1 | //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the IslNodeBuilder, a class to translate an isl AST into |
10 | // a LLVM-IR AST. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "polly/CodeGen/IslNodeBuilder.h" |
15 | #include "polly/CodeGen/BlockGenerators.h" |
16 | #include "polly/CodeGen/CodeGeneration.h" |
17 | #include "polly/CodeGen/IslAst.h" |
18 | #include "polly/CodeGen/IslExprBuilder.h" |
19 | #include "polly/CodeGen/LoopGeneratorsGOMP.h" |
20 | #include "polly/CodeGen/LoopGeneratorsKMP.h" |
21 | #include "polly/CodeGen/RuntimeDebugBuilder.h" |
22 | #include "polly/Options.h" |
23 | #include "polly/ScopInfo.h" |
24 | #include "polly/Support/ISLTools.h" |
25 | #include "polly/Support/SCEVValidator.h" |
26 | #include "polly/Support/ScopHelper.h" |
27 | #include "polly/Support/VirtualInstruction.h" |
28 | #include "llvm/ADT/APInt.h" |
29 | #include "llvm/ADT/PostOrderIterator.h" |
30 | #include "llvm/ADT/SetVector.h" |
31 | #include "llvm/ADT/SmallPtrSet.h" |
32 | #include "llvm/ADT/Statistic.h" |
33 | #include "llvm/Analysis/AssumptionCache.h" |
34 | #include "llvm/Analysis/LoopInfo.h" |
35 | #include "llvm/Analysis/RegionInfo.h" |
36 | #include "llvm/Analysis/ScalarEvolution.h" |
37 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
38 | #include "llvm/Analysis/TargetLibraryInfo.h" |
39 | #include "llvm/IR/BasicBlock.h" |
40 | #include "llvm/IR/Constant.h" |
41 | #include "llvm/IR/Constants.h" |
42 | #include "llvm/IR/DataLayout.h" |
43 | #include "llvm/IR/DerivedTypes.h" |
44 | #include "llvm/IR/Dominators.h" |
45 | #include "llvm/IR/Function.h" |
46 | #include "llvm/IR/InstrTypes.h" |
47 | #include "llvm/IR/Instruction.h" |
48 | #include "llvm/IR/Instructions.h" |
49 | #include "llvm/IR/Module.h" |
50 | #include "llvm/IR/Type.h" |
51 | #include "llvm/IR/Value.h" |
52 | #include "llvm/Support/Casting.h" |
53 | #include "llvm/Support/CommandLine.h" |
54 | #include "llvm/Support/ErrorHandling.h" |
55 | #include "llvm/TargetParser/Triple.h" |
56 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
57 | #include "isl/aff.h" |
58 | #include "isl/aff_type.h" |
59 | #include "isl/ast.h" |
60 | #include "isl/ast_build.h" |
61 | #include "isl/isl-noexceptions.h" |
62 | #include "isl/map.h" |
63 | #include "isl/set.h" |
64 | #include "isl/union_map.h" |
65 | #include "isl/union_set.h" |
66 | #include "isl/val.h" |
67 | #include <algorithm> |
68 | #include <cassert> |
69 | #include <cstdint> |
70 | #include <cstring> |
71 | #include <string> |
72 | #include <utility> |
73 | #include <vector> |
74 | |
75 | using namespace llvm; |
76 | using namespace polly; |
77 | |
78 | #define DEBUG_TYPE "polly-codegen" |
79 | |
80 | STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); |
81 | |
82 | STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); |
83 | STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); |
84 | STATISTIC(IfConditions, "Number of generated if-conditions"); |
85 | |
86 | /// OpenMP backend options |
87 | enum class OpenMPBackend { GNU, LLVM }; |
88 | |
89 | static cl::opt<bool> PollyGenerateRTCPrint( |
90 | "polly-codegen-emit-rtc-print", |
91 | cl::desc("Emit code that prints the runtime check result dynamically."), |
92 | cl::Hidden, cl::cat(PollyCategory)); |
93 | |
94 | // If this option is set we always use the isl AST generator to regenerate |
95 | // memory accesses. Without this option set we regenerate expressions using the |
96 | // original SCEV expressions and only generate new expressions in case the |
97 | // access relation has been changed and consequently must be regenerated. |
98 | static cl::opt<bool> PollyGenerateExpressions( |
99 | "polly-codegen-generate-expressions", |
100 | cl::desc("Generate AST expressions for unmodified and modified accesses"), |
101 | cl::Hidden, cl::cat(PollyCategory)); |
102 | |
103 | static cl::opt<int> PollyTargetFirstLevelCacheLineSize( |
104 | "polly-target-first-level-cache-line-size", |
105 | cl::desc("The size of the first level cache line size specified in bytes."), |
106 | cl::Hidden, cl::init(Val: 64), cl::cat(PollyCategory)); |
107 | |
108 | static cl::opt<OpenMPBackend> PollyOmpBackend( |
109 | "polly-omp-backend", cl::desc( "Choose the OpenMP library to use:"), |
110 | cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), |
111 | clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), |
112 | cl::Hidden, cl::init(Val: OpenMPBackend::GNU), cl::cat(PollyCategory)); |
113 | |
114 | isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For, |
115 | ICmpInst::Predicate &Predicate) { |
116 | isl::ast_expr Cond = For.cond(); |
117 | isl::ast_expr Iterator = For.iterator(); |
118 | assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && |
119 | "conditional expression is not an atomic upper bound"); |
120 | |
121 | isl_ast_op_type OpType = isl_ast_expr_get_op_type(expr: Cond.get()); |
122 | |
123 | switch (OpType) { |
124 | case isl_ast_op_le: |
125 | Predicate = ICmpInst::ICMP_SLE; |
126 | break; |
127 | case isl_ast_op_lt: |
128 | Predicate = ICmpInst::ICMP_SLT; |
129 | break; |
130 | default: |
131 | llvm_unreachable("Unexpected comparison type in loop condition"); |
132 | } |
133 | |
134 | isl::ast_expr Arg0 = Cond.get_op_arg(pos: 0); |
135 | |
136 | assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && |
137 | "conditional expression is not an atomic upper bound"); |
138 | |
139 | isl::id UBID = Arg0.get_id(); |
140 | |
141 | assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && |
142 | "Could not get the iterator"); |
143 | |
144 | isl::id IteratorID = Iterator.get_id(); |
145 | |
146 | assert(UBID.get() == IteratorID.get() && |
147 | "conditional expression is not an atomic upper bound"); |
148 | |
149 | return Cond.get_op_arg(pos: 1); |
150 | } |
151 | |
152 | int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) { |
153 | assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); |
154 | isl::ast_node Body = For.body(); |
155 | |
156 | // First, check if we can actually handle this code. |
157 | switch (isl_ast_node_get_type(node: Body.get())) { |
158 | case isl_ast_node_user: |
159 | break; |
160 | case isl_ast_node_block: { |
161 | isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>(); |
162 | isl::ast_node_list List = BodyBlock.children(); |
163 | for (isl::ast_node Node : List) { |
164 | isl_ast_node_type NodeType = isl_ast_node_get_type(node: Node.get()); |
165 | if (NodeType != isl_ast_node_user) |
166 | return -1; |
167 | } |
168 | break; |
169 | } |
170 | default: |
171 | return -1; |
172 | } |
173 | |
174 | isl::ast_expr Init = For.init(); |
175 | if (!Init.isa<isl::ast_expr_int>() || !Init.val().is_zero()) |
176 | return -1; |
177 | isl::ast_expr Inc = For.inc(); |
178 | if (!Inc.isa<isl::ast_expr_int>() || !Inc.val().is_one()) |
179 | return -1; |
180 | CmpInst::Predicate Predicate; |
181 | isl::ast_expr UB = getUpperBound(For, Predicate); |
182 | if (!UB.isa<isl::ast_expr_int>()) |
183 | return -1; |
184 | isl::val UpVal = UB.get_val(); |
185 | int NumberIterations = UpVal.get_num_si(); |
186 | if (NumberIterations < 0) |
187 | return -1; |
188 | if (Predicate == CmpInst::ICMP_SLT) |
189 | return NumberIterations; |
190 | else |
191 | return NumberIterations + 1; |
192 | } |
193 | |
194 | static void findReferencesByUse(Value *SrcVal, ScopStmt *UserStmt, |
195 | Loop *UserScope, const ValueMapT &GlobalMap, |
196 | SetVector<Value *> &Values, |
197 | SetVector<const SCEV *> &SCEVs) { |
198 | VirtualUse VUse = VirtualUse::create(UserStmt, UserScope, Val: SrcVal, Virtual: true); |
199 | switch (VUse.getKind()) { |
200 | case VirtualUse::Constant: |
201 | // When accelerator-offloading, GlobalValue is a host address whose content |
202 | // must still be transferred to the GPU. |
203 | if (isa<GlobalValue>(Val: SrcVal)) |
204 | Values.insert(X: SrcVal); |
205 | break; |
206 | |
207 | case VirtualUse::Synthesizable: |
208 | SCEVs.insert(X: VUse.getScevExpr()); |
209 | return; |
210 | |
211 | case VirtualUse::Block: |
212 | case VirtualUse::ReadOnly: |
213 | case VirtualUse::Hoisted: |
214 | case VirtualUse::Intra: |
215 | case VirtualUse::Inter: |
216 | break; |
217 | } |
218 | |
219 | if (Value *NewVal = GlobalMap.lookup(Val: SrcVal)) |
220 | Values.insert(X: NewVal); |
221 | } |
222 | |
223 | static void findReferencesInInst(Instruction *Inst, ScopStmt *UserStmt, |
224 | Loop *UserScope, const ValueMapT &GlobalMap, |
225 | SetVector<Value *> &Values, |
226 | SetVector<const SCEV *> &SCEVs) { |
227 | for (Use &U : Inst->operands()) |
228 | findReferencesByUse(SrcVal: U.get(), UserStmt, UserScope, GlobalMap, Values, SCEVs); |
229 | } |
230 | |
231 | static void findReferencesInStmt(ScopStmt *Stmt, SetVector<Value *> &Values, |
232 | ValueMapT &GlobalMap, |
233 | SetVector<const SCEV *> &SCEVs) { |
234 | LoopInfo *LI = Stmt->getParent()->getLI(); |
235 | |
236 | BasicBlock *BB = Stmt->getBasicBlock(); |
237 | Loop *Scope = LI->getLoopFor(BB); |
238 | for (Instruction *Inst : Stmt->getInstructions()) |
239 | findReferencesInInst(Inst, UserStmt: Stmt, UserScope: Scope, GlobalMap, Values, SCEVs); |
240 | |
241 | if (Stmt->isRegionStmt()) { |
242 | for (BasicBlock *BB : Stmt->getRegion()->blocks()) { |
243 | Loop *Scope = LI->getLoopFor(BB); |
244 | for (Instruction &Inst : *BB) |
245 | findReferencesInInst(Inst: &Inst, UserStmt: Stmt, UserScope: Scope, GlobalMap, Values, SCEVs); |
246 | } |
247 | } |
248 | } |
249 | |
250 | void polly::addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr, |
251 | bool CreateScalarRefs) { |
252 | auto &References = *static_cast<SubtreeReferences *>(UserPtr); |
253 | |
254 | findReferencesInStmt(Stmt, Values&: References.Values, GlobalMap&: References.GlobalMap, |
255 | SCEVs&: References.SCEVs); |
256 | |
257 | for (auto &Access : *Stmt) { |
258 | if (References.ParamSpace) { |
259 | isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); |
260 | (*References.ParamSpace) = |
261 | References.ParamSpace->align_params(space2: ParamSpace); |
262 | } |
263 | |
264 | if (Access->isLatestArrayKind()) { |
265 | auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); |
266 | if (Instruction *OpInst = dyn_cast<Instruction>(Val: BasePtr)) |
267 | if (Stmt->getParent()->contains(I: OpInst)) |
268 | continue; |
269 | |
270 | References.Values.insert(X: BasePtr); |
271 | continue; |
272 | } |
273 | |
274 | if (CreateScalarRefs) |
275 | References.Values.insert(X: References.BlockGen.getOrCreateAlloca(Access: *Access)); |
276 | } |
277 | } |
278 | |
279 | /// Extract the out-of-scop values and SCEVs referenced from a set describing |
280 | /// a ScopStmt. |
281 | /// |
282 | /// This includes the SCEVUnknowns referenced by the SCEVs used in the |
283 | /// statement and the base pointers of the memory accesses. For scalar |
284 | /// statements we force the generation of alloca memory locations and list |
285 | /// these locations in the set of out-of-scop values as well. |
286 | /// |
287 | /// @param Set A set which references the ScopStmt we are interested in. |
288 | /// @param UserPtr A void pointer that can be casted to a SubtreeReferences |
289 | /// structure. |
290 | static void addReferencesFromStmtSet(isl::set Set, SubtreeReferences *UserPtr) { |
291 | isl::id Id = Set.get_tuple_id(); |
292 | auto *Stmt = static_cast<ScopStmt *>(Id.get_user()); |
293 | addReferencesFromStmt(Stmt, UserPtr); |
294 | } |
295 | |
296 | /// Extract the out-of-scop values and SCEVs referenced from a union set |
297 | /// referencing multiple ScopStmts. |
298 | /// |
299 | /// This includes the SCEVUnknowns referenced by the SCEVs used in the |
300 | /// statement and the base pointers of the memory accesses. For scalar |
301 | /// statements we force the generation of alloca memory locations and list |
302 | /// these locations in the set of out-of-scop values as well. |
303 | /// |
304 | /// @param USet A union set referencing the ScopStmts we are interested |
305 | /// in. |
306 | /// @param References The SubtreeReferences data structure through which |
307 | /// results are returned and further information is |
308 | /// provided. |
309 | static void addReferencesFromStmtUnionSet(isl::union_set USet, |
310 | SubtreeReferences &References) { |
311 | |
312 | for (isl::set Set : USet.get_set_list()) |
313 | addReferencesFromStmtSet(Set, UserPtr: &References); |
314 | } |
315 | |
316 | isl::union_map |
317 | IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { |
318 | return IslAstInfo::getSchedule(Node); |
319 | } |
320 | |
321 | void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, |
322 | SetVector<Value *> &Values, |
323 | SetVector<const Loop *> &Loops) { |
324 | SetVector<const SCEV *> SCEVs; |
325 | SubtreeReferences References = { |
326 | .LI: LI, .SE: SE, .S: S, .GlobalMap: ValueMap, .Values: Values, .SCEVs: SCEVs, .BlockGen: getBlockGenerator(), .ParamSpace: nullptr}; |
327 | |
328 | Values.insert_range(R: llvm::make_second_range(c&: IDToValue)); |
329 | |
330 | // NOTE: this is populated in IslNodeBuilder::addParameters |
331 | for (const auto &I : OutsideLoopIterations) |
332 | Values.insert(X: cast<SCEVUnknown>(Val: I.second)->getValue()); |
333 | |
334 | isl::union_set Schedule = getScheduleForAstNode(Node: For).domain(); |
335 | addReferencesFromStmtUnionSet(USet: Schedule, References); |
336 | |
337 | for (const SCEV *Expr : SCEVs) { |
338 | findValues(Expr, SE, Values); |
339 | findLoops(Expr, Loops); |
340 | } |
341 | |
342 | Values.remove_if(P: [](const Value *V) { return isa<GlobalValue>(Val: V); }); |
343 | |
344 | /// Note: Code generation of induction variables of loops outside Scops |
345 | /// |
346 | /// Remove loops that contain the scop or that are part of the scop, as they |
347 | /// are considered local. This leaves only loops that are before the scop, but |
348 | /// do not contain the scop itself. |
349 | /// We ignore loops perfectly contained in the Scop because these are already |
350 | /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops |
351 | /// whose induction variables are referred to by the Scop, but the Scop is not |
352 | /// fully contained in these Loops. Since there can be many of these, |
353 | /// we choose to codegen these on-demand. |
354 | /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. |
355 | Loops.remove_if(P: [this](const Loop *L) { |
356 | return S.contains(L) || L->contains(BB: S.getEntry()); |
357 | }); |
358 | |
359 | // Contains Values that may need to be replaced with other values |
360 | // due to replacements from the ValueMap. We should make sure |
361 | // that we return correctly remapped values. |
362 | // NOTE: this code path is tested by: |
363 | // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll |
364 | // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll |
365 | SetVector<Value *> ReplacedValues; |
366 | for (Value *V : Values) { |
367 | ReplacedValues.insert(X: getLatestValue(Original: V)); |
368 | } |
369 | Values = ReplacedValues; |
370 | } |
371 | |
372 | Value *IslNodeBuilder::getLatestValue(Value *Original) const { |
373 | auto It = ValueMap.find(Val: Original); |
374 | if (It == ValueMap.end()) |
375 | return Original; |
376 | return It->second; |
377 | } |
378 | |
379 | void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { |
380 | auto *Id = isl_ast_node_mark_get_id(node: Node); |
381 | auto Child = isl_ast_node_mark_get_node(node: Node); |
382 | isl_ast_node_free(node: Node); |
383 | // If a child node of a 'SIMD mark' is a loop that has a single iteration, |
384 | // it will be optimized away and we should skip it. |
385 | if (strcmp(s1: isl_id_get_name(id: Id), s2: "SIMD") == 0 && |
386 | isl_ast_node_get_type(node: Child) == isl_ast_node_for) { |
387 | createForSequential(For: isl::manage(ptr: Child).as<isl::ast_node_for>(), MarkParallel: true); |
388 | isl_id_free(id: Id); |
389 | return; |
390 | } |
391 | |
392 | BandAttr *ChildLoopAttr = getLoopAttr(Id: isl::manage_copy(ptr: Id)); |
393 | BandAttr *AncestorLoopAttr; |
394 | if (ChildLoopAttr) { |
395 | // Save current LoopAttr environment to restore again when leaving this |
396 | // subtree. This means there was no loop between the ancestor LoopAttr and |
397 | // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This |
398 | // can happen e.g. if the AST build peeled or unrolled the loop. |
399 | AncestorLoopAttr = Annotator.getStagingAttrEnv(); |
400 | |
401 | Annotator.getStagingAttrEnv() = ChildLoopAttr; |
402 | } |
403 | |
404 | create(Node: Child); |
405 | |
406 | if (ChildLoopAttr) { |
407 | assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && |
408 | "Nest must not overwrite loop attr environment"); |
409 | Annotator.getStagingAttrEnv() = AncestorLoopAttr; |
410 | } |
411 | |
412 | isl_id_free(id: Id); |
413 | } |
414 | |
415 | /// Restore the initial ordering of dimensions of the band node |
416 | /// |
417 | /// In case the band node represents all the dimensions of the iteration |
418 | /// domain, recreate the band node to restore the initial ordering of the |
419 | /// dimensions. |
420 | /// |
421 | /// @param Node The band node to be modified. |
422 | /// @return The modified schedule node. |
423 | static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) { |
424 | assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); |
425 | isl::ast_node Body = Node.body(); |
426 | if (isl_ast_node_get_type(node: Body.get()) != isl_ast_node_mark) |
427 | return false; |
428 | |
429 | isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>(); |
430 | auto Id = BodyMark.id(); |
431 | if (strcmp(s1: Id.get_name().c_str(), s2: "Loop Vectorizer Disabled") == 0) |
432 | return true; |
433 | return false; |
434 | } |
435 | |
436 | void IslNodeBuilder::createForSequential(isl::ast_node_for For, |
437 | bool MarkParallel) { |
438 | Value *ValueLB, *ValueUB, *ValueInc; |
439 | Type *MaxType; |
440 | BasicBlock *ExitBlock; |
441 | Value *IV; |
442 | CmpInst::Predicate Predicate; |
443 | |
444 | bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(Node: For); |
445 | |
446 | isl::ast_node Body = For.body(); |
447 | |
448 | // isl_ast_node_for_is_degenerate(For) |
449 | // |
450 | // TODO: For degenerated loops we could generate a plain assignment. |
451 | // However, for now we just reuse the logic for normal loops, which will |
452 | // create a loop with a single iteration. |
453 | |
454 | isl::ast_expr Init = For.init(); |
455 | isl::ast_expr Inc = For.inc(); |
456 | isl::ast_expr Iterator = For.iterator(); |
457 | isl::id IteratorID = Iterator.get_id(); |
458 | isl::ast_expr UB = getUpperBound(For, Predicate); |
459 | |
460 | ValueLB = ExprBuilder.create(Expr: Init.release()); |
461 | ValueUB = ExprBuilder.create(Expr: UB.release()); |
462 | ValueInc = ExprBuilder.create(Expr: Inc.release()); |
463 | |
464 | MaxType = ExprBuilder.getType(Expr: Iterator.get()); |
465 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueLB->getType()); |
466 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueUB->getType()); |
467 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueInc->getType()); |
468 | |
469 | if (MaxType != ValueLB->getType()) |
470 | ValueLB = Builder.CreateSExt(V: ValueLB, DestTy: MaxType); |
471 | if (MaxType != ValueUB->getType()) |
472 | ValueUB = Builder.CreateSExt(V: ValueUB, DestTy: MaxType); |
473 | if (MaxType != ValueInc->getType()) |
474 | ValueInc = Builder.CreateSExt(V: ValueInc, DestTy: MaxType); |
475 | |
476 | // If we can show that LB <Predicate> UB holds at least once, we can |
477 | // omit the GuardBB in front of the loop. |
478 | bool UseGuardBB = !GenSE->isKnownPredicate(Pred: Predicate, LHS: GenSE->getSCEV(V: ValueLB), |
479 | RHS: GenSE->getSCEV(V: ValueUB)); |
480 | IV = createLoop(LowerBound: ValueLB, UpperBound: ValueUB, Stride: ValueInc, Builder, LI&: *GenLI, DT&: *GenDT, |
481 | ExitBlock, Predicate, Annotator: &Annotator, Parallel: MarkParallel, UseGuard: UseGuardBB, |
482 | LoopVectDisabled: LoopVectorizerDisabled); |
483 | IDToValue[IteratorID.get()] = IV; |
484 | |
485 | create(Node: Body.release()); |
486 | |
487 | Annotator.popLoop(isParallel: MarkParallel); |
488 | |
489 | IDToValue.erase(Iterator: IDToValue.find(Key: IteratorID.get())); |
490 | |
491 | Builder.SetInsertPoint(TheBB: ExitBlock, IP: ExitBlock->begin()); |
492 | |
493 | SequentialLoops++; |
494 | } |
495 | |
496 | void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { |
497 | isl_ast_node *Body; |
498 | isl_ast_expr *Init, *Inc, *Iterator, *UB; |
499 | isl_id *IteratorID; |
500 | Value *ValueLB, *ValueUB, *ValueInc; |
501 | Type *MaxType; |
502 | Value *IV; |
503 | CmpInst::Predicate Predicate; |
504 | |
505 | // The preamble of parallel code interacts different than normal code with |
506 | // e.g., scalar initialization. Therefore, we ensure the parallel code is |
507 | // separated from the last basic block. |
508 | BasicBlock *ParBB = |
509 | SplitBlock(Old: Builder.GetInsertBlock(), SplitPt: Builder.GetInsertPoint(), DT: &DT, LI: &LI); |
510 | ParBB->setName("polly.parallel.for"); |
511 | Builder.SetInsertPoint(TheBB: ParBB, IP: ParBB->begin()); |
512 | |
513 | Body = isl_ast_node_for_get_body(node: For); |
514 | Init = isl_ast_node_for_get_init(node: For); |
515 | Inc = isl_ast_node_for_get_inc(node: For); |
516 | Iterator = isl_ast_node_for_get_iterator(node: For); |
517 | IteratorID = isl_ast_expr_get_id(expr: Iterator); |
518 | UB = getUpperBound(For: isl::manage_copy(ptr: For).as<isl::ast_node_for>(), Predicate) |
519 | .release(); |
520 | |
521 | ValueLB = ExprBuilder.create(Expr: Init); |
522 | ValueUB = ExprBuilder.create(Expr: UB); |
523 | ValueInc = ExprBuilder.create(Expr: Inc); |
524 | |
525 | // OpenMP always uses SLE. In case the isl generated AST uses a SLT |
526 | // expression, we need to adjust the loop bound by one. |
527 | if (Predicate == CmpInst::ICMP_SLT) |
528 | ValueUB = Builder.CreateAdd( |
529 | LHS: ValueUB, RHS: Builder.CreateSExt(V: Builder.getTrue(), DestTy: ValueUB->getType())); |
530 | |
531 | MaxType = ExprBuilder.getType(Expr: Iterator); |
532 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueLB->getType()); |
533 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueUB->getType()); |
534 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueInc->getType()); |
535 | |
536 | if (MaxType != ValueLB->getType()) |
537 | ValueLB = Builder.CreateSExt(V: ValueLB, DestTy: MaxType); |
538 | if (MaxType != ValueUB->getType()) |
539 | ValueUB = Builder.CreateSExt(V: ValueUB, DestTy: MaxType); |
540 | if (MaxType != ValueInc->getType()) |
541 | ValueInc = Builder.CreateSExt(V: ValueInc, DestTy: MaxType); |
542 | |
543 | BasicBlock::iterator LoopBody; |
544 | |
545 | SetVector<Value *> SubtreeValues; |
546 | SetVector<const Loop *> Loops; |
547 | |
548 | getReferencesInSubtree(For: isl::manage_copy(ptr: For), Values&: SubtreeValues, Loops); |
549 | |
550 | // Create for all loops we depend on values that contain the current loop |
551 | // iteration. These values are necessary to generate code for SCEVs that |
552 | // depend on such loops. As a result we need to pass them to the subfunction. |
553 | // See [Code generation of induction variables of loops outside Scops] |
554 | for (const Loop *L : Loops) { |
555 | Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); |
556 | SubtreeValues.insert(X: LoopInductionVar); |
557 | } |
558 | |
559 | ValueMapT NewValues; |
560 | |
561 | std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; |
562 | |
563 | switch (PollyOmpBackend) { |
564 | case OpenMPBackend::GNU: |
565 | ParallelLoopGenPtr.reset(p: new ParallelLoopGeneratorGOMP(Builder, DL)); |
566 | break; |
567 | case OpenMPBackend::LLVM: |
568 | ParallelLoopGenPtr.reset(p: new ParallelLoopGeneratorKMP(Builder, DL)); |
569 | break; |
570 | } |
571 | |
572 | IV = ParallelLoopGenPtr->createParallelLoop( |
573 | LB: ValueLB, UB: ValueUB, Stride: ValueInc, Values&: SubtreeValues, VMap&: NewValues, LoopBody: &LoopBody); |
574 | BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); |
575 | |
576 | // Remember the parallel subfunction |
577 | Function *SubFn = LoopBody->getFunction(); |
578 | ParallelSubfunctions.push_back(Elt: SubFn); |
579 | |
580 | // We start working on the outlined function. Since DominatorTree/LoopInfo are |
581 | // not an inter-procedural passes, we temporarily switch them out. Save the |
582 | // old ones first. |
583 | Function *CallerFn = Builder.GetInsertBlock()->getParent(); |
584 | DominatorTree *CallerDT = GenDT; |
585 | LoopInfo *CallerLI = GenLI; |
586 | ScalarEvolution *CallerSE = GenSE; |
587 | ValueMapT CallerGlobals = ValueMap; |
588 | IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; |
589 | |
590 | // Get the analyses for the subfunction. ParallelLoopGenerator already create |
591 | // DominatorTree and LoopInfo for us. |
592 | DominatorTree *SubDT = ParallelLoopGenPtr->getCalleeDominatorTree(); |
593 | LoopInfo *SubLI = ParallelLoopGenPtr->getCalleeLoopInfo(); |
594 | |
595 | // Create TargetLibraryInfo, AssumptionCachem and ScalarEvolution ourselves. |
596 | // TODO: Ideally, we would use the pass manager's TargetLibraryInfoPass and |
597 | // AssumptionAnalysis instead of our own. They contain more target-specific |
598 | // information than we have available here: TargetLibraryInfoImpl can be a |
599 | // derived class determined by TargetMachine, AssumptionCache can be |
600 | // configured using a TargetTransformInfo object also derived from |
601 | // TargetMachine. |
602 | TargetLibraryInfoImpl BaselineInfoImpl(SubFn->getParent()->getTargetTriple()); |
603 | TargetLibraryInfo CalleeTLI(BaselineInfoImpl, SubFn); |
604 | AssumptionCache CalleeAC(*SubFn); |
605 | std::unique_ptr<ScalarEvolution> SubSE = std::make_unique<ScalarEvolution>( |
606 | args&: *SubFn, args&: CalleeTLI, args&: CalleeAC, args&: *SubDT, args&: *SubLI); |
607 | |
608 | // Switch to the subfunction |
609 | GenDT = SubDT; |
610 | GenLI = SubLI; |
611 | GenSE = SubSE.get(); |
612 | BlockGen.switchGeneratedFunc(GenFn: SubFn, GenDT, GenLI, GenSE); |
613 | RegionGen.switchGeneratedFunc(GenFn: SubFn, GenDT, GenLI, GenSE); |
614 | ExprBuilder.switchGeneratedFunc(GenFn: SubFn, GenDT, GenLI, GenSE); |
615 | Builder.SetInsertPoint(LoopBody); |
616 | |
617 | // Update the ValueMap to use instructions in the subfunction. Note that |
618 | // "GlobalMap" used in BlockGenerator/IslExprBuilder is a reference to this |
619 | // ValueMap. |
620 | for (auto &[OldVal, NewVal] : ValueMap) { |
621 | NewVal = NewValues.lookup(Val: NewVal); |
622 | |
623 | // Clean-up any value that getReferencesInSubtree thinks we do not need. |
624 | // DenseMap::erase only writes a tombstone (and destroys OldVal/NewVal), so |
625 | // does not invalidate our iterator. |
626 | if (!NewVal) |
627 | ValueMap.erase(Val: OldVal); |
628 | } |
629 | |
630 | // This is for NewVals that do not appear in ValueMap (such as SCoP-invariant |
631 | // values whose original value can be reused as long as we are in the same |
632 | // function). No need to map the others. |
633 | for (auto &[NewVal, NewNewVal] : NewValues) { |
634 | if (Instruction *NewValInst = dyn_cast<Instruction>(Val: (Value *)NewVal)) { |
635 | if (S.contains(I: NewValInst)) |
636 | continue; |
637 | assert(NewValInst->getFunction() == &S.getFunction()); |
638 | } |
639 | assert(!ValueMap.contains(NewVal)); |
640 | ValueMap[NewVal] = NewNewVal; |
641 | } |
642 | |
643 | // Also update the IDToValue map to use instructions from the subfunction. |
644 | for (auto &[OldVal, NewVal] : IDToValue) { |
645 | NewVal = NewValues.lookup(Val: NewVal); |
646 | assert(NewVal); |
647 | } |
648 | IDToValue[IteratorID] = IV; |
649 | |
650 | #ifndef NDEBUG |
651 | // Check whether the maps now exclusively refer to SubFn values. |
652 | for (auto &[OldVal, SubVal] : ValueMap) { |
653 | Instruction *SubInst = dyn_cast<Instruction>(Val: (Value *)SubVal); |
654 | assert(SubInst->getFunction() == SubFn && |
655 | "Instructions from outside the subfn cannot be accessed within the " |
656 | "subfn"); |
657 | } |
658 | for (auto &[Id, SubVal] : IDToValue) { |
659 | Instruction *SubInst = dyn_cast<Instruction>(Val: (Value *)SubVal); |
660 | assert(SubInst->getFunction() == SubFn && |
661 | "Instructions from outside the subfn cannot be accessed within the " |
662 | "subfn"); |
663 | } |
664 | #endif |
665 | |
666 | ValueMapT NewValuesReverse; |
667 | for (auto P : NewValues) |
668 | NewValuesReverse[P.second] = P.first; |
669 | |
670 | Annotator.addAlternativeAliasBases(NewMap&: NewValuesReverse); |
671 | |
672 | create(Node: Body); |
673 | |
674 | Annotator.resetAlternativeAliasBases(); |
675 | |
676 | // Resume working on the caller function. |
677 | GenDT = CallerDT; |
678 | GenLI = CallerLI; |
679 | GenSE = CallerSE; |
680 | IDToValue = std::move(IDToValueCopy); |
681 | ValueMap = std::move(CallerGlobals); |
682 | ExprBuilder.switchGeneratedFunc(GenFn: CallerFn, GenDT: CallerDT, GenLI: CallerLI, GenSE: CallerSE); |
683 | RegionGen.switchGeneratedFunc(GenFn: CallerFn, GenDT: CallerDT, GenLI: CallerLI, GenSE: CallerSE); |
684 | BlockGen.switchGeneratedFunc(GenFn: CallerFn, GenDT: CallerDT, GenLI: CallerLI, GenSE: CallerSE); |
685 | Builder.SetInsertPoint(AfterLoop); |
686 | |
687 | for (const Loop *L : Loops) |
688 | OutsideLoopIterations.erase(Key: L); |
689 | |
690 | isl_ast_node_free(node: For); |
691 | isl_ast_expr_free(expr: Iterator); |
692 | isl_id_free(id: IteratorID); |
693 | |
694 | ParallelLoops++; |
695 | } |
696 | |
697 | void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { |
698 | if (IslAstInfo::isExecutedInParallel(Node: isl::manage_copy(ptr: For))) { |
699 | createForParallel(For); |
700 | return; |
701 | } |
702 | bool Parallel = (IslAstInfo::isParallel(Node: isl::manage_copy(ptr: For)) && |
703 | !IslAstInfo::isReductionParallel(Node: isl::manage_copy(ptr: For))); |
704 | createForSequential(For: isl::manage(ptr: For).as<isl::ast_node_for>(), MarkParallel: Parallel); |
705 | } |
706 | |
707 | void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { |
708 | isl_ast_expr *Cond = isl_ast_node_if_get_cond(node: If); |
709 | |
710 | Function *F = Builder.GetInsertBlock()->getParent(); |
711 | LLVMContext &Context = F->getContext(); |
712 | |
713 | BasicBlock *CondBB = SplitBlock(Old: Builder.GetInsertBlock(), |
714 | SplitPt: Builder.GetInsertPoint(), DT: GenDT, LI: GenLI); |
715 | CondBB->setName("polly.cond"); |
716 | BasicBlock *MergeBB = SplitBlock(Old: CondBB, SplitPt: CondBB->begin(), DT: GenDT, LI: GenLI); |
717 | MergeBB->setName("polly.merge"); |
718 | BasicBlock *ThenBB = BasicBlock::Create(Context, Name: "polly.then", Parent: F); |
719 | BasicBlock *ElseBB = BasicBlock::Create(Context, Name: "polly.else", Parent: F); |
720 | |
721 | GenDT->addNewBlock(BB: ThenBB, DomBB: CondBB); |
722 | GenDT->addNewBlock(BB: ElseBB, DomBB: CondBB); |
723 | GenDT->changeImmediateDominator(BB: MergeBB, NewBB: CondBB); |
724 | |
725 | Loop *L = GenLI->getLoopFor(BB: CondBB); |
726 | if (L) { |
727 | L->addBasicBlockToLoop(NewBB: ThenBB, LI&: *GenLI); |
728 | L->addBasicBlockToLoop(NewBB: ElseBB, LI&: *GenLI); |
729 | } |
730 | |
731 | CondBB->getTerminator()->eraseFromParent(); |
732 | |
733 | Builder.SetInsertPoint(CondBB); |
734 | Value *Predicate = ExprBuilder.create(Expr: Cond); |
735 | Builder.CreateCondBr(Cond: Predicate, True: ThenBB, False: ElseBB); |
736 | Builder.SetInsertPoint(ThenBB); |
737 | Builder.CreateBr(Dest: MergeBB); |
738 | Builder.SetInsertPoint(ElseBB); |
739 | Builder.CreateBr(Dest: MergeBB); |
740 | Builder.SetInsertPoint(TheBB: ThenBB, IP: ThenBB->begin()); |
741 | |
742 | create(Node: isl_ast_node_if_get_then(node: If)); |
743 | |
744 | Builder.SetInsertPoint(TheBB: ElseBB, IP: ElseBB->begin()); |
745 | |
746 | if (isl_ast_node_if_has_else(node: If)) |
747 | create(Node: isl_ast_node_if_get_else(node: If)); |
748 | |
749 | Builder.SetInsertPoint(TheBB: MergeBB, IP: MergeBB->begin()); |
750 | |
751 | isl_ast_node_free(node: If); |
752 | |
753 | IfConditions++; |
754 | } |
755 | |
756 | __isl_give isl_id_to_ast_expr * |
757 | IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, |
758 | __isl_keep isl_ast_node *Node) { |
759 | isl::id_to_ast_expr NewAccesses = |
760 | isl::id_to_ast_expr::alloc(ctx: Stmt->getParent()->getIslCtx(), min_size: 0); |
761 | |
762 | isl::ast_build Build = IslAstInfo::getBuild(Node: isl::manage_copy(ptr: Node)); |
763 | assert(!Build.is_null() && "Could not obtain isl_ast_build from user node"); |
764 | Stmt->setAstBuild(Build); |
765 | |
766 | for (auto *MA : *Stmt) { |
767 | if (!MA->hasNewAccessRelation()) { |
768 | if (PollyGenerateExpressions) { |
769 | if (!MA->isAffine()) |
770 | continue; |
771 | if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) |
772 | continue; |
773 | |
774 | auto *BasePtr = |
775 | dyn_cast<Instruction>(Val: MA->getLatestScopArrayInfo()->getBasePtr()); |
776 | if (BasePtr && Stmt->getParent()->getRegion().contains(Inst: BasePtr)) |
777 | continue; |
778 | } else { |
779 | continue; |
780 | } |
781 | } |
782 | assert(MA->isAffine() && |
783 | "Only affine memory accesses can be code generated"); |
784 | |
785 | isl::union_map Schedule = Build.get_schedule(); |
786 | |
787 | #ifndef NDEBUG |
788 | if (MA->isRead()) { |
789 | auto Dom = Stmt->getDomain().release(); |
790 | auto SchedDom = isl_set_from_union_set(uset: Schedule.domain().release()); |
791 | auto AccDom = isl_map_domain(bmap: MA->getAccessRelation().release()); |
792 | Dom = isl_set_intersect_params(set: Dom, |
793 | params: Stmt->getParent()->getContext().release()); |
794 | SchedDom = isl_set_intersect_params( |
795 | set: SchedDom, params: Stmt->getParent()->getContext().release()); |
796 | assert(isl_set_is_subset(SchedDom, AccDom) && |
797 | "Access relation not defined on full schedule domain"); |
798 | assert(isl_set_is_subset(Dom, AccDom) && |
799 | "Access relation not defined on full domain"); |
800 | isl_set_free(set: AccDom); |
801 | isl_set_free(set: SchedDom); |
802 | isl_set_free(set: Dom); |
803 | } |
804 | #endif |
805 | |
806 | isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); |
807 | |
808 | // isl cannot generate an index expression for access-nothing accesses. |
809 | isl::set AccDomain = PWAccRel.domain(); |
810 | isl::set Context = S.getContext(); |
811 | AccDomain = AccDomain.intersect_params(params: Context); |
812 | if (AccDomain.is_empty()) |
813 | continue; |
814 | |
815 | isl::ast_expr AccessExpr = Build.access_from(pma: PWAccRel); |
816 | NewAccesses = NewAccesses.set(key: MA->getId(), val: AccessExpr); |
817 | } |
818 | |
819 | return NewAccesses.release(); |
820 | } |
821 | |
822 | void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, |
823 | ScopStmt *Stmt, LoopToScevMapT <S) { |
824 | assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && |
825 | "Expression of type 'op' expected"); |
826 | assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && |
827 | "Operation of type 'call' expected"); |
828 | for (int i = 0; i < isl_ast_expr_get_op_n_arg(expr: Expr) - 1; ++i) { |
829 | isl_ast_expr *SubExpr; |
830 | Value *V; |
831 | |
832 | SubExpr = isl_ast_expr_get_op_arg(expr: Expr, pos: i + 1); |
833 | V = ExprBuilder.create(Expr: SubExpr); |
834 | ScalarEvolution *SE = Stmt->getParent()->getSE(); |
835 | LTS[Stmt->getLoopForDimension(Dimension: i)] = SE->getUnknown(V); |
836 | } |
837 | |
838 | isl_ast_expr_free(expr: Expr); |
839 | } |
840 | |
841 | void IslNodeBuilder::createSubstitutionsVector( |
842 | __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, |
843 | std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, |
844 | __isl_take isl_id *IteratorID) { |
845 | int i = 0; |
846 | |
847 | Value *OldValue = IDToValue[IteratorID]; |
848 | for (Value *IV : IVS) { |
849 | IDToValue[IteratorID] = IV; |
850 | createSubstitutions(Expr: isl_ast_expr_copy(expr: Expr), Stmt, LTS&: VLTS[i]); |
851 | i++; |
852 | } |
853 | |
854 | IDToValue[IteratorID] = OldValue; |
855 | isl_id_free(id: IteratorID); |
856 | isl_ast_expr_free(expr: Expr); |
857 | } |
858 | |
859 | void IslNodeBuilder::generateCopyStmt( |
860 | ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { |
861 | assert(Stmt->size() == 2); |
862 | auto ReadAccess = Stmt->begin(); |
863 | auto WriteAccess = ReadAccess++; |
864 | assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); |
865 | assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && |
866 | "Accesses use the same data type"); |
867 | assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); |
868 | auto *AccessExpr = |
869 | isl_id_to_ast_expr_get(hmap: NewAccesses, key: (*ReadAccess)->getId().release()); |
870 | auto *LoadValue = ExprBuilder.create(Expr: AccessExpr); |
871 | AccessExpr = |
872 | isl_id_to_ast_expr_get(hmap: NewAccesses, key: (*WriteAccess)->getId().release()); |
873 | auto *StoreAddr = ExprBuilder.createAccessAddress(Expr: AccessExpr).first; |
874 | Builder.CreateStore(Val: LoadValue, Ptr: StoreAddr); |
875 | } |
876 | |
877 | Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { |
878 | assert(!OutsideLoopIterations.contains(L) && |
879 | "trying to materialize loop induction variable twice"); |
880 | const SCEV *OuterLIV = SE.getAddRecExpr(Start: SE.getUnknown(V: Builder.getInt64(C: 0)), |
881 | Step: SE.getUnknown(V: Builder.getInt64(C: 1)), L, |
882 | Flags: SCEV::FlagAnyWrap); |
883 | Value *V = generateSCEV(Expr: OuterLIV); |
884 | OutsideLoopIterations[L] = SE.getUnknown(V); |
885 | return V; |
886 | } |
887 | |
888 | void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { |
889 | LoopToScevMapT LTS; |
890 | isl_id *Id; |
891 | ScopStmt *Stmt; |
892 | |
893 | isl_ast_expr *Expr = isl_ast_node_user_get_expr(node: User); |
894 | isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(expr: Expr, pos: 0); |
895 | Id = isl_ast_expr_get_id(expr: StmtExpr); |
896 | isl_ast_expr_free(expr: StmtExpr); |
897 | |
898 | LTS.insert_range(R&: OutsideLoopIterations); |
899 | |
900 | Stmt = (ScopStmt *)isl_id_get_user(id: Id); |
901 | auto *NewAccesses = createNewAccesses(Stmt, Node: User); |
902 | if (Stmt->isCopyStmt()) { |
903 | generateCopyStmt(Stmt, NewAccesses); |
904 | isl_ast_expr_free(expr: Expr); |
905 | } else { |
906 | createSubstitutions(Expr, Stmt, LTS); |
907 | |
908 | if (Stmt->isBlockStmt()) |
909 | BlockGen.copyStmt(Stmt&: *Stmt, LTS, NewAccesses); |
910 | else |
911 | RegionGen.copyStmt(Stmt&: *Stmt, LTS, IdToAstExp: NewAccesses); |
912 | } |
913 | |
914 | isl_id_to_ast_expr_free(hmap: NewAccesses); |
915 | isl_ast_node_free(node: User); |
916 | isl_id_free(id: Id); |
917 | } |
918 | |
919 | void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { |
920 | isl_ast_node_list *List = isl_ast_node_block_get_children(node: Block); |
921 | |
922 | for (int i = 0; i < isl_ast_node_list_n_ast_node(list: List); ++i) |
923 | create(Node: isl_ast_node_list_get_ast_node(list: List, index: i)); |
924 | |
925 | isl_ast_node_free(node: Block); |
926 | isl_ast_node_list_free(list: List); |
927 | } |
928 | |
929 | void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { |
930 | switch (isl_ast_node_get_type(node: Node)) { |
931 | case isl_ast_node_error: |
932 | llvm_unreachable("code generation error"); |
933 | case isl_ast_node_mark: |
934 | createMark(Node); |
935 | return; |
936 | case isl_ast_node_for: |
937 | createFor(For: Node); |
938 | return; |
939 | case isl_ast_node_if: |
940 | createIf(If: Node); |
941 | return; |
942 | case isl_ast_node_user: |
943 | createUser(User: Node); |
944 | return; |
945 | case isl_ast_node_block: |
946 | createBlock(Block: Node); |
947 | return; |
948 | } |
949 | |
950 | llvm_unreachable("Unknown isl_ast_node type"); |
951 | } |
952 | |
953 | bool IslNodeBuilder::materializeValue(__isl_take isl_id *Id) { |
954 | // If the Id is already mapped, skip it. |
955 | if (!IDToValue.count(Key: Id)) { |
956 | auto *ParamSCEV = (const SCEV *)isl_id_get_user(id: Id); |
957 | Value *V = nullptr; |
958 | |
959 | // Parameters could refer to invariant loads that need to be |
960 | // preloaded before we can generate code for the parameter. Thus, |
961 | // check if any value referred to in ParamSCEV is an invariant load |
962 | // and if so make sure its equivalence class is preloaded. |
963 | SetVector<Value *> Values; |
964 | findValues(Expr: ParamSCEV, SE, Values); |
965 | for (auto *Val : Values) { |
966 | // Check if the value is an instruction in a dead block within the SCoP |
967 | // and if so do not code generate it. |
968 | if (auto *Inst = dyn_cast<Instruction>(Val)) { |
969 | if (S.contains(I: Inst)) { |
970 | bool IsDead = true; |
971 | |
972 | // Check for "undef" loads first, then if there is a statement for |
973 | // the parent of Inst and lastly if the parent of Inst has an empty |
974 | // domain. In the first and last case the instruction is dead but if |
975 | // there is a statement or the domain is not empty Inst is not dead. |
976 | auto MemInst = MemAccInst::dyn_cast(V: Inst); |
977 | auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; |
978 | if (Address && SE.getUnknown(V: UndefValue::get(T: Address->getType())) == |
979 | SE.getPointerBase(V: SE.getSCEV(V: Address))) { |
980 | } else if (S.getStmtFor(Inst)) { |
981 | IsDead = false; |
982 | } else { |
983 | auto *Domain = S.getDomainConditions(BB: Inst->getParent()).release(); |
984 | IsDead = isl_set_is_empty(set: Domain); |
985 | isl_set_free(set: Domain); |
986 | } |
987 | |
988 | if (IsDead) { |
989 | V = UndefValue::get(T: ParamSCEV->getType()); |
990 | break; |
991 | } |
992 | } |
993 | } |
994 | |
995 | if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { |
996 | // Check if this invariant access class is empty, hence if we never |
997 | // actually added a loads instruction to it. In that case it has no |
998 | // (meaningful) users and we should not try to code generate it. |
999 | if (IAClass->InvariantAccesses.empty()) |
1000 | V = UndefValue::get(T: ParamSCEV->getType()); |
1001 | |
1002 | if (!preloadInvariantEquivClass(IAClass&: *IAClass)) { |
1003 | isl_id_free(id: Id); |
1004 | return false; |
1005 | } |
1006 | } |
1007 | } |
1008 | |
1009 | V = V ? V : generateSCEV(Expr: ParamSCEV); |
1010 | IDToValue[Id] = V; |
1011 | } |
1012 | |
1013 | isl_id_free(id: Id); |
1014 | return true; |
1015 | } |
1016 | |
1017 | bool IslNodeBuilder::materializeParameters(__isl_take isl_set *Set) { |
1018 | for (unsigned i = 0, e = isl_set_dim(set: Set, type: isl_dim_param); i < e; ++i) { |
1019 | if (!isl_set_involves_dims(set: Set, type: isl_dim_param, first: i, n: 1)) |
1020 | continue; |
1021 | isl_id *Id = isl_set_get_dim_id(set: Set, type: isl_dim_param, pos: i); |
1022 | if (!materializeValue(Id)) |
1023 | return false; |
1024 | } |
1025 | return true; |
1026 | } |
1027 | |
1028 | bool IslNodeBuilder::materializeParameters() { |
1029 | for (const SCEV *Param : S.parameters()) { |
1030 | isl_id *Id = S.getIdForParam(Parameter: Param).release(); |
1031 | if (!materializeValue(Id)) |
1032 | return false; |
1033 | } |
1034 | return true; |
1035 | } |
1036 | |
1037 | Value *IslNodeBuilder::preloadUnconditionally(__isl_take isl_set *AccessRange, |
1038 | isl_ast_build *Build, |
1039 | Instruction *AccInst) { |
1040 | isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(set: AccessRange); |
1041 | isl_ast_expr *Access = |
1042 | isl_ast_build_access_from_pw_multi_aff(build: Build, pma: PWAccRel); |
1043 | auto *Address = isl_ast_expr_address_of(expr: Access); |
1044 | auto *AddressValue = ExprBuilder.create(Expr: Address); |
1045 | Value *PreloadVal; |
1046 | |
1047 | // Correct the type as the SAI might have a different type than the user |
1048 | // expects, especially if the base pointer is a struct. |
1049 | Type *Ty = AccInst->getType(); |
1050 | |
1051 | auto *Ptr = AddressValue; |
1052 | auto Name = Ptr->getName(); |
1053 | PreloadVal = Builder.CreateLoad(Ty, Ptr, Name: Name + ".load"); |
1054 | if (LoadInst *PreloadInst = dyn_cast<LoadInst>(Val: PreloadVal)) |
1055 | PreloadInst->setAlignment(cast<LoadInst>(Val: AccInst)->getAlign()); |
1056 | |
1057 | // TODO: This is only a hot fix for SCoP sequences that use the same load |
1058 | // instruction contained and hoisted by one of the SCoPs. |
1059 | if (SE.isSCEVable(Ty)) |
1060 | SE.forgetValue(V: AccInst); |
1061 | |
1062 | return PreloadVal; |
1063 | } |
1064 | |
1065 | Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, |
1066 | __isl_take isl_set *Domain) { |
1067 | isl_set *AccessRange = isl_map_range(map: MA.getAddressFunction().release()); |
1068 | AccessRange = isl_set_gist_params(set: AccessRange, context: S.getContext().release()); |
1069 | |
1070 | if (!materializeParameters(Set: AccessRange)) { |
1071 | isl_set_free(set: AccessRange); |
1072 | isl_set_free(set: Domain); |
1073 | return nullptr; |
1074 | } |
1075 | |
1076 | auto *Build = |
1077 | isl_ast_build_from_context(set: isl_set_universe(space: S.getParamSpace().release())); |
1078 | isl_set *Universe = isl_set_universe(space: isl_set_get_space(set: Domain)); |
1079 | bool AlwaysExecuted = isl_set_is_equal(set1: Domain, set2: Universe); |
1080 | isl_set_free(set: Universe); |
1081 | |
1082 | Instruction *AccInst = MA.getAccessInstruction(); |
1083 | Type *AccInstTy = AccInst->getType(); |
1084 | |
1085 | Value *PreloadVal = nullptr; |
1086 | if (AlwaysExecuted) { |
1087 | PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); |
1088 | isl_ast_build_free(build: Build); |
1089 | isl_set_free(set: Domain); |
1090 | return PreloadVal; |
1091 | } |
1092 | |
1093 | if (!materializeParameters(Set: Domain)) { |
1094 | isl_ast_build_free(build: Build); |
1095 | isl_set_free(set: AccessRange); |
1096 | isl_set_free(set: Domain); |
1097 | return nullptr; |
1098 | } |
1099 | |
1100 | isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(build: Build, set: Domain); |
1101 | Domain = nullptr; |
1102 | |
1103 | ExprBuilder.setTrackOverflow(true); |
1104 | Value *Cond = ExprBuilder.createBool(Expr: DomainCond); |
1105 | Value *OverflowHappened = Builder.CreateNot(V: ExprBuilder.getOverflowState(), |
1106 | Name: "polly.preload.cond.overflown"); |
1107 | Cond = Builder.CreateAnd(LHS: Cond, RHS: OverflowHappened, Name: "polly.preload.cond.result"); |
1108 | ExprBuilder.setTrackOverflow(false); |
1109 | |
1110 | if (!Cond->getType()->isIntegerTy(Bitwidth: 1)) |
1111 | Cond = Builder.CreateIsNotNull(Arg: Cond); |
1112 | |
1113 | BasicBlock *CondBB = SplitBlock(Old: Builder.GetInsertBlock(), |
1114 | SplitPt: Builder.GetInsertPoint(), DT: GenDT, LI: GenLI); |
1115 | CondBB->setName("polly.preload.cond"); |
1116 | |
1117 | BasicBlock *MergeBB = SplitBlock(Old: CondBB, SplitPt: CondBB->begin(), DT: GenDT, LI: GenLI); |
1118 | MergeBB->setName("polly.preload.merge"); |
1119 | |
1120 | Function *F = Builder.GetInsertBlock()->getParent(); |
1121 | LLVMContext &Context = F->getContext(); |
1122 | BasicBlock *ExecBB = BasicBlock::Create(Context, Name: "polly.preload.exec", Parent: F); |
1123 | |
1124 | GenDT->addNewBlock(BB: ExecBB, DomBB: CondBB); |
1125 | if (Loop *L = GenLI->getLoopFor(BB: CondBB)) |
1126 | L->addBasicBlockToLoop(NewBB: ExecBB, LI&: *GenLI); |
1127 | |
1128 | auto *CondBBTerminator = CondBB->getTerminator(); |
1129 | Builder.SetInsertPoint(TheBB: CondBB, IP: CondBBTerminator->getIterator()); |
1130 | Builder.CreateCondBr(Cond, True: ExecBB, False: MergeBB); |
1131 | CondBBTerminator->eraseFromParent(); |
1132 | |
1133 | Builder.SetInsertPoint(ExecBB); |
1134 | Builder.CreateBr(Dest: MergeBB); |
1135 | |
1136 | Builder.SetInsertPoint(TheBB: ExecBB, IP: ExecBB->getTerminator()->getIterator()); |
1137 | Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); |
1138 | Builder.SetInsertPoint(TheBB: MergeBB, IP: MergeBB->getTerminator()->getIterator()); |
1139 | auto *MergePHI = Builder.CreatePHI( |
1140 | Ty: AccInstTy, NumReservedValues: 2, Name: "polly.preload."+ AccInst->getName() + ".merge"); |
1141 | PreloadVal = MergePHI; |
1142 | |
1143 | if (!PreAccInst) { |
1144 | PreloadVal = nullptr; |
1145 | PreAccInst = UndefValue::get(T: AccInstTy); |
1146 | } |
1147 | |
1148 | MergePHI->addIncoming(V: PreAccInst, BB: ExecBB); |
1149 | MergePHI->addIncoming(V: Constant::getNullValue(Ty: AccInstTy), BB: CondBB); |
1150 | |
1151 | isl_ast_build_free(build: Build); |
1152 | return PreloadVal; |
1153 | } |
1154 | |
1155 | bool IslNodeBuilder::preloadInvariantEquivClass( |
1156 | InvariantEquivClassTy &IAClass) { |
1157 | // For an equivalence class of invariant loads we pre-load the representing |
1158 | // element with the unified execution context. However, we have to map all |
1159 | // elements of the class to the one preloaded load as they are referenced |
1160 | // during the code generation and therefore need to be mapped. |
1161 | const MemoryAccessList &MAs = IAClass.InvariantAccesses; |
1162 | if (MAs.empty()) |
1163 | return true; |
1164 | |
1165 | MemoryAccess *MA = MAs.front(); |
1166 | assert(MA->isArrayKind() && MA->isRead()); |
1167 | |
1168 | // If the access function was already mapped, the preload of this equivalence |
1169 | // class was triggered earlier already and doesn't need to be done again. |
1170 | if (ValueMap.count(Val: MA->getAccessInstruction())) |
1171 | return true; |
1172 | |
1173 | // Check for recursion which can be caused by additional constraints, e.g., |
1174 | // non-finite loop constraints. In such a case we have to bail out and insert |
1175 | // a "false" runtime check that will cause the original code to be executed. |
1176 | auto PtrId = std::make_pair(x&: IAClass.IdentifyingPointer, y&: IAClass.AccessType); |
1177 | if (!PreloadedPtrs.insert(V: PtrId).second) |
1178 | return false; |
1179 | |
1180 | // The execution context of the IAClass. |
1181 | isl::set &ExecutionCtx = IAClass.ExecutionContext; |
1182 | |
1183 | // If the base pointer of this class is dependent on another one we have to |
1184 | // make sure it was preloaded already. |
1185 | auto *SAI = MA->getScopArrayInfo(); |
1186 | if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val: SAI->getBasePtr())) { |
1187 | if (!preloadInvariantEquivClass(IAClass&: *BaseIAClass)) |
1188 | return false; |
1189 | |
1190 | // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and |
1191 | // we need to refine the ExecutionCtx. |
1192 | isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; |
1193 | ExecutionCtx = ExecutionCtx.intersect(set2: BaseExecutionCtx); |
1194 | } |
1195 | |
1196 | // If the size of a dimension is dependent on another class, make sure it is |
1197 | // preloaded. |
1198 | for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { |
1199 | const SCEV *Dim = SAI->getDimensionSize(Dim: i); |
1200 | SetVector<Value *> Values; |
1201 | findValues(Expr: Dim, SE, Values); |
1202 | for (auto *Val : Values) { |
1203 | if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { |
1204 | if (!preloadInvariantEquivClass(IAClass&: *BaseIAClass)) |
1205 | return false; |
1206 | |
1207 | // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx |
1208 | // and we need to refine the ExecutionCtx. |
1209 | isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; |
1210 | ExecutionCtx = ExecutionCtx.intersect(set2: BaseExecutionCtx); |
1211 | } |
1212 | } |
1213 | } |
1214 | |
1215 | Instruction *AccInst = MA->getAccessInstruction(); |
1216 | Type *AccInstTy = AccInst->getType(); |
1217 | |
1218 | Value *PreloadVal = preloadInvariantLoad(MA: *MA, Domain: ExecutionCtx.copy()); |
1219 | if (!PreloadVal) |
1220 | return false; |
1221 | |
1222 | for (const MemoryAccess *MA : MAs) { |
1223 | Instruction *MAAccInst = MA->getAccessInstruction(); |
1224 | assert(PreloadVal->getType() == MAAccInst->getType()); |
1225 | ValueMap[MAAccInst] = PreloadVal; |
1226 | } |
1227 | |
1228 | if (SE.isSCEVable(Ty: AccInstTy)) { |
1229 | isl_id *ParamId = S.getIdForParam(Parameter: SE.getSCEV(V: AccInst)).release(); |
1230 | if (ParamId) |
1231 | IDToValue[ParamId] = PreloadVal; |
1232 | isl_id_free(id: ParamId); |
1233 | } |
1234 | |
1235 | BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); |
1236 | auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), |
1237 | AccInst->getName() + ".preload.s2a", |
1238 | EntryBB->getFirstInsertionPt()); |
1239 | Builder.CreateStore(Val: PreloadVal, Ptr: Alloca); |
1240 | ValueMapT PreloadedPointer; |
1241 | PreloadedPointer[PreloadVal] = AccInst; |
1242 | Annotator.addAlternativeAliasBases(NewMap&: PreloadedPointer); |
1243 | |
1244 | for (auto *DerivedSAI : SAI->getDerivedSAIs()) { |
1245 | Value *BasePtr = DerivedSAI->getBasePtr(); |
1246 | |
1247 | for (const MemoryAccess *MA : MAs) { |
1248 | // As the derived SAI information is quite coarse, any load from the |
1249 | // current SAI could be the base pointer of the derived SAI, however we |
1250 | // should only change the base pointer of the derived SAI if we actually |
1251 | // preloaded it. |
1252 | if (BasePtr == MA->getOriginalBaseAddr()) { |
1253 | assert(BasePtr->getType() == PreloadVal->getType()); |
1254 | DerivedSAI->setBasePtr(PreloadVal); |
1255 | } |
1256 | |
1257 | // For scalar derived SAIs we remap the alloca used for the derived value. |
1258 | if (BasePtr == MA->getAccessInstruction()) |
1259 | ScalarMap[DerivedSAI] = Alloca; |
1260 | } |
1261 | } |
1262 | |
1263 | for (const MemoryAccess *MA : MAs) { |
1264 | Instruction *MAAccInst = MA->getAccessInstruction(); |
1265 | // Use the escape system to get the correct value to users outside the SCoP. |
1266 | BlockGenerator::EscapeUserVectorTy EscapeUsers; |
1267 | for (auto *U : MAAccInst->users()) |
1268 | if (Instruction *UI = dyn_cast<Instruction>(Val: U)) |
1269 | if (!S.contains(I: UI)) |
1270 | EscapeUsers.push_back(Elt: UI); |
1271 | |
1272 | if (EscapeUsers.empty()) |
1273 | continue; |
1274 | |
1275 | EscapeMap[MA->getAccessInstruction()] = |
1276 | std::make_pair(x&: Alloca, y: std::move(EscapeUsers)); |
1277 | } |
1278 | |
1279 | return true; |
1280 | } |
1281 | |
1282 | void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { |
1283 | for (auto &SAI : S.arrays()) { |
1284 | if (SAI->getBasePtr()) |
1285 | continue; |
1286 | |
1287 | assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && |
1288 | "The size of the outermost dimension is used to declare newly " |
1289 | "created arrays that require memory allocation."); |
1290 | |
1291 | Type *NewArrayType = nullptr; |
1292 | |
1293 | // Get the size of the array = size(dim_1)*...*size(dim_n) |
1294 | uint64_t ArraySizeInt = 1; |
1295 | for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { |
1296 | auto *DimSize = SAI->getDimensionSize(Dim: i); |
1297 | unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) |
1298 | ->getAPInt() |
1299 | .getLimitedValue(); |
1300 | |
1301 | if (!NewArrayType) |
1302 | NewArrayType = SAI->getElementType(); |
1303 | |
1304 | NewArrayType = ArrayType::get(ElementType: NewArrayType, NumElements: UnsignedDimSize); |
1305 | ArraySizeInt *= UnsignedDimSize; |
1306 | } |
1307 | |
1308 | if (SAI->isOnHeap()) { |
1309 | LLVMContext &Ctx = NewArrayType->getContext(); |
1310 | |
1311 | // Get the IntPtrTy from the Datalayout |
1312 | auto IntPtrTy = DL.getIntPtrType(C&: Ctx); |
1313 | |
1314 | // Get the size of the element type in bits |
1315 | unsigned Size = SAI->getElemSizeInBytes(); |
1316 | |
1317 | // Insert the malloc call at polly.start |
1318 | BasicBlock *StartBlock = std::get<0>(in&: StartExitBlocks); |
1319 | Builder.SetInsertPoint(TheBB: StartBlock, |
1320 | IP: StartBlock->getTerminator()->getIterator()); |
1321 | auto *CreatedArray = Builder.CreateMalloc( |
1322 | IntPtrTy, AllocTy: SAI->getElementType(), |
1323 | AllocSize: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Size), |
1324 | ArraySize: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: ArraySizeInt), MallocF: nullptr, |
1325 | Name: SAI->getName()); |
1326 | |
1327 | SAI->setBasePtr(CreatedArray); |
1328 | |
1329 | // Insert the free call at polly.exiting |
1330 | BasicBlock *ExitingBlock = std::get<1>(in&: StartExitBlocks); |
1331 | Builder.SetInsertPoint(TheBB: ExitingBlock, |
1332 | IP: ExitingBlock->getTerminator()->getIterator()); |
1333 | Builder.CreateFree(Source: CreatedArray); |
1334 | } else { |
1335 | auto InstIt = Builder.GetInsertBlock() |
1336 | ->getParent() |
1337 | ->getEntryBlock() |
1338 | .getTerminator() |
1339 | ->getIterator(); |
1340 | |
1341 | auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), |
1342 | SAI->getName(), InstIt); |
1343 | if (PollyTargetFirstLevelCacheLineSize) |
1344 | CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); |
1345 | SAI->setBasePtr(CreatedArray); |
1346 | } |
1347 | } |
1348 | } |
1349 | |
1350 | bool IslNodeBuilder::preloadInvariantLoads() { |
1351 | auto &InvariantEquivClasses = S.getInvariantAccesses(); |
1352 | if (InvariantEquivClasses.empty()) |
1353 | return true; |
1354 | |
1355 | BasicBlock *PreLoadBB = SplitBlock(Old: Builder.GetInsertBlock(), |
1356 | SplitPt: Builder.GetInsertPoint(), DT: GenDT, LI: GenLI); |
1357 | PreLoadBB->setName("polly.preload.begin"); |
1358 | Builder.SetInsertPoint(TheBB: PreLoadBB, IP: PreLoadBB->begin()); |
1359 | |
1360 | for (auto &IAClass : InvariantEquivClasses) |
1361 | if (!preloadInvariantEquivClass(IAClass)) |
1362 | return false; |
1363 | |
1364 | return true; |
1365 | } |
1366 | |
1367 | void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { |
1368 | // Materialize values for the parameters of the SCoP. |
1369 | materializeParameters(); |
1370 | |
1371 | // Generate values for the current loop iteration for all surrounding loops. |
1372 | // |
1373 | // We may also reference loops outside of the scop which do not contain the |
1374 | // scop itself, but as the number of such scops may be arbitrarily large we do |
1375 | // not generate code for them here, but only at the point of code generation |
1376 | // where these values are needed. |
1377 | Loop *L = LI.getLoopFor(BB: S.getEntry()); |
1378 | |
1379 | while (L != nullptr && S.contains(L)) |
1380 | L = L->getParentLoop(); |
1381 | |
1382 | while (L != nullptr) { |
1383 | materializeNonScopLoopInductionVariable(L); |
1384 | L = L->getParentLoop(); |
1385 | } |
1386 | |
1387 | isl_set_free(set: Context); |
1388 | } |
1389 | |
1390 | Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { |
1391 | /// We pass the insert location of our Builder, as Polly ensures during IR |
1392 | /// generation that there is always a valid CFG into which instructions are |
1393 | /// inserted. As a result, the insertpoint is known to be always followed by a |
1394 | /// terminator instruction. This means the insert point may be specified by a |
1395 | /// terminator instruction, but it can never point to an ->end() iterator |
1396 | /// which does not have a corresponding instruction. Hence, dereferencing |
1397 | /// the insertpoint to obtain an instruction is known to be save. |
1398 | /// |
1399 | /// We also do not need to update the Builder here, as new instructions are |
1400 | /// always inserted _before_ the given InsertLocation. As a result, the |
1401 | /// insert location remains valid. |
1402 | assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && |
1403 | "Insert location points after last valid instruction"); |
1404 | BasicBlock::iterator InsertLocation = Builder.GetInsertPoint(); |
1405 | |
1406 | return expandCodeFor(S, SE, GenFn: Builder.GetInsertBlock()->getParent(), GenSE&: *GenSE, DL, |
1407 | Name: "polly", E: Expr, Ty: Expr->getType(), IP: InsertLocation, |
1408 | VMap: &ValueMap, /*LoopToScevMap*/ LoopMap: nullptr, |
1409 | RTCBB: StartBlock->getSinglePredecessor()); |
1410 | } |
1411 | |
1412 | /// The AST expression we generate to perform the run-time check assumes |
1413 | /// computations on integer types of infinite size. As we only use 64-bit |
1414 | /// arithmetic we check for overflows, in case of which we set the result |
1415 | /// of this run-time check to false to be conservatively correct, |
1416 | Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { |
1417 | auto ExprBuilder = getExprBuilder(); |
1418 | |
1419 | // In case the AST expression has integers larger than 64 bit, bail out. The |
1420 | // resulting LLVM-IR will contain operations on types that use more than 64 |
1421 | // bits. These are -- in case wrapping intrinsics are used -- translated to |
1422 | // runtime library calls that are not available on all systems (e.g., Android) |
1423 | // and consequently will result in linker errors. |
1424 | if (ExprBuilder.hasLargeInts(Expr: isl::manage_copy(ptr: Condition))) { |
1425 | isl_ast_expr_free(expr: Condition); |
1426 | return Builder.getFalse(); |
1427 | } |
1428 | |
1429 | ExprBuilder.setTrackOverflow(true); |
1430 | Value *RTC = ExprBuilder.create(Expr: Condition); |
1431 | if (!RTC->getType()->isIntegerTy(Bitwidth: 1)) |
1432 | RTC = Builder.CreateIsNotNull(Arg: RTC); |
1433 | Value *OverflowHappened = |
1434 | Builder.CreateNot(V: ExprBuilder.getOverflowState(), Name: "polly.rtc.overflown"); |
1435 | |
1436 | if (PollyGenerateRTCPrint) { |
1437 | auto *F = Builder.GetInsertBlock()->getParent(); |
1438 | RuntimeDebugBuilder::createCPUPrinter( |
1439 | Builder, |
1440 | args: "F: "+ F->getName().str() + " R: "+ S.getRegion().getNameStr() + |
1441 | "RTC: ", |
1442 | args: RTC, args: " Overflow: ", args: OverflowHappened, |
1443 | args: "\n" |
1444 | " (0 failed, -1 succeeded)\n" |
1445 | " (if one or both are 0 falling back to original code, if both are -1 " |
1446 | "executing Polly code)\n"); |
1447 | } |
1448 | |
1449 | RTC = Builder.CreateAnd(LHS: RTC, RHS: OverflowHappened, Name: "polly.rtc.result"); |
1450 | ExprBuilder.setTrackOverflow(false); |
1451 | |
1452 | if (!isa<ConstantInt>(Val: RTC)) |
1453 | VersionedScops++; |
1454 | |
1455 | return RTC; |
1456 | } |
1457 |
Definitions
- VersionedScops
- SequentialLoops
- ParallelLoops
- IfConditions
- OpenMPBackend
- PollyGenerateRTCPrint
- PollyGenerateExpressions
- PollyTargetFirstLevelCacheLineSize
- PollyOmpBackend
- getUpperBound
- getNumberOfIterations
- findReferencesByUse
- findReferencesInInst
- findReferencesInStmt
- addReferencesFromStmt
- addReferencesFromStmtSet
- addReferencesFromStmtUnionSet
- getScheduleForAstNode
- getReferencesInSubtree
- getLatestValue
- createMark
- IsLoopVectorizerDisabled
- createForSequential
- createForParallel
- createFor
- createIf
- createNewAccesses
- createSubstitutions
- createSubstitutionsVector
- generateCopyStmt
- materializeNonScopLoopInductionVariable
- createUser
- createBlock
- create
- materializeValue
- materializeParameters
- materializeParameters
- preloadUnconditionally
- preloadInvariantLoad
- preloadInvariantEquivClass
- allocateNewArrays
- preloadInvariantLoads
- addParameters
- generateSCEV
Learn to use CMake with our Intro Training
Find out more