| 1 | // Copyright (C) 2021 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
| 3 | |
| 4 | #include "qquick3dparticleemitter_p.h" |
| 5 | #include "qquick3dparticlemodelparticle_p.h" |
| 6 | #include "qquick3dparticlerandomizer_p.h" |
| 7 | #include "qquick3dparticleutils_p.h" |
| 8 | #include "qquick3dparticlespritesequence_p.h" |
| 9 | #include "qquick3dparticlemodelblendparticle_p.h" |
| 10 | |
| 11 | QT_BEGIN_NAMESPACE |
| 12 | |
| 13 | /*! |
| 14 | \qmltype ParticleEmitter3D |
| 15 | \inherits Node |
| 16 | \inqmlmodule QtQuick3D.Particles3D |
| 17 | \brief Emitter for logical particles. |
| 18 | \since 6.2 |
| 19 | |
| 20 | This element emits logical particles into the \l ParticleSystem3D, with the given starting attributes. |
| 21 | |
| 22 | At least one emitter is required to have particles in the \l ParticleSystem3D. There are a few different |
| 23 | ways to control the emitting amount: |
| 24 | \list |
| 25 | \li Set the \l emitRate which controls how many particles per second get emitted continuously. |
| 26 | \li Add \l EmitBurst3D elements into emitBursts property to emit bursts declaratively. |
| 27 | \li Call any of the \l burst() methods to emit bursts immediately. |
| 28 | \endlist |
| 29 | */ |
| 30 | |
| 31 | QQuick3DParticleEmitter::QQuick3DParticleEmitter(QQuick3DNode *parent) |
| 32 | : QQuick3DNode(parent) |
| 33 | { |
| 34 | } |
| 35 | |
| 36 | QQuick3DParticleEmitter::~QQuick3DParticleEmitter() |
| 37 | { |
| 38 | qDeleteAll(c: m_emitBursts); |
| 39 | m_emitBursts.clear(); |
| 40 | if (m_system) |
| 41 | m_system->unRegisterParticleEmitter(e: this); |
| 42 | } |
| 43 | |
| 44 | /*! |
| 45 | \qmlproperty bool ParticleEmitter3D::enabled |
| 46 | |
| 47 | If enabled is set to \c false, this emitter will not emit any particles. |
| 48 | Usually this is used to conditionally turn an emitter on or off. |
| 49 | If you want to continue emitting burst, keep \l emitRate at 0 instead of |
| 50 | toggling this to \c false. |
| 51 | |
| 52 | The default value is \c true. |
| 53 | */ |
| 54 | bool QQuick3DParticleEmitter::enabled() const |
| 55 | { |
| 56 | return m_enabled; |
| 57 | } |
| 58 | void QQuick3DParticleEmitter::setEnabled(bool enabled) |
| 59 | { |
| 60 | if (m_enabled == enabled) |
| 61 | return; |
| 62 | |
| 63 | if (enabled && m_system) { |
| 64 | // When enabling, we need to reset the |
| 65 | // previous emit time as it might be a long time ago. |
| 66 | m_prevEmitTime = m_system->currentTime(); |
| 67 | m_prevBurstTime = m_prevEmitTime; |
| 68 | } |
| 69 | |
| 70 | m_enabled = enabled; |
| 71 | Q_EMIT enabledChanged(); |
| 72 | } |
| 73 | |
| 74 | /*! |
| 75 | \qmlproperty Direction3D ParticleEmitter3D::velocity |
| 76 | |
| 77 | This property can be used to set a starting velocity for emitted particles. |
| 78 | If velocity is not set, particles start motionless and velocity comes from |
| 79 | \l {Affector3D}{affectors} if they are used. |
| 80 | */ |
| 81 | QQuick3DParticleDirection *QQuick3DParticleEmitter::velocity() const |
| 82 | { |
| 83 | return m_velocity; |
| 84 | } |
| 85 | |
| 86 | void QQuick3DParticleEmitter::setVelocity(QQuick3DParticleDirection *velocity) |
| 87 | { |
| 88 | if (m_velocity == velocity) |
| 89 | return; |
| 90 | |
| 91 | m_velocity = velocity; |
| 92 | if (m_velocity && m_system) |
| 93 | m_velocity->m_system = m_system; |
| 94 | |
| 95 | Q_EMIT velocityChanged(); |
| 96 | } |
| 97 | |
| 98 | /*! |
| 99 | \qmlproperty ParticleSystem3D ParticleEmitter3D::system |
| 100 | |
| 101 | This property defines the \l ParticleSystem3D for the emitter. If system is direct parent of the emitter, |
| 102 | this property does not need to be defined. |
| 103 | */ |
| 104 | QQuick3DParticleSystem *QQuick3DParticleEmitter::system() const |
| 105 | { |
| 106 | return m_system; |
| 107 | } |
| 108 | |
| 109 | void QQuick3DParticleEmitter::setSystem(QQuick3DParticleSystem *system) |
| 110 | { |
| 111 | if (m_system == system) |
| 112 | return; |
| 113 | |
| 114 | if (m_system) |
| 115 | m_system->unRegisterParticleEmitter(e: this); |
| 116 | |
| 117 | m_system = system; |
| 118 | if (m_system) { |
| 119 | m_system->registerParticleEmitter(e: this); |
| 120 | // Reset prev emit time to time of the new system |
| 121 | m_prevEmitTime = m_system->currentTime(); |
| 122 | m_prevBurstTime = m_prevEmitTime; |
| 123 | } |
| 124 | |
| 125 | if (m_particle) |
| 126 | m_particle->setSystem(m_system); |
| 127 | |
| 128 | if (m_shape) |
| 129 | m_shape->m_system = m_system; |
| 130 | |
| 131 | if (m_velocity) |
| 132 | m_velocity->m_system = m_system; |
| 133 | |
| 134 | m_systemSharedParent = getSharedParentNode(node: this, system: m_system); |
| 135 | |
| 136 | Q_EMIT systemChanged(); |
| 137 | } |
| 138 | |
| 139 | /*! |
| 140 | \qmlproperty real ParticleEmitter3D::emitRate |
| 141 | |
| 142 | This property defines the constant emitting rate in particles per second. |
| 143 | For example, if the emitRate is 120 and system animates at 60 frames per |
| 144 | second, 2 new particles are emitted at every frame. |
| 145 | |
| 146 | The default value is \c 0. |
| 147 | */ |
| 148 | float QQuick3DParticleEmitter::emitRate() const |
| 149 | { |
| 150 | return m_emitRate; |
| 151 | } |
| 152 | |
| 153 | void QQuick3DParticleEmitter::setEmitRate(float emitRate) |
| 154 | { |
| 155 | if (qFuzzyCompare(p1: m_emitRate, p2: emitRate)) |
| 156 | return; |
| 157 | |
| 158 | if (m_emitRate == 0 && m_system) { |
| 159 | // When changing emit rate from 0 we need to reset |
| 160 | // previous emit time as it may be long time ago |
| 161 | m_prevEmitTime = m_system->currentTime(); |
| 162 | } |
| 163 | m_emitRate = emitRate; |
| 164 | Q_EMIT emitRateChanged(); |
| 165 | } |
| 166 | |
| 167 | |
| 168 | /*! |
| 169 | \qmlproperty real ParticleEmitter3D::particleScale |
| 170 | |
| 171 | This property defines the scale multiplier of the particles at the beginning. |
| 172 | To have variation in the particle sizes, use \l particleScaleVariation. |
| 173 | |
| 174 | The default value is \c 1.0. |
| 175 | |
| 176 | \sa particleEndScale, particleScaleVariation |
| 177 | */ |
| 178 | float QQuick3DParticleEmitter::particleScale() const |
| 179 | { |
| 180 | return m_particleScale; |
| 181 | } |
| 182 | |
| 183 | void QQuick3DParticleEmitter::setParticleScale(float particleScale) |
| 184 | { |
| 185 | if (qFuzzyCompare(p1: m_particleScale, p2: particleScale)) |
| 186 | return; |
| 187 | |
| 188 | m_particleScale = particleScale; |
| 189 | Q_EMIT particleScaleChanged(); |
| 190 | } |
| 191 | |
| 192 | /*! |
| 193 | \qmlproperty real ParticleEmitter3D::particleEndScale |
| 194 | |
| 195 | This property defines the scale multiplier of the particles at the end |
| 196 | of particle \l lifeSpan. To have variation in the particle end sizes, use |
| 197 | \l particleEndScaleVariation. When the value is negative, end scale is the |
| 198 | same as the \l particleScale, so scale doesn't change during the particle |
| 199 | \l lifeSpan. |
| 200 | |
| 201 | The default value is \c -1.0. |
| 202 | |
| 203 | \sa particleScale, particleScaleVariation |
| 204 | */ |
| 205 | float QQuick3DParticleEmitter::particleEndScale() const |
| 206 | { |
| 207 | return m_particleEndScale; |
| 208 | } |
| 209 | |
| 210 | void QQuick3DParticleEmitter::setParticleEndScale(float particleEndScale) |
| 211 | { |
| 212 | if (qFuzzyCompare(p1: m_particleEndScale, p2: particleEndScale)) |
| 213 | return; |
| 214 | |
| 215 | m_particleEndScale = particleEndScale; |
| 216 | Q_EMIT particleEndScaleChanged(); |
| 217 | } |
| 218 | |
| 219 | /*! |
| 220 | \qmlproperty real ParticleEmitter3D::particleScaleVariation |
| 221 | |
| 222 | This property defines the scale variation of the particles. For example, to |
| 223 | emit particles at scale 0.5 - 1.5: |
| 224 | |
| 225 | \qml |
| 226 | ParticleEmitter3D { |
| 227 | ... |
| 228 | particleScale: 1.0 |
| 229 | particleScaleVariation: 0.5 |
| 230 | } |
| 231 | \endqml |
| 232 | |
| 233 | The default value is \c 0.0. |
| 234 | |
| 235 | \sa particleScale, particleEndScaleVariation |
| 236 | */ |
| 237 | float QQuick3DParticleEmitter::particleScaleVariation() const |
| 238 | { |
| 239 | return m_particleScaleVariation; |
| 240 | } |
| 241 | |
| 242 | void QQuick3DParticleEmitter::setParticleScaleVariation(float particleScaleVariation) |
| 243 | { |
| 244 | if (qFuzzyCompare(p1: m_particleScaleVariation, p2: particleScaleVariation)) |
| 245 | return; |
| 246 | |
| 247 | m_particleScaleVariation = particleScaleVariation; |
| 248 | Q_EMIT particleScaleVariationChanged(); |
| 249 | } |
| 250 | |
| 251 | /*! |
| 252 | \qmlproperty real ParticleEmitter3D::particleEndScaleVariation |
| 253 | |
| 254 | This property defines the scale variation of the particles in the end. |
| 255 | When the value is negative, \l particleScaleVariation is used also for the |
| 256 | end scale. For example, to emit particles which start at scale 0.5 - 1.5 and end |
| 257 | at scale 1.0 - 5.0: |
| 258 | |
| 259 | \qml |
| 260 | ParticleEmitter3D { |
| 261 | ... |
| 262 | particleScale: 1.0 |
| 263 | particleScaleVariation: 0.5 |
| 264 | particleEndScale: 3.0 |
| 265 | particleEndScaleVariation: 2.0 |
| 266 | } |
| 267 | \endqml |
| 268 | |
| 269 | The default value is \c -1.0. |
| 270 | |
| 271 | \sa particleEndScale |
| 272 | */ |
| 273 | float QQuick3DParticleEmitter::particleEndScaleVariation() const |
| 274 | { |
| 275 | return m_particleEndScaleVariation; |
| 276 | } |
| 277 | |
| 278 | void QQuick3DParticleEmitter::setParticleEndScaleVariation(float particleEndScaleVariation) |
| 279 | { |
| 280 | if (qFuzzyCompare(p1: m_particleEndScaleVariation, p2: particleEndScaleVariation)) |
| 281 | return; |
| 282 | |
| 283 | m_particleEndScaleVariation = particleEndScaleVariation; |
| 284 | Q_EMIT particleEndScaleVariationChanged(); |
| 285 | } |
| 286 | |
| 287 | /*! |
| 288 | \qmlproperty int ParticleEmitter3D::lifeSpan |
| 289 | |
| 290 | This property defines the lifespan of a single particle in milliseconds. |
| 291 | |
| 292 | The default value is \c 1000. |
| 293 | |
| 294 | \sa lifeSpanVariation |
| 295 | */ |
| 296 | int QQuick3DParticleEmitter::lifeSpan() const |
| 297 | { |
| 298 | return m_lifeSpan; |
| 299 | } |
| 300 | |
| 301 | void QQuick3DParticleEmitter::setLifeSpan(int lifeSpan) |
| 302 | { |
| 303 | if (m_lifeSpan == lifeSpan) |
| 304 | return; |
| 305 | |
| 306 | m_lifeSpan = lifeSpan; |
| 307 | Q_EMIT lifeSpanChanged(); |
| 308 | } |
| 309 | |
| 310 | /*! |
| 311 | \qmlproperty int ParticleEmitter3D::lifeSpanVariation |
| 312 | |
| 313 | This property defines the lifespan variation of a single particle in milliseconds. |
| 314 | |
| 315 | For example, to emit particles which will exist between 3 and 4 seconds: |
| 316 | |
| 317 | \qml |
| 318 | ParticleEmitter3D { |
| 319 | ... |
| 320 | lifeSpan: 3500 |
| 321 | lifeSpanVariation: 500 |
| 322 | } |
| 323 | \endqml |
| 324 | |
| 325 | The default value is \c 0. |
| 326 | |
| 327 | \sa lifeSpan |
| 328 | */ |
| 329 | int QQuick3DParticleEmitter::lifeSpanVariation() const |
| 330 | { |
| 331 | return m_lifeSpanVariation; |
| 332 | } |
| 333 | |
| 334 | void QQuick3DParticleEmitter::setLifeSpanVariation(int lifeSpanVariation) |
| 335 | { |
| 336 | if (m_lifeSpanVariation == lifeSpanVariation) |
| 337 | return; |
| 338 | |
| 339 | m_lifeSpanVariation = lifeSpanVariation; |
| 340 | Q_EMIT lifeSpanVariationChanged(); |
| 341 | } |
| 342 | |
| 343 | /*! |
| 344 | \qmlproperty Particle3D ParticleEmitter3D::particle |
| 345 | |
| 346 | This property defines the logical particle which this emitter emits. |
| 347 | Emitter must have a particle defined, or it doesn't emit anything. |
| 348 | Particle can be either \l SpriteParticle3D or \l ModelParticle3D. |
| 349 | */ |
| 350 | QQuick3DParticle *QQuick3DParticleEmitter::particle() const |
| 351 | { |
| 352 | return m_particle; |
| 353 | } |
| 354 | |
| 355 | void QQuick3DParticleEmitter::setParticle(QQuick3DParticle *particle) |
| 356 | { |
| 357 | if (m_particle == particle) |
| 358 | return; |
| 359 | if (particle && particle->system() != nullptr && m_system && particle->system() != m_system) { |
| 360 | qWarning(msg: "ParticleEmitter3D: Emitter and Particle must be in the same system." ); |
| 361 | return; |
| 362 | } |
| 363 | |
| 364 | if (m_particle && m_system && !m_system->isShared(particle: m_particle)) |
| 365 | m_particle->setSystem(nullptr); |
| 366 | m_particle = particle; |
| 367 | if (particle) { |
| 368 | particle->setDepthBias(m_depthBias); |
| 369 | particle->setSystem(system()); |
| 370 | QObject::connect(sender: this, signal: &QQuick3DParticleEmitter::depthBiasChanged, context: m_particle, slot: [this]() { |
| 371 | m_particle->setDepthBias(m_depthBias); |
| 372 | }); |
| 373 | } |
| 374 | Q_EMIT particleChanged(); |
| 375 | } |
| 376 | |
| 377 | /*! |
| 378 | \qmlproperty ParticleAbstractShape3D ParticleEmitter3D::shape |
| 379 | |
| 380 | This property defines optional shape for the emitting area. It can be either |
| 381 | \l ParticleShape3D or \l ParticleModelShape3D. Shape is scaled, |
| 382 | positioned and rotated based on the emitter node properties. When the Shape |
| 383 | \l {ParticleShape3D::fill}{fill} property is set to false, emitting happens |
| 384 | only from the surface of the shape. |
| 385 | |
| 386 | When the shape is not defined, emitting is done from the center point of the |
| 387 | emitter node. |
| 388 | */ |
| 389 | QQuick3DParticleAbstractShape *QQuick3DParticleEmitter::shape() const |
| 390 | { |
| 391 | return m_shape; |
| 392 | } |
| 393 | |
| 394 | void QQuick3DParticleEmitter::setShape(QQuick3DParticleAbstractShape *shape) |
| 395 | { |
| 396 | if (m_shape == shape) |
| 397 | return; |
| 398 | |
| 399 | m_shape = shape; |
| 400 | if (m_shape && m_system) |
| 401 | m_shape->m_system = m_system; |
| 402 | Q_EMIT shapeChanged(); |
| 403 | } |
| 404 | |
| 405 | /*! |
| 406 | \qmlproperty vector3d ParticleEmitter3D::particleRotation |
| 407 | |
| 408 | This property defines the rotation of the particles in the beginning. |
| 409 | Rotation is defined as degrees in euler angles. |
| 410 | |
| 411 | \sa particleRotationVariation |
| 412 | */ |
| 413 | QVector3D QQuick3DParticleEmitter::particleRotation() const |
| 414 | { |
| 415 | return m_particleRotation; |
| 416 | } |
| 417 | |
| 418 | void QQuick3DParticleEmitter::setParticleRotation(const QVector3D &particleRotation) |
| 419 | { |
| 420 | if (m_particleRotation == particleRotation) |
| 421 | return; |
| 422 | |
| 423 | m_particleRotation = particleRotation; |
| 424 | Q_EMIT particleRotationChanged(); |
| 425 | } |
| 426 | |
| 427 | /*! |
| 428 | \qmlproperty vector3d ParticleEmitter3D::particleRotationVariation |
| 429 | |
| 430 | This property defines the rotation variation of the particles in the beginning. |
| 431 | Rotation variation is defined as degrees in euler angles. |
| 432 | |
| 433 | For example, to emit particles in fully random rotations: |
| 434 | |
| 435 | \qml |
| 436 | ParticleEmitter3D { |
| 437 | ... |
| 438 | particleRotationVariation: Qt.vector3d(180, 180, 180) |
| 439 | } |
| 440 | \endqml |
| 441 | |
| 442 | \sa particleRotation |
| 443 | */ |
| 444 | QVector3D QQuick3DParticleEmitter::particleRotationVariation() const |
| 445 | { |
| 446 | return m_particleRotationVariation; |
| 447 | } |
| 448 | |
| 449 | void QQuick3DParticleEmitter::setParticleRotationVariation(const QVector3D &particleRotationVariation) |
| 450 | { |
| 451 | if (m_particleRotationVariation == particleRotationVariation) |
| 452 | return; |
| 453 | |
| 454 | m_particleRotationVariation = particleRotationVariation; |
| 455 | Q_EMIT particleRotationVariationChanged(); |
| 456 | } |
| 457 | |
| 458 | /*! |
| 459 | \qmlproperty vector3d ParticleEmitter3D::particleRotationVelocity |
| 460 | |
| 461 | This property defines the rotation velocity of the particles in the beginning. |
| 462 | Rotation velocity is defined as degrees per second in euler angles. |
| 463 | |
| 464 | \sa particleRotationVelocityVariation |
| 465 | */ |
| 466 | QVector3D QQuick3DParticleEmitter::particleRotationVelocity() const |
| 467 | { |
| 468 | return m_particleRotationVelocity; |
| 469 | } |
| 470 | |
| 471 | void QQuick3DParticleEmitter::setParticleRotationVelocity(const QVector3D &particleRotationVelocity) |
| 472 | { |
| 473 | if (m_particleRotationVelocity == particleRotationVelocity) |
| 474 | return; |
| 475 | |
| 476 | m_particleRotationVelocity = particleRotationVelocity; |
| 477 | Q_EMIT particleRotationVelocityChanged(); |
| 478 | } |
| 479 | |
| 480 | /*! |
| 481 | \qmlproperty vector3d ParticleEmitter3D::particleRotationVelocityVariation |
| 482 | |
| 483 | This property defines the rotation velocity variation of the particles. |
| 484 | Rotation velocity variation is defined as degrees per second in euler angles. |
| 485 | |
| 486 | For example, to emit particles in random rotations which have random rotation |
| 487 | velocity between -100 and 100 degrees per second into any directions: |
| 488 | |
| 489 | \qml |
| 490 | ParticleEmitter3D { |
| 491 | ... |
| 492 | particleRotationVariation: Qt.vector3d(180, 180, 180) |
| 493 | particleRotationVelocityVariation: Qt.vector3d(100, 100, 100) |
| 494 | } |
| 495 | \endqml |
| 496 | |
| 497 | \sa particleRotationVelocity |
| 498 | */ |
| 499 | QVector3D QQuick3DParticleEmitter::particleRotationVelocityVariation() const |
| 500 | { |
| 501 | return m_particleRotationVelocityVariation; |
| 502 | } |
| 503 | |
| 504 | void QQuick3DParticleEmitter::setParticleRotationVelocityVariation(const QVector3D &particleRotationVelocityVariation) |
| 505 | { |
| 506 | if (m_particleRotationVelocityVariation == particleRotationVelocityVariation) |
| 507 | return; |
| 508 | |
| 509 | m_particleRotationVelocityVariation = particleRotationVelocityVariation; |
| 510 | Q_EMIT particleRotationVariationVelocityChanged(); |
| 511 | } |
| 512 | |
| 513 | /*! |
| 514 | \qmlproperty real ParticleEmitter3D::depthBias |
| 515 | |
| 516 | Holds the depth bias of the emitter. Depth bias is added to the object distance from camera when sorting |
| 517 | objects. This can be used to force rendering order between objects close to each other, that |
| 518 | might otherwise be rendered in different order in different frames. Negative values cause the |
| 519 | sorting value to move closer to the camera while positive values move it further from the camera. |
| 520 | */ |
| 521 | float QQuick3DParticleEmitter::depthBias() const |
| 522 | { |
| 523 | return m_depthBias; |
| 524 | } |
| 525 | |
| 526 | void QQuick3DParticleEmitter::setDepthBias(float bias) |
| 527 | { |
| 528 | if (qFuzzyCompare(p1: bias, p2: m_depthBias)) |
| 529 | return; |
| 530 | |
| 531 | m_depthBias = bias; |
| 532 | emit depthBiasChanged(); |
| 533 | } |
| 534 | |
| 535 | // Called to reset when system stop/continue |
| 536 | void QQuick3DParticleEmitter::reset() |
| 537 | { |
| 538 | m_prevEmitTime = 0; |
| 539 | m_unemittedF = 0.0f; |
| 540 | m_prevBurstTime = 0; |
| 541 | m_burstEmitData.clear(); |
| 542 | } |
| 543 | |
| 544 | /*! |
| 545 | \qmlmethod vector3d ParticleEmitter3D::burst(int count) |
| 546 | |
| 547 | This method emits \a count amount of particles from this emitter immediately. |
| 548 | */ |
| 549 | void QQuick3DParticleEmitter::burst(int count) |
| 550 | { |
| 551 | burst(count, duration: 0, position: QVector3D()); |
| 552 | } |
| 553 | |
| 554 | /*! |
| 555 | \qmlmethod vector3d ParticleEmitter3D::burst(int count, int duration) |
| 556 | |
| 557 | This method emits \a count amount of particles from this emitter during the |
| 558 | next \a duration milliseconds. |
| 559 | */ |
| 560 | void QQuick3DParticleEmitter::burst(int count, int duration) |
| 561 | { |
| 562 | burst(count, duration, position: QVector3D()); |
| 563 | } |
| 564 | |
| 565 | /*! |
| 566 | \qmlmethod vector3d ParticleEmitter3D::burst(int count, int duration, vector3d position) |
| 567 | |
| 568 | This method emits \a count amount of particles from this emitter during the |
| 569 | next \a duration milliseconds. The particles are emitted as if the emitter was |
| 570 | at \a position but all other properties are the same. |
| 571 | */ |
| 572 | void QQuick3DParticleEmitter::burst(int count, int duration, const QVector3D &position) |
| 573 | { |
| 574 | if (!m_system) |
| 575 | return; |
| 576 | QQuick3DParticleEmitBurstData burst; |
| 577 | burst.time = m_system->currentTime(); |
| 578 | burst.amount = count; |
| 579 | burst.duration = duration; |
| 580 | burst.position = position; |
| 581 | emitParticlesBurst(burst); |
| 582 | } |
| 583 | |
| 584 | void QQuick3DParticleEmitter::generateEmitBursts() |
| 585 | { |
| 586 | if (!m_system) |
| 587 | return; |
| 588 | |
| 589 | if (!m_particle) |
| 590 | return; |
| 591 | |
| 592 | if (m_emitBursts.isEmpty()) { |
| 593 | m_burstGenerated = true; |
| 594 | return; |
| 595 | } |
| 596 | |
| 597 | // Generating burst causes all particle data reseting |
| 598 | // as bursts take first particles in the list. |
| 599 | m_particle->reset(); |
| 600 | |
| 601 | // TODO: In trail emitter case centerPos should be calculated |
| 602 | // taking into account each particle position at emitburst time |
| 603 | QMatrix4x4 transform = calculateParticleTransform(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 604 | QQuaternion rotation = calculateParticleRotation(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 605 | QVector3D centerPos = position(); |
| 606 | |
| 607 | for (auto emitBurst : std::as_const(t&: m_emitBursts)) { |
| 608 | // Ignore all dynamic bursts here |
| 609 | if (qobject_cast<QQuick3DParticleDynamicBurst *>(object: emitBurst)) |
| 610 | continue; |
| 611 | int emitAmount = emitBurst->amount(); |
| 612 | if (emitAmount <= 0) |
| 613 | return; |
| 614 | // Distribute start times between burst time and time+duration. |
| 615 | float startTime = float(emitBurst->time() / 1000.0f); |
| 616 | float timeStep = float(emitBurst->duration() / 1000.0f) / emitAmount; |
| 617 | for (int i = 0; i < emitAmount; i++) { |
| 618 | emitParticle(particle: m_particle, startTime, transform, parentRotation: rotation, centerPos); |
| 619 | startTime += timeStep; |
| 620 | } |
| 621 | // Increase burst index (for statically allocated particles) |
| 622 | m_particle->updateBurstIndex(amount: emitBurst->amount()); |
| 623 | } |
| 624 | m_burstGenerated = true; |
| 625 | } |
| 626 | |
| 627 | void QQuick3DParticleEmitter::registerEmitBurst(QQuick3DParticleEmitBurst* emitBurst) |
| 628 | { |
| 629 | m_emitBursts.removeAll(t: emitBurst); |
| 630 | m_emitBursts << emitBurst; |
| 631 | m_burstGenerated = false; |
| 632 | } |
| 633 | |
| 634 | void QQuick3DParticleEmitter::unRegisterEmitBurst(QQuick3DParticleEmitBurst* emitBurst) |
| 635 | { |
| 636 | m_emitBursts.removeAll(t: emitBurst); |
| 637 | m_burstGenerated = false; |
| 638 | } |
| 639 | |
| 640 | void QQuick3DParticleEmitter::emitParticle(QQuick3DParticle *particle, float startTime, const QMatrix4x4 &transform, const QQuaternion &parentRotation, const QVector3D ¢erPos, int index) |
| 641 | { |
| 642 | if (!m_system) |
| 643 | return; |
| 644 | auto rand = m_system->rand(); |
| 645 | |
| 646 | QQuick3DParticleModelBlendParticle *mbp = qobject_cast<QQuick3DParticleModelBlendParticle *>(object: particle); |
| 647 | if (mbp && mbp->lastParticle()) |
| 648 | return; |
| 649 | |
| 650 | int particleDataIndex = index == -1 ? particle->nextCurrentIndex(emitter: this) : index; |
| 651 | if (index == -1 && mbp && mbp->emitMode() == QQuick3DParticleModelBlendParticle::Random) |
| 652 | particleDataIndex = mbp->randomIndex(particleIndex: particleDataIndex); |
| 653 | |
| 654 | auto d = &particle->m_particleData[particleDataIndex]; |
| 655 | int particleIdIndex = m_system->m_particleIdIndex++; |
| 656 | if (m_system->m_particleIdIndex == INT_MAX) |
| 657 | m_system->m_particleIdIndex = 0; |
| 658 | |
| 659 | *d = m_clearData; // Reset the data as it might be reused |
| 660 | d->index = particleIdIndex; |
| 661 | d->startTime = startTime; |
| 662 | |
| 663 | // Life time in seconds |
| 664 | float lifeSpanMs = m_lifeSpanVariation / 1000.0f; |
| 665 | float lifeSpanVariationMs = lifeSpanMs - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::LifeSpanV) * lifeSpanMs; |
| 666 | d->lifetime = (m_lifeSpan / 1000.0f) + lifeSpanVariationMs; |
| 667 | |
| 668 | // Size |
| 669 | float sVar = m_particleScaleVariation - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::ScaleV) * m_particleScaleVariation; |
| 670 | float endScale = (m_particleEndScale < 0.0f) ? m_particleScale : m_particleEndScale; |
| 671 | float sEndVar = (m_particleEndScaleVariation < 0.0f) |
| 672 | ? sVar |
| 673 | : m_particleEndScaleVariation - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::ScaleEV) * m_particleEndScaleVariation; |
| 674 | d->startSize = std::max(a: 0.0f, b: float(m_particleScale + sVar)); |
| 675 | d->endSize = std::max(a: 0.0f, b: float(endScale + sEndVar)); |
| 676 | |
| 677 | // Emiting area/shape |
| 678 | if (mbp && mbp->modelBlendMode() != QQuick3DParticleModelBlendParticle::Construct) { |
| 679 | // We emit from model position unless in construct mode |
| 680 | d->startPosition = mbp->particleCenter(particleIndex: particleDataIndex); |
| 681 | } else { |
| 682 | // When shape is not set, default to node center point. |
| 683 | QVector3D pos = centerPos; |
| 684 | if (m_shape) |
| 685 | pos += m_shape->getPosition(particleIndex: particleIdIndex); |
| 686 | d->startPosition = transform.map(point: pos); |
| 687 | } |
| 688 | |
| 689 | // Velocity |
| 690 | if (m_velocity) { |
| 691 | // Rotate velocity based on parent node rotation and emitter rotation |
| 692 | d->startVelocity = parentRotation * rotation() * m_velocity->sample(d: *d); |
| 693 | } |
| 694 | |
| 695 | // Rotation |
| 696 | if (!m_particleRotation.isNull() || !m_particleRotationVariation.isNull()) { |
| 697 | Vector3b rot; |
| 698 | constexpr float step = 127.0f / 360.0f; // +/- 360-degrees as qint8 (-127..127) |
| 699 | rot.x = m_particleRotation.x() * step; |
| 700 | rot.y = m_particleRotation.y() * step; |
| 701 | rot.z = m_particleRotation.z() * step; |
| 702 | rot.x += (m_particleRotationVariation.x() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotXV) * m_particleRotationVariation.x()) * step; |
| 703 | rot.y += (m_particleRotationVariation.y() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotYV) * m_particleRotationVariation.y()) * step; |
| 704 | rot.z += (m_particleRotationVariation.z() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotZV) * m_particleRotationVariation.z()) * step; |
| 705 | d->startRotation = rot; |
| 706 | } |
| 707 | // Rotation velocity |
| 708 | if (!m_particleRotationVelocity.isNull() || !m_particleRotationVelocityVariation.isNull()) { |
| 709 | float rotVelX = m_particleRotationVelocity.x(); |
| 710 | float rotVelY = m_particleRotationVelocity.y(); |
| 711 | float rotVelZ = m_particleRotationVelocity.z(); |
| 712 | rotVelX += (m_particleRotationVelocityVariation.x() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotXVV) * m_particleRotationVelocityVariation.x()); |
| 713 | rotVelY += (m_particleRotationVelocityVariation.y() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotYVV) * m_particleRotationVelocityVariation.y()); |
| 714 | rotVelZ += (m_particleRotationVelocityVariation.z() - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::RotZVV) * m_particleRotationVelocityVariation.z()); |
| 715 | // Particle data rotations are in qint8 vec3 to save memory. |
| 716 | // max value 127*127 = 16129 degrees/second |
| 717 | float sign; |
| 718 | sign = rotVelX < 0.0f ? -1.0f : 1.0f; |
| 719 | rotVelX = std::max(a: -127.0f, b: std::min<float>(a: 127.0f, b: sign * std::sqrt(x: abs(x: rotVelX)))); |
| 720 | sign = rotVelY < 0.0f ? -1.0f : 1.0f; |
| 721 | rotVelY = std::max(a: -127.0f, b: std::min<float>(a: 127.0f, b: sign * std::sqrt(x: abs(x: rotVelY)))); |
| 722 | sign = rotVelZ < 0.0f ? -1.0f : 1.0f; |
| 723 | rotVelZ = std::max(a: -127.0f, b: std::min<float>(a: 127.0f, b: sign * std::sqrt(x: abs(x: rotVelZ)))); |
| 724 | d->startRotationVelocity = { .x: qint8(rotVelX), .y: qint8(rotVelY), .z: qint8(rotVelZ) }; |
| 725 | } |
| 726 | |
| 727 | // Colors |
| 728 | QColor pc = particle->color(); |
| 729 | QVector4D pcv = particle->colorVariation(); |
| 730 | uchar r, g, b, a; |
| 731 | if (particle->unifiedColorVariation()) { |
| 732 | // Vary all color channels using the same random amount |
| 733 | const int randVar = int(rand->get(particleIndex: particleIdIndex, user: QPRand::ColorAV) * 256); |
| 734 | r = pc.red() * (1.0f - pcv.x()) + randVar * pcv.x(); |
| 735 | g = pc.green() * (1.0f - pcv.y()) + randVar * pcv.y(); |
| 736 | b = pc.blue() * (1.0f - pcv.z()) + randVar * pcv.z(); |
| 737 | a = pc.alpha() * (1.0f - pcv.w()) + randVar * pcv.w(); |
| 738 | } else { |
| 739 | r = pc.red() * (1.0f - pcv.x()) + int(rand->get(particleIndex: particleIdIndex, user: QPRand::ColorRV) * 256) * pcv.x(); |
| 740 | g = pc.green() * (1.0f - pcv.y()) + int(rand->get(particleIndex: particleIdIndex, user: QPRand::ColorGV) * 256) * pcv.y(); |
| 741 | b = pc.blue() * (1.0f - pcv.z()) + int(rand->get(particleIndex: particleIdIndex, user: QPRand::ColorBV) * 256) * pcv.z(); |
| 742 | a = pc.alpha() * (1.0f - pcv.w()) + int(rand->get(particleIndex: particleIdIndex, user: QPRand::ColorAV) * 256) * pcv.w(); |
| 743 | } |
| 744 | d->startColor = {.r: r, .g: g, .b: b, .a: a}; |
| 745 | |
| 746 | // Sprite sequence animation |
| 747 | if (auto sequence = particle->m_spriteSequence) { |
| 748 | if (sequence->duration() > 0) { |
| 749 | float animationTimeMs = float(sequence->duration()) / 1000.0f; |
| 750 | float animationTimeVarMs = float(sequence->durationVariation()) / 1000.0f; |
| 751 | animationTimeVarMs = animationTimeVarMs - 2.0f * rand->get(particleIndex: particleIdIndex, user: QPRand::SpriteAnimationV) * animationTimeVarMs; |
| 752 | // Sequence duration to be at least 1ms |
| 753 | const float MIN_DURATION = 0.001f; |
| 754 | d->animationTime = std::max(a: MIN_DURATION, b: animationTimeMs + animationTimeVarMs); |
| 755 | } else { |
| 756 | // Duration not set, so use the lifetime of the particle |
| 757 | d->animationTime = d->lifetime; |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | int QQuick3DParticleEmitter::getEmitAmountFromDynamicBursts(int triggerType) |
| 763 | { |
| 764 | int amount = 0; |
| 765 | const int currentTime = m_system->time(); |
| 766 | const int prevTime = m_prevBurstTime; |
| 767 | // First go through dynamic bursts and see if any of them tiggers |
| 768 | for (auto *burst : std::as_const(t&: m_emitBursts)) { |
| 769 | auto *burstPtr = qobject_cast<QQuick3DParticleDynamicBurst *>(object: burst); |
| 770 | if (!burstPtr) |
| 771 | continue; |
| 772 | if (!burstPtr->m_enabled) |
| 773 | continue; |
| 774 | // Trigering on trail emitter start / end |
| 775 | const bool trailTriggering = triggerType && (burstPtr->m_triggerMode) == triggerType; |
| 776 | // Triggering on time for the first time |
| 777 | const bool timeTriggeringStart = !triggerType && currentTime >= burstPtr->m_time && prevTime <= burstPtr->m_time; |
| 778 | if (trailTriggering || timeTriggeringStart) { |
| 779 | int burstAmount = burstPtr->m_amount; |
| 780 | if (burstPtr->m_amountVariation > 0) { |
| 781 | auto rand = m_system->rand(); |
| 782 | int randAmount = 2 * rand->get() * burstPtr->m_amountVariation; |
| 783 | burstAmount += burstPtr->m_amountVariation - randAmount; |
| 784 | } |
| 785 | if (burstAmount > 0) { |
| 786 | if (timeTriggeringStart && burstPtr->m_duration > 0) { |
| 787 | // Burst with duration, so generate burst data |
| 788 | BurstEmitData emitData; |
| 789 | emitData.startTime = currentTime; |
| 790 | emitData.endTime = currentTime + burstPtr->m_duration; |
| 791 | emitData.emitAmount = burstAmount; |
| 792 | emitData.prevBurstTime = prevTime; |
| 793 | m_burstEmitData << emitData; |
| 794 | } else { |
| 795 | // Directly trigger the amount |
| 796 | amount += burstAmount; |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | } |
| 801 | // Then go through the triggered emit bursts list |
| 802 | for (int burstIndex = 0; burstIndex < m_burstEmitData.size(); ++burstIndex) { |
| 803 | auto &burstData = m_burstEmitData[burstIndex]; |
| 804 | const int amountLeft = burstData.emitAmount - burstData.emitCounter; |
| 805 | if (currentTime >= burstData.endTime) { |
| 806 | // Burst time has ended, emit all rest of the particles and remove the burst |
| 807 | amount += amountLeft; |
| 808 | m_burstEmitData.removeAt(i: burstIndex); |
| 809 | } else { |
| 810 | // Otherwise burst correct amount depending on burst duration |
| 811 | const int durationTime = currentTime - burstData.prevBurstTime; |
| 812 | const int burstDurationTime = burstData.endTime - burstData.startTime; |
| 813 | int burstAmount = burstData.emitAmount * (float(durationTime) / float(burstDurationTime)); |
| 814 | burstAmount = std::min(a: amountLeft, b: burstAmount); |
| 815 | if (burstAmount > 0) { |
| 816 | amount += burstAmount; |
| 817 | burstData.emitCounter += burstAmount; |
| 818 | burstData.prevBurstTime = currentTime; |
| 819 | } |
| 820 | } |
| 821 | } |
| 822 | // Reset the prev burst time |
| 823 | m_prevBurstTime = currentTime; |
| 824 | return amount; |
| 825 | } |
| 826 | |
| 827 | int QQuick3DParticleEmitter::getEmitAmount() |
| 828 | { |
| 829 | if (!m_system) |
| 830 | return 0; |
| 831 | |
| 832 | if (!m_enabled) |
| 833 | return 0; |
| 834 | |
| 835 | if (m_emitRate <= 0.0f) |
| 836 | return 0; |
| 837 | |
| 838 | float timeChange = m_system->currentTime() - m_prevEmitTime; |
| 839 | float emitAmountF = timeChange / (1000.0f / m_emitRate); |
| 840 | int emitAmount = floorf(x: emitAmountF); |
| 841 | // Store the partly unemitted particles |
| 842 | // When emitAmount = 0, we just let the timeChange grow. |
| 843 | if (emitAmount > 0) { |
| 844 | m_unemittedF += (emitAmountF - emitAmount); |
| 845 | // When unemitted grow to a full particle, emit it |
| 846 | // This way if emit rate is 140 emitAmounts can be e.g. 2,2,3,2,2,3 etc. |
| 847 | if (m_unemittedF >= 1.0f) { |
| 848 | emitAmount++; |
| 849 | m_unemittedF--; |
| 850 | } |
| 851 | } |
| 852 | return emitAmount; |
| 853 | } |
| 854 | |
| 855 | void QQuick3DParticleEmitter::emitParticlesBurst(const QQuick3DParticleEmitBurstData &burst) |
| 856 | { |
| 857 | if (!m_system) |
| 858 | return; |
| 859 | |
| 860 | if (!m_enabled) |
| 861 | return; |
| 862 | |
| 863 | if (!m_particle) |
| 864 | return; |
| 865 | |
| 866 | QMatrix4x4 transform = calculateParticleTransform(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 867 | QQuaternion rotation = calculateParticleRotation(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 868 | QVector3D centerPos = position() + burst.position; |
| 869 | |
| 870 | int emitAmount = std::min(a: burst.amount, b: int(m_particle->maxAmount())); |
| 871 | for (int i = 0; i < emitAmount; i++) { |
| 872 | // Distribute evenly between time and time+duration. |
| 873 | float startTime = (burst.time / 1000.0f) + (float(1 + i) / emitAmount) * ((burst.duration) / 1000.0f); |
| 874 | emitParticle(particle: m_particle, startTime, transform, parentRotation: rotation, centerPos); |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | // Called to emit set of particles |
| 879 | void QQuick3DParticleEmitter::emitParticles() |
| 880 | { |
| 881 | if (!m_system) |
| 882 | return; |
| 883 | |
| 884 | if (!m_enabled) |
| 885 | return; |
| 886 | |
| 887 | if (!m_particle) |
| 888 | return; |
| 889 | |
| 890 | auto *mbp = qobject_cast<QQuick3DParticleModelBlendParticle *>(object: m_particle); |
| 891 | if (mbp && mbp->activationNode() && mbp->emitMode() == QQuick3DParticleModelBlendParticle::Activation) { |
| 892 | // The particles are emitted using the activationNode instead of regular emit |
| 893 | emitActivationNodeParticles(particle: mbp); |
| 894 | return; |
| 895 | } |
| 896 | |
| 897 | const int systemTime = m_system->currentTime(); |
| 898 | |
| 899 | if (systemTime < m_prevEmitTime) { |
| 900 | // If we are goint backwards, reset previous emit time to current time. |
| 901 | m_prevEmitTime = systemTime; |
| 902 | } else { |
| 903 | // Keep previous emitting time within max the life span. |
| 904 | // This way emitting is reasonable also with big time jumps. |
| 905 | const int maxLifeSpan = m_lifeSpan + m_lifeSpanVariation; |
| 906 | m_prevEmitTime = std::max(a: m_prevEmitTime, b: systemTime - maxLifeSpan); |
| 907 | } |
| 908 | |
| 909 | // If bursts have changed, generate them first in the beginning |
| 910 | if (!m_burstGenerated) |
| 911 | generateEmitBursts(); |
| 912 | |
| 913 | int emitAmount = getEmitAmount() + getEmitAmountFromDynamicBursts(); |
| 914 | |
| 915 | // With lower emitRates, let timeChange grow until at least 1 particle is emitted |
| 916 | if (emitAmount < 1) |
| 917 | return; |
| 918 | |
| 919 | QMatrix4x4 transform = calculateParticleTransform(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 920 | QQuaternion rotation = calculateParticleRotation(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 921 | QVector3D centerPos = position(); |
| 922 | |
| 923 | emitAmount = std::min(a: emitAmount, b: int(m_particle->maxAmount())); |
| 924 | for (int i = 0; i < emitAmount; i++) { |
| 925 | // Distribute evenly between previous and current time, important especially |
| 926 | // when time has jumped a lot (like a starttime). |
| 927 | float startTime = (m_prevEmitTime / 1000.0f) + (float(1+i) / emitAmount) * ((systemTime - m_prevEmitTime) / 1000.0f); |
| 928 | emitParticle(particle: m_particle, startTime, transform, parentRotation: rotation, centerPos); |
| 929 | } |
| 930 | |
| 931 | m_prevEmitTime = systemTime; |
| 932 | } |
| 933 | |
| 934 | void QQuick3DParticleEmitter::emitActivationNodeParticles(QQuick3DParticleModelBlendParticle *particle) |
| 935 | { |
| 936 | QMatrix4x4 matrix = particle->activationNode()->sceneTransform(); |
| 937 | QMatrix4x4 actTransform = sceneTransform().inverted() * matrix; |
| 938 | QVector3D front = actTransform.column(index: 2).toVector3D(); |
| 939 | QVector3D pos = actTransform.column(index: 3).toVector3D(); |
| 940 | float d = QVector3D::dotProduct(v1: pos, v2: front); |
| 941 | |
| 942 | const int systemTime = m_system->currentTime(); |
| 943 | |
| 944 | // Keep previous emitting time within max the life span. |
| 945 | // This way emitting is reasonable also with big time jumps. |
| 946 | const int maxLifeSpan = m_lifeSpan + m_lifeSpanVariation; |
| 947 | m_prevEmitTime = std::max(a: m_prevEmitTime, b: systemTime - maxLifeSpan); |
| 948 | |
| 949 | float startTime = systemTime / 1000.0f; |
| 950 | |
| 951 | QMatrix4x4 transform = calculateParticleTransform(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 952 | QQuaternion rotation = calculateParticleRotation(parent: parentNode(), systemSharedParent: m_systemSharedParent); |
| 953 | QVector3D centerPos = position(); |
| 954 | |
| 955 | for (int i = 0; i < particle->maxAmount(); i++) { |
| 956 | if (particle->m_particleData[i].startTime >= 0) |
| 957 | continue; |
| 958 | const QVector3D pc = particle->particleCenter(particleIndex: i); |
| 959 | if (QVector3D::dotProduct(v1: front, v2: pc) - d > 0.0f) |
| 960 | emitParticle(particle, startTime, transform, parentRotation: rotation, centerPos, index: i); |
| 961 | } |
| 962 | |
| 963 | m_prevEmitTime = systemTime; |
| 964 | } |
| 965 | |
| 966 | void QQuick3DParticleEmitter::componentComplete() |
| 967 | { |
| 968 | if (!m_system && qobject_cast<QQuick3DParticleSystem *>(object: parentItem())) |
| 969 | setSystem(qobject_cast<QQuick3DParticleSystem *>(object: parentItem())); |
| 970 | |
| 971 | // When dynamically creating emitters, start from the current time. |
| 972 | if (m_system) |
| 973 | m_prevEmitTime = m_system->currentTime(); |
| 974 | |
| 975 | QQuick3DNode::componentComplete(); |
| 976 | } |
| 977 | |
| 978 | // EmitBursts - list handling |
| 979 | |
| 980 | /*! |
| 981 | \qmlproperty List<EmitBurst3D> ParticleEmitter3D::emitBursts |
| 982 | |
| 983 | This property takes a list of \l EmitBurst3D elements, to declaratively define bursts. |
| 984 | If the burst starting time, amount, and duration are known beforehand, it is better to |
| 985 | use this property than e.g. calling \l burst() with a \l Timer. |
| 986 | |
| 987 | For example, to emit 100 particles at the beginning, and 50 particles at 2 seconds: |
| 988 | |
| 989 | \qml |
| 990 | ParticleEmitter3D { |
| 991 | emitBursts: [ |
| 992 | EmitBurst3D { |
| 993 | time: 0 |
| 994 | amount: 100 |
| 995 | }, |
| 996 | EmitBurst3D { |
| 997 | time: 2000 |
| 998 | amount: 50 |
| 999 | } |
| 1000 | ] |
| 1001 | } |
| 1002 | \endqml |
| 1003 | |
| 1004 | \sa burst() |
| 1005 | */ |
| 1006 | QQmlListProperty<QQuick3DParticleEmitBurst> QQuick3DParticleEmitter::emitBursts() |
| 1007 | { |
| 1008 | return {this, this, |
| 1009 | &QQuick3DParticleEmitter::appendEmitBurst, |
| 1010 | &QQuick3DParticleEmitter::emitBurstCount, |
| 1011 | &QQuick3DParticleEmitter::emitBurst, |
| 1012 | &QQuick3DParticleEmitter::clearEmitBursts, |
| 1013 | &QQuick3DParticleEmitter::replaceEmitBurst, |
| 1014 | &QQuick3DParticleEmitter::removeLastEmitBurst}; |
| 1015 | } |
| 1016 | |
| 1017 | void QQuick3DParticleEmitter::appendEmitBurst(QQuick3DParticleEmitBurst* n) { |
| 1018 | m_emitBursts.append(t: n); |
| 1019 | } |
| 1020 | |
| 1021 | qsizetype QQuick3DParticleEmitter::emitBurstCount() const |
| 1022 | { |
| 1023 | return m_emitBursts.size(); |
| 1024 | } |
| 1025 | |
| 1026 | QQuick3DParticleEmitBurst *QQuick3DParticleEmitter::emitBurst(qsizetype index) const |
| 1027 | { |
| 1028 | return m_emitBursts.at(i: index); |
| 1029 | } |
| 1030 | |
| 1031 | void QQuick3DParticleEmitter::clearEmitBursts() { |
| 1032 | m_emitBursts.clear(); |
| 1033 | } |
| 1034 | |
| 1035 | void QQuick3DParticleEmitter::replaceEmitBurst(qsizetype index, QQuick3DParticleEmitBurst *n) |
| 1036 | { |
| 1037 | m_emitBursts[index] = n; |
| 1038 | } |
| 1039 | |
| 1040 | void QQuick3DParticleEmitter::removeLastEmitBurst() |
| 1041 | { |
| 1042 | m_emitBursts.removeLast(); |
| 1043 | } |
| 1044 | |
| 1045 | // EmitBursts - static |
| 1046 | void QQuick3DParticleEmitter::appendEmitBurst(QQmlListProperty<QQuick3DParticleEmitBurst> *list, QQuick3DParticleEmitBurst *p) { |
| 1047 | reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->appendEmitBurst(n: p); |
| 1048 | } |
| 1049 | |
| 1050 | void QQuick3DParticleEmitter::clearEmitBursts(QQmlListProperty<QQuick3DParticleEmitBurst> *list) { |
| 1051 | reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->clearEmitBursts(); |
| 1052 | } |
| 1053 | |
| 1054 | void QQuick3DParticleEmitter::replaceEmitBurst(QQmlListProperty<QQuick3DParticleEmitBurst> *list, qsizetype i, QQuick3DParticleEmitBurst *p) |
| 1055 | { |
| 1056 | reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->replaceEmitBurst(index: i, n: p); |
| 1057 | } |
| 1058 | |
| 1059 | void QQuick3DParticleEmitter::removeLastEmitBurst(QQmlListProperty<QQuick3DParticleEmitBurst> *list) |
| 1060 | { |
| 1061 | reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->removeLastEmitBurst(); |
| 1062 | } |
| 1063 | |
| 1064 | QQuick3DParticleEmitBurst* QQuick3DParticleEmitter::emitBurst(QQmlListProperty<QQuick3DParticleEmitBurst> *list, qsizetype i) { |
| 1065 | return reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->emitBurst(index: i); |
| 1066 | } |
| 1067 | |
| 1068 | qsizetype QQuick3DParticleEmitter::emitBurstCount(QQmlListProperty<QQuick3DParticleEmitBurst> *list) { |
| 1069 | return reinterpret_cast< QQuick3DParticleEmitter *>(list->data)->emitBurstCount(); |
| 1070 | } |
| 1071 | |
| 1072 | QT_END_NAMESPACE |
| 1073 | |