | Set = Set.remove_divs(); |
| 3254 | polly::simplify(Set); |
| 3255 | |
| 3256 | if (unsignedFromIslSize(Size: Set.n_basic_set()) > RunTimeChecksMaxAccessDisjuncts) |
| 3257 | Set = Set.simple_hull(); |
| 3258 | |
| 3259 | // Restrict the number of parameters involved in the access as the lexmin/ |
| 3260 | // lexmax computation will take too long if this number is high. |
| 3261 | // |
| 3262 | // Experiments with a simple test case using an i7 4800MQ: |
| 3263 | // |
| 3264 | // #Parameters involved | Time (in sec) |
| 3265 | // 6 | 0.01 |
| 3266 | // 7 | 0.04 |
| 3267 | // 8 | 0.12 |
| 3268 | // 9 | 0.40 |
| 3269 | // 10 | 1.54 |
| 3270 | // 11 | 6.78 |
| 3271 | // 12 | 30.38 |
| 3272 | // |
| 3273 | if (isl_set_n_param(set: Set.get()) > |
| 3274 | static_cast<isl_size>(RunTimeChecksMaxParameters)) { |
| 3275 | unsigned InvolvedParams = 0; |
| 3276 | for (unsigned u = 0, e = isl_set_n_param(set: Set.get()); u < e; u++) |
| 3277 | if (Set.involves_dims(type: isl::dim::param, first: u, n: 1)) |
| 3278 | InvolvedParams++; |
| 3279 | |
| 3280 | if (InvolvedParams > RunTimeChecksMaxParameters) |
| 3281 | return false; |
| 3282 | } |
| 3283 | |
| 3284 | MinPMA = Set.lexmin_pw_multi_aff(); |
| 3285 | MaxPMA = Set.lexmax_pw_multi_aff(); |
| 3286 | |
| 3287 | MinPMA = MinPMA.coalesce(); |
| 3288 | MaxPMA = MaxPMA.coalesce(); |
| 3289 | |
| 3290 | if (MaxPMA.is_null()) |
| 3291 | return false; |
| 3292 | |
| 3293 | unsigned MaxOutputSize = unsignedFromIslSize(Size: MaxPMA.dim(type: isl::dim::out)); |
| 3294 | |
| 3295 | // Adjust the last dimension of the maximal access by one as we want to |
| 3296 | // enclose the accessed memory region by MinPMA and MaxPMA. The pointer |
| 3297 | // we test during code generation might now point after the end of the |
| 3298 | // allocated array but we will never dereference it anyway. |
| 3299 | assert(MaxOutputSize >= 1 && "Assumed at least one output dimension" ); |
| 3300 | |
| 3301 | Pos = MaxOutputSize - 1; |
| 3302 | LastDimAff = MaxPMA.at(pos: Pos); |
| 3303 | OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space())); |
| 3304 | OneAff = OneAff.add_constant_si(v: 1); |
| 3305 | LastDimAff = LastDimAff.add(pwaff2: OneAff); |
| 3306 | MaxPMA = MaxPMA.set_pw_aff(pos: Pos, pa: LastDimAff); |
| 3307 | |
| 3308 | if (MinPMA.is_null() || MaxPMA.is_null()) |
| 3309 | return false; |
| 3310 | |
| 3311 | MinMaxAccesses.push_back(Elt: std::make_pair(x&: MinPMA, y&: MaxPMA)); |
| 3312 | |
| 3313 | return true; |
| 3314 | } |
| 3315 | |
| 3316 | /// Wrapper function to calculate minimal/maximal accesses to each array. |
| 3317 | bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup, |
| 3318 | Scop::MinMaxVectorTy &MinMaxAccesses) { |
| 3319 | MinMaxAccesses.reserve(N: AliasGroup.size()); |
| 3320 | |
| 3321 | isl::union_set Domains = scop->getDomains(); |
| 3322 | isl::union_map Accesses = isl::union_map::empty(ctx: scop->getIslCtx()); |
| 3323 | |
| 3324 | for (MemoryAccess *MA : AliasGroup) |
| 3325 | Accesses = Accesses.unite(umap2: MA->getAccessRelation()); |
| 3326 | |
| 3327 | Accesses = Accesses.intersect_domain(uset: Domains); |
| 3328 | isl::union_set Locations = Accesses.range(); |
| 3329 | |
| 3330 | bool LimitReached = false; |
| 3331 | for (isl::set Set : Locations.get_set_list()) { |
| 3332 | LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, S&: *scop); |
| 3333 | if (LimitReached) |
| 3334 | break; |
| 3335 | } |
| 3336 | |
| 3337 | return !LimitReached; |
| 3338 | } |
| 3339 | |
| 3340 | static isl::set getAccessDomain(MemoryAccess *MA) { |
| 3341 | isl::set Domain = MA->getStatement()->getDomain(); |
| 3342 | Domain = Domain.project_out(type: isl::dim::set, first: 0, |
| 3343 | n: unsignedFromIslSize(Size: Domain.tuple_dim())); |
| 3344 | return Domain.reset_tuple_id(); |
| 3345 | } |
| 3346 | |
| 3347 | bool ScopBuilder::buildAliasChecks() { |
| 3348 | if (!PollyUseRuntimeAliasChecks) |
| 3349 | return true; |
| 3350 | |
| 3351 | if (buildAliasGroups()) { |
| 3352 | // Aliasing assumptions do not go through addAssumption but we still want to |
| 3353 | // collect statistics so we do it here explicitly. |
| 3354 | if (scop->getAliasGroups().size()) |
| 3355 | Scop::incrementNumberOfAliasingAssumptions(Step: 1); |
| 3356 | return true; |
| 3357 | } |
| 3358 | |
| 3359 | // If a problem occurs while building the alias groups we need to delete |
| 3360 | // this SCoP and pretend it wasn't valid in the first place. To this end |
| 3361 | // we make the assumed context infeasible. |
| 3362 | scop->invalidate(Kind: ALIASING, Loc: DebugLoc()); |
| 3363 | |
| 3364 | POLLY_DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr() |
| 3365 | << " could not be created. This SCoP has been dismissed." ); |
| 3366 | return false; |
| 3367 | } |
| 3368 | |
| 3369 | std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>> |
| 3370 | ScopBuilder::buildAliasGroupsForAccesses() { |
| 3371 | BatchAAResults BAA(AA); |
| 3372 | AliasSetTracker AST(BAA); |
| 3373 | |
| 3374 | DenseMap<Value *, MemoryAccess *> PtrToAcc; |
| 3375 | DenseSet<const ScopArrayInfo *> HasWriteAccess; |
| 3376 | for (ScopStmt &Stmt : *scop) { |
| 3377 | |
| 3378 | isl::set StmtDomain = Stmt.getDomain(); |
| 3379 | bool StmtDomainEmpty = StmtDomain.is_empty(); |
| 3380 | |
| 3381 | // Statements with an empty domain will never be executed. |
| 3382 | if (StmtDomainEmpty) |
| 3383 | continue; |
| 3384 | |
| 3385 | for (MemoryAccess *MA : Stmt) { |
| 3386 | if (MA->isScalarKind()) |
| 3387 | continue; |
| 3388 | if (!MA->isRead()) |
| 3389 | HasWriteAccess.insert(V: MA->getScopArrayInfo()); |
| 3390 | MemAccInst Acc(MA->getAccessInstruction()); |
| 3391 | if (MA->isRead() && isa<MemTransferInst>(Val: Acc)) |
| 3392 | PtrToAcc[cast<MemTransferInst>(Val&: Acc)->getRawSource()] = MA; |
| 3393 | else |
| 3394 | PtrToAcc[Acc.getPointerOperand()] = MA; |
| 3395 | AST.add(I: Acc); |
| 3396 | } |
| 3397 | } |
| 3398 | |
| 3399 | AliasGroupVectorTy AliasGroups; |
| 3400 | for (AliasSet &AS : AST) { |
| 3401 | if (AS.isMustAlias() || AS.isForwardingAliasSet()) |
| 3402 | continue; |
| 3403 | AliasGroupTy AG; |
| 3404 | for (const Value *Ptr : AS.getPointers()) |
| 3405 | AG.push_back(Elt: PtrToAcc[const_cast<Value *>(Ptr)]); |
| 3406 | if (AG.size() < 2) |
| 3407 | continue; |
| 3408 | AliasGroups.push_back(Elt: std::move(AG)); |
| 3409 | } |
| 3410 | |
| 3411 | return std::make_tuple(args&: AliasGroups, args&: HasWriteAccess); |
| 3412 | } |
| 3413 | |
| 3414 | bool ScopBuilder::buildAliasGroups() { |
| 3415 | // To create sound alias checks we perform the following steps: |
| 3416 | // o) We partition each group into read only and non read only accesses. |
| 3417 | // o) For each group with more than one base pointer we then compute minimal |
| 3418 | // and maximal accesses to each array of a group in read only and non |
| 3419 | // read only partitions separately. |
| 3420 | AliasGroupVectorTy AliasGroups; |
| 3421 | DenseSet<const ScopArrayInfo *> HasWriteAccess; |
| 3422 | |
| 3423 | std::tie(args&: AliasGroups, args&: HasWriteAccess) = buildAliasGroupsForAccesses(); |
| 3424 | |
| 3425 | splitAliasGroupsByDomain(AliasGroups); |
| 3426 | |
| 3427 | for (AliasGroupTy &AG : AliasGroups) { |
| 3428 | if (!scop->hasFeasibleRuntimeContext()) |
| 3429 | return false; |
| 3430 | |
| 3431 | { |
| 3432 | IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut); |
| 3433 | bool Valid = buildAliasGroup(AliasGroup&: AG, HasWriteAccess); |
| 3434 | if (!Valid) |
| 3435 | return false; |
| 3436 | } |
| 3437 | if (isl_ctx_last_error(ctx: scop->getIslCtx().get()) == isl_error_quota) { |
| 3438 | scop->invalidate(Kind: COMPLEXITY, Loc: DebugLoc()); |
| 3439 | return false; |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | return true; |
| 3444 | } |
| 3445 | |
| 3446 | bool ScopBuilder::buildAliasGroup( |
| 3447 | AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) { |
| 3448 | AliasGroupTy ReadOnlyAccesses; |
| 3449 | AliasGroupTy ReadWriteAccesses; |
| 3450 | SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays; |
| 3451 | SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays; |
| 3452 | |
| 3453 | if (AliasGroup.size() < 2) |
| 3454 | return true; |
| 3455 | |
| 3456 | for (MemoryAccess *Access : AliasGroup) { |
| 3457 | ORE.emit(OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias" , |
| 3458 | Access->getAccessInstruction()) |
| 3459 | << "Possibly aliasing pointer, use restrict keyword." ); |
| 3460 | const ScopArrayInfo *Array = Access->getScopArrayInfo(); |
| 3461 | if (HasWriteAccess.count(V: Array)) { |
| 3462 | ReadWriteArrays.insert(Ptr: Array); |
| 3463 | ReadWriteAccesses.push_back(Elt: Access); |
| 3464 | } else { |
| 3465 | ReadOnlyArrays.insert(Ptr: Array); |
| 3466 | ReadOnlyAccesses.push_back(Elt: Access); |
| 3467 | } |
| 3468 | } |
| 3469 | |
| 3470 | // If there are no read-only pointers, and less than two read-write pointers, |
| 3471 | // no alias check is needed. |
| 3472 | if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1) |
| 3473 | return true; |
| 3474 | |
| 3475 | // If there is no read-write pointer, no alias check is needed. |
| 3476 | if (ReadWriteArrays.empty()) |
| 3477 | return true; |
| 3478 | |
| 3479 | // For non-affine accesses, no alias check can be generated as we cannot |
| 3480 | // compute a sufficiently tight lower and upper bound: bail out. |
| 3481 | for (MemoryAccess *MA : AliasGroup) { |
| 3482 | if (!MA->isAffine()) { |
| 3483 | scop->invalidate(Kind: ALIASING, Loc: MA->getAccessInstruction()->getDebugLoc(), |
| 3484 | BB: MA->getAccessInstruction()->getParent()); |
| 3485 | return false; |
| 3486 | } |
| 3487 | } |
| 3488 | |
| 3489 | // Ensure that for all memory accesses for which we generate alias checks, |
| 3490 | // their base pointers are available. |
| 3491 | for (MemoryAccess *MA : AliasGroup) { |
| 3492 | if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA)) |
| 3493 | scop->addRequiredInvariantLoad( |
| 3494 | LI: cast<LoadInst>(Val: BasePtrMA->getAccessInstruction())); |
| 3495 | } |
| 3496 | |
| 3497 | // scop->getAliasGroups().emplace_back(); |
| 3498 | // Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back(); |
| 3499 | Scop::MinMaxVectorTy MinMaxAccessesReadWrite; |
| 3500 | Scop::MinMaxVectorTy MinMaxAccessesReadOnly; |
| 3501 | |
| 3502 | bool Valid; |
| 3503 | |
| 3504 | Valid = calculateMinMaxAccess(AliasGroup: ReadWriteAccesses, MinMaxAccesses&: MinMaxAccessesReadWrite); |
| 3505 | |
| 3506 | if (!Valid) |
| 3507 | return false; |
| 3508 | |
| 3509 | // Bail out if the number of values we need to compare is too large. |
| 3510 | // This is important as the number of comparisons grows quadratically with |
| 3511 | // the number of values we need to compare. |
| 3512 | if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() > |
| 3513 | RunTimeChecksMaxArraysPerGroup) |
| 3514 | return false; |
| 3515 | |
| 3516 | Valid = calculateMinMaxAccess(AliasGroup: ReadOnlyAccesses, MinMaxAccesses&: MinMaxAccessesReadOnly); |
| 3517 | |
| 3518 | scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly); |
| 3519 | if (!Valid) |
| 3520 | return false; |
| 3521 | |
| 3522 | return true; |
| 3523 | } |
| 3524 | |
| 3525 | void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) { |
| 3526 | for (unsigned u = 0; u < AliasGroups.size(); u++) { |
| 3527 | AliasGroupTy NewAG; |
| 3528 | AliasGroupTy &AG = AliasGroups[u]; |
| 3529 | AliasGroupTy::iterator AGI = AG.begin(); |
| 3530 | isl::set AGDomain = getAccessDomain(MA: *AGI); |
| 3531 | while (AGI != AG.end()) { |
| 3532 | MemoryAccess *MA = *AGI; |
| 3533 | isl::set MADomain = getAccessDomain(MA); |
| 3534 | if (AGDomain.is_disjoint(set2: MADomain)) { |
| 3535 | NewAG.push_back(Elt: MA); |
| 3536 | AGI = AG.erase(CI: AGI); |
| 3537 | } else { |
| 3538 | AGDomain = AGDomain.unite(set2: MADomain); |
| 3539 | AGI++; |
| 3540 | } |
| 3541 | } |
| 3542 | if (NewAG.size() > 1) |
| 3543 | AliasGroups.push_back(Elt: std::move(NewAG)); |
| 3544 | } |
| 3545 | } |
| 3546 | |
| 3547 | #ifndef NDEBUG |
| 3548 | static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) { |
| 3549 | auto PhysUse = VirtualUse::create(S, U: Op, LI: &LI, Virtual: false); |
| 3550 | auto VirtUse = VirtualUse::create(S, U: Op, LI: &LI, Virtual: true); |
| 3551 | assert(PhysUse.getKind() == VirtUse.getKind()); |
| 3552 | } |
| 3553 | |
| 3554 | /// Check the consistency of every statement's MemoryAccesses. |
| 3555 | /// |
| 3556 | /// The check is carried out by expecting the "physical" kind of use (derived |
| 3557 | /// from the BasicBlocks instructions resides in) to be same as the "virtual" |
| 3558 | /// kind of use (derived from a statement's MemoryAccess). |
| 3559 | /// |
| 3560 | /// The "physical" uses are taken by ensureValueRead to determine whether to |
| 3561 | /// create MemoryAccesses. When done, the kind of scalar access should be the |
| 3562 | /// same no matter which way it was derived. |
| 3563 | /// |
| 3564 | /// The MemoryAccesses might be changed by later SCoP-modifying passes and hence |
| 3565 | /// can intentionally influence on the kind of uses (not corresponding to the |
| 3566 | /// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has |
| 3567 | /// to pick up the virtual uses. But here in the code generator, this has not |
| 3568 | /// happened yet, such that virtual and physical uses are equivalent. |
| 3569 | static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) { |
| 3570 | for (auto *BB : S->getRegion().blocks()) { |
| 3571 | for (auto &Inst : *BB) { |
| 3572 | auto *Stmt = S->getStmtFor(Inst: &Inst); |
| 3573 | if (!Stmt) |
| 3574 | continue; |
| 3575 | |
| 3576 | if (isIgnoredIntrinsic(V: &Inst)) |
| 3577 | continue; |
| 3578 | |
| 3579 | // Branch conditions are encoded in the statement domains. |
| 3580 | if (Inst.isTerminator() && Stmt->isBlockStmt()) |
| 3581 | continue; |
| 3582 | |
| 3583 | // Verify all uses. |
| 3584 | for (auto &Op : Inst.operands()) |
| 3585 | verifyUse(S, Op, LI); |
| 3586 | |
| 3587 | // Stores do not produce values used by other statements. |
| 3588 | if (isa<StoreInst>(Val: Inst)) |
| 3589 | continue; |
| 3590 | |
| 3591 | // For every value defined in the block, also check that a use of that |
| 3592 | // value in the same statement would not be an inter-statement use. It can |
| 3593 | // still be synthesizable or load-hoisted, but these kind of instructions |
| 3594 | // are not directly copied in code-generation. |
| 3595 | auto VirtDef = |
| 3596 | VirtualUse::create(S, UserStmt: Stmt, UserScope: Stmt->getSurroundingLoop(), Val: &Inst, Virtual: true); |
| 3597 | assert(VirtDef.getKind() == VirtualUse::Synthesizable || |
| 3598 | VirtDef.getKind() == VirtualUse::Intra || |
| 3599 | VirtDef.getKind() == VirtualUse::Hoisted); |
| 3600 | } |
| 3601 | } |
| 3602 | |
| 3603 | if (S->hasSingleExitEdge()) |
| 3604 | return; |
| 3605 | |
| 3606 | // PHINodes in the SCoP region's exit block are also uses to be checked. |
| 3607 | if (!S->getRegion().isTopLevelRegion()) { |
| 3608 | for (auto &Inst : *S->getRegion().getExit()) { |
| 3609 | if (!isa<PHINode>(Val: Inst)) |
| 3610 | break; |
| 3611 | |
| 3612 | for (auto &Op : Inst.operands()) |
| 3613 | verifyUse(S, Op, LI); |
| 3614 | } |
| 3615 | } |
| 3616 | } |
| 3617 | #endif |
| 3618 | |
| 3619 | void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) { |
| 3620 | scop.reset(p: new Scop(R, SE, LI, DT, *SD.getDetectionContext(R: &R), ORE, |
| 3621 | SD.getNextID())); |
| 3622 | |
| 3623 | buildStmts(SR&: R); |
| 3624 | |
| 3625 | // Create all invariant load instructions first. These are categorized as |
| 3626 | // 'synthesizable', therefore are not part of any ScopStmt but need to be |
| 3627 | // created somewhere. |
| 3628 | const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads(); |
| 3629 | for (BasicBlock *BB : scop->getRegion().blocks()) { |
| 3630 | if (SD.isErrorBlock(BB&: *BB, R: scop->getRegion())) |
| 3631 | continue; |
| 3632 | |
| 3633 | for (Instruction &Inst : *BB) { |
| 3634 | LoadInst *Load = dyn_cast<LoadInst>(Val: &Inst); |
| 3635 | if (!Load) |
| 3636 | continue; |
| 3637 | |
| 3638 | if (!RIL.count(key: Load)) |
| 3639 | continue; |
| 3640 | |
| 3641 | // Invariant loads require a MemoryAccess to be created in some statement. |
| 3642 | // It is not important to which statement the MemoryAccess is added |
| 3643 | // because it will later be removed from the ScopStmt again. We chose the |
| 3644 | // first statement of the basic block the LoadInst is in. |
| 3645 | ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB); |
| 3646 | assert(!List.empty()); |
| 3647 | ScopStmt *RILStmt = List.front(); |
| 3648 | buildMemoryAccess(Inst: Load, Stmt: RILStmt); |
| 3649 | } |
| 3650 | } |
| 3651 | buildAccessFunctions(); |
| 3652 | |
| 3653 | // In case the region does not have an exiting block we will later (during |
| 3654 | // code generation) split the exit block. This will move potential PHI nodes |
| 3655 | // from the current exit block into the new region exiting block. Hence, PHI |
| 3656 | // nodes that are at this point not part of the region will be. |
| 3657 | // To handle these PHI nodes later we will now model their operands as scalar |
| 3658 | // accesses. Note that we do not model anything in the exit block if we have |
| 3659 | // an exiting block in the region, as there will not be any splitting later. |
| 3660 | if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) { |
| 3661 | for (Instruction &Inst : *R.getExit()) { |
| 3662 | PHINode *PHI = dyn_cast<PHINode>(Val: &Inst); |
| 3663 | if (!PHI) |
| 3664 | break; |
| 3665 | |
| 3666 | buildPHIAccesses(PHIStmt: nullptr, PHI, NonAffineSubRegion: nullptr, IsExitBlock: true); |
| 3667 | } |
| 3668 | } |
| 3669 | |
| 3670 | // Create memory accesses for global reads since all arrays are now known. |
| 3671 | const SCEV *AF = SE.getConstant(Ty: IntegerType::getInt64Ty(C&: SE.getContext()), V: 0); |
| 3672 | for (auto GlobalReadPair : GlobalReads) { |
| 3673 | ScopStmt *GlobalReadStmt = GlobalReadPair.first; |
| 3674 | Instruction *GlobalRead = GlobalReadPair.second; |
| 3675 | for (auto *BP : ArrayBasePointers) |
| 3676 | addArrayAccess(Stmt: GlobalReadStmt, MemAccInst: MemAccInst(GlobalRead), AccType: MemoryAccess::READ, |
| 3677 | BaseAddress: BP, ElementType: BP->getType(), IsAffine: false, Subscripts: {AF}, Sizes: {nullptr}, AccessValue: GlobalRead); |
| 3678 | } |
| 3679 | |
| 3680 | buildInvariantEquivalenceClasses(); |
| 3681 | |
| 3682 | /// A map from basic blocks to their invalid domains. |
| 3683 | DenseMap<BasicBlock *, isl::set> InvalidDomainMap; |
| 3684 | |
| 3685 | if (!buildDomains(R: &R, InvalidDomainMap)) { |
| 3686 | POLLY_DEBUG( |
| 3687 | dbgs() << "Bailing-out because buildDomains encountered problems\n" ); |
| 3688 | return; |
| 3689 | } |
| 3690 | |
| 3691 | addUserAssumptions(AC, InvalidDomainMap); |
| 3692 | |
| 3693 | // Initialize the invalid domain. |
| 3694 | for (ScopStmt &Stmt : scop->Stmts) |
| 3695 | if (Stmt.isBlockStmt()) |
| 3696 | Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]); |
| 3697 | else |
| 3698 | Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock( |
| 3699 | RN: Stmt.getRegion()->getNode())]); |
| 3700 | |
| 3701 | // Remove empty statements. |
| 3702 | // Exit early in case there are no executable statements left in this scop. |
| 3703 | scop->removeStmtNotInDomainMap(); |
| 3704 | scop->simplifySCoP(AfterHoisting: false); |
| 3705 | if (scop->isEmpty()) { |
| 3706 | POLLY_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n" ); |
| 3707 | return; |
| 3708 | } |
| 3709 | |
| 3710 | // The ScopStmts now have enough information to initialize themselves. |
| 3711 | for (ScopStmt &Stmt : *scop) { |
| 3712 | collectSurroundingLoops(Stmt); |
| 3713 | |
| 3714 | buildDomain(Stmt); |
| 3715 | buildAccessRelations(Stmt); |
| 3716 | |
| 3717 | if (DetectReductions) |
| 3718 | checkForReductions(Stmt); |
| 3719 | } |
| 3720 | |
| 3721 | // Check early for a feasible runtime context. |
| 3722 | if (!scop->hasFeasibleRuntimeContext()) { |
| 3723 | POLLY_DEBUG( |
| 3724 | dbgs() << "Bailing-out because of unfeasible context (early)\n" ); |
| 3725 | return; |
| 3726 | } |
| 3727 | |
| 3728 | // Check early for profitability. Afterwards it cannot change anymore, |
| 3729 | // only the runtime context could become infeasible. |
| 3730 | if (!scop->isProfitable(ScalarsAreUnprofitable: UnprofitableScalarAccs)) { |
| 3731 | scop->invalidate(Kind: PROFITABLE, Loc: DebugLoc()); |
| 3732 | POLLY_DEBUG( |
| 3733 | dbgs() << "Bailing-out because SCoP is not considered profitable\n" ); |
| 3734 | return; |
| 3735 | } |
| 3736 | |
| 3737 | buildSchedule(); |
| 3738 | |
| 3739 | finalizeAccesses(); |
| 3740 | |
| 3741 | scop->realignParams(); |
| 3742 | addUserContext(); |
| 3743 | |
| 3744 | // After the context was fully constructed, thus all our knowledge about |
| 3745 | // the parameters is in there, we add all recorded assumptions to the |
| 3746 | // assumed/invalid context. |
| 3747 | addRecordedAssumptions(); |
| 3748 | |
| 3749 | scop->simplifyContexts(); |
| 3750 | if (!buildAliasChecks()) { |
| 3751 | POLLY_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n" ); |
| 3752 | return; |
| 3753 | } |
| 3754 | |
| 3755 | hoistInvariantLoads(); |
| 3756 | canonicalizeDynamicBasePtrs(); |
| 3757 | verifyInvariantLoads(); |
| 3758 | scop->simplifySCoP(AfterHoisting: true); |
| 3759 | |
| 3760 | // Check late for a feasible runtime context because profitability did not |
| 3761 | // change. |
| 3762 | if (!scop->hasFeasibleRuntimeContext()) { |
| 3763 | POLLY_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n" ); |
| 3764 | return; |
| 3765 | } |
| 3766 | |
| 3767 | #ifndef NDEBUG |
| 3768 | verifyUses(S: scop.get(), LI, DT); |
| 3769 | #endif |
| 3770 | } |
| 3771 | |
| 3772 | ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AAResults &AA, |
| 3773 | const DataLayout &DL, DominatorTree &DT, LoopInfo &LI, |
| 3774 | ScopDetection &SD, ScalarEvolution &SE, |
| 3775 | OptimizationRemarkEmitter &ORE) |
| 3776 | : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) { |
| 3777 | DebugLoc Beg, End; |
| 3778 | auto P = getBBPairForRegion(R); |
| 3779 | getDebugLocations(P, Begin&: Beg, End); |
| 3780 | |
| 3781 | std::string Msg = "SCoP begins here." ; |
| 3782 | ORE.emit(OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry" , Beg, P.first) |
| 3783 | << Msg); |
| 3784 | |
| 3785 | buildScop(R&: *R, AC); |
| 3786 | |
| 3787 | POLLY_DEBUG(dbgs() << *scop); |
| 3788 | |
| 3789 | if (!scop->hasFeasibleRuntimeContext()) { |
| 3790 | InfeasibleScops++; |
| 3791 | Msg = "SCoP ends here but was dismissed." ; |
| 3792 | POLLY_DEBUG(dbgs() << "SCoP detected but dismissed\n" ); |
| 3793 | RecordedAssumptions.clear(); |
| 3794 | scop.reset(); |
| 3795 | } else { |
| 3796 | Msg = "SCoP ends here." ; |
| 3797 | ++ScopFound; |
| 3798 | if (scop->getMaxLoopDepth() > 0) |
| 3799 | ++RichScopFound; |
| 3800 | } |
| 3801 | |
| 3802 | if (R->isTopLevelRegion()) |
| 3803 | ORE.emit(OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd" , End, P.first) |
| 3804 | << Msg); |
| 3805 | else |
| 3806 | ORE.emit(OptDiag: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd" , End, P.second) |
| 3807 | << Msg); |
| 3808 | } |
| 3809 | |