1 | // Copyright (C) 2019 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
3 | |
4 | #include "qquick3dprincipledmaterial_p.h" |
5 | #include "qquick3dobject_p.h" |
6 | |
7 | #include <QtQuick3DRuntimeRender/private/qssgrenderdefaultmaterial_p.h> |
8 | #include <QtQuick3DUtils/private/qssgutils_p.h> |
9 | |
10 | QT_BEGIN_NAMESPACE |
11 | |
12 | /*! |
13 | \qmltype PrincipledMaterial |
14 | \inherits Material |
15 | \inqmlmodule QtQuick3D |
16 | \brief Lets you define a material for 3D items using the metal/roughness workflow. |
17 | |
18 | Before a Model can be rendered in a scene, it must have at least one material attached |
19 | to it that describes how the mesh should be shaded. The PrincipledMaterial is a PBR |
20 | metal/roughness material that aims at being an easy to use material with a minimal |
21 | set of parameters. |
22 | In addition to having few parameters, all input values are strictly normalized |
23 | between 0 and 1 and have sensible defaults, meaning even without changing any values, |
24 | the material can be used to shader a model. For an introduction on how the |
25 | different properties of the principled material affects how a model is shaded, |
26 | see the \l{Qt Quick 3D - Principled Material Example}{Principled Material example}. |
27 | |
28 | \section1 Metal/Roughness workflow |
29 | |
30 | The Principled material is what's known as a metal/roughness material, in essence |
31 | that means the main characteristics of the material is controlled through |
32 | the \l {PrincipledMaterial::metalnessMap} {metallness}, \l {PrincipledMaterial::roughnessMap} {roughness}, |
33 | and the \l {PrincipledMaterial::baseColorMap} {base color} property. |
34 | |
35 | \section2 Metalness |
36 | |
37 | Real world materials are put into two main categories, metals and dielectrics (non-metals). |
38 | In the Principled material, the category a material belongs to is decided by the |
39 | \c metalness value. Setting the \c metalness value to 0, means the material is a dialectric, |
40 | while everything above 0 is a considered to be a metal. In reality metals will have |
41 | a \c metalness value of 1, but values between 0 and 1 are possible, and usually used |
42 | for metals with reduced reflectance. For example, to render corrosion, or similar, |
43 | on a material, the \c metalness of the material should be reduced to give the output |
44 | properties more similar to a dielectric material. |
45 | Since the \c metalness value affects the reflectance of the material it might be tempting to |
46 | use the metalness to adjust glossiness, but consider what type of material you want |
47 | to describe first. Increasing the \c metalness value to give a dielectric material |
48 | a more polished look, will introduce properties that are not accurate for a dielectric |
49 | material, so consider if it would be more appropriate to adjust, for example, |
50 | the \c roughness value instead. |
51 | |
52 | \section2 Roughness |
53 | |
54 | The \c roughness of a material describes the condition of an object's surface. |
55 | A low \c roughness value means the object has a smooth surface and therefore be more |
56 | reflective then a material with a higher \c roughness value. |
57 | |
58 | \section2 Base color |
59 | |
60 | The \l {PrincipledMaterial::baseColorMap} {base color} of a metal/roughness material |
61 | contains both the diffuse and the specular data, how much the base color is interpreted |
62 | as one or the other is primarily dictated by the \c metalness value. For example, |
63 | a material with a metalness value of 1, will have most of its base color interpreted |
64 | as specular color, while the diffuse color would be a black tint. The opposite would |
65 | happen for a material with a metalness value of 0. This is of course a bit simplified, |
66 | but gives a rough idea how the \l {PrincipledMaterial::baseColor} {base color} and |
67 | \c metalness value interacts. For those more familiar with a Specular/Glossiness workflow, |
68 | there's a clear difference here which is worth noting, namely that the color data of the |
69 | two materials are not directly compatible, since in a Specular/Glossiness |
70 | \l {DefaultMaterial} {material}, the diffuse and specular color comes from separate inputs. |
71 | */ |
72 | |
73 | /*! |
74 | \qmlproperty enumeration PrincipledMaterial::lighting |
75 | |
76 | This property defines which lighting method is used when generating this |
77 | material. |
78 | |
79 | The default value is \c PrincipledMaterial.FragmentLighting |
80 | |
81 | When using \c PrincipledMaterial.FragmentLighting, diffuse and specular lighting is |
82 | calculated for each rendered pixel. Certain effects (such as a Fresnel or normal map) require |
83 | \c PrincipledMaterial.FragmentLighting to work. |
84 | |
85 | When using \c PrincipledMaterial.NoLighting no lighting is calculated. This |
86 | mode is (predictably) very fast, and is quite effective when image maps are |
87 | used that you do not need to be shaded by lighting. All other shading |
88 | properties except baseColor values, alpha values, and vertex colors will be |
89 | ignored. |
90 | |
91 | \value PrincipledMaterial.NoLighting |
92 | \value PrincipledMaterial.FragmentLighting |
93 | */ |
94 | |
95 | /*! |
96 | \qmlproperty enumeration PrincipledMaterial::blendMode |
97 | |
98 | This property determines how the colors of the model rendered blends with |
99 | those behind it. |
100 | |
101 | \value PrincipledMaterial.SourceOver Default blend mode. Opaque objects |
102 | occlude objects behind them. This default mode does not guarantee alpha |
103 | blending in the rendering pipeline on its own for models that use this |
104 | material, but rather makes the decision dependent on a number of factors: |
105 | if the object's and material's total opacity is \c{1.0}, there is no |
106 | opacity map in the material, and \l alphaMode is not set to a value that |
107 | enforces alpha blending, then the model is treated as opaque, meaning it is |
108 | rendered with depth testing and depth write enabled, together with other |
109 | opaque objects, with blending disabled. Otherwise the model is treated as |
110 | semi-transparent, and is rendered after the opaque objects, together with |
111 | other semi-transparent objects in a back-to-front order based on their |
112 | center's distance from the camera, with alpha blending enabled. |
113 | |
114 | \value PrincipledMaterial.Screen Colors are blended using an inverted |
115 | multiply, producing a lighter result. This blend mode is order-independent; |
116 | if you are using semi-opaque objects and experiencing 'popping' as faces or |
117 | models sort differently, using Screen blending is one way to produce |
118 | results without popping. |
119 | |
120 | \value PrincipledMaterial.Multiply Colors are blended using a multiply, |
121 | producing a darker result. This blend mode is also order-independent. |
122 | |
123 | \sa alphaMode, {Qt Quick 3D Architecture} |
124 | */ |
125 | |
126 | /*! |
127 | \qmlproperty color PrincipledMaterial::baseColor |
128 | |
129 | This property sets the base color for the material. Depending on the type |
130 | of material specified (metal or dielectric) the diffuse and specular channels will be |
131 | set appropriately. For example, a dielectric material will have a diffuse color equal to |
132 | the base color, while it's specular color, depending on the specular amount, will have a |
133 | bright specular color. For metals the diffuse and specular channels will be mixed from |
134 | the base color and have a dark diffuse channel and a specular channel close to the base color. |
135 | |
136 | \sa baseColorMap, alphaMode |
137 | */ |
138 | |
139 | /*! |
140 | \qmlproperty Texture PrincipledMaterial::baseColorMap |
141 | |
142 | This property defines the texture used to set the base color of the material. |
143 | |
144 | \sa baseColor, alphaMode |
145 | */ |
146 | |
147 | /*! |
148 | \qmlproperty real PrincipledMaterial::metalness |
149 | |
150 | The metalness property defines the \e metalness of the the material. The value |
151 | is normalized, where 0.0 means the material is a \e dielectric (non-metallic) material and |
152 | a value of 1.0 means the material is a metal. |
153 | |
154 | \note In principle, materials are either dielectrics with a metalness of 0, or metals with a |
155 | metalness of 1. Metalness values between 0 and 1 are still allowed and will give a material that |
156 | is a blend between the different models. |
157 | |
158 | The range is [0.0, 1.0]. The default value is 0. |
159 | */ |
160 | |
161 | /*! |
162 | \qmlproperty Texture PrincipledMaterial::metalnessMap |
163 | |
164 | This property sets a Texture to be used to set the metalness amount for the |
165 | different parts of the material. |
166 | */ |
167 | |
168 | /*! |
169 | \qmlproperty enumeration PrincipledMaterial::metalnessChannel |
170 | |
171 | This property defines the texture channel used to read the metalness value from metalnessMap. |
172 | The default value is \c Material.B. |
173 | |
174 | \value Material.R Read value from texture R channel. |
175 | \value Material.G Read value from texture G channel. |
176 | \value Material.B Read value from texture B channel. |
177 | \value Material.A Read value from texture A channel. |
178 | */ |
179 | |
180 | /*! |
181 | \qmlproperty Texture PrincipledMaterial::emissiveMap |
182 | |
183 | This property sets a RGB Texture to be used to specify the intensity of the |
184 | emissive color. |
185 | */ |
186 | |
187 | /*! |
188 | \qmlproperty vector3d PrincipledMaterial::emissiveFactor |
189 | |
190 | This property determines the color of self-illumination for this material. |
191 | If an emissive map is set, the x, y, and z components are used as factors |
192 | (multipliers) for the R, G and B channels of the texture, respectively. |
193 | The default value is (0, 0, 0) and it means no emissive contribution at all. |
194 | |
195 | \note Setting the lightingMode to DefaultMaterial.NoLighting means emissive |
196 | Factor does not have an effect on the scene. |
197 | */ |
198 | |
199 | /*! |
200 | \qmlproperty Texture PrincipledMaterial::specularReflectionMap |
201 | |
202 | This property sets a Texture used for specular highlights on the material. |
203 | |
204 | This is typically used to perform environment mapping: as the model is |
205 | rotated, the map will appear as though it is reflecting from the |
206 | environment. For this to work as expected, the Texture's |
207 | \l{Texture::mappingMode}{mappingMode} needs to be set to |
208 | Texture.Environment. Specular reflection maps are an easy way to add a |
209 | high-quality look with a relatively low cost. |
210 | |
211 | \note Associating a \l{SceneEnvironment::lightProbe}{light probe} with the |
212 | \l SceneEnvironment, and thus relying on image-based lighting, can achieve |
213 | similar environmental reflection effects. Light probes are however a |
214 | conceptually different, and when it comes to performance, potentially more |
215 | expensive solution. Each approaches have their own specific uses, and the |
216 | one to use needs to be decided on a case by case basis. When it comes to |
217 | the Texture set to the property, specularReflectionMap has an advantage, |
218 | because it presents no limitations and supports all types of textures, |
219 | including ones that source their data from a Qt Quick sub-scene via |
220 | \l{Texture::sourceItem}{sourceItem}. |
221 | |
222 | \note Crisp images cause your material to look very glossy; the more you |
223 | blur your image the softer your material will appear. |
224 | |
225 | \sa Texture::mappingMode |
226 | */ |
227 | |
228 | /*! |
229 | \qmlproperty Texture PrincipledMaterial::specularMap |
230 | |
231 | The property defines a RGB Texture to modulate the amount and the color of |
232 | specularity across the surface of the material. These values are multiplied |
233 | by the specularAmount. |
234 | |
235 | \note The specular map will be ignored unless the material is dielectric. |
236 | */ |
237 | |
238 | /*! |
239 | \qmlproperty real PrincipledMaterial::specularTint |
240 | |
241 | This property defines how much of the base color contributes to the specular reflections. |
242 | |
243 | \note This property does only apply to dielectric materials. |
244 | */ |
245 | |
246 | /*! |
247 | \qmlproperty real PrincipledMaterial::specularAmount |
248 | |
249 | This property controls the strength of specularity (highlights and |
250 | reflections). |
251 | |
252 | The range is [0.0, 1.0]. The default value is \c 1.0. |
253 | |
254 | \note For non-dielectrics (metals) this property has no effect. |
255 | |
256 | \note This property does not affect the specularReflectionMap, but does affect the amount of |
257 | reflections from a scenes SceneEnvironment::lightProbe. |
258 | */ |
259 | |
260 | /*! |
261 | \qmlproperty real PrincipledMaterial::roughness |
262 | |
263 | This property controls the size of the specular highlight generated from |
264 | lights, and the clarity of reflections in general. Larger values increase |
265 | the roughness, softening specular highlights and blurring reflections. |
266 | The range is [0.0, 1.0]. The default value is 0. |
267 | */ |
268 | |
269 | /*! |
270 | \qmlproperty Texture PrincipledMaterial::roughnessMap |
271 | |
272 | This property defines a Texture to control the specular roughness of the |
273 | material. |
274 | */ |
275 | |
276 | /*! |
277 | \qmlproperty enumeration PrincipledMaterial::roughnessChannel |
278 | |
279 | This property defines the texture channel used to read the roughness value from roughnessMap. |
280 | The default value is \c Material.G. |
281 | |
282 | \value Material.R Read value from texture R channel. |
283 | \value Material.G Read value from texture G channel. |
284 | \value Material.B Read value from texture B channel. |
285 | \value Material.A Read value from texture A channel. |
286 | */ |
287 | |
288 | /*! |
289 | \qmlproperty real PrincipledMaterial::opacity |
290 | |
291 | This property drops the opacity of just this material, separate from the |
292 | model. |
293 | */ |
294 | |
295 | /*! |
296 | \qmlproperty Texture PrincipledMaterial::opacityMap |
297 | |
298 | This property defines a Texture used to control the opacity differently for |
299 | different parts of the material. |
300 | */ |
301 | |
302 | /*! |
303 | \qmlproperty enumeration PrincipledMaterial::opacityChannel |
304 | |
305 | This property defines the texture channel used to read the opacity value from opacityMap. |
306 | The default value is \c Material.A. |
307 | |
308 | \value Material.R Read value from texture R channel. |
309 | \value Material.G Read value from texture G channel. |
310 | \value Material.B Read value from texture B channel. |
311 | \value Material.A Read value from texture A channel. |
312 | */ |
313 | |
314 | /*! |
315 | \qmlproperty Texture PrincipledMaterial::normalMap |
316 | |
317 | This property defines an RGB image used to simulate fine geometry |
318 | displacement across the surface of the material. The RGB channels indicate |
319 | XYZ normal deviations. |
320 | |
321 | \note Normal maps will not affect the silhouette of a model. |
322 | */ |
323 | |
324 | /*! |
325 | \qmlproperty real PrincipledMaterial::normalStrength |
326 | |
327 | This property controls the amount of simulated displacement for the normalMap. |
328 | */ |
329 | |
330 | /*! |
331 | \qmlproperty real PrincipledMaterial::occlusionAmount |
332 | |
333 | This property contains the factor used to modify the values from the \l occlusionMap texture. |
334 | The value should be between 0.0 to 1.0. The default is 1.0 |
335 | */ |
336 | |
337 | /*! |
338 | \qmlproperty Texture PrincipledMaterial::occlusionMap |
339 | |
340 | This property defines a texture used to determine how much light the |
341 | different areas of the material should receive. Values are expected to be |
342 | linear from 0.0 to 1.0, where 0.0 means no lighting and 1.0 means the |
343 | effect of the lighting is left unchanged. |
344 | |
345 | \sa occlusionAmount |
346 | */ |
347 | |
348 | /*! |
349 | \qmlproperty enumeration PrincipledMaterial::occlusionChannel |
350 | |
351 | This property defines the texture channel used to read the occlusion value from occlusionMap. |
352 | The default value is \c Material.R. |
353 | |
354 | \value Material.R Read value from texture R channel. |
355 | \value Material.G Read value from texture G channel. |
356 | \value Material.B Read value from texture B channel. |
357 | \value Material.A Read value from texture A channel. |
358 | */ |
359 | |
360 | /*! |
361 | \qmlproperty enumeration PrincipledMaterial::alphaMode |
362 | |
363 | This property specifies how the alpha color value from \l baseColor and the |
364 | alpha channel of a \l{baseColorMap}{base color map} are used. |
365 | |
366 | \note The alpha cutoff test only considers the base color alpha. \l opacity |
367 | and \l [QtQuick3D] {Node::opacity} are not taken into account there. |
368 | |
369 | \note When sampling a base color map, the effective alpha value is the |
370 | sampled alpha multiplied by the \l baseColor alpha. |
371 | |
372 | \value PrincipledMaterial.Default No test is applied, the effective alpha |
373 | value is passed on as-is. Note that a \l baseColor or \l baseColorMap alpha |
374 | less than \c 1.0 does not automatically imply alpha blending, the object |
375 | with the material may still be treated as opaque, if no other relevant |
376 | properties (such as, an opacity less than 1, the presence of an opacity |
377 | map, or a non-default \l blendMode value) trigger treating the object as |
378 | semi-transparent. To ensure alpha blending happens regardless of any other |
379 | object or material property, set \c Blend instead. |
380 | |
381 | \value PrincipledMaterial.Blend No cutoff test is applied, but guarantees |
382 | that alpha blending happens. The object with this material will therefore |
383 | never be treated as opaque by the renderer. |
384 | |
385 | \value PrincipledMaterial.Opaque No cutoff test is applied and the rendered |
386 | object is assumed to be fully opaque, meaning the alpha values in the |
387 | vertex color, base color, and base color map are ignored and a value of 1.0 |
388 | is substituted instead. This mode does not guarantee alpha blending does |
389 | not happen. If relevant properties (such as, an opacity less than 1, an |
390 | opacity map, or a non-default \l blendMode) say so, then the object will |
391 | still be treated as semi-transparent by the rendering pipeline, just like |
392 | with the \c Default alphaMode. |
393 | |
394 | \value PrincipledMaterial.Mask A test based on \l alphaCutoff is applied. |
395 | If the effective alpha value falls below \l alphaCutoff, the fragment is |
396 | changed to fully transparent and is discarded (with all implications of |
397 | discarding: the depth buffer is not written for that fragment). Otherwise |
398 | the alpha is changed to 1.0, so that the fragment will become fully opaque. |
399 | When it comes to alpha blending, the behavior of this mode is identical to |
400 | \c Opaque, regardless of the cutoff test's result. This means that the |
401 | \l{https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#alpha-coverage}{glTF |
402 | 2 spec's alpha coverage} Implementation Notes are fulfilled. Objects with |
403 | alpha cutoff tests can also cast shadows since they behave like opaque |
404 | objects by default, unless the relevant properties (such as, an opacity |
405 | less than 1, an opacity map, or a non-default \l blendMode) imply otherwise |
406 | (in which case casting shadows will not be possible). |
407 | |
408 | \sa alphaCutoff, blendMode |
409 | */ |
410 | |
411 | /*! |
412 | \qmlproperty real PrincipledMaterial::alphaCutoff |
413 | |
414 | The alphaCutoff property can be used to specify the cutoff value when using |
415 | the \l{alphaMode}{Mask alphaMode}. Fragments where the alpha value falls |
416 | below the threshold will be rendered fully transparent (\c{0.0} for all |
417 | color channels). When the alpha value is equal or greater than the cutoff |
418 | value, the color will not be affected in any way. |
419 | |
420 | The default value is 0.5. |
421 | |
422 | \sa alphaMode |
423 | */ |
424 | |
425 | /*! |
426 | \qmlproperty real PrincipledMaterial::pointSize |
427 | |
428 | This property determines the size of the points rendered, when the geometry |
429 | is using a primitive type of points. The default value is 1.0. This |
430 | property is not relevant when rendering other types of geometry, such as, |
431 | triangle meshes. |
432 | |
433 | \warning Point sizes other than 1 may not be supported at run time, |
434 | depending on the underyling graphics API. For example, setting a size other |
435 | than 1 has no effect with Direct 3D. |
436 | */ |
437 | |
438 | /*! |
439 | \qmlproperty real PrincipledMaterial::lineWidth |
440 | |
441 | This property determines the width of the lines rendered, when the geometry |
442 | is using a primitive type of lines or line strips. The default value is |
443 | 1.0. This property is not relevant when rendering other types of geometry, |
444 | such as, triangle meshes. |
445 | |
446 | \warning Line widths other than 1 may not be suported at run time, |
447 | depending on the underlying graphics API. When that is the case, the |
448 | request to change the width is ignored. For example, none of the following |
449 | can be expected to support wide lines: Direct3D, Metal, OpenGL with core |
450 | profile contexts. |
451 | */ |
452 | |
453 | /*! |
454 | \qmlproperty Texture PrincipledMaterial::heightMap |
455 | |
456 | This property defines a texture used to determine the height the texture |
457 | will be displaced when rendered through the use of Parallax Mapping. Values |
458 | are expected to be linear from 0.0 to 1.0, where 0.0 means no displacement |
459 | and 1.0 means means maximum displacement. |
460 | |
461 | */ |
462 | |
463 | /*! |
464 | \qmlproperty enumeration PrincipledMaterial::heightChannel |
465 | |
466 | This property defines the texture channel used to read the height value |
467 | from heightMap. The default value is \c Material.R. |
468 | |
469 | \value Material.R Read value from texture R channel. |
470 | \value Material.G Read value from texture G channel. |
471 | \value Material.B Read value from texture B channel. |
472 | \value Material.A Read value from texture A channel. |
473 | |
474 | */ |
475 | |
476 | /*! |
477 | \qmlproperty real PrincipledMaterial::heightAmount |
478 | |
479 | This property contains the factor used to modify the values from the |
480 | \l heightMap texture. The value should be between 0.0 to 1.0. The default |
481 | value is 0.0 which means that height displacement will be disabled, even |
482 | if a height map set. |
483 | */ |
484 | |
485 | /*! |
486 | \qmlproperty int PrincipledMaterial::minHeightMapSamples |
487 | |
488 | This property defines the minimum number of samples used for performing |
489 | Parallex Occlusion Mapping using the \l heightMap. The minHeightMapSamples |
490 | value is the number of samples of the heightMap are used when looking directly |
491 | at a surface (when the camera view is perpendicular to the fragment). |
492 | The default value is 8. |
493 | |
494 | The actual number of samples used for each fragment will be between |
495 | \l minHeightMapSamples and \l maxHeightMapSamples depending on the angle of |
496 | the camera relative to the surface being rendered. |
497 | |
498 | \note This value should only be adjusted to fine tune materials using a |
499 | \l heightMap in the case undesired artifacts are present. |
500 | */ |
501 | |
502 | /*! |
503 | \qmlproperty int PrincipledMaterial::maxHeightMapSamples |
504 | |
505 | This property defines the maximum number of samples used for performing |
506 | Parallex Occlusion Mapping using the \l heightMap. The maxHeightMapSamples |
507 | value is the number of samples of the heightMap are used when looking |
508 | parallel to a surface. |
509 | The default value is 32. |
510 | |
511 | The actual number of samples used for each fragment will be between |
512 | \l minHeightMapSamples and \l maxHeightMapSamples depending on the angle of |
513 | the camera relative to the surface being rendered. |
514 | |
515 | \note This value should only be adjusted to fine tune materials using a |
516 | \l heightMap in the case undesired artifacts are present. |
517 | */ |
518 | |
519 | /*! |
520 | \qmlproperty float PrincipledMaterial::clearcoatAmount |
521 | |
522 | This property defines the intensity of the clearcoat layer. |
523 | |
524 | The default value is \c 0.0 |
525 | */ |
526 | |
527 | /*! |
528 | \qmlproperty Texture PrincipledMaterial::clearcoatMap |
529 | |
530 | This property defines a texture used to determine the intensity of the |
531 | clearcoat layer. The value of\l clearcoatAmount will be multiplied by |
532 | the value read from this texture. |
533 | |
534 | */ |
535 | |
536 | /*! |
537 | \qmlproperty enumeration PrincipledMaterial::clearcoatChannel |
538 | |
539 | This property defines the texture channel used to read the clearcoat amount |
540 | value from \l clearcoatMap. The default value is \c Material.R. |
541 | |
542 | \value Material.R Read value from texture R channel. |
543 | \value Material.G Read value from texture G channel. |
544 | \value Material.B Read value from texture B channel. |
545 | \value Material.A Read value from texture A channel. |
546 | |
547 | */ |
548 | |
549 | /*! |
550 | \qmlproperty float PrincipledMaterial::clearcoatRoughnessAmount |
551 | |
552 | This property defines the roughness of the clearcoat layer. |
553 | The default value is \c 0.0 |
554 | */ |
555 | |
556 | /*! |
557 | \qmlproperty Texture PrincipledMaterial::clearcoatRoughnessMap |
558 | |
559 | This property defines a texture used to determine the roughness of the |
560 | clearcoat layer. The value of\l clearcoatRoughnessAmount will be |
561 | multiplied by the value read from this texture. |
562 | |
563 | */ |
564 | |
565 | /*! |
566 | \qmlproperty enumeration PrincipledMaterial::clearcoatRoughnessChannel |
567 | |
568 | This property defines the texture channel used to read the clearcoat |
569 | roughness amount from \l clearcoatRoughnessMap. |
570 | The default value is \c Material.G. |
571 | |
572 | \value Material.R Read value from texture R channel. |
573 | \value Material.G Read value from texture G channel. |
574 | \value Material.B Read value from texture B channel. |
575 | \value Material.A Read value from texture A channel. |
576 | |
577 | */ |
578 | |
579 | /*! |
580 | \qmlproperty Texture PrincipledMaterial::clearcoatNormalMap |
581 | |
582 | This property defines a texture used to determine the normal mapping |
583 | applied to the clearcoat layer. |
584 | |
585 | */ |
586 | |
587 | /*! |
588 | \qmlproperty float PrincipledMaterial::transmissionFactor |
589 | |
590 | This property defines the percentage of light that is transmitted through |
591 | the material's surface. |
592 | The default value is \c 0.0 |
593 | */ |
594 | |
595 | /*! |
596 | \qmlproperty Texture PrincipledMaterial::transmissionMap |
597 | |
598 | This property defines a texture used to determine percentage of light that |
599 | is transmitted through the surface.. The value of |
600 | \l transmissionFactor will be multiplied by the value read from this |
601 | texture. |
602 | |
603 | */ |
604 | |
605 | /*! |
606 | \qmlproperty enumeration PrincipledMaterial::transmissionChannel |
607 | |
608 | This property defines the texture channel used to read the transmission |
609 | percentage from \l transmissionMap. |
610 | The default value is \c Material.R. |
611 | |
612 | \value Material.R Read value from texture R channel. |
613 | \value Material.G Read value from texture G channel. |
614 | \value Material.B Read value from texture B channel. |
615 | \value Material.A Read value from texture A channel. |
616 | |
617 | */ |
618 | |
619 | /*! |
620 | \qmlproperty float PrincipledMaterial::thicknessFactor |
621 | |
622 | This property defines the thickness of the volume beneath the surface. |
623 | Unlike many other properties of PrincipledMaterial, the value in defined |
624 | in thicknessFactor is a value from 0.0 to +infinity for thickness in the |
625 | models coordinate space. A value of 0.0 means that the material is |
626 | thin-walled. |
627 | The default value is \c 0.0 |
628 | */ |
629 | |
630 | /*! |
631 | \qmlproperty Texture PrincipledMaterial::thicknessMap |
632 | |
633 | This property defines a texture used to define the thickness of a |
634 | material volume. The value of \l thicknessFactor will be multiplied by the |
635 | value read from this texture. |
636 | |
637 | */ |
638 | |
639 | /*! |
640 | \qmlproperty enumeration PrincipledMaterial::thicknessChannel |
641 | |
642 | This property defines the texture channel used to read the thickness |
643 | amount from \l transmissionMap. |
644 | The default value is \c Material.G. |
645 | |
646 | \value Material.R Read value from texture R channel. |
647 | \value Material.G Read value from texture G channel. |
648 | \value Material.B Read value from texture B channel. |
649 | \value Material.A Read value from texture A channel. |
650 | |
651 | */ |
652 | |
653 | /*! |
654 | \qmlproperty float PrincipledMaterial::attenuationDistance |
655 | |
656 | This property defines the Density of the medium given as the average |
657 | distance that light travels in the medium before interacting with a |
658 | particle. The value is given in world space. |
659 | The default value is \c +infinity. |
660 | */ |
661 | |
662 | /*! |
663 | \qmlproperty color PrincipledMaterial::attenuationColor |
664 | |
665 | This property defines the color that white lights turns into due to |
666 | absorption when reaching the attenuation distance. |
667 | The default value is \c Qt.White |
668 | |
669 | */ |
670 | |
671 | /*! |
672 | \qmlproperty real PrincipledMaterial::indexOfRefraction |
673 | |
674 | This property defines the index of refraction of the material. The default |
675 | value of \c 1.5 will be the ideal value for materials like plastics or glass |
676 | but other materials like water, asphalt, sapphire, or diamond would require |
677 | and adjusted value to look more realistic. For realistic materials the |
678 | indexOfRefraction should usually be between \c 1.0 and \c 3.0 |
679 | |
680 | Some examples of common materials' index of refractions are: |
681 | |
682 | \table |
683 | \header |
684 | \li Material |
685 | \li Index of Refraction |
686 | \row |
687 | \li Air |
688 | \li 1.0 |
689 | \row |
690 | \li Water |
691 | \li 1.33 |
692 | \row |
693 | \li Glass |
694 | \li 1.55 |
695 | \row |
696 | \li Sapphire |
697 | \li 1.76 |
698 | \row |
699 | \li Diamond |
700 | \li 2.42 |
701 | \endtable |
702 | |
703 | \note No known material in the world have ior much greater than \c 3.0. |
704 | */ |
705 | |
706 | /*! |
707 | \qmlproperty bool PrincipledMaterial::vertexColorsEnabled |
708 | \since 6.5 |
709 | |
710 | When this property is enabled, the material will use vertex colors from the |
711 | mesh. These will be multiplied by any other colors specified for the |
712 | material. The default value is true. |
713 | */ |
714 | |
715 | inline static float ensureNormalized(float val) { return qBound(min: 0.0f, val, max: 1.0f); } |
716 | |
717 | QQuick3DPrincipledMaterial::QQuick3DPrincipledMaterial(QQuick3DObject *parent) |
718 | : QQuick3DMaterial(*(new QQuick3DObjectPrivate(QQuick3DObjectPrivate::Type::PrincipledMaterial)), parent) |
719 | {} |
720 | |
721 | QQuick3DPrincipledMaterial::~QQuick3DPrincipledMaterial() |
722 | { |
723 | } |
724 | |
725 | QQuick3DPrincipledMaterial::Lighting QQuick3DPrincipledMaterial::lighting() const |
726 | { |
727 | return m_lighting; |
728 | } |
729 | |
730 | QQuick3DPrincipledMaterial::BlendMode QQuick3DPrincipledMaterial::blendMode() const |
731 | { |
732 | return m_blendMode; |
733 | } |
734 | |
735 | QColor QQuick3DPrincipledMaterial::baseColor() const |
736 | { |
737 | return m_baseColor; |
738 | } |
739 | |
740 | QQuick3DTexture *QQuick3DPrincipledMaterial::baseColorMap() const |
741 | { |
742 | return m_baseColorMap; |
743 | } |
744 | |
745 | QQuick3DTexture *QQuick3DPrincipledMaterial::emissiveMap() const |
746 | { |
747 | return m_emissiveMap; |
748 | } |
749 | |
750 | QVector3D QQuick3DPrincipledMaterial::emissiveFactor() const |
751 | { |
752 | return m_emissiveFactor; |
753 | } |
754 | |
755 | QQuick3DTexture *QQuick3DPrincipledMaterial::specularReflectionMap() const |
756 | { |
757 | return m_specularReflectionMap; |
758 | } |
759 | |
760 | QQuick3DTexture *QQuick3DPrincipledMaterial::specularMap() const |
761 | { |
762 | return m_specularMap; |
763 | } |
764 | |
765 | float QQuick3DPrincipledMaterial::specularTint() const |
766 | { |
767 | return m_specularTint; |
768 | } |
769 | |
770 | float QQuick3DPrincipledMaterial::specularAmount() const |
771 | { |
772 | return m_specularAmount; |
773 | } |
774 | |
775 | float QQuick3DPrincipledMaterial::roughness() const |
776 | { |
777 | return m_roughness; |
778 | } |
779 | |
780 | QQuick3DTexture *QQuick3DPrincipledMaterial::roughnessMap() const |
781 | { |
782 | return m_roughnessMap; |
783 | } |
784 | |
785 | float QQuick3DPrincipledMaterial::opacity() const |
786 | { |
787 | return m_opacity; |
788 | } |
789 | |
790 | QQuick3DTexture *QQuick3DPrincipledMaterial::opacityMap() const |
791 | { |
792 | return m_opacityMap; |
793 | } |
794 | |
795 | QQuick3DTexture *QQuick3DPrincipledMaterial::normalMap() const |
796 | { |
797 | return m_normalMap; |
798 | } |
799 | |
800 | float QQuick3DPrincipledMaterial::metalness() const |
801 | { |
802 | return m_metalnessAmount; |
803 | } |
804 | |
805 | QQuick3DTexture *QQuick3DPrincipledMaterial::metalnessMap() const |
806 | { |
807 | return m_metalnessMap; |
808 | } |
809 | |
810 | float QQuick3DPrincipledMaterial::normalStrength() const |
811 | { |
812 | return m_normalStrength; |
813 | } |
814 | |
815 | QQuick3DTexture *QQuick3DPrincipledMaterial::occlusionMap() const |
816 | { |
817 | return m_occlusionMap; |
818 | } |
819 | |
820 | float QQuick3DPrincipledMaterial::occlusionAmount() const |
821 | { |
822 | return m_occlusionAmount; |
823 | } |
824 | |
825 | QQuick3DPrincipledMaterial::AlphaMode QQuick3DPrincipledMaterial::alphaMode() const |
826 | { |
827 | return m_alphaMode; |
828 | } |
829 | |
830 | float QQuick3DPrincipledMaterial::alphaCutoff() const |
831 | { |
832 | return m_alphaCutoff; |
833 | } |
834 | |
835 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::roughnessChannel() const |
836 | { |
837 | return m_roughnessChannel; |
838 | } |
839 | |
840 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::opacityChannel() const |
841 | { |
842 | return m_opacityChannel; |
843 | } |
844 | |
845 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::metalnessChannel() const |
846 | { |
847 | return m_metalnessChannel; |
848 | } |
849 | |
850 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::occlusionChannel() const |
851 | { |
852 | return m_occlusionChannel; |
853 | } |
854 | |
855 | float QQuick3DPrincipledMaterial::pointSize() const |
856 | { |
857 | return m_pointSize; |
858 | } |
859 | |
860 | float QQuick3DPrincipledMaterial::lineWidth() const |
861 | { |
862 | return m_lineWidth; |
863 | } |
864 | |
865 | QQuick3DTexture *QQuick3DPrincipledMaterial::heightMap() const |
866 | { |
867 | return m_heightMap; |
868 | } |
869 | |
870 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::heightChannel() const |
871 | { |
872 | return m_heightChannel; |
873 | } |
874 | |
875 | float QQuick3DPrincipledMaterial::heightAmount() const |
876 | { |
877 | return m_heightAmount; |
878 | } |
879 | |
880 | int QQuick3DPrincipledMaterial::minHeightMapSamples() const |
881 | { |
882 | return m_minHeightMapSamples; |
883 | } |
884 | |
885 | int QQuick3DPrincipledMaterial::maxHeightMapSamples() const |
886 | { |
887 | return m_maxHeightMapSamples; |
888 | } |
889 | |
890 | void QQuick3DPrincipledMaterial::markAllDirty() |
891 | { |
892 | m_dirtyAttributes = 0xffffffff; |
893 | QQuick3DMaterial::markAllDirty(); |
894 | } |
895 | |
896 | void QQuick3DPrincipledMaterial::setLighting(QQuick3DPrincipledMaterial::Lighting lighting) |
897 | { |
898 | if (m_lighting == lighting) |
899 | return; |
900 | |
901 | m_lighting = lighting; |
902 | emit lightingChanged(lighting: m_lighting); |
903 | markDirty(type: LightingModeDirty); |
904 | } |
905 | |
906 | void QQuick3DPrincipledMaterial::setBlendMode(QQuick3DPrincipledMaterial::BlendMode blendMode) |
907 | { |
908 | if (m_blendMode == blendMode) |
909 | return; |
910 | |
911 | m_blendMode = blendMode; |
912 | emit blendModeChanged(blendMode: m_blendMode); |
913 | markDirty(type: BlendModeDirty); |
914 | } |
915 | |
916 | void QQuick3DPrincipledMaterial::setBaseColor(QColor diffuseColor) |
917 | { |
918 | if (m_baseColor == diffuseColor) |
919 | return; |
920 | |
921 | m_baseColor = diffuseColor; |
922 | emit baseColorChanged(baseColor: m_baseColor); |
923 | markDirty(type: BaseColorDirty); |
924 | } |
925 | |
926 | void QQuick3DPrincipledMaterial::setBaseColorMap(QQuick3DTexture *baseColorMap) |
927 | { |
928 | if (m_baseColorMap == baseColorMap) |
929 | return; |
930 | |
931 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setBaseColorMap, newO: baseColorMap, oldO: m_baseColorMap); |
932 | |
933 | m_baseColorMap = baseColorMap; |
934 | emit baseColorMapChanged(baseColorMap: m_baseColorMap); |
935 | markDirty(type: BaseColorDirty); |
936 | } |
937 | |
938 | void QQuick3DPrincipledMaterial::setEmissiveMap(QQuick3DTexture *emissiveMap) |
939 | { |
940 | if (m_emissiveMap == emissiveMap) |
941 | return; |
942 | |
943 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setEmissiveMap, newO: emissiveMap, oldO: m_emissiveMap); |
944 | |
945 | m_emissiveMap = emissiveMap; |
946 | emit emissiveMapChanged(emissiveMap: m_emissiveMap); |
947 | markDirty(type: EmissiveDirty); |
948 | } |
949 | |
950 | void QQuick3DPrincipledMaterial::setEmissiveFactor(QVector3D emissiveFactor) |
951 | { |
952 | if (m_emissiveFactor == emissiveFactor) |
953 | return; |
954 | |
955 | m_emissiveFactor = emissiveFactor; |
956 | emit emissiveFactorChanged(emissiveFactor: m_emissiveFactor); |
957 | markDirty(type: EmissiveDirty); |
958 | } |
959 | |
960 | void QQuick3DPrincipledMaterial::setSpecularReflectionMap(QQuick3DTexture *specularReflectionMap) |
961 | { |
962 | if (m_specularReflectionMap == specularReflectionMap) |
963 | return; |
964 | |
965 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setSpecularReflectionMap, newO: specularReflectionMap, oldO: m_specularReflectionMap); |
966 | |
967 | m_specularReflectionMap = specularReflectionMap; |
968 | emit specularReflectionMapChanged(specularReflectionMap: m_specularReflectionMap); |
969 | markDirty(type: SpecularDirty); |
970 | } |
971 | |
972 | void QQuick3DPrincipledMaterial::setSpecularMap(QQuick3DTexture *specularMap) |
973 | { |
974 | if (m_specularMap == specularMap) |
975 | return; |
976 | |
977 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setSpecularMap, newO: specularMap, oldO: m_specularMap); |
978 | |
979 | m_specularMap = specularMap; |
980 | emit specularMapChanged(specularMap: m_specularMap); |
981 | markDirty(type: SpecularDirty); |
982 | } |
983 | |
984 | void QQuick3DPrincipledMaterial::setSpecularTint(float specularTint) |
985 | { |
986 | specularTint = ensureNormalized(val: specularTint); |
987 | if (qFuzzyCompare(p1: m_specularTint, p2: specularTint)) |
988 | return; |
989 | |
990 | m_specularTint = specularTint; |
991 | emit specularTintChanged(specularTint: m_specularTint); |
992 | markDirty(type: SpecularDirty); |
993 | } |
994 | |
995 | void QQuick3DPrincipledMaterial::setSpecularAmount(float specularAmount) |
996 | { |
997 | specularAmount = ensureNormalized(val: specularAmount); |
998 | if (qFuzzyCompare(p1: m_specularAmount, p2: specularAmount)) |
999 | return; |
1000 | |
1001 | m_specularAmount = specularAmount; |
1002 | emit specularAmountChanged(specularAmount: m_specularAmount); |
1003 | markDirty(type: SpecularDirty); |
1004 | } |
1005 | |
1006 | void QQuick3DPrincipledMaterial::setRoughness(float roughness) |
1007 | { |
1008 | roughness = ensureNormalized(val: roughness); |
1009 | if (qFuzzyCompare(p1: m_roughness, p2: roughness)) |
1010 | return; |
1011 | |
1012 | m_roughness = roughness; |
1013 | emit roughnessChanged(roughness: m_roughness); |
1014 | markDirty(type: RoughnessDirty); |
1015 | } |
1016 | |
1017 | void QQuick3DPrincipledMaterial::setRoughnessMap(QQuick3DTexture *roughnessMap) |
1018 | { |
1019 | if (m_roughnessMap == roughnessMap) |
1020 | return; |
1021 | |
1022 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setRoughnessMap, newO: roughnessMap, oldO: m_roughnessMap); |
1023 | |
1024 | m_roughnessMap = roughnessMap; |
1025 | emit roughnessMapChanged(roughnessMap: m_roughnessMap); |
1026 | markDirty(type: RoughnessDirty); |
1027 | } |
1028 | |
1029 | void QQuick3DPrincipledMaterial::setOpacity(float opacity) |
1030 | { |
1031 | opacity = ensureNormalized(val: opacity); |
1032 | if (qFuzzyCompare(p1: m_opacity, p2: opacity)) |
1033 | return; |
1034 | |
1035 | m_opacity = opacity; |
1036 | emit opacityChanged(opacity: m_opacity); |
1037 | markDirty(type: OpacityDirty); |
1038 | } |
1039 | |
1040 | void QQuick3DPrincipledMaterial::setOpacityMap(QQuick3DTexture *opacityMap) |
1041 | { |
1042 | if (m_opacityMap == opacityMap) |
1043 | return; |
1044 | |
1045 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &::QQuick3DPrincipledMaterial::setOpacityMap, newO: opacityMap, oldO: m_opacityMap); |
1046 | |
1047 | m_opacityMap = opacityMap; |
1048 | emit opacityMapChanged(opacityMap: m_opacityMap); |
1049 | markDirty(type: OpacityDirty); |
1050 | } |
1051 | |
1052 | void QQuick3DPrincipledMaterial::setNormalMap(QQuick3DTexture *normalMap) |
1053 | { |
1054 | if (m_normalMap == normalMap) |
1055 | return; |
1056 | |
1057 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setNormalMap, newO: normalMap, oldO: m_normalMap); |
1058 | |
1059 | m_normalMap = normalMap; |
1060 | emit normalMapChanged(normalMap: m_normalMap); |
1061 | markDirty(type: NormalDirty); |
1062 | } |
1063 | |
1064 | void QQuick3DPrincipledMaterial::setMetalness(float metalnessAmount) |
1065 | { |
1066 | metalnessAmount = ensureNormalized(val: metalnessAmount); |
1067 | if (qFuzzyCompare(p1: m_metalnessAmount, p2: metalnessAmount)) |
1068 | return; |
1069 | |
1070 | m_metalnessAmount = metalnessAmount; |
1071 | emit metalnessChanged(metalness: m_metalnessAmount); |
1072 | markDirty(type: MetalnessDirty); |
1073 | } |
1074 | |
1075 | void QQuick3DPrincipledMaterial::setMetalnessMap(QQuick3DTexture *metallicMap) |
1076 | { |
1077 | if (m_metalnessMap == metallicMap) |
1078 | return; |
1079 | |
1080 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setMetalnessMap, newO: metallicMap, oldO: m_metalnessMap); |
1081 | |
1082 | m_metalnessMap = metallicMap; |
1083 | emit metalnessMapChanged(metalnessMap: m_metalnessMap); |
1084 | markDirty(type: MetalnessDirty); |
1085 | } |
1086 | |
1087 | void QQuick3DPrincipledMaterial::setNormalStrength(float factor) |
1088 | { |
1089 | factor = ensureNormalized(val: factor); |
1090 | if (qFuzzyCompare(p1: m_normalStrength, p2: factor)) |
1091 | return; |
1092 | |
1093 | m_normalStrength = factor; |
1094 | emit normalStrengthChanged(normalStrength: m_normalStrength); |
1095 | markDirty(type: NormalDirty); |
1096 | } |
1097 | |
1098 | void QQuick3DPrincipledMaterial::setOcclusionMap(QQuick3DTexture *occlusionMap) |
1099 | { |
1100 | if (m_occlusionMap == occlusionMap) |
1101 | return; |
1102 | |
1103 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setOcclusionMap, newO: occlusionMap, oldO: m_occlusionMap); |
1104 | |
1105 | m_occlusionMap = occlusionMap; |
1106 | emit occlusionMapChanged(occlusionMap: m_occlusionMap); |
1107 | markDirty(type: OcclusionDirty); |
1108 | } |
1109 | |
1110 | void QQuick3DPrincipledMaterial::setOcclusionAmount(float occlusionAmount) |
1111 | { |
1112 | if (qFuzzyCompare(p1: m_occlusionAmount, p2: occlusionAmount)) |
1113 | return; |
1114 | |
1115 | m_occlusionAmount = occlusionAmount; |
1116 | emit occlusionAmountChanged(occlusionAmount: m_occlusionAmount); |
1117 | markDirty(type: OcclusionDirty); |
1118 | } |
1119 | |
1120 | void QQuick3DPrincipledMaterial::setAlphaMode(QQuick3DPrincipledMaterial::AlphaMode alphaMode) |
1121 | { |
1122 | if (m_alphaMode == alphaMode) |
1123 | return; |
1124 | |
1125 | m_alphaMode = alphaMode; |
1126 | emit alphaModeChanged(alphaMode: m_alphaMode); |
1127 | markDirty(type: AlphaModeDirty); |
1128 | } |
1129 | |
1130 | void QQuick3DPrincipledMaterial::setAlphaCutoff(float alphaCutoff) |
1131 | { |
1132 | if (qFuzzyCompare(p1: m_alphaCutoff, p2: alphaCutoff)) |
1133 | return; |
1134 | |
1135 | m_alphaCutoff = alphaCutoff; |
1136 | emit alphaCutoffChanged(alphaCutoff: m_alphaCutoff); |
1137 | markDirty(type: AlphaModeDirty); |
1138 | } |
1139 | |
1140 | void QQuick3DPrincipledMaterial::setMetalnessChannel(TextureChannelMapping channel) |
1141 | { |
1142 | if (m_metalnessChannel == channel) |
1143 | return; |
1144 | |
1145 | m_metalnessChannel = channel; |
1146 | emit metalnessChannelChanged(channel); |
1147 | markDirty(type: MetalnessDirty); |
1148 | } |
1149 | |
1150 | void QQuick3DPrincipledMaterial::setRoughnessChannel(TextureChannelMapping channel) |
1151 | { |
1152 | if (m_roughnessChannel == channel) |
1153 | return; |
1154 | |
1155 | m_roughnessChannel = channel; |
1156 | emit roughnessChannelChanged(channel); |
1157 | markDirty(type: RoughnessDirty); |
1158 | } |
1159 | |
1160 | void QQuick3DPrincipledMaterial::setOpacityChannel(TextureChannelMapping channel) |
1161 | { |
1162 | if (m_opacityChannel == channel) |
1163 | return; |
1164 | |
1165 | m_opacityChannel = channel; |
1166 | emit opacityChannelChanged(channel); |
1167 | markDirty(type: OpacityDirty); |
1168 | } |
1169 | |
1170 | void QQuick3DPrincipledMaterial::setOcclusionChannel(TextureChannelMapping channel) |
1171 | { |
1172 | if (m_occlusionChannel == channel) |
1173 | return; |
1174 | |
1175 | m_occlusionChannel = channel; |
1176 | emit occlusionChannelChanged(channel); |
1177 | markDirty(type: OcclusionDirty); |
1178 | } |
1179 | |
1180 | void QQuick3DPrincipledMaterial::setPointSize(float size) |
1181 | { |
1182 | if (qFuzzyCompare(p1: m_pointSize, p2: size)) |
1183 | return; |
1184 | m_pointSize = size; |
1185 | emit pointSizeChanged(); |
1186 | markDirty(type: PointSizeDirty); |
1187 | } |
1188 | |
1189 | void QQuick3DPrincipledMaterial::setLineWidth(float width) |
1190 | { |
1191 | if (qFuzzyCompare(p1: m_lineWidth, p2: width)) |
1192 | return; |
1193 | m_lineWidth = width; |
1194 | emit lineWidthChanged(); |
1195 | markDirty(type: LineWidthDirty); |
1196 | } |
1197 | |
1198 | void QQuick3DPrincipledMaterial::setHeightMap(QQuick3DTexture *heightMap) |
1199 | { |
1200 | if (m_heightMap == heightMap) |
1201 | return; |
1202 | |
1203 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setHeightMap, newO: heightMap, oldO: m_heightMap); |
1204 | |
1205 | m_heightMap = heightMap; |
1206 | emit heightMapChanged(heightMap: m_heightMap); |
1207 | markDirty(type: HeightDirty); |
1208 | } |
1209 | |
1210 | void QQuick3DPrincipledMaterial::setHeightChannel(QQuick3DMaterial::TextureChannelMapping channel) |
1211 | { |
1212 | if (m_heightChannel == channel) |
1213 | return; |
1214 | |
1215 | m_heightChannel = channel; |
1216 | emit heightChannelChanged(channel: m_heightChannel); |
1217 | markDirty(type: HeightDirty); |
1218 | } |
1219 | |
1220 | void QQuick3DPrincipledMaterial::setHeightAmount(float heightAmount) |
1221 | { |
1222 | if (m_heightAmount == heightAmount) |
1223 | return; |
1224 | |
1225 | m_heightAmount = heightAmount; |
1226 | emit heightAmountChanged(heightAmount: m_heightAmount); |
1227 | markDirty(type: HeightDirty); |
1228 | } |
1229 | |
1230 | void QQuick3DPrincipledMaterial::setMinHeightMapSamples(int samples) |
1231 | { |
1232 | if (m_minHeightMapSamples == samples) |
1233 | return; |
1234 | |
1235 | m_minHeightMapSamples = samples; |
1236 | emit minHeightMapSamplesChanged(samples); |
1237 | markDirty(type: HeightDirty); |
1238 | } |
1239 | |
1240 | void QQuick3DPrincipledMaterial::setMaxHeightMapSamples(int samples) |
1241 | { |
1242 | if (m_maxHeightMapSamples == samples) |
1243 | return; |
1244 | |
1245 | m_maxHeightMapSamples = samples; |
1246 | emit maxHeightMapSamplesChanged(samples); |
1247 | markDirty(type: HeightDirty); |
1248 | } |
1249 | |
1250 | QSSGRenderGraphObject *QQuick3DPrincipledMaterial::updateSpatialNode(QSSGRenderGraphObject *node) |
1251 | { |
1252 | static const auto channelMapping = [](TextureChannelMapping mapping) { |
1253 | return QSSGRenderDefaultMaterial::TextureChannelMapping(mapping); |
1254 | }; |
1255 | |
1256 | if (!node) { |
1257 | markAllDirty(); |
1258 | node = new QSSGRenderDefaultMaterial(QSSGRenderGraphObject::Type::PrincipledMaterial); |
1259 | } |
1260 | |
1261 | // Set common material properties |
1262 | QQuick3DMaterial::updateSpatialNode(node); |
1263 | |
1264 | QSSGRenderDefaultMaterial *material = static_cast<QSSGRenderDefaultMaterial *>(node); |
1265 | |
1266 | material->specularModel = QSSGRenderDefaultMaterial::MaterialSpecularModel::KGGX; |
1267 | |
1268 | if (m_dirtyAttributes & LightingModeDirty) |
1269 | material->lighting = QSSGRenderDefaultMaterial::MaterialLighting(m_lighting); |
1270 | |
1271 | if (m_dirtyAttributes & BlendModeDirty) |
1272 | material->blendMode = QSSGRenderDefaultMaterial::MaterialBlendMode(m_blendMode); |
1273 | |
1274 | if (m_dirtyAttributes & BaseColorDirty) { |
1275 | if (!m_baseColorMap) |
1276 | material->colorMap = nullptr; |
1277 | else |
1278 | material->colorMap = m_baseColorMap->getRenderImage(); |
1279 | |
1280 | material->color = QSSGUtils::color::sRGBToLinear(color: m_baseColor); |
1281 | } |
1282 | |
1283 | if (m_dirtyAttributes & EmissiveDirty) { |
1284 | if (!m_emissiveMap) |
1285 | material->emissiveMap = nullptr; |
1286 | else |
1287 | material->emissiveMap = m_emissiveMap->getRenderImage(); |
1288 | |
1289 | material->emissiveColor = m_emissiveFactor; |
1290 | } |
1291 | |
1292 | material->fresnelPower = 5.0f; |
1293 | material->vertexColorsEnabled = false; |
1294 | |
1295 | if (m_dirtyAttributes & RoughnessDirty) { |
1296 | if (!m_roughnessMap) |
1297 | material->roughnessMap = nullptr; |
1298 | else |
1299 | material->roughnessMap = m_roughnessMap->getRenderImage(); |
1300 | |
1301 | material->specularRoughness = m_roughness; |
1302 | material->roughnessChannel = channelMapping(m_roughnessChannel); |
1303 | } |
1304 | |
1305 | if (m_dirtyAttributes & MetalnessDirty) { |
1306 | if (!m_metalnessMap) |
1307 | material->metalnessMap = nullptr; |
1308 | else |
1309 | material->metalnessMap = m_metalnessMap->getRenderImage(); |
1310 | |
1311 | material->metalnessAmount = m_metalnessAmount; |
1312 | material->metalnessChannel = channelMapping(m_metalnessChannel); |
1313 | |
1314 | } |
1315 | |
1316 | if (m_dirtyAttributes & SpecularDirty) { |
1317 | if (!m_specularReflectionMap) |
1318 | material->specularReflection = nullptr; |
1319 | else |
1320 | material->specularReflection = m_specularReflectionMap->getRenderImage(); |
1321 | |
1322 | if (!m_specularMap) { |
1323 | material->specularMap = nullptr; |
1324 | } else { |
1325 | material->specularMap = m_specularMap->getRenderImage(); |
1326 | } |
1327 | |
1328 | material->specularAmount = m_specularAmount; |
1329 | material->specularTint = QVector3D(m_specularTint, m_specularTint, m_specularTint); |
1330 | material->ior = m_indexOfRefraction; |
1331 | } |
1332 | |
1333 | if (m_dirtyAttributes & OpacityDirty) { |
1334 | material->opacity = m_opacity; |
1335 | if (!m_opacityMap) |
1336 | material->opacityMap = nullptr; |
1337 | else |
1338 | material->opacityMap = m_opacityMap->getRenderImage(); |
1339 | |
1340 | material->opacity = m_opacity; |
1341 | material->opacityChannel = channelMapping(m_opacityChannel); |
1342 | } |
1343 | |
1344 | if (m_dirtyAttributes & NormalDirty) { |
1345 | if (!m_normalMap) |
1346 | material->normalMap = nullptr; |
1347 | else |
1348 | material->normalMap = m_normalMap->getRenderImage(); |
1349 | |
1350 | material->bumpAmount = m_normalStrength; |
1351 | } |
1352 | |
1353 | if (m_dirtyAttributes & OcclusionDirty) { |
1354 | if (!m_occlusionMap) |
1355 | material->occlusionMap = nullptr; |
1356 | else |
1357 | material->occlusionMap = m_occlusionMap->getRenderImage(); |
1358 | material->occlusionAmount = m_occlusionAmount; |
1359 | material->occlusionChannel = channelMapping(m_occlusionChannel); |
1360 | } |
1361 | |
1362 | if (m_dirtyAttributes & AlphaModeDirty) { |
1363 | material->alphaMode = QSSGRenderDefaultMaterial::MaterialAlphaMode(m_alphaMode); |
1364 | material->alphaCutoff = m_alphaCutoff; |
1365 | } |
1366 | |
1367 | if (m_dirtyAttributes & PointSizeDirty) |
1368 | material->pointSize = m_pointSize; |
1369 | |
1370 | if (m_dirtyAttributes & LineWidthDirty) |
1371 | material->lineWidth = m_lineWidth; |
1372 | |
1373 | if (m_dirtyAttributes & HeightDirty) { |
1374 | if (!m_heightMap) |
1375 | material->heightMap = nullptr; |
1376 | else |
1377 | material->heightMap = m_heightMap->getRenderImage(); |
1378 | material->heightAmount = m_heightAmount; |
1379 | material->minHeightSamples = m_minHeightMapSamples; |
1380 | material->maxHeightSamples = m_maxHeightMapSamples; |
1381 | material->heightChannel = channelMapping(m_heightChannel); |
1382 | } |
1383 | |
1384 | if (m_dirtyAttributes & ClearcoatDirty) { |
1385 | material->clearcoatAmount = m_clearcoatAmount; |
1386 | if (!m_clearcoatMap) |
1387 | material->clearcoatMap = nullptr; |
1388 | else |
1389 | material->clearcoatMap = m_clearcoatMap->getRenderImage(); |
1390 | material->clearcoatChannel = channelMapping(m_clearcoatChannel); |
1391 | material->clearcoatRoughnessAmount = m_clearcoatRoughnessAmount; |
1392 | if (!m_clearcoatRoughnessMap) |
1393 | material->clearcoatRoughnessMap = nullptr; |
1394 | else |
1395 | material->clearcoatRoughnessMap = m_clearcoatRoughnessMap->getRenderImage(); |
1396 | material->clearcoatRoughnessChannel = channelMapping(m_clearcoatRoughnessChannel); |
1397 | if (!m_clearcoatNormalMap) |
1398 | material->clearcoatNormalMap = nullptr; |
1399 | else |
1400 | material->clearcoatNormalMap = m_clearcoatNormalMap->getRenderImage(); |
1401 | } |
1402 | |
1403 | if (m_dirtyAttributes & TransmissionDirty) { |
1404 | material->transmissionFactor = m_transmissionFactor; |
1405 | if (!m_transmissionMap) |
1406 | material->transmissionMap = nullptr; |
1407 | else |
1408 | material->transmissionMap = m_transmissionMap->getRenderImage(); |
1409 | material->transmissionChannel = channelMapping(m_transmissionChannel); |
1410 | } |
1411 | |
1412 | if (m_dirtyAttributes & VolumeDirty) { |
1413 | material->thicknessFactor = m_thicknessFactor; |
1414 | if (!m_thicknessMap) |
1415 | material->thicknessMap = nullptr; |
1416 | else |
1417 | material->thicknessMap = m_thicknessMap->getRenderImage(); |
1418 | material->thicknessChannel = channelMapping(m_thicknessChannel); |
1419 | |
1420 | material->attenuationDistance = m_attenuationDistance; |
1421 | material->attenuationColor = QSSGUtils::color::sRGBToLinear(color: m_attenuationColor).toVector3D(); |
1422 | } |
1423 | |
1424 | if (m_dirtyAttributes & VertexColorsDirty) |
1425 | material->vertexColorsEnabled = m_vertexColorsEnabled; |
1426 | |
1427 | m_dirtyAttributes = 0; |
1428 | |
1429 | return node; |
1430 | } |
1431 | |
1432 | void QQuick3DPrincipledMaterial::itemChange(QQuick3DObject::ItemChange change, const QQuick3DObject::ItemChangeData &value) |
1433 | { |
1434 | if (change == QQuick3DObject::ItemSceneChange) |
1435 | updateSceneManager(window: value.sceneManager); |
1436 | } |
1437 | |
1438 | void QQuick3DPrincipledMaterial::updateSceneManager(QQuick3DSceneManager *sceneManager) |
1439 | { |
1440 | // Check all the resource value's scene manager, and update as necessary. |
1441 | if (sceneManager) { |
1442 | QQuick3DObjectPrivate::refSceneManager(obj: m_baseColorMap, mgr&: *sceneManager); |
1443 | QQuick3DObjectPrivate::refSceneManager(obj: m_emissiveMap, mgr&: *sceneManager); |
1444 | QQuick3DObjectPrivate::refSceneManager(obj: m_specularReflectionMap, mgr&: *sceneManager); |
1445 | QQuick3DObjectPrivate::refSceneManager(obj: m_specularMap, mgr&: *sceneManager); |
1446 | QQuick3DObjectPrivate::refSceneManager(obj: m_roughnessMap, mgr&: *sceneManager); |
1447 | QQuick3DObjectPrivate::refSceneManager(obj: m_opacityMap, mgr&: *sceneManager); |
1448 | QQuick3DObjectPrivate::refSceneManager(obj: m_normalMap, mgr&: *sceneManager); |
1449 | QQuick3DObjectPrivate::refSceneManager(obj: m_metalnessMap, mgr&: *sceneManager); |
1450 | QQuick3DObjectPrivate::refSceneManager(obj: m_occlusionMap, mgr&: *sceneManager); |
1451 | QQuick3DObjectPrivate::refSceneManager(obj: m_heightMap, mgr&: *sceneManager); |
1452 | QQuick3DObjectPrivate::refSceneManager(obj: m_clearcoatMap, mgr&: *sceneManager); |
1453 | QQuick3DObjectPrivate::refSceneManager(obj: m_clearcoatRoughnessMap, mgr&: *sceneManager); |
1454 | QQuick3DObjectPrivate::refSceneManager(obj: m_clearcoatNormalMap, mgr&: *sceneManager); |
1455 | QQuick3DObjectPrivate::refSceneManager(obj: m_transmissionMap, mgr&: *sceneManager); |
1456 | QQuick3DObjectPrivate::refSceneManager(obj: m_thicknessMap, mgr&: *sceneManager); |
1457 | } else { |
1458 | QQuick3DObjectPrivate::derefSceneManager(obj: m_baseColorMap); |
1459 | QQuick3DObjectPrivate::derefSceneManager(obj: m_emissiveMap); |
1460 | QQuick3DObjectPrivate::derefSceneManager(obj: m_specularReflectionMap); |
1461 | QQuick3DObjectPrivate::derefSceneManager(obj: m_specularMap); |
1462 | QQuick3DObjectPrivate::derefSceneManager(obj: m_roughnessMap); |
1463 | QQuick3DObjectPrivate::derefSceneManager(obj: m_opacityMap); |
1464 | QQuick3DObjectPrivate::derefSceneManager(obj: m_normalMap); |
1465 | QQuick3DObjectPrivate::derefSceneManager(obj: m_metalnessMap); |
1466 | QQuick3DObjectPrivate::derefSceneManager(obj: m_occlusionMap); |
1467 | QQuick3DObjectPrivate::derefSceneManager(obj: m_heightMap); |
1468 | QQuick3DObjectPrivate::derefSceneManager(obj: m_clearcoatMap); |
1469 | QQuick3DObjectPrivate::derefSceneManager(obj: m_clearcoatRoughnessMap); |
1470 | QQuick3DObjectPrivate::derefSceneManager(obj: m_clearcoatNormalMap); |
1471 | QQuick3DObjectPrivate::derefSceneManager(obj: m_transmissionMap); |
1472 | QQuick3DObjectPrivate::derefSceneManager(obj: m_thicknessMap); |
1473 | } |
1474 | } |
1475 | |
1476 | void QQuick3DPrincipledMaterial::markDirty(QQuick3DPrincipledMaterial::DirtyType type) |
1477 | { |
1478 | if (!(m_dirtyAttributes & quint32(type))) { |
1479 | m_dirtyAttributes |= quint32(type); |
1480 | update(); |
1481 | } |
1482 | } |
1483 | |
1484 | float QQuick3DPrincipledMaterial::clearcoatAmount() const |
1485 | { |
1486 | return m_clearcoatAmount; |
1487 | } |
1488 | |
1489 | void QQuick3DPrincipledMaterial::setClearcoatAmount(float newClearcoatAmount) |
1490 | { |
1491 | if (qFuzzyCompare(p1: m_clearcoatAmount, p2: newClearcoatAmount)) |
1492 | return; |
1493 | m_clearcoatAmount = newClearcoatAmount; |
1494 | emit clearcoatAmountChanged(amount: m_clearcoatAmount); |
1495 | markDirty(type: ClearcoatDirty); |
1496 | } |
1497 | |
1498 | QQuick3DTexture *QQuick3DPrincipledMaterial::clearcoatMap() const |
1499 | { |
1500 | return m_clearcoatMap; |
1501 | } |
1502 | |
1503 | void QQuick3DPrincipledMaterial::setClearcoatMap(QQuick3DTexture *newClearcoatMap) |
1504 | { |
1505 | if (m_clearcoatMap == newClearcoatMap) |
1506 | return; |
1507 | |
1508 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setClearcoatMap, newO: newClearcoatMap, oldO: m_clearcoatMap); |
1509 | |
1510 | m_clearcoatMap = newClearcoatMap; |
1511 | emit clearcoatMapChanged(texture: m_clearcoatMap); |
1512 | markDirty(type: ClearcoatDirty); |
1513 | } |
1514 | |
1515 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::clearcoatChannel() const |
1516 | { |
1517 | return m_clearcoatChannel; |
1518 | } |
1519 | |
1520 | void QQuick3DPrincipledMaterial::setClearcoatChannel(QQuick3DMaterial::TextureChannelMapping newClearcoatChannel) |
1521 | { |
1522 | if (m_clearcoatChannel == newClearcoatChannel) |
1523 | return; |
1524 | m_clearcoatChannel = newClearcoatChannel; |
1525 | emit clearcoatChannelChanged(channel: m_clearcoatChannel); |
1526 | markDirty(type: ClearcoatDirty); |
1527 | } |
1528 | |
1529 | float QQuick3DPrincipledMaterial::clearcoatRoughnessAmount() const |
1530 | { |
1531 | return m_clearcoatRoughnessAmount; |
1532 | } |
1533 | |
1534 | void QQuick3DPrincipledMaterial::setClearcoatRoughnessAmount(float newClearcoatRoughnessAmount) |
1535 | { |
1536 | if (qFuzzyCompare(p1: m_clearcoatRoughnessAmount, p2: newClearcoatRoughnessAmount)) |
1537 | return; |
1538 | m_clearcoatRoughnessAmount = newClearcoatRoughnessAmount; |
1539 | emit clearcoatRoughnessAmountChanged(amount: m_clearcoatRoughnessAmount); |
1540 | markDirty(type: ClearcoatDirty); |
1541 | } |
1542 | |
1543 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::clearcoatRoughnessChannel() const |
1544 | { |
1545 | return m_clearcoatRoughnessChannel; |
1546 | } |
1547 | |
1548 | void QQuick3DPrincipledMaterial::setClearcoatRoughnessChannel(QQuick3DMaterial::TextureChannelMapping newClearcoatRoughnessChannel) |
1549 | { |
1550 | if (m_clearcoatRoughnessChannel == newClearcoatRoughnessChannel) |
1551 | return; |
1552 | m_clearcoatRoughnessChannel = newClearcoatRoughnessChannel; |
1553 | emit clearcoatRoughnessChannelChanged(channel: m_clearcoatRoughnessChannel); |
1554 | markDirty(type: ClearcoatDirty); |
1555 | } |
1556 | |
1557 | QQuick3DTexture *QQuick3DPrincipledMaterial::clearcoatRoughnessMap() const |
1558 | { |
1559 | return m_clearcoatRoughnessMap; |
1560 | } |
1561 | |
1562 | void QQuick3DPrincipledMaterial::setClearcoatRoughnessMap(QQuick3DTexture *newClearcoatRoughnessMap) |
1563 | { |
1564 | if (m_clearcoatRoughnessMap == newClearcoatRoughnessMap) |
1565 | return; |
1566 | |
1567 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setClearcoatRoughnessMap, newO: newClearcoatRoughnessMap, oldO: m_clearcoatRoughnessMap); |
1568 | |
1569 | m_clearcoatRoughnessMap = newClearcoatRoughnessMap; |
1570 | emit clearcoatRoughnessMapChanged(texture: m_clearcoatRoughnessMap); |
1571 | markDirty(type: ClearcoatDirty); |
1572 | } |
1573 | |
1574 | QQuick3DTexture *QQuick3DPrincipledMaterial::clearcoatNormalMap() const |
1575 | { |
1576 | return m_clearcoatNormalMap; |
1577 | } |
1578 | |
1579 | void QQuick3DPrincipledMaterial::setClearcoatNormalMap(QQuick3DTexture *newClearcoatNormalMap) |
1580 | { |
1581 | if (m_clearcoatNormalMap == newClearcoatNormalMap) |
1582 | return; |
1583 | |
1584 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setClearcoatNormalMap, newO: newClearcoatNormalMap, oldO: m_clearcoatNormalMap); |
1585 | |
1586 | m_clearcoatNormalMap = newClearcoatNormalMap; |
1587 | emit clearcoatNormalMapChanged(texture: m_clearcoatNormalMap); |
1588 | markDirty(type: ClearcoatDirty); |
1589 | } |
1590 | |
1591 | float QQuick3DPrincipledMaterial::transmissionFactor() const |
1592 | { |
1593 | return m_transmissionFactor; |
1594 | } |
1595 | |
1596 | void QQuick3DPrincipledMaterial::setTransmissionFactor(float newTransmissionFactor) |
1597 | { |
1598 | if (qFuzzyCompare(p1: m_transmissionFactor, p2: newTransmissionFactor)) |
1599 | return; |
1600 | m_transmissionFactor = newTransmissionFactor; |
1601 | emit transmissionFactorChanged(amount: m_transmissionFactor); |
1602 | markDirty(type: TransmissionDirty); |
1603 | } |
1604 | |
1605 | QQuick3DTexture *QQuick3DPrincipledMaterial::transmissionMap() const |
1606 | { |
1607 | return m_transmissionMap; |
1608 | } |
1609 | |
1610 | void QQuick3DPrincipledMaterial::setTransmissionMap(QQuick3DTexture *newTransmissionMap) |
1611 | { |
1612 | if (m_transmissionMap == newTransmissionMap) |
1613 | return; |
1614 | |
1615 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setTransmissionMap, newO: newTransmissionMap, oldO: m_transmissionMap); |
1616 | |
1617 | m_transmissionMap = newTransmissionMap; |
1618 | emit transmissionMapChanged(texture: m_transmissionMap); |
1619 | markDirty(type: TransmissionDirty); |
1620 | } |
1621 | |
1622 | QQuick3DMaterial::TextureChannelMapping QQuick3DPrincipledMaterial::transmissionChannel() const |
1623 | { |
1624 | return m_transmissionChannel; |
1625 | } |
1626 | |
1627 | float QQuick3DPrincipledMaterial::indexOfRefraction() const |
1628 | { |
1629 | return m_indexOfRefraction; |
1630 | } |
1631 | |
1632 | bool QQuick3DPrincipledMaterial::vertexColorsEnabled() const |
1633 | { |
1634 | return m_vertexColorsEnabled; |
1635 | } |
1636 | |
1637 | void QQuick3DPrincipledMaterial::setTransmissionChannel(QQuick3DMaterial::TextureChannelMapping newTransmissionChannel) |
1638 | { |
1639 | if (m_transmissionChannel == newTransmissionChannel) |
1640 | return; |
1641 | m_transmissionChannel = newTransmissionChannel; |
1642 | emit transmissionChannelChanged(channel: m_transmissionChannel); |
1643 | markDirty(type: TransmissionDirty); |
1644 | } |
1645 | |
1646 | float QQuick3DPrincipledMaterial::thicknessFactor() const |
1647 | { |
1648 | return m_thicknessFactor; |
1649 | } |
1650 | |
1651 | void QQuick3DPrincipledMaterial::setThicknessFactor(float newThicknessFactor) |
1652 | { |
1653 | if (qFuzzyCompare(p1: m_thicknessFactor, p2: newThicknessFactor)) |
1654 | return; |
1655 | m_thicknessFactor = newThicknessFactor; |
1656 | emit thicknessFactorChanged(amount: m_thicknessFactor); |
1657 | markDirty(type: VolumeDirty); |
1658 | } |
1659 | |
1660 | QQuick3DTexture *QQuick3DPrincipledMaterial::thicknessMap() const |
1661 | { |
1662 | return m_thicknessMap; |
1663 | } |
1664 | |
1665 | void QQuick3DPrincipledMaterial::setThicknessMap(QQuick3DTexture *newThicknessMap) |
1666 | { |
1667 | if (m_thicknessMap == newThicknessMap) |
1668 | return; |
1669 | |
1670 | QQuick3DObjectPrivate::attachWatcher(context: this, setter: &QQuick3DPrincipledMaterial::setThicknessMap, newO: newThicknessMap, oldO: m_thicknessMap); |
1671 | |
1672 | m_thicknessMap = newThicknessMap; |
1673 | emit thicknessMapChanged(texture: m_thicknessMap); |
1674 | markDirty(type: VolumeDirty); |
1675 | } |
1676 | |
1677 | const QQuick3DMaterial::TextureChannelMapping &QQuick3DPrincipledMaterial::thicknessChannel() const |
1678 | { |
1679 | return m_thicknessChannel; |
1680 | } |
1681 | |
1682 | void QQuick3DPrincipledMaterial::setThicknessChannel(const QQuick3DMaterial::TextureChannelMapping &newThicknessChannel) |
1683 | { |
1684 | if (m_thicknessChannel == newThicknessChannel) |
1685 | return; |
1686 | m_thicknessChannel = newThicknessChannel; |
1687 | emit thicknessChannelChanged(channel: m_thicknessChannel); |
1688 | markDirty(type: VolumeDirty); |
1689 | } |
1690 | |
1691 | float QQuick3DPrincipledMaterial::attenuationDistance() const |
1692 | { |
1693 | return m_attenuationDistance; |
1694 | } |
1695 | |
1696 | void QQuick3DPrincipledMaterial::setAttenuationDistance(float newAttenuationDistance) |
1697 | { |
1698 | if (qFuzzyCompare(p1: m_attenuationDistance, p2: newAttenuationDistance)) |
1699 | return; |
1700 | m_attenuationDistance = newAttenuationDistance; |
1701 | emit attenuationDistanceChanged(distance: m_attenuationDistance); |
1702 | markDirty(type: VolumeDirty); |
1703 | } |
1704 | |
1705 | const QColor &QQuick3DPrincipledMaterial::attenuationColor() const |
1706 | { |
1707 | return m_attenuationColor; |
1708 | } |
1709 | |
1710 | void QQuick3DPrincipledMaterial::setAttenuationColor(const QColor &newAttenuationColor) |
1711 | { |
1712 | if (m_attenuationColor == newAttenuationColor) |
1713 | return; |
1714 | m_attenuationColor = newAttenuationColor; |
1715 | emit attenuationColorChanged(color: m_attenuationColor); |
1716 | markDirty(type: VolumeDirty); |
1717 | } |
1718 | |
1719 | void QQuick3DPrincipledMaterial::setIndexOfRefraction(float indexOfRefraction) |
1720 | { |
1721 | if (qFuzzyCompare(p1: m_indexOfRefraction, p2: indexOfRefraction)) |
1722 | return; |
1723 | |
1724 | m_indexOfRefraction = indexOfRefraction; |
1725 | emit indexOfRefractionChanged(indexOfRefraction: m_indexOfRefraction); |
1726 | markDirty(type: SpecularDirty); |
1727 | } |
1728 | |
1729 | void QQuick3DPrincipledMaterial::setVertexColorsEnabled(bool vertexColors) |
1730 | { |
1731 | if (m_vertexColorsEnabled == vertexColors) |
1732 | return; |
1733 | |
1734 | m_vertexColorsEnabled = vertexColors; |
1735 | emit vertexColorsEnabledChanged(vertexColorsEnabled: m_vertexColorsEnabled); |
1736 | markDirty(type: VertexColorsDirty); |
1737 | } |
1738 | |
1739 | QT_END_NAMESPACE |
1740 | |