| 1 | // NOTE: The descriptions for each of the vector methods on the traits below |
| 2 | // are pretty inscrutable. For this reason, there are tests for every method |
| 3 | // on for every trait impl below. If you're confused about what an op does, |
| 4 | // consult its test. (They probably should be doc tests, but I couldn't figure |
| 5 | // out how to write them in a non-annoying way.) |
| 6 | |
| 7 | use core::{ |
| 8 | fmt::Debug, |
| 9 | panic::{RefUnwindSafe, UnwindSafe}, |
| 10 | }; |
| 11 | |
| 12 | /// A trait for describing vector operations used by vectorized searchers. |
| 13 | /// |
| 14 | /// The trait is highly constrained to low level vector operations needed for |
| 15 | /// the specific algorithms used in this crate. In general, it was invented |
| 16 | /// mostly to be generic over x86's __m128i and __m256i types. At time of |
| 17 | /// writing, it also supports wasm and aarch64 128-bit vector types as well. |
| 18 | /// |
| 19 | /// # Safety |
| 20 | /// |
| 21 | /// All methods are not safe since they are intended to be implemented using |
| 22 | /// vendor intrinsics, which are also not safe. Callers must ensure that |
| 23 | /// the appropriate target features are enabled in the calling function, |
| 24 | /// and that the current CPU supports them. All implementations should |
| 25 | /// avoid marking the routines with `#[target_feature]` and instead mark |
| 26 | /// them as `#[inline(always)]` to ensure they get appropriately inlined. |
| 27 | /// (`inline(always)` cannot be used with target_feature.) |
| 28 | pub(crate) trait Vector: |
| 29 | Copy + Debug + Send + Sync + UnwindSafe + RefUnwindSafe |
| 30 | { |
| 31 | /// The number of bits in the vector. |
| 32 | const BITS: usize; |
| 33 | /// The number of bytes in the vector. That is, this is the size of the |
| 34 | /// vector in memory. |
| 35 | const BYTES: usize; |
| 36 | |
| 37 | /// Create a vector with 8-bit lanes with the given byte repeated into each |
| 38 | /// lane. |
| 39 | /// |
| 40 | /// # Safety |
| 41 | /// |
| 42 | /// Callers must ensure that this is okay to call in the current target for |
| 43 | /// the current CPU. |
| 44 | unsafe fn splat(byte: u8) -> Self; |
| 45 | |
| 46 | /// Read a vector-size number of bytes from the given pointer. The pointer |
| 47 | /// does not need to be aligned. |
| 48 | /// |
| 49 | /// # Safety |
| 50 | /// |
| 51 | /// Callers must ensure that this is okay to call in the current target for |
| 52 | /// the current CPU. |
| 53 | /// |
| 54 | /// Callers must guarantee that at least `BYTES` bytes are readable from |
| 55 | /// `data`. |
| 56 | unsafe fn load_unaligned(data: *const u8) -> Self; |
| 57 | |
| 58 | /// Returns true if and only if this vector has zero in all of its lanes. |
| 59 | /// |
| 60 | /// # Safety |
| 61 | /// |
| 62 | /// Callers must ensure that this is okay to call in the current target for |
| 63 | /// the current CPU. |
| 64 | unsafe fn is_zero(self) -> bool; |
| 65 | |
| 66 | /// Do an 8-bit pairwise equality check. If lane `i` is equal in this |
| 67 | /// vector and the one given, then lane `i` in the resulting vector is set |
| 68 | /// to `0xFF`. Otherwise, it is set to `0x00`. |
| 69 | /// |
| 70 | /// # Safety |
| 71 | /// |
| 72 | /// Callers must ensure that this is okay to call in the current target for |
| 73 | /// the current CPU. |
| 74 | unsafe fn cmpeq(self, vector2: Self) -> Self; |
| 75 | |
| 76 | /// Perform a bitwise 'and' of this vector and the one given and return |
| 77 | /// the result. |
| 78 | /// |
| 79 | /// # Safety |
| 80 | /// |
| 81 | /// Callers must ensure that this is okay to call in the current target for |
| 82 | /// the current CPU. |
| 83 | unsafe fn and(self, vector2: Self) -> Self; |
| 84 | |
| 85 | /// Perform a bitwise 'or' of this vector and the one given and return |
| 86 | /// the result. |
| 87 | /// |
| 88 | /// # Safety |
| 89 | /// |
| 90 | /// Callers must ensure that this is okay to call in the current target for |
| 91 | /// the current CPU. |
| 92 | #[allow (dead_code)] // unused, but useful enough to keep around? |
| 93 | unsafe fn or(self, vector2: Self) -> Self; |
| 94 | |
| 95 | /// Shift each 8-bit lane in this vector to the right by the number of |
| 96 | /// bits indictated by the `BITS` type parameter. |
| 97 | /// |
| 98 | /// # Safety |
| 99 | /// |
| 100 | /// Callers must ensure that this is okay to call in the current target for |
| 101 | /// the current CPU. |
| 102 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self; |
| 103 | |
| 104 | /// Shift this vector to the left by one byte and shift the most |
| 105 | /// significant byte of `vector2` into the least significant position of |
| 106 | /// this vector. |
| 107 | /// |
| 108 | /// Stated differently, this behaves as if `self` and `vector2` were |
| 109 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
| 110 | /// right by `Self::BYTES - 1` bytes. |
| 111 | /// |
| 112 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
| 113 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
| 114 | /// immediately following it. This permits combining the last two bytes |
| 115 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 1` |
| 116 | /// bytes from the current chunk. This permits aligning the result of |
| 117 | /// various shuffles so that they can be and-ed together and a possible |
| 118 | /// candidate discovered. |
| 119 | /// |
| 120 | /// # Safety |
| 121 | /// |
| 122 | /// Callers must ensure that this is okay to call in the current target for |
| 123 | /// the current CPU. |
| 124 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self; |
| 125 | |
| 126 | /// Shift this vector to the left by two bytes and shift the two most |
| 127 | /// significant bytes of `vector2` into the least significant position of |
| 128 | /// this vector. |
| 129 | /// |
| 130 | /// Stated differently, this behaves as if `self` and `vector2` were |
| 131 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
| 132 | /// right by `Self::BYTES - 2` bytes. |
| 133 | /// |
| 134 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
| 135 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
| 136 | /// immediately following it. This permits combining the last two bytes |
| 137 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 2` |
| 138 | /// bytes from the current chunk. This permits aligning the result of |
| 139 | /// various shuffles so that they can be and-ed together and a possible |
| 140 | /// candidate discovered. |
| 141 | /// |
| 142 | /// # Safety |
| 143 | /// |
| 144 | /// Callers must ensure that this is okay to call in the current target for |
| 145 | /// the current CPU. |
| 146 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self; |
| 147 | |
| 148 | /// Shift this vector to the left by three bytes and shift the three most |
| 149 | /// significant bytes of `vector2` into the least significant position of |
| 150 | /// this vector. |
| 151 | /// |
| 152 | /// Stated differently, this behaves as if `self` and `vector2` were |
| 153 | /// concatenated into a `2 * Self::BITS` temporary buffer and then shifted |
| 154 | /// right by `Self::BYTES - 3` bytes. |
| 155 | /// |
| 156 | /// With respect to the Teddy algorithm, `vector2` is usually a previous |
| 157 | /// `Self::BYTES` chunk from the haystack and `self` is the chunk |
| 158 | /// immediately following it. This permits combining the last three bytes |
| 159 | /// from the previous chunk (`vector2`) with the first `Self::BYTES - 3` |
| 160 | /// bytes from the current chunk. This permits aligning the result of |
| 161 | /// various shuffles so that they can be and-ed together and a possible |
| 162 | /// candidate discovered. |
| 163 | /// |
| 164 | /// # Safety |
| 165 | /// |
| 166 | /// Callers must ensure that this is okay to call in the current target for |
| 167 | /// the current CPU. |
| 168 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self; |
| 169 | |
| 170 | /// Shuffles the bytes in this vector according to the indices in each of |
| 171 | /// the corresponding lanes in `indices`. |
| 172 | /// |
| 173 | /// If `i` is the index of corresponding lanes, `A` is this vector, `B` is |
| 174 | /// indices and `C` is the resulting vector, then `C = A[B[i]]`. |
| 175 | /// |
| 176 | /// # Safety |
| 177 | /// |
| 178 | /// Callers must ensure that this is okay to call in the current target for |
| 179 | /// the current CPU. |
| 180 | unsafe fn shuffle_bytes(self, indices: Self) -> Self; |
| 181 | |
| 182 | /// Call the provided function for each 64-bit lane in this vector. The |
| 183 | /// given function is provided the lane index and lane value as a `u64`. |
| 184 | /// |
| 185 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
| 186 | /// value is returned. Otherwise, this returns `None`. |
| 187 | /// |
| 188 | /// # Notes |
| 189 | /// |
| 190 | /// Conceptually it would be nice if we could have a |
| 191 | /// `unpack64(self) -> [u64; BITS / 64]` method, but defining that is |
| 192 | /// tricky given Rust's [current support for const generics][support]. |
| 193 | /// And even if we could, it would be tricky to write generic code over |
| 194 | /// it. (Not impossible. We could introduce another layer that requires |
| 195 | /// `AsRef<[u64]>` or something.) |
| 196 | /// |
| 197 | /// [support]: https://github.com/rust-lang/rust/issues/60551 |
| 198 | /// |
| 199 | /// # Safety |
| 200 | /// |
| 201 | /// Callers must ensure that this is okay to call in the current target for |
| 202 | /// the current CPU. |
| 203 | unsafe fn for_each_64bit_lane<T>( |
| 204 | self, |
| 205 | f: impl FnMut(usize, u64) -> Option<T>, |
| 206 | ) -> Option<T>; |
| 207 | } |
| 208 | |
| 209 | /// This trait extends the `Vector` trait with additional operations to support |
| 210 | /// Fat Teddy. |
| 211 | /// |
| 212 | /// Fat Teddy uses 16 buckets instead of 8, but reads half as many bytes (as |
| 213 | /// the vector size) instead of the full size of a vector per iteration. For |
| 214 | /// example, when using a 256-bit vector, Slim Teddy reads 32 bytes at a timr |
| 215 | /// but Fat Teddy reads 16 bytes at a time. |
| 216 | /// |
| 217 | /// Fat Teddy is useful when searching for a large number of literals. |
| 218 | /// The extra number of buckets spreads the literals out more and reduces |
| 219 | /// verification time. |
| 220 | /// |
| 221 | /// Currently we only implement this for AVX on x86_64. It would be nice to |
| 222 | /// implement this for SSE on x86_64 and NEON on aarch64, with the latter two |
| 223 | /// only reading 8 bytes at a time. It's not clear how well it would work, but |
| 224 | /// there are some tricky things to figure out in terms of implementation. The |
| 225 | /// `half_shift_in_{one,two,three}_bytes` methods in particular are probably |
| 226 | /// the trickiest of the bunch. For AVX2, these are implemented by taking |
| 227 | /// advantage of the fact that `_mm256_alignr_epi8` operates on each 128-bit |
| 228 | /// half instead of the full 256-bit vector. (Where as `_mm_alignr_epi8` |
| 229 | /// operates on the full 128-bit vector and not on each 64-bit half.) I didn't |
| 230 | /// do a careful survey of NEON to see if it could easily support these |
| 231 | /// operations. |
| 232 | pub(crate) trait FatVector: Vector { |
| 233 | type Half: Vector; |
| 234 | |
| 235 | /// Read a half-vector-size number of bytes from the given pointer, and |
| 236 | /// broadcast it across both halfs of a full vector. The pointer does not |
| 237 | /// need to be aligned. |
| 238 | /// |
| 239 | /// # Safety |
| 240 | /// |
| 241 | /// Callers must ensure that this is okay to call in the current target for |
| 242 | /// the current CPU. |
| 243 | /// |
| 244 | /// Callers must guarantee that at least `Self::HALF::BYTES` bytes are |
| 245 | /// readable from `data`. |
| 246 | unsafe fn load_half_unaligned(data: *const u8) -> Self; |
| 247 | |
| 248 | /// Like `Vector::shift_in_one_byte`, except this is done for each half |
| 249 | /// of the vector instead. |
| 250 | /// |
| 251 | /// # Safety |
| 252 | /// |
| 253 | /// Callers must ensure that this is okay to call in the current target for |
| 254 | /// the current CPU. |
| 255 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self; |
| 256 | |
| 257 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
| 258 | /// of the vector instead. |
| 259 | /// |
| 260 | /// # Safety |
| 261 | /// |
| 262 | /// Callers must ensure that this is okay to call in the current target for |
| 263 | /// the current CPU. |
| 264 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self; |
| 265 | |
| 266 | /// Like `Vector::shift_in_two_bytes`, except this is done for each half |
| 267 | /// of the vector instead. |
| 268 | /// |
| 269 | /// # Safety |
| 270 | /// |
| 271 | /// Callers must ensure that this is okay to call in the current target for |
| 272 | /// the current CPU. |
| 273 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self; |
| 274 | |
| 275 | /// Swap the 128-bit lanes in this vector. |
| 276 | /// |
| 277 | /// # Safety |
| 278 | /// |
| 279 | /// Callers must ensure that this is okay to call in the current target for |
| 280 | /// the current CPU. |
| 281 | unsafe fn swap_halves(self) -> Self; |
| 282 | |
| 283 | /// Unpack and interleave the 8-bit lanes from the low 128 bits of each |
| 284 | /// vector and return the result. |
| 285 | /// |
| 286 | /// # Safety |
| 287 | /// |
| 288 | /// Callers must ensure that this is okay to call in the current target for |
| 289 | /// the current CPU. |
| 290 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self; |
| 291 | |
| 292 | /// Unpack and interleave the 8-bit lanes from the high 128 bits of each |
| 293 | /// vector and return the result. |
| 294 | /// |
| 295 | /// # Safety |
| 296 | /// |
| 297 | /// Callers must ensure that this is okay to call in the current target for |
| 298 | /// the current CPU. |
| 299 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self; |
| 300 | |
| 301 | /// Call the provided function for each 64-bit lane in the lower half |
| 302 | /// of this vector and then in the other vector. The given function is |
| 303 | /// provided the lane index and lane value as a `u64`. (The high 128-bits |
| 304 | /// of each vector are ignored.) |
| 305 | /// |
| 306 | /// If `f` returns `Some`, then iteration over the lanes is stopped and the |
| 307 | /// value is returned. Otherwise, this returns `None`. |
| 308 | /// |
| 309 | /// # Safety |
| 310 | /// |
| 311 | /// Callers must ensure that this is okay to call in the current target for |
| 312 | /// the current CPU. |
| 313 | unsafe fn for_each_low_64bit_lane<T>( |
| 314 | self, |
| 315 | vector2: Self, |
| 316 | f: impl FnMut(usize, u64) -> Option<T>, |
| 317 | ) -> Option<T>; |
| 318 | } |
| 319 | |
| 320 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 321 | mod x86_64_ssse3 { |
| 322 | use core::arch::x86_64::*; |
| 323 | |
| 324 | use crate::util::int::{I32, I8}; |
| 325 | |
| 326 | use super::Vector; |
| 327 | |
| 328 | impl Vector for __m128i { |
| 329 | const BITS: usize = 128; |
| 330 | const BYTES: usize = 16; |
| 331 | |
| 332 | #[inline (always)] |
| 333 | unsafe fn splat(byte: u8) -> __m128i { |
| 334 | _mm_set1_epi8(i8::from_bits(byte)) |
| 335 | } |
| 336 | |
| 337 | #[inline (always)] |
| 338 | unsafe fn load_unaligned(data: *const u8) -> __m128i { |
| 339 | _mm_loadu_si128(data.cast::<__m128i>()) |
| 340 | } |
| 341 | |
| 342 | #[inline (always)] |
| 343 | unsafe fn is_zero(self) -> bool { |
| 344 | let cmp = self.cmpeq(Self::splat(0)); |
| 345 | _mm_movemask_epi8(cmp).to_bits() == 0xFFFF |
| 346 | } |
| 347 | |
| 348 | #[inline (always)] |
| 349 | unsafe fn cmpeq(self, vector2: Self) -> __m128i { |
| 350 | _mm_cmpeq_epi8(self, vector2) |
| 351 | } |
| 352 | |
| 353 | #[inline (always)] |
| 354 | unsafe fn and(self, vector2: Self) -> __m128i { |
| 355 | _mm_and_si128(self, vector2) |
| 356 | } |
| 357 | |
| 358 | #[inline (always)] |
| 359 | unsafe fn or(self, vector2: Self) -> __m128i { |
| 360 | _mm_or_si128(self, vector2) |
| 361 | } |
| 362 | |
| 363 | #[inline (always)] |
| 364 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
| 365 | // Apparently there is no _mm_srli_epi8, so we emulate it by |
| 366 | // shifting 16-bit integers and masking out the high nybble of each |
| 367 | // 8-bit lane (since that nybble will contain bits from the low |
| 368 | // nybble of the previous lane). |
| 369 | let lomask = Self::splat(0xF); |
| 370 | _mm_srli_epi16(self, BITS).and(lomask) |
| 371 | } |
| 372 | |
| 373 | #[inline (always)] |
| 374 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
| 375 | _mm_alignr_epi8(self, vector2, 15) |
| 376 | } |
| 377 | |
| 378 | #[inline (always)] |
| 379 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
| 380 | _mm_alignr_epi8(self, vector2, 14) |
| 381 | } |
| 382 | |
| 383 | #[inline (always)] |
| 384 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
| 385 | _mm_alignr_epi8(self, vector2, 13) |
| 386 | } |
| 387 | |
| 388 | #[inline (always)] |
| 389 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
| 390 | _mm_shuffle_epi8(self, indices) |
| 391 | } |
| 392 | |
| 393 | #[inline (always)] |
| 394 | unsafe fn for_each_64bit_lane<T>( |
| 395 | self, |
| 396 | mut f: impl FnMut(usize, u64) -> Option<T>, |
| 397 | ) -> Option<T> { |
| 398 | // We could just use _mm_extract_epi64 here, but that requires |
| 399 | // SSE 4.1. It isn't necessarily a problem to just require SSE 4.1, |
| 400 | // but everything else works with SSSE3 so we stick to that subset. |
| 401 | let lanes: [u64; 2] = core::mem::transmute(self); |
| 402 | if let Some(t) = f(0, lanes[0]) { |
| 403 | return Some(t); |
| 404 | } |
| 405 | if let Some(t) = f(1, lanes[1]) { |
| 406 | return Some(t); |
| 407 | } |
| 408 | None |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | #[cfg (all(target_arch = "x86_64" , target_feature = "sse2" ))] |
| 414 | mod x86_64_avx2 { |
| 415 | use core::arch::x86_64::*; |
| 416 | |
| 417 | use crate::util::int::{I32, I64, I8}; |
| 418 | |
| 419 | use super::{FatVector, Vector}; |
| 420 | |
| 421 | impl Vector for __m256i { |
| 422 | const BITS: usize = 256; |
| 423 | const BYTES: usize = 32; |
| 424 | |
| 425 | #[inline (always)] |
| 426 | unsafe fn splat(byte: u8) -> __m256i { |
| 427 | _mm256_set1_epi8(i8::from_bits(byte)) |
| 428 | } |
| 429 | |
| 430 | #[inline (always)] |
| 431 | unsafe fn load_unaligned(data: *const u8) -> __m256i { |
| 432 | _mm256_loadu_si256(data.cast::<__m256i>()) |
| 433 | } |
| 434 | |
| 435 | #[inline (always)] |
| 436 | unsafe fn is_zero(self) -> bool { |
| 437 | let cmp = self.cmpeq(Self::splat(0)); |
| 438 | _mm256_movemask_epi8(cmp).to_bits() == 0xFFFFFFFF |
| 439 | } |
| 440 | |
| 441 | #[inline (always)] |
| 442 | unsafe fn cmpeq(self, vector2: Self) -> __m256i { |
| 443 | _mm256_cmpeq_epi8(self, vector2) |
| 444 | } |
| 445 | |
| 446 | #[inline (always)] |
| 447 | unsafe fn and(self, vector2: Self) -> __m256i { |
| 448 | _mm256_and_si256(self, vector2) |
| 449 | } |
| 450 | |
| 451 | #[inline (always)] |
| 452 | unsafe fn or(self, vector2: Self) -> __m256i { |
| 453 | _mm256_or_si256(self, vector2) |
| 454 | } |
| 455 | |
| 456 | #[inline (always)] |
| 457 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
| 458 | let lomask = Self::splat(0xF); |
| 459 | _mm256_srli_epi16(self, BITS).and(lomask) |
| 460 | } |
| 461 | |
| 462 | #[inline (always)] |
| 463 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
| 464 | // Credit goes to jneem for figuring this out: |
| 465 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
| 466 | // |
| 467 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
| 468 | // PALIGNR instructions, which is not what we want, so we need to |
| 469 | // do some extra shuffling. |
| 470 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
| 471 | _mm256_alignr_epi8(self, v, 15) |
| 472 | } |
| 473 | |
| 474 | #[inline (always)] |
| 475 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
| 476 | // Credit goes to jneem for figuring this out: |
| 477 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
| 478 | // |
| 479 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
| 480 | // PALIGNR instructions, which is not what we want, so we need to |
| 481 | // do some extra shuffling. |
| 482 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
| 483 | _mm256_alignr_epi8(self, v, 14) |
| 484 | } |
| 485 | |
| 486 | #[inline (always)] |
| 487 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
| 488 | // Credit goes to jneem for figuring this out: |
| 489 | // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184 |
| 490 | // |
| 491 | // TL;DR avx2's PALIGNR instruction is actually just two 128-bit |
| 492 | // PALIGNR instructions, which is not what we want, so we need to |
| 493 | // do some extra shuffling. |
| 494 | let v = _mm256_permute2x128_si256(vector2, self, 0x21); |
| 495 | _mm256_alignr_epi8(self, v, 13) |
| 496 | } |
| 497 | |
| 498 | #[inline (always)] |
| 499 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
| 500 | _mm256_shuffle_epi8(self, indices) |
| 501 | } |
| 502 | |
| 503 | #[inline (always)] |
| 504 | unsafe fn for_each_64bit_lane<T>( |
| 505 | self, |
| 506 | mut f: impl FnMut(usize, u64) -> Option<T>, |
| 507 | ) -> Option<T> { |
| 508 | // NOTE: At one point in the past, I used transmute to this to |
| 509 | // get a [u64; 4], but it turned out to lead to worse codegen IIRC. |
| 510 | // I've tried it more recently, and it looks like that's no longer |
| 511 | // the case. But since there's no difference, we stick with the |
| 512 | // slightly more complicated but transmute-free version. |
| 513 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
| 514 | if let Some(t) = f(0, lane) { |
| 515 | return Some(t); |
| 516 | } |
| 517 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
| 518 | if let Some(t) = f(1, lane) { |
| 519 | return Some(t); |
| 520 | } |
| 521 | let lane = _mm256_extract_epi64(self, 2).to_bits(); |
| 522 | if let Some(t) = f(2, lane) { |
| 523 | return Some(t); |
| 524 | } |
| 525 | let lane = _mm256_extract_epi64(self, 3).to_bits(); |
| 526 | if let Some(t) = f(3, lane) { |
| 527 | return Some(t); |
| 528 | } |
| 529 | None |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | impl FatVector for __m256i { |
| 534 | type Half = __m128i; |
| 535 | |
| 536 | #[inline (always)] |
| 537 | unsafe fn load_half_unaligned(data: *const u8) -> Self { |
| 538 | let half = Self::Half::load_unaligned(data); |
| 539 | _mm256_broadcastsi128_si256(half) |
| 540 | } |
| 541 | |
| 542 | #[inline (always)] |
| 543 | unsafe fn half_shift_in_one_byte(self, vector2: Self) -> Self { |
| 544 | _mm256_alignr_epi8(self, vector2, 15) |
| 545 | } |
| 546 | |
| 547 | #[inline (always)] |
| 548 | unsafe fn half_shift_in_two_bytes(self, vector2: Self) -> Self { |
| 549 | _mm256_alignr_epi8(self, vector2, 14) |
| 550 | } |
| 551 | |
| 552 | #[inline (always)] |
| 553 | unsafe fn half_shift_in_three_bytes(self, vector2: Self) -> Self { |
| 554 | _mm256_alignr_epi8(self, vector2, 13) |
| 555 | } |
| 556 | |
| 557 | #[inline (always)] |
| 558 | unsafe fn swap_halves(self) -> Self { |
| 559 | _mm256_permute4x64_epi64(self, 0x4E) |
| 560 | } |
| 561 | |
| 562 | #[inline (always)] |
| 563 | unsafe fn interleave_low_8bit_lanes(self, vector2: Self) -> Self { |
| 564 | _mm256_unpacklo_epi8(self, vector2) |
| 565 | } |
| 566 | |
| 567 | #[inline (always)] |
| 568 | unsafe fn interleave_high_8bit_lanes(self, vector2: Self) -> Self { |
| 569 | _mm256_unpackhi_epi8(self, vector2) |
| 570 | } |
| 571 | |
| 572 | #[inline (always)] |
| 573 | unsafe fn for_each_low_64bit_lane<T>( |
| 574 | self, |
| 575 | vector2: Self, |
| 576 | mut f: impl FnMut(usize, u64) -> Option<T>, |
| 577 | ) -> Option<T> { |
| 578 | let lane = _mm256_extract_epi64(self, 0).to_bits(); |
| 579 | if let Some(t) = f(0, lane) { |
| 580 | return Some(t); |
| 581 | } |
| 582 | let lane = _mm256_extract_epi64(self, 1).to_bits(); |
| 583 | if let Some(t) = f(1, lane) { |
| 584 | return Some(t); |
| 585 | } |
| 586 | let lane = _mm256_extract_epi64(vector2, 0).to_bits(); |
| 587 | if let Some(t) = f(2, lane) { |
| 588 | return Some(t); |
| 589 | } |
| 590 | let lane = _mm256_extract_epi64(vector2, 1).to_bits(); |
| 591 | if let Some(t) = f(3, lane) { |
| 592 | return Some(t); |
| 593 | } |
| 594 | None |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | #[cfg (all( |
| 600 | target_arch = "aarch64" , |
| 601 | target_feature = "neon" , |
| 602 | target_endian = "little" |
| 603 | ))] |
| 604 | mod aarch64_neon { |
| 605 | use core::arch::aarch64::*; |
| 606 | |
| 607 | use super::Vector; |
| 608 | |
| 609 | impl Vector for uint8x16_t { |
| 610 | const BITS: usize = 128; |
| 611 | const BYTES: usize = 16; |
| 612 | |
| 613 | #[inline (always)] |
| 614 | unsafe fn splat(byte: u8) -> uint8x16_t { |
| 615 | vdupq_n_u8(byte) |
| 616 | } |
| 617 | |
| 618 | #[inline (always)] |
| 619 | unsafe fn load_unaligned(data: *const u8) -> uint8x16_t { |
| 620 | vld1q_u8(data) |
| 621 | } |
| 622 | |
| 623 | #[inline (always)] |
| 624 | unsafe fn is_zero(self) -> bool { |
| 625 | // Could also use vmaxvq_u8. |
| 626 | // ... I tried that and couldn't observe any meaningful difference |
| 627 | // in benchmarks. |
| 628 | let maxes = vreinterpretq_u64_u8(vpmaxq_u8(self, self)); |
| 629 | vgetq_lane_u64(maxes, 0) == 0 |
| 630 | } |
| 631 | |
| 632 | #[inline (always)] |
| 633 | unsafe fn cmpeq(self, vector2: Self) -> uint8x16_t { |
| 634 | vceqq_u8(self, vector2) |
| 635 | } |
| 636 | |
| 637 | #[inline (always)] |
| 638 | unsafe fn and(self, vector2: Self) -> uint8x16_t { |
| 639 | vandq_u8(self, vector2) |
| 640 | } |
| 641 | |
| 642 | #[inline (always)] |
| 643 | unsafe fn or(self, vector2: Self) -> uint8x16_t { |
| 644 | vorrq_u8(self, vector2) |
| 645 | } |
| 646 | |
| 647 | #[inline (always)] |
| 648 | unsafe fn shift_8bit_lane_right<const BITS: i32>(self) -> Self { |
| 649 | debug_assert!(BITS <= 7); |
| 650 | vshrq_n_u8(self, BITS) |
| 651 | } |
| 652 | |
| 653 | #[inline (always)] |
| 654 | unsafe fn shift_in_one_byte(self, vector2: Self) -> Self { |
| 655 | vextq_u8(vector2, self, 15) |
| 656 | } |
| 657 | |
| 658 | #[inline (always)] |
| 659 | unsafe fn shift_in_two_bytes(self, vector2: Self) -> Self { |
| 660 | vextq_u8(vector2, self, 14) |
| 661 | } |
| 662 | |
| 663 | #[inline (always)] |
| 664 | unsafe fn shift_in_three_bytes(self, vector2: Self) -> Self { |
| 665 | vextq_u8(vector2, self, 13) |
| 666 | } |
| 667 | |
| 668 | #[inline (always)] |
| 669 | unsafe fn shuffle_bytes(self, indices: Self) -> Self { |
| 670 | vqtbl1q_u8(self, indices) |
| 671 | } |
| 672 | |
| 673 | #[inline (always)] |
| 674 | unsafe fn for_each_64bit_lane<T>( |
| 675 | self, |
| 676 | mut f: impl FnMut(usize, u64) -> Option<T>, |
| 677 | ) -> Option<T> { |
| 678 | let this = vreinterpretq_u64_u8(self); |
| 679 | let lane = vgetq_lane_u64(this, 0); |
| 680 | if let Some(t) = f(0, lane) { |
| 681 | return Some(t); |
| 682 | } |
| 683 | let lane = vgetq_lane_u64(this, 1); |
| 684 | if let Some(t) = f(1, lane) { |
| 685 | return Some(t); |
| 686 | } |
| 687 | None |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
| 693 | mod tests_x86_64_ssse3 { |
| 694 | use core::arch::x86_64::*; |
| 695 | |
| 696 | use crate::util::int::{I32, U32}; |
| 697 | |
| 698 | use super::*; |
| 699 | |
| 700 | fn is_runnable() -> bool { |
| 701 | std::is_x86_feature_detected!("ssse3" ) |
| 702 | } |
| 703 | |
| 704 | #[target_feature (enable = "ssse3" )] |
| 705 | unsafe fn load(lanes: [u8; 16]) -> __m128i { |
| 706 | __m128i::load_unaligned(&lanes as *const u8) |
| 707 | } |
| 708 | |
| 709 | #[target_feature (enable = "ssse3" )] |
| 710 | unsafe fn unload(v: __m128i) -> [u8; 16] { |
| 711 | [ |
| 712 | _mm_extract_epi8(v, 0).to_bits().low_u8(), |
| 713 | _mm_extract_epi8(v, 1).to_bits().low_u8(), |
| 714 | _mm_extract_epi8(v, 2).to_bits().low_u8(), |
| 715 | _mm_extract_epi8(v, 3).to_bits().low_u8(), |
| 716 | _mm_extract_epi8(v, 4).to_bits().low_u8(), |
| 717 | _mm_extract_epi8(v, 5).to_bits().low_u8(), |
| 718 | _mm_extract_epi8(v, 6).to_bits().low_u8(), |
| 719 | _mm_extract_epi8(v, 7).to_bits().low_u8(), |
| 720 | _mm_extract_epi8(v, 8).to_bits().low_u8(), |
| 721 | _mm_extract_epi8(v, 9).to_bits().low_u8(), |
| 722 | _mm_extract_epi8(v, 10).to_bits().low_u8(), |
| 723 | _mm_extract_epi8(v, 11).to_bits().low_u8(), |
| 724 | _mm_extract_epi8(v, 12).to_bits().low_u8(), |
| 725 | _mm_extract_epi8(v, 13).to_bits().low_u8(), |
| 726 | _mm_extract_epi8(v, 14).to_bits().low_u8(), |
| 727 | _mm_extract_epi8(v, 15).to_bits().low_u8(), |
| 728 | ] |
| 729 | } |
| 730 | |
| 731 | #[test ] |
| 732 | fn vector_splat() { |
| 733 | #[target_feature (enable = "ssse3" )] |
| 734 | unsafe fn test() { |
| 735 | let v = __m128i::splat(0xAF); |
| 736 | assert_eq!( |
| 737 | unload(v), |
| 738 | [ |
| 739 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 740 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
| 741 | ] |
| 742 | ); |
| 743 | } |
| 744 | if !is_runnable() { |
| 745 | return; |
| 746 | } |
| 747 | unsafe { test () } |
| 748 | } |
| 749 | |
| 750 | #[test ] |
| 751 | fn vector_is_zero() { |
| 752 | #[target_feature (enable = "ssse3" )] |
| 753 | unsafe fn test() { |
| 754 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 755 | assert!(!v.is_zero()); |
| 756 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 757 | assert!(v.is_zero()); |
| 758 | } |
| 759 | if !is_runnable() { |
| 760 | return; |
| 761 | } |
| 762 | unsafe { test () } |
| 763 | } |
| 764 | |
| 765 | #[test ] |
| 766 | fn vector_cmpeq() { |
| 767 | #[target_feature (enable = "ssse3" )] |
| 768 | unsafe fn test() { |
| 769 | let v1 = |
| 770 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
| 771 | let v2 = |
| 772 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
| 773 | assert_eq!( |
| 774 | unload(v1.cmpeq(v2)), |
| 775 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
| 776 | ); |
| 777 | } |
| 778 | if !is_runnable() { |
| 779 | return; |
| 780 | } |
| 781 | unsafe { test () } |
| 782 | } |
| 783 | |
| 784 | #[test ] |
| 785 | fn vector_and() { |
| 786 | #[target_feature (enable = "ssse3" )] |
| 787 | unsafe fn test() { |
| 788 | let v1 = |
| 789 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 790 | let v2 = |
| 791 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 792 | assert_eq!( |
| 793 | unload(v1.and(v2)), |
| 794 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 795 | ); |
| 796 | } |
| 797 | if !is_runnable() { |
| 798 | return; |
| 799 | } |
| 800 | unsafe { test () } |
| 801 | } |
| 802 | |
| 803 | #[test ] |
| 804 | fn vector_or() { |
| 805 | #[target_feature (enable = "ssse3" )] |
| 806 | unsafe fn test() { |
| 807 | let v1 = |
| 808 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 809 | let v2 = |
| 810 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 811 | assert_eq!( |
| 812 | unload(v1.or(v2)), |
| 813 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 814 | ); |
| 815 | } |
| 816 | if !is_runnable() { |
| 817 | return; |
| 818 | } |
| 819 | unsafe { test () } |
| 820 | } |
| 821 | |
| 822 | #[test ] |
| 823 | fn vector_shift_8bit_lane_right() { |
| 824 | #[target_feature (enable = "ssse3" )] |
| 825 | unsafe fn test() { |
| 826 | let v = load([ |
| 827 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 828 | ]); |
| 829 | assert_eq!( |
| 830 | unload(v.shift_8bit_lane_right::<2>()), |
| 831 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 832 | ); |
| 833 | } |
| 834 | if !is_runnable() { |
| 835 | return; |
| 836 | } |
| 837 | unsafe { test () } |
| 838 | } |
| 839 | |
| 840 | #[test ] |
| 841 | fn vector_shift_in_one_byte() { |
| 842 | #[target_feature (enable = "ssse3" )] |
| 843 | unsafe fn test() { |
| 844 | let v1 = |
| 845 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 846 | let v2 = load([ |
| 847 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 848 | ]); |
| 849 | assert_eq!( |
| 850 | unload(v1.shift_in_one_byte(v2)), |
| 851 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
| 852 | ); |
| 853 | } |
| 854 | if !is_runnable() { |
| 855 | return; |
| 856 | } |
| 857 | unsafe { test () } |
| 858 | } |
| 859 | |
| 860 | #[test ] |
| 861 | fn vector_shift_in_two_bytes() { |
| 862 | #[target_feature (enable = "ssse3" )] |
| 863 | unsafe fn test() { |
| 864 | let v1 = |
| 865 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 866 | let v2 = load([ |
| 867 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 868 | ]); |
| 869 | assert_eq!( |
| 870 | unload(v1.shift_in_two_bytes(v2)), |
| 871 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 872 | ); |
| 873 | } |
| 874 | if !is_runnable() { |
| 875 | return; |
| 876 | } |
| 877 | unsafe { test () } |
| 878 | } |
| 879 | |
| 880 | #[test ] |
| 881 | fn vector_shift_in_three_bytes() { |
| 882 | #[target_feature (enable = "ssse3" )] |
| 883 | unsafe fn test() { |
| 884 | let v1 = |
| 885 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 886 | let v2 = load([ |
| 887 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 888 | ]); |
| 889 | assert_eq!( |
| 890 | unload(v1.shift_in_three_bytes(v2)), |
| 891 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
| 892 | ); |
| 893 | } |
| 894 | if !is_runnable() { |
| 895 | return; |
| 896 | } |
| 897 | unsafe { test () } |
| 898 | } |
| 899 | |
| 900 | #[test ] |
| 901 | fn vector_shuffle_bytes() { |
| 902 | #[target_feature (enable = "ssse3" )] |
| 903 | unsafe fn test() { |
| 904 | let v1 = |
| 905 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 906 | let v2 = |
| 907 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
| 908 | assert_eq!( |
| 909 | unload(v1.shuffle_bytes(v2)), |
| 910 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
| 911 | ); |
| 912 | } |
| 913 | if !is_runnable() { |
| 914 | return; |
| 915 | } |
| 916 | unsafe { test () } |
| 917 | } |
| 918 | |
| 919 | #[test ] |
| 920 | fn vector_for_each_64bit_lane() { |
| 921 | #[target_feature (enable = "ssse3" )] |
| 922 | unsafe fn test() { |
| 923 | let v = load([ |
| 924 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
| 925 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
| 926 | ]); |
| 927 | let mut lanes = [0u64; 2]; |
| 928 | v.for_each_64bit_lane(|i, lane| { |
| 929 | lanes[i] = lane; |
| 930 | None::<()> |
| 931 | }); |
| 932 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
| 933 | } |
| 934 | if !is_runnable() { |
| 935 | return; |
| 936 | } |
| 937 | unsafe { test () } |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | #[cfg (all(test, target_arch = "x86_64" , target_feature = "sse2" ))] |
| 942 | mod tests_x86_64_avx2 { |
| 943 | use core::arch::x86_64::*; |
| 944 | |
| 945 | use crate::util::int::{I32, U32}; |
| 946 | |
| 947 | use super::*; |
| 948 | |
| 949 | fn is_runnable() -> bool { |
| 950 | std::is_x86_feature_detected!("avx2" ) |
| 951 | } |
| 952 | |
| 953 | #[target_feature (enable = "avx2" )] |
| 954 | unsafe fn load(lanes: [u8; 32]) -> __m256i { |
| 955 | __m256i::load_unaligned(&lanes as *const u8) |
| 956 | } |
| 957 | |
| 958 | #[target_feature (enable = "avx2" )] |
| 959 | unsafe fn load_half(lanes: [u8; 16]) -> __m256i { |
| 960 | __m256i::load_half_unaligned(&lanes as *const u8) |
| 961 | } |
| 962 | |
| 963 | #[target_feature (enable = "avx2" )] |
| 964 | unsafe fn unload(v: __m256i) -> [u8; 32] { |
| 965 | [ |
| 966 | _mm256_extract_epi8(v, 0).to_bits().low_u8(), |
| 967 | _mm256_extract_epi8(v, 1).to_bits().low_u8(), |
| 968 | _mm256_extract_epi8(v, 2).to_bits().low_u8(), |
| 969 | _mm256_extract_epi8(v, 3).to_bits().low_u8(), |
| 970 | _mm256_extract_epi8(v, 4).to_bits().low_u8(), |
| 971 | _mm256_extract_epi8(v, 5).to_bits().low_u8(), |
| 972 | _mm256_extract_epi8(v, 6).to_bits().low_u8(), |
| 973 | _mm256_extract_epi8(v, 7).to_bits().low_u8(), |
| 974 | _mm256_extract_epi8(v, 8).to_bits().low_u8(), |
| 975 | _mm256_extract_epi8(v, 9).to_bits().low_u8(), |
| 976 | _mm256_extract_epi8(v, 10).to_bits().low_u8(), |
| 977 | _mm256_extract_epi8(v, 11).to_bits().low_u8(), |
| 978 | _mm256_extract_epi8(v, 12).to_bits().low_u8(), |
| 979 | _mm256_extract_epi8(v, 13).to_bits().low_u8(), |
| 980 | _mm256_extract_epi8(v, 14).to_bits().low_u8(), |
| 981 | _mm256_extract_epi8(v, 15).to_bits().low_u8(), |
| 982 | _mm256_extract_epi8(v, 16).to_bits().low_u8(), |
| 983 | _mm256_extract_epi8(v, 17).to_bits().low_u8(), |
| 984 | _mm256_extract_epi8(v, 18).to_bits().low_u8(), |
| 985 | _mm256_extract_epi8(v, 19).to_bits().low_u8(), |
| 986 | _mm256_extract_epi8(v, 20).to_bits().low_u8(), |
| 987 | _mm256_extract_epi8(v, 21).to_bits().low_u8(), |
| 988 | _mm256_extract_epi8(v, 22).to_bits().low_u8(), |
| 989 | _mm256_extract_epi8(v, 23).to_bits().low_u8(), |
| 990 | _mm256_extract_epi8(v, 24).to_bits().low_u8(), |
| 991 | _mm256_extract_epi8(v, 25).to_bits().low_u8(), |
| 992 | _mm256_extract_epi8(v, 26).to_bits().low_u8(), |
| 993 | _mm256_extract_epi8(v, 27).to_bits().low_u8(), |
| 994 | _mm256_extract_epi8(v, 28).to_bits().low_u8(), |
| 995 | _mm256_extract_epi8(v, 29).to_bits().low_u8(), |
| 996 | _mm256_extract_epi8(v, 30).to_bits().low_u8(), |
| 997 | _mm256_extract_epi8(v, 31).to_bits().low_u8(), |
| 998 | ] |
| 999 | } |
| 1000 | |
| 1001 | #[test ] |
| 1002 | fn vector_splat() { |
| 1003 | #[target_feature (enable = "avx2" )] |
| 1004 | unsafe fn test() { |
| 1005 | let v = __m256i::splat(0xAF); |
| 1006 | assert_eq!( |
| 1007 | unload(v), |
| 1008 | [ |
| 1009 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 1010 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 1011 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 1012 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 1013 | ] |
| 1014 | ); |
| 1015 | } |
| 1016 | if !is_runnable() { |
| 1017 | return; |
| 1018 | } |
| 1019 | unsafe { test () } |
| 1020 | } |
| 1021 | |
| 1022 | #[test ] |
| 1023 | fn vector_is_zero() { |
| 1024 | #[target_feature (enable = "avx2" )] |
| 1025 | unsafe fn test() { |
| 1026 | let v = load([ |
| 1027 | 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1028 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1029 | ]); |
| 1030 | assert!(!v.is_zero()); |
| 1031 | let v = load([ |
| 1032 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1033 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1034 | ]); |
| 1035 | assert!(v.is_zero()); |
| 1036 | } |
| 1037 | if !is_runnable() { |
| 1038 | return; |
| 1039 | } |
| 1040 | unsafe { test () } |
| 1041 | } |
| 1042 | |
| 1043 | #[test ] |
| 1044 | fn vector_cmpeq() { |
| 1045 | #[target_feature (enable = "avx2" )] |
| 1046 | unsafe fn test() { |
| 1047 | let v1 = load([ |
| 1048 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1049 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, |
| 1050 | ]); |
| 1051 | let v2 = load([ |
| 1052 | 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, |
| 1053 | 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, |
| 1054 | ]); |
| 1055 | assert_eq!( |
| 1056 | unload(v1.cmpeq(v2)), |
| 1057 | [ |
| 1058 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1059 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF |
| 1060 | ] |
| 1061 | ); |
| 1062 | } |
| 1063 | if !is_runnable() { |
| 1064 | return; |
| 1065 | } |
| 1066 | unsafe { test () } |
| 1067 | } |
| 1068 | |
| 1069 | #[test ] |
| 1070 | fn vector_and() { |
| 1071 | #[target_feature (enable = "avx2" )] |
| 1072 | unsafe fn test() { |
| 1073 | let v1 = load([ |
| 1074 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1075 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1076 | ]); |
| 1077 | let v2 = load([ |
| 1078 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1079 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1080 | ]); |
| 1081 | assert_eq!( |
| 1082 | unload(v1.and(v2)), |
| 1083 | [ |
| 1084 | 0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1085 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1086 | ] |
| 1087 | ); |
| 1088 | } |
| 1089 | if !is_runnable() { |
| 1090 | return; |
| 1091 | } |
| 1092 | unsafe { test () } |
| 1093 | } |
| 1094 | |
| 1095 | #[test ] |
| 1096 | fn vector_or() { |
| 1097 | #[target_feature (enable = "avx2" )] |
| 1098 | unsafe fn test() { |
| 1099 | let v1 = load([ |
| 1100 | 0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1101 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1102 | ]); |
| 1103 | let v2 = load([ |
| 1104 | 0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1105 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1106 | ]); |
| 1107 | assert_eq!( |
| 1108 | unload(v1.or(v2)), |
| 1109 | [ |
| 1110 | 0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1111 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1112 | ] |
| 1113 | ); |
| 1114 | } |
| 1115 | if !is_runnable() { |
| 1116 | return; |
| 1117 | } |
| 1118 | unsafe { test () } |
| 1119 | } |
| 1120 | |
| 1121 | #[test ] |
| 1122 | fn vector_shift_8bit_lane_right() { |
| 1123 | #[target_feature (enable = "avx2" )] |
| 1124 | unsafe fn test() { |
| 1125 | let v = load([ |
| 1126 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1127 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1128 | ]); |
| 1129 | assert_eq!( |
| 1130 | unload(v.shift_8bit_lane_right::<2>()), |
| 1131 | [ |
| 1132 | 0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1133 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1134 | ] |
| 1135 | ); |
| 1136 | } |
| 1137 | if !is_runnable() { |
| 1138 | return; |
| 1139 | } |
| 1140 | unsafe { test () } |
| 1141 | } |
| 1142 | |
| 1143 | #[test ] |
| 1144 | fn vector_shift_in_one_byte() { |
| 1145 | #[target_feature (enable = "avx2" )] |
| 1146 | unsafe fn test() { |
| 1147 | let v1 = load([ |
| 1148 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1149 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1150 | ]); |
| 1151 | let v2 = load([ |
| 1152 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 1153 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
| 1154 | 63, 64, |
| 1155 | ]); |
| 1156 | assert_eq!( |
| 1157 | unload(v1.shift_in_one_byte(v2)), |
| 1158 | [ |
| 1159 | 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 1160 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| 1161 | 31, |
| 1162 | ], |
| 1163 | ); |
| 1164 | } |
| 1165 | if !is_runnable() { |
| 1166 | return; |
| 1167 | } |
| 1168 | unsafe { test () } |
| 1169 | } |
| 1170 | |
| 1171 | #[test ] |
| 1172 | fn vector_shift_in_two_bytes() { |
| 1173 | #[target_feature (enable = "avx2" )] |
| 1174 | unsafe fn test() { |
| 1175 | let v1 = load([ |
| 1176 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1177 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1178 | ]); |
| 1179 | let v2 = load([ |
| 1180 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 1181 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
| 1182 | 63, 64, |
| 1183 | ]); |
| 1184 | assert_eq!( |
| 1185 | unload(v1.shift_in_two_bytes(v2)), |
| 1186 | [ |
| 1187 | 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 1188 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, |
| 1189 | 30, |
| 1190 | ], |
| 1191 | ); |
| 1192 | } |
| 1193 | if !is_runnable() { |
| 1194 | return; |
| 1195 | } |
| 1196 | unsafe { test () } |
| 1197 | } |
| 1198 | |
| 1199 | #[test ] |
| 1200 | fn vector_shift_in_three_bytes() { |
| 1201 | #[target_feature (enable = "avx2" )] |
| 1202 | unsafe fn test() { |
| 1203 | let v1 = load([ |
| 1204 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1205 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1206 | ]); |
| 1207 | let v2 = load([ |
| 1208 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 1209 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
| 1210 | 63, 64, |
| 1211 | ]); |
| 1212 | assert_eq!( |
| 1213 | unload(v1.shift_in_three_bytes(v2)), |
| 1214 | [ |
| 1215 | 62, 63, 64, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 1216 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, |
| 1217 | 29, |
| 1218 | ], |
| 1219 | ); |
| 1220 | } |
| 1221 | if !is_runnable() { |
| 1222 | return; |
| 1223 | } |
| 1224 | unsafe { test () } |
| 1225 | } |
| 1226 | |
| 1227 | #[test ] |
| 1228 | fn vector_shuffle_bytes() { |
| 1229 | #[target_feature (enable = "avx2" )] |
| 1230 | unsafe fn test() { |
| 1231 | let v1 = load([ |
| 1232 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1233 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1234 | ]); |
| 1235 | let v2 = load([ |
| 1236 | 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, |
| 1237 | 16, 16, 20, 20, 20, 20, 24, 24, 24, 24, 28, 28, 28, 28, |
| 1238 | ]); |
| 1239 | assert_eq!( |
| 1240 | unload(v1.shuffle_bytes(v2)), |
| 1241 | [ |
| 1242 | 1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13, 17, |
| 1243 | 17, 17, 17, 21, 21, 21, 21, 25, 25, 25, 25, 29, 29, 29, |
| 1244 | 29 |
| 1245 | ], |
| 1246 | ); |
| 1247 | } |
| 1248 | if !is_runnable() { |
| 1249 | return; |
| 1250 | } |
| 1251 | unsafe { test () } |
| 1252 | } |
| 1253 | |
| 1254 | #[test ] |
| 1255 | fn vector_for_each_64bit_lane() { |
| 1256 | #[target_feature (enable = "avx2" )] |
| 1257 | unsafe fn test() { |
| 1258 | let v = load([ |
| 1259 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
| 1260 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
| 1261 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
| 1262 | 0x1F, 0x20, |
| 1263 | ]); |
| 1264 | let mut lanes = [0u64; 4]; |
| 1265 | v.for_each_64bit_lane(|i, lane| { |
| 1266 | lanes[i] = lane; |
| 1267 | None::<()> |
| 1268 | }); |
| 1269 | assert_eq!( |
| 1270 | lanes, |
| 1271 | [ |
| 1272 | 0x0807060504030201, |
| 1273 | 0x100F0E0D0C0B0A09, |
| 1274 | 0x1817161514131211, |
| 1275 | 0x201F1E1D1C1B1A19 |
| 1276 | ] |
| 1277 | ); |
| 1278 | } |
| 1279 | if !is_runnable() { |
| 1280 | return; |
| 1281 | } |
| 1282 | unsafe { test () } |
| 1283 | } |
| 1284 | |
| 1285 | #[test ] |
| 1286 | fn fat_vector_half_shift_in_one_byte() { |
| 1287 | #[target_feature (enable = "avx2" )] |
| 1288 | unsafe fn test() { |
| 1289 | let v1 = load_half([ |
| 1290 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 1291 | ]); |
| 1292 | let v2 = load_half([ |
| 1293 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1294 | ]); |
| 1295 | assert_eq!( |
| 1296 | unload(v1.half_shift_in_one_byte(v2)), |
| 1297 | [ |
| 1298 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, |
| 1299 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| 1300 | ], |
| 1301 | ); |
| 1302 | } |
| 1303 | if !is_runnable() { |
| 1304 | return; |
| 1305 | } |
| 1306 | unsafe { test () } |
| 1307 | } |
| 1308 | |
| 1309 | #[test ] |
| 1310 | fn fat_vector_half_shift_in_two_bytes() { |
| 1311 | #[target_feature (enable = "avx2" )] |
| 1312 | unsafe fn test() { |
| 1313 | let v1 = load_half([ |
| 1314 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 1315 | ]); |
| 1316 | let v2 = load_half([ |
| 1317 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1318 | ]); |
| 1319 | assert_eq!( |
| 1320 | unload(v1.half_shift_in_two_bytes(v2)), |
| 1321 | [ |
| 1322 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31, |
| 1323 | 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 1324 | ], |
| 1325 | ); |
| 1326 | } |
| 1327 | if !is_runnable() { |
| 1328 | return; |
| 1329 | } |
| 1330 | unsafe { test () } |
| 1331 | } |
| 1332 | |
| 1333 | #[test ] |
| 1334 | fn fat_vector_half_shift_in_three_bytes() { |
| 1335 | #[target_feature (enable = "avx2" )] |
| 1336 | unsafe fn test() { |
| 1337 | let v1 = load_half([ |
| 1338 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, |
| 1339 | ]); |
| 1340 | let v2 = load_half([ |
| 1341 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1342 | ]); |
| 1343 | assert_eq!( |
| 1344 | unload(v1.half_shift_in_three_bytes(v2)), |
| 1345 | [ |
| 1346 | 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30, |
| 1347 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
| 1348 | ], |
| 1349 | ); |
| 1350 | } |
| 1351 | if !is_runnable() { |
| 1352 | return; |
| 1353 | } |
| 1354 | unsafe { test () } |
| 1355 | } |
| 1356 | |
| 1357 | #[test ] |
| 1358 | fn fat_vector_swap_halves() { |
| 1359 | #[target_feature (enable = "avx2" )] |
| 1360 | unsafe fn test() { |
| 1361 | let v = load([ |
| 1362 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1363 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1364 | ]); |
| 1365 | assert_eq!( |
| 1366 | unload(v.swap_halves()), |
| 1367 | [ |
| 1368 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| 1369 | 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 1370 | 16, |
| 1371 | ], |
| 1372 | ); |
| 1373 | } |
| 1374 | if !is_runnable() { |
| 1375 | return; |
| 1376 | } |
| 1377 | unsafe { test () } |
| 1378 | } |
| 1379 | |
| 1380 | #[test ] |
| 1381 | fn fat_vector_interleave_low_8bit_lanes() { |
| 1382 | #[target_feature (enable = "avx2" )] |
| 1383 | unsafe fn test() { |
| 1384 | let v1 = load([ |
| 1385 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1386 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1387 | ]); |
| 1388 | let v2 = load([ |
| 1389 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 1390 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
| 1391 | 63, 64, |
| 1392 | ]); |
| 1393 | assert_eq!( |
| 1394 | unload(v1.interleave_low_8bit_lanes(v2)), |
| 1395 | [ |
| 1396 | 1, 33, 2, 34, 3, 35, 4, 36, 5, 37, 6, 38, 7, 39, 8, 40, |
| 1397 | 17, 49, 18, 50, 19, 51, 20, 52, 21, 53, 22, 54, 23, 55, |
| 1398 | 24, 56, |
| 1399 | ], |
| 1400 | ); |
| 1401 | } |
| 1402 | if !is_runnable() { |
| 1403 | return; |
| 1404 | } |
| 1405 | unsafe { test () } |
| 1406 | } |
| 1407 | |
| 1408 | #[test ] |
| 1409 | fn fat_vector_interleave_high_8bit_lanes() { |
| 1410 | #[target_feature (enable = "avx2" )] |
| 1411 | unsafe fn test() { |
| 1412 | let v1 = load([ |
| 1413 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, |
| 1414 | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1415 | ]); |
| 1416 | let v2 = load([ |
| 1417 | 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 1418 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, |
| 1419 | 63, 64, |
| 1420 | ]); |
| 1421 | assert_eq!( |
| 1422 | unload(v1.interleave_high_8bit_lanes(v2)), |
| 1423 | [ |
| 1424 | 9, 41, 10, 42, 11, 43, 12, 44, 13, 45, 14, 46, 15, 47, 16, |
| 1425 | 48, 25, 57, 26, 58, 27, 59, 28, 60, 29, 61, 30, 62, 31, |
| 1426 | 63, 32, 64, |
| 1427 | ], |
| 1428 | ); |
| 1429 | } |
| 1430 | if !is_runnable() { |
| 1431 | return; |
| 1432 | } |
| 1433 | unsafe { test () } |
| 1434 | } |
| 1435 | |
| 1436 | #[test ] |
| 1437 | fn fat_vector_for_each_low_64bit_lane() { |
| 1438 | #[target_feature (enable = "avx2" )] |
| 1439 | unsafe fn test() { |
| 1440 | let v1 = load([ |
| 1441 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
| 1442 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, |
| 1443 | 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, |
| 1444 | 0x1F, 0x20, |
| 1445 | ]); |
| 1446 | let v2 = load([ |
| 1447 | 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, |
| 1448 | 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, |
| 1449 | 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, |
| 1450 | 0x3F, 0x40, |
| 1451 | ]); |
| 1452 | let mut lanes = [0u64; 4]; |
| 1453 | v1.for_each_low_64bit_lane(v2, |i, lane| { |
| 1454 | lanes[i] = lane; |
| 1455 | None::<()> |
| 1456 | }); |
| 1457 | assert_eq!( |
| 1458 | lanes, |
| 1459 | [ |
| 1460 | 0x0807060504030201, |
| 1461 | 0x100F0E0D0C0B0A09, |
| 1462 | 0x2827262524232221, |
| 1463 | 0x302F2E2D2C2B2A29 |
| 1464 | ] |
| 1465 | ); |
| 1466 | } |
| 1467 | if !is_runnable() { |
| 1468 | return; |
| 1469 | } |
| 1470 | unsafe { test () } |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | #[cfg (all(test, target_arch = "aarch64" , target_feature = "neon" ))] |
| 1475 | mod tests_aarch64_neon { |
| 1476 | use core::arch::aarch64::*; |
| 1477 | |
| 1478 | use super::*; |
| 1479 | |
| 1480 | #[target_feature (enable = "neon" )] |
| 1481 | unsafe fn load(lanes: [u8; 16]) -> uint8x16_t { |
| 1482 | uint8x16_t::load_unaligned(&lanes as *const u8) |
| 1483 | } |
| 1484 | |
| 1485 | #[target_feature (enable = "neon" )] |
| 1486 | unsafe fn unload(v: uint8x16_t) -> [u8; 16] { |
| 1487 | [ |
| 1488 | vgetq_lane_u8(v, 0), |
| 1489 | vgetq_lane_u8(v, 1), |
| 1490 | vgetq_lane_u8(v, 2), |
| 1491 | vgetq_lane_u8(v, 3), |
| 1492 | vgetq_lane_u8(v, 4), |
| 1493 | vgetq_lane_u8(v, 5), |
| 1494 | vgetq_lane_u8(v, 6), |
| 1495 | vgetq_lane_u8(v, 7), |
| 1496 | vgetq_lane_u8(v, 8), |
| 1497 | vgetq_lane_u8(v, 9), |
| 1498 | vgetq_lane_u8(v, 10), |
| 1499 | vgetq_lane_u8(v, 11), |
| 1500 | vgetq_lane_u8(v, 12), |
| 1501 | vgetq_lane_u8(v, 13), |
| 1502 | vgetq_lane_u8(v, 14), |
| 1503 | vgetq_lane_u8(v, 15), |
| 1504 | ] |
| 1505 | } |
| 1506 | |
| 1507 | // Example functions. These don't test the Vector traits, but rather, |
| 1508 | // specific NEON instructions. They are basically little experiments I |
| 1509 | // wrote to figure out what an instruction does since their descriptions |
| 1510 | // are so dense. I decided to keep the experiments around as example tests |
| 1511 | // in case there' useful. |
| 1512 | |
| 1513 | #[test ] |
| 1514 | fn example_vmaxvq_u8_non_zero() { |
| 1515 | #[target_feature (enable = "neon" )] |
| 1516 | unsafe fn example() { |
| 1517 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1518 | assert_eq!(vmaxvq_u8(v), 1); |
| 1519 | } |
| 1520 | unsafe { example() } |
| 1521 | } |
| 1522 | |
| 1523 | #[test ] |
| 1524 | fn example_vmaxvq_u8_zero() { |
| 1525 | #[target_feature (enable = "neon" )] |
| 1526 | unsafe fn example() { |
| 1527 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1528 | assert_eq!(vmaxvq_u8(v), 0); |
| 1529 | } |
| 1530 | unsafe { example() } |
| 1531 | } |
| 1532 | |
| 1533 | #[test ] |
| 1534 | fn example_vpmaxq_u8_non_zero() { |
| 1535 | #[target_feature (enable = "neon" )] |
| 1536 | unsafe fn example() { |
| 1537 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1538 | let r = vpmaxq_u8(v, v); |
| 1539 | assert_eq!( |
| 1540 | unload(r), |
| 1541 | [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] |
| 1542 | ); |
| 1543 | } |
| 1544 | unsafe { example() } |
| 1545 | } |
| 1546 | |
| 1547 | #[test ] |
| 1548 | fn example_vpmaxq_u8_self() { |
| 1549 | #[target_feature (enable = "neon" )] |
| 1550 | unsafe fn example() { |
| 1551 | let v = |
| 1552 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1553 | let r = vpmaxq_u8(v, v); |
| 1554 | assert_eq!( |
| 1555 | unload(r), |
| 1556 | [2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16] |
| 1557 | ); |
| 1558 | } |
| 1559 | unsafe { example() } |
| 1560 | } |
| 1561 | |
| 1562 | #[test ] |
| 1563 | fn example_vpmaxq_u8_other() { |
| 1564 | #[target_feature (enable = "neon" )] |
| 1565 | unsafe fn example() { |
| 1566 | let v1 = |
| 1567 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1568 | let v2 = load([ |
| 1569 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1570 | ]); |
| 1571 | let r = vpmaxq_u8(v1, v2); |
| 1572 | assert_eq!( |
| 1573 | unload(r), |
| 1574 | [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32] |
| 1575 | ); |
| 1576 | } |
| 1577 | unsafe { example() } |
| 1578 | } |
| 1579 | |
| 1580 | // Now we test the actual methods on the Vector trait. |
| 1581 | |
| 1582 | #[test ] |
| 1583 | fn vector_splat() { |
| 1584 | #[target_feature (enable = "neon" )] |
| 1585 | unsafe fn test() { |
| 1586 | let v = uint8x16_t::splat(0xAF); |
| 1587 | assert_eq!( |
| 1588 | unload(v), |
| 1589 | [ |
| 1590 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, |
| 1591 | 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF, 0xAF |
| 1592 | ] |
| 1593 | ); |
| 1594 | } |
| 1595 | unsafe { test () } |
| 1596 | } |
| 1597 | |
| 1598 | #[test ] |
| 1599 | fn vector_is_zero() { |
| 1600 | #[target_feature (enable = "neon" )] |
| 1601 | unsafe fn test() { |
| 1602 | let v = load([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1603 | assert!(!v.is_zero()); |
| 1604 | let v = load([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1605 | assert!(v.is_zero()); |
| 1606 | } |
| 1607 | unsafe { test () } |
| 1608 | } |
| 1609 | |
| 1610 | #[test ] |
| 1611 | fn vector_cmpeq() { |
| 1612 | #[target_feature (enable = "neon" )] |
| 1613 | unsafe fn test() { |
| 1614 | let v1 = |
| 1615 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1]); |
| 1616 | let v2 = |
| 1617 | load([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]); |
| 1618 | assert_eq!( |
| 1619 | unload(v1.cmpeq(v2)), |
| 1620 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF] |
| 1621 | ); |
| 1622 | } |
| 1623 | unsafe { test () } |
| 1624 | } |
| 1625 | |
| 1626 | #[test ] |
| 1627 | fn vector_and() { |
| 1628 | #[target_feature (enable = "neon" )] |
| 1629 | unsafe fn test() { |
| 1630 | let v1 = |
| 1631 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1632 | let v2 = |
| 1633 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1634 | assert_eq!( |
| 1635 | unload(v1.and(v2)), |
| 1636 | [0, 0, 0, 0, 0, 0b1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 1637 | ); |
| 1638 | } |
| 1639 | unsafe { test () } |
| 1640 | } |
| 1641 | |
| 1642 | #[test ] |
| 1643 | fn vector_or() { |
| 1644 | #[target_feature (enable = "neon" )] |
| 1645 | unsafe fn test() { |
| 1646 | let v1 = |
| 1647 | load([0, 0, 0, 0, 0, 0b1001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1648 | let v2 = |
| 1649 | load([0, 0, 0, 0, 0, 0b1010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 1650 | assert_eq!( |
| 1651 | unload(v1.or(v2)), |
| 1652 | [0, 0, 0, 0, 0, 0b1011, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 1653 | ); |
| 1654 | } |
| 1655 | unsafe { test () } |
| 1656 | } |
| 1657 | |
| 1658 | #[test ] |
| 1659 | fn vector_shift_8bit_lane_right() { |
| 1660 | #[target_feature (enable = "neon" )] |
| 1661 | unsafe fn test() { |
| 1662 | let v = load([ |
| 1663 | 0, 0, 0, 0, 0b1011, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1664 | ]); |
| 1665 | assert_eq!( |
| 1666 | unload(v.shift_8bit_lane_right::<2>()), |
| 1667 | [0, 0, 0, 0, 0b0010, 0b0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 1668 | ); |
| 1669 | } |
| 1670 | unsafe { test () } |
| 1671 | } |
| 1672 | |
| 1673 | #[test ] |
| 1674 | fn vector_shift_in_one_byte() { |
| 1675 | #[target_feature (enable = "neon" )] |
| 1676 | unsafe fn test() { |
| 1677 | let v1 = |
| 1678 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1679 | let v2 = load([ |
| 1680 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1681 | ]); |
| 1682 | assert_eq!( |
| 1683 | unload(v1.shift_in_one_byte(v2)), |
| 1684 | [32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
| 1685 | ); |
| 1686 | } |
| 1687 | unsafe { test () } |
| 1688 | } |
| 1689 | |
| 1690 | #[test ] |
| 1691 | fn vector_shift_in_two_bytes() { |
| 1692 | #[target_feature (enable = "neon" )] |
| 1693 | unsafe fn test() { |
| 1694 | let v1 = |
| 1695 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1696 | let v2 = load([ |
| 1697 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1698 | ]); |
| 1699 | assert_eq!( |
| 1700 | unload(v1.shift_in_two_bytes(v2)), |
| 1701 | [31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 1702 | ); |
| 1703 | } |
| 1704 | unsafe { test () } |
| 1705 | } |
| 1706 | |
| 1707 | #[test ] |
| 1708 | fn vector_shift_in_three_bytes() { |
| 1709 | #[target_feature (enable = "neon" )] |
| 1710 | unsafe fn test() { |
| 1711 | let v1 = |
| 1712 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1713 | let v2 = load([ |
| 1714 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, |
| 1715 | ]); |
| 1716 | assert_eq!( |
| 1717 | unload(v1.shift_in_three_bytes(v2)), |
| 1718 | [30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], |
| 1719 | ); |
| 1720 | } |
| 1721 | unsafe { test () } |
| 1722 | } |
| 1723 | |
| 1724 | #[test ] |
| 1725 | fn vector_shuffle_bytes() { |
| 1726 | #[target_feature (enable = "neon" )] |
| 1727 | unsafe fn test() { |
| 1728 | let v1 = |
| 1729 | load([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); |
| 1730 | let v2 = |
| 1731 | load([0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]); |
| 1732 | assert_eq!( |
| 1733 | unload(v1.shuffle_bytes(v2)), |
| 1734 | [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13], |
| 1735 | ); |
| 1736 | } |
| 1737 | unsafe { test () } |
| 1738 | } |
| 1739 | |
| 1740 | #[test ] |
| 1741 | fn vector_for_each_64bit_lane() { |
| 1742 | #[target_feature (enable = "neon" )] |
| 1743 | unsafe fn test() { |
| 1744 | let v = load([ |
| 1745 | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, |
| 1746 | 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, |
| 1747 | ]); |
| 1748 | let mut lanes = [0u64; 2]; |
| 1749 | v.for_each_64bit_lane(|i, lane| { |
| 1750 | lanes[i] = lane; |
| 1751 | None::<()> |
| 1752 | }); |
| 1753 | assert_eq!(lanes, [0x0807060504030201, 0x100F0E0D0C0B0A09],); |
| 1754 | } |
| 1755 | unsafe { test () } |
| 1756 | } |
| 1757 | } |
| 1758 | |