| 1 | // boost\math\distributions\non_central_chi_squared.hpp |
| 2 | |
| 3 | // Copyright John Maddock 2008. |
| 4 | |
| 5 | // Use, modification and distribution are subject to the |
| 6 | // Boost Software License, Version 1.0. |
| 7 | // (See accompanying file LICENSE_1_0.txt |
| 8 | // or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 9 | |
| 10 | #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
| 11 | #define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
| 12 | |
| 13 | #include <boost/math/distributions/fwd.hpp> |
| 14 | #include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q |
| 15 | #include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i |
| 16 | #include <boost/math/special_functions/round.hpp> // for iround |
| 17 | #include <boost/math/distributions/complement.hpp> // complements |
| 18 | #include <boost/math/distributions/chi_squared.hpp> // central distribution |
| 19 | #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
| 20 | #include <boost/math/special_functions/fpclassify.hpp> // isnan. |
| 21 | #include <boost/math/tools/roots.hpp> // for root finding. |
| 22 | #include <boost/math/distributions/detail/generic_mode.hpp> |
| 23 | #include <boost/math/distributions/detail/generic_quantile.hpp> |
| 24 | |
| 25 | namespace boost |
| 26 | { |
| 27 | namespace math |
| 28 | { |
| 29 | |
| 30 | template <class RealType, class Policy> |
| 31 | class non_central_chi_squared_distribution; |
| 32 | |
| 33 | namespace detail{ |
| 34 | |
| 35 | template <class T, class Policy> |
| 36 | T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0) |
| 37 | { |
| 38 | // |
| 39 | // Computes the complement of the Non-Central Chi-Square |
| 40 | // Distribution CDF by summing a weighted sum of complements |
| 41 | // of the central-distributions. The weighting factor is |
| 42 | // a Poisson Distribution. |
| 43 | // |
| 44 | // This is an application of the technique described in: |
| 45 | // |
| 46 | // Computing discrete mixtures of continuous |
| 47 | // distributions: noncentral chisquare, noncentral t |
| 48 | // and the distribution of the square of the sample |
| 49 | // multiple correlation coefficient. |
| 50 | // D. Benton, K. Krishnamoorthy. |
| 51 | // Computational Statistics & Data Analysis 43 (2003) 249 - 267 |
| 52 | // |
| 53 | BOOST_MATH_STD_USING |
| 54 | |
| 55 | // Special case: |
| 56 | if(x == 0) |
| 57 | return 1; |
| 58 | |
| 59 | // |
| 60 | // Initialize the variables we'll be using: |
| 61 | // |
| 62 | T lambda = theta / 2; |
| 63 | T del = f / 2; |
| 64 | T y = x / 2; |
| 65 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 66 | T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 67 | T sum = init_sum; |
| 68 | // |
| 69 | // k is the starting location for iteration, we'll |
| 70 | // move both forwards and backwards from this point. |
| 71 | // k is chosen as the peek of the Poisson weights, which |
| 72 | // will occur *before* the largest term. |
| 73 | // |
| 74 | int k = iround(lambda, pol); |
| 75 | // Forwards and backwards Poisson weights: |
| 76 | T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol); |
| 77 | T poisb = poisf * k / lambda; |
| 78 | // Initial forwards central chi squared term: |
| 79 | T gamf = boost::math::gamma_q(del + k, y, pol); |
| 80 | // Forwards and backwards recursion terms on the central chi squared: |
| 81 | T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol); |
| 82 | T xtermb = xtermf * (del + k) / y; |
| 83 | // Initial backwards central chi squared term: |
| 84 | T gamb = gamf - xtermb; |
| 85 | |
| 86 | // |
| 87 | // Forwards iteration first, this is the |
| 88 | // stable direction for the gamma function |
| 89 | // recurrences: |
| 90 | // |
| 91 | int i; |
| 92 | for(i = k; static_cast<boost::uintmax_t>(i-k) < max_iter; ++i) |
| 93 | { |
| 94 | T term = poisf * gamf; |
| 95 | sum += term; |
| 96 | poisf *= lambda / (i + 1); |
| 97 | gamf += xtermf; |
| 98 | xtermf *= y / (del + i + 1); |
| 99 | if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf)) |
| 100 | break; |
| 101 | } |
| 102 | //Error check: |
| 103 | if(static_cast<boost::uintmax_t>(i-k) >= max_iter) |
| 104 | return policies::raise_evaluation_error( |
| 105 | "cdf(non_central_chi_squared_distribution<%1%>, %1%)" , |
| 106 | "Series did not converge, closest value was %1%" , sum, pol); |
| 107 | // |
| 108 | // Now backwards iteration: the gamma |
| 109 | // function recurrences are unstable in this |
| 110 | // direction, we rely on the terms diminishing in size |
| 111 | // faster than we introduce cancellation errors. |
| 112 | // For this reason it's very important that we start |
| 113 | // *before* the largest term so that backwards iteration |
| 114 | // is strictly converging. |
| 115 | // |
| 116 | for(i = k - 1; i >= 0; --i) |
| 117 | { |
| 118 | T term = poisb * gamb; |
| 119 | sum += term; |
| 120 | poisb *= i / lambda; |
| 121 | xtermb *= (del + i) / y; |
| 122 | gamb -= xtermb; |
| 123 | if((sum == 0) || (fabs(term / sum) < errtol)) |
| 124 | break; |
| 125 | } |
| 126 | |
| 127 | return sum; |
| 128 | } |
| 129 | |
| 130 | template <class T, class Policy> |
| 131 | T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0) |
| 132 | { |
| 133 | // |
| 134 | // This is an implementation of: |
| 135 | // |
| 136 | // Algorithm AS 275: |
| 137 | // Computing the Non-Central #2 Distribution Function |
| 138 | // Cherng G. Ding |
| 139 | // Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482. |
| 140 | // |
| 141 | // This uses a stable forward iteration to sum the |
| 142 | // CDF, unfortunately this can not be used for large |
| 143 | // values of the non-centrality parameter because: |
| 144 | // * The first term may underflow to zero. |
| 145 | // * We may need an extra-ordinary number of terms |
| 146 | // before we reach the first *significant* term. |
| 147 | // |
| 148 | BOOST_MATH_STD_USING |
| 149 | // Special case: |
| 150 | if(x == 0) |
| 151 | return 0; |
| 152 | T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol); |
| 153 | T lambda = theta / 2; |
| 154 | T vk = exp(-lambda); |
| 155 | T uk = vk; |
| 156 | T sum = init_sum + tk * vk; |
| 157 | if(sum == 0) |
| 158 | return sum; |
| 159 | |
| 160 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 161 | T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 162 | |
| 163 | int i; |
| 164 | T lterm(0), term(0); |
| 165 | for(i = 1; static_cast<boost::uintmax_t>(i) < max_iter; ++i) |
| 166 | { |
| 167 | tk = tk * x / (f + 2 * i); |
| 168 | uk = uk * lambda / i; |
| 169 | vk = vk + uk; |
| 170 | lterm = term; |
| 171 | term = vk * tk; |
| 172 | sum += term; |
| 173 | if((fabs(term / sum) < errtol) && (term <= lterm)) |
| 174 | break; |
| 175 | } |
| 176 | //Error check: |
| 177 | if(static_cast<boost::uintmax_t>(i) >= max_iter) |
| 178 | return policies::raise_evaluation_error( |
| 179 | "cdf(non_central_chi_squared_distribution<%1%>, %1%)" , |
| 180 | "Series did not converge, closest value was %1%" , sum, pol); |
| 181 | return sum; |
| 182 | } |
| 183 | |
| 184 | |
| 185 | template <class T, class Policy> |
| 186 | T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum) |
| 187 | { |
| 188 | // |
| 189 | // This is taken more or less directly from: |
| 190 | // |
| 191 | // Computing discrete mixtures of continuous |
| 192 | // distributions: noncentral chisquare, noncentral t |
| 193 | // and the distribution of the square of the sample |
| 194 | // multiple correlation coefficient. |
| 195 | // D. Benton, K. Krishnamoorthy. |
| 196 | // Computational Statistics & Data Analysis 43 (2003) 249 - 267 |
| 197 | // |
| 198 | // We're summing a Poisson weighting term multiplied by |
| 199 | // a central chi squared distribution. |
| 200 | // |
| 201 | BOOST_MATH_STD_USING |
| 202 | // Special case: |
| 203 | if(y == 0) |
| 204 | return 0; |
| 205 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 206 | T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 207 | T errorf(0), errorb(0); |
| 208 | |
| 209 | T x = y / 2; |
| 210 | T del = lambda / 2; |
| 211 | // |
| 212 | // Starting location for the iteration, we'll iterate |
| 213 | // both forwards and backwards from this point. The |
| 214 | // location chosen is the maximum of the Poisson weight |
| 215 | // function, which ocurrs *after* the largest term in the |
| 216 | // sum. |
| 217 | // |
| 218 | int k = iround(del, pol); |
| 219 | T a = n / 2 + k; |
| 220 | // Central chi squared term for forward iteration: |
| 221 | T gamkf = boost::math::gamma_p(a, x, pol); |
| 222 | |
| 223 | if(lambda == 0) |
| 224 | return gamkf; |
| 225 | // Central chi squared term for backward iteration: |
| 226 | T gamkb = gamkf; |
| 227 | // Forwards Poisson weight: |
| 228 | T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol); |
| 229 | // Backwards Poisson weight: |
| 230 | T poiskb = poiskf; |
| 231 | // Forwards gamma function recursion term: |
| 232 | T xtermf = boost::math::gamma_p_derivative(a, x, pol); |
| 233 | // Backwards gamma function recursion term: |
| 234 | T xtermb = xtermf * x / a; |
| 235 | T sum = init_sum + poiskf * gamkf; |
| 236 | if(sum == 0) |
| 237 | return sum; |
| 238 | int i = 1; |
| 239 | // |
| 240 | // Backwards recursion first, this is the stable |
| 241 | // direction for gamma function recurrences: |
| 242 | // |
| 243 | while(i <= k) |
| 244 | { |
| 245 | xtermb *= (a - i + 1) / x; |
| 246 | gamkb += xtermb; |
| 247 | poiskb = poiskb * (k - i + 1) / del; |
| 248 | errorf = errorb; |
| 249 | errorb = gamkb * poiskb; |
| 250 | sum += errorb; |
| 251 | if((fabs(errorb / sum) < errtol) && (errorb <= errorf)) |
| 252 | break; |
| 253 | ++i; |
| 254 | } |
| 255 | i = 1; |
| 256 | // |
| 257 | // Now forwards recursion, the gamma function |
| 258 | // recurrence relation is unstable in this direction, |
| 259 | // so we rely on the magnitude of successive terms |
| 260 | // decreasing faster than we introduce cancellation error. |
| 261 | // For this reason it's vital that k is chosen to be *after* |
| 262 | // the largest term, so that successive forward iterations |
| 263 | // are strictly (and rapidly) converging. |
| 264 | // |
| 265 | do |
| 266 | { |
| 267 | xtermf = xtermf * x / (a + i - 1); |
| 268 | gamkf = gamkf - xtermf; |
| 269 | poiskf = poiskf * del / (k + i); |
| 270 | errorf = poiskf * gamkf; |
| 271 | sum += errorf; |
| 272 | ++i; |
| 273 | }while((fabs(errorf / sum) > errtol) && (static_cast<boost::uintmax_t>(i) < max_iter)); |
| 274 | |
| 275 | //Error check: |
| 276 | if(static_cast<boost::uintmax_t>(i) >= max_iter) |
| 277 | return policies::raise_evaluation_error( |
| 278 | "cdf(non_central_chi_squared_distribution<%1%>, %1%)" , |
| 279 | "Series did not converge, closest value was %1%" , sum, pol); |
| 280 | |
| 281 | return sum; |
| 282 | } |
| 283 | |
| 284 | template <class T, class Policy> |
| 285 | T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol) |
| 286 | { |
| 287 | // |
| 288 | // As above but for the PDF: |
| 289 | // |
| 290 | BOOST_MATH_STD_USING |
| 291 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 292 | T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
| 293 | T x2 = x / 2; |
| 294 | T n2 = n / 2; |
| 295 | T l2 = lambda / 2; |
| 296 | T sum = 0; |
| 297 | int k = itrunc(l2); |
| 298 | T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2); |
| 299 | if(pois == 0) |
| 300 | return 0; |
| 301 | T poisb = pois; |
| 302 | for(int i = k; ; ++i) |
| 303 | { |
| 304 | sum += pois; |
| 305 | if(pois / sum < errtol) |
| 306 | break; |
| 307 | if(static_cast<boost::uintmax_t>(i - k) >= max_iter) |
| 308 | return policies::raise_evaluation_error( |
| 309 | "pdf(non_central_chi_squared_distribution<%1%>, %1%)" , |
| 310 | "Series did not converge, closest value was %1%" , sum, pol); |
| 311 | pois *= l2 * x2 / ((i + 1) * (n2 + i)); |
| 312 | } |
| 313 | for(int i = k - 1; i >= 0; --i) |
| 314 | { |
| 315 | poisb *= (i + 1) * (n2 + i) / (l2 * x2); |
| 316 | sum += poisb; |
| 317 | if(poisb / sum < errtol) |
| 318 | break; |
| 319 | } |
| 320 | return sum / 2; |
| 321 | } |
| 322 | |
| 323 | template <class RealType, class Policy> |
| 324 | inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&) |
| 325 | { |
| 326 | typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 327 | typedef typename policies::normalise< |
| 328 | Policy, |
| 329 | policies::promote_float<false>, |
| 330 | policies::promote_double<false>, |
| 331 | policies::discrete_quantile<>, |
| 332 | policies::assert_undefined<> >::type forwarding_policy; |
| 333 | |
| 334 | BOOST_MATH_STD_USING |
| 335 | value_type result; |
| 336 | if(l == 0) |
| 337 | return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x)); |
| 338 | else if(x > k + l) |
| 339 | { |
| 340 | // Complement is the smaller of the two: |
| 341 | result = detail::non_central_chi_square_q( |
| 342 | static_cast<value_type>(x), |
| 343 | static_cast<value_type>(k), |
| 344 | static_cast<value_type>(l), |
| 345 | forwarding_policy(), |
| 346 | static_cast<value_type>(invert ? 0 : -1)); |
| 347 | invert = !invert; |
| 348 | } |
| 349 | else if(l < 200) |
| 350 | { |
| 351 | // For small values of the non-centrality parameter |
| 352 | // we can use Ding's method: |
| 353 | result = detail::non_central_chi_square_p_ding( |
| 354 | static_cast<value_type>(x), |
| 355 | static_cast<value_type>(k), |
| 356 | static_cast<value_type>(l), |
| 357 | forwarding_policy(), |
| 358 | static_cast<value_type>(invert ? -1 : 0)); |
| 359 | } |
| 360 | else |
| 361 | { |
| 362 | // For largers values of the non-centrality |
| 363 | // parameter Ding's method will consume an |
| 364 | // extra-ordinary number of terms, and worse |
| 365 | // may return zero when the result is in fact |
| 366 | // finite, use Krishnamoorthy's method instead: |
| 367 | result = detail::non_central_chi_square_p( |
| 368 | static_cast<value_type>(x), |
| 369 | static_cast<value_type>(k), |
| 370 | static_cast<value_type>(l), |
| 371 | forwarding_policy(), |
| 372 | static_cast<value_type>(invert ? -1 : 0)); |
| 373 | } |
| 374 | if(invert) |
| 375 | result = -result; |
| 376 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 377 | result, |
| 378 | "boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)" ); |
| 379 | } |
| 380 | |
| 381 | template <class T, class Policy> |
| 382 | struct nccs_quantile_functor |
| 383 | { |
| 384 | nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c) |
| 385 | : dist(d), target(t), comp(c) {} |
| 386 | |
| 387 | T operator()(const T& x) |
| 388 | { |
| 389 | return comp ? |
| 390 | target - cdf(complement(dist, x)) |
| 391 | : cdf(dist, x) - target; |
| 392 | } |
| 393 | |
| 394 | private: |
| 395 | non_central_chi_squared_distribution<T,Policy> dist; |
| 396 | T target; |
| 397 | bool comp; |
| 398 | }; |
| 399 | |
| 400 | template <class RealType, class Policy> |
| 401 | RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp) |
| 402 | { |
| 403 | BOOST_MATH_STD_USING |
| 404 | static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)" ; |
| 405 | typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 406 | typedef typename policies::normalise< |
| 407 | Policy, |
| 408 | policies::promote_float<false>, |
| 409 | policies::promote_double<false>, |
| 410 | policies::discrete_quantile<>, |
| 411 | policies::assert_undefined<> >::type forwarding_policy; |
| 412 | |
| 413 | value_type k = dist.degrees_of_freedom(); |
| 414 | value_type l = dist.non_centrality(); |
| 415 | value_type r; |
| 416 | if(!detail::check_df( |
| 417 | function, |
| 418 | k, &r, Policy()) |
| 419 | || |
| 420 | !detail::check_non_centrality( |
| 421 | function, |
| 422 | l, |
| 423 | &r, |
| 424 | Policy()) |
| 425 | || |
| 426 | !detail::check_probability( |
| 427 | function, |
| 428 | static_cast<value_type>(p), |
| 429 | &r, |
| 430 | Policy())) |
| 431 | return (RealType)r; |
| 432 | // |
| 433 | // Special cases get short-circuited first: |
| 434 | // |
| 435 | if(p == 0) |
| 436 | return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0; |
| 437 | if(p == 1) |
| 438 | return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy()); |
| 439 | // |
| 440 | // This is Pearson's approximation to the quantile, see |
| 441 | // Pearson, E. S. (1959) "Note on an approximation to the distribution of |
| 442 | // noncentral chi squared", Biometrika 46: 364. |
| 443 | // See also: |
| 444 | // "A comparison of approximations to percentiles of the noncentral chi2-distribution", |
| 445 | // Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76. |
| 446 | // Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile. |
| 447 | // |
| 448 | value_type b = -(l * l) / (k + 3 * l); |
| 449 | value_type c = (k + 3 * l) / (k + 2 * l); |
| 450 | value_type ff = (k + 2 * l) / (c * c); |
| 451 | value_type guess; |
| 452 | if(comp) |
| 453 | { |
| 454 | guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p)); |
| 455 | } |
| 456 | else |
| 457 | { |
| 458 | guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p); |
| 459 | } |
| 460 | // |
| 461 | // Sometimes guess goes very small or negative, in that case we have |
| 462 | // to do something else for the initial guess, this approximation |
| 463 | // was provided in a private communication from Thomas Luu, PhD candidate, |
| 464 | // University College London. It's an asymptotic expansion for the |
| 465 | // quantile which usually gets us within an order of magnitude of the |
| 466 | // correct answer. |
| 467 | // Fast and accurate parallel computation of quantile functions for random number generation, |
| 468 | // Thomas LuuDoctorial Thesis 2016 |
| 469 | // http://discovery.ucl.ac.uk/1482128/ |
| 470 | // |
| 471 | if(guess < 0.005) |
| 472 | { |
| 473 | value_type pp = comp ? 1 - p : p; |
| 474 | //guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k); |
| 475 | guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k)); |
| 476 | if(guess == 0) |
| 477 | guess = tools::min_value<value_type>(); |
| 478 | } |
| 479 | value_type result = detail::generic_quantile( |
| 480 | non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l), |
| 481 | p, |
| 482 | guess, |
| 483 | comp, |
| 484 | function); |
| 485 | |
| 486 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 487 | result, |
| 488 | function); |
| 489 | } |
| 490 | |
| 491 | template <class RealType, class Policy> |
| 492 | RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
| 493 | { |
| 494 | BOOST_MATH_STD_USING |
| 495 | static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)" ; |
| 496 | typedef typename policies::evaluation<RealType, Policy>::type value_type; |
| 497 | typedef typename policies::normalise< |
| 498 | Policy, |
| 499 | policies::promote_float<false>, |
| 500 | policies::promote_double<false>, |
| 501 | policies::discrete_quantile<>, |
| 502 | policies::assert_undefined<> >::type forwarding_policy; |
| 503 | |
| 504 | value_type k = dist.degrees_of_freedom(); |
| 505 | value_type l = dist.non_centrality(); |
| 506 | value_type r; |
| 507 | if(!detail::check_df( |
| 508 | function, |
| 509 | k, &r, Policy()) |
| 510 | || |
| 511 | !detail::check_non_centrality( |
| 512 | function, |
| 513 | l, |
| 514 | &r, |
| 515 | Policy()) |
| 516 | || |
| 517 | !detail::check_positive_x( |
| 518 | function, |
| 519 | (value_type)x, |
| 520 | &r, |
| 521 | Policy())) |
| 522 | return (RealType)r; |
| 523 | |
| 524 | if(l == 0) |
| 525 | return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x); |
| 526 | |
| 527 | // Special case: |
| 528 | if(x == 0) |
| 529 | return 0; |
| 530 | if(l > 50) |
| 531 | { |
| 532 | r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy()); |
| 533 | } |
| 534 | else |
| 535 | { |
| 536 | r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2; |
| 537 | if(fabs(r) >= tools::log_max_value<RealType>() / 4) |
| 538 | { |
| 539 | r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy()); |
| 540 | } |
| 541 | else |
| 542 | { |
| 543 | r = exp(r); |
| 544 | r = 0.5f * r |
| 545 | * boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy()); |
| 546 | } |
| 547 | } |
| 548 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 549 | r, |
| 550 | function); |
| 551 | } |
| 552 | |
| 553 | template <class RealType, class Policy> |
| 554 | struct degrees_of_freedom_finder |
| 555 | { |
| 556 | degrees_of_freedom_finder( |
| 557 | RealType lam_, RealType x_, RealType p_, bool c) |
| 558 | : lam(lam_), x(x_), p(p_), comp(c) {} |
| 559 | |
| 560 | RealType operator()(const RealType& v) |
| 561 | { |
| 562 | non_central_chi_squared_distribution<RealType, Policy> d(v, lam); |
| 563 | return comp ? |
| 564 | RealType(p - cdf(complement(d, x))) |
| 565 | : RealType(cdf(d, x) - p); |
| 566 | } |
| 567 | private: |
| 568 | RealType lam; |
| 569 | RealType x; |
| 570 | RealType p; |
| 571 | bool comp; |
| 572 | }; |
| 573 | |
| 574 | template <class RealType, class Policy> |
| 575 | inline RealType find_degrees_of_freedom( |
| 576 | RealType lam, RealType x, RealType p, RealType q, const Policy& pol) |
| 577 | { |
| 578 | const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom" ; |
| 579 | if((p == 0) || (q == 0)) |
| 580 | { |
| 581 | // |
| 582 | // Can't a thing if one of p and q is zero: |
| 583 | // |
| 584 | return policies::raise_evaluation_error<RealType>(function, |
| 585 | "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%" , |
| 586 | RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy()); |
| 587 | } |
| 588 | degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true); |
| 589 | tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
| 590 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 591 | // |
| 592 | // Pick an initial guess that we know will give us a probability |
| 593 | // right around 0.5. |
| 594 | // |
| 595 | RealType guess = x - lam; |
| 596 | if(guess < 1) |
| 597 | guess = 1; |
| 598 | std::pair<RealType, RealType> ir = tools::bracket_and_solve_root( |
| 599 | f, guess, RealType(2), false, tol, max_iter, pol); |
| 600 | RealType result = ir.first + (ir.second - ir.first) / 2; |
| 601 | if(max_iter >= policies::get_max_root_iterations<Policy>()) |
| 602 | { |
| 603 | return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
| 604 | " or there is no answer to problem. Current best guess is %1%" , result, Policy()); |
| 605 | } |
| 606 | return result; |
| 607 | } |
| 608 | |
| 609 | template <class RealType, class Policy> |
| 610 | struct non_centrality_finder |
| 611 | { |
| 612 | non_centrality_finder( |
| 613 | RealType v_, RealType x_, RealType p_, bool c) |
| 614 | : v(v_), x(x_), p(p_), comp(c) {} |
| 615 | |
| 616 | RealType operator()(const RealType& lam) |
| 617 | { |
| 618 | non_central_chi_squared_distribution<RealType, Policy> d(v, lam); |
| 619 | return comp ? |
| 620 | RealType(p - cdf(complement(d, x))) |
| 621 | : RealType(cdf(d, x) - p); |
| 622 | } |
| 623 | private: |
| 624 | RealType v; |
| 625 | RealType x; |
| 626 | RealType p; |
| 627 | bool comp; |
| 628 | }; |
| 629 | |
| 630 | template <class RealType, class Policy> |
| 631 | inline RealType find_non_centrality( |
| 632 | RealType v, RealType x, RealType p, RealType q, const Policy& pol) |
| 633 | { |
| 634 | const char* function = "non_central_chi_squared<%1%>::find_non_centrality" ; |
| 635 | if((p == 0) || (q == 0)) |
| 636 | { |
| 637 | // |
| 638 | // Can't do a thing if one of p and q is zero: |
| 639 | // |
| 640 | return policies::raise_evaluation_error<RealType>(function, |
| 641 | "Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%" , |
| 642 | RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy()); |
| 643 | } |
| 644 | non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true); |
| 645 | tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
| 646 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 647 | // |
| 648 | // Pick an initial guess that we know will give us a probability |
| 649 | // right around 0.5. |
| 650 | // |
| 651 | RealType guess = x - v; |
| 652 | if(guess < 1) |
| 653 | guess = 1; |
| 654 | std::pair<RealType, RealType> ir = tools::bracket_and_solve_root( |
| 655 | f, guess, RealType(2), false, tol, max_iter, pol); |
| 656 | RealType result = ir.first + (ir.second - ir.first) / 2; |
| 657 | if(max_iter >= policies::get_max_root_iterations<Policy>()) |
| 658 | { |
| 659 | return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
| 660 | " or there is no answer to problem. Current best guess is %1%" , result, Policy()); |
| 661 | } |
| 662 | return result; |
| 663 | } |
| 664 | |
| 665 | } |
| 666 | |
| 667 | template <class RealType = double, class Policy = policies::policy<> > |
| 668 | class non_central_chi_squared_distribution |
| 669 | { |
| 670 | public: |
| 671 | typedef RealType value_type; |
| 672 | typedef Policy policy_type; |
| 673 | |
| 674 | non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda) |
| 675 | { |
| 676 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)" ; |
| 677 | RealType r; |
| 678 | detail::check_df( |
| 679 | function, |
| 680 | df, &r, Policy()); |
| 681 | detail::check_non_centrality( |
| 682 | function, |
| 683 | ncp, |
| 684 | &r, |
| 685 | Policy()); |
| 686 | } // non_central_chi_squared_distribution constructor. |
| 687 | |
| 688 | RealType degrees_of_freedom() const |
| 689 | { // Private data getter function. |
| 690 | return df; |
| 691 | } |
| 692 | RealType non_centrality() const |
| 693 | { // Private data getter function. |
| 694 | return ncp; |
| 695 | } |
| 696 | static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p) |
| 697 | { |
| 698 | const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom" ; |
| 699 | typedef typename policies::evaluation<RealType, Policy>::type eval_type; |
| 700 | typedef typename policies::normalise< |
| 701 | Policy, |
| 702 | policies::promote_float<false>, |
| 703 | policies::promote_double<false>, |
| 704 | policies::discrete_quantile<>, |
| 705 | policies::assert_undefined<> >::type forwarding_policy; |
| 706 | eval_type result = detail::find_degrees_of_freedom( |
| 707 | static_cast<eval_type>(lam), |
| 708 | static_cast<eval_type>(x), |
| 709 | static_cast<eval_type>(p), |
| 710 | static_cast<eval_type>(1-p), |
| 711 | forwarding_policy()); |
| 712 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 713 | result, |
| 714 | function); |
| 715 | } |
| 716 | template <class A, class B, class C> |
| 717 | static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c) |
| 718 | { |
| 719 | const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom" ; |
| 720 | typedef typename policies::evaluation<RealType, Policy>::type eval_type; |
| 721 | typedef typename policies::normalise< |
| 722 | Policy, |
| 723 | policies::promote_float<false>, |
| 724 | policies::promote_double<false>, |
| 725 | policies::discrete_quantile<>, |
| 726 | policies::assert_undefined<> >::type forwarding_policy; |
| 727 | eval_type result = detail::find_degrees_of_freedom( |
| 728 | static_cast<eval_type>(c.dist), |
| 729 | static_cast<eval_type>(c.param1), |
| 730 | static_cast<eval_type>(1-c.param2), |
| 731 | static_cast<eval_type>(c.param2), |
| 732 | forwarding_policy()); |
| 733 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 734 | result, |
| 735 | function); |
| 736 | } |
| 737 | static RealType find_non_centrality(RealType v, RealType x, RealType p) |
| 738 | { |
| 739 | const char* function = "non_central_chi_squared<%1%>::find_non_centrality" ; |
| 740 | typedef typename policies::evaluation<RealType, Policy>::type eval_type; |
| 741 | typedef typename policies::normalise< |
| 742 | Policy, |
| 743 | policies::promote_float<false>, |
| 744 | policies::promote_double<false>, |
| 745 | policies::discrete_quantile<>, |
| 746 | policies::assert_undefined<> >::type forwarding_policy; |
| 747 | eval_type result = detail::find_non_centrality( |
| 748 | static_cast<eval_type>(v), |
| 749 | static_cast<eval_type>(x), |
| 750 | static_cast<eval_type>(p), |
| 751 | static_cast<eval_type>(1-p), |
| 752 | forwarding_policy()); |
| 753 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 754 | result, |
| 755 | function); |
| 756 | } |
| 757 | template <class A, class B, class C> |
| 758 | static RealType find_non_centrality(const complemented3_type<A,B,C>& c) |
| 759 | { |
| 760 | const char* function = "non_central_chi_squared<%1%>::find_non_centrality" ; |
| 761 | typedef typename policies::evaluation<RealType, Policy>::type eval_type; |
| 762 | typedef typename policies::normalise< |
| 763 | Policy, |
| 764 | policies::promote_float<false>, |
| 765 | policies::promote_double<false>, |
| 766 | policies::discrete_quantile<>, |
| 767 | policies::assert_undefined<> >::type forwarding_policy; |
| 768 | eval_type result = detail::find_non_centrality( |
| 769 | static_cast<eval_type>(c.dist), |
| 770 | static_cast<eval_type>(c.param1), |
| 771 | static_cast<eval_type>(1-c.param2), |
| 772 | static_cast<eval_type>(c.param2), |
| 773 | forwarding_policy()); |
| 774 | return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
| 775 | result, |
| 776 | function); |
| 777 | } |
| 778 | private: |
| 779 | // Data member, initialized by constructor. |
| 780 | RealType df; // degrees of freedom. |
| 781 | RealType ncp; // non-centrality parameter |
| 782 | }; // template <class RealType, class Policy> class non_central_chi_squared_distribution |
| 783 | |
| 784 | typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double. |
| 785 | |
| 786 | // Non-member functions to give properties of the distribution. |
| 787 | |
| 788 | template <class RealType, class Policy> |
| 789 | inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */) |
| 790 | { // Range of permissible values for random variable k. |
| 791 | using boost::math::tools::max_value; |
| 792 | return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer? |
| 793 | } |
| 794 | |
| 795 | template <class RealType, class Policy> |
| 796 | inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */) |
| 797 | { // Range of supported values for random variable k. |
| 798 | // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
| 799 | using boost::math::tools::max_value; |
| 800 | return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); |
| 801 | } |
| 802 | |
| 803 | template <class RealType, class Policy> |
| 804 | inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 805 | { // Mean of poisson distribution = lambda. |
| 806 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()" ; |
| 807 | RealType k = dist.degrees_of_freedom(); |
| 808 | RealType l = dist.non_centrality(); |
| 809 | RealType r; |
| 810 | if(!detail::check_df( |
| 811 | function, |
| 812 | k, &r, Policy()) |
| 813 | || |
| 814 | !detail::check_non_centrality( |
| 815 | function, |
| 816 | l, |
| 817 | &r, |
| 818 | Policy())) |
| 819 | return r; |
| 820 | return k + l; |
| 821 | } // mean |
| 822 | |
| 823 | template <class RealType, class Policy> |
| 824 | inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 825 | { // mode. |
| 826 | static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)" ; |
| 827 | |
| 828 | RealType k = dist.degrees_of_freedom(); |
| 829 | RealType l = dist.non_centrality(); |
| 830 | RealType r; |
| 831 | if(!detail::check_df( |
| 832 | function, |
| 833 | k, &r, Policy()) |
| 834 | || |
| 835 | !detail::check_non_centrality( |
| 836 | function, |
| 837 | l, |
| 838 | &r, |
| 839 | Policy())) |
| 840 | return (RealType)r; |
| 841 | return detail::generic_find_mode(dist, 1 + k, function); |
| 842 | } |
| 843 | |
| 844 | template <class RealType, class Policy> |
| 845 | inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 846 | { // variance. |
| 847 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()" ; |
| 848 | RealType k = dist.degrees_of_freedom(); |
| 849 | RealType l = dist.non_centrality(); |
| 850 | RealType r; |
| 851 | if(!detail::check_df( |
| 852 | function, |
| 853 | k, &r, Policy()) |
| 854 | || |
| 855 | !detail::check_non_centrality( |
| 856 | function, |
| 857 | l, |
| 858 | &r, |
| 859 | Policy())) |
| 860 | return r; |
| 861 | return 2 * (2 * l + k); |
| 862 | } |
| 863 | |
| 864 | // RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 865 | // standard_deviation provided by derived accessors. |
| 866 | |
| 867 | template <class RealType, class Policy> |
| 868 | inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 869 | { // skewness = sqrt(l). |
| 870 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()" ; |
| 871 | RealType k = dist.degrees_of_freedom(); |
| 872 | RealType l = dist.non_centrality(); |
| 873 | RealType r; |
| 874 | if(!detail::check_df( |
| 875 | function, |
| 876 | k, &r, Policy()) |
| 877 | || |
| 878 | !detail::check_non_centrality( |
| 879 | function, |
| 880 | l, |
| 881 | &r, |
| 882 | Policy())) |
| 883 | return r; |
| 884 | BOOST_MATH_STD_USING |
| 885 | return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l); |
| 886 | } |
| 887 | |
| 888 | template <class RealType, class Policy> |
| 889 | inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 890 | { |
| 891 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()" ; |
| 892 | RealType k = dist.degrees_of_freedom(); |
| 893 | RealType l = dist.non_centrality(); |
| 894 | RealType r; |
| 895 | if(!detail::check_df( |
| 896 | function, |
| 897 | k, &r, Policy()) |
| 898 | || |
| 899 | !detail::check_non_centrality( |
| 900 | function, |
| 901 | l, |
| 902 | &r, |
| 903 | Policy())) |
| 904 | return r; |
| 905 | return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l)); |
| 906 | } // kurtosis_excess |
| 907 | |
| 908 | template <class RealType, class Policy> |
| 909 | inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
| 910 | { |
| 911 | return kurtosis_excess(dist) + 3; |
| 912 | } |
| 913 | |
| 914 | template <class RealType, class Policy> |
| 915 | inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
| 916 | { // Probability Density/Mass Function. |
| 917 | return detail::nccs_pdf(dist, x); |
| 918 | } // pdf |
| 919 | |
| 920 | template <class RealType, class Policy> |
| 921 | RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
| 922 | { |
| 923 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)" ; |
| 924 | RealType k = dist.degrees_of_freedom(); |
| 925 | RealType l = dist.non_centrality(); |
| 926 | RealType r; |
| 927 | if(!detail::check_df( |
| 928 | function, |
| 929 | k, &r, Policy()) |
| 930 | || |
| 931 | !detail::check_non_centrality( |
| 932 | function, |
| 933 | l, |
| 934 | &r, |
| 935 | Policy()) |
| 936 | || |
| 937 | !detail::check_positive_x( |
| 938 | function, |
| 939 | x, |
| 940 | &r, |
| 941 | Policy())) |
| 942 | return r; |
| 943 | |
| 944 | return detail::non_central_chi_squared_cdf(x, k, l, false, Policy()); |
| 945 | } // cdf |
| 946 | |
| 947 | template <class RealType, class Policy> |
| 948 | RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c) |
| 949 | { // Complemented Cumulative Distribution Function |
| 950 | const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)" ; |
| 951 | non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist; |
| 952 | RealType x = c.param; |
| 953 | RealType k = dist.degrees_of_freedom(); |
| 954 | RealType l = dist.non_centrality(); |
| 955 | RealType r; |
| 956 | if(!detail::check_df( |
| 957 | function, |
| 958 | k, &r, Policy()) |
| 959 | || |
| 960 | !detail::check_non_centrality( |
| 961 | function, |
| 962 | l, |
| 963 | &r, |
| 964 | Policy()) |
| 965 | || |
| 966 | !detail::check_positive_x( |
| 967 | function, |
| 968 | x, |
| 969 | &r, |
| 970 | Policy())) |
| 971 | return r; |
| 972 | |
| 973 | return detail::non_central_chi_squared_cdf(x, k, l, true, Policy()); |
| 974 | } // ccdf |
| 975 | |
| 976 | template <class RealType, class Policy> |
| 977 | inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p) |
| 978 | { // Quantile (or Percent Point) function. |
| 979 | return detail::nccs_quantile(dist, p, false); |
| 980 | } // quantile |
| 981 | |
| 982 | template <class RealType, class Policy> |
| 983 | inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c) |
| 984 | { // Quantile (or Percent Point) function. |
| 985 | return detail::nccs_quantile(c.dist, c.param, true); |
| 986 | } // quantile complement. |
| 987 | |
| 988 | } // namespace math |
| 989 | } // namespace boost |
| 990 | |
| 991 | // This include must be at the end, *after* the accessors |
| 992 | // for this distribution have been defined, in order to |
| 993 | // keep compilers that support two-phase lookup happy. |
| 994 | #include <boost/math/distributions/detail/derived_accessors.hpp> |
| 995 | |
| 996 | #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
| 997 | |
| 998 | |
| 999 | |
| 1000 | |