1 | //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Small functions that help with Scop and LLVM-IR. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "polly/Support/ScopHelper.h" |
14 | #include "polly/Options.h" |
15 | #include "polly/ScopInfo.h" |
16 | #include "polly/Support/SCEVValidator.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/Analysis/RegionInfo.h" |
19 | #include "llvm/Analysis/ScalarEvolution.h" |
20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
22 | #include "llvm/Transforms/Utils/LoopUtils.h" |
23 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
24 | #include <optional> |
25 | |
26 | using namespace llvm; |
27 | using namespace polly; |
28 | |
29 | #define DEBUG_TYPE "polly-scop-helper" |
30 | |
31 | static cl::list<std::string> DebugFunctions( |
32 | "polly-debug-func", |
33 | cl::desc("Allow calls to the specified functions in SCoPs even if their " |
34 | "side-effects are unknown. This can be used to do debug output in " |
35 | "Polly-transformed code."), |
36 | cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); |
37 | |
38 | // Ensures that there is just one predecessor to the entry node from outside the |
39 | // region. |
40 | // The identity of the region entry node is preserved. |
41 | static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, |
42 | RegionInfo *RI) { |
43 | BasicBlock *EnteringBB = R->getEnteringBlock(); |
44 | BasicBlock *Entry = R->getEntry(); |
45 | |
46 | // Before (one of): |
47 | // |
48 | // \ / // |
49 | // EnteringBB // |
50 | // | \------> // |
51 | // \ / | // |
52 | // Entry <--\ Entry <--\ // |
53 | // / \ / / \ / // |
54 | // .... .... // |
55 | |
56 | // Create single entry edge if the region has multiple entry edges. |
57 | if (!EnteringBB) { |
58 | SmallVector<BasicBlock *, 4> Preds; |
59 | for (BasicBlock *P : predecessors(BB: Entry)) |
60 | if (!R->contains(BB: P)) |
61 | Preds.push_back(Elt: P); |
62 | |
63 | BasicBlock *NewEntering = |
64 | SplitBlockPredecessors(BB: Entry, Preds, Suffix: ".region_entering", DT, LI); |
65 | |
66 | if (RI) { |
67 | // The exit block of predecessing regions must be changed to NewEntering |
68 | for (BasicBlock *ExitPred : predecessors(BB: NewEntering)) { |
69 | Region *RegionOfPred = RI->getRegionFor(BB: ExitPred); |
70 | if (RegionOfPred->getExit() != Entry) |
71 | continue; |
72 | |
73 | while (!RegionOfPred->isTopLevelRegion() && |
74 | RegionOfPred->getExit() == Entry) { |
75 | RegionOfPred->replaceExit(BB: NewEntering); |
76 | RegionOfPred = RegionOfPred->getParent(); |
77 | } |
78 | } |
79 | |
80 | // Make all ancestors use EnteringBB as entry; there might be edges to it |
81 | Region *AncestorR = R->getParent(); |
82 | RI->setRegionFor(BB: NewEntering, R: AncestorR); |
83 | while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { |
84 | AncestorR->replaceEntry(BB: NewEntering); |
85 | AncestorR = AncestorR->getParent(); |
86 | } |
87 | } |
88 | |
89 | EnteringBB = NewEntering; |
90 | } |
91 | assert(R->getEnteringBlock() == EnteringBB); |
92 | |
93 | // After: |
94 | // |
95 | // \ / // |
96 | // EnteringBB // |
97 | // | // |
98 | // | // |
99 | // Entry <--\ // |
100 | // / \ / // |
101 | // .... // |
102 | } |
103 | |
104 | // Ensure that the region has a single block that branches to the exit node. |
105 | static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, |
106 | RegionInfo *RI) { |
107 | BasicBlock *ExitBB = R->getExit(); |
108 | BasicBlock *ExitingBB = R->getExitingBlock(); |
109 | |
110 | // Before: |
111 | // |
112 | // (Region) ______/ // |
113 | // \ | / // |
114 | // ExitBB // |
115 | // / \ // |
116 | |
117 | if (!ExitingBB) { |
118 | SmallVector<BasicBlock *, 4> Preds; |
119 | for (BasicBlock *P : predecessors(BB: ExitBB)) |
120 | if (R->contains(BB: P)) |
121 | Preds.push_back(Elt: P); |
122 | |
123 | // Preds[0] Preds[1] otherBB // |
124 | // \ | ________/ // |
125 | // \ | / // |
126 | // BB // |
127 | ExitingBB = |
128 | SplitBlockPredecessors(BB: ExitBB, Preds, Suffix: ".region_exiting", DT, LI); |
129 | // Preds[0] Preds[1] otherBB // |
130 | // \ / / // |
131 | // BB.region_exiting / // |
132 | // \ / // |
133 | // BB // |
134 | |
135 | if (RI) |
136 | RI->setRegionFor(BB: ExitingBB, R); |
137 | |
138 | // Change the exit of nested regions, but not the region itself, |
139 | R->replaceExitRecursive(NewExit: ExitingBB); |
140 | R->replaceExit(BB: ExitBB); |
141 | } |
142 | assert(ExitingBB == R->getExitingBlock()); |
143 | |
144 | // After: |
145 | // |
146 | // \ / // |
147 | // ExitingBB _____/ // |
148 | // \ / // |
149 | // ExitBB // |
150 | // / \ // |
151 | } |
152 | |
153 | void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, |
154 | RegionInfo *RI) { |
155 | assert(R && !R->isTopLevelRegion()); |
156 | assert(!RI || RI == R->getRegionInfo()); |
157 | assert((!RI || DT) && |
158 | "RegionInfo requires DominatorTree to be updated as well"); |
159 | |
160 | simplifyRegionEntry(R, DT, LI, RI); |
161 | simplifyRegionExit(R, DT, LI, RI); |
162 | assert(R->isSimple()); |
163 | } |
164 | |
165 | // Split the block into two successive blocks. |
166 | // |
167 | // Like llvm::SplitBlock, but also preserves RegionInfo |
168 | static BasicBlock *splitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
169 | DominatorTree *DT, llvm::LoopInfo *LI, |
170 | RegionInfo *RI) { |
171 | assert(Old); |
172 | |
173 | // Before: |
174 | // |
175 | // \ / // |
176 | // Old // |
177 | // / \ // |
178 | |
179 | BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); |
180 | |
181 | if (RI) { |
182 | Region *R = RI->getRegionFor(BB: Old); |
183 | RI->setRegionFor(BB: NewBlock, R); |
184 | } |
185 | |
186 | // After: |
187 | // |
188 | // \ / // |
189 | // Old // |
190 | // | // |
191 | // NewBlock // |
192 | // / \ // |
193 | |
194 | return NewBlock; |
195 | } |
196 | |
197 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, |
198 | LoopInfo *LI, RegionInfo *RI) { |
199 | // Find first non-alloca instruction. Every basic block has a non-alloca |
200 | // instruction, as every well formed basic block has a terminator. |
201 | BasicBlock::iterator I = EntryBlock->begin(); |
202 | while (isa<AllocaInst>(Val: I)) |
203 | ++I; |
204 | |
205 | // splitBlock updates DT, LI and RI. |
206 | splitBlock(Old: EntryBlock, SplitPt: I, DT, LI, RI); |
207 | } |
208 | |
209 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { |
210 | auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
211 | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
212 | auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
213 | auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
214 | RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); |
215 | RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; |
216 | |
217 | // splitBlock updates DT, LI and RI. |
218 | polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); |
219 | } |
220 | |
221 | void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, |
222 | polly::AssumptionKind Kind, isl::set Set, |
223 | DebugLoc Loc, polly::AssumptionSign Sign, |
224 | BasicBlock *BB, bool RTC) { |
225 | assert((Set.is_params() || BB) && |
226 | "Assumptions without a basic block must be parameter sets"); |
227 | if (RecordedAssumptions) |
228 | RecordedAssumptions->push_back(Elt: {.Kind: Kind, .Sign: Sign, .Set: Set, .Loc: Loc, .BB: BB, .RequiresRTC: RTC}); |
229 | } |
230 | |
231 | /// ScopExpander generates IR the the value of a SCEV that represents a value |
232 | /// from a SCoP. |
233 | /// |
234 | /// IMPORTANT: There are two ScalarEvolutions at play here. First, the SE that |
235 | /// was used to analyze the original SCoP (not actually referenced anywhere |
236 | /// here, but passed as argument to make the distinction clear). Second, GenSE |
237 | /// which is the SE for the function that the code is emitted into. SE and GenSE |
238 | /// may be different when the generated code is to be emitted into an outlined |
239 | /// function, e.g. for a parallel loop. That is, each SCEV is to be used only by |
240 | /// the SE that "owns" it and ScopExpander handles the translation between them. |
241 | /// The SCEVVisitor methods are only to be called on SCEVs of the original SE. |
242 | /// Their job is to create a new SCEV for GenSE. The nested SCEVExpander is to |
243 | /// be used only with SCEVs belonging to GenSE. Currently SCEVs do not store a |
244 | /// reference to the ScalarEvolution they belong to, so a mixup does not |
245 | /// immediately cause a crash but certainly is a violation of its interface. |
246 | /// |
247 | /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem |
248 | /// instruction but just use it, if it is referenced as a SCEVUnknown. We want |
249 | /// however to generate new code if the instruction is in the analyzed region |
250 | /// and we generate code outside/in front of that region. Hence, we generate the |
251 | /// code for the SDiv/SRem operands in front of the analyzed region and then |
252 | /// create a new SDiv/SRem operation there too. |
253 | struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> { |
254 | friend struct SCEVVisitor<ScopExpander, const SCEV *>; |
255 | |
256 | explicit ScopExpander(const Region &R, ScalarEvolution &SE, Function *GenFn, |
257 | ScalarEvolution &GenSE, const DataLayout &DL, |
258 | const char *Name, ValueMapT *VMap, |
259 | LoopToScevMapT *LoopMap, BasicBlock *RTCBB) |
260 | : Expander(GenSE, DL, Name, /*PreserveLCSSA=*/false), Name(Name), R(R), |
261 | VMap(VMap), LoopMap(LoopMap), RTCBB(RTCBB), GenSE(GenSE), GenFn(GenFn) { |
262 | } |
263 | |
264 | Value *expandCodeFor(const SCEV *E, Type *Ty, BasicBlock::iterator IP) { |
265 | assert(isInGenRegion(&*IP) && |
266 | "ScopExpander assumes to be applied to generated code region"); |
267 | const SCEV *GenE = visit(E); |
268 | return Expander.expandCodeFor(SH: GenE, Ty, I: IP); |
269 | } |
270 | |
271 | const SCEV *visit(const SCEV *E) { |
272 | // Cache the expansion results for intermediate SCEV expressions. A SCEV |
273 | // expression can refer to an operand multiple times (e.g. "x*x), so |
274 | // a naive visitor takes exponential time. |
275 | if (SCEVCache.count(Val: E)) |
276 | return SCEVCache[E]; |
277 | const SCEV *Result = SCEVVisitor::visit(S: E); |
278 | SCEVCache[E] = Result; |
279 | return Result; |
280 | } |
281 | |
282 | private: |
283 | SCEVExpander Expander; |
284 | const char *Name; |
285 | const Region &R; |
286 | ValueMapT *VMap; |
287 | LoopToScevMapT *LoopMap; |
288 | BasicBlock *RTCBB; |
289 | DenseMap<const SCEV *, const SCEV *> SCEVCache; |
290 | |
291 | ScalarEvolution &GenSE; |
292 | Function *GenFn; |
293 | |
294 | /// Is the instruction part of the original SCoP (in contrast to be located in |
295 | /// the code-generated region)? |
296 | bool isInOrigRegion(Instruction *Inst) { |
297 | Function *Fn = R.getEntry()->getParent(); |
298 | bool isInOrigRegion = Inst->getFunction() == Fn && R.contains(Inst); |
299 | assert((isInOrigRegion || GenFn == Inst->getFunction()) && |
300 | "Instruction expected to be either in the SCoP or the translated " |
301 | "region"); |
302 | return isInOrigRegion; |
303 | } |
304 | |
305 | bool isInGenRegion(Instruction *Inst) { return !isInOrigRegion(Inst); } |
306 | |
307 | const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, |
308 | BasicBlock::iterator IP) { |
309 | if (!Inst || isInGenRegion(Inst)) |
310 | return E; |
311 | |
312 | assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && |
313 | !isa<PHINode>(Inst)); |
314 | |
315 | auto *InstClone = Inst->clone(); |
316 | for (auto &Op : Inst->operands()) { |
317 | assert(GenSE.isSCEVable(Op->getType())); |
318 | const SCEV *OpSCEV = GenSE.getSCEV(V: Op); |
319 | auto *OpClone = expandCodeFor(E: OpSCEV, Ty: Op->getType(), IP); |
320 | InstClone->replaceUsesOfWith(From: Op, To: OpClone); |
321 | } |
322 | |
323 | InstClone->setName(Name + Inst->getName()); |
324 | InstClone->insertBefore(InsertPos: IP); |
325 | return GenSE.getSCEV(V: InstClone); |
326 | } |
327 | |
328 | const SCEV *visitUnknown(const SCEVUnknown *E) { |
329 | |
330 | // If a value mapping was given try if the underlying value is remapped. |
331 | Value *NewVal = VMap ? VMap->lookup(Val: E->getValue()) : nullptr; |
332 | if (NewVal) { |
333 | const SCEV *NewE = GenSE.getSCEV(V: NewVal); |
334 | |
335 | // While the mapped value might be different the SCEV representation might |
336 | // not be. To this end we will check before we go into recursion here. |
337 | // FIXME: SCEVVisitor must only visit SCEVs that belong to the original |
338 | // SE. This calls it on SCEVs that belong GenSE. |
339 | if (E != NewE) |
340 | return visit(E: NewE); |
341 | } |
342 | |
343 | Instruction *Inst = dyn_cast<Instruction>(Val: E->getValue()); |
344 | BasicBlock::iterator IP; |
345 | if (Inst && isInGenRegion(Inst)) |
346 | IP = Inst->getIterator(); |
347 | else if (R.getEntry()->getParent() != GenFn) { |
348 | // RTCBB is in the original function, but we are generating for a |
349 | // subfunction so we cannot emit to RTCBB. Usually, we land here only |
350 | // because E->getValue() is not an instruction but a global or constant |
351 | // which do not need to emit anything. |
352 | IP = GenFn->getEntryBlock().getTerminator()->getIterator(); |
353 | } else if (Inst && RTCBB->getParent() == Inst->getFunction()) |
354 | IP = RTCBB->getTerminator()->getIterator(); |
355 | else |
356 | IP = RTCBB->getParent()->getEntryBlock().getTerminator()->getIterator(); |
357 | |
358 | if (!Inst || (Inst->getOpcode() != Instruction::SRem && |
359 | Inst->getOpcode() != Instruction::SDiv)) |
360 | return visitGenericInst(E, Inst, IP); |
361 | |
362 | const SCEV *LHSScev = GenSE.getSCEV(V: Inst->getOperand(i: 0)); |
363 | const SCEV *RHSScev = GenSE.getSCEV(V: Inst->getOperand(i: 1)); |
364 | |
365 | if (!GenSE.isKnownNonZero(S: RHSScev)) |
366 | RHSScev = GenSE.getUMaxExpr(LHS: RHSScev, RHS: GenSE.getConstant(Ty: E->getType(), V: 1)); |
367 | |
368 | Value *LHS = expandCodeFor(E: LHSScev, Ty: E->getType(), IP); |
369 | Value *RHS = expandCodeFor(E: RHSScev, Ty: E->getType(), IP); |
370 | |
371 | Inst = BinaryOperator::Create(Op: (Instruction::BinaryOps)Inst->getOpcode(), |
372 | S1: LHS, S2: RHS, Name: Inst->getName() + Name, InsertBefore: IP); |
373 | return GenSE.getSCEV(V: Inst); |
374 | } |
375 | |
376 | /// The following functions will just traverse the SCEV and rebuild it using |
377 | /// GenSE and the new operands returned by the traversal. |
378 | /// |
379 | ///{ |
380 | const SCEV *visitConstant(const SCEVConstant *E) { return E; } |
381 | const SCEV *visitVScale(const SCEVVScale *E) { return E; } |
382 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { |
383 | return GenSE.getPtrToIntExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
384 | } |
385 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { |
386 | return GenSE.getTruncateExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
387 | } |
388 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { |
389 | return GenSE.getZeroExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
390 | } |
391 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { |
392 | return GenSE.getSignExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
393 | } |
394 | const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { |
395 | auto *RHSScev = visit(E: E->getRHS()); |
396 | if (!GenSE.isKnownNonZero(S: RHSScev)) |
397 | RHSScev = GenSE.getUMaxExpr(LHS: RHSScev, RHS: GenSE.getConstant(Ty: E->getType(), V: 1)); |
398 | return GenSE.getUDivExpr(LHS: visit(E: E->getLHS()), RHS: RHSScev); |
399 | } |
400 | const SCEV *visitAddExpr(const SCEVAddExpr *E) { |
401 | SmallVector<const SCEV *, 4> NewOps; |
402 | for (const SCEV *Op : E->operands()) |
403 | NewOps.push_back(Elt: visit(E: Op)); |
404 | return GenSE.getAddExpr(Ops&: NewOps); |
405 | } |
406 | const SCEV *visitMulExpr(const SCEVMulExpr *E) { |
407 | SmallVector<const SCEV *, 4> NewOps; |
408 | for (const SCEV *Op : E->operands()) |
409 | NewOps.push_back(Elt: visit(E: Op)); |
410 | return GenSE.getMulExpr(Ops&: NewOps); |
411 | } |
412 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { |
413 | SmallVector<const SCEV *, 4> NewOps; |
414 | for (const SCEV *Op : E->operands()) |
415 | NewOps.push_back(Elt: visit(E: Op)); |
416 | return GenSE.getUMaxExpr(Operands&: NewOps); |
417 | } |
418 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { |
419 | SmallVector<const SCEV *, 4> NewOps; |
420 | for (const SCEV *Op : E->operands()) |
421 | NewOps.push_back(Elt: visit(E: Op)); |
422 | return GenSE.getSMaxExpr(Operands&: NewOps); |
423 | } |
424 | const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { |
425 | SmallVector<const SCEV *, 4> NewOps; |
426 | for (const SCEV *Op : E->operands()) |
427 | NewOps.push_back(Elt: visit(E: Op)); |
428 | return GenSE.getUMinExpr(Operands&: NewOps); |
429 | } |
430 | const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { |
431 | SmallVector<const SCEV *, 4> NewOps; |
432 | for (const SCEV *Op : E->operands()) |
433 | NewOps.push_back(Elt: visit(E: Op)); |
434 | return GenSE.getSMinExpr(Operands&: NewOps); |
435 | } |
436 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) { |
437 | SmallVector<const SCEV *, 4> NewOps; |
438 | for (const SCEV *Op : E->operands()) |
439 | NewOps.push_back(Elt: visit(E: Op)); |
440 | return GenSE.getUMinExpr(Operands&: NewOps, /*Sequential=*/true); |
441 | } |
442 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { |
443 | SmallVector<const SCEV *, 4> NewOps; |
444 | for (const SCEV *Op : E->operands()) |
445 | NewOps.push_back(Elt: visit(E: Op)); |
446 | |
447 | const Loop *L = E->getLoop(); |
448 | const SCEV *GenLRepl = LoopMap ? LoopMap->lookup(Val: L) : nullptr; |
449 | if (!GenLRepl) |
450 | return GenSE.getAddRecExpr(Operands&: NewOps, L, Flags: E->getNoWrapFlags()); |
451 | |
452 | // evaluateAtIteration replaces the SCEVAddrExpr with a direct calculation. |
453 | const SCEV *Evaluated = |
454 | SCEVAddRecExpr::evaluateAtIteration(Operands: NewOps, It: GenLRepl, SE&: GenSE); |
455 | |
456 | // FIXME: This emits a SCEV for GenSE (since GenLRepl will refer to the |
457 | // induction variable of a generated loop), so we should not use SCEVVisitor |
458 | // with it. However, it still contains references to the SCoP region. |
459 | return visit(E: Evaluated); |
460 | } |
461 | ///} |
462 | }; |
463 | |
464 | Value *polly::expandCodeFor(Scop &S, llvm::ScalarEvolution &SE, |
465 | llvm::Function *GenFn, ScalarEvolution &GenSE, |
466 | const DataLayout &DL, const char *Name, |
467 | const SCEV *E, Type *Ty, BasicBlock::iterator IP, |
468 | ValueMapT *VMap, LoopToScevMapT *LoopMap, |
469 | BasicBlock *RTCBB) { |
470 | ScopExpander Expander(S.getRegion(), SE, GenFn, GenSE, DL, Name, VMap, |
471 | LoopMap, RTCBB); |
472 | return Expander.expandCodeFor(E, Ty, IP); |
473 | } |
474 | |
475 | Value *polly::getConditionFromTerminator(Instruction *TI) { |
476 | if (BranchInst *BR = dyn_cast<BranchInst>(Val: TI)) { |
477 | if (BR->isUnconditional()) |
478 | return ConstantInt::getTrue(Ty: Type::getInt1Ty(C&: TI->getContext())); |
479 | |
480 | return BR->getCondition(); |
481 | } |
482 | |
483 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) |
484 | return SI->getCondition(); |
485 | |
486 | return nullptr; |
487 | } |
488 | |
489 | Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { |
490 | // Start with the smallest loop containing the entry and expand that |
491 | // loop until it contains all blocks in the region. If there is a loop |
492 | // containing all blocks in the region check if it is itself contained |
493 | // and if so take the parent loop as it will be the smallest containing |
494 | // the region but not contained by it. |
495 | Loop *L = LI.getLoopFor(BB: S.getEntry()); |
496 | while (L) { |
497 | bool AllContained = true; |
498 | for (auto *BB : S.blocks()) |
499 | AllContained &= L->contains(BB); |
500 | if (AllContained) |
501 | break; |
502 | L = L->getParentLoop(); |
503 | } |
504 | |
505 | return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; |
506 | } |
507 | |
508 | unsigned polly::getNumBlocksInLoop(Loop *L) { |
509 | unsigned NumBlocks = L->getNumBlocks(); |
510 | SmallVector<BasicBlock *, 4> ExitBlocks; |
511 | L->getExitBlocks(ExitBlocks); |
512 | |
513 | for (auto ExitBlock : ExitBlocks) { |
514 | if (isa<UnreachableInst>(Val: ExitBlock->getTerminator())) |
515 | NumBlocks++; |
516 | } |
517 | return NumBlocks; |
518 | } |
519 | |
520 | unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { |
521 | if (!RN->isSubRegion()) |
522 | return 1; |
523 | |
524 | Region *R = RN->getNodeAs<Region>(); |
525 | return std::distance(first: R->block_begin(), last: R->block_end()); |
526 | } |
527 | |
528 | Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { |
529 | if (!RN->isSubRegion()) { |
530 | BasicBlock *BB = RN->getNodeAs<BasicBlock>(); |
531 | Loop *L = LI.getLoopFor(BB); |
532 | |
533 | // Unreachable statements are not considered to belong to a LLVM loop, as |
534 | // they are not part of an actual loop in the control flow graph. |
535 | // Nevertheless, we handle certain unreachable statements that are common |
536 | // when modeling run-time bounds checks as being part of the loop to be |
537 | // able to model them and to later eliminate the run-time bounds checks. |
538 | // |
539 | // Specifically, for basic blocks that terminate in an unreachable and |
540 | // where the immediate predecessor is part of a loop, we assume these |
541 | // basic blocks belong to the loop the predecessor belongs to. This |
542 | // allows us to model the following code. |
543 | // |
544 | // for (i = 0; i < N; i++) { |
545 | // if (i > 1024) |
546 | // abort(); <- this abort might be translated to an |
547 | // unreachable |
548 | // |
549 | // A[i] = ... |
550 | // } |
551 | if (!L && isa<UnreachableInst>(Val: BB->getTerminator()) && BB->getPrevNode()) |
552 | L = LI.getLoopFor(BB: BB->getPrevNode()); |
553 | return L; |
554 | } |
555 | |
556 | Region *NonAffineSubRegion = RN->getNodeAs<Region>(); |
557 | Loop *L = LI.getLoopFor(BB: NonAffineSubRegion->getEntry()); |
558 | while (L && NonAffineSubRegion->contains(L)) |
559 | L = L->getParentLoop(); |
560 | return L; |
561 | } |
562 | |
563 | static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, |
564 | ScalarEvolution &SE) { |
565 | for (const Use &Val : llvm::drop_begin(RangeOrContainer: Gep->operands(), N: 1)) { |
566 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Val, L); |
567 | Loop *OuterLoop = R.outermostLoopInRegion(L); |
568 | if (!SE.isLoopInvariant(S: PtrSCEV, L: OuterLoop)) |
569 | return true; |
570 | } |
571 | return false; |
572 | } |
573 | |
574 | bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, |
575 | ScalarEvolution &SE, const DominatorTree &DT, |
576 | const InvariantLoadsSetTy &KnownInvariantLoads) { |
577 | Loop *L = LI.getLoopFor(BB: LInst->getParent()); |
578 | auto *Ptr = LInst->getPointerOperand(); |
579 | |
580 | // A LoadInst is hoistable if the address it is loading from is also |
581 | // invariant; in this case: another invariant load (whether that address |
582 | // is also not written to has to be checked separately) |
583 | // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst |
584 | // pattern generated by the Chapel frontend, but generally this applies |
585 | // for any chain of instruction that does not also depend on any |
586 | // induction variable |
587 | if (auto *GepInst = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
588 | if (!hasVariantIndex(Gep: GepInst, L, R, SE)) { |
589 | if (auto *DecidingLoad = |
590 | dyn_cast<LoadInst>(Val: GepInst->getPointerOperand())) { |
591 | if (KnownInvariantLoads.count(key: DecidingLoad)) |
592 | return true; |
593 | } |
594 | } |
595 | } |
596 | |
597 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Ptr, L); |
598 | while (L && R.contains(L)) { |
599 | if (!SE.isLoopInvariant(S: PtrSCEV, L)) |
600 | return false; |
601 | L = L->getParentLoop(); |
602 | } |
603 | |
604 | if (!Ptr->hasUseList()) |
605 | return true; |
606 | |
607 | for (auto *User : Ptr->users()) { |
608 | auto *UserI = dyn_cast<Instruction>(Val: User); |
609 | if (!UserI || UserI->getFunction() != LInst->getFunction() || |
610 | !R.contains(Inst: UserI)) |
611 | continue; |
612 | if (!UserI->mayWriteToMemory()) |
613 | continue; |
614 | |
615 | auto &BB = *UserI->getParent(); |
616 | if (DT.dominates(A: &BB, B: LInst->getParent())) |
617 | return false; |
618 | |
619 | bool DominatesAllPredecessors = true; |
620 | if (R.isTopLevelRegion()) { |
621 | for (BasicBlock &I : *R.getEntry()->getParent()) |
622 | if (isa<ReturnInst>(Val: I.getTerminator()) && !DT.dominates(A: &BB, B: &I)) |
623 | DominatesAllPredecessors = false; |
624 | } else { |
625 | for (auto Pred : predecessors(BB: R.getExit())) |
626 | if (R.contains(BB: Pred) && !DT.dominates(A: &BB, B: Pred)) |
627 | DominatesAllPredecessors = false; |
628 | } |
629 | |
630 | if (!DominatesAllPredecessors) |
631 | continue; |
632 | |
633 | return false; |
634 | } |
635 | |
636 | return true; |
637 | } |
638 | |
639 | bool polly::isIgnoredIntrinsic(const Value *V) { |
640 | if (auto *IT = dyn_cast<IntrinsicInst>(Val: V)) { |
641 | switch (IT->getIntrinsicID()) { |
642 | // Lifetime markers are supported/ignored. |
643 | case llvm::Intrinsic::lifetime_start: |
644 | case llvm::Intrinsic::lifetime_end: |
645 | // Invariant markers are supported/ignored. |
646 | case llvm::Intrinsic::invariant_start: |
647 | case llvm::Intrinsic::invariant_end: |
648 | // Some misc annotations are supported/ignored. |
649 | case llvm::Intrinsic::var_annotation: |
650 | case llvm::Intrinsic::ptr_annotation: |
651 | case llvm::Intrinsic::annotation: |
652 | case llvm::Intrinsic::donothing: |
653 | case llvm::Intrinsic::assume: |
654 | // Some debug info intrinsics are supported/ignored. |
655 | case llvm::Intrinsic::dbg_value: |
656 | case llvm::Intrinsic::dbg_declare: |
657 | return true; |
658 | default: |
659 | break; |
660 | } |
661 | } |
662 | return false; |
663 | } |
664 | |
665 | bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, |
666 | Loop *Scope) { |
667 | if (!V || !SE->isSCEVable(Ty: V->getType())) |
668 | return false; |
669 | |
670 | const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); |
671 | if (const SCEV *Scev = SE->getSCEVAtScope(V: const_cast<Value *>(V), L: Scope)) |
672 | if (!isa<SCEVCouldNotCompute>(Val: Scev)) |
673 | if (!hasScalarDepsInsideRegion(Expr: Scev, R: &S.getRegion(), Scope, AllowLoops: false, ILS)) |
674 | return true; |
675 | |
676 | return false; |
677 | } |
678 | |
679 | llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { |
680 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
681 | if (!UI) |
682 | return nullptr; |
683 | |
684 | if (PHINode *PHI = dyn_cast<PHINode>(Val: UI)) |
685 | return PHI->getIncomingBlock(U); |
686 | |
687 | return UI->getParent(); |
688 | } |
689 | |
690 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, |
691 | const BoxedLoopsSetTy &BoxedLoops) { |
692 | while (BoxedLoops.count(key: L)) |
693 | L = L->getParentLoop(); |
694 | return L; |
695 | } |
696 | |
697 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, |
698 | llvm::LoopInfo &LI, |
699 | const BoxedLoopsSetTy &BoxedLoops) { |
700 | Loop *L = LI.getLoopFor(BB); |
701 | return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); |
702 | } |
703 | |
704 | bool polly::isDebugCall(Instruction *Inst) { |
705 | auto *CI = dyn_cast<CallInst>(Val: Inst); |
706 | if (!CI) |
707 | return false; |
708 | |
709 | Function *CF = CI->getCalledFunction(); |
710 | if (!CF) |
711 | return false; |
712 | |
713 | return std::find(first: DebugFunctions.begin(), last: DebugFunctions.end(), |
714 | val: CF->getName()) != DebugFunctions.end(); |
715 | } |
716 | |
717 | static bool hasDebugCall(BasicBlock *BB) { |
718 | for (Instruction &Inst : *BB) { |
719 | if (isDebugCall(Inst: &Inst)) |
720 | return true; |
721 | } |
722 | return false; |
723 | } |
724 | |
725 | bool polly::hasDebugCall(ScopStmt *Stmt) { |
726 | // Quick skip if no debug functions have been defined. |
727 | if (DebugFunctions.empty()) |
728 | return false; |
729 | |
730 | if (!Stmt) |
731 | return false; |
732 | |
733 | for (Instruction *Inst : Stmt->getInstructions()) |
734 | if (isDebugCall(Inst)) |
735 | return true; |
736 | |
737 | if (Stmt->isRegionStmt()) { |
738 | for (BasicBlock *RBB : Stmt->getRegion()->blocks()) |
739 | if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(BB: RBB)) |
740 | return true; |
741 | } |
742 | |
743 | return false; |
744 | } |
745 | |
746 | /// Find a property in a LoopID. |
747 | static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { |
748 | if (!LoopMD) |
749 | return nullptr; |
750 | for (const MDOperand &X : drop_begin(RangeOrContainer: LoopMD->operands(), N: 1)) { |
751 | auto *OpNode = dyn_cast<MDNode>(Val: X.get()); |
752 | if (!OpNode) |
753 | continue; |
754 | |
755 | auto *OpName = dyn_cast<MDString>(Val: OpNode->getOperand(I: 0)); |
756 | if (!OpName) |
757 | continue; |
758 | if (OpName->getString() == Name) |
759 | return OpNode; |
760 | } |
761 | return nullptr; |
762 | } |
763 | |
764 | static std::optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID, |
765 | StringRef Name) { |
766 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
767 | if (!MD) |
768 | return std::nullopt; |
769 | switch (MD->getNumOperands()) { |
770 | case 1: |
771 | return nullptr; |
772 | case 2: |
773 | return &MD->getOperand(I: 1); |
774 | default: |
775 | llvm_unreachable("loop metadata has 0 or 1 operand"); |
776 | } |
777 | } |
778 | |
779 | std::optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD, |
780 | StringRef Name) { |
781 | MDNode *MD = findNamedMetadataNode(LoopMD, Name); |
782 | if (!MD) |
783 | return std::nullopt; |
784 | switch (MD->getNumOperands()) { |
785 | case 1: |
786 | return nullptr; |
787 | case 2: |
788 | return MD->getOperand(I: 1).get(); |
789 | default: |
790 | llvm_unreachable("loop metadata must have 0 or 1 operands"); |
791 | } |
792 | } |
793 | |
794 | static std::optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID, |
795 | StringRef Name) { |
796 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
797 | if (!MD) |
798 | return std::nullopt; |
799 | switch (MD->getNumOperands()) { |
800 | case 1: |
801 | return true; |
802 | case 2: |
803 | if (ConstantInt *IntMD = |
804 | mdconst::extract_or_null<ConstantInt>(MD: MD->getOperand(I: 1).get())) |
805 | return IntMD->getZExtValue(); |
806 | return true; |
807 | } |
808 | llvm_unreachable("unexpected number of options"); |
809 | } |
810 | |
811 | bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) { |
812 | return getOptionalBoolLoopAttribute(LoopID, Name).value_or(u: false); |
813 | } |
814 | |
815 | std::optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID, |
816 | StringRef Name) { |
817 | const MDOperand *AttrMD = |
818 | findNamedMetadataArg(LoopID, Name).value_or(u: nullptr); |
819 | if (!AttrMD) |
820 | return std::nullopt; |
821 | |
822 | ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(MD: AttrMD->get()); |
823 | if (!IntMD) |
824 | return std::nullopt; |
825 | |
826 | return IntMD->getSExtValue(); |
827 | } |
828 | |
829 | bool polly::hasDisableAllTransformsHint(Loop *L) { |
830 | return llvm::hasDisableAllTransformsHint(L); |
831 | } |
832 | |
833 | bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) { |
834 | return getBooleanLoopAttribute(LoopID, Name: "llvm.loop.disable_nonforced"); |
835 | } |
836 | |
837 | isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { |
838 | assert(Attr && "Must be a valid BandAttr"); |
839 | |
840 | // The name "Loop" signals that this id contains a pointer to a BandAttr. |
841 | // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in |
842 | // markers, but it's user pointer is an llvm::Value. |
843 | isl::id Result = isl::id::alloc(ctx: Ctx, name: "Loop with Metadata", user: Attr); |
844 | Result = isl::manage(ptr: isl_id_set_free_user(id: Result.release(), free_user: [](void *Ptr) { |
845 | BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr); |
846 | delete Attr; |
847 | })); |
848 | return Result; |
849 | } |
850 | |
851 | isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { |
852 | if (!L) |
853 | return {}; |
854 | |
855 | // A loop without metadata does not need to be annotated. |
856 | MDNode *LoopID = L->getLoopID(); |
857 | if (!LoopID) |
858 | return {}; |
859 | |
860 | BandAttr *Attr = new BandAttr(); |
861 | Attr->OriginalLoop = L; |
862 | Attr->Metadata = L->getLoopID(); |
863 | |
864 | return getIslLoopAttr(Ctx, Attr); |
865 | } |
866 | |
867 | bool polly::isLoopAttr(const isl::id &Id) { |
868 | if (Id.is_null()) |
869 | return false; |
870 | |
871 | return Id.get_name() == "Loop with Metadata"; |
872 | } |
873 | |
874 | BandAttr *polly::getLoopAttr(const isl::id &Id) { |
875 | if (!isLoopAttr(Id)) |
876 | return nullptr; |
877 | |
878 | return reinterpret_cast<BandAttr *>(Id.get_user()); |
879 | } |
880 |
Definitions
- DebugFunctions
- simplifyRegionEntry
- simplifyRegionExit
- simplifyRegion
- splitBlock
- splitEntryBlockForAlloca
- splitEntryBlockForAlloca
- recordAssumption
- ScopExpander
- ScopExpander
- expandCodeFor
- visit
- isInOrigRegion
- isInGenRegion
- visitGenericInst
- visitUnknown
- visitConstant
- visitVScale
- visitPtrToIntExpr
- visitTruncateExpr
- visitZeroExtendExpr
- visitSignExtendExpr
- visitUDivExpr
- visitAddExpr
- visitMulExpr
- visitUMaxExpr
- visitSMaxExpr
- visitUMinExpr
- visitSMinExpr
- visitSequentialUMinExpr
- visitAddRecExpr
- expandCodeFor
- getConditionFromTerminator
- getLoopSurroundingScop
- getNumBlocksInLoop
- getNumBlocksInRegionNode
- getRegionNodeLoop
- hasVariantIndex
- isHoistableLoad
- isIgnoredIntrinsic
- canSynthesize
- getUseBlock
- getFirstNonBoxedLoopFor
- getFirstNonBoxedLoopFor
- isDebugCall
- hasDebugCall
- hasDebugCall
- findNamedMetadataNode
- findNamedMetadataArg
- findMetadataOperand
- getOptionalBoolLoopAttribute
- getBooleanLoopAttribute
- getOptionalIntLoopAttribute
- hasDisableAllTransformsHint
- hasDisableAllTransformsHint
- getIslLoopAttr
- createIslLoopAttr
- isLoopAttr
Improve your Profiling and Debugging skills
Find out more