1 | //===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the IslNodeBuilder, a class to translate an isl AST into |
10 | // a LLVM-IR AST. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "polly/CodeGen/IslNodeBuilder.h" |
15 | #include "polly/CodeGen/BlockGenerators.h" |
16 | #include "polly/CodeGen/CodeGeneration.h" |
17 | #include "polly/CodeGen/IslAst.h" |
18 | #include "polly/CodeGen/IslExprBuilder.h" |
19 | #include "polly/CodeGen/LoopGeneratorsGOMP.h" |
20 | #include "polly/CodeGen/LoopGeneratorsKMP.h" |
21 | #include "polly/CodeGen/RuntimeDebugBuilder.h" |
22 | #include "polly/Options.h" |
23 | #include "polly/ScopInfo.h" |
24 | #include "polly/Support/ISLTools.h" |
25 | #include "polly/Support/SCEVValidator.h" |
26 | #include "polly/Support/ScopHelper.h" |
27 | #include "polly/Support/VirtualInstruction.h" |
28 | #include "llvm/ADT/APInt.h" |
29 | #include "llvm/ADT/PostOrderIterator.h" |
30 | #include "llvm/ADT/SetVector.h" |
31 | #include "llvm/ADT/SmallPtrSet.h" |
32 | #include "llvm/ADT/Statistic.h" |
33 | #include "llvm/Analysis/LoopInfo.h" |
34 | #include "llvm/Analysis/RegionInfo.h" |
35 | #include "llvm/Analysis/ScalarEvolution.h" |
36 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
37 | #include "llvm/IR/BasicBlock.h" |
38 | #include "llvm/IR/Constant.h" |
39 | #include "llvm/IR/Constants.h" |
40 | #include "llvm/IR/DataLayout.h" |
41 | #include "llvm/IR/DerivedTypes.h" |
42 | #include "llvm/IR/Dominators.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/InstrTypes.h" |
45 | #include "llvm/IR/Instruction.h" |
46 | #include "llvm/IR/Instructions.h" |
47 | #include "llvm/IR/Type.h" |
48 | #include "llvm/IR/Value.h" |
49 | #include "llvm/Support/Casting.h" |
50 | #include "llvm/Support/CommandLine.h" |
51 | #include "llvm/Support/ErrorHandling.h" |
52 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
53 | #include "isl/aff.h" |
54 | #include "isl/aff_type.h" |
55 | #include "isl/ast.h" |
56 | #include "isl/ast_build.h" |
57 | #include "isl/isl-noexceptions.h" |
58 | #include "isl/map.h" |
59 | #include "isl/set.h" |
60 | #include "isl/union_map.h" |
61 | #include "isl/union_set.h" |
62 | #include "isl/val.h" |
63 | #include <algorithm> |
64 | #include <cassert> |
65 | #include <cstdint> |
66 | #include <cstring> |
67 | #include <string> |
68 | #include <utility> |
69 | #include <vector> |
70 | |
71 | using namespace llvm; |
72 | using namespace polly; |
73 | |
74 | #define DEBUG_TYPE "polly-codegen" |
75 | |
76 | STATISTIC(VersionedScops, "Number of SCoPs that required versioning." ); |
77 | |
78 | STATISTIC(SequentialLoops, "Number of generated sequential for-loops" ); |
79 | STATISTIC(ParallelLoops, "Number of generated parallel for-loops" ); |
80 | STATISTIC(IfConditions, "Number of generated if-conditions" ); |
81 | |
82 | /// OpenMP backend options |
83 | enum class OpenMPBackend { GNU, LLVM }; |
84 | |
85 | static cl::opt<bool> PollyGenerateRTCPrint( |
86 | "polly-codegen-emit-rtc-print" , |
87 | cl::desc("Emit code that prints the runtime check result dynamically." ), |
88 | cl::Hidden, cl::cat(PollyCategory)); |
89 | |
90 | // If this option is set we always use the isl AST generator to regenerate |
91 | // memory accesses. Without this option set we regenerate expressions using the |
92 | // original SCEV expressions and only generate new expressions in case the |
93 | // access relation has been changed and consequently must be regenerated. |
94 | static cl::opt<bool> PollyGenerateExpressions( |
95 | "polly-codegen-generate-expressions" , |
96 | cl::desc("Generate AST expressions for unmodified and modified accesses" ), |
97 | cl::Hidden, cl::cat(PollyCategory)); |
98 | |
99 | static cl::opt<int> PollyTargetFirstLevelCacheLineSize( |
100 | "polly-target-first-level-cache-line-size" , |
101 | cl::desc("The size of the first level cache line size specified in bytes." ), |
102 | cl::Hidden, cl::init(Val: 64), cl::cat(PollyCategory)); |
103 | |
104 | static cl::opt<OpenMPBackend> PollyOmpBackend( |
105 | "polly-omp-backend" , cl::desc("Choose the OpenMP library to use:" ), |
106 | cl::values(clEnumValN(OpenMPBackend::GNU, "GNU" , "GNU OpenMP" ), |
107 | clEnumValN(OpenMPBackend::LLVM, "LLVM" , "LLVM OpenMP" )), |
108 | cl::Hidden, cl::init(Val: OpenMPBackend::GNU), cl::cat(PollyCategory)); |
109 | |
110 | isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For, |
111 | ICmpInst::Predicate &Predicate) { |
112 | isl::ast_expr Cond = For.cond(); |
113 | isl::ast_expr Iterator = For.iterator(); |
114 | assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && |
115 | "conditional expression is not an atomic upper bound" ); |
116 | |
117 | isl_ast_op_type OpType = isl_ast_expr_get_op_type(expr: Cond.get()); |
118 | |
119 | switch (OpType) { |
120 | case isl_ast_op_le: |
121 | Predicate = ICmpInst::ICMP_SLE; |
122 | break; |
123 | case isl_ast_op_lt: |
124 | Predicate = ICmpInst::ICMP_SLT; |
125 | break; |
126 | default: |
127 | llvm_unreachable("Unexpected comparison type in loop condition" ); |
128 | } |
129 | |
130 | isl::ast_expr Arg0 = Cond.get_op_arg(pos: 0); |
131 | |
132 | assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && |
133 | "conditional expression is not an atomic upper bound" ); |
134 | |
135 | isl::id UBID = Arg0.get_id(); |
136 | |
137 | assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && |
138 | "Could not get the iterator" ); |
139 | |
140 | isl::id IteratorID = Iterator.get_id(); |
141 | |
142 | assert(UBID.get() == IteratorID.get() && |
143 | "conditional expression is not an atomic upper bound" ); |
144 | |
145 | return Cond.get_op_arg(pos: 1); |
146 | } |
147 | |
148 | int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) { |
149 | assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); |
150 | isl::ast_node Body = For.body(); |
151 | |
152 | // First, check if we can actually handle this code. |
153 | switch (isl_ast_node_get_type(node: Body.get())) { |
154 | case isl_ast_node_user: |
155 | break; |
156 | case isl_ast_node_block: { |
157 | isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>(); |
158 | isl::ast_node_list List = BodyBlock.children(); |
159 | for (isl::ast_node Node : List) { |
160 | isl_ast_node_type NodeType = isl_ast_node_get_type(node: Node.get()); |
161 | if (NodeType != isl_ast_node_user) |
162 | return -1; |
163 | } |
164 | break; |
165 | } |
166 | default: |
167 | return -1; |
168 | } |
169 | |
170 | isl::ast_expr Init = For.init(); |
171 | if (!Init.isa<isl::ast_expr_int>() || !Init.val().is_zero()) |
172 | return -1; |
173 | isl::ast_expr Inc = For.inc(); |
174 | if (!Inc.isa<isl::ast_expr_int>() || !Inc.val().is_one()) |
175 | return -1; |
176 | CmpInst::Predicate Predicate; |
177 | isl::ast_expr UB = getUpperBound(For, Predicate); |
178 | if (!UB.isa<isl::ast_expr_int>()) |
179 | return -1; |
180 | isl::val UpVal = UB.get_val(); |
181 | int NumberIterations = UpVal.get_num_si(); |
182 | if (NumberIterations < 0) |
183 | return -1; |
184 | if (Predicate == CmpInst::ICMP_SLT) |
185 | return NumberIterations; |
186 | else |
187 | return NumberIterations + 1; |
188 | } |
189 | |
190 | static void findReferencesByUse(Value *SrcVal, ScopStmt *UserStmt, |
191 | Loop *UserScope, const ValueMapT &GlobalMap, |
192 | SetVector<Value *> &Values, |
193 | SetVector<const SCEV *> &SCEVs) { |
194 | VirtualUse VUse = VirtualUse::create(UserStmt, UserScope, Val: SrcVal, Virtual: true); |
195 | switch (VUse.getKind()) { |
196 | case VirtualUse::Constant: |
197 | // When accelerator-offloading, GlobalValue is a host address whose content |
198 | // must still be transferred to the GPU. |
199 | if (isa<GlobalValue>(Val: SrcVal)) |
200 | Values.insert(X: SrcVal); |
201 | break; |
202 | |
203 | case VirtualUse::Synthesizable: |
204 | SCEVs.insert(X: VUse.getScevExpr()); |
205 | return; |
206 | |
207 | case VirtualUse::Block: |
208 | case VirtualUse::ReadOnly: |
209 | case VirtualUse::Hoisted: |
210 | case VirtualUse::Intra: |
211 | case VirtualUse::Inter: |
212 | break; |
213 | } |
214 | |
215 | if (Value *NewVal = GlobalMap.lookup(Val: SrcVal)) |
216 | Values.insert(X: NewVal); |
217 | } |
218 | |
219 | static void findReferencesInInst(Instruction *Inst, ScopStmt *UserStmt, |
220 | Loop *UserScope, const ValueMapT &GlobalMap, |
221 | SetVector<Value *> &Values, |
222 | SetVector<const SCEV *> &SCEVs) { |
223 | for (Use &U : Inst->operands()) |
224 | findReferencesByUse(SrcVal: U.get(), UserStmt, UserScope, GlobalMap, Values, SCEVs); |
225 | } |
226 | |
227 | static void findReferencesInStmt(ScopStmt *Stmt, SetVector<Value *> &Values, |
228 | ValueMapT &GlobalMap, |
229 | SetVector<const SCEV *> &SCEVs) { |
230 | LoopInfo *LI = Stmt->getParent()->getLI(); |
231 | |
232 | BasicBlock *BB = Stmt->getBasicBlock(); |
233 | Loop *Scope = LI->getLoopFor(BB); |
234 | for (Instruction *Inst : Stmt->getInstructions()) |
235 | findReferencesInInst(Inst, UserStmt: Stmt, UserScope: Scope, GlobalMap, Values, SCEVs); |
236 | |
237 | if (Stmt->isRegionStmt()) { |
238 | for (BasicBlock *BB : Stmt->getRegion()->blocks()) { |
239 | Loop *Scope = LI->getLoopFor(BB); |
240 | for (Instruction &Inst : *BB) |
241 | findReferencesInInst(Inst: &Inst, UserStmt: Stmt, UserScope: Scope, GlobalMap, Values, SCEVs); |
242 | } |
243 | } |
244 | } |
245 | |
246 | void polly::addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr, |
247 | bool CreateScalarRefs) { |
248 | auto &References = *static_cast<SubtreeReferences *>(UserPtr); |
249 | |
250 | findReferencesInStmt(Stmt, Values&: References.Values, GlobalMap&: References.GlobalMap, |
251 | SCEVs&: References.SCEVs); |
252 | |
253 | for (auto &Access : *Stmt) { |
254 | if (References.ParamSpace) { |
255 | isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); |
256 | (*References.ParamSpace) = |
257 | References.ParamSpace->align_params(space2: ParamSpace); |
258 | } |
259 | |
260 | if (Access->isLatestArrayKind()) { |
261 | auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); |
262 | if (Instruction *OpInst = dyn_cast<Instruction>(Val: BasePtr)) |
263 | if (Stmt->getParent()->contains(I: OpInst)) |
264 | continue; |
265 | |
266 | References.Values.insert(X: BasePtr); |
267 | continue; |
268 | } |
269 | |
270 | if (CreateScalarRefs) |
271 | References.Values.insert(X: References.BlockGen.getOrCreateAlloca(Access: *Access)); |
272 | } |
273 | } |
274 | |
275 | /// Extract the out-of-scop values and SCEVs referenced from a set describing |
276 | /// a ScopStmt. |
277 | /// |
278 | /// This includes the SCEVUnknowns referenced by the SCEVs used in the |
279 | /// statement and the base pointers of the memory accesses. For scalar |
280 | /// statements we force the generation of alloca memory locations and list |
281 | /// these locations in the set of out-of-scop values as well. |
282 | /// |
283 | /// @param Set A set which references the ScopStmt we are interested in. |
284 | /// @param UserPtr A void pointer that can be casted to a SubtreeReferences |
285 | /// structure. |
286 | static void addReferencesFromStmtSet(isl::set Set, SubtreeReferences *UserPtr) { |
287 | isl::id Id = Set.get_tuple_id(); |
288 | auto *Stmt = static_cast<ScopStmt *>(Id.get_user()); |
289 | addReferencesFromStmt(Stmt, UserPtr); |
290 | } |
291 | |
292 | /// Extract the out-of-scop values and SCEVs referenced from a union set |
293 | /// referencing multiple ScopStmts. |
294 | /// |
295 | /// This includes the SCEVUnknowns referenced by the SCEVs used in the |
296 | /// statement and the base pointers of the memory accesses. For scalar |
297 | /// statements we force the generation of alloca memory locations and list |
298 | /// these locations in the set of out-of-scop values as well. |
299 | /// |
300 | /// @param USet A union set referencing the ScopStmts we are interested |
301 | /// in. |
302 | /// @param References The SubtreeReferences data structure through which |
303 | /// results are returned and further information is |
304 | /// provided. |
305 | static void addReferencesFromStmtUnionSet(isl::union_set USet, |
306 | SubtreeReferences &References) { |
307 | |
308 | for (isl::set Set : USet.get_set_list()) |
309 | addReferencesFromStmtSet(Set, UserPtr: &References); |
310 | } |
311 | |
312 | isl::union_map |
313 | IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { |
314 | return IslAstInfo::getSchedule(Node); |
315 | } |
316 | |
317 | void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, |
318 | SetVector<Value *> &Values, |
319 | SetVector<const Loop *> &Loops) { |
320 | SetVector<const SCEV *> SCEVs; |
321 | SubtreeReferences References = { |
322 | .LI: LI, .SE: SE, .S: S, .GlobalMap: ValueMap, .Values: Values, .SCEVs: SCEVs, .BlockGen: getBlockGenerator(), .ParamSpace: nullptr}; |
323 | |
324 | for (const auto &I : IDToValue) |
325 | Values.insert(X: I.second); |
326 | |
327 | // NOTE: this is populated in IslNodeBuilder::addParameters |
328 | for (const auto &I : OutsideLoopIterations) |
329 | Values.insert(X: cast<SCEVUnknown>(Val: I.second)->getValue()); |
330 | |
331 | isl::union_set Schedule = getScheduleForAstNode(Node: For).domain(); |
332 | addReferencesFromStmtUnionSet(USet: Schedule, References); |
333 | |
334 | for (const SCEV *Expr : SCEVs) { |
335 | findValues(Expr, SE, Values); |
336 | findLoops(Expr, Loops); |
337 | } |
338 | |
339 | Values.remove_if(P: [](const Value *V) { return isa<GlobalValue>(Val: V); }); |
340 | |
341 | /// Note: Code generation of induction variables of loops outside Scops |
342 | /// |
343 | /// Remove loops that contain the scop or that are part of the scop, as they |
344 | /// are considered local. This leaves only loops that are before the scop, but |
345 | /// do not contain the scop itself. |
346 | /// We ignore loops perfectly contained in the Scop because these are already |
347 | /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops |
348 | /// whose induction variables are referred to by the Scop, but the Scop is not |
349 | /// fully contained in these Loops. Since there can be many of these, |
350 | /// we choose to codegen these on-demand. |
351 | /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. |
352 | Loops.remove_if(P: [this](const Loop *L) { |
353 | return S.contains(L) || L->contains(BB: S.getEntry()); |
354 | }); |
355 | |
356 | // Contains Values that may need to be replaced with other values |
357 | // due to replacements from the ValueMap. We should make sure |
358 | // that we return correctly remapped values. |
359 | // NOTE: this code path is tested by: |
360 | // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll |
361 | // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll |
362 | SetVector<Value *> ReplacedValues; |
363 | for (Value *V : Values) { |
364 | ReplacedValues.insert(X: getLatestValue(Original: V)); |
365 | } |
366 | Values = ReplacedValues; |
367 | } |
368 | |
369 | void IslNodeBuilder::updateValues(ValueMapT &NewValues) { |
370 | SmallPtrSet<Value *, 5> Inserted; |
371 | |
372 | for (const auto &I : IDToValue) { |
373 | IDToValue[I.first] = NewValues[I.second]; |
374 | Inserted.insert(Ptr: I.second); |
375 | } |
376 | |
377 | for (const auto &I : NewValues) { |
378 | if (Inserted.count(Ptr: I.first)) |
379 | continue; |
380 | |
381 | ValueMap[I.first] = I.second; |
382 | } |
383 | } |
384 | |
385 | Value *IslNodeBuilder::getLatestValue(Value *Original) const { |
386 | auto It = ValueMap.find(Val: Original); |
387 | if (It == ValueMap.end()) |
388 | return Original; |
389 | return It->second; |
390 | } |
391 | |
392 | void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { |
393 | auto *Id = isl_ast_node_mark_get_id(node: Node); |
394 | auto Child = isl_ast_node_mark_get_node(node: Node); |
395 | isl_ast_node_free(node: Node); |
396 | // If a child node of a 'SIMD mark' is a loop that has a single iteration, |
397 | // it will be optimized away and we should skip it. |
398 | if (strcmp(s1: isl_id_get_name(id: Id), s2: "SIMD" ) == 0 && |
399 | isl_ast_node_get_type(node: Child) == isl_ast_node_for) { |
400 | createForSequential(For: isl::manage(ptr: Child).as<isl::ast_node_for>(), MarkParallel: true); |
401 | isl_id_free(id: Id); |
402 | return; |
403 | } |
404 | |
405 | BandAttr *ChildLoopAttr = getLoopAttr(Id: isl::manage_copy(ptr: Id)); |
406 | BandAttr *AncestorLoopAttr; |
407 | if (ChildLoopAttr) { |
408 | // Save current LoopAttr environment to restore again when leaving this |
409 | // subtree. This means there was no loop between the ancestor LoopAttr and |
410 | // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This |
411 | // can happen e.g. if the AST build peeled or unrolled the loop. |
412 | AncestorLoopAttr = Annotator.getStagingAttrEnv(); |
413 | |
414 | Annotator.getStagingAttrEnv() = ChildLoopAttr; |
415 | } |
416 | |
417 | create(Node: Child); |
418 | |
419 | if (ChildLoopAttr) { |
420 | assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && |
421 | "Nest must not overwrite loop attr environment" ); |
422 | Annotator.getStagingAttrEnv() = AncestorLoopAttr; |
423 | } |
424 | |
425 | isl_id_free(id: Id); |
426 | } |
427 | |
428 | /// Restore the initial ordering of dimensions of the band node |
429 | /// |
430 | /// In case the band node represents all the dimensions of the iteration |
431 | /// domain, recreate the band node to restore the initial ordering of the |
432 | /// dimensions. |
433 | /// |
434 | /// @param Node The band node to be modified. |
435 | /// @return The modified schedule node. |
436 | static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) { |
437 | assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); |
438 | isl::ast_node Body = Node.body(); |
439 | if (isl_ast_node_get_type(node: Body.get()) != isl_ast_node_mark) |
440 | return false; |
441 | |
442 | isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>(); |
443 | auto Id = BodyMark.id(); |
444 | if (strcmp(s1: Id.get_name().c_str(), s2: "Loop Vectorizer Disabled" ) == 0) |
445 | return true; |
446 | return false; |
447 | } |
448 | |
449 | void IslNodeBuilder::createForSequential(isl::ast_node_for For, |
450 | bool MarkParallel) { |
451 | Value *ValueLB, *ValueUB, *ValueInc; |
452 | Type *MaxType; |
453 | BasicBlock *ExitBlock; |
454 | Value *IV; |
455 | CmpInst::Predicate Predicate; |
456 | |
457 | bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(Node: For); |
458 | |
459 | isl::ast_node Body = For.body(); |
460 | |
461 | // isl_ast_node_for_is_degenerate(For) |
462 | // |
463 | // TODO: For degenerated loops we could generate a plain assignment. |
464 | // However, for now we just reuse the logic for normal loops, which will |
465 | // create a loop with a single iteration. |
466 | |
467 | isl::ast_expr Init = For.init(); |
468 | isl::ast_expr Inc = For.inc(); |
469 | isl::ast_expr Iterator = For.iterator(); |
470 | isl::id IteratorID = Iterator.get_id(); |
471 | isl::ast_expr UB = getUpperBound(For, Predicate); |
472 | |
473 | ValueLB = ExprBuilder.create(Expr: Init.release()); |
474 | ValueUB = ExprBuilder.create(Expr: UB.release()); |
475 | ValueInc = ExprBuilder.create(Expr: Inc.release()); |
476 | |
477 | MaxType = ExprBuilder.getType(Expr: Iterator.get()); |
478 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueLB->getType()); |
479 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueUB->getType()); |
480 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueInc->getType()); |
481 | |
482 | if (MaxType != ValueLB->getType()) |
483 | ValueLB = Builder.CreateSExt(V: ValueLB, DestTy: MaxType); |
484 | if (MaxType != ValueUB->getType()) |
485 | ValueUB = Builder.CreateSExt(V: ValueUB, DestTy: MaxType); |
486 | if (MaxType != ValueInc->getType()) |
487 | ValueInc = Builder.CreateSExt(V: ValueInc, DestTy: MaxType); |
488 | |
489 | // If we can show that LB <Predicate> UB holds at least once, we can |
490 | // omit the GuardBB in front of the loop. |
491 | bool UseGuardBB = |
492 | !SE.isKnownPredicate(Pred: Predicate, LHS: SE.getSCEV(V: ValueLB), RHS: SE.getSCEV(V: ValueUB)); |
493 | IV = createLoop(LowerBound: ValueLB, UpperBound: ValueUB, Stride: ValueInc, Builder, LI, DT, ExitBlock, |
494 | Predicate, Annotator: &Annotator, Parallel: MarkParallel, UseGuard: UseGuardBB, |
495 | LoopVectDisabled: LoopVectorizerDisabled); |
496 | IDToValue[IteratorID.get()] = IV; |
497 | |
498 | create(Node: Body.release()); |
499 | |
500 | Annotator.popLoop(isParallel: MarkParallel); |
501 | |
502 | IDToValue.erase(Iterator: IDToValue.find(Key: IteratorID.get())); |
503 | |
504 | Builder.SetInsertPoint(&ExitBlock->front()); |
505 | |
506 | SequentialLoops++; |
507 | } |
508 | |
509 | /// Remove the BBs contained in a (sub)function from the dominator tree. |
510 | /// |
511 | /// This function removes the basic blocks that are part of a subfunction from |
512 | /// the dominator tree. Specifically, when generating code it may happen that at |
513 | /// some point the code generation continues in a new sub-function (e.g., when |
514 | /// generating OpenMP code). The basic blocks that are created in this |
515 | /// sub-function are then still part of the dominator tree of the original |
516 | /// function, such that the dominator tree reaches over function boundaries. |
517 | /// This is not only incorrect, but also causes crashes. This function now |
518 | /// removes from the dominator tree all basic blocks that are dominated (and |
519 | /// consequently reachable) from the entry block of this (sub)function. |
520 | /// |
521 | /// FIXME: A LLVM (function or region) pass should not touch anything outside of |
522 | /// the function/region it runs on. Hence, the pure need for this function shows |
523 | /// that we do not comply to this rule. At the moment, this does not cause any |
524 | /// issues, but we should be aware that such issues may appear. Unfortunately |
525 | /// the current LLVM pass infrastructure does not allow to make Polly a module |
526 | /// or call-graph pass to solve this issue, as such a pass would not have access |
527 | /// to the per-function analyses passes needed by Polly. A future pass manager |
528 | /// infrastructure is supposed to enable such kind of access possibly allowing |
529 | /// us to create a cleaner solution here. |
530 | /// |
531 | /// FIXME: Instead of adding the dominance information and then dropping it |
532 | /// later on, we should try to just not add it in the first place. This requires |
533 | /// some careful testing to make sure this does not break in interaction with |
534 | /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or |
535 | /// which may try to update it. |
536 | /// |
537 | /// @param F The function which contains the BBs to removed. |
538 | /// @param DT The dominator tree from which to remove the BBs. |
539 | static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { |
540 | DomTreeNode *N = DT.getNode(BB: &F->getEntryBlock()); |
541 | std::vector<BasicBlock *> Nodes; |
542 | |
543 | // We can only remove an element from the dominator tree, if all its children |
544 | // have been removed. To ensure this we obtain the list of nodes to remove |
545 | // using a post-order tree traversal. |
546 | for (po_iterator<DomTreeNode *> I = po_begin(G: N), E = po_end(G: N); I != E; ++I) |
547 | Nodes.push_back(x: I->getBlock()); |
548 | |
549 | for (BasicBlock *BB : Nodes) |
550 | DT.eraseNode(BB); |
551 | } |
552 | |
553 | void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { |
554 | isl_ast_node *Body; |
555 | isl_ast_expr *Init, *Inc, *Iterator, *UB; |
556 | isl_id *IteratorID; |
557 | Value *ValueLB, *ValueUB, *ValueInc; |
558 | Type *MaxType; |
559 | Value *IV; |
560 | CmpInst::Predicate Predicate; |
561 | |
562 | // The preamble of parallel code interacts different than normal code with |
563 | // e.g., scalar initialization. Therefore, we ensure the parallel code is |
564 | // separated from the last basic block. |
565 | BasicBlock *ParBB = SplitBlock(Old: Builder.GetInsertBlock(), |
566 | SplitPt: &*Builder.GetInsertPoint(), DT: &DT, LI: &LI); |
567 | ParBB->setName("polly.parallel.for" ); |
568 | Builder.SetInsertPoint(&ParBB->front()); |
569 | |
570 | Body = isl_ast_node_for_get_body(node: For); |
571 | Init = isl_ast_node_for_get_init(node: For); |
572 | Inc = isl_ast_node_for_get_inc(node: For); |
573 | Iterator = isl_ast_node_for_get_iterator(node: For); |
574 | IteratorID = isl_ast_expr_get_id(expr: Iterator); |
575 | UB = getUpperBound(For: isl::manage_copy(ptr: For).as<isl::ast_node_for>(), Predicate) |
576 | .release(); |
577 | |
578 | ValueLB = ExprBuilder.create(Expr: Init); |
579 | ValueUB = ExprBuilder.create(Expr: UB); |
580 | ValueInc = ExprBuilder.create(Expr: Inc); |
581 | |
582 | // OpenMP always uses SLE. In case the isl generated AST uses a SLT |
583 | // expression, we need to adjust the loop bound by one. |
584 | if (Predicate == CmpInst::ICMP_SLT) |
585 | ValueUB = Builder.CreateAdd( |
586 | LHS: ValueUB, RHS: Builder.CreateSExt(V: Builder.getTrue(), DestTy: ValueUB->getType())); |
587 | |
588 | MaxType = ExprBuilder.getType(Expr: Iterator); |
589 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueLB->getType()); |
590 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueUB->getType()); |
591 | MaxType = ExprBuilder.getWidestType(T1: MaxType, T2: ValueInc->getType()); |
592 | |
593 | if (MaxType != ValueLB->getType()) |
594 | ValueLB = Builder.CreateSExt(V: ValueLB, DestTy: MaxType); |
595 | if (MaxType != ValueUB->getType()) |
596 | ValueUB = Builder.CreateSExt(V: ValueUB, DestTy: MaxType); |
597 | if (MaxType != ValueInc->getType()) |
598 | ValueInc = Builder.CreateSExt(V: ValueInc, DestTy: MaxType); |
599 | |
600 | BasicBlock::iterator LoopBody; |
601 | |
602 | SetVector<Value *> SubtreeValues; |
603 | SetVector<const Loop *> Loops; |
604 | |
605 | getReferencesInSubtree(For: isl::manage_copy(ptr: For), Values&: SubtreeValues, Loops); |
606 | |
607 | // Create for all loops we depend on values that contain the current loop |
608 | // iteration. These values are necessary to generate code for SCEVs that |
609 | // depend on such loops. As a result we need to pass them to the subfunction. |
610 | // See [Code generation of induction variables of loops outside Scops] |
611 | for (const Loop *L : Loops) { |
612 | Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); |
613 | SubtreeValues.insert(X: LoopInductionVar); |
614 | } |
615 | |
616 | ValueMapT NewValues; |
617 | |
618 | std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr; |
619 | |
620 | switch (PollyOmpBackend) { |
621 | case OpenMPBackend::GNU: |
622 | ParallelLoopGenPtr.reset( |
623 | p: new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); |
624 | break; |
625 | case OpenMPBackend::LLVM: |
626 | ParallelLoopGenPtr.reset(p: new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); |
627 | break; |
628 | } |
629 | |
630 | IV = ParallelLoopGenPtr->createParallelLoop( |
631 | LB: ValueLB, UB: ValueUB, Stride: ValueInc, Values&: SubtreeValues, VMap&: NewValues, LoopBody: &LoopBody); |
632 | BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); |
633 | Builder.SetInsertPoint(&*LoopBody); |
634 | |
635 | // Remember the parallel subfunction |
636 | ParallelSubfunctions.push_back(Elt: LoopBody->getFunction()); |
637 | |
638 | // Save the current values. |
639 | auto ValueMapCopy = ValueMap; |
640 | IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; |
641 | |
642 | updateValues(NewValues); |
643 | IDToValue[IteratorID] = IV; |
644 | |
645 | ValueMapT NewValuesReverse; |
646 | |
647 | for (auto P : NewValues) |
648 | NewValuesReverse[P.second] = P.first; |
649 | |
650 | Annotator.addAlternativeAliasBases(NewMap&: NewValuesReverse); |
651 | |
652 | create(Node: Body); |
653 | |
654 | Annotator.resetAlternativeAliasBases(); |
655 | // Restore the original values. |
656 | ValueMap = ValueMapCopy; |
657 | IDToValue = IDToValueCopy; |
658 | |
659 | Builder.SetInsertPoint(&*AfterLoop); |
660 | removeSubFuncFromDomTree(F: (*LoopBody).getParent()->getParent(), DT); |
661 | |
662 | for (const Loop *L : Loops) |
663 | OutsideLoopIterations.erase(Key: L); |
664 | |
665 | isl_ast_node_free(node: For); |
666 | isl_ast_expr_free(expr: Iterator); |
667 | isl_id_free(id: IteratorID); |
668 | |
669 | ParallelLoops++; |
670 | } |
671 | |
672 | void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { |
673 | if (IslAstInfo::isExecutedInParallel(Node: isl::manage_copy(ptr: For))) { |
674 | createForParallel(For); |
675 | return; |
676 | } |
677 | bool Parallel = (IslAstInfo::isParallel(Node: isl::manage_copy(ptr: For)) && |
678 | !IslAstInfo::isReductionParallel(Node: isl::manage_copy(ptr: For))); |
679 | createForSequential(For: isl::manage(ptr: For).as<isl::ast_node_for>(), MarkParallel: Parallel); |
680 | } |
681 | |
682 | void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { |
683 | isl_ast_expr *Cond = isl_ast_node_if_get_cond(node: If); |
684 | |
685 | Function *F = Builder.GetInsertBlock()->getParent(); |
686 | LLVMContext &Context = F->getContext(); |
687 | |
688 | BasicBlock *CondBB = SplitBlock(Old: Builder.GetInsertBlock(), |
689 | SplitPt: &*Builder.GetInsertPoint(), DT: &DT, LI: &LI); |
690 | CondBB->setName("polly.cond" ); |
691 | BasicBlock *MergeBB = SplitBlock(Old: CondBB, SplitPt: &CondBB->front(), DT: &DT, LI: &LI); |
692 | MergeBB->setName("polly.merge" ); |
693 | BasicBlock *ThenBB = BasicBlock::Create(Context, Name: "polly.then" , Parent: F); |
694 | BasicBlock *ElseBB = BasicBlock::Create(Context, Name: "polly.else" , Parent: F); |
695 | |
696 | DT.addNewBlock(BB: ThenBB, DomBB: CondBB); |
697 | DT.addNewBlock(BB: ElseBB, DomBB: CondBB); |
698 | DT.changeImmediateDominator(BB: MergeBB, NewBB: CondBB); |
699 | |
700 | Loop *L = LI.getLoopFor(BB: CondBB); |
701 | if (L) { |
702 | L->addBasicBlockToLoop(NewBB: ThenBB, LI); |
703 | L->addBasicBlockToLoop(NewBB: ElseBB, LI); |
704 | } |
705 | |
706 | CondBB->getTerminator()->eraseFromParent(); |
707 | |
708 | Builder.SetInsertPoint(CondBB); |
709 | Value *Predicate = ExprBuilder.create(Expr: Cond); |
710 | Builder.CreateCondBr(Cond: Predicate, True: ThenBB, False: ElseBB); |
711 | Builder.SetInsertPoint(ThenBB); |
712 | Builder.CreateBr(Dest: MergeBB); |
713 | Builder.SetInsertPoint(ElseBB); |
714 | Builder.CreateBr(Dest: MergeBB); |
715 | Builder.SetInsertPoint(&ThenBB->front()); |
716 | |
717 | create(Node: isl_ast_node_if_get_then(node: If)); |
718 | |
719 | Builder.SetInsertPoint(&ElseBB->front()); |
720 | |
721 | if (isl_ast_node_if_has_else(node: If)) |
722 | create(Node: isl_ast_node_if_get_else(node: If)); |
723 | |
724 | Builder.SetInsertPoint(&MergeBB->front()); |
725 | |
726 | isl_ast_node_free(node: If); |
727 | |
728 | IfConditions++; |
729 | } |
730 | |
731 | __isl_give isl_id_to_ast_expr * |
732 | IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, |
733 | __isl_keep isl_ast_node *Node) { |
734 | isl::id_to_ast_expr NewAccesses = |
735 | isl::id_to_ast_expr::alloc(ctx: Stmt->getParent()->getIslCtx(), min_size: 0); |
736 | |
737 | isl::ast_build Build = IslAstInfo::getBuild(Node: isl::manage_copy(ptr: Node)); |
738 | assert(!Build.is_null() && "Could not obtain isl_ast_build from user node" ); |
739 | Stmt->setAstBuild(Build); |
740 | |
741 | for (auto *MA : *Stmt) { |
742 | if (!MA->hasNewAccessRelation()) { |
743 | if (PollyGenerateExpressions) { |
744 | if (!MA->isAffine()) |
745 | continue; |
746 | if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) |
747 | continue; |
748 | |
749 | auto *BasePtr = |
750 | dyn_cast<Instruction>(Val: MA->getLatestScopArrayInfo()->getBasePtr()); |
751 | if (BasePtr && Stmt->getParent()->getRegion().contains(Inst: BasePtr)) |
752 | continue; |
753 | } else { |
754 | continue; |
755 | } |
756 | } |
757 | assert(MA->isAffine() && |
758 | "Only affine memory accesses can be code generated" ); |
759 | |
760 | isl::union_map Schedule = Build.get_schedule(); |
761 | |
762 | #ifndef NDEBUG |
763 | if (MA->isRead()) { |
764 | auto Dom = Stmt->getDomain().release(); |
765 | auto SchedDom = isl_set_from_union_set(uset: Schedule.domain().release()); |
766 | auto AccDom = isl_map_domain(bmap: MA->getAccessRelation().release()); |
767 | Dom = isl_set_intersect_params(set: Dom, |
768 | params: Stmt->getParent()->getContext().release()); |
769 | SchedDom = isl_set_intersect_params( |
770 | set: SchedDom, params: Stmt->getParent()->getContext().release()); |
771 | assert(isl_set_is_subset(SchedDom, AccDom) && |
772 | "Access relation not defined on full schedule domain" ); |
773 | assert(isl_set_is_subset(Dom, AccDom) && |
774 | "Access relation not defined on full domain" ); |
775 | isl_set_free(set: AccDom); |
776 | isl_set_free(set: SchedDom); |
777 | isl_set_free(set: Dom); |
778 | } |
779 | #endif |
780 | |
781 | isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); |
782 | |
783 | // isl cannot generate an index expression for access-nothing accesses. |
784 | isl::set AccDomain = PWAccRel.domain(); |
785 | isl::set Context = S.getContext(); |
786 | AccDomain = AccDomain.intersect_params(params: Context); |
787 | if (AccDomain.is_empty()) |
788 | continue; |
789 | |
790 | isl::ast_expr AccessExpr = Build.access_from(pma: PWAccRel); |
791 | NewAccesses = NewAccesses.set(key: MA->getId(), val: AccessExpr); |
792 | } |
793 | |
794 | return NewAccesses.release(); |
795 | } |
796 | |
797 | void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, |
798 | ScopStmt *Stmt, LoopToScevMapT <S) { |
799 | assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && |
800 | "Expression of type 'op' expected" ); |
801 | assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && |
802 | "Operation of type 'call' expected" ); |
803 | for (int i = 0; i < isl_ast_expr_get_op_n_arg(expr: Expr) - 1; ++i) { |
804 | isl_ast_expr *SubExpr; |
805 | Value *V; |
806 | |
807 | SubExpr = isl_ast_expr_get_op_arg(expr: Expr, pos: i + 1); |
808 | V = ExprBuilder.create(Expr: SubExpr); |
809 | ScalarEvolution *SE = Stmt->getParent()->getSE(); |
810 | LTS[Stmt->getLoopForDimension(Dimension: i)] = SE->getUnknown(V); |
811 | } |
812 | |
813 | isl_ast_expr_free(expr: Expr); |
814 | } |
815 | |
816 | void IslNodeBuilder::createSubstitutionsVector( |
817 | __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, |
818 | std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS, |
819 | __isl_take isl_id *IteratorID) { |
820 | int i = 0; |
821 | |
822 | Value *OldValue = IDToValue[IteratorID]; |
823 | for (Value *IV : IVS) { |
824 | IDToValue[IteratorID] = IV; |
825 | createSubstitutions(Expr: isl_ast_expr_copy(expr: Expr), Stmt, LTS&: VLTS[i]); |
826 | i++; |
827 | } |
828 | |
829 | IDToValue[IteratorID] = OldValue; |
830 | isl_id_free(id: IteratorID); |
831 | isl_ast_expr_free(expr: Expr); |
832 | } |
833 | |
834 | void IslNodeBuilder::generateCopyStmt( |
835 | ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { |
836 | assert(Stmt->size() == 2); |
837 | auto ReadAccess = Stmt->begin(); |
838 | auto WriteAccess = ReadAccess++; |
839 | assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); |
840 | assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && |
841 | "Accesses use the same data type" ); |
842 | assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); |
843 | auto *AccessExpr = |
844 | isl_id_to_ast_expr_get(hmap: NewAccesses, key: (*ReadAccess)->getId().release()); |
845 | auto *LoadValue = ExprBuilder.create(Expr: AccessExpr); |
846 | AccessExpr = |
847 | isl_id_to_ast_expr_get(hmap: NewAccesses, key: (*WriteAccess)->getId().release()); |
848 | auto *StoreAddr = ExprBuilder.createAccessAddress(Expr: AccessExpr).first; |
849 | Builder.CreateStore(Val: LoadValue, Ptr: StoreAddr); |
850 | } |
851 | |
852 | Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { |
853 | assert(!OutsideLoopIterations.contains(L) && |
854 | "trying to materialize loop induction variable twice" ); |
855 | const SCEV *OuterLIV = SE.getAddRecExpr(Start: SE.getUnknown(V: Builder.getInt64(C: 0)), |
856 | Step: SE.getUnknown(V: Builder.getInt64(C: 1)), L, |
857 | Flags: SCEV::FlagAnyWrap); |
858 | Value *V = generateSCEV(Expr: OuterLIV); |
859 | OutsideLoopIterations[L] = SE.getUnknown(V); |
860 | return V; |
861 | } |
862 | |
863 | void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { |
864 | LoopToScevMapT LTS; |
865 | isl_id *Id; |
866 | ScopStmt *Stmt; |
867 | |
868 | isl_ast_expr *Expr = isl_ast_node_user_get_expr(node: User); |
869 | isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(expr: Expr, pos: 0); |
870 | Id = isl_ast_expr_get_id(expr: StmtExpr); |
871 | isl_ast_expr_free(expr: StmtExpr); |
872 | |
873 | LTS.insert(I: OutsideLoopIterations.begin(), E: OutsideLoopIterations.end()); |
874 | |
875 | Stmt = (ScopStmt *)isl_id_get_user(id: Id); |
876 | auto *NewAccesses = createNewAccesses(Stmt, Node: User); |
877 | if (Stmt->isCopyStmt()) { |
878 | generateCopyStmt(Stmt, NewAccesses); |
879 | isl_ast_expr_free(expr: Expr); |
880 | } else { |
881 | createSubstitutions(Expr, Stmt, LTS); |
882 | |
883 | if (Stmt->isBlockStmt()) |
884 | BlockGen.copyStmt(Stmt&: *Stmt, LTS, NewAccesses); |
885 | else |
886 | RegionGen.copyStmt(Stmt&: *Stmt, LTS, IdToAstExp: NewAccesses); |
887 | } |
888 | |
889 | isl_id_to_ast_expr_free(hmap: NewAccesses); |
890 | isl_ast_node_free(node: User); |
891 | isl_id_free(id: Id); |
892 | } |
893 | |
894 | void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { |
895 | isl_ast_node_list *List = isl_ast_node_block_get_children(node: Block); |
896 | |
897 | for (int i = 0; i < isl_ast_node_list_n_ast_node(list: List); ++i) |
898 | create(Node: isl_ast_node_list_get_ast_node(list: List, index: i)); |
899 | |
900 | isl_ast_node_free(node: Block); |
901 | isl_ast_node_list_free(list: List); |
902 | } |
903 | |
904 | void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { |
905 | switch (isl_ast_node_get_type(node: Node)) { |
906 | case isl_ast_node_error: |
907 | llvm_unreachable("code generation error" ); |
908 | case isl_ast_node_mark: |
909 | createMark(Node); |
910 | return; |
911 | case isl_ast_node_for: |
912 | createFor(For: Node); |
913 | return; |
914 | case isl_ast_node_if: |
915 | createIf(If: Node); |
916 | return; |
917 | case isl_ast_node_user: |
918 | createUser(User: Node); |
919 | return; |
920 | case isl_ast_node_block: |
921 | createBlock(Block: Node); |
922 | return; |
923 | } |
924 | |
925 | llvm_unreachable("Unknown isl_ast_node type" ); |
926 | } |
927 | |
928 | bool IslNodeBuilder::materializeValue(__isl_take isl_id *Id) { |
929 | // If the Id is already mapped, skip it. |
930 | if (!IDToValue.count(Key: Id)) { |
931 | auto *ParamSCEV = (const SCEV *)isl_id_get_user(id: Id); |
932 | Value *V = nullptr; |
933 | |
934 | // Parameters could refer to invariant loads that need to be |
935 | // preloaded before we can generate code for the parameter. Thus, |
936 | // check if any value referred to in ParamSCEV is an invariant load |
937 | // and if so make sure its equivalence class is preloaded. |
938 | SetVector<Value *> Values; |
939 | findValues(Expr: ParamSCEV, SE, Values); |
940 | for (auto *Val : Values) { |
941 | // Check if the value is an instruction in a dead block within the SCoP |
942 | // and if so do not code generate it. |
943 | if (auto *Inst = dyn_cast<Instruction>(Val)) { |
944 | if (S.contains(I: Inst)) { |
945 | bool IsDead = true; |
946 | |
947 | // Check for "undef" loads first, then if there is a statement for |
948 | // the parent of Inst and lastly if the parent of Inst has an empty |
949 | // domain. In the first and last case the instruction is dead but if |
950 | // there is a statement or the domain is not empty Inst is not dead. |
951 | auto MemInst = MemAccInst::dyn_cast(V: Inst); |
952 | auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; |
953 | if (Address && SE.getUnknown(V: UndefValue::get(T: Address->getType())) == |
954 | SE.getPointerBase(V: SE.getSCEV(V: Address))) { |
955 | } else if (S.getStmtFor(Inst)) { |
956 | IsDead = false; |
957 | } else { |
958 | auto *Domain = S.getDomainConditions(BB: Inst->getParent()).release(); |
959 | IsDead = isl_set_is_empty(set: Domain); |
960 | isl_set_free(set: Domain); |
961 | } |
962 | |
963 | if (IsDead) { |
964 | V = UndefValue::get(T: ParamSCEV->getType()); |
965 | break; |
966 | } |
967 | } |
968 | } |
969 | |
970 | if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { |
971 | // Check if this invariant access class is empty, hence if we never |
972 | // actually added a loads instruction to it. In that case it has no |
973 | // (meaningful) users and we should not try to code generate it. |
974 | if (IAClass->InvariantAccesses.empty()) |
975 | V = UndefValue::get(T: ParamSCEV->getType()); |
976 | |
977 | if (!preloadInvariantEquivClass(IAClass&: *IAClass)) { |
978 | isl_id_free(id: Id); |
979 | return false; |
980 | } |
981 | } |
982 | } |
983 | |
984 | V = V ? V : generateSCEV(Expr: ParamSCEV); |
985 | IDToValue[Id] = V; |
986 | } |
987 | |
988 | isl_id_free(id: Id); |
989 | return true; |
990 | } |
991 | |
992 | bool IslNodeBuilder::materializeParameters(__isl_take isl_set *Set) { |
993 | for (unsigned i = 0, e = isl_set_dim(set: Set, type: isl_dim_param); i < e; ++i) { |
994 | if (!isl_set_involves_dims(set: Set, type: isl_dim_param, first: i, n: 1)) |
995 | continue; |
996 | isl_id *Id = isl_set_get_dim_id(set: Set, type: isl_dim_param, pos: i); |
997 | if (!materializeValue(Id)) |
998 | return false; |
999 | } |
1000 | return true; |
1001 | } |
1002 | |
1003 | bool IslNodeBuilder::materializeParameters() { |
1004 | for (const SCEV *Param : S.parameters()) { |
1005 | isl_id *Id = S.getIdForParam(Parameter: Param).release(); |
1006 | if (!materializeValue(Id)) |
1007 | return false; |
1008 | } |
1009 | return true; |
1010 | } |
1011 | |
1012 | Value *IslNodeBuilder::preloadUnconditionally(__isl_take isl_set *AccessRange, |
1013 | isl_ast_build *Build, |
1014 | Instruction *AccInst) { |
1015 | isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(set: AccessRange); |
1016 | isl_ast_expr *Access = |
1017 | isl_ast_build_access_from_pw_multi_aff(build: Build, pma: PWAccRel); |
1018 | auto *Address = isl_ast_expr_address_of(expr: Access); |
1019 | auto *AddressValue = ExprBuilder.create(Expr: Address); |
1020 | Value *PreloadVal; |
1021 | |
1022 | // Correct the type as the SAI might have a different type than the user |
1023 | // expects, especially if the base pointer is a struct. |
1024 | Type *Ty = AccInst->getType(); |
1025 | |
1026 | auto *Ptr = AddressValue; |
1027 | auto Name = Ptr->getName(); |
1028 | auto AS = Ptr->getType()->getPointerAddressSpace(); |
1029 | Ptr = Builder.CreatePointerCast(V: Ptr, DestTy: Ty->getPointerTo(AddrSpace: AS), Name: Name + ".cast" ); |
1030 | PreloadVal = Builder.CreateLoad(Ty, Ptr, Name: Name + ".load" ); |
1031 | if (LoadInst *PreloadInst = dyn_cast<LoadInst>(Val: PreloadVal)) |
1032 | PreloadInst->setAlignment(cast<LoadInst>(Val: AccInst)->getAlign()); |
1033 | |
1034 | // TODO: This is only a hot fix for SCoP sequences that use the same load |
1035 | // instruction contained and hoisted by one of the SCoPs. |
1036 | if (SE.isSCEVable(Ty)) |
1037 | SE.forgetValue(V: AccInst); |
1038 | |
1039 | return PreloadVal; |
1040 | } |
1041 | |
1042 | Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, |
1043 | __isl_take isl_set *Domain) { |
1044 | isl_set *AccessRange = isl_map_range(map: MA.getAddressFunction().release()); |
1045 | AccessRange = isl_set_gist_params(set: AccessRange, context: S.getContext().release()); |
1046 | |
1047 | if (!materializeParameters(Set: AccessRange)) { |
1048 | isl_set_free(set: AccessRange); |
1049 | isl_set_free(set: Domain); |
1050 | return nullptr; |
1051 | } |
1052 | |
1053 | auto *Build = |
1054 | isl_ast_build_from_context(set: isl_set_universe(space: S.getParamSpace().release())); |
1055 | isl_set *Universe = isl_set_universe(space: isl_set_get_space(set: Domain)); |
1056 | bool AlwaysExecuted = isl_set_is_equal(set1: Domain, set2: Universe); |
1057 | isl_set_free(set: Universe); |
1058 | |
1059 | Instruction *AccInst = MA.getAccessInstruction(); |
1060 | Type *AccInstTy = AccInst->getType(); |
1061 | |
1062 | Value *PreloadVal = nullptr; |
1063 | if (AlwaysExecuted) { |
1064 | PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); |
1065 | isl_ast_build_free(build: Build); |
1066 | isl_set_free(set: Domain); |
1067 | return PreloadVal; |
1068 | } |
1069 | |
1070 | if (!materializeParameters(Set: Domain)) { |
1071 | isl_ast_build_free(build: Build); |
1072 | isl_set_free(set: AccessRange); |
1073 | isl_set_free(set: Domain); |
1074 | return nullptr; |
1075 | } |
1076 | |
1077 | isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(build: Build, set: Domain); |
1078 | Domain = nullptr; |
1079 | |
1080 | ExprBuilder.setTrackOverflow(true); |
1081 | Value *Cond = ExprBuilder.create(Expr: DomainCond); |
1082 | Value *OverflowHappened = Builder.CreateNot(V: ExprBuilder.getOverflowState(), |
1083 | Name: "polly.preload.cond.overflown" ); |
1084 | Cond = Builder.CreateAnd(LHS: Cond, RHS: OverflowHappened, Name: "polly.preload.cond.result" ); |
1085 | ExprBuilder.setTrackOverflow(false); |
1086 | |
1087 | if (!Cond->getType()->isIntegerTy(Bitwidth: 1)) |
1088 | Cond = Builder.CreateIsNotNull(Arg: Cond); |
1089 | |
1090 | BasicBlock *CondBB = SplitBlock(Old: Builder.GetInsertBlock(), |
1091 | SplitPt: &*Builder.GetInsertPoint(), DT: &DT, LI: &LI); |
1092 | CondBB->setName("polly.preload.cond" ); |
1093 | |
1094 | BasicBlock *MergeBB = SplitBlock(Old: CondBB, SplitPt: &CondBB->front(), DT: &DT, LI: &LI); |
1095 | MergeBB->setName("polly.preload.merge" ); |
1096 | |
1097 | Function *F = Builder.GetInsertBlock()->getParent(); |
1098 | LLVMContext &Context = F->getContext(); |
1099 | BasicBlock *ExecBB = BasicBlock::Create(Context, Name: "polly.preload.exec" , Parent: F); |
1100 | |
1101 | DT.addNewBlock(BB: ExecBB, DomBB: CondBB); |
1102 | if (Loop *L = LI.getLoopFor(BB: CondBB)) |
1103 | L->addBasicBlockToLoop(NewBB: ExecBB, LI); |
1104 | |
1105 | auto *CondBBTerminator = CondBB->getTerminator(); |
1106 | Builder.SetInsertPoint(CondBBTerminator); |
1107 | Builder.CreateCondBr(Cond, True: ExecBB, False: MergeBB); |
1108 | CondBBTerminator->eraseFromParent(); |
1109 | |
1110 | Builder.SetInsertPoint(ExecBB); |
1111 | Builder.CreateBr(Dest: MergeBB); |
1112 | |
1113 | Builder.SetInsertPoint(ExecBB->getTerminator()); |
1114 | Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); |
1115 | Builder.SetInsertPoint(MergeBB->getTerminator()); |
1116 | auto *MergePHI = Builder.CreatePHI( |
1117 | Ty: AccInstTy, NumReservedValues: 2, Name: "polly.preload." + AccInst->getName() + ".merge" ); |
1118 | PreloadVal = MergePHI; |
1119 | |
1120 | if (!PreAccInst) { |
1121 | PreloadVal = nullptr; |
1122 | PreAccInst = UndefValue::get(T: AccInstTy); |
1123 | } |
1124 | |
1125 | MergePHI->addIncoming(V: PreAccInst, BB: ExecBB); |
1126 | MergePHI->addIncoming(V: Constant::getNullValue(Ty: AccInstTy), BB: CondBB); |
1127 | |
1128 | isl_ast_build_free(build: Build); |
1129 | return PreloadVal; |
1130 | } |
1131 | |
1132 | bool IslNodeBuilder::preloadInvariantEquivClass( |
1133 | InvariantEquivClassTy &IAClass) { |
1134 | // For an equivalence class of invariant loads we pre-load the representing |
1135 | // element with the unified execution context. However, we have to map all |
1136 | // elements of the class to the one preloaded load as they are referenced |
1137 | // during the code generation and therefor need to be mapped. |
1138 | const MemoryAccessList &MAs = IAClass.InvariantAccesses; |
1139 | if (MAs.empty()) |
1140 | return true; |
1141 | |
1142 | MemoryAccess *MA = MAs.front(); |
1143 | assert(MA->isArrayKind() && MA->isRead()); |
1144 | |
1145 | // If the access function was already mapped, the preload of this equivalence |
1146 | // class was triggered earlier already and doesn't need to be done again. |
1147 | if (ValueMap.count(Val: MA->getAccessInstruction())) |
1148 | return true; |
1149 | |
1150 | // Check for recursion which can be caused by additional constraints, e.g., |
1151 | // non-finite loop constraints. In such a case we have to bail out and insert |
1152 | // a "false" runtime check that will cause the original code to be executed. |
1153 | auto PtrId = std::make_pair(x&: IAClass.IdentifyingPointer, y&: IAClass.AccessType); |
1154 | if (!PreloadedPtrs.insert(V: PtrId).second) |
1155 | return false; |
1156 | |
1157 | // The execution context of the IAClass. |
1158 | isl::set &ExecutionCtx = IAClass.ExecutionContext; |
1159 | |
1160 | // If the base pointer of this class is dependent on another one we have to |
1161 | // make sure it was preloaded already. |
1162 | auto *SAI = MA->getScopArrayInfo(); |
1163 | if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val: SAI->getBasePtr())) { |
1164 | if (!preloadInvariantEquivClass(IAClass&: *BaseIAClass)) |
1165 | return false; |
1166 | |
1167 | // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and |
1168 | // we need to refine the ExecutionCtx. |
1169 | isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; |
1170 | ExecutionCtx = ExecutionCtx.intersect(set2: BaseExecutionCtx); |
1171 | } |
1172 | |
1173 | // If the size of a dimension is dependent on another class, make sure it is |
1174 | // preloaded. |
1175 | for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { |
1176 | const SCEV *Dim = SAI->getDimensionSize(Dim: i); |
1177 | SetVector<Value *> Values; |
1178 | findValues(Expr: Dim, SE, Values); |
1179 | for (auto *Val : Values) { |
1180 | if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { |
1181 | if (!preloadInvariantEquivClass(IAClass&: *BaseIAClass)) |
1182 | return false; |
1183 | |
1184 | // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx |
1185 | // and we need to refine the ExecutionCtx. |
1186 | isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; |
1187 | ExecutionCtx = ExecutionCtx.intersect(set2: BaseExecutionCtx); |
1188 | } |
1189 | } |
1190 | } |
1191 | |
1192 | Instruction *AccInst = MA->getAccessInstruction(); |
1193 | Type *AccInstTy = AccInst->getType(); |
1194 | |
1195 | Value *PreloadVal = preloadInvariantLoad(MA: *MA, Domain: ExecutionCtx.copy()); |
1196 | if (!PreloadVal) |
1197 | return false; |
1198 | |
1199 | for (const MemoryAccess *MA : MAs) { |
1200 | Instruction *MAAccInst = MA->getAccessInstruction(); |
1201 | assert(PreloadVal->getType() == MAAccInst->getType()); |
1202 | ValueMap[MAAccInst] = PreloadVal; |
1203 | } |
1204 | |
1205 | if (SE.isSCEVable(Ty: AccInstTy)) { |
1206 | isl_id *ParamId = S.getIdForParam(Parameter: SE.getSCEV(V: AccInst)).release(); |
1207 | if (ParamId) |
1208 | IDToValue[ParamId] = PreloadVal; |
1209 | isl_id_free(id: ParamId); |
1210 | } |
1211 | |
1212 | BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); |
1213 | auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), |
1214 | AccInst->getName() + ".preload.s2a" , |
1215 | EntryBB->getFirstInsertionPt()); |
1216 | Builder.CreateStore(Val: PreloadVal, Ptr: Alloca); |
1217 | ValueMapT PreloadedPointer; |
1218 | PreloadedPointer[PreloadVal] = AccInst; |
1219 | Annotator.addAlternativeAliasBases(NewMap&: PreloadedPointer); |
1220 | |
1221 | for (auto *DerivedSAI : SAI->getDerivedSAIs()) { |
1222 | Value *BasePtr = DerivedSAI->getBasePtr(); |
1223 | |
1224 | for (const MemoryAccess *MA : MAs) { |
1225 | // As the derived SAI information is quite coarse, any load from the |
1226 | // current SAI could be the base pointer of the derived SAI, however we |
1227 | // should only change the base pointer of the derived SAI if we actually |
1228 | // preloaded it. |
1229 | if (BasePtr == MA->getOriginalBaseAddr()) { |
1230 | assert(BasePtr->getType() == PreloadVal->getType()); |
1231 | DerivedSAI->setBasePtr(PreloadVal); |
1232 | } |
1233 | |
1234 | // For scalar derived SAIs we remap the alloca used for the derived value. |
1235 | if (BasePtr == MA->getAccessInstruction()) |
1236 | ScalarMap[DerivedSAI] = Alloca; |
1237 | } |
1238 | } |
1239 | |
1240 | for (const MemoryAccess *MA : MAs) { |
1241 | Instruction *MAAccInst = MA->getAccessInstruction(); |
1242 | // Use the escape system to get the correct value to users outside the SCoP. |
1243 | BlockGenerator::EscapeUserVectorTy EscapeUsers; |
1244 | for (auto *U : MAAccInst->users()) |
1245 | if (Instruction *UI = dyn_cast<Instruction>(Val: U)) |
1246 | if (!S.contains(I: UI)) |
1247 | EscapeUsers.push_back(Elt: UI); |
1248 | |
1249 | if (EscapeUsers.empty()) |
1250 | continue; |
1251 | |
1252 | EscapeMap[MA->getAccessInstruction()] = |
1253 | std::make_pair(x&: Alloca, y: std::move(EscapeUsers)); |
1254 | } |
1255 | |
1256 | return true; |
1257 | } |
1258 | |
1259 | void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { |
1260 | for (auto &SAI : S.arrays()) { |
1261 | if (SAI->getBasePtr()) |
1262 | continue; |
1263 | |
1264 | assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && |
1265 | "The size of the outermost dimension is used to declare newly " |
1266 | "created arrays that require memory allocation." ); |
1267 | |
1268 | Type *NewArrayType = nullptr; |
1269 | |
1270 | // Get the size of the array = size(dim_1)*...*size(dim_n) |
1271 | uint64_t ArraySizeInt = 1; |
1272 | for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { |
1273 | auto *DimSize = SAI->getDimensionSize(Dim: i); |
1274 | unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize) |
1275 | ->getAPInt() |
1276 | .getLimitedValue(); |
1277 | |
1278 | if (!NewArrayType) |
1279 | NewArrayType = SAI->getElementType(); |
1280 | |
1281 | NewArrayType = ArrayType::get(ElementType: NewArrayType, NumElements: UnsignedDimSize); |
1282 | ArraySizeInt *= UnsignedDimSize; |
1283 | } |
1284 | |
1285 | if (SAI->isOnHeap()) { |
1286 | LLVMContext &Ctx = NewArrayType->getContext(); |
1287 | |
1288 | // Get the IntPtrTy from the Datalayout |
1289 | auto IntPtrTy = DL.getIntPtrType(C&: Ctx); |
1290 | |
1291 | // Get the size of the element type in bits |
1292 | unsigned Size = SAI->getElemSizeInBytes(); |
1293 | |
1294 | // Insert the malloc call at polly.start |
1295 | Builder.SetInsertPoint(std::get<0>(in&: StartExitBlocks)->getTerminator()); |
1296 | auto *CreatedArray = Builder.CreateMalloc( |
1297 | IntPtrTy, AllocTy: SAI->getElementType(), |
1298 | AllocSize: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Size), |
1299 | ArraySize: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: ArraySizeInt), MallocF: nullptr, |
1300 | Name: SAI->getName()); |
1301 | |
1302 | SAI->setBasePtr(CreatedArray); |
1303 | |
1304 | // Insert the free call at polly.exiting |
1305 | Builder.SetInsertPoint(std::get<1>(in&: StartExitBlocks)->getTerminator()); |
1306 | Builder.CreateFree(Source: CreatedArray); |
1307 | } else { |
1308 | auto InstIt = Builder.GetInsertBlock() |
1309 | ->getParent() |
1310 | ->getEntryBlock() |
1311 | .getTerminator() |
1312 | ->getIterator(); |
1313 | |
1314 | auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), |
1315 | SAI->getName(), InstIt); |
1316 | if (PollyTargetFirstLevelCacheLineSize) |
1317 | CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); |
1318 | SAI->setBasePtr(CreatedArray); |
1319 | } |
1320 | } |
1321 | } |
1322 | |
1323 | bool IslNodeBuilder::preloadInvariantLoads() { |
1324 | auto &InvariantEquivClasses = S.getInvariantAccesses(); |
1325 | if (InvariantEquivClasses.empty()) |
1326 | return true; |
1327 | |
1328 | BasicBlock *PreLoadBB = SplitBlock(Old: Builder.GetInsertBlock(), |
1329 | SplitPt: &*Builder.GetInsertPoint(), DT: &DT, LI: &LI); |
1330 | PreLoadBB->setName("polly.preload.begin" ); |
1331 | Builder.SetInsertPoint(&PreLoadBB->front()); |
1332 | |
1333 | for (auto &IAClass : InvariantEquivClasses) |
1334 | if (!preloadInvariantEquivClass(IAClass)) |
1335 | return false; |
1336 | |
1337 | return true; |
1338 | } |
1339 | |
1340 | void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { |
1341 | // Materialize values for the parameters of the SCoP. |
1342 | materializeParameters(); |
1343 | |
1344 | // Generate values for the current loop iteration for all surrounding loops. |
1345 | // |
1346 | // We may also reference loops outside of the scop which do not contain the |
1347 | // scop itself, but as the number of such scops may be arbitrarily large we do |
1348 | // not generate code for them here, but only at the point of code generation |
1349 | // where these values are needed. |
1350 | Loop *L = LI.getLoopFor(BB: S.getEntry()); |
1351 | |
1352 | while (L != nullptr && S.contains(L)) |
1353 | L = L->getParentLoop(); |
1354 | |
1355 | while (L != nullptr) { |
1356 | materializeNonScopLoopInductionVariable(L); |
1357 | L = L->getParentLoop(); |
1358 | } |
1359 | |
1360 | isl_set_free(set: Context); |
1361 | } |
1362 | |
1363 | Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { |
1364 | /// We pass the insert location of our Builder, as Polly ensures during IR |
1365 | /// generation that there is always a valid CFG into which instructions are |
1366 | /// inserted. As a result, the insertpoint is known to be always followed by a |
1367 | /// terminator instruction. This means the insert point may be specified by a |
1368 | /// terminator instruction, but it can never point to an ->end() iterator |
1369 | /// which does not have a corresponding instruction. Hence, dereferencing |
1370 | /// the insertpoint to obtain an instruction is known to be save. |
1371 | /// |
1372 | /// We also do not need to update the Builder here, as new instructions are |
1373 | /// always inserted _before_ the given InsertLocation. As a result, the |
1374 | /// insert location remains valid. |
1375 | assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && |
1376 | "Insert location points after last valid instruction" ); |
1377 | Instruction *InsertLocation = &*Builder.GetInsertPoint(); |
1378 | return expandCodeFor(S, SE, DL, Name: "polly" , E: Expr, Ty: Expr->getType(), |
1379 | IP: InsertLocation, VMap: &ValueMap, |
1380 | RTCBB: StartBlock->getSinglePredecessor()); |
1381 | } |
1382 | |
1383 | /// The AST expression we generate to perform the run-time check assumes |
1384 | /// computations on integer types of infinite size. As we only use 64-bit |
1385 | /// arithmetic we check for overflows, in case of which we set the result |
1386 | /// of this run-time check to false to be conservatively correct, |
1387 | Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { |
1388 | auto ExprBuilder = getExprBuilder(); |
1389 | |
1390 | // In case the AST expression has integers larger than 64 bit, bail out. The |
1391 | // resulting LLVM-IR will contain operations on types that use more than 64 |
1392 | // bits. These are -- in case wrapping intrinsics are used -- translated to |
1393 | // runtime library calls that are not available on all systems (e.g., Android) |
1394 | // and consequently will result in linker errors. |
1395 | if (ExprBuilder.hasLargeInts(Expr: isl::manage_copy(ptr: Condition))) { |
1396 | isl_ast_expr_free(expr: Condition); |
1397 | return Builder.getFalse(); |
1398 | } |
1399 | |
1400 | ExprBuilder.setTrackOverflow(true); |
1401 | Value *RTC = ExprBuilder.create(Expr: Condition); |
1402 | if (!RTC->getType()->isIntegerTy(Bitwidth: 1)) |
1403 | RTC = Builder.CreateIsNotNull(Arg: RTC); |
1404 | Value *OverflowHappened = |
1405 | Builder.CreateNot(V: ExprBuilder.getOverflowState(), Name: "polly.rtc.overflown" ); |
1406 | |
1407 | if (PollyGenerateRTCPrint) { |
1408 | auto *F = Builder.GetInsertBlock()->getParent(); |
1409 | RuntimeDebugBuilder::createCPUPrinter( |
1410 | Builder, |
1411 | args: "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + |
1412 | "RTC: " , |
1413 | args: RTC, args: " Overflow: " , args: OverflowHappened, |
1414 | args: "\n" |
1415 | " (0 failed, -1 succeeded)\n" |
1416 | " (if one or both are 0 falling back to original code, if both are -1 " |
1417 | "executing Polly code)\n" ); |
1418 | } |
1419 | |
1420 | RTC = Builder.CreateAnd(LHS: RTC, RHS: OverflowHappened, Name: "polly.rtc.result" ); |
1421 | ExprBuilder.setTrackOverflow(false); |
1422 | |
1423 | if (!isa<ConstantInt>(Val: RTC)) |
1424 | VersionedScops++; |
1425 | |
1426 | return RTC; |
1427 | } |
1428 | |