1 | //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Small functions that help with Scop and LLVM-IR. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "polly/Support/ScopHelper.h" |
14 | #include "polly/Options.h" |
15 | #include "polly/ScopInfo.h" |
16 | #include "polly/Support/SCEVValidator.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/Analysis/RegionInfo.h" |
19 | #include "llvm/Analysis/ScalarEvolution.h" |
20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
22 | #include "llvm/Transforms/Utils/LoopUtils.h" |
23 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
24 | #include <optional> |
25 | |
26 | using namespace llvm; |
27 | using namespace polly; |
28 | |
29 | #define DEBUG_TYPE "polly-scop-helper" |
30 | |
31 | static cl::list<std::string> DebugFunctions( |
32 | "polly-debug-func" , |
33 | cl::desc("Allow calls to the specified functions in SCoPs even if their " |
34 | "side-effects are unknown. This can be used to do debug output in " |
35 | "Polly-transformed code." ), |
36 | cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); |
37 | |
38 | // Ensures that there is just one predecessor to the entry node from outside the |
39 | // region. |
40 | // The identity of the region entry node is preserved. |
41 | static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, |
42 | RegionInfo *RI) { |
43 | BasicBlock *EnteringBB = R->getEnteringBlock(); |
44 | BasicBlock *Entry = R->getEntry(); |
45 | |
46 | // Before (one of): |
47 | // |
48 | // \ / // |
49 | // EnteringBB // |
50 | // | \------> // |
51 | // \ / | // |
52 | // Entry <--\ Entry <--\ // |
53 | // / \ / / \ / // |
54 | // .... .... // |
55 | |
56 | // Create single entry edge if the region has multiple entry edges. |
57 | if (!EnteringBB) { |
58 | SmallVector<BasicBlock *, 4> Preds; |
59 | for (BasicBlock *P : predecessors(BB: Entry)) |
60 | if (!R->contains(BB: P)) |
61 | Preds.push_back(Elt: P); |
62 | |
63 | BasicBlock *NewEntering = |
64 | SplitBlockPredecessors(BB: Entry, Preds, Suffix: ".region_entering" , DT, LI); |
65 | |
66 | if (RI) { |
67 | // The exit block of predecessing regions must be changed to NewEntering |
68 | for (BasicBlock *ExitPred : predecessors(BB: NewEntering)) { |
69 | Region *RegionOfPred = RI->getRegionFor(BB: ExitPred); |
70 | if (RegionOfPred->getExit() != Entry) |
71 | continue; |
72 | |
73 | while (!RegionOfPred->isTopLevelRegion() && |
74 | RegionOfPred->getExit() == Entry) { |
75 | RegionOfPred->replaceExit(BB: NewEntering); |
76 | RegionOfPred = RegionOfPred->getParent(); |
77 | } |
78 | } |
79 | |
80 | // Make all ancestors use EnteringBB as entry; there might be edges to it |
81 | Region *AncestorR = R->getParent(); |
82 | RI->setRegionFor(BB: NewEntering, R: AncestorR); |
83 | while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { |
84 | AncestorR->replaceEntry(BB: NewEntering); |
85 | AncestorR = AncestorR->getParent(); |
86 | } |
87 | } |
88 | |
89 | EnteringBB = NewEntering; |
90 | } |
91 | assert(R->getEnteringBlock() == EnteringBB); |
92 | |
93 | // After: |
94 | // |
95 | // \ / // |
96 | // EnteringBB // |
97 | // | // |
98 | // | // |
99 | // Entry <--\ // |
100 | // / \ / // |
101 | // .... // |
102 | } |
103 | |
104 | // Ensure that the region has a single block that branches to the exit node. |
105 | static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, |
106 | RegionInfo *RI) { |
107 | BasicBlock *ExitBB = R->getExit(); |
108 | BasicBlock *ExitingBB = R->getExitingBlock(); |
109 | |
110 | // Before: |
111 | // |
112 | // (Region) ______/ // |
113 | // \ | / // |
114 | // ExitBB // |
115 | // / \ // |
116 | |
117 | if (!ExitingBB) { |
118 | SmallVector<BasicBlock *, 4> Preds; |
119 | for (BasicBlock *P : predecessors(BB: ExitBB)) |
120 | if (R->contains(BB: P)) |
121 | Preds.push_back(Elt: P); |
122 | |
123 | // Preds[0] Preds[1] otherBB // |
124 | // \ | ________/ // |
125 | // \ | / // |
126 | // BB // |
127 | ExitingBB = |
128 | SplitBlockPredecessors(BB: ExitBB, Preds, Suffix: ".region_exiting" , DT, LI); |
129 | // Preds[0] Preds[1] otherBB // |
130 | // \ / / // |
131 | // BB.region_exiting / // |
132 | // \ / // |
133 | // BB // |
134 | |
135 | if (RI) |
136 | RI->setRegionFor(BB: ExitingBB, R); |
137 | |
138 | // Change the exit of nested regions, but not the region itself, |
139 | R->replaceExitRecursive(NewExit: ExitingBB); |
140 | R->replaceExit(BB: ExitBB); |
141 | } |
142 | assert(ExitingBB == R->getExitingBlock()); |
143 | |
144 | // After: |
145 | // |
146 | // \ / // |
147 | // ExitingBB _____/ // |
148 | // \ / // |
149 | // ExitBB // |
150 | // / \ // |
151 | } |
152 | |
153 | void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, |
154 | RegionInfo *RI) { |
155 | assert(R && !R->isTopLevelRegion()); |
156 | assert(!RI || RI == R->getRegionInfo()); |
157 | assert((!RI || DT) && |
158 | "RegionInfo requires DominatorTree to be updated as well" ); |
159 | |
160 | simplifyRegionEntry(R, DT, LI, RI); |
161 | simplifyRegionExit(R, DT, LI, RI); |
162 | assert(R->isSimple()); |
163 | } |
164 | |
165 | // Split the block into two successive blocks. |
166 | // |
167 | // Like llvm::SplitBlock, but also preserves RegionInfo |
168 | static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt, |
169 | DominatorTree *DT, llvm::LoopInfo *LI, |
170 | RegionInfo *RI) { |
171 | assert(Old && SplitPt); |
172 | |
173 | // Before: |
174 | // |
175 | // \ / // |
176 | // Old // |
177 | // / \ // |
178 | |
179 | BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); |
180 | |
181 | if (RI) { |
182 | Region *R = RI->getRegionFor(BB: Old); |
183 | RI->setRegionFor(BB: NewBlock, R); |
184 | } |
185 | |
186 | // After: |
187 | // |
188 | // \ / // |
189 | // Old // |
190 | // | // |
191 | // NewBlock // |
192 | // / \ // |
193 | |
194 | return NewBlock; |
195 | } |
196 | |
197 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, |
198 | LoopInfo *LI, RegionInfo *RI) { |
199 | // Find first non-alloca instruction. Every basic block has a non-alloca |
200 | // instruction, as every well formed basic block has a terminator. |
201 | BasicBlock::iterator I = EntryBlock->begin(); |
202 | while (isa<AllocaInst>(Val: I)) |
203 | ++I; |
204 | |
205 | // splitBlock updates DT, LI and RI. |
206 | splitBlock(Old: EntryBlock, SplitPt: &*I, DT, LI, RI); |
207 | } |
208 | |
209 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { |
210 | auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
211 | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
212 | auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
213 | auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
214 | RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); |
215 | RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; |
216 | |
217 | // splitBlock updates DT, LI and RI. |
218 | polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); |
219 | } |
220 | |
221 | void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, |
222 | polly::AssumptionKind Kind, isl::set Set, |
223 | DebugLoc Loc, polly::AssumptionSign Sign, |
224 | BasicBlock *BB, bool RTC) { |
225 | assert((Set.is_params() || BB) && |
226 | "Assumptions without a basic block must be parameter sets" ); |
227 | if (RecordedAssumptions) |
228 | RecordedAssumptions->push_back(Elt: {.Kind: Kind, .Sign: Sign, .Set: Set, .Loc: Loc, .BB: BB, .RequiresRTC: RTC}); |
229 | } |
230 | |
231 | /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem |
232 | /// instruction but just use it, if it is referenced as a SCEVUnknown. We want |
233 | /// however to generate new code if the instruction is in the analyzed region |
234 | /// and we generate code outside/in front of that region. Hence, we generate the |
235 | /// code for the SDiv/SRem operands in front of the analyzed region and then |
236 | /// create a new SDiv/SRem operation there too. |
237 | struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> { |
238 | friend struct SCEVVisitor<ScopExpander, const SCEV *>; |
239 | |
240 | explicit ScopExpander(const Region &R, ScalarEvolution &SE, |
241 | const DataLayout &DL, const char *Name, ValueMapT *VMap, |
242 | BasicBlock *RTCBB) |
243 | : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name), |
244 | R(R), VMap(VMap), RTCBB(RTCBB) {} |
245 | |
246 | Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) { |
247 | // If we generate code in the region we will immediately fall back to the |
248 | // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if |
249 | // needed replace them by copies computed in the entering block. |
250 | if (!R.contains(Inst: I)) |
251 | E = visit(E); |
252 | return Expander.expandCodeFor(SH: E, Ty, I); |
253 | } |
254 | |
255 | const SCEV *visit(const SCEV *E) { |
256 | // Cache the expansion results for intermediate SCEV expressions. A SCEV |
257 | // expression can refer to an operand multiple times (e.g. "x*x), so |
258 | // a naive visitor takes exponential time. |
259 | if (SCEVCache.count(Val: E)) |
260 | return SCEVCache[E]; |
261 | const SCEV *Result = SCEVVisitor::visit(S: E); |
262 | SCEVCache[E] = Result; |
263 | return Result; |
264 | } |
265 | |
266 | private: |
267 | SCEVExpander Expander; |
268 | ScalarEvolution &SE; |
269 | const char *Name; |
270 | const Region &R; |
271 | ValueMapT *VMap; |
272 | BasicBlock *RTCBB; |
273 | DenseMap<const SCEV *, const SCEV *> SCEVCache; |
274 | |
275 | const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, |
276 | Instruction *IP) { |
277 | if (!Inst || !R.contains(Inst)) |
278 | return E; |
279 | |
280 | assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && |
281 | !isa<PHINode>(Inst)); |
282 | |
283 | auto *InstClone = Inst->clone(); |
284 | for (auto &Op : Inst->operands()) { |
285 | assert(SE.isSCEVable(Op->getType())); |
286 | auto *OpSCEV = SE.getSCEV(V: Op); |
287 | auto *OpClone = expandCodeFor(E: OpSCEV, Ty: Op->getType(), I: IP); |
288 | InstClone->replaceUsesOfWith(From: Op, To: OpClone); |
289 | } |
290 | |
291 | InstClone->setName(Name + Inst->getName()); |
292 | InstClone->insertBefore(InsertPos: IP); |
293 | return SE.getSCEV(V: InstClone); |
294 | } |
295 | |
296 | const SCEV *visitUnknown(const SCEVUnknown *E) { |
297 | |
298 | // If a value mapping was given try if the underlying value is remapped. |
299 | Value *NewVal = VMap ? VMap->lookup(Val: E->getValue()) : nullptr; |
300 | if (NewVal) { |
301 | auto *NewE = SE.getSCEV(V: NewVal); |
302 | |
303 | // While the mapped value might be different the SCEV representation might |
304 | // not be. To this end we will check before we go into recursion here. |
305 | if (E != NewE) |
306 | return visit(E: NewE); |
307 | } |
308 | |
309 | Instruction *Inst = dyn_cast<Instruction>(Val: E->getValue()); |
310 | Instruction *IP; |
311 | if (Inst && !R.contains(Inst)) |
312 | IP = Inst; |
313 | else if (Inst && RTCBB->getParent() == Inst->getFunction()) |
314 | IP = RTCBB->getTerminator(); |
315 | else |
316 | IP = RTCBB->getParent()->getEntryBlock().getTerminator(); |
317 | |
318 | if (!Inst || (Inst->getOpcode() != Instruction::SRem && |
319 | Inst->getOpcode() != Instruction::SDiv)) |
320 | return visitGenericInst(E, Inst, IP); |
321 | |
322 | const SCEV *LHSScev = SE.getSCEV(V: Inst->getOperand(i: 0)); |
323 | const SCEV *RHSScev = SE.getSCEV(V: Inst->getOperand(i: 1)); |
324 | |
325 | if (!SE.isKnownNonZero(S: RHSScev)) |
326 | RHSScev = SE.getUMaxExpr(LHS: RHSScev, RHS: SE.getConstant(Ty: E->getType(), V: 1)); |
327 | |
328 | Value *LHS = expandCodeFor(E: LHSScev, Ty: E->getType(), I: IP); |
329 | Value *RHS = expandCodeFor(E: RHSScev, Ty: E->getType(), I: IP); |
330 | |
331 | Inst = |
332 | BinaryOperator::Create(Op: (Instruction::BinaryOps)Inst->getOpcode(), S1: LHS, |
333 | S2: RHS, Name: Inst->getName() + Name, InsertBefore: IP->getIterator()); |
334 | return SE.getSCEV(V: Inst); |
335 | } |
336 | |
337 | /// The following functions will just traverse the SCEV and rebuild it with |
338 | /// the new operands returned by the traversal. |
339 | /// |
340 | ///{ |
341 | const SCEV *visitConstant(const SCEVConstant *E) { return E; } |
342 | const SCEV *visitVScale(const SCEVVScale *E) { return E; } |
343 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { |
344 | return SE.getPtrToIntExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
345 | } |
346 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { |
347 | return SE.getTruncateExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
348 | } |
349 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { |
350 | return SE.getZeroExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
351 | } |
352 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { |
353 | return SE.getSignExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
354 | } |
355 | const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { |
356 | auto *RHSScev = visit(E: E->getRHS()); |
357 | if (!SE.isKnownNonZero(S: RHSScev)) |
358 | RHSScev = SE.getUMaxExpr(LHS: RHSScev, RHS: SE.getConstant(Ty: E->getType(), V: 1)); |
359 | return SE.getUDivExpr(LHS: visit(E: E->getLHS()), RHS: RHSScev); |
360 | } |
361 | const SCEV *visitAddExpr(const SCEVAddExpr *E) { |
362 | SmallVector<const SCEV *, 4> NewOps; |
363 | for (const SCEV *Op : E->operands()) |
364 | NewOps.push_back(Elt: visit(E: Op)); |
365 | return SE.getAddExpr(Ops&: NewOps); |
366 | } |
367 | const SCEV *visitMulExpr(const SCEVMulExpr *E) { |
368 | SmallVector<const SCEV *, 4> NewOps; |
369 | for (const SCEV *Op : E->operands()) |
370 | NewOps.push_back(Elt: visit(E: Op)); |
371 | return SE.getMulExpr(Ops&: NewOps); |
372 | } |
373 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { |
374 | SmallVector<const SCEV *, 4> NewOps; |
375 | for (const SCEV *Op : E->operands()) |
376 | NewOps.push_back(Elt: visit(E: Op)); |
377 | return SE.getUMaxExpr(Operands&: NewOps); |
378 | } |
379 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { |
380 | SmallVector<const SCEV *, 4> NewOps; |
381 | for (const SCEV *Op : E->operands()) |
382 | NewOps.push_back(Elt: visit(E: Op)); |
383 | return SE.getSMaxExpr(Operands&: NewOps); |
384 | } |
385 | const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { |
386 | SmallVector<const SCEV *, 4> NewOps; |
387 | for (const SCEV *Op : E->operands()) |
388 | NewOps.push_back(Elt: visit(E: Op)); |
389 | return SE.getUMinExpr(Operands&: NewOps); |
390 | } |
391 | const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { |
392 | SmallVector<const SCEV *, 4> NewOps; |
393 | for (const SCEV *Op : E->operands()) |
394 | NewOps.push_back(Elt: visit(E: Op)); |
395 | return SE.getSMinExpr(Operands&: NewOps); |
396 | } |
397 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) { |
398 | SmallVector<const SCEV *, 4> NewOps; |
399 | for (const SCEV *Op : E->operands()) |
400 | NewOps.push_back(Elt: visit(E: Op)); |
401 | return SE.getUMinExpr(Operands&: NewOps, /*Sequential=*/true); |
402 | } |
403 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { |
404 | SmallVector<const SCEV *, 4> NewOps; |
405 | for (const SCEV *Op : E->operands()) |
406 | NewOps.push_back(Elt: visit(E: Op)); |
407 | return SE.getAddRecExpr(Operands&: NewOps, L: E->getLoop(), Flags: E->getNoWrapFlags()); |
408 | } |
409 | ///} |
410 | }; |
411 | |
412 | Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL, |
413 | const char *Name, const SCEV *E, Type *Ty, |
414 | Instruction *IP, ValueMapT *VMap, |
415 | BasicBlock *RTCBB) { |
416 | ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB); |
417 | return Expander.expandCodeFor(E, Ty, I: IP); |
418 | } |
419 | |
420 | Value *polly::getConditionFromTerminator(Instruction *TI) { |
421 | if (BranchInst *BR = dyn_cast<BranchInst>(Val: TI)) { |
422 | if (BR->isUnconditional()) |
423 | return ConstantInt::getTrue(Ty: Type::getInt1Ty(C&: TI->getContext())); |
424 | |
425 | return BR->getCondition(); |
426 | } |
427 | |
428 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) |
429 | return SI->getCondition(); |
430 | |
431 | return nullptr; |
432 | } |
433 | |
434 | Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { |
435 | // Start with the smallest loop containing the entry and expand that |
436 | // loop until it contains all blocks in the region. If there is a loop |
437 | // containing all blocks in the region check if it is itself contained |
438 | // and if so take the parent loop as it will be the smallest containing |
439 | // the region but not contained by it. |
440 | Loop *L = LI.getLoopFor(BB: S.getEntry()); |
441 | while (L) { |
442 | bool AllContained = true; |
443 | for (auto *BB : S.blocks()) |
444 | AllContained &= L->contains(BB); |
445 | if (AllContained) |
446 | break; |
447 | L = L->getParentLoop(); |
448 | } |
449 | |
450 | return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; |
451 | } |
452 | |
453 | unsigned polly::getNumBlocksInLoop(Loop *L) { |
454 | unsigned NumBlocks = L->getNumBlocks(); |
455 | SmallVector<BasicBlock *, 4> ExitBlocks; |
456 | L->getExitBlocks(ExitBlocks); |
457 | |
458 | for (auto ExitBlock : ExitBlocks) { |
459 | if (isa<UnreachableInst>(Val: ExitBlock->getTerminator())) |
460 | NumBlocks++; |
461 | } |
462 | return NumBlocks; |
463 | } |
464 | |
465 | unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { |
466 | if (!RN->isSubRegion()) |
467 | return 1; |
468 | |
469 | Region *R = RN->getNodeAs<Region>(); |
470 | return std::distance(first: R->block_begin(), last: R->block_end()); |
471 | } |
472 | |
473 | Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { |
474 | if (!RN->isSubRegion()) { |
475 | BasicBlock *BB = RN->getNodeAs<BasicBlock>(); |
476 | Loop *L = LI.getLoopFor(BB); |
477 | |
478 | // Unreachable statements are not considered to belong to a LLVM loop, as |
479 | // they are not part of an actual loop in the control flow graph. |
480 | // Nevertheless, we handle certain unreachable statements that are common |
481 | // when modeling run-time bounds checks as being part of the loop to be |
482 | // able to model them and to later eliminate the run-time bounds checks. |
483 | // |
484 | // Specifically, for basic blocks that terminate in an unreachable and |
485 | // where the immediate predecessor is part of a loop, we assume these |
486 | // basic blocks belong to the loop the predecessor belongs to. This |
487 | // allows us to model the following code. |
488 | // |
489 | // for (i = 0; i < N; i++) { |
490 | // if (i > 1024) |
491 | // abort(); <- this abort might be translated to an |
492 | // unreachable |
493 | // |
494 | // A[i] = ... |
495 | // } |
496 | if (!L && isa<UnreachableInst>(Val: BB->getTerminator()) && BB->getPrevNode()) |
497 | L = LI.getLoopFor(BB: BB->getPrevNode()); |
498 | return L; |
499 | } |
500 | |
501 | Region *NonAffineSubRegion = RN->getNodeAs<Region>(); |
502 | Loop *L = LI.getLoopFor(BB: NonAffineSubRegion->getEntry()); |
503 | while (L && NonAffineSubRegion->contains(L)) |
504 | L = L->getParentLoop(); |
505 | return L; |
506 | } |
507 | |
508 | static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, |
509 | ScalarEvolution &SE) { |
510 | for (const Use &Val : llvm::drop_begin(RangeOrContainer: Gep->operands(), N: 1)) { |
511 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Val, L); |
512 | Loop *OuterLoop = R.outermostLoopInRegion(L); |
513 | if (!SE.isLoopInvariant(S: PtrSCEV, L: OuterLoop)) |
514 | return true; |
515 | } |
516 | return false; |
517 | } |
518 | |
519 | bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, |
520 | ScalarEvolution &SE, const DominatorTree &DT, |
521 | const InvariantLoadsSetTy &KnownInvariantLoads) { |
522 | Loop *L = LI.getLoopFor(BB: LInst->getParent()); |
523 | auto *Ptr = LInst->getPointerOperand(); |
524 | |
525 | // A LoadInst is hoistable if the address it is loading from is also |
526 | // invariant; in this case: another invariant load (whether that address |
527 | // is also not written to has to be checked separately) |
528 | // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst |
529 | // pattern generated by the Chapel frontend, but generally this applies |
530 | // for any chain of instruction that does not also depend on any |
531 | // induction variable |
532 | if (auto *GepInst = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
533 | if (!hasVariantIndex(Gep: GepInst, L, R, SE)) { |
534 | if (auto *DecidingLoad = |
535 | dyn_cast<LoadInst>(Val: GepInst->getPointerOperand())) { |
536 | if (KnownInvariantLoads.count(key: DecidingLoad)) |
537 | return true; |
538 | } |
539 | } |
540 | } |
541 | |
542 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Ptr, L); |
543 | while (L && R.contains(L)) { |
544 | if (!SE.isLoopInvariant(S: PtrSCEV, L)) |
545 | return false; |
546 | L = L->getParentLoop(); |
547 | } |
548 | |
549 | for (auto *User : Ptr->users()) { |
550 | auto *UserI = dyn_cast<Instruction>(Val: User); |
551 | if (!UserI || !R.contains(Inst: UserI)) |
552 | continue; |
553 | if (!UserI->mayWriteToMemory()) |
554 | continue; |
555 | |
556 | auto &BB = *UserI->getParent(); |
557 | if (DT.dominates(A: &BB, B: LInst->getParent())) |
558 | return false; |
559 | |
560 | bool DominatesAllPredecessors = true; |
561 | if (R.isTopLevelRegion()) { |
562 | for (BasicBlock &I : *R.getEntry()->getParent()) |
563 | if (isa<ReturnInst>(Val: I.getTerminator()) && !DT.dominates(A: &BB, B: &I)) |
564 | DominatesAllPredecessors = false; |
565 | } else { |
566 | for (auto Pred : predecessors(BB: R.getExit())) |
567 | if (R.contains(BB: Pred) && !DT.dominates(A: &BB, B: Pred)) |
568 | DominatesAllPredecessors = false; |
569 | } |
570 | |
571 | if (!DominatesAllPredecessors) |
572 | continue; |
573 | |
574 | return false; |
575 | } |
576 | |
577 | return true; |
578 | } |
579 | |
580 | bool polly::isIgnoredIntrinsic(const Value *V) { |
581 | if (auto *IT = dyn_cast<IntrinsicInst>(Val: V)) { |
582 | switch (IT->getIntrinsicID()) { |
583 | // Lifetime markers are supported/ignored. |
584 | case llvm::Intrinsic::lifetime_start: |
585 | case llvm::Intrinsic::lifetime_end: |
586 | // Invariant markers are supported/ignored. |
587 | case llvm::Intrinsic::invariant_start: |
588 | case llvm::Intrinsic::invariant_end: |
589 | // Some misc annotations are supported/ignored. |
590 | case llvm::Intrinsic::var_annotation: |
591 | case llvm::Intrinsic::ptr_annotation: |
592 | case llvm::Intrinsic::annotation: |
593 | case llvm::Intrinsic::donothing: |
594 | case llvm::Intrinsic::assume: |
595 | // Some debug info intrinsics are supported/ignored. |
596 | case llvm::Intrinsic::dbg_value: |
597 | case llvm::Intrinsic::dbg_declare: |
598 | return true; |
599 | default: |
600 | break; |
601 | } |
602 | } |
603 | return false; |
604 | } |
605 | |
606 | bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, |
607 | Loop *Scope) { |
608 | if (!V || !SE->isSCEVable(Ty: V->getType())) |
609 | return false; |
610 | |
611 | const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); |
612 | if (const SCEV *Scev = SE->getSCEVAtScope(V: const_cast<Value *>(V), L: Scope)) |
613 | if (!isa<SCEVCouldNotCompute>(Val: Scev)) |
614 | if (!hasScalarDepsInsideRegion(Expr: Scev, R: &S.getRegion(), Scope, AllowLoops: false, ILS)) |
615 | return true; |
616 | |
617 | return false; |
618 | } |
619 | |
620 | llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { |
621 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
622 | if (!UI) |
623 | return nullptr; |
624 | |
625 | if (PHINode *PHI = dyn_cast<PHINode>(Val: UI)) |
626 | return PHI->getIncomingBlock(U); |
627 | |
628 | return UI->getParent(); |
629 | } |
630 | |
631 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, |
632 | const BoxedLoopsSetTy &BoxedLoops) { |
633 | while (BoxedLoops.count(key: L)) |
634 | L = L->getParentLoop(); |
635 | return L; |
636 | } |
637 | |
638 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, |
639 | llvm::LoopInfo &LI, |
640 | const BoxedLoopsSetTy &BoxedLoops) { |
641 | Loop *L = LI.getLoopFor(BB); |
642 | return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); |
643 | } |
644 | |
645 | bool polly::isDebugCall(Instruction *Inst) { |
646 | auto *CI = dyn_cast<CallInst>(Val: Inst); |
647 | if (!CI) |
648 | return false; |
649 | |
650 | Function *CF = CI->getCalledFunction(); |
651 | if (!CF) |
652 | return false; |
653 | |
654 | return std::find(first: DebugFunctions.begin(), last: DebugFunctions.end(), |
655 | val: CF->getName()) != DebugFunctions.end(); |
656 | } |
657 | |
658 | static bool hasDebugCall(BasicBlock *BB) { |
659 | for (Instruction &Inst : *BB) { |
660 | if (isDebugCall(Inst: &Inst)) |
661 | return true; |
662 | } |
663 | return false; |
664 | } |
665 | |
666 | bool polly::hasDebugCall(ScopStmt *Stmt) { |
667 | // Quick skip if no debug functions have been defined. |
668 | if (DebugFunctions.empty()) |
669 | return false; |
670 | |
671 | if (!Stmt) |
672 | return false; |
673 | |
674 | for (Instruction *Inst : Stmt->getInstructions()) |
675 | if (isDebugCall(Inst)) |
676 | return true; |
677 | |
678 | if (Stmt->isRegionStmt()) { |
679 | for (BasicBlock *RBB : Stmt->getRegion()->blocks()) |
680 | if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(BB: RBB)) |
681 | return true; |
682 | } |
683 | |
684 | return false; |
685 | } |
686 | |
687 | /// Find a property in a LoopID. |
688 | static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { |
689 | if (!LoopMD) |
690 | return nullptr; |
691 | for (const MDOperand &X : drop_begin(RangeOrContainer: LoopMD->operands(), N: 1)) { |
692 | auto *OpNode = dyn_cast<MDNode>(Val: X.get()); |
693 | if (!OpNode) |
694 | continue; |
695 | |
696 | auto *OpName = dyn_cast<MDString>(Val: OpNode->getOperand(I: 0)); |
697 | if (!OpName) |
698 | continue; |
699 | if (OpName->getString() == Name) |
700 | return OpNode; |
701 | } |
702 | return nullptr; |
703 | } |
704 | |
705 | static std::optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID, |
706 | StringRef Name) { |
707 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
708 | if (!MD) |
709 | return std::nullopt; |
710 | switch (MD->getNumOperands()) { |
711 | case 1: |
712 | return nullptr; |
713 | case 2: |
714 | return &MD->getOperand(I: 1); |
715 | default: |
716 | llvm_unreachable("loop metadata has 0 or 1 operand" ); |
717 | } |
718 | } |
719 | |
720 | std::optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD, |
721 | StringRef Name) { |
722 | MDNode *MD = findNamedMetadataNode(LoopMD, Name); |
723 | if (!MD) |
724 | return std::nullopt; |
725 | switch (MD->getNumOperands()) { |
726 | case 1: |
727 | return nullptr; |
728 | case 2: |
729 | return MD->getOperand(I: 1).get(); |
730 | default: |
731 | llvm_unreachable("loop metadata must have 0 or 1 operands" ); |
732 | } |
733 | } |
734 | |
735 | static std::optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID, |
736 | StringRef Name) { |
737 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
738 | if (!MD) |
739 | return std::nullopt; |
740 | switch (MD->getNumOperands()) { |
741 | case 1: |
742 | return true; |
743 | case 2: |
744 | if (ConstantInt *IntMD = |
745 | mdconst::extract_or_null<ConstantInt>(MD: MD->getOperand(I: 1).get())) |
746 | return IntMD->getZExtValue(); |
747 | return true; |
748 | } |
749 | llvm_unreachable("unexpected number of options" ); |
750 | } |
751 | |
752 | bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) { |
753 | return getOptionalBoolLoopAttribute(LoopID, Name).value_or(u: false); |
754 | } |
755 | |
756 | std::optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID, |
757 | StringRef Name) { |
758 | const MDOperand *AttrMD = |
759 | findNamedMetadataArg(LoopID, Name).value_or(u: nullptr); |
760 | if (!AttrMD) |
761 | return std::nullopt; |
762 | |
763 | ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(MD: AttrMD->get()); |
764 | if (!IntMD) |
765 | return std::nullopt; |
766 | |
767 | return IntMD->getSExtValue(); |
768 | } |
769 | |
770 | bool polly::hasDisableAllTransformsHint(Loop *L) { |
771 | return llvm::hasDisableAllTransformsHint(L); |
772 | } |
773 | |
774 | bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) { |
775 | return getBooleanLoopAttribute(LoopID, Name: "llvm.loop.disable_nonforced" ); |
776 | } |
777 | |
778 | isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { |
779 | assert(Attr && "Must be a valid BandAttr" ); |
780 | |
781 | // The name "Loop" signals that this id contains a pointer to a BandAttr. |
782 | // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in |
783 | // markers, but it's user pointer is an llvm::Value. |
784 | isl::id Result = isl::id::alloc(ctx: Ctx, name: "Loop with Metadata" , user: Attr); |
785 | Result = isl::manage(ptr: isl_id_set_free_user(id: Result.release(), free_user: [](void *Ptr) { |
786 | BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr); |
787 | delete Attr; |
788 | })); |
789 | return Result; |
790 | } |
791 | |
792 | isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { |
793 | if (!L) |
794 | return {}; |
795 | |
796 | // A loop without metadata does not need to be annotated. |
797 | MDNode *LoopID = L->getLoopID(); |
798 | if (!LoopID) |
799 | return {}; |
800 | |
801 | BandAttr *Attr = new BandAttr(); |
802 | Attr->OriginalLoop = L; |
803 | Attr->Metadata = L->getLoopID(); |
804 | |
805 | return getIslLoopAttr(Ctx, Attr); |
806 | } |
807 | |
808 | bool polly::isLoopAttr(const isl::id &Id) { |
809 | if (Id.is_null()) |
810 | return false; |
811 | |
812 | return Id.get_name() == "Loop with Metadata" ; |
813 | } |
814 | |
815 | BandAttr *polly::getLoopAttr(const isl::id &Id) { |
816 | if (!isLoopAttr(Id)) |
817 | return nullptr; |
818 | |
819 | return reinterpret_cast<BandAttr *>(Id.get_user()); |
820 | } |
821 | |