| 1 | //===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Small functions that help with Scop and LLVM-IR. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "polly/Support/ScopHelper.h" |
| 14 | #include "polly/Options.h" |
| 15 | #include "polly/ScopInfo.h" |
| 16 | #include "polly/Support/SCEVValidator.h" |
| 17 | #include "llvm/Analysis/LoopInfo.h" |
| 18 | #include "llvm/Analysis/RegionInfo.h" |
| 19 | #include "llvm/Analysis/ScalarEvolution.h" |
| 20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 21 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 22 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 23 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 24 | #include <optional> |
| 25 | |
| 26 | using namespace llvm; |
| 27 | using namespace polly; |
| 28 | |
| 29 | #define DEBUG_TYPE "polly-scop-helper" |
| 30 | |
| 31 | static cl::list<std::string> DebugFunctions( |
| 32 | "polly-debug-func" , |
| 33 | cl::desc("Allow calls to the specified functions in SCoPs even if their " |
| 34 | "side-effects are unknown. This can be used to do debug output in " |
| 35 | "Polly-transformed code." ), |
| 36 | cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory)); |
| 37 | |
| 38 | // Ensures that there is just one predecessor to the entry node from outside the |
| 39 | // region. |
| 40 | // The identity of the region entry node is preserved. |
| 41 | static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, |
| 42 | RegionInfo *RI) { |
| 43 | BasicBlock *EnteringBB = R->getEnteringBlock(); |
| 44 | BasicBlock *Entry = R->getEntry(); |
| 45 | |
| 46 | // Before (one of): |
| 47 | // |
| 48 | // \ / // |
| 49 | // EnteringBB // |
| 50 | // | \------> // |
| 51 | // \ / | // |
| 52 | // Entry <--\ Entry <--\ // |
| 53 | // / \ / / \ / // |
| 54 | // .... .... // |
| 55 | |
| 56 | // Create single entry edge if the region has multiple entry edges. |
| 57 | if (!EnteringBB) { |
| 58 | SmallVector<BasicBlock *, 4> Preds; |
| 59 | for (BasicBlock *P : predecessors(BB: Entry)) |
| 60 | if (!R->contains(BB: P)) |
| 61 | Preds.push_back(Elt: P); |
| 62 | |
| 63 | BasicBlock *NewEntering = |
| 64 | SplitBlockPredecessors(BB: Entry, Preds, Suffix: ".region_entering" , DT, LI); |
| 65 | |
| 66 | if (RI) { |
| 67 | // The exit block of predecessing regions must be changed to NewEntering |
| 68 | for (BasicBlock *ExitPred : predecessors(BB: NewEntering)) { |
| 69 | Region *RegionOfPred = RI->getRegionFor(BB: ExitPred); |
| 70 | if (RegionOfPred->getExit() != Entry) |
| 71 | continue; |
| 72 | |
| 73 | while (!RegionOfPred->isTopLevelRegion() && |
| 74 | RegionOfPred->getExit() == Entry) { |
| 75 | RegionOfPred->replaceExit(BB: NewEntering); |
| 76 | RegionOfPred = RegionOfPred->getParent(); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | // Make all ancestors use EnteringBB as entry; there might be edges to it |
| 81 | Region *AncestorR = R->getParent(); |
| 82 | RI->setRegionFor(BB: NewEntering, R: AncestorR); |
| 83 | while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) { |
| 84 | AncestorR->replaceEntry(BB: NewEntering); |
| 85 | AncestorR = AncestorR->getParent(); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | EnteringBB = NewEntering; |
| 90 | } |
| 91 | assert(R->getEnteringBlock() == EnteringBB); |
| 92 | |
| 93 | // After: |
| 94 | // |
| 95 | // \ / // |
| 96 | // EnteringBB // |
| 97 | // | // |
| 98 | // | // |
| 99 | // Entry <--\ // |
| 100 | // / \ / // |
| 101 | // .... // |
| 102 | } |
| 103 | |
| 104 | // Ensure that the region has a single block that branches to the exit node. |
| 105 | static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, |
| 106 | RegionInfo *RI) { |
| 107 | BasicBlock *ExitBB = R->getExit(); |
| 108 | BasicBlock *ExitingBB = R->getExitingBlock(); |
| 109 | |
| 110 | // Before: |
| 111 | // |
| 112 | // (Region) ______/ // |
| 113 | // \ | / // |
| 114 | // ExitBB // |
| 115 | // / \ // |
| 116 | |
| 117 | if (!ExitingBB) { |
| 118 | SmallVector<BasicBlock *, 4> Preds; |
| 119 | for (BasicBlock *P : predecessors(BB: ExitBB)) |
| 120 | if (R->contains(BB: P)) |
| 121 | Preds.push_back(Elt: P); |
| 122 | |
| 123 | // Preds[0] Preds[1] otherBB // |
| 124 | // \ | ________/ // |
| 125 | // \ | / // |
| 126 | // BB // |
| 127 | ExitingBB = |
| 128 | SplitBlockPredecessors(BB: ExitBB, Preds, Suffix: ".region_exiting" , DT, LI); |
| 129 | // Preds[0] Preds[1] otherBB // |
| 130 | // \ / / // |
| 131 | // BB.region_exiting / // |
| 132 | // \ / // |
| 133 | // BB // |
| 134 | |
| 135 | if (RI) |
| 136 | RI->setRegionFor(BB: ExitingBB, R); |
| 137 | |
| 138 | // Change the exit of nested regions, but not the region itself, |
| 139 | R->replaceExitRecursive(NewExit: ExitingBB); |
| 140 | R->replaceExit(BB: ExitBB); |
| 141 | } |
| 142 | assert(ExitingBB == R->getExitingBlock()); |
| 143 | |
| 144 | // After: |
| 145 | // |
| 146 | // \ / // |
| 147 | // ExitingBB _____/ // |
| 148 | // \ / // |
| 149 | // ExitBB // |
| 150 | // / \ // |
| 151 | } |
| 152 | |
| 153 | void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI, |
| 154 | RegionInfo *RI) { |
| 155 | assert(R && !R->isTopLevelRegion()); |
| 156 | assert(!RI || RI == R->getRegionInfo()); |
| 157 | assert((!RI || DT) && |
| 158 | "RegionInfo requires DominatorTree to be updated as well" ); |
| 159 | |
| 160 | simplifyRegionEntry(R, DT, LI, RI); |
| 161 | simplifyRegionExit(R, DT, LI, RI); |
| 162 | assert(R->isSimple()); |
| 163 | } |
| 164 | |
| 165 | // Split the block into two successive blocks. |
| 166 | // |
| 167 | // Like llvm::SplitBlock, but also preserves RegionInfo |
| 168 | static BasicBlock *splitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, |
| 169 | DominatorTree *DT, llvm::LoopInfo *LI, |
| 170 | RegionInfo *RI) { |
| 171 | assert(Old); |
| 172 | |
| 173 | // Before: |
| 174 | // |
| 175 | // \ / // |
| 176 | // Old // |
| 177 | // / \ // |
| 178 | |
| 179 | BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI); |
| 180 | |
| 181 | if (RI) { |
| 182 | Region *R = RI->getRegionFor(BB: Old); |
| 183 | RI->setRegionFor(BB: NewBlock, R); |
| 184 | } |
| 185 | |
| 186 | // After: |
| 187 | // |
| 188 | // \ / // |
| 189 | // Old // |
| 190 | // | // |
| 191 | // NewBlock // |
| 192 | // / \ // |
| 193 | |
| 194 | return NewBlock; |
| 195 | } |
| 196 | |
| 197 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT, |
| 198 | LoopInfo *LI, RegionInfo *RI) { |
| 199 | // Find first non-alloca instruction. Every basic block has a non-alloca |
| 200 | // instruction, as every well formed basic block has a terminator. |
| 201 | BasicBlock::iterator I = EntryBlock->begin(); |
| 202 | while (isa<AllocaInst>(Val: I)) |
| 203 | ++I; |
| 204 | |
| 205 | // splitBlock updates DT, LI and RI. |
| 206 | splitBlock(Old: EntryBlock, SplitPt: I, DT, LI, RI); |
| 207 | } |
| 208 | |
| 209 | void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) { |
| 210 | auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| 211 | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| 212 | auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
| 213 | auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
| 214 | RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>(); |
| 215 | RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr; |
| 216 | |
| 217 | // splitBlock updates DT, LI and RI. |
| 218 | polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI); |
| 219 | } |
| 220 | |
| 221 | void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions, |
| 222 | polly::AssumptionKind Kind, isl::set Set, |
| 223 | DebugLoc Loc, polly::AssumptionSign Sign, |
| 224 | BasicBlock *BB, bool RTC) { |
| 225 | assert((Set.is_params() || BB) && |
| 226 | "Assumptions without a basic block must be parameter sets" ); |
| 227 | if (RecordedAssumptions) |
| 228 | RecordedAssumptions->push_back(Elt: {.Kind: Kind, .Sign: Sign, .Set: Set, .Loc: Loc, .BB: BB, .RequiresRTC: RTC}); |
| 229 | } |
| 230 | |
| 231 | /// ScopExpander generates IR the the value of a SCEV that represents a value |
| 232 | /// from a SCoP. |
| 233 | /// |
| 234 | /// IMPORTANT: There are two ScalarEvolutions at play here. First, the SE that |
| 235 | /// was used to analyze the original SCoP (not actually referenced anywhere |
| 236 | /// here, but passed as argument to make the distinction clear). Second, GenSE |
| 237 | /// which is the SE for the function that the code is emitted into. SE and GenSE |
| 238 | /// may be different when the generated code is to be emitted into an outlined |
| 239 | /// function, e.g. for a parallel loop. That is, each SCEV is to be used only by |
| 240 | /// the SE that "owns" it and ScopExpander handles the translation between them. |
| 241 | /// The SCEVVisitor methods are only to be called on SCEVs of the original SE. |
| 242 | /// Their job is to create a new SCEV for GenSE. The nested SCEVExpander is to |
| 243 | /// be used only with SCEVs belonging to GenSE. Currently SCEVs do not store a |
| 244 | /// reference to the ScalarEvolution they belong to, so a mixup does not |
| 245 | /// immediately cause a crash but certainly is a violation of its interface. |
| 246 | /// |
| 247 | /// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem |
| 248 | /// instruction but just use it, if it is referenced as a SCEVUnknown. We want |
| 249 | /// however to generate new code if the instruction is in the analyzed region |
| 250 | /// and we generate code outside/in front of that region. Hence, we generate the |
| 251 | /// code for the SDiv/SRem operands in front of the analyzed region and then |
| 252 | /// create a new SDiv/SRem operation there too. |
| 253 | struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> { |
| 254 | friend struct SCEVVisitor<ScopExpander, const SCEV *>; |
| 255 | |
| 256 | explicit ScopExpander(const Region &R, ScalarEvolution &SE, Function *GenFn, |
| 257 | ScalarEvolution &GenSE, const DataLayout &DL, |
| 258 | const char *Name, ValueMapT *VMap, |
| 259 | LoopToScevMapT *LoopMap, BasicBlock *RTCBB) |
| 260 | : Expander(GenSE, DL, Name, /*PreserveLCSSA=*/false), Name(Name), R(R), |
| 261 | VMap(VMap), LoopMap(LoopMap), RTCBB(RTCBB), GenSE(GenSE), GenFn(GenFn) { |
| 262 | } |
| 263 | |
| 264 | Value *expandCodeFor(const SCEV *E, Type *Ty, BasicBlock::iterator IP) { |
| 265 | assert(isInGenRegion(&*IP) && |
| 266 | "ScopExpander assumes to be applied to generated code region" ); |
| 267 | const SCEV *GenE = visit(E); |
| 268 | return Expander.expandCodeFor(SH: GenE, Ty, I: IP); |
| 269 | } |
| 270 | |
| 271 | const SCEV *visit(const SCEV *E) { |
| 272 | // Cache the expansion results for intermediate SCEV expressions. A SCEV |
| 273 | // expression can refer to an operand multiple times (e.g. "x*x), so |
| 274 | // a naive visitor takes exponential time. |
| 275 | if (SCEVCache.count(Val: E)) |
| 276 | return SCEVCache[E]; |
| 277 | const SCEV *Result = SCEVVisitor::visit(S: E); |
| 278 | SCEVCache[E] = Result; |
| 279 | return Result; |
| 280 | } |
| 281 | |
| 282 | private: |
| 283 | SCEVExpander Expander; |
| 284 | const char *Name; |
| 285 | const Region &R; |
| 286 | ValueMapT *VMap; |
| 287 | LoopToScevMapT *LoopMap; |
| 288 | BasicBlock *RTCBB; |
| 289 | DenseMap<const SCEV *, const SCEV *> SCEVCache; |
| 290 | |
| 291 | ScalarEvolution &GenSE; |
| 292 | Function *GenFn; |
| 293 | |
| 294 | /// Is the instruction part of the original SCoP (in contrast to be located in |
| 295 | /// the code-generated region)? |
| 296 | bool isInOrigRegion(Instruction *Inst) { |
| 297 | Function *Fn = R.getEntry()->getParent(); |
| 298 | bool isInOrigRegion = Inst->getFunction() == Fn && R.contains(Inst); |
| 299 | assert((isInOrigRegion || GenFn == Inst->getFunction()) && |
| 300 | "Instruction expected to be either in the SCoP or the translated " |
| 301 | "region" ); |
| 302 | return isInOrigRegion; |
| 303 | } |
| 304 | |
| 305 | bool isInGenRegion(Instruction *Inst) { return !isInOrigRegion(Inst); } |
| 306 | |
| 307 | const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst, |
| 308 | BasicBlock::iterator IP) { |
| 309 | if (!Inst || isInGenRegion(Inst)) |
| 310 | return E; |
| 311 | |
| 312 | assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() && |
| 313 | !isa<PHINode>(Inst)); |
| 314 | |
| 315 | auto *InstClone = Inst->clone(); |
| 316 | for (auto &Op : Inst->operands()) { |
| 317 | assert(GenSE.isSCEVable(Op->getType())); |
| 318 | const SCEV *OpSCEV = GenSE.getSCEV(V: Op); |
| 319 | auto *OpClone = expandCodeFor(E: OpSCEV, Ty: Op->getType(), IP); |
| 320 | InstClone->replaceUsesOfWith(From: Op, To: OpClone); |
| 321 | } |
| 322 | |
| 323 | InstClone->setName(Name + Inst->getName()); |
| 324 | InstClone->insertBefore(InsertPos: IP); |
| 325 | return GenSE.getSCEV(V: InstClone); |
| 326 | } |
| 327 | |
| 328 | const SCEV *visitUnknown(const SCEVUnknown *E) { |
| 329 | |
| 330 | // If a value mapping was given try if the underlying value is remapped. |
| 331 | Value *NewVal = VMap ? VMap->lookup(Val: E->getValue()) : nullptr; |
| 332 | if (NewVal) { |
| 333 | const SCEV *NewE = GenSE.getSCEV(V: NewVal); |
| 334 | |
| 335 | // While the mapped value might be different the SCEV representation might |
| 336 | // not be. To this end we will check before we go into recursion here. |
| 337 | // FIXME: SCEVVisitor must only visit SCEVs that belong to the original |
| 338 | // SE. This calls it on SCEVs that belong GenSE. |
| 339 | if (E != NewE) |
| 340 | return visit(E: NewE); |
| 341 | } |
| 342 | |
| 343 | Instruction *Inst = dyn_cast<Instruction>(Val: E->getValue()); |
| 344 | BasicBlock::iterator IP; |
| 345 | if (Inst && isInGenRegion(Inst)) |
| 346 | IP = Inst->getIterator(); |
| 347 | else if (R.getEntry()->getParent() != GenFn) { |
| 348 | // RTCBB is in the original function, but we are generating for a |
| 349 | // subfunction so we cannot emit to RTCBB. Usually, we land here only |
| 350 | // because E->getValue() is not an instruction but a global or constant |
| 351 | // which do not need to emit anything. |
| 352 | IP = GenFn->getEntryBlock().getTerminator()->getIterator(); |
| 353 | } else if (Inst && RTCBB->getParent() == Inst->getFunction()) |
| 354 | IP = RTCBB->getTerminator()->getIterator(); |
| 355 | else |
| 356 | IP = RTCBB->getParent()->getEntryBlock().getTerminator()->getIterator(); |
| 357 | |
| 358 | if (!Inst || (Inst->getOpcode() != Instruction::SRem && |
| 359 | Inst->getOpcode() != Instruction::SDiv)) |
| 360 | return visitGenericInst(E, Inst, IP); |
| 361 | |
| 362 | const SCEV *LHSScev = GenSE.getSCEV(V: Inst->getOperand(i: 0)); |
| 363 | const SCEV *RHSScev = GenSE.getSCEV(V: Inst->getOperand(i: 1)); |
| 364 | |
| 365 | if (!GenSE.isKnownNonZero(S: RHSScev)) |
| 366 | RHSScev = GenSE.getUMaxExpr(LHS: RHSScev, RHS: GenSE.getConstant(Ty: E->getType(), V: 1)); |
| 367 | |
| 368 | Value *LHS = expandCodeFor(E: LHSScev, Ty: E->getType(), IP); |
| 369 | Value *RHS = expandCodeFor(E: RHSScev, Ty: E->getType(), IP); |
| 370 | |
| 371 | Inst = BinaryOperator::Create(Op: (Instruction::BinaryOps)Inst->getOpcode(), |
| 372 | S1: LHS, S2: RHS, Name: Inst->getName() + Name, InsertBefore: IP); |
| 373 | return GenSE.getSCEV(V: Inst); |
| 374 | } |
| 375 | |
| 376 | /// The following functions will just traverse the SCEV and rebuild it using |
| 377 | /// GenSE and the new operands returned by the traversal. |
| 378 | /// |
| 379 | ///{ |
| 380 | const SCEV *visitConstant(const SCEVConstant *E) { return E; } |
| 381 | const SCEV *visitVScale(const SCEVVScale *E) { return E; } |
| 382 | const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) { |
| 383 | return GenSE.getPtrToIntExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
| 384 | } |
| 385 | const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) { |
| 386 | return GenSE.getTruncateExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
| 387 | } |
| 388 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) { |
| 389 | return GenSE.getZeroExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
| 390 | } |
| 391 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) { |
| 392 | return GenSE.getSignExtendExpr(Op: visit(E: E->getOperand()), Ty: E->getType()); |
| 393 | } |
| 394 | const SCEV *visitUDivExpr(const SCEVUDivExpr *E) { |
| 395 | auto *RHSScev = visit(E: E->getRHS()); |
| 396 | if (!GenSE.isKnownNonZero(S: RHSScev)) |
| 397 | RHSScev = GenSE.getUMaxExpr(LHS: RHSScev, RHS: GenSE.getConstant(Ty: E->getType(), V: 1)); |
| 398 | return GenSE.getUDivExpr(LHS: visit(E: E->getLHS()), RHS: RHSScev); |
| 399 | } |
| 400 | const SCEV *visitAddExpr(const SCEVAddExpr *E) { |
| 401 | SmallVector<const SCEV *, 4> NewOps; |
| 402 | for (const SCEV *Op : E->operands()) |
| 403 | NewOps.push_back(Elt: visit(E: Op)); |
| 404 | return GenSE.getAddExpr(Ops&: NewOps); |
| 405 | } |
| 406 | const SCEV *visitMulExpr(const SCEVMulExpr *E) { |
| 407 | SmallVector<const SCEV *, 4> NewOps; |
| 408 | for (const SCEV *Op : E->operands()) |
| 409 | NewOps.push_back(Elt: visit(E: Op)); |
| 410 | return GenSE.getMulExpr(Ops&: NewOps); |
| 411 | } |
| 412 | const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) { |
| 413 | SmallVector<const SCEV *, 4> NewOps; |
| 414 | for (const SCEV *Op : E->operands()) |
| 415 | NewOps.push_back(Elt: visit(E: Op)); |
| 416 | return GenSE.getUMaxExpr(Operands&: NewOps); |
| 417 | } |
| 418 | const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) { |
| 419 | SmallVector<const SCEV *, 4> NewOps; |
| 420 | for (const SCEV *Op : E->operands()) |
| 421 | NewOps.push_back(Elt: visit(E: Op)); |
| 422 | return GenSE.getSMaxExpr(Operands&: NewOps); |
| 423 | } |
| 424 | const SCEV *visitUMinExpr(const SCEVUMinExpr *E) { |
| 425 | SmallVector<const SCEV *, 4> NewOps; |
| 426 | for (const SCEV *Op : E->operands()) |
| 427 | NewOps.push_back(Elt: visit(E: Op)); |
| 428 | return GenSE.getUMinExpr(Operands&: NewOps); |
| 429 | } |
| 430 | const SCEV *visitSMinExpr(const SCEVSMinExpr *E) { |
| 431 | SmallVector<const SCEV *, 4> NewOps; |
| 432 | for (const SCEV *Op : E->operands()) |
| 433 | NewOps.push_back(Elt: visit(E: Op)); |
| 434 | return GenSE.getSMinExpr(Operands&: NewOps); |
| 435 | } |
| 436 | const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) { |
| 437 | SmallVector<const SCEV *, 4> NewOps; |
| 438 | for (const SCEV *Op : E->operands()) |
| 439 | NewOps.push_back(Elt: visit(E: Op)); |
| 440 | return GenSE.getUMinExpr(Operands&: NewOps, /*Sequential=*/true); |
| 441 | } |
| 442 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { |
| 443 | SmallVector<const SCEV *, 4> NewOps; |
| 444 | for (const SCEV *Op : E->operands()) |
| 445 | NewOps.push_back(Elt: visit(E: Op)); |
| 446 | |
| 447 | const Loop *L = E->getLoop(); |
| 448 | const SCEV *GenLRepl = LoopMap ? LoopMap->lookup(Val: L) : nullptr; |
| 449 | if (!GenLRepl) |
| 450 | return GenSE.getAddRecExpr(Operands&: NewOps, L, Flags: E->getNoWrapFlags()); |
| 451 | |
| 452 | // evaluateAtIteration replaces the SCEVAddrExpr with a direct calculation. |
| 453 | const SCEV *Evaluated = |
| 454 | SCEVAddRecExpr::evaluateAtIteration(Operands: NewOps, It: GenLRepl, SE&: GenSE); |
| 455 | |
| 456 | // FIXME: This emits a SCEV for GenSE (since GenLRepl will refer to the |
| 457 | // induction variable of a generated loop), so we should not use SCEVVisitor |
| 458 | // with it. However, it still contains references to the SCoP region. |
| 459 | return visit(E: Evaluated); |
| 460 | } |
| 461 | ///} |
| 462 | }; |
| 463 | |
| 464 | Value *polly::expandCodeFor(Scop &S, llvm::ScalarEvolution &SE, |
| 465 | llvm::Function *GenFn, ScalarEvolution &GenSE, |
| 466 | const DataLayout &DL, const char *Name, |
| 467 | const SCEV *E, Type *Ty, BasicBlock::iterator IP, |
| 468 | ValueMapT *VMap, LoopToScevMapT *LoopMap, |
| 469 | BasicBlock *RTCBB) { |
| 470 | ScopExpander Expander(S.getRegion(), SE, GenFn, GenSE, DL, Name, VMap, |
| 471 | LoopMap, RTCBB); |
| 472 | return Expander.expandCodeFor(E, Ty, IP); |
| 473 | } |
| 474 | |
| 475 | Value *polly::getConditionFromTerminator(Instruction *TI) { |
| 476 | if (BranchInst *BR = dyn_cast<BranchInst>(Val: TI)) { |
| 477 | if (BR->isUnconditional()) |
| 478 | return ConstantInt::getTrue(Ty: Type::getInt1Ty(C&: TI->getContext())); |
| 479 | |
| 480 | return BR->getCondition(); |
| 481 | } |
| 482 | |
| 483 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) |
| 484 | return SI->getCondition(); |
| 485 | |
| 486 | return nullptr; |
| 487 | } |
| 488 | |
| 489 | Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) { |
| 490 | // Start with the smallest loop containing the entry and expand that |
| 491 | // loop until it contains all blocks in the region. If there is a loop |
| 492 | // containing all blocks in the region check if it is itself contained |
| 493 | // and if so take the parent loop as it will be the smallest containing |
| 494 | // the region but not contained by it. |
| 495 | Loop *L = LI.getLoopFor(BB: S.getEntry()); |
| 496 | while (L) { |
| 497 | bool AllContained = true; |
| 498 | for (auto *BB : S.blocks()) |
| 499 | AllContained &= L->contains(BB); |
| 500 | if (AllContained) |
| 501 | break; |
| 502 | L = L->getParentLoop(); |
| 503 | } |
| 504 | |
| 505 | return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr; |
| 506 | } |
| 507 | |
| 508 | unsigned polly::getNumBlocksInLoop(Loop *L) { |
| 509 | unsigned NumBlocks = L->getNumBlocks(); |
| 510 | SmallVector<BasicBlock *, 4> ExitBlocks; |
| 511 | L->getExitBlocks(ExitBlocks); |
| 512 | |
| 513 | for (auto ExitBlock : ExitBlocks) { |
| 514 | if (isa<UnreachableInst>(Val: ExitBlock->getTerminator())) |
| 515 | NumBlocks++; |
| 516 | } |
| 517 | return NumBlocks; |
| 518 | } |
| 519 | |
| 520 | unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) { |
| 521 | if (!RN->isSubRegion()) |
| 522 | return 1; |
| 523 | |
| 524 | Region *R = RN->getNodeAs<Region>(); |
| 525 | return std::distance(first: R->block_begin(), last: R->block_end()); |
| 526 | } |
| 527 | |
| 528 | Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) { |
| 529 | if (!RN->isSubRegion()) { |
| 530 | BasicBlock *BB = RN->getNodeAs<BasicBlock>(); |
| 531 | Loop *L = LI.getLoopFor(BB); |
| 532 | |
| 533 | // Unreachable statements are not considered to belong to a LLVM loop, as |
| 534 | // they are not part of an actual loop in the control flow graph. |
| 535 | // Nevertheless, we handle certain unreachable statements that are common |
| 536 | // when modeling run-time bounds checks as being part of the loop to be |
| 537 | // able to model them and to later eliminate the run-time bounds checks. |
| 538 | // |
| 539 | // Specifically, for basic blocks that terminate in an unreachable and |
| 540 | // where the immediate predecessor is part of a loop, we assume these |
| 541 | // basic blocks belong to the loop the predecessor belongs to. This |
| 542 | // allows us to model the following code. |
| 543 | // |
| 544 | // for (i = 0; i < N; i++) { |
| 545 | // if (i > 1024) |
| 546 | // abort(); <- this abort might be translated to an |
| 547 | // unreachable |
| 548 | // |
| 549 | // A[i] = ... |
| 550 | // } |
| 551 | if (!L && isa<UnreachableInst>(Val: BB->getTerminator()) && BB->getPrevNode()) |
| 552 | L = LI.getLoopFor(BB: BB->getPrevNode()); |
| 553 | return L; |
| 554 | } |
| 555 | |
| 556 | Region *NonAffineSubRegion = RN->getNodeAs<Region>(); |
| 557 | Loop *L = LI.getLoopFor(BB: NonAffineSubRegion->getEntry()); |
| 558 | while (L && NonAffineSubRegion->contains(L)) |
| 559 | L = L->getParentLoop(); |
| 560 | return L; |
| 561 | } |
| 562 | |
| 563 | static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, |
| 564 | ScalarEvolution &SE) { |
| 565 | for (const Use &Val : llvm::drop_begin(RangeOrContainer: Gep->operands(), N: 1)) { |
| 566 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Val, L); |
| 567 | Loop *OuterLoop = R.outermostLoopInRegion(L); |
| 568 | if (!SE.isLoopInvariant(S: PtrSCEV, L: OuterLoop)) |
| 569 | return true; |
| 570 | } |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI, |
| 575 | ScalarEvolution &SE, const DominatorTree &DT, |
| 576 | const InvariantLoadsSetTy &KnownInvariantLoads) { |
| 577 | Loop *L = LI.getLoopFor(BB: LInst->getParent()); |
| 578 | auto *Ptr = LInst->getPointerOperand(); |
| 579 | |
| 580 | // A LoadInst is hoistable if the address it is loading from is also |
| 581 | // invariant; in this case: another invariant load (whether that address |
| 582 | // is also not written to has to be checked separately) |
| 583 | // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst |
| 584 | // pattern generated by the Chapel frontend, but generally this applies |
| 585 | // for any chain of instruction that does not also depend on any |
| 586 | // induction variable |
| 587 | if (auto *GepInst = dyn_cast<GetElementPtrInst>(Val: Ptr)) { |
| 588 | if (!hasVariantIndex(Gep: GepInst, L, R, SE)) { |
| 589 | if (auto *DecidingLoad = |
| 590 | dyn_cast<LoadInst>(Val: GepInst->getPointerOperand())) { |
| 591 | if (KnownInvariantLoads.count(key: DecidingLoad)) |
| 592 | return true; |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | const SCEV *PtrSCEV = SE.getSCEVAtScope(V: Ptr, L); |
| 598 | while (L && R.contains(L)) { |
| 599 | if (!SE.isLoopInvariant(S: PtrSCEV, L)) |
| 600 | return false; |
| 601 | L = L->getParentLoop(); |
| 602 | } |
| 603 | |
| 604 | if (!Ptr->hasUseList()) |
| 605 | return true; |
| 606 | |
| 607 | for (auto *User : Ptr->users()) { |
| 608 | auto *UserI = dyn_cast<Instruction>(Val: User); |
| 609 | if (!UserI || UserI->getFunction() != LInst->getFunction() || |
| 610 | !R.contains(Inst: UserI)) |
| 611 | continue; |
| 612 | if (!UserI->mayWriteToMemory()) |
| 613 | continue; |
| 614 | |
| 615 | auto &BB = *UserI->getParent(); |
| 616 | if (DT.dominates(A: &BB, B: LInst->getParent())) |
| 617 | return false; |
| 618 | |
| 619 | bool DominatesAllPredecessors = true; |
| 620 | if (R.isTopLevelRegion()) { |
| 621 | for (BasicBlock &I : *R.getEntry()->getParent()) |
| 622 | if (isa<ReturnInst>(Val: I.getTerminator()) && !DT.dominates(A: &BB, B: &I)) |
| 623 | DominatesAllPredecessors = false; |
| 624 | } else { |
| 625 | for (auto Pred : predecessors(BB: R.getExit())) |
| 626 | if (R.contains(BB: Pred) && !DT.dominates(A: &BB, B: Pred)) |
| 627 | DominatesAllPredecessors = false; |
| 628 | } |
| 629 | |
| 630 | if (!DominatesAllPredecessors) |
| 631 | continue; |
| 632 | |
| 633 | return false; |
| 634 | } |
| 635 | |
| 636 | return true; |
| 637 | } |
| 638 | |
| 639 | bool polly::isIgnoredIntrinsic(const Value *V) { |
| 640 | if (auto *IT = dyn_cast<IntrinsicInst>(Val: V)) { |
| 641 | switch (IT->getIntrinsicID()) { |
| 642 | // Lifetime markers are supported/ignored. |
| 643 | case llvm::Intrinsic::lifetime_start: |
| 644 | case llvm::Intrinsic::lifetime_end: |
| 645 | // Invariant markers are supported/ignored. |
| 646 | case llvm::Intrinsic::invariant_start: |
| 647 | case llvm::Intrinsic::invariant_end: |
| 648 | // Some misc annotations are supported/ignored. |
| 649 | case llvm::Intrinsic::var_annotation: |
| 650 | case llvm::Intrinsic::ptr_annotation: |
| 651 | case llvm::Intrinsic::annotation: |
| 652 | case llvm::Intrinsic::donothing: |
| 653 | case llvm::Intrinsic::assume: |
| 654 | // Some debug info intrinsics are supported/ignored. |
| 655 | case llvm::Intrinsic::dbg_value: |
| 656 | case llvm::Intrinsic::dbg_declare: |
| 657 | return true; |
| 658 | default: |
| 659 | break; |
| 660 | } |
| 661 | } |
| 662 | return false; |
| 663 | } |
| 664 | |
| 665 | bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE, |
| 666 | Loop *Scope) { |
| 667 | if (!V || !SE->isSCEVable(Ty: V->getType())) |
| 668 | return false; |
| 669 | |
| 670 | const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads(); |
| 671 | if (const SCEV *Scev = SE->getSCEVAtScope(V: const_cast<Value *>(V), L: Scope)) |
| 672 | if (!isa<SCEVCouldNotCompute>(Val: Scev)) |
| 673 | if (!hasScalarDepsInsideRegion(Expr: Scev, R: &S.getRegion(), Scope, AllowLoops: false, ILS)) |
| 674 | return true; |
| 675 | |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) { |
| 680 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
| 681 | if (!UI) |
| 682 | return nullptr; |
| 683 | |
| 684 | if (PHINode *PHI = dyn_cast<PHINode>(Val: UI)) |
| 685 | return PHI->getIncomingBlock(U); |
| 686 | |
| 687 | return UI->getParent(); |
| 688 | } |
| 689 | |
| 690 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, |
| 691 | const BoxedLoopsSetTy &BoxedLoops) { |
| 692 | while (BoxedLoops.count(key: L)) |
| 693 | L = L->getParentLoop(); |
| 694 | return L; |
| 695 | } |
| 696 | |
| 697 | llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB, |
| 698 | llvm::LoopInfo &LI, |
| 699 | const BoxedLoopsSetTy &BoxedLoops) { |
| 700 | Loop *L = LI.getLoopFor(BB); |
| 701 | return getFirstNonBoxedLoopFor(L, LI, BoxedLoops); |
| 702 | } |
| 703 | |
| 704 | bool polly::isDebugCall(Instruction *Inst) { |
| 705 | auto *CI = dyn_cast<CallInst>(Val: Inst); |
| 706 | if (!CI) |
| 707 | return false; |
| 708 | |
| 709 | Function *CF = CI->getCalledFunction(); |
| 710 | if (!CF) |
| 711 | return false; |
| 712 | |
| 713 | return std::find(first: DebugFunctions.begin(), last: DebugFunctions.end(), |
| 714 | val: CF->getName()) != DebugFunctions.end(); |
| 715 | } |
| 716 | |
| 717 | static bool hasDebugCall(BasicBlock *BB) { |
| 718 | for (Instruction &Inst : *BB) { |
| 719 | if (isDebugCall(Inst: &Inst)) |
| 720 | return true; |
| 721 | } |
| 722 | return false; |
| 723 | } |
| 724 | |
| 725 | bool polly::hasDebugCall(ScopStmt *Stmt) { |
| 726 | // Quick skip if no debug functions have been defined. |
| 727 | if (DebugFunctions.empty()) |
| 728 | return false; |
| 729 | |
| 730 | if (!Stmt) |
| 731 | return false; |
| 732 | |
| 733 | for (Instruction *Inst : Stmt->getInstructions()) |
| 734 | if (isDebugCall(Inst)) |
| 735 | return true; |
| 736 | |
| 737 | if (Stmt->isRegionStmt()) { |
| 738 | for (BasicBlock *RBB : Stmt->getRegion()->blocks()) |
| 739 | if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(BB: RBB)) |
| 740 | return true; |
| 741 | } |
| 742 | |
| 743 | return false; |
| 744 | } |
| 745 | |
| 746 | /// Find a property in a LoopID. |
| 747 | static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) { |
| 748 | if (!LoopMD) |
| 749 | return nullptr; |
| 750 | for (const MDOperand &X : drop_begin(RangeOrContainer: LoopMD->operands(), N: 1)) { |
| 751 | auto *OpNode = dyn_cast<MDNode>(Val: X.get()); |
| 752 | if (!OpNode) |
| 753 | continue; |
| 754 | |
| 755 | auto *OpName = dyn_cast<MDString>(Val: OpNode->getOperand(I: 0)); |
| 756 | if (!OpName) |
| 757 | continue; |
| 758 | if (OpName->getString() == Name) |
| 759 | return OpNode; |
| 760 | } |
| 761 | return nullptr; |
| 762 | } |
| 763 | |
| 764 | static std::optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID, |
| 765 | StringRef Name) { |
| 766 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
| 767 | if (!MD) |
| 768 | return std::nullopt; |
| 769 | switch (MD->getNumOperands()) { |
| 770 | case 1: |
| 771 | return nullptr; |
| 772 | case 2: |
| 773 | return &MD->getOperand(I: 1); |
| 774 | default: |
| 775 | llvm_unreachable("loop metadata has 0 or 1 operand" ); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | std::optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD, |
| 780 | StringRef Name) { |
| 781 | MDNode *MD = findNamedMetadataNode(LoopMD, Name); |
| 782 | if (!MD) |
| 783 | return std::nullopt; |
| 784 | switch (MD->getNumOperands()) { |
| 785 | case 1: |
| 786 | return nullptr; |
| 787 | case 2: |
| 788 | return MD->getOperand(I: 1).get(); |
| 789 | default: |
| 790 | llvm_unreachable("loop metadata must have 0 or 1 operands" ); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | static std::optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID, |
| 795 | StringRef Name) { |
| 796 | MDNode *MD = findNamedMetadataNode(LoopMD: LoopID, Name); |
| 797 | if (!MD) |
| 798 | return std::nullopt; |
| 799 | switch (MD->getNumOperands()) { |
| 800 | case 1: |
| 801 | return true; |
| 802 | case 2: |
| 803 | if (ConstantInt *IntMD = |
| 804 | mdconst::extract_or_null<ConstantInt>(MD: MD->getOperand(I: 1).get())) |
| 805 | return IntMD->getZExtValue(); |
| 806 | return true; |
| 807 | } |
| 808 | llvm_unreachable("unexpected number of options" ); |
| 809 | } |
| 810 | |
| 811 | bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) { |
| 812 | return getOptionalBoolLoopAttribute(LoopID, Name).value_or(u: false); |
| 813 | } |
| 814 | |
| 815 | std::optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID, |
| 816 | StringRef Name) { |
| 817 | const MDOperand *AttrMD = |
| 818 | findNamedMetadataArg(LoopID, Name).value_or(u: nullptr); |
| 819 | if (!AttrMD) |
| 820 | return std::nullopt; |
| 821 | |
| 822 | ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(MD: AttrMD->get()); |
| 823 | if (!IntMD) |
| 824 | return std::nullopt; |
| 825 | |
| 826 | return IntMD->getSExtValue(); |
| 827 | } |
| 828 | |
| 829 | bool polly::hasDisableAllTransformsHint(Loop *L) { |
| 830 | return llvm::hasDisableAllTransformsHint(L); |
| 831 | } |
| 832 | |
| 833 | bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) { |
| 834 | return getBooleanLoopAttribute(LoopID, Name: "llvm.loop.disable_nonforced" ); |
| 835 | } |
| 836 | |
| 837 | isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) { |
| 838 | assert(Attr && "Must be a valid BandAttr" ); |
| 839 | |
| 840 | // The name "Loop" signals that this id contains a pointer to a BandAttr. |
| 841 | // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in |
| 842 | // markers, but it's user pointer is an llvm::Value. |
| 843 | isl::id Result = isl::id::alloc(ctx: Ctx, name: "Loop with Metadata" , user: Attr); |
| 844 | Result = isl::manage(ptr: isl_id_set_free_user(id: Result.release(), free_user: [](void *Ptr) { |
| 845 | BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr); |
| 846 | delete Attr; |
| 847 | })); |
| 848 | return Result; |
| 849 | } |
| 850 | |
| 851 | isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) { |
| 852 | if (!L) |
| 853 | return {}; |
| 854 | |
| 855 | // A loop without metadata does not need to be annotated. |
| 856 | MDNode *LoopID = L->getLoopID(); |
| 857 | if (!LoopID) |
| 858 | return {}; |
| 859 | |
| 860 | BandAttr *Attr = new BandAttr(); |
| 861 | Attr->OriginalLoop = L; |
| 862 | Attr->Metadata = L->getLoopID(); |
| 863 | |
| 864 | return getIslLoopAttr(Ctx, Attr); |
| 865 | } |
| 866 | |
| 867 | bool polly::isLoopAttr(const isl::id &Id) { |
| 868 | if (Id.is_null()) |
| 869 | return false; |
| 870 | |
| 871 | return Id.get_name() == "Loop with Metadata" ; |
| 872 | } |
| 873 | |
| 874 | BandAttr *polly::getLoopAttr(const isl::id &Id) { |
| 875 | if (!isLoopAttr(Id)) |
| 876 | return nullptr; |
| 877 | |
| 878 | return reinterpret_cast<BandAttr *>(Id.get_user()); |
| 879 | } |
| 880 | |