1//===- ScopBuilder.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Create a polyhedral description for a static control flow region.
10//
11// The pass creates a polyhedral description of the Scops detected by the SCoP
12// detection derived from their LLVM-IR code.
13//
14//===----------------------------------------------------------------------===//
15
16#include "polly/ScopBuilder.h"
17#include "polly/Options.h"
18#include "polly/ScopDetection.h"
19#include "polly/ScopInfo.h"
20#include "polly/Support/GICHelper.h"
21#include "polly/Support/ISLTools.h"
22#include "polly/Support/SCEVValidator.h"
23#include "polly/Support/ScopHelper.h"
24#include "polly/Support/VirtualInstruction.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/EquivalenceClasses.h"
27#include "llvm/ADT/PostOrderIterator.h"
28#include "llvm/ADT/Sequence.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/AliasAnalysis.h"
32#include "llvm/Analysis/AssumptionCache.h"
33#include "llvm/Analysis/Delinearization.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/LoopInfo.h"
36#include "llvm/Analysis/OptimizationRemarkEmitter.h"
37#include "llvm/Analysis/RegionInfo.h"
38#include "llvm/Analysis/RegionIterator.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/ScalarEvolutionExpressions.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugLoc.h"
44#include "llvm/IR/DerivedTypes.h"
45#include "llvm/IR/Dominators.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/Use.h"
52#include "llvm/IR/Value.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include <cassert>
59
60using namespace llvm;
61using namespace polly;
62
63#define DEBUG_TYPE "polly-scops"
64
65STATISTIC(ScopFound, "Number of valid Scops");
66STATISTIC(RichScopFound, "Number of Scops containing a loop");
67STATISTIC(InfeasibleScops,
68 "Number of SCoPs with statically infeasible context.");
69
70bool polly::ModelReadOnlyScalars;
71
72// The maximal number of dimensions we allow during invariant load construction.
73// More complex access ranges will result in very high compile time and are also
74// unlikely to result in good code. This value is very high and should only
75// trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
76static unsigned const MaxDimensionsInAccessRange = 9;
77
78static cl::opt<bool, true> XModelReadOnlyScalars(
79 "polly-analyze-read-only-scalars",
80 cl::desc("Model read-only scalar values in the scop description"),
81 cl::location(L&: ModelReadOnlyScalars), cl::Hidden, cl::init(Val: true),
82 cl::cat(PollyCategory));
83
84static cl::opt<int>
85 OptComputeOut("polly-analysis-computeout",
86 cl::desc("Bound the scop analysis by a maximal amount of "
87 "computational steps (0 means no bound)"),
88 cl::Hidden, cl::init(Val: 800000), cl::cat(PollyCategory));
89
90static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams(
91 "polly-allow-dereference-of-all-function-parameters",
92 cl::desc(
93 "Treat all parameters to functions that are pointers as dereferencible."
94 " This is useful for invariant load hoisting, since we can generate"
95 " less runtime checks. This is only valid if all pointers to functions"
96 " are always initialized, so that Polly can choose to hoist"
97 " their loads. "),
98 cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory));
99
100static cl::opt<bool>
101 PollyIgnoreInbounds("polly-ignore-inbounds",
102 cl::desc("Do not take inbounds assumptions at all"),
103 cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory));
104
105static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
106 "polly-rtc-max-arrays-per-group",
107 cl::desc("The maximal number of arrays to compare in each alias group."),
108 cl::Hidden, cl::init(Val: 20), cl::cat(PollyCategory));
109
110static cl::opt<unsigned> RunTimeChecksMaxAccessDisjuncts(
111 "polly-rtc-max-array-disjuncts",
112 cl::desc("The maximal number of disjunts allowed in memory accesses to "
113 "to build RTCs."),
114 cl::Hidden, cl::init(Val: 8), cl::cat(PollyCategory));
115
116static cl::opt<unsigned> RunTimeChecksMaxParameters(
117 "polly-rtc-max-parameters",
118 cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
119 cl::init(Val: 8), cl::cat(PollyCategory));
120
121static cl::opt<bool> UnprofitableScalarAccs(
122 "polly-unprofitable-scalar-accs",
123 cl::desc("Count statements with scalar accesses as not optimizable"),
124 cl::Hidden, cl::init(Val: false), cl::cat(PollyCategory));
125
126static cl::opt<std::string> UserContextStr(
127 "polly-context", cl::value_desc("isl parameter set"),
128 cl::desc("Provide additional constraints on the context parameters"),
129 cl::init(Val: ""), cl::cat(PollyCategory));
130
131static cl::opt<bool> DetectReductions("polly-detect-reductions",
132 cl::desc("Detect and exploit reductions"),
133 cl::Hidden, cl::init(Val: true),
134 cl::cat(PollyCategory));
135
136// Multiplicative reductions can be disabled separately as these kind of
137// operations can overflow easily. Additive reductions and bit operations
138// are in contrast pretty stable.
139static cl::opt<bool> DisableMultiplicativeReductions(
140 "polly-disable-multiplicative-reductions",
141 cl::desc("Disable multiplicative reductions"), cl::Hidden,
142 cl::cat(PollyCategory));
143
144enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores };
145
146static cl::opt<GranularityChoice> StmtGranularity(
147 "polly-stmt-granularity",
148 cl::desc(
149 "Algorithm to use for splitting basic blocks into multiple statements"),
150 cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb",
151 "One statement per basic block"),
152 clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep",
153 "Scalar independence heuristic"),
154 clEnumValN(GranularityChoice::Stores, "store",
155 "Store-level granularity")),
156 cl::init(Val: GranularityChoice::ScalarIndependence), cl::cat(PollyCategory));
157
158/// Helper to treat non-affine regions and basic blocks the same.
159///
160///{
161
162/// Return the block that is the representing block for @p RN.
163static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
164 return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
165 : RN->getNodeAs<BasicBlock>();
166}
167
168/// Return the @p idx'th block that is executed after @p RN.
169static inline BasicBlock *
170getRegionNodeSuccessor(RegionNode *RN, Instruction *TI, unsigned idx) {
171 if (RN->isSubRegion()) {
172 assert(idx == 0);
173 return RN->getNodeAs<Region>()->getExit();
174 }
175 return TI->getSuccessor(Idx: idx);
176}
177
178static bool containsErrorBlock(RegionNode *RN, const Region &R,
179 ScopDetection *SD) {
180 if (!RN->isSubRegion())
181 return SD->isErrorBlock(BB&: *RN->getNodeAs<BasicBlock>(), R);
182 for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
183 if (SD->isErrorBlock(BB&: *BB, R))
184 return true;
185 return false;
186}
187
188///}
189
190/// Create a map to map from a given iteration to a subsequent iteration.
191///
192/// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
193/// is incremented by one and all other dimensions are equal, e.g.,
194/// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
195///
196/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
197static isl::map createNextIterationMap(isl::space SetSpace, unsigned Dim) {
198 isl::space MapSpace = SetSpace.map_from_set();
199 isl::map NextIterationMap = isl::map::universe(space: MapSpace);
200 for (unsigned u : rangeIslSize(Begin: 0, End: NextIterationMap.domain_tuple_dim()))
201 if (u != Dim)
202 NextIterationMap =
203 NextIterationMap.equate(type1: isl::dim::in, pos1: u, type2: isl::dim::out, pos2: u);
204 isl::constraint C =
205 isl::constraint::alloc_equality(ls: isl::local_space(MapSpace));
206 C = C.set_constant_si(1);
207 C = C.set_coefficient_si(type: isl::dim::in, pos: Dim, v: 1);
208 C = C.set_coefficient_si(type: isl::dim::out, pos: Dim, v: -1);
209 NextIterationMap = NextIterationMap.add_constraint(constraint: C);
210 return NextIterationMap;
211}
212
213/// Add @p BSet to set @p BoundedParts if @p BSet is bounded.
214static isl::set collectBoundedParts(isl::set S) {
215 isl::set BoundedParts = isl::set::empty(space: S.get_space());
216 for (isl::basic_set BSet : S.get_basic_set_list())
217 if (BSet.is_bounded())
218 BoundedParts = BoundedParts.unite(set2: isl::set(BSet));
219 return BoundedParts;
220}
221
222/// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
223///
224/// @returns A separation of @p S into first an unbounded then a bounded subset,
225/// both with regards to the dimension @p Dim.
226static std::pair<isl::set, isl::set> partitionSetParts(isl::set S,
227 unsigned Dim) {
228 for (unsigned u : rangeIslSize(Begin: 0, End: S.tuple_dim()))
229 S = S.lower_bound_si(type: isl::dim::set, pos: u, value: 0);
230
231 unsigned NumDimsS = unsignedFromIslSize(Size: S.tuple_dim());
232 isl::set OnlyDimS = S;
233
234 // Remove dimensions that are greater than Dim as they are not interesting.
235 assert(NumDimsS >= Dim + 1);
236 OnlyDimS = OnlyDimS.project_out(type: isl::dim::set, first: Dim + 1, n: NumDimsS - Dim - 1);
237
238 // Create artificial parametric upper bounds for dimensions smaller than Dim
239 // as we are not interested in them.
240 OnlyDimS = OnlyDimS.insert_dims(type: isl::dim::param, pos: 0, n: Dim);
241
242 for (unsigned u = 0; u < Dim; u++) {
243 isl::constraint C = isl::constraint::alloc_inequality(
244 ls: isl::local_space(OnlyDimS.get_space()));
245 C = C.set_coefficient_si(type: isl::dim::param, pos: u, v: 1);
246 C = C.set_coefficient_si(type: isl::dim::set, pos: u, v: -1);
247 OnlyDimS = OnlyDimS.add_constraint(constraint: C);
248 }
249
250 // Collect all bounded parts of OnlyDimS.
251 isl::set BoundedParts = collectBoundedParts(S: OnlyDimS);
252
253 // Create the dimensions greater than Dim again.
254 BoundedParts =
255 BoundedParts.insert_dims(type: isl::dim::set, pos: Dim + 1, n: NumDimsS - Dim - 1);
256
257 // Remove the artificial upper bound parameters again.
258 BoundedParts = BoundedParts.remove_dims(type: isl::dim::param, first: 0, n: Dim);
259
260 isl::set UnboundedParts = S.subtract(set2: BoundedParts);
261 return std::make_pair(x&: UnboundedParts, y&: BoundedParts);
262}
263
264/// Create the conditions under which @p L @p Pred @p R is true.
265static isl::set buildConditionSet(ICmpInst::Predicate Pred, isl::pw_aff L,
266 isl::pw_aff R) {
267 switch (Pred) {
268 case ICmpInst::ICMP_EQ:
269 return L.eq_set(pwaff2: R);
270 case ICmpInst::ICMP_NE:
271 return L.ne_set(pwaff2: R);
272 case ICmpInst::ICMP_SLT:
273 return L.lt_set(pwaff2: R);
274 case ICmpInst::ICMP_SLE:
275 return L.le_set(pwaff2: R);
276 case ICmpInst::ICMP_SGT:
277 return L.gt_set(pwaff2: R);
278 case ICmpInst::ICMP_SGE:
279 return L.ge_set(pwaff2: R);
280 case ICmpInst::ICMP_ULT:
281 return L.lt_set(pwaff2: R);
282 case ICmpInst::ICMP_UGT:
283 return L.gt_set(pwaff2: R);
284 case ICmpInst::ICMP_ULE:
285 return L.le_set(pwaff2: R);
286 case ICmpInst::ICMP_UGE:
287 return L.ge_set(pwaff2: R);
288 default:
289 llvm_unreachable("Non integer predicate not supported");
290 }
291}
292
293isl::set ScopBuilder::adjustDomainDimensions(isl::set Dom, Loop *OldL,
294 Loop *NewL) {
295 // If the loops are the same there is nothing to do.
296 if (NewL == OldL)
297 return Dom;
298
299 int OldDepth = scop->getRelativeLoopDepth(L: OldL);
300 int NewDepth = scop->getRelativeLoopDepth(L: NewL);
301 // If both loops are non-affine loops there is nothing to do.
302 if (OldDepth == -1 && NewDepth == -1)
303 return Dom;
304
305 // Distinguish three cases:
306 // 1) The depth is the same but the loops are not.
307 // => One loop was left one was entered.
308 // 2) The depth increased from OldL to NewL.
309 // => One loop was entered, none was left.
310 // 3) The depth decreased from OldL to NewL.
311 // => Loops were left were difference of the depths defines how many.
312 if (OldDepth == NewDepth) {
313 assert(OldL->getParentLoop() == NewL->getParentLoop());
314 Dom = Dom.project_out(type: isl::dim::set, first: NewDepth, n: 1);
315 Dom = Dom.add_dims(type: isl::dim::set, n: 1);
316 } else if (OldDepth < NewDepth) {
317 assert(OldDepth + 1 == NewDepth);
318 auto &R = scop->getRegion();
319 (void)R;
320 assert(NewL->getParentLoop() == OldL ||
321 ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
322 Dom = Dom.add_dims(type: isl::dim::set, n: 1);
323 } else {
324 assert(OldDepth > NewDepth);
325 unsigned Diff = OldDepth - NewDepth;
326 unsigned NumDim = unsignedFromIslSize(Size: Dom.tuple_dim());
327 assert(NumDim >= Diff);
328 Dom = Dom.project_out(type: isl::dim::set, first: NumDim - Diff, n: Diff);
329 }
330
331 return Dom;
332}
333
334/// Compute the isl representation for the SCEV @p E in this BB.
335///
336/// @param BB The BB for which isl representation is to be
337/// computed.
338/// @param InvalidDomainMap A map of BB to their invalid domains.
339/// @param E The SCEV that should be translated.
340/// @param NonNegative Flag to indicate the @p E has to be non-negative.
341///
342/// Note that this function will also adjust the invalid context accordingly.
343
344__isl_give isl_pw_aff *
345ScopBuilder::getPwAff(BasicBlock *BB,
346 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
347 const SCEV *E, bool NonNegative) {
348 PWACtx PWAC = scop->getPwAff(E, BB, NonNegative, RecordedAssumptions: &RecordedAssumptions);
349 InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(set2: PWAC.second);
350 return PWAC.first.release();
351}
352
353/// Build condition sets for unsigned ICmpInst(s).
354/// Special handling is required for unsigned operands to ensure that if
355/// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
356/// it should wrap around.
357///
358/// @param IsStrictUpperBound holds information on the predicate relation
359/// between TestVal and UpperBound, i.e,
360/// TestVal < UpperBound OR TestVal <= UpperBound
361__isl_give isl_set *ScopBuilder::buildUnsignedConditionSets(
362 BasicBlock *BB, Value *Condition, __isl_keep isl_set *Domain,
363 const SCEV *SCEV_TestVal, const SCEV *SCEV_UpperBound,
364 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
365 bool IsStrictUpperBound) {
366 // Do not take NonNeg assumption on TestVal
367 // as it might have MSB (Sign bit) set.
368 isl_pw_aff *TestVal = getPwAff(BB, InvalidDomainMap, E: SCEV_TestVal, NonNegative: false);
369 // Take NonNeg assumption on UpperBound.
370 isl_pw_aff *UpperBound =
371 getPwAff(BB, InvalidDomainMap, E: SCEV_UpperBound, NonNegative: true);
372
373 // 0 <= TestVal
374 isl_set *First =
375 isl_pw_aff_le_set(pwaff1: isl_pw_aff_zero_on_domain(ls: isl_local_space_from_space(
376 space: isl_pw_aff_get_domain_space(pwaff: TestVal))),
377 pwaff2: isl_pw_aff_copy(pwaff: TestVal));
378
379 isl_set *Second;
380 if (IsStrictUpperBound)
381 // TestVal < UpperBound
382 Second = isl_pw_aff_lt_set(pwaff1: TestVal, pwaff2: UpperBound);
383 else
384 // TestVal <= UpperBound
385 Second = isl_pw_aff_le_set(pwaff1: TestVal, pwaff2: UpperBound);
386
387 isl_set *ConsequenceCondSet = isl_set_intersect(set1: First, set2: Second);
388 return ConsequenceCondSet;
389}
390
391bool ScopBuilder::buildConditionSets(
392 BasicBlock *BB, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
393 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
394 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
395 Value *Condition = getConditionFromTerminator(TI: SI);
396 assert(Condition && "No condition for switch");
397
398 isl_pw_aff *LHS, *RHS;
399 LHS = getPwAff(BB, InvalidDomainMap, E: SE.getSCEVAtScope(V: Condition, L));
400
401 unsigned NumSuccessors = SI->getNumSuccessors();
402 ConditionSets.resize(N: NumSuccessors);
403 for (auto &Case : SI->cases()) {
404 unsigned Idx = Case.getSuccessorIndex();
405 ConstantInt *CaseValue = Case.getCaseValue();
406
407 RHS = getPwAff(BB, InvalidDomainMap, E: SE.getSCEV(V: CaseValue));
408 isl_set *CaseConditionSet =
409 buildConditionSet(Pred: ICmpInst::ICMP_EQ, L: isl::manage_copy(ptr: LHS),
410 R: isl::manage(ptr: RHS))
411 .release();
412 ConditionSets[Idx] = isl_set_coalesce(
413 set: isl_set_intersect(set1: CaseConditionSet, set2: isl_set_copy(set: Domain)));
414 }
415
416 assert(ConditionSets[0] == nullptr && "Default condition set was set");
417 isl_set *ConditionSetUnion = isl_set_copy(set: ConditionSets[1]);
418 for (unsigned u = 2; u < NumSuccessors; u++)
419 ConditionSetUnion =
420 isl_set_union(set1: ConditionSetUnion, set2: isl_set_copy(set: ConditionSets[u]));
421 ConditionSets[0] = isl_set_subtract(set1: isl_set_copy(set: Domain), set2: ConditionSetUnion);
422
423 isl_pw_aff_free(pwaff: LHS);
424
425 return true;
426}
427
428bool ScopBuilder::buildConditionSets(
429 BasicBlock *BB, Value *Condition, Instruction *TI, Loop *L,
430 __isl_keep isl_set *Domain,
431 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
432 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
433 isl_set *ConsequenceCondSet = nullptr;
434
435 if (auto Load = dyn_cast<LoadInst>(Val: Condition)) {
436 const SCEV *LHSSCEV = SE.getSCEVAtScope(V: Load, L);
437 const SCEV *RHSSCEV = SE.getZero(Ty: LHSSCEV->getType());
438 bool NonNeg = false;
439 isl_pw_aff *LHS = getPwAff(BB, InvalidDomainMap, E: LHSSCEV, NonNegative: NonNeg);
440 isl_pw_aff *RHS = getPwAff(BB, InvalidDomainMap, E: RHSSCEV, NonNegative: NonNeg);
441 ConsequenceCondSet = buildConditionSet(Pred: ICmpInst::ICMP_SLE, L: isl::manage(ptr: LHS),
442 R: isl::manage(ptr: RHS))
443 .release();
444 } else if (auto *PHI = dyn_cast<PHINode>(Val: Condition)) {
445 auto *Unique = dyn_cast<ConstantInt>(
446 Val: getUniqueNonErrorValue(PHI, R: &scop->getRegion(), SD: &SD));
447 assert(Unique &&
448 "A PHINode condition should only be accepted by ScopDetection if "
449 "getUniqueNonErrorValue returns non-NULL");
450
451 if (Unique->isZero())
452 ConsequenceCondSet = isl_set_empty(space: isl_set_get_space(set: Domain));
453 else
454 ConsequenceCondSet = isl_set_universe(space: isl_set_get_space(set: Domain));
455 } else if (auto *CCond = dyn_cast<ConstantInt>(Val: Condition)) {
456 if (CCond->isZero())
457 ConsequenceCondSet = isl_set_empty(space: isl_set_get_space(set: Domain));
458 else
459 ConsequenceCondSet = isl_set_universe(space: isl_set_get_space(set: Domain));
460 } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Condition)) {
461 auto Opcode = BinOp->getOpcode();
462 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
463
464 bool Valid = buildConditionSets(BB, Condition: BinOp->getOperand(i_nocapture: 0), TI, L, Domain,
465 InvalidDomainMap, ConditionSets) &&
466 buildConditionSets(BB, Condition: BinOp->getOperand(i_nocapture: 1), TI, L, Domain,
467 InvalidDomainMap, ConditionSets);
468 if (!Valid) {
469 while (!ConditionSets.empty())
470 isl_set_free(set: ConditionSets.pop_back_val());
471 return false;
472 }
473
474 isl_set_free(set: ConditionSets.pop_back_val());
475 isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
476 isl_set_free(set: ConditionSets.pop_back_val());
477 isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
478
479 if (Opcode == Instruction::And)
480 ConsequenceCondSet = isl_set_intersect(set1: ConsCondPart0, set2: ConsCondPart1);
481 else
482 ConsequenceCondSet = isl_set_union(set1: ConsCondPart0, set2: ConsCondPart1);
483 } else {
484 auto *ICond = dyn_cast<ICmpInst>(Val: Condition);
485 assert(ICond &&
486 "Condition of exiting branch was neither constant nor ICmp!");
487
488 Region &R = scop->getRegion();
489
490 isl_pw_aff *LHS, *RHS;
491 // For unsigned comparisons we assumed the signed bit of neither operand
492 // to be set. The comparison is equal to a signed comparison under this
493 // assumption.
494 bool NonNeg = ICond->isUnsigned();
495 const SCEV *LeftOperand = SE.getSCEVAtScope(V: ICond->getOperand(i_nocapture: 0), L),
496 *RightOperand = SE.getSCEVAtScope(V: ICond->getOperand(i_nocapture: 1), L);
497
498 LeftOperand = tryForwardThroughPHI(Expr: LeftOperand, R, SE, SD: &SD);
499 RightOperand = tryForwardThroughPHI(Expr: RightOperand, R, SE, SD: &SD);
500
501 switch (ICond->getPredicate()) {
502 case ICmpInst::ICMP_ULT:
503 ConsequenceCondSet =
504 buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: LeftOperand,
505 SCEV_UpperBound: RightOperand, InvalidDomainMap, IsStrictUpperBound: true);
506 break;
507 case ICmpInst::ICMP_ULE:
508 ConsequenceCondSet =
509 buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: LeftOperand,
510 SCEV_UpperBound: RightOperand, InvalidDomainMap, IsStrictUpperBound: false);
511 break;
512 case ICmpInst::ICMP_UGT:
513 ConsequenceCondSet =
514 buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: RightOperand,
515 SCEV_UpperBound: LeftOperand, InvalidDomainMap, IsStrictUpperBound: true);
516 break;
517 case ICmpInst::ICMP_UGE:
518 ConsequenceCondSet =
519 buildUnsignedConditionSets(BB, Condition, Domain, SCEV_TestVal: RightOperand,
520 SCEV_UpperBound: LeftOperand, InvalidDomainMap, IsStrictUpperBound: false);
521 break;
522 default:
523 LHS = getPwAff(BB, InvalidDomainMap, E: LeftOperand, NonNegative: NonNeg);
524 RHS = getPwAff(BB, InvalidDomainMap, E: RightOperand, NonNegative: NonNeg);
525 ConsequenceCondSet = buildConditionSet(Pred: ICond->getPredicate(),
526 L: isl::manage(ptr: LHS), R: isl::manage(ptr: RHS))
527 .release();
528 break;
529 }
530 }
531
532 // If no terminator was given we are only looking for parameter constraints
533 // under which @p Condition is true/false.
534 if (!TI)
535 ConsequenceCondSet = isl_set_params(set: ConsequenceCondSet);
536 assert(ConsequenceCondSet);
537 ConsequenceCondSet = isl_set_coalesce(
538 set: isl_set_intersect(set1: ConsequenceCondSet, set2: isl_set_copy(set: Domain)));
539
540 isl_set *AlternativeCondSet = nullptr;
541 bool TooComplex =
542 isl_set_n_basic_set(set: ConsequenceCondSet) >= (int)MaxDisjunctsInDomain;
543
544 if (!TooComplex) {
545 AlternativeCondSet = isl_set_subtract(set1: isl_set_copy(set: Domain),
546 set2: isl_set_copy(set: ConsequenceCondSet));
547 TooComplex =
548 isl_set_n_basic_set(set: AlternativeCondSet) >= (int)MaxDisjunctsInDomain;
549 }
550
551 if (TooComplex) {
552 scop->invalidate(Kind: COMPLEXITY, Loc: TI ? TI->getDebugLoc() : DebugLoc(),
553 BB: TI ? TI->getParent() : nullptr /* BasicBlock */);
554 isl_set_free(set: AlternativeCondSet);
555 isl_set_free(set: ConsequenceCondSet);
556 return false;
557 }
558
559 ConditionSets.push_back(Elt: ConsequenceCondSet);
560 ConditionSets.push_back(Elt: isl_set_coalesce(set: AlternativeCondSet));
561
562 return true;
563}
564
565bool ScopBuilder::buildConditionSets(
566 BasicBlock *BB, Instruction *TI, Loop *L, __isl_keep isl_set *Domain,
567 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
568 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
569 if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI))
570 return buildConditionSets(BB, SI, L, Domain, InvalidDomainMap,
571 ConditionSets);
572
573 assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
574
575 if (TI->getNumSuccessors() == 1) {
576 ConditionSets.push_back(Elt: isl_set_copy(set: Domain));
577 return true;
578 }
579
580 Value *Condition = getConditionFromTerminator(TI);
581 assert(Condition && "No condition for Terminator");
582
583 return buildConditionSets(BB, Condition, TI, L, Domain, InvalidDomainMap,
584 ConditionSets);
585}
586
587bool ScopBuilder::propagateDomainConstraints(
588 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
589 // Iterate over the region R and propagate the domain constrains from the
590 // predecessors to the current node. In contrast to the
591 // buildDomainsWithBranchConstraints function, this one will pull the domain
592 // information from the predecessors instead of pushing it to the successors.
593 // Additionally, we assume the domains to be already present in the domain
594 // map here. However, we iterate again in reverse post order so we know all
595 // predecessors have been visited before a block or non-affine subregion is
596 // visited.
597
598 ReversePostOrderTraversal<Region *> RTraversal(R);
599 for (auto *RN : RTraversal) {
600 // Recurse for affine subregions but go on for basic blocks and non-affine
601 // subregions.
602 if (RN->isSubRegion()) {
603 Region *SubRegion = RN->getNodeAs<Region>();
604 if (!scop->isNonAffineSubRegion(R: SubRegion)) {
605 if (!propagateDomainConstraints(R: SubRegion, InvalidDomainMap))
606 return false;
607 continue;
608 }
609 }
610
611 BasicBlock *BB = getRegionNodeBasicBlock(RN);
612 isl::set &Domain = scop->getOrInitEmptyDomain(BB);
613 assert(!Domain.is_null());
614
615 // Under the union of all predecessor conditions we can reach this block.
616 isl::set PredDom = getPredecessorDomainConstraints(BB, Domain);
617 Domain = Domain.intersect(set2: PredDom).coalesce();
618 Domain = Domain.align_params(model: scop->getParamSpace());
619
620 Loop *BBLoop = getRegionNodeLoop(RN, LI);
621 if (BBLoop && BBLoop->getHeader() == BB && scop->contains(L: BBLoop))
622 if (!addLoopBoundsToHeaderDomain(L: BBLoop, InvalidDomainMap))
623 return false;
624 }
625
626 return true;
627}
628
629void ScopBuilder::propagateDomainConstraintsToRegionExit(
630 BasicBlock *BB, Loop *BBLoop,
631 SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks,
632 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
633 // Check if the block @p BB is the entry of a region. If so we propagate it's
634 // domain to the exit block of the region. Otherwise we are done.
635 auto *RI = scop->getRegion().getRegionInfo();
636 auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
637 auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
638 if (!BBReg || BBReg->getEntry() != BB || !scop->contains(BB: ExitBB))
639 return;
640
641 // Do not propagate the domain if there is a loop backedge inside the region
642 // that would prevent the exit block from being executed.
643 auto *L = BBLoop;
644 while (L && scop->contains(L)) {
645 SmallVector<BasicBlock *, 4> LatchBBs;
646 BBLoop->getLoopLatches(LoopLatches&: LatchBBs);
647 for (auto *LatchBB : LatchBBs)
648 if (BB != LatchBB && BBReg->contains(BB: LatchBB))
649 return;
650 L = L->getParentLoop();
651 }
652
653 isl::set Domain = scop->getOrInitEmptyDomain(BB);
654 assert(!Domain.is_null() && "Cannot propagate a nullptr");
655
656 Loop *ExitBBLoop = getFirstNonBoxedLoopFor(BB: ExitBB, LI, BoxedLoops: scop->getBoxedLoops());
657
658 // Since the dimensions of @p BB and @p ExitBB might be different we have to
659 // adjust the domain before we can propagate it.
660 isl::set AdjustedDomain = adjustDomainDimensions(Dom: Domain, OldL: BBLoop, NewL: ExitBBLoop);
661 isl::set &ExitDomain = scop->getOrInitEmptyDomain(BB: ExitBB);
662
663 // If the exit domain is not yet created we set it otherwise we "add" the
664 // current domain.
665 ExitDomain =
666 !ExitDomain.is_null() ? AdjustedDomain.unite(set2: ExitDomain) : AdjustedDomain;
667
668 // Initialize the invalid domain.
669 InvalidDomainMap[ExitBB] = ExitDomain.empty(space: ExitDomain.get_space());
670
671 FinishedExitBlocks.insert(Ptr: ExitBB);
672}
673
674isl::set ScopBuilder::getPredecessorDomainConstraints(BasicBlock *BB,
675 isl::set Domain) {
676 // If @p BB is the ScopEntry we are done
677 if (scop->getRegion().getEntry() == BB)
678 return isl::set::universe(space: Domain.get_space());
679
680 // The region info of this function.
681 auto &RI = *scop->getRegion().getRegionInfo();
682
683 Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, BoxedLoops: scop->getBoxedLoops());
684
685 // A domain to collect all predecessor domains, thus all conditions under
686 // which the block is executed. To this end we start with the empty domain.
687 isl::set PredDom = isl::set::empty(space: Domain.get_space());
688
689 // Set of regions of which the entry block domain has been propagated to BB.
690 // all predecessors inside any of the regions can be skipped.
691 SmallSet<Region *, 8> PropagatedRegions;
692
693 for (auto *PredBB : predecessors(BB)) {
694 // Skip backedges.
695 if (DT.dominates(A: BB, B: PredBB))
696 continue;
697
698 // If the predecessor is in a region we used for propagation we can skip it.
699 auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(BB: PredBB); };
700 if (llvm::any_of(Range&: PropagatedRegions, P: PredBBInRegion)) {
701 continue;
702 }
703
704 // Check if there is a valid region we can use for propagation, thus look
705 // for a region that contains the predecessor and has @p BB as exit block.
706 // FIXME: This was an side-effect-free (and possibly infinite) loop when
707 // committed and seems not to be needed.
708 auto *PredR = RI.getRegionFor(BB: PredBB);
709 while (PredR->getExit() != BB && !PredR->contains(BB))
710 PredR = PredR->getParent();
711
712 // If a valid region for propagation was found use the entry of that region
713 // for propagation, otherwise the PredBB directly.
714 if (PredR->getExit() == BB) {
715 PredBB = PredR->getEntry();
716 PropagatedRegions.insert(Ptr: PredR);
717 }
718
719 isl::set PredBBDom = scop->getDomainConditions(BB: PredBB);
720 Loop *PredBBLoop =
721 getFirstNonBoxedLoopFor(BB: PredBB, LI, BoxedLoops: scop->getBoxedLoops());
722 PredBBDom = adjustDomainDimensions(Dom: PredBBDom, OldL: PredBBLoop, NewL: BBLoop);
723 PredDom = PredDom.unite(set2: PredBBDom);
724 }
725
726 return PredDom;
727}
728
729bool ScopBuilder::addLoopBoundsToHeaderDomain(
730 Loop *L, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
731 int LoopDepth = scop->getRelativeLoopDepth(L);
732 assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
733
734 BasicBlock *HeaderBB = L->getHeader();
735 assert(scop->isDomainDefined(HeaderBB));
736 isl::set &HeaderBBDom = scop->getOrInitEmptyDomain(BB: HeaderBB);
737
738 isl::map NextIterationMap =
739 createNextIterationMap(SetSpace: HeaderBBDom.get_space(), Dim: LoopDepth);
740
741 isl::set UnionBackedgeCondition = HeaderBBDom.empty(space: HeaderBBDom.get_space());
742
743 SmallVector<BasicBlock *, 4> LatchBlocks;
744 L->getLoopLatches(LoopLatches&: LatchBlocks);
745
746 for (BasicBlock *LatchBB : LatchBlocks) {
747 // If the latch is only reachable via error statements we skip it.
748 if (!scop->isDomainDefined(BB: LatchBB))
749 continue;
750
751 isl::set LatchBBDom = scop->getDomainConditions(BB: LatchBB);
752
753 isl::set BackedgeCondition;
754
755 Instruction *TI = LatchBB->getTerminator();
756 BranchInst *BI = dyn_cast<BranchInst>(Val: TI);
757 assert(BI && "Only branch instructions allowed in loop latches");
758
759 if (BI->isUnconditional())
760 BackedgeCondition = LatchBBDom;
761 else {
762 SmallVector<isl_set *, 8> ConditionSets;
763 int idx = BI->getSuccessor(i: 0) != HeaderBB;
764 if (!buildConditionSets(BB: LatchBB, TI, L, Domain: LatchBBDom.get(),
765 InvalidDomainMap, ConditionSets))
766 return false;
767
768 // Free the non back edge condition set as we do not need it.
769 isl_set_free(set: ConditionSets[1 - idx]);
770
771 BackedgeCondition = isl::manage(ptr: ConditionSets[idx]);
772 }
773
774 int LatchLoopDepth = scop->getRelativeLoopDepth(L: LI.getLoopFor(BB: LatchBB));
775 assert(LatchLoopDepth >= LoopDepth);
776 BackedgeCondition = BackedgeCondition.project_out(
777 type: isl::dim::set, first: LoopDepth + 1, n: LatchLoopDepth - LoopDepth);
778 UnionBackedgeCondition = UnionBackedgeCondition.unite(set2: BackedgeCondition);
779 }
780
781 isl::map ForwardMap = ForwardMap.lex_le(set_space: HeaderBBDom.get_space());
782 for (int i = 0; i < LoopDepth; i++)
783 ForwardMap = ForwardMap.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i);
784
785 isl::set UnionBackedgeConditionComplement =
786 UnionBackedgeCondition.complement();
787 UnionBackedgeConditionComplement =
788 UnionBackedgeConditionComplement.lower_bound_si(type: isl::dim::set, pos: LoopDepth,
789 value: 0);
790 UnionBackedgeConditionComplement =
791 UnionBackedgeConditionComplement.apply(map: ForwardMap);
792 HeaderBBDom = HeaderBBDom.subtract(set2: UnionBackedgeConditionComplement);
793 HeaderBBDom = HeaderBBDom.apply(map: NextIterationMap);
794
795 auto Parts = partitionSetParts(S: HeaderBBDom, Dim: LoopDepth);
796 HeaderBBDom = Parts.second;
797
798 // Check if there is a <nsw> tagged AddRec for this loop and if so do not
799 // require a runtime check. The assumption is already implied by the <nsw>
800 // tag.
801 bool RequiresRTC = !scop->hasNSWAddRecForLoop(L);
802
803 isl::set UnboundedCtx = Parts.first.params();
804 recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: INFINITELOOP, Set: UnboundedCtx,
805 Loc: HeaderBB->getTerminator()->getDebugLoc(), Sign: AS_RESTRICTION,
806 BB: nullptr, RTC: RequiresRTC);
807 return true;
808}
809
810void ScopBuilder::buildInvariantEquivalenceClasses() {
811 DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;
812
813 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
814 for (LoadInst *LInst : RIL) {
815 const SCEV *PointerSCEV = SE.getSCEV(V: LInst->getPointerOperand());
816
817 Type *Ty = LInst->getType();
818 LoadInst *&ClassRep = EquivClasses[std::make_pair(x&: PointerSCEV, y&: Ty)];
819 if (ClassRep) {
820 scop->addInvariantLoadMapping(LoadInst: LInst, ClassRep);
821 continue;
822 }
823
824 ClassRep = LInst;
825 scop->addInvariantEquivClass(
826 InvariantEquivClass: InvariantEquivClassTy{.IdentifyingPointer: PointerSCEV, .InvariantAccesses: MemoryAccessList(), .ExecutionContext: {}, .AccessType: Ty});
827 }
828}
829
830bool ScopBuilder::buildDomains(
831 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
832 bool IsOnlyNonAffineRegion = scop->isNonAffineSubRegion(R);
833 auto *EntryBB = R->getEntry();
834 auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(BB: EntryBB);
835 int LD = scop->getRelativeLoopDepth(L);
836 auto *S =
837 isl_set_universe(space: isl_space_set_alloc(ctx: scop->getIslCtx().get(), nparam: 0, dim: LD + 1));
838
839 InvalidDomainMap[EntryBB] = isl::manage(ptr: isl_set_empty(space: isl_set_get_space(set: S)));
840 isl::set Domain = isl::manage(ptr: S);
841 scop->setDomain(BB: EntryBB, Domain);
842
843 if (IsOnlyNonAffineRegion)
844 return !containsErrorBlock(RN: R->getNode(), R: *R, SD: &SD);
845
846 if (!buildDomainsWithBranchConstraints(R, InvalidDomainMap))
847 return false;
848
849 if (!propagateDomainConstraints(R, InvalidDomainMap))
850 return false;
851
852 // Error blocks and blocks dominated by them have been assumed to never be
853 // executed. Representing them in the Scop does not add any value. In fact,
854 // it is likely to cause issues during construction of the ScopStmts. The
855 // contents of error blocks have not been verified to be expressible and
856 // will cause problems when building up a ScopStmt for them.
857 // Furthermore, basic blocks dominated by error blocks may reference
858 // instructions in the error block which, if the error block is not modeled,
859 // can themselves not be constructed properly. To this end we will replace
860 // the domains of error blocks and those only reachable via error blocks
861 // with an empty set. Additionally, we will record for each block under which
862 // parameter combination it would be reached via an error block in its
863 // InvalidDomain. This information is needed during load hoisting.
864 if (!propagateInvalidStmtDomains(R, InvalidDomainMap))
865 return false;
866
867 return true;
868}
869
870bool ScopBuilder::buildDomainsWithBranchConstraints(
871 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
872 // To create the domain for each block in R we iterate over all blocks and
873 // subregions in R and propagate the conditions under which the current region
874 // element is executed. To this end we iterate in reverse post order over R as
875 // it ensures that we first visit all predecessors of a region node (either a
876 // basic block or a subregion) before we visit the region node itself.
877 // Initially, only the domain for the SCoP region entry block is set and from
878 // there we propagate the current domain to all successors, however we add the
879 // condition that the successor is actually executed next.
880 // As we are only interested in non-loop carried constraints here we can
881 // simply skip loop back edges.
882
883 SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
884 ReversePostOrderTraversal<Region *> RTraversal(R);
885 for (auto *RN : RTraversal) {
886 // Recurse for affine subregions but go on for basic blocks and non-affine
887 // subregions.
888 if (RN->isSubRegion()) {
889 Region *SubRegion = RN->getNodeAs<Region>();
890 if (!scop->isNonAffineSubRegion(R: SubRegion)) {
891 if (!buildDomainsWithBranchConstraints(R: SubRegion, InvalidDomainMap))
892 return false;
893 continue;
894 }
895 }
896
897 if (containsErrorBlock(RN, R: scop->getRegion(), SD: &SD))
898 scop->notifyErrorBlock();
899 ;
900
901 BasicBlock *BB = getRegionNodeBasicBlock(RN);
902 Instruction *TI = BB->getTerminator();
903
904 if (isa<UnreachableInst>(Val: TI))
905 continue;
906
907 if (!scop->isDomainDefined(BB))
908 continue;
909 isl::set Domain = scop->getDomainConditions(BB);
910
911 scop->updateMaxLoopDepth(Depth: unsignedFromIslSize(Size: Domain.tuple_dim()));
912
913 auto *BBLoop = getRegionNodeLoop(RN, LI);
914 // Propagate the domain from BB directly to blocks that have a superset
915 // domain, at the moment only region exit nodes of regions that start in BB.
916 propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks,
917 InvalidDomainMap);
918
919 // If all successors of BB have been set a domain through the propagation
920 // above we do not need to build condition sets but can just skip this
921 // block. However, it is important to note that this is a local property
922 // with regards to the region @p R. To this end FinishedExitBlocks is a
923 // local variable.
924 auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
925 return FinishedExitBlocks.count(Ptr: SuccBB);
926 };
927 if (std::all_of(first: succ_begin(BB), last: succ_end(BB), pred: IsFinishedRegionExit))
928 continue;
929
930 // Build the condition sets for the successor nodes of the current region
931 // node. If it is a non-affine subregion we will always execute the single
932 // exit node, hence the single entry node domain is the condition set. For
933 // basic blocks we use the helper function buildConditionSets.
934 SmallVector<isl_set *, 8> ConditionSets;
935 if (RN->isSubRegion())
936 ConditionSets.push_back(Elt: Domain.copy());
937 else if (!buildConditionSets(BB, TI, L: BBLoop, Domain: Domain.get(), InvalidDomainMap,
938 ConditionSets))
939 return false;
940
941 // Now iterate over the successors and set their initial domain based on
942 // their condition set. We skip back edges here and have to be careful when
943 // we leave a loop not to keep constraints over a dimension that doesn't
944 // exist anymore.
945 assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
946 for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
947 isl::set CondSet = isl::manage(ptr: ConditionSets[u]);
948 BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, idx: u);
949
950 // Skip blocks outside the region.
951 if (!scop->contains(BB: SuccBB))
952 continue;
953
954 // If we propagate the domain of some block to "SuccBB" we do not have to
955 // adjust the domain.
956 if (FinishedExitBlocks.count(Ptr: SuccBB))
957 continue;
958
959 // Skip back edges.
960 if (DT.dominates(A: SuccBB, B: BB))
961 continue;
962
963 Loop *SuccBBLoop =
964 getFirstNonBoxedLoopFor(BB: SuccBB, LI, BoxedLoops: scop->getBoxedLoops());
965
966 CondSet = adjustDomainDimensions(Dom: CondSet, OldL: BBLoop, NewL: SuccBBLoop);
967
968 // Set the domain for the successor or merge it with an existing domain in
969 // case there are multiple paths (without loop back edges) to the
970 // successor block.
971 isl::set &SuccDomain = scop->getOrInitEmptyDomain(BB: SuccBB);
972
973 if (!SuccDomain.is_null()) {
974 SuccDomain = SuccDomain.unite(set2: CondSet).coalesce();
975 } else {
976 // Initialize the invalid domain.
977 InvalidDomainMap[SuccBB] = CondSet.empty(space: CondSet.get_space());
978 SuccDomain = CondSet;
979 }
980
981 SuccDomain = SuccDomain.detect_equalities();
982
983 // Check if the maximal number of domain disjunctions was reached.
984 // In case this happens we will clean up and bail.
985 if (unsignedFromIslSize(Size: SuccDomain.n_basic_set()) < MaxDisjunctsInDomain)
986 continue;
987
988 scop->invalidate(Kind: COMPLEXITY, Loc: DebugLoc());
989 while (++u < ConditionSets.size())
990 isl_set_free(set: ConditionSets[u]);
991 return false;
992 }
993 }
994
995 return true;
996}
997
998bool ScopBuilder::propagateInvalidStmtDomains(
999 Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
1000 ReversePostOrderTraversal<Region *> RTraversal(R);
1001 for (auto *RN : RTraversal) {
1002
1003 // Recurse for affine subregions but go on for basic blocks and non-affine
1004 // subregions.
1005 if (RN->isSubRegion()) {
1006 Region *SubRegion = RN->getNodeAs<Region>();
1007 if (!scop->isNonAffineSubRegion(R: SubRegion)) {
1008 propagateInvalidStmtDomains(R: SubRegion, InvalidDomainMap);
1009 continue;
1010 }
1011 }
1012
1013 bool ContainsErrorBlock = containsErrorBlock(RN, R: scop->getRegion(), SD: &SD);
1014 BasicBlock *BB = getRegionNodeBasicBlock(RN);
1015 isl::set &Domain = scop->getOrInitEmptyDomain(BB);
1016 assert(!Domain.is_null() && "Cannot propagate a nullptr");
1017
1018 isl::set InvalidDomain = InvalidDomainMap[BB];
1019
1020 bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(set2: InvalidDomain);
1021
1022 if (!IsInvalidBlock) {
1023 InvalidDomain = InvalidDomain.intersect(set2: Domain);
1024 } else {
1025 InvalidDomain = Domain;
1026 isl::set DomPar = Domain.params();
1027 recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: ERRORBLOCK, Set: DomPar,
1028 Loc: BB->getTerminator()->getDebugLoc(), Sign: AS_RESTRICTION);
1029 Domain = isl::set::empty(space: Domain.get_space());
1030 }
1031
1032 if (InvalidDomain.is_empty()) {
1033 InvalidDomainMap[BB] = InvalidDomain;
1034 continue;
1035 }
1036
1037 auto *BBLoop = getRegionNodeLoop(RN, LI);
1038 auto *TI = BB->getTerminator();
1039 unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
1040 for (unsigned u = 0; u < NumSuccs; u++) {
1041 auto *SuccBB = getRegionNodeSuccessor(RN, TI, idx: u);
1042
1043 // Skip successors outside the SCoP.
1044 if (!scop->contains(BB: SuccBB))
1045 continue;
1046
1047 // Skip backedges.
1048 if (DT.dominates(A: SuccBB, B: BB))
1049 continue;
1050
1051 Loop *SuccBBLoop =
1052 getFirstNonBoxedLoopFor(BB: SuccBB, LI, BoxedLoops: scop->getBoxedLoops());
1053
1054 auto AdjustedInvalidDomain =
1055 adjustDomainDimensions(Dom: InvalidDomain, OldL: BBLoop, NewL: SuccBBLoop);
1056
1057 isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB];
1058 SuccInvalidDomain = SuccInvalidDomain.unite(set2: AdjustedInvalidDomain);
1059 SuccInvalidDomain = SuccInvalidDomain.coalesce();
1060
1061 InvalidDomainMap[SuccBB] = SuccInvalidDomain;
1062
1063 // Check if the maximal number of domain disjunctions was reached.
1064 // In case this happens we will bail.
1065 if (unsignedFromIslSize(Size: SuccInvalidDomain.n_basic_set()) <
1066 MaxDisjunctsInDomain)
1067 continue;
1068
1069 InvalidDomainMap.erase(Val: BB);
1070 scop->invalidate(Kind: COMPLEXITY, Loc: TI->getDebugLoc(), BB: TI->getParent());
1071 return false;
1072 }
1073
1074 InvalidDomainMap[BB] = InvalidDomain;
1075 }
1076
1077 return true;
1078}
1079
1080void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
1081 Region *NonAffineSubRegion,
1082 bool IsExitBlock) {
1083 // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
1084 // true, are not modeled as ordinary PHI nodes as they are not part of the
1085 // region. However, we model the operands in the predecessor blocks that are
1086 // part of the region as regular scalar accesses.
1087
1088 // If we can synthesize a PHI we can skip it, however only if it is in
1089 // the region. If it is not it can only be in the exit block of the region.
1090 // In this case we model the operands but not the PHI itself.
1091 auto *Scope = LI.getLoopFor(BB: PHI->getParent());
1092 if (!IsExitBlock && canSynthesize(V: PHI, S: *scop, SE: &SE, Scope))
1093 return;
1094
1095 // PHI nodes are modeled as if they had been demoted prior to the SCoP
1096 // detection. Hence, the PHI is a load of a new memory location in which the
1097 // incoming value was written at the end of the incoming basic block.
1098 bool OnlyNonAffineSubRegionOperands = true;
1099 for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
1100 Value *Op = PHI->getIncomingValue(i: u);
1101 BasicBlock *OpBB = PHI->getIncomingBlock(i: u);
1102 ScopStmt *OpStmt = scop->getIncomingStmtFor(U: PHI->getOperandUse(i: u));
1103
1104 // Do not build PHI dependences inside a non-affine subregion, but make
1105 // sure that the necessary scalar values are still made available.
1106 if (NonAffineSubRegion && NonAffineSubRegion->contains(BB: OpBB)) {
1107 auto *OpInst = dyn_cast<Instruction>(Val: Op);
1108 if (!OpInst || !NonAffineSubRegion->contains(Inst: OpInst))
1109 ensureValueRead(V: Op, UserStmt: OpStmt);
1110 continue;
1111 }
1112
1113 OnlyNonAffineSubRegionOperands = false;
1114 ensurePHIWrite(PHI, IncomintStmt: OpStmt, IncomingBlock: OpBB, IncomingValue: Op, IsExitBlock);
1115 }
1116
1117 if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
1118 addPHIReadAccess(PHIStmt, PHI);
1119 }
1120}
1121
1122void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt,
1123 Instruction *Inst) {
1124 assert(!isa<PHINode>(Inst));
1125
1126 // Pull-in required operands.
1127 for (Use &Op : Inst->operands())
1128 ensureValueRead(V: Op.get(), UserStmt);
1129}
1130
1131// Create a sequence of two schedules. Either argument may be null and is
1132// interpreted as the empty schedule. Can also return null if both schedules are
1133// empty.
1134static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) {
1135 if (Prev.is_null())
1136 return Succ;
1137 if (Succ.is_null())
1138 return Prev;
1139
1140 return Prev.sequence(schedule2: Succ);
1141}
1142
1143// Create an isl_multi_union_aff that defines an identity mapping from the
1144// elements of USet to their N-th dimension.
1145//
1146// # Example:
1147//
1148// Domain: { A[i,j]; B[i,j,k] }
1149// N: 1
1150//
1151// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
1152//
1153// @param USet A union set describing the elements for which to generate a
1154// mapping.
1155// @param N The dimension to map to.
1156// @returns A mapping from USet to its N-th dimension.
1157static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, unsigned N) {
1158 assert(!USet.is_null());
1159 assert(!USet.is_empty());
1160
1161 auto Result = isl::union_pw_multi_aff::empty(space: USet.get_space());
1162
1163 for (isl::set S : USet.get_set_list()) {
1164 unsigned Dim = unsignedFromIslSize(Size: S.tuple_dim());
1165 assert(Dim >= N);
1166 auto PMA = isl::pw_multi_aff::project_out_map(space: S.get_space(), type: isl::dim::set,
1167 first: N, n: Dim - N);
1168 if (N > 1)
1169 PMA = PMA.drop_dims(type: isl::dim::out, first: 0, n: N - 1);
1170
1171 Result = Result.add_pw_multi_aff(pma: PMA);
1172 }
1173
1174 return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result));
1175}
1176
1177void ScopBuilder::buildSchedule() {
1178 Loop *L = getLoopSurroundingScop(S&: *scop, LI);
1179 LoopStackTy LoopStack({LoopStackElementTy(L, {}, 0)});
1180 buildSchedule(RN: scop->getRegion().getNode(), LoopStack);
1181 assert(LoopStack.size() == 1 && LoopStack.back().L == L);
1182 scop->setScheduleTree(LoopStack[0].Schedule);
1183}
1184
1185/// To generate a schedule for the elements in a Region we traverse the Region
1186/// in reverse-post-order and add the contained RegionNodes in traversal order
1187/// to the schedule of the loop that is currently at the top of the LoopStack.
1188/// For loop-free codes, this results in a correct sequential ordering.
1189///
1190/// Example:
1191/// bb1(0)
1192/// / \.
1193/// bb2(1) bb3(2)
1194/// \ / \.
1195/// bb4(3) bb5(4)
1196/// \ /
1197/// bb6(5)
1198///
1199/// Including loops requires additional processing. Whenever a loop header is
1200/// encountered, the corresponding loop is added to the @p LoopStack. Starting
1201/// from an empty schedule, we first process all RegionNodes that are within
1202/// this loop and complete the sequential schedule at this loop-level before
1203/// processing about any other nodes. To implement this
1204/// loop-nodes-first-processing, the reverse post-order traversal is
1205/// insufficient. Hence, we additionally check if the traversal yields
1206/// sub-regions or blocks that are outside the last loop on the @p LoopStack.
1207/// These region-nodes are then queue and only traverse after the all nodes
1208/// within the current loop have been processed.
1209void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) {
1210 Loop *OuterScopLoop = getLoopSurroundingScop(S&: *scop, LI);
1211
1212 ReversePostOrderTraversal<Region *> RTraversal(R);
1213 std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
1214 std::deque<RegionNode *> DelayList;
1215 bool LastRNWaiting = false;
1216
1217 // Iterate over the region @p R in reverse post-order but queue
1218 // sub-regions/blocks iff they are not part of the last encountered but not
1219 // completely traversed loop. The variable LastRNWaiting is a flag to indicate
1220 // that we queued the last sub-region/block from the reverse post-order
1221 // iterator. If it is set we have to explore the next sub-region/block from
1222 // the iterator (if any) to guarantee progress. If it is not set we first try
1223 // the next queued sub-region/blocks.
1224 while (!WorkList.empty() || !DelayList.empty()) {
1225 RegionNode *RN;
1226
1227 if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) {
1228 RN = WorkList.front();
1229 WorkList.pop_front();
1230 LastRNWaiting = false;
1231 } else {
1232 RN = DelayList.front();
1233 DelayList.pop_front();
1234 }
1235
1236 Loop *L = getRegionNodeLoop(RN, LI);
1237 if (!scop->contains(L))
1238 L = OuterScopLoop;
1239
1240 Loop *LastLoop = LoopStack.back().L;
1241 if (LastLoop != L) {
1242 if (LastLoop && !LastLoop->contains(L)) {
1243 LastRNWaiting = true;
1244 DelayList.push_back(x: RN);
1245 continue;
1246 }
1247 LoopStack.push_back(Elt: {L, {}, 0});
1248 }
1249 buildSchedule(RN, LoopStack);
1250 }
1251}
1252
1253void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) {
1254 if (RN->isSubRegion()) {
1255 auto *LocalRegion = RN->getNodeAs<Region>();
1256 if (!scop->isNonAffineSubRegion(R: LocalRegion)) {
1257 buildSchedule(R: LocalRegion, LoopStack);
1258 return;
1259 }
1260 }
1261
1262 assert(LoopStack.rbegin() != LoopStack.rend());
1263 auto LoopData = LoopStack.rbegin();
1264 LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN);
1265
1266 for (auto *Stmt : scop->getStmtListFor(RN)) {
1267 isl::union_set UDomain{Stmt->getDomain()};
1268 auto StmtSchedule = isl::schedule::from_domain(domain: UDomain);
1269 LoopData->Schedule = combineInSequence(Prev: LoopData->Schedule, Succ: StmtSchedule);
1270 }
1271
1272 // Check if we just processed the last node in this loop. If we did, finalize
1273 // the loop by:
1274 //
1275 // - adding new schedule dimensions
1276 // - folding the resulting schedule into the parent loop schedule
1277 // - dropping the loop schedule from the LoopStack.
1278 //
1279 // Then continue to check surrounding loops, which might also have been
1280 // completed by this node.
1281 size_t Dimension = LoopStack.size();
1282 while (LoopData->L &&
1283 LoopData->NumBlocksProcessed == getNumBlocksInLoop(L: LoopData->L)) {
1284 isl::schedule Schedule = LoopData->Schedule;
1285 auto NumBlocksProcessed = LoopData->NumBlocksProcessed;
1286
1287 assert(std::next(LoopData) != LoopStack.rend());
1288 Loop *L = LoopData->L;
1289 ++LoopData;
1290 --Dimension;
1291
1292 if (!Schedule.is_null()) {
1293 isl::union_set Domain = Schedule.get_domain();
1294 isl::multi_union_pw_aff MUPA = mapToDimension(USet: Domain, N: Dimension);
1295 Schedule = Schedule.insert_partial_schedule(partial: MUPA);
1296
1297 if (hasDisableAllTransformsHint(L)) {
1298 /// If any of the loops has a disable_nonforced heuristic, mark the
1299 /// entire SCoP as such. The ISL rescheduler can only reschedule the
1300 /// SCoP in its entirety.
1301 /// TODO: ScopDetection could avoid including such loops or warp them as
1302 /// boxed loop. It still needs to pass-through loop with user-defined
1303 /// metadata.
1304 scop->markDisableHeuristics();
1305 }
1306
1307 // It is easier to insert the marks here that do it retroactively.
1308 isl::id IslLoopId = createIslLoopAttr(Ctx: scop->getIslCtx(), L);
1309 if (!IslLoopId.is_null())
1310 Schedule =
1311 Schedule.get_root().child(pos: 0).insert_mark(mark: IslLoopId).get_schedule();
1312
1313 LoopData->Schedule = combineInSequence(Prev: LoopData->Schedule, Succ: Schedule);
1314 }
1315
1316 LoopData->NumBlocksProcessed += NumBlocksProcessed;
1317 }
1318 // Now pop all loops processed up there from the LoopStack
1319 LoopStack.erase(CS: LoopStack.begin() + Dimension, CE: LoopStack.end());
1320}
1321
1322void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
1323 // Check for uses of this instruction outside the scop. Because we do not
1324 // iterate over such instructions and therefore did not "ensure" the existence
1325 // of a write, we must determine such use here.
1326 if (scop->isEscaping(Inst))
1327 ensureValueWrite(Inst);
1328}
1329
1330void ScopBuilder::addRecordedAssumptions() {
1331 for (auto &AS : llvm::reverse(C&: RecordedAssumptions)) {
1332
1333 if (!AS.BB) {
1334 scop->addAssumption(Kind: AS.Kind, Set: AS.Set, Loc: AS.Loc, Sign: AS.Sign,
1335 BB: nullptr /* BasicBlock */, RTC: AS.RequiresRTC);
1336 continue;
1337 }
1338
1339 // If the domain was deleted the assumptions are void.
1340 isl_set *Dom = scop->getDomainConditions(BB: AS.BB).release();
1341 if (!Dom)
1342 continue;
1343
1344 // If a basic block was given use its domain to simplify the assumption.
1345 // In case of restrictions we know they only have to hold on the domain,
1346 // thus we can intersect them with the domain of the block. However, for
1347 // assumptions the domain has to imply them, thus:
1348 // _ _____
1349 // Dom => S <==> A v B <==> A - B
1350 //
1351 // To avoid the complement we will register A - B as a restriction not an
1352 // assumption.
1353 isl_set *S = AS.Set.copy();
1354 if (AS.Sign == AS_RESTRICTION)
1355 S = isl_set_params(set: isl_set_intersect(set1: S, set2: Dom));
1356 else /* (AS.Sign == AS_ASSUMPTION) */
1357 S = isl_set_params(set: isl_set_subtract(set1: Dom, set2: S));
1358
1359 scop->addAssumption(Kind: AS.Kind, Set: isl::manage(ptr: S), Loc: AS.Loc, Sign: AS_RESTRICTION, BB: AS.BB,
1360 RTC: AS.RequiresRTC);
1361 }
1362}
1363
1364void ScopBuilder::addUserAssumptions(
1365 AssumptionCache &AC, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
1366 for (auto &Assumption : AC.assumptions()) {
1367 auto *CI = dyn_cast_or_null<CallInst>(Val&: Assumption);
1368 if (!CI || CI->arg_size() != 1)
1369 continue;
1370
1371 bool InScop = scop->contains(I: CI);
1372 if (!InScop && !scop->isDominatedBy(DT, BB: CI->getParent()))
1373 continue;
1374
1375 auto *L = LI.getLoopFor(BB: CI->getParent());
1376 auto *Val = CI->getArgOperand(i: 0);
1377 ParameterSetTy DetectedParams;
1378 auto &R = scop->getRegion();
1379 if (!isAffineConstraint(V: Val, R: &R, Scope: L, SE, Params&: DetectedParams)) {
1380 ORE.emit(
1381 OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption", CI)
1382 << "Non-affine user assumption ignored.");
1383 continue;
1384 }
1385
1386 // Collect all newly introduced parameters.
1387 ParameterSetTy NewParams;
1388 for (auto *Param : DetectedParams) {
1389 Param = extractConstantFactor(M: Param, SE).second;
1390 Param = scop->getRepresentingInvariantLoadSCEV(S: Param);
1391 if (scop->isParam(Param))
1392 continue;
1393 NewParams.insert(X: Param);
1394 }
1395
1396 SmallVector<isl_set *, 2> ConditionSets;
1397 auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
1398 BasicBlock *BB = InScop ? CI->getParent() : R.getEntry();
1399 auto *Dom = InScop ? isl_set_copy(set: scop->getDomainConditions(BB).get())
1400 : isl_set_copy(set: scop->getContext().get());
1401 assert(Dom && "Cannot propagate a nullptr.");
1402 bool Valid = buildConditionSets(BB, Condition: Val, TI, L, Domain: Dom, InvalidDomainMap,
1403 ConditionSets);
1404 isl_set_free(set: Dom);
1405
1406 if (!Valid)
1407 continue;
1408
1409 isl_set *AssumptionCtx = nullptr;
1410 if (InScop) {
1411 AssumptionCtx = isl_set_complement(set: isl_set_params(set: ConditionSets[1]));
1412 isl_set_free(set: ConditionSets[0]);
1413 } else {
1414 AssumptionCtx = isl_set_complement(set: ConditionSets[1]);
1415 AssumptionCtx = isl_set_intersect(set1: AssumptionCtx, set2: ConditionSets[0]);
1416 }
1417
1418 // Project out newly introduced parameters as they are not otherwise useful.
1419 if (!NewParams.empty()) {
1420 for (isl_size u = 0; u < isl_set_n_param(set: AssumptionCtx); u++) {
1421 auto *Id = isl_set_get_dim_id(set: AssumptionCtx, type: isl_dim_param, pos: u);
1422 auto *Param = static_cast<const SCEV *>(isl_id_get_user(id: Id));
1423 isl_id_free(id: Id);
1424
1425 if (!NewParams.count(key: Param))
1426 continue;
1427
1428 AssumptionCtx =
1429 isl_set_project_out(set: AssumptionCtx, type: isl_dim_param, first: u--, n: 1);
1430 }
1431 }
1432 ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption", CI)
1433 << "Use user assumption: "
1434 << stringFromIslObj(Obj: AssumptionCtx, DefaultValue: "null"));
1435 isl::set newContext =
1436 scop->getContext().intersect(set2: isl::manage(ptr: AssumptionCtx));
1437 scop->setContext(newContext);
1438 }
1439}
1440
1441bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) {
1442 // Memory builtins are not considered in this function.
1443 if (!Inst.isLoad() && !Inst.isStore())
1444 return false;
1445
1446 Value *Val = Inst.getValueOperand();
1447 Type *ElementType = Val->getType();
1448 Value *Address = Inst.getPointerOperand();
1449 const SCEV *AccessFunction =
1450 SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent()));
1451 const SCEVUnknown *BasePointer =
1452 dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction));
1453 enum MemoryAccess::AccessType AccType =
1454 isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1455
1456 if (auto *BitCast = dyn_cast<BitCastInst>(Val: Address))
1457 Address = BitCast->getOperand(i_nocapture: 0);
1458
1459 auto *GEP = dyn_cast<GetElementPtrInst>(Val: Address);
1460 if (!GEP || DL.getTypeAllocSize(Ty: GEP->getResultElementType()) !=
1461 DL.getTypeAllocSize(Ty: ElementType))
1462 return false;
1463
1464 SmallVector<const SCEV *, 4> Subscripts;
1465 SmallVector<int, 4> Sizes;
1466 getIndexExpressionsFromGEP(SE, GEP, Subscripts, Sizes);
1467 auto *BasePtr = GEP->getOperand(i_nocapture: 0);
1468
1469 if (auto *BasePtrCast = dyn_cast<BitCastInst>(Val: BasePtr))
1470 BasePtr = BasePtrCast->getOperand(i_nocapture: 0);
1471
1472 // Check for identical base pointers to ensure that we do not miss index
1473 // offsets that have been added before this GEP is applied.
1474 if (BasePtr != BasePointer->getValue())
1475 return false;
1476
1477 std::vector<const SCEV *> SizesSCEV;
1478
1479 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1480
1481 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1482 for (auto *Subscript : Subscripts) {
1483 InvariantLoadsSetTy AccessILS;
1484 if (!isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop, Expression: Subscript, SE,
1485 ILS: &AccessILS))
1486 return false;
1487
1488 for (LoadInst *LInst : AccessILS)
1489 if (!ScopRIL.count(key: LInst))
1490 return false;
1491 }
1492
1493 if (Sizes.empty())
1494 return false;
1495
1496 SizesSCEV.push_back(x: nullptr);
1497
1498 for (auto V : Sizes)
1499 SizesSCEV.push_back(x: SE.getSCEV(
1500 V: ConstantInt::get(Ty: IntegerType::getInt64Ty(C&: BasePtr->getContext()), V)));
1501
1502 addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType,
1503 IsAffine: true, Subscripts, Sizes: SizesSCEV, AccessValue: Val);
1504 return true;
1505}
1506
1507bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
1508 // Memory builtins are not considered by this function.
1509 if (!Inst.isLoad() && !Inst.isStore())
1510 return false;
1511
1512 if (!PollyDelinearize)
1513 return false;
1514
1515 Value *Address = Inst.getPointerOperand();
1516 Value *Val = Inst.getValueOperand();
1517 Type *ElementType = Val->getType();
1518 unsigned ElementSize = DL.getTypeAllocSize(Ty: ElementType);
1519 enum MemoryAccess::AccessType AccType =
1520 isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1521
1522 const SCEV *AccessFunction =
1523 SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent()));
1524 const SCEVUnknown *BasePointer =
1525 dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction));
1526
1527 assert(BasePointer && "Could not find base pointer");
1528
1529 auto &InsnToMemAcc = scop->getInsnToMemAccMap();
1530 auto AccItr = InsnToMemAcc.find(x: Inst);
1531 if (AccItr == InsnToMemAcc.end())
1532 return false;
1533
1534 std::vector<const SCEV *> Sizes = {nullptr};
1535
1536 Sizes.insert(position: Sizes.end(), first: AccItr->second.Shape->DelinearizedSizes.begin(),
1537 last: AccItr->second.Shape->DelinearizedSizes.end());
1538
1539 // In case only the element size is contained in the 'Sizes' array, the
1540 // access does not access a real multi-dimensional array. Hence, we allow
1541 // the normal single-dimensional access construction to handle this.
1542 if (Sizes.size() == 1)
1543 return false;
1544
1545 // Remove the element size. This information is already provided by the
1546 // ElementSize parameter. In case the element size of this access and the
1547 // element size used for delinearization differs the delinearization is
1548 // incorrect. Hence, we invalidate the scop.
1549 //
1550 // TODO: Handle delinearization with differing element sizes.
1551 auto DelinearizedSize =
1552 cast<SCEVConstant>(Val: Sizes.back())->getAPInt().getSExtValue();
1553 Sizes.pop_back();
1554 if (ElementSize != DelinearizedSize)
1555 scop->invalidate(Kind: DELINEARIZATION, Loc: Inst->getDebugLoc(), BB: Inst->getParent());
1556
1557 addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType,
1558 IsAffine: true, Subscripts: AccItr->second.DelinearizedSubscripts, Sizes, AccessValue: Val);
1559 return true;
1560}
1561
1562bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) {
1563 auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Val&: Inst);
1564
1565 if (MemIntr == nullptr)
1566 return false;
1567
1568 auto *L = LI.getLoopFor(BB: Inst->getParent());
1569 auto *LengthVal = SE.getSCEVAtScope(V: MemIntr->getLength(), L);
1570 assert(LengthVal);
1571
1572 // Check if the length val is actually affine or if we overapproximate it
1573 InvariantLoadsSetTy AccessILS;
1574 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1575
1576 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1577 bool LengthIsAffine = isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop,
1578 Expression: LengthVal, SE, ILS: &AccessILS);
1579 for (LoadInst *LInst : AccessILS)
1580 if (!ScopRIL.count(key: LInst))
1581 LengthIsAffine = false;
1582 if (!LengthIsAffine)
1583 LengthVal = nullptr;
1584
1585 auto *DestPtrVal = MemIntr->getDest();
1586 assert(DestPtrVal);
1587
1588 auto *DestAccFunc = SE.getSCEVAtScope(V: DestPtrVal, L);
1589 assert(DestAccFunc);
1590 // Ignore accesses to "NULL".
1591 // TODO: We could use this to optimize the region further, e.g., intersect
1592 // the context with
1593 // isl_set_complement(isl_set_params(getDomain()))
1594 // as we know it would be undefined to execute this instruction anyway.
1595 if (DestAccFunc->isZero())
1596 return true;
1597
1598 if (auto *U = dyn_cast<SCEVUnknown>(Val: DestAccFunc)) {
1599 if (isa<ConstantPointerNull>(Val: U->getValue()))
1600 return true;
1601 }
1602
1603 auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: DestAccFunc));
1604 assert(DestPtrSCEV);
1605 DestAccFunc = SE.getMinusSCEV(LHS: DestAccFunc, RHS: DestPtrSCEV);
1606 addArrayAccess(Stmt, MemAccInst: Inst, AccType: MemoryAccess::MUST_WRITE, BaseAddress: DestPtrSCEV->getValue(),
1607 ElemType: IntegerType::getInt8Ty(C&: DestPtrVal->getContext()),
1608 IsAffine: LengthIsAffine, Subscripts: {DestAccFunc, LengthVal}, Sizes: {nullptr},
1609 AccessValue: Inst.getValueOperand());
1610
1611 auto *MemTrans = dyn_cast<MemTransferInst>(Val: MemIntr);
1612 if (!MemTrans)
1613 return true;
1614
1615 auto *SrcPtrVal = MemTrans->getSource();
1616 assert(SrcPtrVal);
1617
1618 auto *SrcAccFunc = SE.getSCEVAtScope(V: SrcPtrVal, L);
1619 assert(SrcAccFunc);
1620 // Ignore accesses to "NULL".
1621 // TODO: See above TODO
1622 if (SrcAccFunc->isZero())
1623 return true;
1624
1625 auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: SrcAccFunc));
1626 assert(SrcPtrSCEV);
1627 SrcAccFunc = SE.getMinusSCEV(LHS: SrcAccFunc, RHS: SrcPtrSCEV);
1628 addArrayAccess(Stmt, MemAccInst: Inst, AccType: MemoryAccess::READ, BaseAddress: SrcPtrSCEV->getValue(),
1629 ElemType: IntegerType::getInt8Ty(C&: SrcPtrVal->getContext()),
1630 IsAffine: LengthIsAffine, Subscripts: {SrcAccFunc, LengthVal}, Sizes: {nullptr},
1631 AccessValue: Inst.getValueOperand());
1632
1633 return true;
1634}
1635
1636bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) {
1637 auto *CI = dyn_cast_or_null<CallInst>(Val&: Inst);
1638
1639 if (CI == nullptr)
1640 return false;
1641
1642 if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(V: CI) || isDebugCall(Inst: CI))
1643 return true;
1644
1645 auto *AF = SE.getConstant(Ty: IntegerType::getInt64Ty(C&: CI->getContext()), V: 0);
1646 auto *CalledFunction = CI->getCalledFunction();
1647 MemoryEffects ME = AA.getMemoryEffects(F: CalledFunction);
1648 if (ME.doesNotAccessMemory())
1649 return true;
1650
1651 if (ME.onlyAccessesArgPointees()) {
1652 ModRefInfo ArgMR = ME.getModRef(Loc: IRMemLocation::ArgMem);
1653 auto AccType =
1654 !isModSet(MRI: ArgMR) ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
1655 Loop *L = LI.getLoopFor(BB: Inst->getParent());
1656 for (const auto &Arg : CI->args()) {
1657 if (!Arg->getType()->isPointerTy())
1658 continue;
1659
1660 auto *ArgSCEV = SE.getSCEVAtScope(V: Arg, L);
1661 if (ArgSCEV->isZero())
1662 continue;
1663
1664 if (auto *U = dyn_cast<SCEVUnknown>(Val: ArgSCEV)) {
1665 if (isa<ConstantPointerNull>(Val: U->getValue()))
1666 return true;
1667 }
1668
1669 auto *ArgBasePtr = cast<SCEVUnknown>(Val: SE.getPointerBase(V: ArgSCEV));
1670 addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: ArgBasePtr->getValue(),
1671 ElemType: ArgBasePtr->getType(), IsAffine: false, Subscripts: {AF}, Sizes: {nullptr}, AccessValue: CI);
1672 }
1673 return true;
1674 }
1675
1676 if (ME.onlyReadsMemory()) {
1677 GlobalReads.emplace_back(Args&: Stmt, Args&: CI);
1678 return true;
1679 }
1680 return false;
1681}
1682
1683bool ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) {
1684 // Memory builtins are not considered by this function.
1685 if (!Inst.isLoad() && !Inst.isStore())
1686 return false;
1687
1688 Value *Address = Inst.getPointerOperand();
1689 Value *Val = Inst.getValueOperand();
1690 Type *ElementType = Val->getType();
1691 enum MemoryAccess::AccessType AccType =
1692 isa<LoadInst>(Val: Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
1693
1694 const SCEV *AccessFunction =
1695 SE.getSCEVAtScope(V: Address, L: LI.getLoopFor(BB: Inst->getParent()));
1696 const SCEVUnknown *BasePointer =
1697 dyn_cast<SCEVUnknown>(Val: SE.getPointerBase(V: AccessFunction));
1698
1699 assert(BasePointer && "Could not find base pointer");
1700 AccessFunction = SE.getMinusSCEV(LHS: AccessFunction, RHS: BasePointer);
1701
1702 // Check if the access depends on a loop contained in a non-affine subregion.
1703 bool isVariantInNonAffineLoop = false;
1704 SetVector<const Loop *> Loops;
1705 findLoops(Expr: AccessFunction, Loops);
1706 for (const Loop *L : Loops)
1707 if (Stmt->contains(L)) {
1708 isVariantInNonAffineLoop = true;
1709 break;
1710 }
1711
1712 InvariantLoadsSetTy AccessILS;
1713
1714 Loop *SurroundingLoop = Stmt->getSurroundingLoop();
1715 bool IsAffine = !isVariantInNonAffineLoop &&
1716 isAffineExpr(R: &scop->getRegion(), Scope: SurroundingLoop,
1717 Expression: AccessFunction, SE, ILS: &AccessILS);
1718
1719 const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
1720 for (LoadInst *LInst : AccessILS)
1721 if (!ScopRIL.count(key: LInst))
1722 IsAffine = false;
1723
1724 if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
1725 AccType = MemoryAccess::MAY_WRITE;
1726
1727 addArrayAccess(Stmt, MemAccInst: Inst, AccType, BaseAddress: BasePointer->getValue(), ElemType: ElementType,
1728 IsAffine, Subscripts: {AccessFunction}, Sizes: {nullptr}, AccessValue: Val);
1729 return true;
1730}
1731
1732void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) {
1733 if (buildAccessMemIntrinsic(Inst, Stmt))
1734 return;
1735
1736 if (buildAccessCallInst(Inst, Stmt))
1737 return;
1738
1739 if (buildAccessMultiDimFixed(Inst, Stmt))
1740 return;
1741
1742 if (buildAccessMultiDimParam(Inst, Stmt))
1743 return;
1744
1745 if (buildAccessSingleDim(Inst, Stmt))
1746 return;
1747
1748 llvm_unreachable(
1749 "At least one of the buildAccess functions must handled this access, or "
1750 "ScopDetection should have rejected this SCoP");
1751}
1752
1753void ScopBuilder::buildAccessFunctions() {
1754 for (auto &Stmt : *scop) {
1755 if (Stmt.isBlockStmt()) {
1756 buildAccessFunctions(Stmt: &Stmt, BB&: *Stmt.getBasicBlock());
1757 continue;
1758 }
1759
1760 Region *R = Stmt.getRegion();
1761 for (BasicBlock *BB : R->blocks())
1762 buildAccessFunctions(Stmt: &Stmt, BB&: *BB, NonAffineSubRegion: R);
1763 }
1764
1765 // Build write accesses for values that are used after the SCoP.
1766 // The instructions defining them might be synthesizable and therefore not
1767 // contained in any statement, hence we iterate over the original instructions
1768 // to identify all escaping values.
1769 for (BasicBlock *BB : scop->getRegion().blocks()) {
1770 for (Instruction &Inst : *BB)
1771 buildEscapingDependences(Inst: &Inst);
1772 }
1773}
1774
1775bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) {
1776 return !Inst->isTerminator() && !isIgnoredIntrinsic(V: Inst) &&
1777 !canSynthesize(V: Inst, S: *scop, SE: &SE, Scope: L);
1778}
1779
1780/// Generate a name for a statement.
1781///
1782/// @param BB The basic block the statement will represent.
1783/// @param BBIdx The index of the @p BB relative to other BBs/regions.
1784/// @param Count The index of the created statement in @p BB.
1785/// @param IsMain Whether this is the main of all statement for @p BB. If true,
1786/// no suffix will be added.
1787/// @param IsLast Uses a special indicator for the last statement of a BB.
1788static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count,
1789 bool IsMain, bool IsLast = false) {
1790 std::string Suffix;
1791 if (!IsMain) {
1792 if (UseInstructionNames)
1793 Suffix = '_';
1794 if (IsLast)
1795 Suffix += "last";
1796 else if (Count < 26)
1797 Suffix += 'a' + Count;
1798 else
1799 Suffix += std::to_string(val: Count);
1800 }
1801 return getIslCompatibleName(Prefix: "Stmt", Val: BB, Number: BBIdx, Suffix, UseInstructionNames);
1802}
1803
1804/// Generate a name for a statement that represents a non-affine subregion.
1805///
1806/// @param R The region the statement will represent.
1807/// @param RIdx The index of the @p R relative to other BBs/regions.
1808static std::string makeStmtName(Region *R, long RIdx) {
1809 return getIslCompatibleName(Prefix: "Stmt", Middle: R->getNameStr(), Number: RIdx, Suffix: "",
1810 UseInstructionNames);
1811}
1812
1813void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) {
1814 Loop *SurroundingLoop = LI.getLoopFor(BB);
1815
1816 int Count = 0;
1817 long BBIdx = scop->getNextStmtIdx();
1818 std::vector<Instruction *> Instructions;
1819 for (Instruction &Inst : *BB) {
1820 if (shouldModelInst(Inst: &Inst, L: SurroundingLoop))
1821 Instructions.push_back(x: &Inst);
1822 if (Inst.getMetadata(Kind: "polly_split_after") ||
1823 (SplitOnStore && isa<StoreInst>(Val: Inst))) {
1824 std::string Name = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0);
1825 scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
1826 Count++;
1827 Instructions.clear();
1828 }
1829 }
1830
1831 std::string Name = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0);
1832 scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
1833}
1834
1835/// Is @p Inst an ordered instruction?
1836///
1837/// An unordered instruction is an instruction, such that a sequence of
1838/// unordered instructions can be permuted without changing semantics. Any
1839/// instruction for which this is not always the case is ordered.
1840static bool isOrderedInstruction(Instruction *Inst) {
1841 return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory();
1842}
1843
1844/// Join instructions to the same statement if one uses the scalar result of the
1845/// other.
1846static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind,
1847 ArrayRef<Instruction *> ModeledInsts) {
1848 for (Instruction *Inst : ModeledInsts) {
1849 if (isa<PHINode>(Val: Inst))
1850 continue;
1851
1852 for (Use &Op : Inst->operands()) {
1853 Instruction *OpInst = dyn_cast<Instruction>(Val: Op.get());
1854 if (!OpInst)
1855 continue;
1856
1857 // Check if OpInst is in the BB and is a modeled instruction.
1858 auto OpVal = UnionFind.findValue(V: OpInst);
1859 if (OpVal == UnionFind.end())
1860 continue;
1861
1862 UnionFind.unionSets(V1: Inst, V2: OpInst);
1863 }
1864 }
1865}
1866
1867/// Ensure that the order of ordered instructions does not change.
1868///
1869/// If we encounter an ordered instruction enclosed in instructions belonging to
1870/// a different statement (which might as well contain ordered instructions, but
1871/// this is not tested here), join them.
1872static void
1873joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind,
1874 ArrayRef<Instruction *> ModeledInsts) {
1875 SetVector<Instruction *> SeenLeaders;
1876 for (Instruction *Inst : ModeledInsts) {
1877 if (!isOrderedInstruction(Inst))
1878 continue;
1879
1880 Instruction *Leader = UnionFind.getLeaderValue(V: Inst);
1881 // Since previous iterations might have merged sets, some items in
1882 // SeenLeaders are not leaders anymore. However, The new leader of
1883 // previously merged instructions must be one of the former leaders of
1884 // these merged instructions.
1885 bool Inserted = SeenLeaders.insert(X: Leader);
1886 if (Inserted)
1887 continue;
1888
1889 // Merge statements to close holes. Say, we have already seen statements A
1890 // and B, in this order. Then we see an instruction of A again and we would
1891 // see the pattern "A B A". This function joins all statements until the
1892 // only seen occurrence of A.
1893 for (Instruction *Prev : reverse(C&: SeenLeaders)) {
1894 // We are backtracking from the last element until we see Inst's leader
1895 // in SeenLeaders and merge all into one set. Although leaders of
1896 // instructions change during the execution of this loop, it's irrelevant
1897 // as we are just searching for the element that we already confirmed is
1898 // in the list.
1899 if (Prev == Leader)
1900 break;
1901 UnionFind.unionSets(V1: Prev, V2: Leader);
1902 }
1903 }
1904}
1905
1906/// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for
1907/// the incoming values from this block are executed after the PHI READ.
1908///
1909/// Otherwise it could overwrite the incoming value from before the BB with the
1910/// value for the next execution. This can happen if the PHI WRITE is added to
1911/// the statement with the instruction that defines the incoming value (instead
1912/// of the last statement of the same BB). To ensure that the PHI READ and WRITE
1913/// are in order, we put both into the statement. PHI WRITEs are always executed
1914/// after PHI READs when they are in the same statement.
1915///
1916/// TODO: This is an overpessimization. We only have to ensure that the PHI
1917/// WRITE is not put into a statement containing the PHI itself. That could also
1918/// be done by
1919/// - having all (strongly connected) PHIs in a single statement,
1920/// - unite only the PHIs in the operand tree of the PHI WRITE (because it only
1921/// has a chance of being lifted before a PHI by being in a statement with a
1922/// PHI that comes before in the basic block), or
1923/// - when uniting statements, ensure that no (relevant) PHIs are overtaken.
1924static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind,
1925 ArrayRef<Instruction *> ModeledInsts) {
1926 for (Instruction *Inst : ModeledInsts) {
1927 PHINode *PHI = dyn_cast<PHINode>(Val: Inst);
1928 if (!PHI)
1929 continue;
1930
1931 int Idx = PHI->getBasicBlockIndex(BB: PHI->getParent());
1932 if (Idx < 0)
1933 continue;
1934
1935 Instruction *IncomingVal =
1936 dyn_cast<Instruction>(Val: PHI->getIncomingValue(i: Idx));
1937 if (!IncomingVal)
1938 continue;
1939
1940 UnionFind.unionSets(V1: PHI, V2: IncomingVal);
1941 }
1942}
1943
1944void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) {
1945 Loop *L = LI.getLoopFor(BB);
1946
1947 // Extracting out modeled instructions saves us from checking
1948 // shouldModelInst() repeatedly.
1949 SmallVector<Instruction *, 32> ModeledInsts;
1950 EquivalenceClasses<Instruction *> UnionFind;
1951 Instruction *MainInst = nullptr, *MainLeader = nullptr;
1952 for (Instruction &Inst : *BB) {
1953 if (!shouldModelInst(Inst: &Inst, L))
1954 continue;
1955 ModeledInsts.push_back(Elt: &Inst);
1956 UnionFind.insert(Data: &Inst);
1957
1958 // When a BB is split into multiple statements, the main statement is the
1959 // one containing the 'main' instruction. We select the first instruction
1960 // that is unlikely to be removed (because it has side-effects) as the main
1961 // one. It is used to ensure that at least one statement from the bb has the
1962 // same name as with -polly-stmt-granularity=bb.
1963 if (!MainInst && (isa<StoreInst>(Val: Inst) ||
1964 (isa<CallInst>(Val: Inst) && !isa<IntrinsicInst>(Val: Inst))))
1965 MainInst = &Inst;
1966 }
1967
1968 joinOperandTree(UnionFind, ModeledInsts);
1969 joinOrderedInstructions(UnionFind, ModeledInsts);
1970 joinOrderedPHIs(UnionFind, ModeledInsts);
1971
1972 // The list of instructions for statement (statement represented by the leader
1973 // instruction).
1974 MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList;
1975
1976 // The order of statements must be preserved w.r.t. their ordered
1977 // instructions. Without this explicit scan, we would also use non-ordered
1978 // instructions (whose order is arbitrary) to determine statement order.
1979 for (Instruction *Inst : ModeledInsts) {
1980 if (!isOrderedInstruction(Inst))
1981 continue;
1982
1983 auto LeaderIt = UnionFind.findLeader(V: Inst);
1984 if (LeaderIt == UnionFind.member_end())
1985 continue;
1986
1987 // Insert element for the leader instruction.
1988 (void)LeaderToInstList[*LeaderIt];
1989 }
1990
1991 // Collect the instructions of all leaders. UnionFind's member iterator
1992 // unfortunately are not in any specific order.
1993 for (Instruction *Inst : ModeledInsts) {
1994 auto LeaderIt = UnionFind.findLeader(V: Inst);
1995 if (LeaderIt == UnionFind.member_end())
1996 continue;
1997
1998 if (Inst == MainInst)
1999 MainLeader = *LeaderIt;
2000 std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt];
2001 InstList.push_back(x: Inst);
2002 }
2003
2004 // Finally build the statements.
2005 int Count = 0;
2006 long BBIdx = scop->getNextStmtIdx();
2007 for (auto &Instructions : LeaderToInstList) {
2008 std::vector<Instruction *> &InstList = Instructions.second;
2009
2010 // If there is no main instruction, make the first statement the main.
2011 bool IsMain = (MainInst ? MainLeader == Instructions.first : Count == 0);
2012
2013 std::string Name = makeStmtName(BB, BBIdx, Count, IsMain);
2014 scop->addScopStmt(BB, Name, SurroundingLoop: L, Instructions: std::move(InstList));
2015 Count += 1;
2016 }
2017
2018 // Unconditionally add an epilogue (last statement). It contains no
2019 // instructions, but holds the PHI write accesses for successor basic blocks,
2020 // if the incoming value is not defined in another statement if the same BB.
2021 // The epilogue becomes the main statement only if there is no other
2022 // statement that could become main.
2023 // The epilogue will be removed if no PHIWrite is added to it.
2024 std::string EpilogueName = makeStmtName(BB, BBIdx, Count, IsMain: Count == 0, IsLast: true);
2025 scop->addScopStmt(BB, Name: EpilogueName, SurroundingLoop: L, Instructions: {});
2026}
2027
2028void ScopBuilder::buildStmts(Region &SR) {
2029 if (scop->isNonAffineSubRegion(R: &SR)) {
2030 std::vector<Instruction *> Instructions;
2031 Loop *SurroundingLoop =
2032 getFirstNonBoxedLoopFor(BB: SR.getEntry(), LI, BoxedLoops: scop->getBoxedLoops());
2033 for (Instruction &Inst : *SR.getEntry())
2034 if (shouldModelInst(Inst: &Inst, L: SurroundingLoop))
2035 Instructions.push_back(x: &Inst);
2036 long RIdx = scop->getNextStmtIdx();
2037 std::string Name = makeStmtName(R: &SR, RIdx);
2038 scop->addScopStmt(R: &SR, Name, SurroundingLoop, EntryBlockInstructions: Instructions);
2039 return;
2040 }
2041
2042 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
2043 if (I->isSubRegion())
2044 buildStmts(SR&: *I->getNodeAs<Region>());
2045 else {
2046 BasicBlock *BB = I->getNodeAs<BasicBlock>();
2047 switch (StmtGranularity) {
2048 case GranularityChoice::BasicBlocks:
2049 buildSequentialBlockStmts(BB);
2050 break;
2051 case GranularityChoice::ScalarIndependence:
2052 buildEqivClassBlockStmts(BB);
2053 break;
2054 case GranularityChoice::Stores:
2055 buildSequentialBlockStmts(BB, SplitOnStore: true);
2056 break;
2057 }
2058 }
2059}
2060
2061void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
2062 Region *NonAffineSubRegion) {
2063 assert(
2064 Stmt &&
2065 "The exit BB is the only one that cannot be represented by a statement");
2066 assert(Stmt->represents(&BB));
2067
2068 // We do not build access functions for error blocks, as they may contain
2069 // instructions we can not model.
2070 if (SD.isErrorBlock(BB, R: scop->getRegion()))
2071 return;
2072
2073 auto BuildAccessesForInst = [this, Stmt,
2074 NonAffineSubRegion](Instruction *Inst) {
2075 PHINode *PHI = dyn_cast<PHINode>(Val: Inst);
2076 if (PHI)
2077 buildPHIAccesses(PHIStmt: Stmt, PHI, NonAffineSubRegion, IsExitBlock: false);
2078
2079 if (auto MemInst = MemAccInst::dyn_cast(V&: *Inst)) {
2080 assert(Stmt && "Cannot build access function in non-existing statement");
2081 buildMemoryAccess(Inst: MemInst, Stmt);
2082 }
2083
2084 // PHI nodes have already been modeled above and terminators that are
2085 // not part of a non-affine subregion are fully modeled and regenerated
2086 // from the polyhedral domains. Hence, they do not need to be modeled as
2087 // explicit data dependences.
2088 if (!PHI)
2089 buildScalarDependences(UserStmt: Stmt, Inst);
2090 };
2091
2092 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
2093 bool IsEntryBlock = (Stmt->getEntryBlock() == &BB);
2094 if (IsEntryBlock) {
2095 for (Instruction *Inst : Stmt->getInstructions())
2096 BuildAccessesForInst(Inst);
2097 if (Stmt->isRegionStmt())
2098 BuildAccessesForInst(BB.getTerminator());
2099 } else {
2100 for (Instruction &Inst : BB) {
2101 if (isIgnoredIntrinsic(V: &Inst))
2102 continue;
2103
2104 // Invariant loads already have been processed.
2105 if (isa<LoadInst>(Val: Inst) && RIL.count(key: cast<LoadInst>(Val: &Inst)))
2106 continue;
2107
2108 BuildAccessesForInst(&Inst);
2109 }
2110 }
2111}
2112
2113MemoryAccess *ScopBuilder::addMemoryAccess(
2114 ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType,
2115 Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
2116 ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
2117 MemoryKind Kind) {
2118 bool isKnownMustAccess = false;
2119
2120 // Accesses in single-basic block statements are always executed.
2121 if (Stmt->isBlockStmt())
2122 isKnownMustAccess = true;
2123
2124 if (Stmt->isRegionStmt()) {
2125 // Accesses that dominate the exit block of a non-affine region are always
2126 // executed. In non-affine regions there may exist MemoryKind::Values that
2127 // do not dominate the exit. MemoryKind::Values will always dominate the
2128 // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the
2129 // non-affine region.
2130 if (Inst && DT.dominates(A: Inst->getParent(), B: Stmt->getRegion()->getExit()))
2131 isKnownMustAccess = true;
2132 }
2133
2134 // Non-affine PHI writes do not "happen" at a particular instruction, but
2135 // after exiting the statement. Therefore they are guaranteed to execute and
2136 // overwrite the old value.
2137 if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI)
2138 isKnownMustAccess = true;
2139
2140 if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
2141 AccType = MemoryAccess::MAY_WRITE;
2142
2143 auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType,
2144 Affine, Subscripts, Sizes, AccessValue, Kind);
2145
2146 scop->addAccessFunction(Access);
2147 Stmt->addAccess(Access);
2148 return Access;
2149}
2150
2151void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
2152 MemoryAccess::AccessType AccType,
2153 Value *BaseAddress, Type *ElementType,
2154 bool IsAffine,
2155 ArrayRef<const SCEV *> Subscripts,
2156 ArrayRef<const SCEV *> Sizes,
2157 Value *AccessValue) {
2158 ArrayBasePointers.insert(X: BaseAddress);
2159 addMemoryAccess(Stmt, Inst: MemAccInst, AccType, BaseAddress, ElementType, Affine: IsAffine,
2160 AccessValue, Subscripts, Sizes, Kind: MemoryKind::Array);
2161}
2162
2163/// Check if @p Expr is divisible by @p Size.
2164static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
2165 assert(Size != 0);
2166 if (Size == 1)
2167 return true;
2168
2169 // Only one factor needs to be divisible.
2170 if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Val: Expr)) {
2171 for (auto *FactorExpr : MulExpr->operands())
2172 if (isDivisible(Expr: FactorExpr, Size, SE))
2173 return true;
2174 return false;
2175 }
2176
2177 // For other n-ary expressions (Add, AddRec, Max,...) all operands need
2178 // to be divisible.
2179 if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Val: Expr)) {
2180 for (auto *OpExpr : NAryExpr->operands())
2181 if (!isDivisible(Expr: OpExpr, Size, SE))
2182 return false;
2183 return true;
2184 }
2185
2186 auto *SizeSCEV = SE.getConstant(Ty: Expr->getType(), V: Size);
2187 auto *UDivSCEV = SE.getUDivExpr(LHS: Expr, RHS: SizeSCEV);
2188 auto *MulSCEV = SE.getMulExpr(LHS: UDivSCEV, RHS: SizeSCEV);
2189 return MulSCEV == Expr;
2190}
2191
2192void ScopBuilder::foldSizeConstantsToRight() {
2193 isl::union_set Accessed = scop->getAccesses().range();
2194
2195 for (auto Array : scop->arrays()) {
2196 if (Array->getNumberOfDimensions() <= 1)
2197 continue;
2198
2199 isl::space Space = Array->getSpace();
2200 Space = Space.align_params(space2: Accessed.get_space());
2201
2202 if (!Accessed.contains(space: Space))
2203 continue;
2204
2205 isl::set Elements = Accessed.extract_set(space: Space);
2206 isl::map Transform = isl::map::universe(space: Array->getSpace().map_from_set());
2207
2208 std::vector<int> Int;
2209 unsigned Dims = unsignedFromIslSize(Size: Elements.tuple_dim());
2210 for (unsigned i = 0; i < Dims; i++) {
2211 isl::set DimOnly = isl::set(Elements).project_out(type: isl::dim::set, first: 0, n: i);
2212 DimOnly = DimOnly.project_out(type: isl::dim::set, first: 1, n: Dims - i - 1);
2213 DimOnly = DimOnly.lower_bound_si(type: isl::dim::set, pos: 0, value: 0);
2214
2215 isl::basic_set DimHull = DimOnly.affine_hull();
2216
2217 if (i == Dims - 1) {
2218 Int.push_back(x: 1);
2219 Transform = Transform.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i);
2220 continue;
2221 }
2222
2223 if (unsignedFromIslSize(Size: DimHull.dim(type: isl::dim::div)) == 1) {
2224 isl::aff Diff = DimHull.get_div(pos: 0);
2225 isl::val Val = Diff.get_denominator_val();
2226
2227 int ValInt = 1;
2228 if (Val.is_int()) {
2229 auto ValAPInt = APIntFromVal(V: Val);
2230 if (ValAPInt.isSignedIntN(N: 32))
2231 ValInt = ValAPInt.getSExtValue();
2232 } else {
2233 }
2234
2235 Int.push_back(x: ValInt);
2236 isl::constraint C = isl::constraint::alloc_equality(
2237 ls: isl::local_space(Transform.get_space()));
2238 C = C.set_coefficient_si(type: isl::dim::out, pos: i, v: ValInt);
2239 C = C.set_coefficient_si(type: isl::dim::in, pos: i, v: -1);
2240 Transform = Transform.add_constraint(constraint: C);
2241 continue;
2242 }
2243
2244 isl::basic_set ZeroSet = isl::basic_set(DimHull);
2245 ZeroSet = ZeroSet.fix_si(type: isl::dim::set, pos: 0, value: 0);
2246
2247 int ValInt = 1;
2248 if (ZeroSet.is_equal(bset2: DimHull)) {
2249 ValInt = 0;
2250 }
2251
2252 Int.push_back(x: ValInt);
2253 Transform = Transform.equate(type1: isl::dim::in, pos1: i, type2: isl::dim::out, pos2: i);
2254 }
2255
2256 isl::set MappedElements = isl::map(Transform).domain();
2257 if (!Elements.is_subset(set2: MappedElements))
2258 continue;
2259
2260 bool CanFold = true;
2261 if (Int[0] <= 1)
2262 CanFold = false;
2263
2264 unsigned NumDims = Array->getNumberOfDimensions();
2265 for (unsigned i = 1; i < NumDims - 1; i++)
2266 if (Int[0] != Int[i] && Int[i])
2267 CanFold = false;
2268
2269 if (!CanFold)
2270 continue;
2271
2272 for (auto &Access : scop->access_functions())
2273 if (Access->getScopArrayInfo() == Array)
2274 Access->setAccessRelation(
2275 Access->getAccessRelation().apply_range(map2: Transform));
2276
2277 std::vector<const SCEV *> Sizes;
2278 for (unsigned i = 0; i < NumDims; i++) {
2279 auto Size = Array->getDimensionSize(Dim: i);
2280
2281 if (i == NumDims - 1)
2282 Size = SE.getMulExpr(LHS: Size, RHS: SE.getConstant(Ty: Size->getType(), V: Int[0]));
2283 Sizes.push_back(x: Size);
2284 }
2285
2286 Array->updateSizes(Sizes, CheckConsistency: false /* CheckConsistency */);
2287 }
2288}
2289
2290void ScopBuilder::finalizeAccesses() {
2291 updateAccessDimensionality();
2292 foldSizeConstantsToRight();
2293 foldAccessRelations();
2294 assumeNoOutOfBounds();
2295}
2296
2297void ScopBuilder::updateAccessDimensionality() {
2298 // Check all array accesses for each base pointer and find a (virtual) element
2299 // size for the base pointer that divides all access functions.
2300 for (ScopStmt &Stmt : *scop)
2301 for (MemoryAccess *Access : Stmt) {
2302 if (!Access->isArrayKind())
2303 continue;
2304 ScopArrayInfo *Array =
2305 const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());
2306
2307 if (Array->getNumberOfDimensions() != 1)
2308 continue;
2309 unsigned DivisibleSize = Array->getElemSizeInBytes();
2310 const SCEV *Subscript = Access->getSubscript(Dim: 0);
2311 while (!isDivisible(Expr: Subscript, Size: DivisibleSize, SE))
2312 DivisibleSize /= 2;
2313 auto *Ty = IntegerType::get(C&: SE.getContext(), NumBits: DivisibleSize * 8);
2314 Array->updateElementType(NewElementType: Ty);
2315 }
2316
2317 for (auto &Stmt : *scop)
2318 for (auto &Access : Stmt)
2319 Access->updateDimensionality();
2320}
2321
2322void ScopBuilder::foldAccessRelations() {
2323 for (auto &Stmt : *scop)
2324 for (auto &Access : Stmt)
2325 Access->foldAccessRelation();
2326}
2327
2328void ScopBuilder::assumeNoOutOfBounds() {
2329 if (PollyIgnoreInbounds)
2330 return;
2331 for (auto &Stmt : *scop)
2332 for (auto &Access : Stmt) {
2333 isl::set Outside = Access->assumeNoOutOfBound();
2334 const auto &Loc = Access->getAccessInstruction()
2335 ? Access->getAccessInstruction()->getDebugLoc()
2336 : DebugLoc();
2337 recordAssumption(RecordedAssumptions: &RecordedAssumptions, Kind: INBOUNDS, Set: Outside, Loc,
2338 Sign: AS_ASSUMPTION);
2339 }
2340}
2341
2342void ScopBuilder::ensureValueWrite(Instruction *Inst) {
2343 // Find the statement that defines the value of Inst. That statement has to
2344 // write the value to make it available to those statements that read it.
2345 ScopStmt *Stmt = scop->getStmtFor(Inst);
2346
2347 // It is possible that the value is synthesizable within a loop (such that it
2348 // is not part of any statement), but not after the loop (where you need the
2349 // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will
2350 // avoid this. In case the IR has no such PHI, use the last statement (where
2351 // the value is synthesizable) to write the value.
2352 if (!Stmt)
2353 Stmt = scop->getLastStmtFor(BB: Inst->getParent());
2354
2355 // Inst not defined within this SCoP.
2356 if (!Stmt)
2357 return;
2358
2359 // Do not process further if the instruction is already written.
2360 if (Stmt->lookupValueWriteOf(Inst))
2361 return;
2362
2363 addMemoryAccess(Stmt, Inst, AccType: MemoryAccess::MUST_WRITE, BaseAddress: Inst, ElementType: Inst->getType(),
2364 Affine: true, AccessValue: Inst, Subscripts: ArrayRef<const SCEV *>(),
2365 Sizes: ArrayRef<const SCEV *>(), Kind: MemoryKind::Value);
2366}
2367
2368void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) {
2369 // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality
2370 // to be able to replace this one. Currently, there is a split responsibility.
2371 // In a first step, the MemoryAccess is created, but without the
2372 // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the
2373 // AccessRelation is created. At least for scalar accesses, there is no new
2374 // information available at ScopStmt::buildAccessRelations(), so we could
2375 // create the AccessRelation right away. This is what
2376 // ScopStmt::ensureValueRead(Value*) does.
2377
2378 auto *Scope = UserStmt->getSurroundingLoop();
2379 auto VUse = VirtualUse::create(S: scop.get(), UserStmt, UserScope: Scope, Val: V, Virtual: false);
2380 switch (VUse.getKind()) {
2381 case VirtualUse::Constant:
2382 case VirtualUse::Block:
2383 case VirtualUse::Synthesizable:
2384 case VirtualUse::Hoisted:
2385 case VirtualUse::Intra:
2386 // Uses of these kinds do not need a MemoryAccess.
2387 break;
2388
2389 case VirtualUse::ReadOnly:
2390 // Add MemoryAccess for invariant values only if requested.
2391 if (!ModelReadOnlyScalars)
2392 break;
2393
2394 [[fallthrough]];
2395 case VirtualUse::Inter:
2396
2397 // Do not create another MemoryAccess for reloading the value if one already
2398 // exists.
2399 if (UserStmt->lookupValueReadOf(Inst: V))
2400 break;
2401
2402 addMemoryAccess(Stmt: UserStmt, Inst: nullptr, AccType: MemoryAccess::READ, BaseAddress: V, ElementType: V->getType(),
2403 Affine: true, AccessValue: V, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(),
2404 Kind: MemoryKind::Value);
2405
2406 // Inter-statement uses need to write the value in their defining statement.
2407 if (VUse.isInter())
2408 ensureValueWrite(Inst: cast<Instruction>(Val: V));
2409 break;
2410 }
2411}
2412
2413void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt,
2414 BasicBlock *IncomingBlock,
2415 Value *IncomingValue, bool IsExitBlock) {
2416 // As the incoming block might turn out to be an error statement ensure we
2417 // will create an exit PHI SAI object. It is needed during code generation
2418 // and would be created later anyway.
2419 if (IsExitBlock)
2420 scop->getOrCreateScopArrayInfo(BasePtr: PHI, ElementType: PHI->getType(), Sizes: {},
2421 Kind: MemoryKind::ExitPHI);
2422
2423 // This is possible if PHI is in the SCoP's entry block. The incoming blocks
2424 // from outside the SCoP's region have no statement representation.
2425 if (!IncomingStmt)
2426 return;
2427
2428 // Take care for the incoming value being available in the incoming block.
2429 // This must be done before the check for multiple PHI writes because multiple
2430 // exiting edges from subregion each can be the effective written value of the
2431 // subregion. As such, all of them must be made available in the subregion
2432 // statement.
2433 ensureValueRead(V: IncomingValue, UserStmt: IncomingStmt);
2434
2435 // Do not add more than one MemoryAccess per PHINode and ScopStmt.
2436 if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
2437 assert(Acc->getAccessInstruction() == PHI);
2438 Acc->addIncoming(IncomingBlock, IncomingValue);
2439 return;
2440 }
2441
2442 MemoryAccess *Acc = addMemoryAccess(
2443 Stmt: IncomingStmt, Inst: PHI, AccType: MemoryAccess::MUST_WRITE, BaseAddress: PHI, ElementType: PHI->getType(), Affine: true,
2444 AccessValue: PHI, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(),
2445 Kind: IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI);
2446 assert(Acc);
2447 Acc->addIncoming(IncomingBlock, IncomingValue);
2448}
2449
2450void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) {
2451 addMemoryAccess(Stmt: PHIStmt, Inst: PHI, AccType: MemoryAccess::READ, BaseAddress: PHI, ElementType: PHI->getType(), Affine: true,
2452 AccessValue: PHI, Subscripts: ArrayRef<const SCEV *>(), Sizes: ArrayRef<const SCEV *>(),
2453 Kind: MemoryKind::PHI);
2454}
2455
2456void ScopBuilder::buildDomain(ScopStmt &Stmt) {
2457 isl::id Id = isl::id::alloc(ctx: scop->getIslCtx(), name: Stmt.getBaseName(), user: &Stmt);
2458
2459 Stmt.Domain = scop->getDomainConditions(Stmt: &Stmt);
2460 Stmt.Domain = Stmt.Domain.set_tuple_id(Id);
2461}
2462
2463void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) {
2464 isl::set Domain = Stmt.getDomain();
2465 BasicBlock *BB = Stmt.getEntryBlock();
2466
2467 Loop *L = LI.getLoopFor(BB);
2468
2469 while (L && Stmt.isRegionStmt() && Stmt.getRegion()->contains(L))
2470 L = L->getParentLoop();
2471
2472 SmallVector<llvm::Loop *, 8> Loops;
2473
2474 while (L && Stmt.getParent()->getRegion().contains(L)) {
2475 Loops.push_back(Elt: L);
2476 L = L->getParentLoop();
2477 }
2478
2479 Stmt.NestLoops.insert(I: Stmt.NestLoops.begin(), From: Loops.rbegin(), To: Loops.rend());
2480}
2481
2482/// Return the reduction type for a given binary operator.
2483static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
2484 const Instruction *Load) {
2485 if (!BinOp)
2486 return MemoryAccess::RT_NONE;
2487 switch (BinOp->getOpcode()) {
2488 case Instruction::FAdd:
2489 if (!BinOp->isFast())
2490 return MemoryAccess::RT_NONE;
2491 [[fallthrough]];
2492 case Instruction::Add:
2493 return MemoryAccess::RT_ADD;
2494 case Instruction::Or:
2495 return MemoryAccess::RT_BOR;
2496 case Instruction::Xor:
2497 return MemoryAccess::RT_BXOR;
2498 case Instruction::And:
2499 return MemoryAccess::RT_BAND;
2500 case Instruction::FMul:
2501 if (!BinOp->isFast())
2502 return MemoryAccess::RT_NONE;
2503 [[fallthrough]];
2504 case Instruction::Mul:
2505 if (DisableMultiplicativeReductions)
2506 return MemoryAccess::RT_NONE;
2507 return MemoryAccess::RT_MUL;
2508 default:
2509 return MemoryAccess::RT_NONE;
2510 }
2511}
2512
2513/// True if @p AllAccs intersects with @p MemAccs execpt @p LoadMA and @p
2514/// StoreMA
2515bool hasIntersectingAccesses(isl::set AllAccs, MemoryAccess *LoadMA,
2516 MemoryAccess *StoreMA, isl::set Domain,
2517 SmallVector<MemoryAccess *, 8> &MemAccs) {
2518 bool HasIntersectingAccs = false;
2519 auto AllAccsNoParams = AllAccs.project_out_all_params();
2520
2521 for (MemoryAccess *MA : MemAccs) {
2522 if (MA == LoadMA || MA == StoreMA)
2523 continue;
2524 auto AccRel = MA->getAccessRelation().intersect_domain(set: Domain);
2525 auto Accs = AccRel.range();
2526 auto AccsNoParams = Accs.project_out_all_params();
2527
2528 bool CompatibleSpace = AllAccsNoParams.has_equal_space(set2: AccsNoParams);
2529
2530 if (CompatibleSpace) {
2531 auto OverlapAccs = Accs.intersect(set2: AllAccs);
2532 bool DoesIntersect = !OverlapAccs.is_empty();
2533 HasIntersectingAccs |= DoesIntersect;
2534 }
2535 }
2536 return HasIntersectingAccs;
2537}
2538
2539/// Test if the accesses of @p LoadMA and @p StoreMA can form a reduction
2540bool checkCandidatePairAccesses(MemoryAccess *LoadMA, MemoryAccess *StoreMA,
2541 isl::set Domain,
2542 SmallVector<MemoryAccess *, 8> &MemAccs) {
2543 // First check if the base value is the same.
2544 isl::map LoadAccs = LoadMA->getAccessRelation();
2545 isl::map StoreAccs = StoreMA->getAccessRelation();
2546 bool Valid = LoadAccs.has_equal_space(map2: StoreAccs);
2547 LLVM_DEBUG(dbgs() << " == The accessed space below is "
2548 << (Valid ? "" : "not ") << "equal!\n");
2549 LLVM_DEBUG(LoadMA->dump(); StoreMA->dump());
2550
2551 if (Valid) {
2552 // Then check if they actually access the same memory.
2553 isl::map R = isl::manage(ptr: LoadAccs.copy())
2554 .intersect_domain(set: isl::manage(ptr: Domain.copy()));
2555 isl::map W = isl::manage(ptr: StoreAccs.copy())
2556 .intersect_domain(set: isl::manage(ptr: Domain.copy()));
2557 isl::set RS = R.range();
2558 isl::set WS = W.range();
2559
2560 isl::set InterAccs =
2561 isl::manage(ptr: RS.copy()).intersect(set2: isl::manage(ptr: WS.copy()));
2562 Valid = !InterAccs.is_empty();
2563 LLVM_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "" : "not ")
2564 << "overlapping!\n");
2565 }
2566
2567 if (Valid) {
2568 // Finally, check if they are no other instructions accessing this memory
2569 isl::map AllAccsRel = LoadAccs.unite(map2: StoreAccs);
2570 AllAccsRel = AllAccsRel.intersect_domain(set: Domain);
2571 isl::set AllAccs = AllAccsRel.range();
2572 Valid = !hasIntersectingAccesses(AllAccs, LoadMA, StoreMA, Domain, MemAccs);
2573
2574 LLVM_DEBUG(dbgs() << " == The accessed memory is " << (Valid ? "not " : "")
2575 << "accessed by other instructions!\n");
2576 }
2577 return Valid;
2578}
2579
2580void ScopBuilder::checkForReductions(ScopStmt &Stmt) {
2581 SmallVector<MemoryAccess *, 2> Loads;
2582 SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
2583
2584 // First collect candidate load-store reduction chains by iterating over all
2585 // stores and collecting possible reduction loads.
2586 for (MemoryAccess *StoreMA : Stmt) {
2587 if (StoreMA->isRead())
2588 continue;
2589
2590 Loads.clear();
2591 collectCandidateReductionLoads(StoreMA, Loads);
2592 for (MemoryAccess *LoadMA : Loads)
2593 Candidates.push_back(Elt: std::make_pair(x&: LoadMA, y&: StoreMA));
2594 }
2595
2596 // Then check each possible candidate pair.
2597 for (const auto &CandidatePair : Candidates) {
2598 MemoryAccess *LoadMA = CandidatePair.first;
2599 MemoryAccess *StoreMA = CandidatePair.second;
2600 bool Valid = checkCandidatePairAccesses(LoadMA, StoreMA, Domain: Stmt.getDomain(),
2601 MemAccs&: Stmt.MemAccs);
2602 if (!Valid)
2603 continue;
2604
2605 const LoadInst *Load =
2606 dyn_cast<const LoadInst>(Val: CandidatePair.first->getAccessInstruction());
2607 MemoryAccess::ReductionType RT =
2608 getReductionType(BinOp: dyn_cast<BinaryOperator>(Val: Load->user_back()), Load);
2609
2610 // If no overlapping access was found we mark the load and store as
2611 // reduction like.
2612 LoadMA->markAsReductionLike(RT);
2613 StoreMA->markAsReductionLike(RT);
2614 }
2615}
2616
2617void ScopBuilder::verifyInvariantLoads() {
2618 auto &RIL = scop->getRequiredInvariantLoads();
2619 for (LoadInst *LI : RIL) {
2620 assert(LI && scop->contains(LI));
2621 // If there exists a statement in the scop which has a memory access for
2622 // @p LI, then mark this scop as infeasible for optimization.
2623 for (ScopStmt &Stmt : *scop)
2624 if (Stmt.getArrayAccessOrNULLFor(Inst: LI)) {
2625 scop->invalidate(Kind: INVARIANTLOAD, Loc: LI->getDebugLoc(), BB: LI->getParent());
2626 return;
2627 }
2628 }
2629}
2630
2631void ScopBuilder::hoistInvariantLoads() {
2632 if (!PollyInvariantLoadHoisting)
2633 return;
2634
2635 isl::union_map Writes = scop->getWrites();
2636 for (ScopStmt &Stmt : *scop) {
2637 InvariantAccessesTy InvariantAccesses;
2638
2639 for (MemoryAccess *Access : Stmt) {
2640 isl::set NHCtx = getNonHoistableCtx(Access, Writes);
2641 if (!NHCtx.is_null())
2642 InvariantAccesses.push_back(Elt: {.MA: Access, .NonHoistableCtx: NHCtx});
2643 }
2644
2645 // Transfer the memory access from the statement to the SCoP.
2646 for (auto InvMA : InvariantAccesses)
2647 Stmt.removeMemoryAccess(MA: InvMA.MA);
2648 addInvariantLoads(Stmt, InvMAs&: InvariantAccesses);
2649 }
2650}
2651
2652/// Check if an access range is too complex.
2653///
2654/// An access range is too complex, if it contains either many disjuncts or
2655/// very complex expressions. As a simple heuristic, we assume if a set to
2656/// be too complex if the sum of existentially quantified dimensions and
2657/// set dimensions is larger than a threshold. This reliably detects both
2658/// sets with many disjuncts as well as sets with many divisions as they
2659/// arise in h264.
2660///
2661/// @param AccessRange The range to check for complexity.
2662///
2663/// @returns True if the access range is too complex.
2664static bool isAccessRangeTooComplex(isl::set AccessRange) {
2665 unsigned NumTotalDims = 0;
2666
2667 for (isl::basic_set BSet : AccessRange.get_basic_set_list()) {
2668 NumTotalDims += unsignedFromIslSize(Size: BSet.dim(type: isl::dim::div));
2669 NumTotalDims += unsignedFromIslSize(Size: BSet.dim(type: isl::dim::set));
2670 }
2671
2672 if (NumTotalDims > MaxDimensionsInAccessRange)
2673 return true;
2674
2675 return false;
2676}
2677
2678bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
2679 isl::union_map Writes) {
2680 if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) {
2681 return getNonHoistableCtx(Access: BasePtrMA, Writes).is_null();
2682 }
2683
2684 Value *BaseAddr = MA->getOriginalBaseAddr();
2685 if (auto *BasePtrInst = dyn_cast<Instruction>(Val: BaseAddr))
2686 if (!isa<LoadInst>(Val: BasePtrInst))
2687 return scop->contains(I: BasePtrInst);
2688
2689 return false;
2690}
2691
2692void ScopBuilder::addUserContext() {
2693 if (UserContextStr.empty())
2694 return;
2695
2696 isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str());
2697 isl::space Space = scop->getParamSpace();
2698 isl::size SpaceParams = Space.dim(type: isl::dim::param);
2699 if (unsignedFromIslSize(Size: SpaceParams) !=
2700 unsignedFromIslSize(Size: UserContext.dim(type: isl::dim::param))) {
2701 std::string SpaceStr = stringFromIslObj(Obj: Space, DefaultValue: "null");
2702 errs() << "Error: the context provided in -polly-context has not the same "
2703 << "number of dimensions than the computed context. Due to this "
2704 << "mismatch, the -polly-context option is ignored. Please provide "
2705 << "the context in the parameter space: " << SpaceStr << ".\n";
2706 return;
2707 }
2708
2709 for (auto i : rangeIslSize(Begin: 0, End: SpaceParams)) {
2710 std::string NameContext =
2711 scop->getContext().get_dim_name(type: isl::dim::param, pos: i);
2712 std::string NameUserContext = UserContext.get_dim_name(type: isl::dim::param, pos: i);
2713
2714 if (NameContext != NameUserContext) {
2715 std::string SpaceStr = stringFromIslObj(Obj: Space, DefaultValue: "null");
2716 errs() << "Error: the name of dimension " << i
2717 << " provided in -polly-context " << "is '" << NameUserContext
2718 << "', but the name in the computed " << "context is '"
2719 << NameContext << "'. Due to this name mismatch, "
2720 << "the -polly-context option is ignored. Please provide "
2721 << "the context in the parameter space: " << SpaceStr << ".\n";
2722 return;
2723 }
2724
2725 UserContext = UserContext.set_dim_id(type: isl::dim::param, pos: i,
2726 id: Space.get_dim_id(type: isl::dim::param, pos: i));
2727 }
2728 isl::set newContext = scop->getContext().intersect(set2: UserContext);
2729 scop->setContext(newContext);
2730}
2731
2732isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access,
2733 isl::union_map Writes) {
2734 // TODO: Loads that are not loop carried, hence are in a statement with
2735 // zero iterators, are by construction invariant, though we
2736 // currently "hoist" them anyway. This is necessary because we allow
2737 // them to be treated as parameters (e.g., in conditions) and our code
2738 // generation would otherwise use the old value.
2739
2740 auto &Stmt = *Access->getStatement();
2741 BasicBlock *BB = Stmt.getEntryBlock();
2742
2743 if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
2744 Access->isMemoryIntrinsic())
2745 return {};
2746
2747 // Skip accesses that have an invariant base pointer which is defined but
2748 // not loaded inside the SCoP. This can happened e.g., if a readnone call
2749 // returns a pointer that is used as a base address. However, as we want
2750 // to hoist indirect pointers, we allow the base pointer to be defined in
2751 // the region if it is also a memory access. Each ScopArrayInfo object
2752 // that has a base pointer origin has a base pointer that is loaded and
2753 // that it is invariant, thus it will be hoisted too. However, if there is
2754 // no base pointer origin we check that the base pointer is defined
2755 // outside the region.
2756 auto *LI = cast<LoadInst>(Val: Access->getAccessInstruction());
2757 if (hasNonHoistableBasePtrInScop(MA: Access, Writes))
2758 return {};
2759
2760 isl::map AccessRelation = Access->getAccessRelation();
2761 assert(!AccessRelation.is_empty());
2762
2763 if (AccessRelation.involves_dims(type: isl::dim::in, first: 0, n: Stmt.getNumIterators()))
2764 return {};
2765
2766 AccessRelation = AccessRelation.intersect_domain(set: Stmt.getDomain());
2767 isl::set SafeToLoad;
2768
2769 auto &DL = scop->getFunction().getParent()->getDataLayout();
2770 if (isSafeToLoadUnconditionally(V: LI->getPointerOperand(), Ty: LI->getType(),
2771 Alignment: LI->getAlign(), DL)) {
2772 SafeToLoad = isl::set::universe(space: AccessRelation.get_space().range());
2773 } else if (BB != LI->getParent()) {
2774 // Skip accesses in non-affine subregions as they might not be executed
2775 // under the same condition as the entry of the non-affine subregion.
2776 return {};
2777 } else {
2778 SafeToLoad = AccessRelation.range();
2779 }
2780
2781 if (isAccessRangeTooComplex(AccessRange: AccessRelation.range()))
2782 return {};
2783
2784 isl::union_map Written = Writes.intersect_range(uset: SafeToLoad);
2785 isl::set WrittenCtx = Written.params();
2786 bool IsWritten = !WrittenCtx.is_empty();
2787
2788 if (!IsWritten)
2789 return WrittenCtx;
2790
2791 WrittenCtx = WrittenCtx.remove_divs();
2792 bool TooComplex =
2793 unsignedFromIslSize(Size: WrittenCtx.n_basic_set()) >= MaxDisjunctsInDomain;
2794 if (TooComplex || !isRequiredInvariantLoad(LI))
2795 return {};
2796
2797 scop->addAssumption(Kind: INVARIANTLOAD, Set: WrittenCtx, Loc: LI->getDebugLoc(),
2798 Sign: AS_RESTRICTION, BB: LI->getParent());
2799 return WrittenCtx;
2800}
2801
2802static bool isAParameter(llvm::Value *maybeParam, const Function &F) {
2803 for (const llvm::Argument &Arg : F.args())
2804 if (&Arg == maybeParam)
2805 return true;
2806
2807 return false;
2808}
2809
2810bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA,
2811 bool StmtInvalidCtxIsEmpty,
2812 bool MAInvalidCtxIsEmpty,
2813 bool NonHoistableCtxIsEmpty) {
2814 LoadInst *LInst = cast<LoadInst>(Val: MA->getAccessInstruction());
2815 const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout();
2816 if (PollyAllowDereferenceOfAllFunctionParams &&
2817 isAParameter(maybeParam: LInst->getPointerOperand(), F: scop->getFunction()))
2818 return true;
2819
2820 // TODO: We can provide more information for better but more expensive
2821 // results.
2822 if (!isDereferenceableAndAlignedPointer(
2823 V: LInst->getPointerOperand(), Ty: LInst->getType(), Alignment: LInst->getAlign(), DL))
2824 return false;
2825
2826 // If the location might be overwritten we do not hoist it unconditionally.
2827 //
2828 // TODO: This is probably too conservative.
2829 if (!NonHoistableCtxIsEmpty)
2830 return false;
2831
2832 // If a dereferenceable load is in a statement that is modeled precisely we
2833 // can hoist it.
2834 if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
2835 return true;
2836
2837 // Even if the statement is not modeled precisely we can hoist the load if it
2838 // does not involve any parameters that might have been specialized by the
2839 // statement domain.
2840 for (const SCEV *Subscript : MA->subscripts())
2841 if (!isa<SCEVConstant>(Val: Subscript))
2842 return false;
2843 return true;
2844}
2845
2846void ScopBuilder::addInvariantLoads(ScopStmt &Stmt,
2847 InvariantAccessesTy &InvMAs) {
2848 if (InvMAs.empty())
2849 return;
2850
2851 isl::set StmtInvalidCtx = Stmt.getInvalidContext();
2852 bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty();
2853
2854 // Get the context under which the statement is executed but remove the error
2855 // context under which this statement is reached.
2856 isl::set DomainCtx = Stmt.getDomain().params();
2857 DomainCtx = DomainCtx.subtract(set2: StmtInvalidCtx);
2858
2859 if (unsignedFromIslSize(Size: DomainCtx.n_basic_set()) >= MaxDisjunctsInDomain) {
2860 auto *AccInst = InvMAs.front().MA->getAccessInstruction();
2861 scop->invalidate(Kind: COMPLEXITY, Loc: AccInst->getDebugLoc(), BB: AccInst->getParent());
2862 return;
2863 }
2864
2865 // Project out all parameters that relate to loads in the statement. Otherwise
2866 // we could have cyclic dependences on the constraints under which the
2867 // hoisted loads are executed and we could not determine an order in which to
2868 // pre-load them. This happens because not only lower bounds are part of the
2869 // domain but also upper bounds.
2870 for (auto &InvMA : InvMAs) {
2871 auto *MA = InvMA.MA;
2872 Instruction *AccInst = MA->getAccessInstruction();
2873 if (SE.isSCEVable(Ty: AccInst->getType())) {
2874 SetVector<Value *> Values;
2875 for (const SCEV *Parameter : scop->parameters()) {
2876 Values.clear();
2877 findValues(Expr: Parameter, SE, Values);
2878 if (!Values.count(key: AccInst))
2879 continue;
2880
2881 isl::id ParamId = scop->getIdForParam(Parameter);
2882 if (!ParamId.is_null()) {
2883 int Dim = DomainCtx.find_dim_by_id(type: isl::dim::param, id: ParamId);
2884 if (Dim >= 0)
2885 DomainCtx = DomainCtx.eliminate(type: isl::dim::param, first: Dim, n: 1);
2886 }
2887 }
2888 }
2889 }
2890
2891 for (auto &InvMA : InvMAs) {
2892 auto *MA = InvMA.MA;
2893 isl::set NHCtx = InvMA.NonHoistableCtx;
2894
2895 // Check for another invariant access that accesses the same location as
2896 // MA and if found consolidate them. Otherwise create a new equivalence
2897 // class at the end of InvariantEquivClasses.
2898 LoadInst *LInst = cast<LoadInst>(Val: MA->getAccessInstruction());
2899 Type *Ty = LInst->getType();
2900 const SCEV *PointerSCEV = SE.getSCEV(V: LInst->getPointerOperand());
2901
2902 isl::set MAInvalidCtx = MA->getInvalidContext();
2903 bool NonHoistableCtxIsEmpty = NHCtx.is_empty();
2904 bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty();
2905
2906 isl::set MACtx;
2907 // Check if we know that this pointer can be speculatively accessed.
2908 if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
2909 NonHoistableCtxIsEmpty)) {
2910 MACtx = isl::set::universe(space: DomainCtx.get_space());
2911 } else {
2912 MACtx = DomainCtx;
2913 MACtx = MACtx.subtract(set2: MAInvalidCtx.unite(set2: NHCtx));
2914 MACtx = MACtx.gist_params(context: scop->getContext());
2915 }
2916
2917 bool Consolidated = false;
2918 for (auto &IAClass : scop->invariantEquivClasses()) {
2919 if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
2920 continue;
2921
2922 // If the pointer and the type is equal check if the access function wrt.
2923 // to the domain is equal too. It can happen that the domain fixes
2924 // parameter values and these can be different for distinct part of the
2925 // SCoP. If this happens we cannot consolidate the loads but need to
2926 // create a new invariant load equivalence class.
2927 auto &MAs = IAClass.InvariantAccesses;
2928 if (!MAs.empty()) {
2929 auto *LastMA = MAs.front();
2930
2931 isl::set AR = MA->getAccessRelation().range();
2932 isl::set LastAR = LastMA->getAccessRelation().range();
2933 bool SameAR = AR.is_equal(set2: LastAR);
2934
2935 if (!SameAR)
2936 continue;
2937 }
2938
2939 // Add MA to the list of accesses that are in this class.
2940 MAs.push_front(val: MA);
2941
2942 Consolidated = true;
2943
2944 // Unify the execution context of the class and this statement.
2945 isl::set IAClassDomainCtx = IAClass.ExecutionContext;
2946 if (!IAClassDomainCtx.is_null())
2947 IAClassDomainCtx = IAClassDomainCtx.unite(set2: MACtx).coalesce();
2948 else
2949 IAClassDomainCtx = MACtx;
2950 IAClass.ExecutionContext = IAClassDomainCtx;
2951 break;
2952 }
2953
2954 if (Consolidated)
2955 continue;
2956
2957 MACtx = MACtx.coalesce();
2958
2959 // If we did not consolidate MA, thus did not find an equivalence class
2960 // for it, we create a new one.
2961 scop->addInvariantEquivClass(
2962 InvariantEquivClass: InvariantEquivClassTy{.IdentifyingPointer: PointerSCEV, .InvariantAccesses: MemoryAccessList{MA}, .ExecutionContext: MACtx, .AccessType: Ty});
2963 }
2964}
2965
2966void ScopBuilder::collectCandidateReductionLoads(
2967 MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
2968 ScopStmt *Stmt = StoreMA->getStatement();
2969
2970 auto *Store = dyn_cast<StoreInst>(Val: StoreMA->getAccessInstruction());
2971 if (!Store)
2972 return;
2973
2974 // Skip if there is not one binary operator between the load and the store
2975 auto *BinOp = dyn_cast<BinaryOperator>(Val: Store->getValueOperand());
2976 if (!BinOp)
2977 return;
2978
2979 // Skip if the binary operators has multiple uses
2980 if (BinOp->getNumUses() != 1)
2981 return;
2982
2983 // Skip if the opcode of the binary operator is not commutative/associative
2984 if (!BinOp->isCommutative() || !BinOp->isAssociative())
2985 return;
2986
2987 // Skip if the binary operator is outside the current SCoP
2988 if (BinOp->getParent() != Store->getParent())
2989 return;
2990
2991 // Skip if it is a multiplicative reduction and we disabled them
2992 if (DisableMultiplicativeReductions &&
2993 (BinOp->getOpcode() == Instruction::Mul ||
2994 BinOp->getOpcode() == Instruction::FMul))
2995 return;
2996
2997 // Check the binary operator operands for a candidate load
2998 auto *PossibleLoad0 = dyn_cast<LoadInst>(Val: BinOp->getOperand(i_nocapture: 0));
2999 auto *PossibleLoad1 = dyn_cast<LoadInst>(Val: BinOp->getOperand(i_nocapture: 1));
3000 if (!PossibleLoad0 && !PossibleLoad1)
3001 return;
3002
3003 // A load is only a candidate if it cannot escape (thus has only this use)
3004 if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
3005 if (PossibleLoad0->getParent() == Store->getParent())
3006 Loads.push_back(Elt: &Stmt->getArrayAccessFor(Inst: PossibleLoad0));
3007 if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
3008 if (PossibleLoad1->getParent() == Store->getParent())
3009 Loads.push_back(Elt: &Stmt->getArrayAccessFor(Inst: PossibleLoad1));
3010}
3011
3012/// Find the canonical scop array info object for a set of invariant load
3013/// hoisted loads. The canonical array is the one that corresponds to the
3014/// first load in the list of accesses which is used as base pointer of a
3015/// scop array.
3016static const ScopArrayInfo *findCanonicalArray(Scop &S,
3017 MemoryAccessList &Accesses) {
3018 for (MemoryAccess *Access : Accesses) {
3019 const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull(
3020 BasePtr: Access->getAccessInstruction(), Kind: MemoryKind::Array);
3021 if (CanonicalArray)
3022 return CanonicalArray;
3023 }
3024 return nullptr;
3025}
3026
3027/// Check if @p Array severs as base array in an invariant load.
3028static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) {
3029 for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses())
3030 for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
3031 if (Access2->getScopArrayInfo() == Array)
3032 return true;
3033 return false;
3034}
3035
3036/// Replace the base pointer arrays in all memory accesses referencing @p Old,
3037/// with a reference to @p New.
3038static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old,
3039 const ScopArrayInfo *New) {
3040 for (ScopStmt &Stmt : S)
3041 for (MemoryAccess *Access : Stmt) {
3042 if (Access->getLatestScopArrayInfo() != Old)
3043 continue;
3044
3045 isl::id Id = New->getBasePtrId();
3046 isl::map Map = Access->getAccessRelation();
3047 Map = Map.set_tuple_id(type: isl::dim::out, id: Id);
3048 Access->setAccessRelation(Map);
3049 }
3050}
3051
3052void ScopBuilder::canonicalizeDynamicBasePtrs() {
3053 for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) {
3054 MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;
3055
3056 const ScopArrayInfo *CanonicalBasePtrSAI =
3057 findCanonicalArray(S&: *scop, Accesses&: BasePtrAccesses);
3058
3059 if (!CanonicalBasePtrSAI)
3060 continue;
3061
3062 for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
3063 const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull(
3064 BasePtr: BasePtrAccess->getAccessInstruction(), Kind: MemoryKind::Array);
3065 if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
3066 !BasePtrSAI->isCompatibleWith(Array: CanonicalBasePtrSAI))
3067 continue;
3068
3069 // we currently do not canonicalize arrays where some accesses are
3070 // hoisted as invariant loads. If we would, we need to update the access
3071 // function of the invariant loads as well. However, as this is not a
3072 // very common situation, we leave this for now to avoid further
3073 // complexity increases.
3074 if (isUsedForIndirectHoistedLoad(S&: *scop, Array: BasePtrSAI))
3075 continue;
3076
3077 replaceBasePtrArrays(S&: *scop, Old: BasePtrSAI, New: CanonicalBasePtrSAI);
3078 }
3079 }
3080}
3081
3082void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) {
3083 for (MemoryAccess *Access : Stmt.MemAccs) {
3084 Type *ElementType = Access->getElementType();
3085
3086 MemoryKind Ty;
3087 if (Access->isPHIKind())
3088 Ty = MemoryKind::PHI;
3089 else if (Access->isExitPHIKind())
3090 Ty = MemoryKind::ExitPHI;
3091 else if (Access->isValueKind())
3092 Ty = MemoryKind::Value;
3093 else
3094 Ty = MemoryKind::Array;
3095
3096 // Create isl::pw_aff for SCEVs which describe sizes. Collect all
3097 // assumptions which are taken. isl::pw_aff objects are cached internally
3098 // and they are used later by scop.
3099 for (const SCEV *Size : Access->Sizes) {
3100 if (!Size)
3101 continue;
3102 scop->getPwAff(E: Size, BB: nullptr, NonNegative: false, RecordedAssumptions: &RecordedAssumptions);
3103 }
3104 auto *SAI = scop->getOrCreateScopArrayInfo(BasePtr: Access->getOriginalBaseAddr(),
3105 ElementType, Sizes: Access->Sizes, Kind: Ty);
3106
3107 // Create isl::pw_aff for SCEVs which describe subscripts. Collect all
3108 // assumptions which are taken. isl::pw_aff objects are cached internally
3109 // and they are used later by scop.
3110 for (const SCEV *Subscript : Access->subscripts()) {
3111 if (!Access->isAffine() || !Subscript)
3112 continue;
3113 scop->getPwAff(E: Subscript, BB: Stmt.getEntryBlock(), NonNegative: false,
3114 RecordedAssumptions: &RecordedAssumptions);
3115 }
3116 Access->buildAccessRelation(SAI);
3117 scop->addAccessData(Access);
3118 }
3119}
3120
3121/// Add the minimal/maximal access in @p Set to @p User.
3122///
3123/// @return True if more accesses should be added, false if we reached the
3124/// maximal number of run-time checks to be generated.
3125static bool buildMinMaxAccess(isl::set Set,
3126 Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) {
3127 isl::pw_multi_aff MinPMA, MaxPMA;
3128 isl::pw_aff LastDimAff;
3129 isl::aff OneAff;
3130 unsigned Pos;
3131
3132 Set = Set.remove_divs();
3133 polly::simplify(Set);
3134
3135 if (unsignedFromIslSize(Size: Set.n_basic_set()) > RunTimeChecksMaxAccessDisjuncts)
3136 Set = Set.simple_hull();
3137
3138 // Restrict the number of parameters involved in the access as the lexmin/
3139 // lexmax computation will take too long if this number is high.
3140 //
3141 // Experiments with a simple test case using an i7 4800MQ:
3142 //
3143 // #Parameters involved | Time (in sec)
3144 // 6 | 0.01
3145 // 7 | 0.04
3146 // 8 | 0.12
3147 // 9 | 0.40
3148 // 10 | 1.54
3149 // 11 | 6.78
3150 // 12 | 30.38
3151 //
3152 if (isl_set_n_param(set: Set.get()) >
3153 static_cast<isl_size>(RunTimeChecksMaxParameters)) {
3154 unsigned InvolvedParams = 0;
3155 for (unsigned u = 0, e = isl_set_n_param(set: Set.get()); u < e; u++)
3156 if (Set.involves_dims(type: isl::dim::param, first: u, n: 1))
3157 InvolvedParams++;
3158
3159 if (InvolvedParams > RunTimeChecksMaxParameters)
3160 return false;
3161 }
3162
3163 MinPMA = Set.lexmin_pw_multi_aff();
3164 MaxPMA = Set.lexmax_pw_multi_aff();
3165
3166 MinPMA = MinPMA.coalesce();
3167 MaxPMA = MaxPMA.coalesce();
3168
3169 if (MaxPMA.is_null())
3170 return false;
3171
3172 unsigned MaxOutputSize = unsignedFromIslSize(Size: MaxPMA.dim(type: isl::dim::out));
3173
3174 // Adjust the last dimension of the maximal access by one as we want to
3175 // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
3176 // we test during code generation might now point after the end of the
3177 // allocated array but we will never dereference it anyway.
3178 assert(MaxOutputSize >= 1 && "Assumed at least one output dimension");
3179
3180 Pos = MaxOutputSize - 1;
3181 LastDimAff = MaxPMA.at(pos: Pos);
3182 OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space()));
3183 OneAff = OneAff.add_constant_si(v: 1);
3184 LastDimAff = LastDimAff.add(pwaff2: OneAff);
3185 MaxPMA = MaxPMA.set_pw_aff(pos: Pos, pa: LastDimAff);
3186
3187 if (MinPMA.is_null() || MaxPMA.is_null())
3188 return false;
3189
3190 MinMaxAccesses.push_back(Elt: std::make_pair(x&: MinPMA, y&: MaxPMA));
3191
3192 return true;
3193}
3194
3195/// Wrapper function to calculate minimal/maximal accesses to each array.
3196bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup,
3197 Scop::MinMaxVectorTy &MinMaxAccesses) {
3198 MinMaxAccesses.reserve(N: AliasGroup.size());
3199
3200 isl::union_set Domains = scop->getDomains();
3201 isl::union_map Accesses = isl::union_map::empty(ctx: scop->getIslCtx());
3202
3203 for (MemoryAccess *MA : AliasGroup)
3204 Accesses = Accesses.unite(umap2: MA->getAccessRelation());
3205
3206 Accesses = Accesses.intersect_domain(uset: Domains);
3207 isl::union_set Locations = Accesses.range();
3208
3209 bool LimitReached = false;
3210 for (isl::set Set : Locations.get_set_list()) {
3211 LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, S&: *scop);
3212 if (LimitReached)
3213 break;
3214 }
3215
3216 return !LimitReached;
3217}
3218
3219static isl::set getAccessDomain(MemoryAccess *MA) {
3220 isl::set Domain = MA->getStatement()->getDomain();
3221 Domain = Domain.project_out(type: isl::dim::set, first: 0,
3222 n: unsignedFromIslSize(Size: Domain.tuple_dim()));
3223 return Domain.reset_tuple_id();
3224}
3225
3226bool ScopBuilder::buildAliasChecks() {
3227 if (!PollyUseRuntimeAliasChecks)
3228 return true;
3229
3230 if (buildAliasGroups()) {
3231 // Aliasing assumptions do not go through addAssumption but we still want to
3232 // collect statistics so we do it here explicitly.
3233 if (scop->getAliasGroups().size())
3234 Scop::incrementNumberOfAliasingAssumptions(Step: 1);
3235 return true;
3236 }
3237
3238 // If a problem occurs while building the alias groups we need to delete
3239 // this SCoP and pretend it wasn't valid in the first place. To this end
3240 // we make the assumed context infeasible.
3241 scop->invalidate(Kind: ALIASING, Loc: DebugLoc());
3242
3243 LLVM_DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr()
3244 << " could not be created. This SCoP has been dismissed.");
3245 return false;
3246}
3247
3248std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
3249ScopBuilder::buildAliasGroupsForAccesses() {
3250 BatchAAResults BAA(AA);
3251 AliasSetTracker AST(BAA);
3252
3253 DenseMap<Value *, MemoryAccess *> PtrToAcc;
3254 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3255 for (ScopStmt &Stmt : *scop) {
3256
3257 isl::set StmtDomain = Stmt.getDomain();
3258 bool StmtDomainEmpty = StmtDomain.is_empty();
3259
3260 // Statements with an empty domain will never be executed.
3261 if (StmtDomainEmpty)
3262 continue;
3263
3264 for (MemoryAccess *MA : Stmt) {
3265 if (MA->isScalarKind())
3266 continue;
3267 if (!MA->isRead())
3268 HasWriteAccess.insert(V: MA->getScopArrayInfo());
3269 MemAccInst Acc(MA->getAccessInstruction());
3270 if (MA->isRead() && isa<MemTransferInst>(Val: Acc))
3271 PtrToAcc[cast<MemTransferInst>(Val&: Acc)->getRawSource()] = MA;
3272 else
3273 PtrToAcc[Acc.getPointerOperand()] = MA;
3274 AST.add(I: Acc);
3275 }
3276 }
3277
3278 AliasGroupVectorTy AliasGroups;
3279 for (AliasSet &AS : AST) {
3280 if (AS.isMustAlias() || AS.isForwardingAliasSet())
3281 continue;
3282 AliasGroupTy AG;
3283 for (const Value *Ptr : AS.getPointers())
3284 AG.push_back(Elt: PtrToAcc[const_cast<Value *>(Ptr)]);
3285 if (AG.size() < 2)
3286 continue;
3287 AliasGroups.push_back(Elt: std::move(AG));
3288 }
3289
3290 return std::make_tuple(args&: AliasGroups, args&: HasWriteAccess);
3291}
3292
3293bool ScopBuilder::buildAliasGroups() {
3294 // To create sound alias checks we perform the following steps:
3295 // o) We partition each group into read only and non read only accesses.
3296 // o) For each group with more than one base pointer we then compute minimal
3297 // and maximal accesses to each array of a group in read only and non
3298 // read only partitions separately.
3299 AliasGroupVectorTy AliasGroups;
3300 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3301
3302 std::tie(args&: AliasGroups, args&: HasWriteAccess) = buildAliasGroupsForAccesses();
3303
3304 splitAliasGroupsByDomain(AliasGroups);
3305
3306 for (AliasGroupTy &AG : AliasGroups) {
3307 if (!scop->hasFeasibleRuntimeContext())
3308 return false;
3309
3310 {
3311 IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut);
3312 bool Valid = buildAliasGroup(AliasGroup&: AG, HasWriteAccess);
3313 if (!Valid)
3314 return false;
3315 }
3316 if (isl_ctx_last_error(ctx: scop->getIslCtx().get()) == isl_error_quota) {
3317 scop->invalidate(Kind: COMPLEXITY, Loc: DebugLoc());
3318 return false;
3319 }
3320 }
3321
3322 return true;
3323}
3324
3325bool ScopBuilder::buildAliasGroup(
3326 AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) {
3327 AliasGroupTy ReadOnlyAccesses;
3328 AliasGroupTy ReadWriteAccesses;
3329 SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
3330 SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;
3331
3332 if (AliasGroup.size() < 2)
3333 return true;
3334
3335 for (MemoryAccess *Access : AliasGroup) {
3336 ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias",
3337 Access->getAccessInstruction())
3338 << "Possibly aliasing pointer, use restrict keyword.");
3339 const ScopArrayInfo *Array = Access->getScopArrayInfo();
3340 if (HasWriteAccess.count(V: Array)) {
3341 ReadWriteArrays.insert(Ptr: Array);
3342 ReadWriteAccesses.push_back(Elt: Access);
3343 } else {
3344 ReadOnlyArrays.insert(Ptr: Array);
3345 ReadOnlyAccesses.push_back(Elt: Access);
3346 }
3347 }
3348
3349 // If there are no read-only pointers, and less than two read-write pointers,
3350 // no alias check is needed.
3351 if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
3352 return true;
3353
3354 // If there is no read-write pointer, no alias check is needed.
3355 if (ReadWriteArrays.empty())
3356 return true;
3357
3358 // For non-affine accesses, no alias check can be generated as we cannot
3359 // compute a sufficiently tight lower and upper bound: bail out.
3360 for (MemoryAccess *MA : AliasGroup) {
3361 if (!MA->isAffine()) {
3362 scop->invalidate(Kind: ALIASING, Loc: MA->getAccessInstruction()->getDebugLoc(),
3363 BB: MA->getAccessInstruction()->getParent());
3364 return false;
3365 }
3366 }
3367
3368 // Ensure that for all memory accesses for which we generate alias checks,
3369 // their base pointers are available.
3370 for (MemoryAccess *MA : AliasGroup) {
3371 if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA))
3372 scop->addRequiredInvariantLoad(
3373 LI: cast<LoadInst>(Val: BasePtrMA->getAccessInstruction()));
3374 }
3375
3376 // scop->getAliasGroups().emplace_back();
3377 // Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back();
3378 Scop::MinMaxVectorTy MinMaxAccessesReadWrite;
3379 Scop::MinMaxVectorTy MinMaxAccessesReadOnly;
3380
3381 bool Valid;
3382
3383 Valid = calculateMinMaxAccess(AliasGroup: ReadWriteAccesses, MinMaxAccesses&: MinMaxAccessesReadWrite);
3384
3385 if (!Valid)
3386 return false;
3387
3388 // Bail out if the number of values we need to compare is too large.
3389 // This is important as the number of comparisons grows quadratically with
3390 // the number of values we need to compare.
3391 if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
3392 RunTimeChecksMaxArraysPerGroup)
3393 return false;
3394
3395 Valid = calculateMinMaxAccess(AliasGroup: ReadOnlyAccesses, MinMaxAccesses&: MinMaxAccessesReadOnly);
3396
3397 scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly);
3398 if (!Valid)
3399 return false;
3400
3401 return true;
3402}
3403
3404void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
3405 for (unsigned u = 0; u < AliasGroups.size(); u++) {
3406 AliasGroupTy NewAG;
3407 AliasGroupTy &AG = AliasGroups[u];
3408 AliasGroupTy::iterator AGI = AG.begin();
3409 isl::set AGDomain = getAccessDomain(MA: *AGI);
3410 while (AGI != AG.end()) {
3411 MemoryAccess *MA = *AGI;
3412 isl::set MADomain = getAccessDomain(MA);
3413 if (AGDomain.is_disjoint(set2: MADomain)) {
3414 NewAG.push_back(Elt: MA);
3415 AGI = AG.erase(CI: AGI);
3416 } else {
3417 AGDomain = AGDomain.unite(set2: MADomain);
3418 AGI++;
3419 }
3420 }
3421 if (NewAG.size() > 1)
3422 AliasGroups.push_back(Elt: std::move(NewAG));
3423 }
3424}
3425
3426#ifndef NDEBUG
3427static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) {
3428 auto PhysUse = VirtualUse::create(S, U: Op, LI: &LI, Virtual: false);
3429 auto VirtUse = VirtualUse::create(S, U: Op, LI: &LI, Virtual: true);
3430 assert(PhysUse.getKind() == VirtUse.getKind());
3431}
3432
3433/// Check the consistency of every statement's MemoryAccesses.
3434///
3435/// The check is carried out by expecting the "physical" kind of use (derived
3436/// from the BasicBlocks instructions resides in) to be same as the "virtual"
3437/// kind of use (derived from a statement's MemoryAccess).
3438///
3439/// The "physical" uses are taken by ensureValueRead to determine whether to
3440/// create MemoryAccesses. When done, the kind of scalar access should be the
3441/// same no matter which way it was derived.
3442///
3443/// The MemoryAccesses might be changed by later SCoP-modifying passes and hence
3444/// can intentionally influence on the kind of uses (not corresponding to the
3445/// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has
3446/// to pick up the virtual uses. But here in the code generator, this has not
3447/// happened yet, such that virtual and physical uses are equivalent.
3448static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) {
3449 for (auto *BB : S->getRegion().blocks()) {
3450 for (auto &Inst : *BB) {
3451 auto *Stmt = S->getStmtFor(Inst: &Inst);
3452 if (!Stmt)
3453 continue;
3454
3455 if (isIgnoredIntrinsic(V: &Inst))
3456 continue;
3457
3458 // Branch conditions are encoded in the statement domains.
3459 if (Inst.isTerminator() && Stmt->isBlockStmt())
3460 continue;
3461
3462 // Verify all uses.
3463 for (auto &Op : Inst.operands())
3464 verifyUse(S, Op, LI);
3465
3466 // Stores do not produce values used by other statements.
3467 if (isa<StoreInst>(Val: Inst))
3468 continue;
3469
3470 // For every value defined in the block, also check that a use of that
3471 // value in the same statement would not be an inter-statement use. It can
3472 // still be synthesizable or load-hoisted, but these kind of instructions
3473 // are not directly copied in code-generation.
3474 auto VirtDef =
3475 VirtualUse::create(S, UserStmt: Stmt, UserScope: Stmt->getSurroundingLoop(), Val: &Inst, Virtual: true);
3476 assert(VirtDef.getKind() == VirtualUse::Synthesizable ||
3477 VirtDef.getKind() == VirtualUse::Intra ||
3478 VirtDef.getKind() == VirtualUse::Hoisted);
3479 }
3480 }
3481
3482 if (S->hasSingleExitEdge())
3483 return;
3484
3485 // PHINodes in the SCoP region's exit block are also uses to be checked.
3486 if (!S->getRegion().isTopLevelRegion()) {
3487 for (auto &Inst : *S->getRegion().getExit()) {
3488 if (!isa<PHINode>(Val: Inst))
3489 break;
3490
3491 for (auto &Op : Inst.operands())
3492 verifyUse(S, Op, LI);
3493 }
3494 }
3495}
3496#endif
3497
3498void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
3499 scop.reset(p: new Scop(R, SE, LI, DT, *SD.getDetectionContext(R: &R), ORE,
3500 SD.getNextID()));
3501
3502 buildStmts(SR&: R);
3503
3504 // Create all invariant load instructions first. These are categorized as
3505 // 'synthesizable', therefore are not part of any ScopStmt but need to be
3506 // created somewhere.
3507 const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
3508 for (BasicBlock *BB : scop->getRegion().blocks()) {
3509 if (SD.isErrorBlock(BB&: *BB, R: scop->getRegion()))
3510 continue;
3511
3512 for (Instruction &Inst : *BB) {
3513 LoadInst *Load = dyn_cast<LoadInst>(Val: &Inst);
3514 if (!Load)
3515 continue;
3516
3517 if (!RIL.count(key: Load))
3518 continue;
3519
3520 // Invariant loads require a MemoryAccess to be created in some statement.
3521 // It is not important to which statement the MemoryAccess is added
3522 // because it will later be removed from the ScopStmt again. We chose the
3523 // first statement of the basic block the LoadInst is in.
3524 ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB);
3525 assert(!List.empty());
3526 ScopStmt *RILStmt = List.front();
3527 buildMemoryAccess(Inst: Load, Stmt: RILStmt);
3528 }
3529 }
3530 buildAccessFunctions();
3531
3532 // In case the region does not have an exiting block we will later (during
3533 // code generation) split the exit block. This will move potential PHI nodes
3534 // from the current exit block into the new region exiting block. Hence, PHI
3535 // nodes that are at this point not part of the region will be.
3536 // To handle these PHI nodes later we will now model their operands as scalar
3537 // accesses. Note that we do not model anything in the exit block if we have
3538 // an exiting block in the region, as there will not be any splitting later.
3539 if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) {
3540 for (Instruction &Inst : *R.getExit()) {
3541 PHINode *PHI = dyn_cast<PHINode>(Val: &Inst);
3542 if (!PHI)
3543 break;
3544
3545 buildPHIAccesses(PHIStmt: nullptr, PHI, NonAffineSubRegion: nullptr, IsExitBlock: true);
3546 }
3547 }
3548
3549 // Create memory accesses for global reads since all arrays are now known.
3550 auto *AF = SE.getConstant(Ty: IntegerType::getInt64Ty(C&: SE.getContext()), V: 0);
3551 for (auto GlobalReadPair : GlobalReads) {
3552 ScopStmt *GlobalReadStmt = GlobalReadPair.first;
3553 Instruction *GlobalRead = GlobalReadPair.second;
3554 for (auto *BP : ArrayBasePointers)
3555 addArrayAccess(Stmt: GlobalReadStmt, MemAccInst: MemAccInst(GlobalRead), AccType: MemoryAccess::READ,
3556 BaseAddress: BP, ElementType: BP->getType(), IsAffine: false, Subscripts: {AF}, Sizes: {nullptr}, AccessValue: GlobalRead);
3557 }
3558
3559 buildInvariantEquivalenceClasses();
3560
3561 /// A map from basic blocks to their invalid domains.
3562 DenseMap<BasicBlock *, isl::set> InvalidDomainMap;
3563
3564 if (!buildDomains(R: &R, InvalidDomainMap)) {
3565 LLVM_DEBUG(
3566 dbgs() << "Bailing-out because buildDomains encountered problems\n");
3567 return;
3568 }
3569
3570 addUserAssumptions(AC, InvalidDomainMap);
3571
3572 // Initialize the invalid domain.
3573 for (ScopStmt &Stmt : scop->Stmts)
3574 if (Stmt.isBlockStmt())
3575 Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]);
3576 else
3577 Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock(
3578 RN: Stmt.getRegion()->getNode())]);
3579
3580 // Remove empty statements.
3581 // Exit early in case there are no executable statements left in this scop.
3582 scop->removeStmtNotInDomainMap();
3583 scop->simplifySCoP(AfterHoisting: false);
3584 if (scop->isEmpty()) {
3585 LLVM_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n");
3586 return;
3587 }
3588
3589 // The ScopStmts now have enough information to initialize themselves.
3590 for (ScopStmt &Stmt : *scop) {
3591 collectSurroundingLoops(Stmt);
3592
3593 buildDomain(Stmt);
3594 buildAccessRelations(Stmt);
3595
3596 if (DetectReductions)
3597 checkForReductions(Stmt);
3598 }
3599
3600 // Check early for a feasible runtime context.
3601 if (!scop->hasFeasibleRuntimeContext()) {
3602 LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (early)\n");
3603 return;
3604 }
3605
3606 // Check early for profitability. Afterwards it cannot change anymore,
3607 // only the runtime context could become infeasible.
3608 if (!scop->isProfitable(ScalarsAreUnprofitable: UnprofitableScalarAccs)) {
3609 scop->invalidate(Kind: PROFITABLE, Loc: DebugLoc());
3610 LLVM_DEBUG(
3611 dbgs() << "Bailing-out because SCoP is not considered profitable\n");
3612 return;
3613 }
3614
3615 buildSchedule();
3616
3617 finalizeAccesses();
3618
3619 scop->realignParams();
3620 addUserContext();
3621
3622 // After the context was fully constructed, thus all our knowledge about
3623 // the parameters is in there, we add all recorded assumptions to the
3624 // assumed/invalid context.
3625 addRecordedAssumptions();
3626
3627 scop->simplifyContexts();
3628 if (!buildAliasChecks()) {
3629 LLVM_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n");
3630 return;
3631 }
3632
3633 hoistInvariantLoads();
3634 canonicalizeDynamicBasePtrs();
3635 verifyInvariantLoads();
3636 scop->simplifySCoP(AfterHoisting: true);
3637
3638 // Check late for a feasible runtime context because profitability did not
3639 // change.
3640 if (!scop->hasFeasibleRuntimeContext()) {
3641 LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n");
3642 return;
3643 }
3644
3645#ifndef NDEBUG
3646 verifyUses(S: scop.get(), LI, DT);
3647#endif
3648}
3649
3650ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AAResults &AA,
3651 const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
3652 ScopDetection &SD, ScalarEvolution &SE,
3653 OptimizationRemarkEmitter &ORE)
3654 : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) {
3655 DebugLoc Beg, End;
3656 auto P = getBBPairForRegion(R);
3657 getDebugLocations(P, Begin&: Beg, End);
3658
3659 std::string Msg = "SCoP begins here.";
3660 ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first)
3661 << Msg);
3662
3663 buildScop(R&: *R, AC);
3664
3665 LLVM_DEBUG(dbgs() << *scop);
3666
3667 if (!scop->hasFeasibleRuntimeContext()) {
3668 InfeasibleScops++;
3669 Msg = "SCoP ends here but was dismissed.";
3670 LLVM_DEBUG(dbgs() << "SCoP detected but dismissed\n");
3671 RecordedAssumptions.clear();
3672 scop.reset();
3673 } else {
3674 Msg = "SCoP ends here.";
3675 ++ScopFound;
3676 if (scop->getMaxLoopDepth() > 0)
3677 ++RichScopFound;
3678 }
3679
3680 if (R->isTopLevelRegion())
3681 ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first)
3682 << Msg);
3683 else
3684 ORE.emit(OptDiag&: OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second)
3685 << Msg);
3686}
3687

source code of polly/lib/Analysis/ScopBuilder.cpp