| 1 | //! The official Rust implementation of the [BLAKE3] cryptographic hash |
| 2 | //! function. |
| 3 | //! |
| 4 | //! # Examples |
| 5 | //! |
| 6 | //! ``` |
| 7 | //! # fn main() -> Result<(), Box<dyn std::error::Error>> { |
| 8 | //! // Hash an input all at once. |
| 9 | //! let hash1 = blake3::hash(b"foobarbaz" ); |
| 10 | //! |
| 11 | //! // Hash an input incrementally. |
| 12 | //! let mut hasher = blake3::Hasher::new(); |
| 13 | //! hasher.update(b"foo" ); |
| 14 | //! hasher.update(b"bar" ); |
| 15 | //! hasher.update(b"baz" ); |
| 16 | //! let hash2 = hasher.finalize(); |
| 17 | //! assert_eq!(hash1, hash2); |
| 18 | //! |
| 19 | //! // Extended output. OutputReader also implements Read and Seek. |
| 20 | //! # #[cfg (feature = "std" )] { |
| 21 | //! let mut output = [0; 1000]; |
| 22 | //! let mut output_reader = hasher.finalize_xof(); |
| 23 | //! output_reader.fill(&mut output); |
| 24 | //! assert_eq!(hash1, output[..32]); |
| 25 | //! # } |
| 26 | //! |
| 27 | //! // Print a hash as hex. |
| 28 | //! println!("{}" , hash1); |
| 29 | //! # Ok(()) |
| 30 | //! # } |
| 31 | //! ``` |
| 32 | //! |
| 33 | //! # Cargo Features |
| 34 | //! |
| 35 | //! The `std` feature (the only feature enabled by default) is required for |
| 36 | //! implementations of the [`Write`] and [`Seek`] traits, the |
| 37 | //! [`update_reader`](Hasher::update_reader) helper method, and runtime CPU |
| 38 | //! feature detection on x86. If this feature is disabled, the only way to use |
| 39 | //! the x86 SIMD implementations is to enable the corresponding instruction sets |
| 40 | //! globally, with e.g. `RUSTFLAGS="-C target-cpu=native"`. The resulting binary |
| 41 | //! will not be portable to other machines. |
| 42 | //! |
| 43 | //! The `rayon` feature (disabled by default, but enabled for [docs.rs]) adds |
| 44 | //! the [`update_rayon`](Hasher::update_rayon) and (in combination with `mmap` |
| 45 | //! below) [`update_mmap_rayon`](Hasher::update_mmap_rayon) methods, for |
| 46 | //! multithreaded hashing. However, even if this feature is enabled, all other |
| 47 | //! APIs remain single-threaded. |
| 48 | //! |
| 49 | //! The `mmap` feature (disabled by default, but enabled for [docs.rs]) adds the |
| 50 | //! [`update_mmap`](Hasher::update_mmap) and (in combination with `rayon` above) |
| 51 | //! [`update_mmap_rayon`](Hasher::update_mmap_rayon) helper methods for |
| 52 | //! memory-mapped IO. |
| 53 | //! |
| 54 | //! The `zeroize` feature (disabled by default, but enabled for [docs.rs]) |
| 55 | //! implements |
| 56 | //! [`Zeroize`](https://docs.rs/zeroize/latest/zeroize/trait.Zeroize.html) for |
| 57 | //! this crate's types. |
| 58 | //! |
| 59 | //! The `serde` feature (disabled by default, but enabled for [docs.rs]) implements |
| 60 | //! [`serde::Serialize`](https://docs.rs/serde/latest/serde/trait.Serialize.html) and |
| 61 | //! [`serde::Deserialize`](https://docs.rs/serde/latest/serde/trait.Deserialize.html) |
| 62 | //! for [`Hash`](struct@Hash). |
| 63 | //! |
| 64 | //! The NEON implementation is enabled by default for AArch64 but requires the |
| 65 | //! `neon` feature for other ARM targets. Not all ARMv7 CPUs support NEON, and |
| 66 | //! enabling this feature will produce a binary that's not portable to CPUs |
| 67 | //! without NEON support. |
| 68 | //! |
| 69 | //! The `traits-preview` feature enables implementations of traits from the |
| 70 | //! RustCrypto [`digest`] crate, and re-exports that crate as `traits::digest`. |
| 71 | //! However, the traits aren't stable, and they're expected to change in |
| 72 | //! incompatible ways before that crate reaches 1.0. For that reason, this crate |
| 73 | //! makes no SemVer guarantees for this feature, and callers who use it should |
| 74 | //! expect breaking changes between patch versions. (The "-preview" feature name |
| 75 | //! follows the conventions of the RustCrypto [`signature`] crate.) |
| 76 | //! |
| 77 | //! [`Hasher::update_rayon`]: struct.Hasher.html#method.update_rayon |
| 78 | //! [BLAKE3]: https://blake3.io |
| 79 | //! [Rayon]: https://github.com/rayon-rs/rayon |
| 80 | //! [docs.rs]: https://docs.rs/ |
| 81 | //! [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html |
| 82 | //! [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html |
| 83 | //! [`digest`]: https://crates.io/crates/digest |
| 84 | //! [`signature`]: https://crates.io/crates/signature |
| 85 | |
| 86 | #![cfg_attr (not(feature = "std" ), no_std)] |
| 87 | |
| 88 | #[cfg (test)] |
| 89 | mod test; |
| 90 | |
| 91 | // The guts module is for incremental use cases like the `bao` crate that need |
| 92 | // to explicitly compute chunk and parent chaining values. It is semi-stable |
| 93 | // and likely to keep working, but largely undocumented and not intended for |
| 94 | // widespread use. |
| 95 | #[doc (hidden)] |
| 96 | pub mod guts; |
| 97 | |
| 98 | /// Undocumented and unstable, for benchmarks only. |
| 99 | #[doc (hidden)] |
| 100 | pub mod platform; |
| 101 | |
| 102 | // Platform-specific implementations of the compression function. These |
| 103 | // BLAKE3-specific cfg flags are set in build.rs. |
| 104 | #[cfg (blake3_avx2_rust)] |
| 105 | #[path = "rust_avx2.rs" ] |
| 106 | mod avx2; |
| 107 | #[cfg (blake3_avx2_ffi)] |
| 108 | #[path = "ffi_avx2.rs" ] |
| 109 | mod avx2; |
| 110 | #[cfg (blake3_avx512_ffi)] |
| 111 | #[path = "ffi_avx512.rs" ] |
| 112 | mod avx512; |
| 113 | #[cfg (blake3_neon)] |
| 114 | #[path = "ffi_neon.rs" ] |
| 115 | mod neon; |
| 116 | mod portable; |
| 117 | #[cfg (blake3_sse2_rust)] |
| 118 | #[path = "rust_sse2.rs" ] |
| 119 | mod sse2; |
| 120 | #[cfg (blake3_sse2_ffi)] |
| 121 | #[path = "ffi_sse2.rs" ] |
| 122 | mod sse2; |
| 123 | #[cfg (blake3_sse41_rust)] |
| 124 | #[path = "rust_sse41.rs" ] |
| 125 | mod sse41; |
| 126 | #[cfg (blake3_sse41_ffi)] |
| 127 | #[path = "ffi_sse41.rs" ] |
| 128 | mod sse41; |
| 129 | |
| 130 | #[cfg (feature = "traits-preview" )] |
| 131 | pub mod traits; |
| 132 | |
| 133 | mod io; |
| 134 | mod join; |
| 135 | |
| 136 | use arrayref::{array_mut_ref, array_ref}; |
| 137 | use arrayvec::{ArrayString, ArrayVec}; |
| 138 | use core::cmp; |
| 139 | use core::fmt; |
| 140 | use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2}; |
| 141 | #[cfg (feature = "zeroize" )] |
| 142 | use zeroize::Zeroize; |
| 143 | |
| 144 | /// The number of bytes in a [`Hash`](struct.Hash.html), 32. |
| 145 | pub const OUT_LEN: usize = 32; |
| 146 | |
| 147 | /// The number of bytes in a key, 32. |
| 148 | pub const KEY_LEN: usize = 32; |
| 149 | |
| 150 | const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64 |
| 151 | use guts::{BLOCK_LEN, CHUNK_LEN}; |
| 152 | |
| 153 | // While iterating the compression function within a chunk, the CV is |
| 154 | // represented as words, to avoid doing two extra endianness conversions for |
| 155 | // each compression in the portable implementation. But the hash_many interface |
| 156 | // needs to hash both input bytes and parent nodes, so its better for its |
| 157 | // output CVs to be represented as bytes. |
| 158 | type CVWords = [u32; 8]; |
| 159 | type CVBytes = [u8; 32]; // little-endian |
| 160 | |
| 161 | const IV: &CVWords = &[ |
| 162 | 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, |
| 163 | ]; |
| 164 | |
| 165 | const MSG_SCHEDULE: [[usize; 16]; 7] = [ |
| 166 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
| 167 | [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8], |
| 168 | [3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1], |
| 169 | [10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6], |
| 170 | [12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4], |
| 171 | [9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7], |
| 172 | [11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13], |
| 173 | ]; |
| 174 | |
| 175 | // These are the internal flags that we use to domain separate root/non-root, |
| 176 | // chunk/parent, and chunk beginning/middle/end. These get set at the high end |
| 177 | // of the block flags word in the compression function, so their values start |
| 178 | // high and go down. |
| 179 | const CHUNK_START: u8 = 1 << 0; |
| 180 | const CHUNK_END: u8 = 1 << 1; |
| 181 | const PARENT: u8 = 1 << 2; |
| 182 | const ROOT: u8 = 1 << 3; |
| 183 | const KEYED_HASH: u8 = 1 << 4; |
| 184 | const DERIVE_KEY_CONTEXT: u8 = 1 << 5; |
| 185 | const DERIVE_KEY_MATERIAL: u8 = 1 << 6; |
| 186 | |
| 187 | #[inline ] |
| 188 | fn counter_low(counter: u64) -> u32 { |
| 189 | counter as u32 |
| 190 | } |
| 191 | |
| 192 | #[inline ] |
| 193 | fn counter_high(counter: u64) -> u32 { |
| 194 | (counter >> 32) as u32 |
| 195 | } |
| 196 | |
| 197 | /// An output of the default size, 32 bytes, which provides constant-time |
| 198 | /// equality checking. |
| 199 | /// |
| 200 | /// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides |
| 201 | /// [`from_bytes`] and [`as_bytes`] for explicit conversions between itself and |
| 202 | /// `[u8; 32]`. However, byte arrays and slices don't provide constant-time |
| 203 | /// equality checking, which is often a security requirement in software that |
| 204 | /// handles private data. `Hash` doesn't implement [`Deref`] or [`AsRef`], to |
| 205 | /// avoid situations where a type conversion happens implicitly and the |
| 206 | /// constant-time property is accidentally lost. |
| 207 | /// |
| 208 | /// `Hash` provides the [`to_hex`] and [`from_hex`] methods for converting to |
| 209 | /// and from hexadecimal. It also implements [`Display`] and [`FromStr`]. |
| 210 | /// |
| 211 | /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html |
| 212 | /// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html |
| 213 | /// [`as_bytes`]: #method.as_bytes |
| 214 | /// [`from_bytes`]: #method.from_bytes |
| 215 | /// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html |
| 216 | /// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html |
| 217 | /// [`to_hex`]: #method.to_hex |
| 218 | /// [`from_hex`]: #method.from_hex |
| 219 | /// [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html |
| 220 | /// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html |
| 221 | #[cfg_attr (feature = "serde" , derive(serde::Deserialize, serde::Serialize))] |
| 222 | #[derive (Clone, Copy, Hash)] |
| 223 | pub struct Hash([u8; OUT_LEN]); |
| 224 | |
| 225 | impl Hash { |
| 226 | /// The raw bytes of the `Hash`. Note that byte arrays don't provide |
| 227 | /// constant-time equality checking, so if you need to compare hashes, |
| 228 | /// prefer the `Hash` type. |
| 229 | #[inline ] |
| 230 | pub const fn as_bytes(&self) -> &[u8; OUT_LEN] { |
| 231 | &self.0 |
| 232 | } |
| 233 | |
| 234 | /// Create a `Hash` from its raw bytes representation. |
| 235 | pub const fn from_bytes(bytes: [u8; OUT_LEN]) -> Self { |
| 236 | Self(bytes) |
| 237 | } |
| 238 | |
| 239 | /// Encode a `Hash` in lowercase hexadecimal. |
| 240 | /// |
| 241 | /// The returned [`ArrayString`] is a fixed size and doesn't allocate memory |
| 242 | /// on the heap. Note that [`ArrayString`] doesn't provide constant-time |
| 243 | /// equality checking, so if you need to compare hashes, prefer the `Hash` |
| 244 | /// type. |
| 245 | /// |
| 246 | /// [`ArrayString`]: https://docs.rs/arrayvec/0.5.1/arrayvec/struct.ArrayString.html |
| 247 | pub fn to_hex(&self) -> ArrayString<{ 2 * OUT_LEN }> { |
| 248 | let mut s = ArrayString::new(); |
| 249 | let table = b"0123456789abcdef" ; |
| 250 | for &b in self.0.iter() { |
| 251 | s.push(table[(b >> 4) as usize] as char); |
| 252 | s.push(table[(b & 0xf) as usize] as char); |
| 253 | } |
| 254 | s |
| 255 | } |
| 256 | |
| 257 | /// Decode a `Hash` from hexadecimal. Both uppercase and lowercase ASCII |
| 258 | /// bytes are supported. |
| 259 | /// |
| 260 | /// Any byte outside the ranges `'0'...'9'`, `'a'...'f'`, and `'A'...'F'` |
| 261 | /// results in an error. An input length other than 64 also results in an |
| 262 | /// error. |
| 263 | /// |
| 264 | /// Note that `Hash` also implements `FromStr`, so `Hash::from_hex("...")` |
| 265 | /// is equivalent to `"...".parse()`. |
| 266 | pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, HexError> { |
| 267 | fn hex_val(byte: u8) -> Result<u8, HexError> { |
| 268 | match byte { |
| 269 | b'A' ..=b'F' => Ok(byte - b'A' + 10), |
| 270 | b'a' ..=b'f' => Ok(byte - b'a' + 10), |
| 271 | b'0' ..=b'9' => Ok(byte - b'0' ), |
| 272 | _ => Err(HexError(HexErrorInner::InvalidByte(byte))), |
| 273 | } |
| 274 | } |
| 275 | let hex_bytes: &[u8] = hex.as_ref(); |
| 276 | if hex_bytes.len() != OUT_LEN * 2 { |
| 277 | return Err(HexError(HexErrorInner::InvalidLen(hex_bytes.len()))); |
| 278 | } |
| 279 | let mut hash_bytes: [u8; OUT_LEN] = [0; OUT_LEN]; |
| 280 | for i in 0..OUT_LEN { |
| 281 | hash_bytes[i] = 16 * hex_val(hex_bytes[2 * i])? + hex_val(hex_bytes[2 * i + 1])?; |
| 282 | } |
| 283 | Ok(Hash::from(hash_bytes)) |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | impl From<[u8; OUT_LEN]> for Hash { |
| 288 | #[inline ] |
| 289 | fn from(bytes: [u8; OUT_LEN]) -> Self { |
| 290 | Self::from_bytes(bytes) |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | impl From<Hash> for [u8; OUT_LEN] { |
| 295 | #[inline ] |
| 296 | fn from(hash: Hash) -> Self { |
| 297 | hash.0 |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | impl core::str::FromStr for Hash { |
| 302 | type Err = HexError; |
| 303 | |
| 304 | fn from_str(s: &str) -> Result<Self, Self::Err> { |
| 305 | Hash::from_hex(s) |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | #[cfg (feature = "zeroize" )] |
| 310 | impl Zeroize for Hash { |
| 311 | fn zeroize(&mut self) { |
| 312 | // Destructuring to trigger compile error as a reminder to update this impl. |
| 313 | let Self(bytes) = self; |
| 314 | bytes.zeroize(); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | /// This implementation is constant-time. |
| 319 | impl PartialEq for Hash { |
| 320 | #[inline ] |
| 321 | fn eq(&self, other: &Hash) -> bool { |
| 322 | constant_time_eq::constant_time_eq_32(&self.0, &other.0) |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /// This implementation is constant-time. |
| 327 | impl PartialEq<[u8; OUT_LEN]> for Hash { |
| 328 | #[inline ] |
| 329 | fn eq(&self, other: &[u8; OUT_LEN]) -> bool { |
| 330 | constant_time_eq::constant_time_eq_32(&self.0, b:other) |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | /// This implementation is constant-time if the target is 32 bytes long. |
| 335 | impl PartialEq<[u8]> for Hash { |
| 336 | #[inline ] |
| 337 | fn eq(&self, other: &[u8]) -> bool { |
| 338 | constant_time_eq::constant_time_eq(&self.0, b:other) |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | impl Eq for Hash {} |
| 343 | |
| 344 | impl fmt::Display for Hash { |
| 345 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 346 | // Formatting field as `&str` to reduce code size since the `Debug` |
| 347 | // dynamic dispatch table for `&str` is likely needed elsewhere already, |
| 348 | // but that for `ArrayString<[u8; 64]>` is not. |
| 349 | let hex: ArrayString<_> = self.to_hex(); |
| 350 | let hex: &str = hex.as_str(); |
| 351 | |
| 352 | f.write_str(data:hex) |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | impl fmt::Debug for Hash { |
| 357 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 358 | // Formatting field as `&str` to reduce code size since the `Debug` |
| 359 | // dynamic dispatch table for `&str` is likely needed elsewhere already, |
| 360 | // but that for `ArrayString<[u8; 64]>` is not. |
| 361 | let hex: ArrayString<_> = self.to_hex(); |
| 362 | let hex: &str = hex.as_str(); |
| 363 | |
| 364 | f.debug_tuple(name:"Hash" ).field(&hex).finish() |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | /// The error type for [`Hash::from_hex`]. |
| 369 | /// |
| 370 | /// The `.to_string()` representation of this error currently distinguishes between bad length |
| 371 | /// errors and bad character errors. This is to help with logging and debugging, but it isn't a |
| 372 | /// stable API detail, and it may change at any time. |
| 373 | #[derive (Clone, Debug)] |
| 374 | pub struct HexError(HexErrorInner); |
| 375 | |
| 376 | #[derive (Clone, Debug)] |
| 377 | enum HexErrorInner { |
| 378 | InvalidByte(u8), |
| 379 | InvalidLen(usize), |
| 380 | } |
| 381 | |
| 382 | impl fmt::Display for HexError { |
| 383 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 384 | match self.0 { |
| 385 | HexErrorInner::InvalidByte(byte: u8) => { |
| 386 | if byte < 128 { |
| 387 | write!(f, "invalid hex character: {:?}" , byte as char) |
| 388 | } else { |
| 389 | write!(f, "invalid hex character: 0x {:x}" , byte) |
| 390 | } |
| 391 | } |
| 392 | HexErrorInner::InvalidLen(len: usize) => { |
| 393 | write!(f, "expected 64 hex bytes, received {}" , len) |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | #[cfg (feature = "std" )] |
| 400 | impl std::error::Error for HexError {} |
| 401 | |
| 402 | // Each chunk or parent node can produce either a 32-byte chaining value or, by |
| 403 | // setting the ROOT flag, any number of final output bytes. The Output struct |
| 404 | // captures the state just prior to choosing between those two possibilities. |
| 405 | #[derive (Clone)] |
| 406 | struct Output { |
| 407 | input_chaining_value: CVWords, |
| 408 | block: [u8; 64], |
| 409 | block_len: u8, |
| 410 | counter: u64, |
| 411 | flags: u8, |
| 412 | platform: Platform, |
| 413 | } |
| 414 | |
| 415 | impl Output { |
| 416 | fn chaining_value(&self) -> CVBytes { |
| 417 | let mut cv = self.input_chaining_value; |
| 418 | self.platform.compress_in_place( |
| 419 | &mut cv, |
| 420 | &self.block, |
| 421 | self.block_len, |
| 422 | self.counter, |
| 423 | self.flags, |
| 424 | ); |
| 425 | platform::le_bytes_from_words_32(&cv) |
| 426 | } |
| 427 | |
| 428 | fn root_hash(&self) -> Hash { |
| 429 | debug_assert_eq!(self.counter, 0); |
| 430 | let mut cv = self.input_chaining_value; |
| 431 | self.platform |
| 432 | .compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT); |
| 433 | Hash(platform::le_bytes_from_words_32(&cv)) |
| 434 | } |
| 435 | |
| 436 | fn root_output_block(&self) -> [u8; 2 * OUT_LEN] { |
| 437 | self.platform.compress_xof( |
| 438 | &self.input_chaining_value, |
| 439 | &self.block, |
| 440 | self.block_len, |
| 441 | self.counter, |
| 442 | self.flags | ROOT, |
| 443 | ) |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | #[cfg (feature = "zeroize" )] |
| 448 | impl Zeroize for Output { |
| 449 | fn zeroize(&mut self) { |
| 450 | // Destructuring to trigger compile error as a reminder to update this impl. |
| 451 | let Self { |
| 452 | input_chaining_value, |
| 453 | block, |
| 454 | block_len, |
| 455 | counter, |
| 456 | flags, |
| 457 | platform: _, |
| 458 | } = self; |
| 459 | |
| 460 | input_chaining_value.zeroize(); |
| 461 | block.zeroize(); |
| 462 | block_len.zeroize(); |
| 463 | counter.zeroize(); |
| 464 | flags.zeroize(); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | #[derive (Clone)] |
| 469 | struct ChunkState { |
| 470 | cv: CVWords, |
| 471 | chunk_counter: u64, |
| 472 | buf: [u8; BLOCK_LEN], |
| 473 | buf_len: u8, |
| 474 | blocks_compressed: u8, |
| 475 | flags: u8, |
| 476 | platform: Platform, |
| 477 | } |
| 478 | |
| 479 | impl ChunkState { |
| 480 | fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self { |
| 481 | Self { |
| 482 | cv: *key, |
| 483 | chunk_counter, |
| 484 | buf: [0; BLOCK_LEN], |
| 485 | buf_len: 0, |
| 486 | blocks_compressed: 0, |
| 487 | flags, |
| 488 | platform, |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | fn len(&self) -> usize { |
| 493 | BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize |
| 494 | } |
| 495 | |
| 496 | fn fill_buf(&mut self, input: &mut &[u8]) { |
| 497 | let want = BLOCK_LEN - self.buf_len as usize; |
| 498 | let take = cmp::min(want, input.len()); |
| 499 | self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]); |
| 500 | self.buf_len += take as u8; |
| 501 | *input = &input[take..]; |
| 502 | } |
| 503 | |
| 504 | fn start_flag(&self) -> u8 { |
| 505 | if self.blocks_compressed == 0 { |
| 506 | CHUNK_START |
| 507 | } else { |
| 508 | 0 |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | // Try to avoid buffering as much as possible, by compressing directly from |
| 513 | // the input slice when full blocks are available. |
| 514 | fn update(&mut self, mut input: &[u8]) -> &mut Self { |
| 515 | if self.buf_len > 0 { |
| 516 | self.fill_buf(&mut input); |
| 517 | if !input.is_empty() { |
| 518 | debug_assert_eq!(self.buf_len as usize, BLOCK_LEN); |
| 519 | let block_flags = self.flags | self.start_flag(); // borrowck |
| 520 | self.platform.compress_in_place( |
| 521 | &mut self.cv, |
| 522 | &self.buf, |
| 523 | BLOCK_LEN as u8, |
| 524 | self.chunk_counter, |
| 525 | block_flags, |
| 526 | ); |
| 527 | self.buf_len = 0; |
| 528 | self.buf = [0; BLOCK_LEN]; |
| 529 | self.blocks_compressed += 1; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | while input.len() > BLOCK_LEN { |
| 534 | debug_assert_eq!(self.buf_len, 0); |
| 535 | let block_flags = self.flags | self.start_flag(); // borrowck |
| 536 | self.platform.compress_in_place( |
| 537 | &mut self.cv, |
| 538 | array_ref!(input, 0, BLOCK_LEN), |
| 539 | BLOCK_LEN as u8, |
| 540 | self.chunk_counter, |
| 541 | block_flags, |
| 542 | ); |
| 543 | self.blocks_compressed += 1; |
| 544 | input = &input[BLOCK_LEN..]; |
| 545 | } |
| 546 | |
| 547 | self.fill_buf(&mut input); |
| 548 | debug_assert!(input.is_empty()); |
| 549 | debug_assert!(self.len() <= CHUNK_LEN); |
| 550 | self |
| 551 | } |
| 552 | |
| 553 | fn output(&self) -> Output { |
| 554 | let block_flags = self.flags | self.start_flag() | CHUNK_END; |
| 555 | Output { |
| 556 | input_chaining_value: self.cv, |
| 557 | block: self.buf, |
| 558 | block_len: self.buf_len, |
| 559 | counter: self.chunk_counter, |
| 560 | flags: block_flags, |
| 561 | platform: self.platform, |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | // Don't derive(Debug), because the state may be secret. |
| 567 | impl fmt::Debug for ChunkState { |
| 568 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 569 | f&mut DebugStruct<'_, '_>.debug_struct("ChunkState" ) |
| 570 | .field("len" , &self.len()) |
| 571 | .field("chunk_counter" , &self.chunk_counter) |
| 572 | .field("flags" , &self.flags) |
| 573 | .field(name:"platform" , &self.platform) |
| 574 | .finish() |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | #[cfg (feature = "zeroize" )] |
| 579 | impl Zeroize for ChunkState { |
| 580 | fn zeroize(&mut self) { |
| 581 | // Destructuring to trigger compile error as a reminder to update this impl. |
| 582 | let Self { |
| 583 | cv, |
| 584 | chunk_counter, |
| 585 | buf, |
| 586 | buf_len, |
| 587 | blocks_compressed, |
| 588 | flags, |
| 589 | platform: _, |
| 590 | } = self; |
| 591 | |
| 592 | cv.zeroize(); |
| 593 | chunk_counter.zeroize(); |
| 594 | buf.zeroize(); |
| 595 | buf_len.zeroize(); |
| 596 | blocks_compressed.zeroize(); |
| 597 | flags.zeroize(); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | // IMPLEMENTATION NOTE |
| 602 | // =================== |
| 603 | // The recursive function compress_subtree_wide(), implemented below, is the |
| 604 | // basis of high-performance BLAKE3. We use it both for all-at-once hashing, |
| 605 | // and for the incremental input with Hasher (though we have to be careful with |
| 606 | // subtree boundaries in the incremental case). compress_subtree_wide() applies |
| 607 | // several optimizations at the same time: |
| 608 | // - Multithreading with Rayon. |
| 609 | // - Parallel chunk hashing with SIMD. |
| 610 | // - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing |
| 611 | // maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues |
| 612 | // to benefit from larger inputs, because more levels of the tree benefit can |
| 613 | // use full-width SIMD vectors for parent hashing. Without parallel parent |
| 614 | // hashing, we lose about 10% of overall throughput on AVX2 and AVX-512. |
| 615 | |
| 616 | /// Undocumented and unstable, for benchmarks only. |
| 617 | #[doc (hidden)] |
| 618 | #[derive (Clone, Copy)] |
| 619 | pub enum IncrementCounter { |
| 620 | Yes, |
| 621 | No, |
| 622 | } |
| 623 | |
| 624 | impl IncrementCounter { |
| 625 | #[inline ] |
| 626 | fn yes(&self) -> bool { |
| 627 | match self { |
| 628 | IncrementCounter::Yes => true, |
| 629 | IncrementCounter::No => false, |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | // The largest power of two less than or equal to `n`, used for left_len() |
| 635 | // immediately below, and also directly in Hasher::update(). |
| 636 | fn largest_power_of_two_leq(n: usize) -> usize { |
| 637 | ((n / 2) + 1).next_power_of_two() |
| 638 | } |
| 639 | |
| 640 | // Given some input larger than one chunk, return the number of bytes that |
| 641 | // should go in the left subtree. This is the largest power-of-2 number of |
| 642 | // chunks that leaves at least 1 byte for the right subtree. |
| 643 | fn left_len(content_len: usize) -> usize { |
| 644 | debug_assert!(content_len > CHUNK_LEN); |
| 645 | // Subtract 1 to reserve at least one byte for the right side. |
| 646 | let full_chunks: usize = (content_len - 1) / CHUNK_LEN; |
| 647 | largest_power_of_two_leq(full_chunks) * CHUNK_LEN |
| 648 | } |
| 649 | |
| 650 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time |
| 651 | // on a single thread. Write out the chunk chaining values and return the |
| 652 | // number of chunks hashed. These chunks are never the root and never empty; |
| 653 | // those cases use a different codepath. |
| 654 | fn compress_chunks_parallel( |
| 655 | input: &[u8], |
| 656 | key: &CVWords, |
| 657 | chunk_counter: u64, |
| 658 | flags: u8, |
| 659 | platform: Platform, |
| 660 | out: &mut [u8], |
| 661 | ) -> usize { |
| 662 | debug_assert!(!input.is_empty(), "empty chunks below the root" ); |
| 663 | debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN); |
| 664 | |
| 665 | let mut chunks_exact = input.chunks_exact(CHUNK_LEN); |
| 666 | let mut chunks_array = ArrayVec::<&[u8; CHUNK_LEN], MAX_SIMD_DEGREE>::new(); |
| 667 | for chunk in &mut chunks_exact { |
| 668 | chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN)); |
| 669 | } |
| 670 | platform.hash_many( |
| 671 | &chunks_array, |
| 672 | key, |
| 673 | chunk_counter, |
| 674 | IncrementCounter::Yes, |
| 675 | flags, |
| 676 | CHUNK_START, |
| 677 | CHUNK_END, |
| 678 | out, |
| 679 | ); |
| 680 | |
| 681 | // Hash the remaining partial chunk, if there is one. Note that the empty |
| 682 | // chunk (meaning the empty message) is a different codepath. |
| 683 | let chunks_so_far = chunks_array.len(); |
| 684 | if !chunks_exact.remainder().is_empty() { |
| 685 | let counter = chunk_counter + chunks_so_far as u64; |
| 686 | let mut chunk_state = ChunkState::new(key, counter, flags, platform); |
| 687 | chunk_state.update(chunks_exact.remainder()); |
| 688 | *array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) = |
| 689 | chunk_state.output().chaining_value(); |
| 690 | chunks_so_far + 1 |
| 691 | } else { |
| 692 | chunks_so_far |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time |
| 697 | // on a single thread. Write out the parent chaining values and return the |
| 698 | // number of parents hashed. (If there's an odd input chaining value left over, |
| 699 | // return it as an additional output.) These parents are never the root and |
| 700 | // never empty; those cases use a different codepath. |
| 701 | fn compress_parents_parallel( |
| 702 | child_chaining_values: &[u8], |
| 703 | key: &CVWords, |
| 704 | flags: u8, |
| 705 | platform: Platform, |
| 706 | out: &mut [u8], |
| 707 | ) -> usize { |
| 708 | debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes" ); |
| 709 | let num_children = child_chaining_values.len() / OUT_LEN; |
| 710 | debug_assert!(num_children >= 2, "not enough children" ); |
| 711 | debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many" ); |
| 712 | |
| 713 | let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN); |
| 714 | // Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of |
| 715 | // the requirements of compress_subtree_wide(). |
| 716 | let mut parents_array = ArrayVec::<&[u8; BLOCK_LEN], MAX_SIMD_DEGREE_OR_2>::new(); |
| 717 | for parent in &mut parents_exact { |
| 718 | parents_array.push(array_ref!(parent, 0, BLOCK_LEN)); |
| 719 | } |
| 720 | platform.hash_many( |
| 721 | &parents_array, |
| 722 | key, |
| 723 | 0, // Parents always use counter 0. |
| 724 | IncrementCounter::No, |
| 725 | flags | PARENT, |
| 726 | 0, // Parents have no start flags. |
| 727 | 0, // Parents have no end flags. |
| 728 | out, |
| 729 | ); |
| 730 | |
| 731 | // If there's an odd child left over, it becomes an output. |
| 732 | let parents_so_far = parents_array.len(); |
| 733 | if !parents_exact.remainder().is_empty() { |
| 734 | out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder()); |
| 735 | parents_so_far + 1 |
| 736 | } else { |
| 737 | parents_so_far |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | // The wide helper function returns (writes out) an array of chaining values |
| 742 | // and returns the length of that array. The number of chaining values returned |
| 743 | // is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, |
| 744 | // if the input is shorter than that many chunks. The reason for maintaining a |
| 745 | // wide array of chaining values going back up the tree, is to allow the |
| 746 | // implementation to hash as many parents in parallel as possible. |
| 747 | // |
| 748 | // As a special case when the SIMD degree is 1, this function will still return |
| 749 | // at least 2 outputs. This guarantees that this function doesn't perform the |
| 750 | // root compression. (If it did, it would use the wrong flags, and also we |
| 751 | // wouldn't be able to implement extendable output.) Note that this function is |
| 752 | // not used when the whole input is only 1 chunk long; that's a different |
| 753 | // codepath. |
| 754 | // |
| 755 | // Why not just have the caller split the input on the first update(), instead |
| 756 | // of implementing this special rule? Because we don't want to limit SIMD or |
| 757 | // multithreading parallelism for that update(). |
| 758 | fn compress_subtree_wide<J: join::Join>( |
| 759 | input: &[u8], |
| 760 | key: &CVWords, |
| 761 | chunk_counter: u64, |
| 762 | flags: u8, |
| 763 | platform: Platform, |
| 764 | out: &mut [u8], |
| 765 | ) -> usize { |
| 766 | // Note that the single chunk case does *not* bump the SIMD degree up to 2 |
| 767 | // when it is 1. This allows Rayon the option of multithreading even the |
| 768 | // 2-chunk case, which can help performance on smaller platforms. |
| 769 | if input.len() <= platform.simd_degree() * CHUNK_LEN { |
| 770 | return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out); |
| 771 | } |
| 772 | |
| 773 | // With more than simd_degree chunks, we need to recurse. Start by dividing |
| 774 | // the input into left and right subtrees. (Note that this is only optimal |
| 775 | // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree |
| 776 | // of 3 or something, we'll need a more complicated strategy.) |
| 777 | debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2" ); |
| 778 | let (left, right) = input.split_at(left_len(input.len())); |
| 779 | let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64; |
| 780 | |
| 781 | // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to |
| 782 | // account for the special case of returning 2 outputs when the SIMD degree |
| 783 | // is 1. |
| 784 | let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN]; |
| 785 | let degree = if left.len() == CHUNK_LEN { |
| 786 | // The "simd_degree=1 and we're at the leaf nodes" case. |
| 787 | debug_assert_eq!(platform.simd_degree(), 1); |
| 788 | 1 |
| 789 | } else { |
| 790 | cmp::max(platform.simd_degree(), 2) |
| 791 | }; |
| 792 | let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN); |
| 793 | |
| 794 | // Recurse! For update_rayon(), this is where we take advantage of RayonJoin and use multiple |
| 795 | // threads. |
| 796 | let (left_n, right_n) = J::join( |
| 797 | || compress_subtree_wide::<J>(left, key, chunk_counter, flags, platform, left_out), |
| 798 | || compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, platform, right_out), |
| 799 | ); |
| 800 | |
| 801 | // The special case again. If simd_degree=1, then we'll have left_n=1 and |
| 802 | // right_n=1. Rather than compressing them into a single output, return |
| 803 | // them directly, to make sure we always have at least two outputs. |
| 804 | debug_assert_eq!(left_n, degree); |
| 805 | debug_assert!(right_n >= 1 && right_n <= left_n); |
| 806 | if left_n == 1 { |
| 807 | out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]); |
| 808 | return 2; |
| 809 | } |
| 810 | |
| 811 | // Otherwise, do one layer of parent node compression. |
| 812 | let num_children = left_n + right_n; |
| 813 | compress_parents_parallel( |
| 814 | &cv_array[..num_children * OUT_LEN], |
| 815 | key, |
| 816 | flags, |
| 817 | platform, |
| 818 | out, |
| 819 | ) |
| 820 | } |
| 821 | |
| 822 | // Hash a subtree with compress_subtree_wide(), and then condense the resulting |
| 823 | // list of chaining values down to a single parent node. Don't compress that |
| 824 | // last parent node, however. Instead, return its message bytes (the |
| 825 | // concatenated chaining values of its children). This is necessary when the |
| 826 | // first call to update() supplies a complete subtree, because the topmost |
| 827 | // parent node of that subtree could end up being the root. It's also necessary |
| 828 | // for extended output in the general case. |
| 829 | // |
| 830 | // As with compress_subtree_wide(), this function is not used on inputs of 1 |
| 831 | // chunk or less. That's a different codepath. |
| 832 | fn compress_subtree_to_parent_node<J: join::Join>( |
| 833 | input: &[u8], |
| 834 | key: &CVWords, |
| 835 | chunk_counter: u64, |
| 836 | flags: u8, |
| 837 | platform: Platform, |
| 838 | ) -> [u8; BLOCK_LEN] { |
| 839 | debug_assert!(input.len() > CHUNK_LEN); |
| 840 | let mut cv_array: [u8; 512] = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN]; |
| 841 | let mut num_cvs: usize = |
| 842 | compress_subtree_wide::<J>(input, &key, chunk_counter, flags, platform, &mut cv_array); |
| 843 | debug_assert!(num_cvs >= 2); |
| 844 | |
| 845 | // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, |
| 846 | // compress_subtree_wide() returns more than 2 chaining values. Condense |
| 847 | // them into 2 by forming parent nodes repeatedly. |
| 848 | let mut out_array: [u8; 256] = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2]; |
| 849 | while num_cvs > 2 { |
| 850 | let cv_slice: &[u8] = &cv_array[..num_cvs * OUT_LEN]; |
| 851 | num_cvs = compress_parents_parallel(child_chaining_values:cv_slice, key, flags, platform, &mut out_array); |
| 852 | cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]); |
| 853 | } |
| 854 | *array_ref!(cv_array, 0, 2 * OUT_LEN) |
| 855 | } |
| 856 | |
| 857 | // Hash a complete input all at once. Unlike compress_subtree_wide() and |
| 858 | // compress_subtree_to_parent_node(), this function handles the 1 chunk case. |
| 859 | fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output { |
| 860 | let platform: Platform = Platform::detect(); |
| 861 | |
| 862 | // If the whole subtree is one chunk, hash it directly with a ChunkState. |
| 863 | if input.len() <= CHUNK_LEN { |
| 864 | return ChunkState&mut ChunkState::new(key, chunk_counter:0, flags, platform) |
| 865 | .update(input) |
| 866 | .output(); |
| 867 | } |
| 868 | |
| 869 | // Otherwise construct an Output object from the parent node returned by |
| 870 | // compress_subtree_to_parent_node(). |
| 871 | Output { |
| 872 | input_chaining_value: *key, |
| 873 | block: compress_subtree_to_parent_node::<J>(input, key, chunk_counter:0, flags, platform), |
| 874 | block_len: BLOCK_LEN as u8, |
| 875 | counter: 0, |
| 876 | flags: flags | PARENT, |
| 877 | platform, |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /// The default hash function. |
| 882 | /// |
| 883 | /// For an incremental version that accepts multiple writes, see [`Hasher::new`], |
| 884 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent: |
| 885 | /// |
| 886 | /// ``` |
| 887 | /// let hash = blake3::hash(b"foo" ); |
| 888 | /// # let hash1 = hash; |
| 889 | /// |
| 890 | /// let hash = blake3::Hasher::new().update(b"foo" ).finalize(); |
| 891 | /// # let hash2 = hash; |
| 892 | /// # assert_eq!(hash1, hash2); |
| 893 | /// ``` |
| 894 | /// |
| 895 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`] and |
| 896 | /// [`OutputReader`]. |
| 897 | /// |
| 898 | /// This function is always single-threaded. For multithreading support, see |
| 899 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
| 900 | pub fn hash(input: &[u8]) -> Hash { |
| 901 | hash_all_at_once::<join::SerialJoin>(input, IV, flags:0).root_hash() |
| 902 | } |
| 903 | |
| 904 | /// The keyed hash function. |
| 905 | /// |
| 906 | /// This is suitable for use as a message authentication code, for example to |
| 907 | /// replace an HMAC instance. In that use case, the constant-time equality |
| 908 | /// checking provided by [`Hash`](struct.Hash.html) is almost always a security |
| 909 | /// requirement, and callers need to be careful not to compare MACs as raw |
| 910 | /// bytes. |
| 911 | /// |
| 912 | /// For an incremental version that accepts multiple writes, see [`Hasher::new_keyed`], |
| 913 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent: |
| 914 | /// |
| 915 | /// ``` |
| 916 | /// # const KEY: &[u8; 32] = &[0; 32]; |
| 917 | /// let mac = blake3::keyed_hash(KEY, b"foo" ); |
| 918 | /// # let mac1 = mac; |
| 919 | /// |
| 920 | /// let mac = blake3::Hasher::new_keyed(KEY).update(b"foo" ).finalize(); |
| 921 | /// # let mac2 = mac; |
| 922 | /// # assert_eq!(mac1, mac2); |
| 923 | /// ``` |
| 924 | /// |
| 925 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`]. |
| 926 | /// |
| 927 | /// This function is always single-threaded. For multithreading support, see |
| 928 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
| 929 | pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash { |
| 930 | let key_words: [u32; 8] = platform::words_from_le_bytes_32(bytes:key); |
| 931 | hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash() |
| 932 | } |
| 933 | |
| 934 | /// The key derivation function. |
| 935 | /// |
| 936 | /// Given cryptographic key material of any length and a context string of any |
| 937 | /// length, this function outputs a 32-byte derived subkey. **The context string |
| 938 | /// should be hardcoded, globally unique, and application-specific.** A good |
| 939 | /// default format for such strings is `"[application] [commit timestamp] |
| 940 | /// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`. |
| 941 | /// |
| 942 | /// Key derivation is important when you want to use the same key in multiple |
| 943 | /// algorithms or use cases. Using the same key with different cryptographic |
| 944 | /// algorithms is generally forbidden, and deriving a separate subkey for each |
| 945 | /// use case protects you from bad interactions. Derived keys also mitigate the |
| 946 | /// damage from one part of your application accidentally leaking its key. |
| 947 | /// |
| 948 | /// As a rare exception to that general rule, however, it is possible to use |
| 949 | /// `derive_key` itself with key material that you are already using with |
| 950 | /// another algorithm. You might need to do this if you're adding features to |
| 951 | /// an existing application, which does not yet use key derivation internally. |
| 952 | /// However, you still must not share key material with algorithms that forbid |
| 953 | /// key reuse entirely, like a one-time pad. For more on this, see sections 6.2 |
| 954 | /// and 7.8 of the [BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf). |
| 955 | /// |
| 956 | /// Note that BLAKE3 is not a password hash, and **`derive_key` should never be |
| 957 | /// used with passwords.** Instead, use a dedicated password hash like |
| 958 | /// [Argon2]. Password hashes are entirely different from generic hash |
| 959 | /// functions, with opposite design requirements. |
| 960 | /// |
| 961 | /// For an incremental version that accepts multiple writes, see [`Hasher::new_derive_key`], |
| 962 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two statements are equivalent: |
| 963 | /// |
| 964 | /// ``` |
| 965 | /// # const CONTEXT: &str = "example.com 2019-12-25 16:18:03 session tokens v1" ; |
| 966 | /// let key = blake3::derive_key(CONTEXT, b"key material, not a password" ); |
| 967 | /// # let key1 = key; |
| 968 | /// |
| 969 | /// let key: [u8; 32] = blake3::Hasher::new_derive_key(CONTEXT) |
| 970 | /// .update(b"key material, not a password" ) |
| 971 | /// .finalize() |
| 972 | /// .into(); |
| 973 | /// # let key2 = key; |
| 974 | /// # assert_eq!(key1, key2); |
| 975 | /// ``` |
| 976 | /// |
| 977 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`]. |
| 978 | /// |
| 979 | /// This function is always single-threaded. For multithreading support, see |
| 980 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
| 981 | /// |
| 982 | /// [Argon2]: https://en.wikipedia.org/wiki/Argon2 |
| 983 | pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] { |
| 984 | let context_key: Hash = |
| 985 | hash_all_at_onceOutput::<join::SerialJoin>(input:context.as_bytes(), IV, DERIVE_KEY_CONTEXT) |
| 986 | .root_hash(); |
| 987 | let context_key_words: [u32; 8] = platform::words_from_le_bytes_32(context_key.as_bytes()); |
| 988 | hash_all_at_onceHash::<join::SerialJoin>(input:key_material, &context_key_words, DERIVE_KEY_MATERIAL) |
| 989 | .root_hash() |
| 990 | .0 |
| 991 | } |
| 992 | |
| 993 | fn parent_node_output( |
| 994 | left_child: &CVBytes, |
| 995 | right_child: &CVBytes, |
| 996 | key: &CVWords, |
| 997 | flags: u8, |
| 998 | platform: Platform, |
| 999 | ) -> Output { |
| 1000 | let mut block: [u8; 64] = [0; BLOCK_LEN]; |
| 1001 | block[..32].copy_from_slice(src:left_child); |
| 1002 | block[32..].copy_from_slice(src:right_child); |
| 1003 | Output { |
| 1004 | input_chaining_value: *key, |
| 1005 | block, |
| 1006 | block_len: BLOCK_LEN as u8, |
| 1007 | counter: 0, |
| 1008 | flags: flags | PARENT, |
| 1009 | platform, |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | /// An incremental hash state that can accept any number of writes. |
| 1014 | /// |
| 1015 | /// The `rayon` and `mmap` Cargo features enable additional methods on this |
| 1016 | /// type related to multithreading and memory-mapped IO. |
| 1017 | /// |
| 1018 | /// When the `traits-preview` Cargo feature is enabled, this type implements |
| 1019 | /// several commonly used traits from the |
| 1020 | /// [`digest`](https://crates.io/crates/digest) crate. However, those |
| 1021 | /// traits aren't stable, and they're expected to change in incompatible ways |
| 1022 | /// before that crate reaches 1.0. For that reason, this crate makes no SemVer |
| 1023 | /// guarantees for this feature, and callers who use it should expect breaking |
| 1024 | /// changes between patch versions. |
| 1025 | /// |
| 1026 | /// # Examples |
| 1027 | /// |
| 1028 | /// ``` |
| 1029 | /// # fn main() -> Result<(), Box<dyn std::error::Error>> { |
| 1030 | /// // Hash an input incrementally. |
| 1031 | /// let mut hasher = blake3::Hasher::new(); |
| 1032 | /// hasher.update(b"foo" ); |
| 1033 | /// hasher.update(b"bar" ); |
| 1034 | /// hasher.update(b"baz" ); |
| 1035 | /// assert_eq!(hasher.finalize(), blake3::hash(b"foobarbaz" )); |
| 1036 | /// |
| 1037 | /// // Extended output. OutputReader also implements Read and Seek. |
| 1038 | /// # #[cfg (feature = "std" )] { |
| 1039 | /// let mut output = [0; 1000]; |
| 1040 | /// let mut output_reader = hasher.finalize_xof(); |
| 1041 | /// output_reader.fill(&mut output); |
| 1042 | /// assert_eq!(&output[..32], blake3::hash(b"foobarbaz" ).as_bytes()); |
| 1043 | /// # } |
| 1044 | /// # Ok(()) |
| 1045 | /// # } |
| 1046 | /// ``` |
| 1047 | #[derive (Clone)] |
| 1048 | pub struct Hasher { |
| 1049 | key: CVWords, |
| 1050 | chunk_state: ChunkState, |
| 1051 | // The stack size is MAX_DEPTH + 1 because we do lazy merging. For example, |
| 1052 | // with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk |
| 1053 | // requires a 4th entry, rather than merging everything down to 1, because |
| 1054 | // we don't know whether more input is coming. This is different from how |
| 1055 | // the reference implementation does things. |
| 1056 | cv_stack: ArrayVec<CVBytes, { MAX_DEPTH + 1 }>, |
| 1057 | } |
| 1058 | |
| 1059 | impl Hasher { |
| 1060 | fn new_internal(key: &CVWords, flags: u8) -> Self { |
| 1061 | Self { |
| 1062 | key: *key, |
| 1063 | chunk_state: ChunkState::new(key, 0, flags, Platform::detect()), |
| 1064 | cv_stack: ArrayVec::new(), |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | /// Construct a new `Hasher` for the regular hash function. |
| 1069 | pub fn new() -> Self { |
| 1070 | Self::new_internal(IV, 0) |
| 1071 | } |
| 1072 | |
| 1073 | /// Construct a new `Hasher` for the keyed hash function. See |
| 1074 | /// [`keyed_hash`]. |
| 1075 | /// |
| 1076 | /// [`keyed_hash`]: fn.keyed_hash.html |
| 1077 | pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self { |
| 1078 | let key_words = platform::words_from_le_bytes_32(key); |
| 1079 | Self::new_internal(&key_words, KEYED_HASH) |
| 1080 | } |
| 1081 | |
| 1082 | /// Construct a new `Hasher` for the key derivation function. See |
| 1083 | /// [`derive_key`]. The context string should be hardcoded, globally |
| 1084 | /// unique, and application-specific. |
| 1085 | /// |
| 1086 | /// [`derive_key`]: fn.derive_key.html |
| 1087 | pub fn new_derive_key(context: &str) -> Self { |
| 1088 | let context_key = |
| 1089 | hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT) |
| 1090 | .root_hash(); |
| 1091 | let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes()); |
| 1092 | Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL) |
| 1093 | } |
| 1094 | |
| 1095 | /// Reset the `Hasher` to its initial state. |
| 1096 | /// |
| 1097 | /// This is functionally the same as overwriting the `Hasher` with a new |
| 1098 | /// one, using the same key or context string if any. |
| 1099 | pub fn reset(&mut self) -> &mut Self { |
| 1100 | self.chunk_state = ChunkState::new( |
| 1101 | &self.key, |
| 1102 | 0, |
| 1103 | self.chunk_state.flags, |
| 1104 | self.chunk_state.platform, |
| 1105 | ); |
| 1106 | self.cv_stack.clear(); |
| 1107 | self |
| 1108 | } |
| 1109 | |
| 1110 | // As described in push_cv() below, we do "lazy merging", delaying merges |
| 1111 | // until right before the next CV is about to be added. This is different |
| 1112 | // from the reference implementation. Another difference is that we aren't |
| 1113 | // always merging 1 chunk at a time. Instead, each CV might represent any |
| 1114 | // power-of-two number of chunks, as long as the smaller-above-larger stack |
| 1115 | // order is maintained. Instead of the "count the trailing 0-bits" |
| 1116 | // algorithm described in the spec, we use a "count the total number of |
| 1117 | // 1-bits" variant that doesn't require us to retain the subtree size of |
| 1118 | // the CV on top of the stack. The principle is the same: each CV that |
| 1119 | // should remain in the stack is represented by a 1-bit in the total number |
| 1120 | // of chunks (or bytes) so far. |
| 1121 | fn merge_cv_stack(&mut self, total_len: u64) { |
| 1122 | let post_merge_stack_len = total_len.count_ones() as usize; |
| 1123 | while self.cv_stack.len() > post_merge_stack_len { |
| 1124 | let right_child = self.cv_stack.pop().unwrap(); |
| 1125 | let left_child = self.cv_stack.pop().unwrap(); |
| 1126 | let parent_output = parent_node_output( |
| 1127 | &left_child, |
| 1128 | &right_child, |
| 1129 | &self.key, |
| 1130 | self.chunk_state.flags, |
| 1131 | self.chunk_state.platform, |
| 1132 | ); |
| 1133 | self.cv_stack.push(parent_output.chaining_value()); |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | // In reference_impl.rs, we merge the new CV with existing CVs from the |
| 1138 | // stack before pushing it. We can do that because we know more input is |
| 1139 | // coming, so we know none of the merges are root. |
| 1140 | // |
| 1141 | // This setting is different. We want to feed as much input as possible to |
| 1142 | // compress_subtree_wide(), without setting aside anything for the |
| 1143 | // chunk_state. If the user gives us 64 KiB, we want to parallelize over |
| 1144 | // all 64 KiB at once as a single subtree, if at all possible. |
| 1145 | // |
| 1146 | // This leads to two problems: |
| 1147 | // 1) This 64 KiB input might be the only call that ever gets made to |
| 1148 | // update. In this case, the root node of the 64 KiB subtree would be |
| 1149 | // the root node of the whole tree, and it would need to be ROOT |
| 1150 | // finalized. We can't compress it until we know. |
| 1151 | // 2) This 64 KiB input might complete a larger tree, whose root node is |
| 1152 | // similarly going to be the root of the whole tree. For example, |
| 1153 | // maybe we have 196 KiB (that is, 128 + 64) hashed so far. We can't |
| 1154 | // compress the node at the root of the 256 KiB subtree until we know |
| 1155 | // how to finalize it. |
| 1156 | // |
| 1157 | // The second problem is solved with "lazy merging". That is, when we're |
| 1158 | // about to add a CV to the stack, we don't merge it with anything first, |
| 1159 | // as the reference impl does. Instead we do merges using the *previous* CV |
| 1160 | // that was added, which is sitting on top of the stack, and we put the new |
| 1161 | // CV (unmerged) on top of the stack afterwards. This guarantees that we |
| 1162 | // never merge the root node until finalize(). |
| 1163 | // |
| 1164 | // Solving the first problem requires an additional tool, |
| 1165 | // compress_subtree_to_parent_node(). That function always returns the top |
| 1166 | // *two* chaining values of the subtree it's compressing. We then do lazy |
| 1167 | // merging with each of them separately, so that the second CV will always |
| 1168 | // remain unmerged. (That also helps us support extendable output when |
| 1169 | // we're hashing an input all-at-once.) |
| 1170 | fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) { |
| 1171 | self.merge_cv_stack(chunk_counter); |
| 1172 | self.cv_stack.push(*new_cv); |
| 1173 | } |
| 1174 | |
| 1175 | /// Add input bytes to the hash state. You can call this any number of times. |
| 1176 | /// |
| 1177 | /// This method is always single-threaded. For multithreading support, see |
| 1178 | /// [`update_rayon`](#method.update_rayon) (enabled with the `rayon` Cargo feature). |
| 1179 | /// |
| 1180 | /// Note that the degree of SIMD parallelism that `update` can use is limited by the size of |
| 1181 | /// this input buffer. See [`update_reader`](#method.update_reader). |
| 1182 | pub fn update(&mut self, input: &[u8]) -> &mut Self { |
| 1183 | self.update_with_join::<join::SerialJoin>(input) |
| 1184 | } |
| 1185 | |
| 1186 | fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self { |
| 1187 | // If we have some partial chunk bytes in the internal chunk_state, we |
| 1188 | // need to finish that chunk first. |
| 1189 | if self.chunk_state.len() > 0 { |
| 1190 | let want = CHUNK_LEN - self.chunk_state.len(); |
| 1191 | let take = cmp::min(want, input.len()); |
| 1192 | self.chunk_state.update(&input[..take]); |
| 1193 | input = &input[take..]; |
| 1194 | if !input.is_empty() { |
| 1195 | // We've filled the current chunk, and there's more input |
| 1196 | // coming, so we know it's not the root and we can finalize it. |
| 1197 | // Then we'll proceed to hashing whole chunks below. |
| 1198 | debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN); |
| 1199 | let chunk_cv = self.chunk_state.output().chaining_value(); |
| 1200 | self.push_cv(&chunk_cv, self.chunk_state.chunk_counter); |
| 1201 | self.chunk_state = ChunkState::new( |
| 1202 | &self.key, |
| 1203 | self.chunk_state.chunk_counter + 1, |
| 1204 | self.chunk_state.flags, |
| 1205 | self.chunk_state.platform, |
| 1206 | ); |
| 1207 | } else { |
| 1208 | return self; |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | // Now the chunk_state is clear, and we have more input. If there's |
| 1213 | // more than a single chunk (so, definitely not the root chunk), hash |
| 1214 | // the largest whole subtree we can, with the full benefits of SIMD and |
| 1215 | // multithreading parallelism. Two restrictions: |
| 1216 | // - The subtree has to be a power-of-2 number of chunks. Only subtrees |
| 1217 | // along the right edge can be incomplete, and we don't know where |
| 1218 | // the right edge is going to be until we get to finalize(). |
| 1219 | // - The subtree must evenly divide the total number of chunks up until |
| 1220 | // this point (if total is not 0). If the current incomplete subtree |
| 1221 | // is only waiting for 1 more chunk, we can't hash a subtree of 4 |
| 1222 | // chunks. We have to complete the current subtree first. |
| 1223 | // Because we might need to break up the input to form powers of 2, or |
| 1224 | // to evenly divide what we already have, this part runs in a loop. |
| 1225 | while input.len() > CHUNK_LEN { |
| 1226 | debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data" ); |
| 1227 | debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len" ); |
| 1228 | let mut subtree_len = largest_power_of_two_leq(input.len()); |
| 1229 | let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64; |
| 1230 | // Shrink the subtree_len until it evenly divides the count so far. |
| 1231 | // We know that subtree_len itself is a power of 2, so we can use a |
| 1232 | // bitmasking trick instead of an actual remainder operation. (Note |
| 1233 | // that if the caller consistently passes power-of-2 inputs of the |
| 1234 | // same size, as is hopefully typical, this loop condition will |
| 1235 | // always fail, and subtree_len will always be the full length of |
| 1236 | // the input.) |
| 1237 | // |
| 1238 | // An aside: We don't have to shrink subtree_len quite this much. |
| 1239 | // For example, if count_so_far is 1, we could pass 2 chunks to |
| 1240 | // compress_subtree_to_parent_node. Since we'll get 2 CVs back, |
| 1241 | // we'll still get the right answer in the end, and we might get to |
| 1242 | // use 2-way SIMD parallelism. The problem with this optimization, |
| 1243 | // is that it gets us stuck always hashing 2 chunks. The total |
| 1244 | // number of chunks will remain odd, and we'll never graduate to |
| 1245 | // higher degrees of parallelism. See |
| 1246 | // https://github.com/BLAKE3-team/BLAKE3/issues/69. |
| 1247 | while (subtree_len - 1) as u64 & count_so_far != 0 { |
| 1248 | subtree_len /= 2; |
| 1249 | } |
| 1250 | // The shrunken subtree_len might now be 1 chunk long. If so, hash |
| 1251 | // that one chunk by itself. Otherwise, compress the subtree into a |
| 1252 | // pair of CVs. |
| 1253 | let subtree_chunks = (subtree_len / CHUNK_LEN) as u64; |
| 1254 | if subtree_len <= CHUNK_LEN { |
| 1255 | debug_assert_eq!(subtree_len, CHUNK_LEN); |
| 1256 | self.push_cv( |
| 1257 | &ChunkState::new( |
| 1258 | &self.key, |
| 1259 | self.chunk_state.chunk_counter, |
| 1260 | self.chunk_state.flags, |
| 1261 | self.chunk_state.platform, |
| 1262 | ) |
| 1263 | .update(&input[..subtree_len]) |
| 1264 | .output() |
| 1265 | .chaining_value(), |
| 1266 | self.chunk_state.chunk_counter, |
| 1267 | ); |
| 1268 | } else { |
| 1269 | // This is the high-performance happy path, though getting here |
| 1270 | // depends on the caller giving us a long enough input. |
| 1271 | let cv_pair = compress_subtree_to_parent_node::<J>( |
| 1272 | &input[..subtree_len], |
| 1273 | &self.key, |
| 1274 | self.chunk_state.chunk_counter, |
| 1275 | self.chunk_state.flags, |
| 1276 | self.chunk_state.platform, |
| 1277 | ); |
| 1278 | let left_cv = array_ref!(cv_pair, 0, 32); |
| 1279 | let right_cv = array_ref!(cv_pair, 32, 32); |
| 1280 | // Push the two CVs we received into the CV stack in order. Because |
| 1281 | // the stack merges lazily, this guarantees we aren't merging the |
| 1282 | // root. |
| 1283 | self.push_cv(left_cv, self.chunk_state.chunk_counter); |
| 1284 | self.push_cv( |
| 1285 | right_cv, |
| 1286 | self.chunk_state.chunk_counter + (subtree_chunks / 2), |
| 1287 | ); |
| 1288 | } |
| 1289 | self.chunk_state.chunk_counter += subtree_chunks; |
| 1290 | input = &input[subtree_len..]; |
| 1291 | } |
| 1292 | |
| 1293 | // What remains is 1 chunk or less. Add it to the chunk state. |
| 1294 | debug_assert!(input.len() <= CHUNK_LEN); |
| 1295 | if !input.is_empty() { |
| 1296 | self.chunk_state.update(input); |
| 1297 | // Having added some input to the chunk_state, we know what's in |
| 1298 | // the CV stack won't become the root node, and we can do an extra |
| 1299 | // merge. This simplifies finalize(). |
| 1300 | self.merge_cv_stack(self.chunk_state.chunk_counter); |
| 1301 | } |
| 1302 | |
| 1303 | self |
| 1304 | } |
| 1305 | |
| 1306 | fn final_output(&self) -> Output { |
| 1307 | // If the current chunk is the only chunk, that makes it the root node |
| 1308 | // also. Convert it directly into an Output. Otherwise, we need to |
| 1309 | // merge subtrees below. |
| 1310 | if self.cv_stack.is_empty() { |
| 1311 | debug_assert_eq!(self.chunk_state.chunk_counter, 0); |
| 1312 | return self.chunk_state.output(); |
| 1313 | } |
| 1314 | |
| 1315 | // If there are any bytes in the ChunkState, finalize that chunk and |
| 1316 | // merge its CV with everything in the CV stack. In that case, the work |
| 1317 | // we did at the end of update() above guarantees that the stack |
| 1318 | // doesn't contain any unmerged subtrees that need to be merged first. |
| 1319 | // (This is important, because if there were two chunk hashes sitting |
| 1320 | // on top of the stack, they would need to merge with each other, and |
| 1321 | // merging a new chunk hash into them would be incorrect.) |
| 1322 | // |
| 1323 | // If there are no bytes in the ChunkState, we'll merge what's already |
| 1324 | // in the stack. In this case it's fine if there are unmerged chunks on |
| 1325 | // top, because we'll merge them with each other. Note that the case of |
| 1326 | // the empty chunk is taken care of above. |
| 1327 | let mut output: Output; |
| 1328 | let mut num_cvs_remaining = self.cv_stack.len(); |
| 1329 | if self.chunk_state.len() > 0 { |
| 1330 | debug_assert_eq!( |
| 1331 | self.cv_stack.len(), |
| 1332 | self.chunk_state.chunk_counter.count_ones() as usize, |
| 1333 | "cv stack does not need a merge" |
| 1334 | ); |
| 1335 | output = self.chunk_state.output(); |
| 1336 | } else { |
| 1337 | debug_assert!(self.cv_stack.len() >= 2); |
| 1338 | output = parent_node_output( |
| 1339 | &self.cv_stack[num_cvs_remaining - 2], |
| 1340 | &self.cv_stack[num_cvs_remaining - 1], |
| 1341 | &self.key, |
| 1342 | self.chunk_state.flags, |
| 1343 | self.chunk_state.platform, |
| 1344 | ); |
| 1345 | num_cvs_remaining -= 2; |
| 1346 | } |
| 1347 | while num_cvs_remaining > 0 { |
| 1348 | output = parent_node_output( |
| 1349 | &self.cv_stack[num_cvs_remaining - 1], |
| 1350 | &output.chaining_value(), |
| 1351 | &self.key, |
| 1352 | self.chunk_state.flags, |
| 1353 | self.chunk_state.platform, |
| 1354 | ); |
| 1355 | num_cvs_remaining -= 1; |
| 1356 | } |
| 1357 | output |
| 1358 | } |
| 1359 | |
| 1360 | /// Finalize the hash state and return the [`Hash`](struct.Hash.html) of |
| 1361 | /// the input. |
| 1362 | /// |
| 1363 | /// This method is idempotent. Calling it twice will give the same result. |
| 1364 | /// You can also add more input and finalize again. |
| 1365 | pub fn finalize(&self) -> Hash { |
| 1366 | self.final_output().root_hash() |
| 1367 | } |
| 1368 | |
| 1369 | /// Finalize the hash state and return an [`OutputReader`], which can |
| 1370 | /// supply any number of output bytes. |
| 1371 | /// |
| 1372 | /// This method is idempotent. Calling it twice will give the same result. |
| 1373 | /// You can also add more input and finalize again. |
| 1374 | /// |
| 1375 | /// [`OutputReader`]: struct.OutputReader.html |
| 1376 | pub fn finalize_xof(&self) -> OutputReader { |
| 1377 | OutputReader::new(self.final_output()) |
| 1378 | } |
| 1379 | |
| 1380 | /// Return the total number of bytes hashed so far. |
| 1381 | pub fn count(&self) -> u64 { |
| 1382 | self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64 |
| 1383 | } |
| 1384 | |
| 1385 | /// As [`update`](Hasher::update), but reading from a |
| 1386 | /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) implementation. |
| 1387 | /// |
| 1388 | /// [`Hasher`] implements |
| 1389 | /// [`std::io::Write`](https://doc.rust-lang.org/std/io/trait.Write.html), so it's possible to |
| 1390 | /// use [`std::io::copy`](https://doc.rust-lang.org/std/io/fn.copy.html) to update a [`Hasher`] |
| 1391 | /// from any reader. Unfortunately, this standard approach can limit performance, because |
| 1392 | /// `copy` currently uses an internal 8 KiB buffer that isn't big enough to take advantage of |
| 1393 | /// all SIMD instruction sets. (In particular, [AVX-512](https://en.wikipedia.org/wiki/AVX-512) |
| 1394 | /// needs a 16 KiB buffer.) `update_reader` avoids this performance problem and is slightly |
| 1395 | /// more convenient. |
| 1396 | /// |
| 1397 | /// The internal buffer size this method uses may change at any time, and it may be different |
| 1398 | /// for different targets. The only guarantee is that it will be large enough for all of this |
| 1399 | /// crate's SIMD implementations on the current platform. |
| 1400 | /// |
| 1401 | /// The most common implementer of |
| 1402 | /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) might be |
| 1403 | /// [`std::fs::File`](https://doc.rust-lang.org/std/fs/struct.File.html), but note that memory |
| 1404 | /// mapping can be faster than this method for hashing large files. See |
| 1405 | /// [`update_mmap`](Hasher::update_mmap) and [`update_mmap_rayon`](Hasher::update_mmap_rayon), |
| 1406 | /// which require the `mmap` and (for the latter) `rayon` Cargo features. |
| 1407 | /// |
| 1408 | /// This method requires the `std` Cargo feature, which is enabled by default. |
| 1409 | /// |
| 1410 | /// # Example |
| 1411 | /// |
| 1412 | /// ```no_run |
| 1413 | /// # use std::fs::File; |
| 1414 | /// # use std::io; |
| 1415 | /// # fn main() -> io::Result<()> { |
| 1416 | /// // Hash standard input. |
| 1417 | /// let mut hasher = blake3::Hasher::new(); |
| 1418 | /// hasher.update_reader(std::io::stdin().lock())?; |
| 1419 | /// println!("{}" , hasher.finalize()); |
| 1420 | /// # Ok(()) |
| 1421 | /// # } |
| 1422 | /// ``` |
| 1423 | #[cfg (feature = "std" )] |
| 1424 | pub fn update_reader(&mut self, reader: impl std::io::Read) -> std::io::Result<&mut Self> { |
| 1425 | io::copy_wide(reader, self)?; |
| 1426 | Ok(self) |
| 1427 | } |
| 1428 | |
| 1429 | /// As [`update`](Hasher::update), but using Rayon-based multithreading |
| 1430 | /// internally. |
| 1431 | /// |
| 1432 | /// This method is gated by the `rayon` Cargo feature, which is disabled by |
| 1433 | /// default but enabled on [docs.rs](https://docs.rs). |
| 1434 | /// |
| 1435 | /// To get any performance benefit from multithreading, the input buffer |
| 1436 | /// needs to be large. As a rule of thumb on x86_64, `update_rayon` is |
| 1437 | /// _slower_ than `update` for inputs under 128 KiB. That threshold varies |
| 1438 | /// quite a lot across different processors, and it's important to benchmark |
| 1439 | /// your specific use case. See also the performance warning associated with |
| 1440 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon). |
| 1441 | /// |
| 1442 | /// If you already have a large buffer in memory, and you want to hash it |
| 1443 | /// with multiple threads, this method is a good option. However, reading a |
| 1444 | /// file into memory just to call this method can be a performance mistake, |
| 1445 | /// both because it requires lots of memory and because single-threaded |
| 1446 | /// reads can be slow. For hashing whole files, see |
| 1447 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon), which is gated by both |
| 1448 | /// the `rayon` and `mmap` Cargo features. |
| 1449 | #[cfg (feature = "rayon" )] |
| 1450 | pub fn update_rayon(&mut self, input: &[u8]) -> &mut Self { |
| 1451 | self.update_with_join::<join::RayonJoin>(input) |
| 1452 | } |
| 1453 | |
| 1454 | /// As [`update`](Hasher::update), but reading the contents of a file using memory mapping. |
| 1455 | /// |
| 1456 | /// Not all files can be memory mapped, and memory mapping small files can be slower than |
| 1457 | /// reading them the usual way. In those cases, this method will fall back to standard file IO. |
| 1458 | /// The heuristic for whether to use memory mapping is currently very simple (file size >= |
| 1459 | /// 16 KiB), and it might change at any time. |
| 1460 | /// |
| 1461 | /// Like [`update`](Hasher::update), this method is single-threaded. In this author's |
| 1462 | /// experience, memory mapping improves single-threaded performance by ~10% for large files |
| 1463 | /// that are already in cache. This probably varies between platforms, and as always it's a |
| 1464 | /// good idea to benchmark your own use case. In comparison, the multithreaded |
| 1465 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon) method can have a much larger impact on |
| 1466 | /// performance. |
| 1467 | /// |
| 1468 | /// There's a correctness reason that this method takes |
| 1469 | /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) instead of |
| 1470 | /// [`File`](https://doc.rust-lang.org/std/fs/struct.File.html): reading from a memory-mapped |
| 1471 | /// file ignores the seek position of the original file handle (it neither respects the current |
| 1472 | /// position nor updates the position). This difference in behavior would've caused |
| 1473 | /// `update_mmap` and [`update_reader`](Hasher::update_reader) to give different answers and |
| 1474 | /// have different side effects in some cases. Taking a |
| 1475 | /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) avoids this problem by |
| 1476 | /// making it clear that a new [`File`](https://doc.rust-lang.org/std/fs/struct.File.html) is |
| 1477 | /// opened internally. |
| 1478 | /// |
| 1479 | /// This method requires the `mmap` Cargo feature, which is disabled by default but enabled on |
| 1480 | /// [docs.rs](https://docs.rs). |
| 1481 | /// |
| 1482 | /// # Example |
| 1483 | /// |
| 1484 | /// ```no_run |
| 1485 | /// # use std::io; |
| 1486 | /// # use std::path::Path; |
| 1487 | /// # fn main() -> io::Result<()> { |
| 1488 | /// let path = Path::new("file.dat"); |
| 1489 | /// let mut hasher = blake3::Hasher::new(); |
| 1490 | /// hasher.update_mmap(path)?; |
| 1491 | /// println!("{}", hasher.finalize()); |
| 1492 | /// # Ok(()) |
| 1493 | /// # } |
| 1494 | /// ``` |
| 1495 | #[cfg (feature = "mmap" )] |
| 1496 | pub fn update_mmap(&mut self, path: impl AsRef<std::path::Path>) -> std::io::Result<&mut Self> { |
| 1497 | let file = std::fs::File::open(path.as_ref())?; |
| 1498 | if let Some(mmap) = io::maybe_mmap_file(&file)? { |
| 1499 | self.update(&mmap); |
| 1500 | } else { |
| 1501 | io::copy_wide(&file, self)?; |
| 1502 | } |
| 1503 | Ok(self) |
| 1504 | } |
| 1505 | |
| 1506 | /// As [`update_rayon`](Hasher::update_rayon), but reading the contents of a file using |
| 1507 | /// memory mapping. This is the default behavior of `b3sum`. |
| 1508 | /// |
| 1509 | /// For large files that are likely to be in cache, this can be much faster than |
| 1510 | /// single-threaded hashing. When benchmarks report that BLAKE3 is 10x or 20x faster than other |
| 1511 | /// cryptographic hashes, this is usually what they're measuring. However... |
| 1512 | /// |
| 1513 | /// **Performance Warning:** There are cases where multithreading hurts performance. The worst |
| 1514 | /// case is [a large file on a spinning disk](https://github.com/BLAKE3-team/BLAKE3/issues/31), |
| 1515 | /// where simultaneous reads from multiple threads can cause "thrashing" (i.e. the disk spends |
| 1516 | /// more time seeking around than reading data). Windows tends to be somewhat worse about this, |
| 1517 | /// in part because it's less likely than Linux to keep very large files in cache. More |
| 1518 | /// generally, if your CPU cores are already busy, then multithreading will add overhead |
| 1519 | /// without improving performance. If your code runs in different environments that you don't |
| 1520 | /// control and can't measure, then unfortunately there's no one-size-fits-all answer for |
| 1521 | /// whether multithreading is a good idea. |
| 1522 | /// |
| 1523 | /// The memory mapping behavior of this function is the same as |
| 1524 | /// [`update_mmap`](Hasher::update_mmap), and the heuristic for when to fall back to standard |
| 1525 | /// file IO might change at any time. |
| 1526 | /// |
| 1527 | /// This method requires both the `mmap` and `rayon` Cargo features, which are disabled by |
| 1528 | /// default but enabled on [docs.rs](https://docs.rs). |
| 1529 | /// |
| 1530 | /// # Example |
| 1531 | /// |
| 1532 | /// ```no_run |
| 1533 | /// # use std::io; |
| 1534 | /// # use std::path::Path; |
| 1535 | /// # fn main() -> io::Result<()> { |
| 1536 | /// # #[cfg(feature = "rayon")] |
| 1537 | /// # { |
| 1538 | /// let path = Path::new("big_file.dat"); |
| 1539 | /// let mut hasher = blake3::Hasher::new(); |
| 1540 | /// hasher.update_mmap_rayon(path)?; |
| 1541 | /// println!("{}", hasher.finalize()); |
| 1542 | /// # } |
| 1543 | /// # Ok(()) |
| 1544 | /// # } |
| 1545 | /// ``` |
| 1546 | #[cfg (feature = "mmap" )] |
| 1547 | #[cfg (feature = "rayon" )] |
| 1548 | pub fn update_mmap_rayon( |
| 1549 | &mut self, |
| 1550 | path: impl AsRef<std::path::Path>, |
| 1551 | ) -> std::io::Result<&mut Self> { |
| 1552 | let file = std::fs::File::open(path.as_ref())?; |
| 1553 | if let Some(mmap) = io::maybe_mmap_file(&file)? { |
| 1554 | self.update_rayon(&mmap); |
| 1555 | } else { |
| 1556 | io::copy_wide(&file, self)?; |
| 1557 | } |
| 1558 | Ok(self) |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | // Don't derive(Debug), because the state may be secret. |
| 1563 | impl fmt::Debug for Hasher { |
| 1564 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1565 | f&mut DebugStruct<'_, '_>.debug_struct("Hasher" ) |
| 1566 | .field("flags" , &self.chunk_state.flags) |
| 1567 | .field(name:"platform" , &self.chunk_state.platform) |
| 1568 | .finish() |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | impl Default for Hasher { |
| 1573 | #[inline ] |
| 1574 | fn default() -> Self { |
| 1575 | Self::new() |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | #[cfg (feature = "std" )] |
| 1580 | impl std::io::Write for Hasher { |
| 1581 | /// This is equivalent to [`update`](#method.update). |
| 1582 | #[inline ] |
| 1583 | fn write(&mut self, input: &[u8]) -> std::io::Result<usize> { |
| 1584 | self.update(input); |
| 1585 | Ok(input.len()) |
| 1586 | } |
| 1587 | |
| 1588 | #[inline ] |
| 1589 | fn flush(&mut self) -> std::io::Result<()> { |
| 1590 | Ok(()) |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | #[cfg (feature = "zeroize" )] |
| 1595 | impl Zeroize for Hasher { |
| 1596 | fn zeroize(&mut self) { |
| 1597 | // Destructuring to trigger compile error as a reminder to update this impl. |
| 1598 | let Self { |
| 1599 | key, |
| 1600 | chunk_state, |
| 1601 | cv_stack, |
| 1602 | } = self; |
| 1603 | |
| 1604 | key.zeroize(); |
| 1605 | chunk_state.zeroize(); |
| 1606 | cv_stack.zeroize(); |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | /// An incremental reader for extended output, returned by |
| 1611 | /// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof). |
| 1612 | /// |
| 1613 | /// Shorter BLAKE3 outputs are prefixes of longer ones, and explicitly requesting a short output is |
| 1614 | /// equivalent to truncating the default-length output. Note that this is a difference between |
| 1615 | /// BLAKE2 and BLAKE3. |
| 1616 | /// |
| 1617 | /// # Security notes |
| 1618 | /// |
| 1619 | /// Outputs shorter than the default length of 32 bytes (256 bits) provide less security. An N-bit |
| 1620 | /// BLAKE3 output is intended to provide N bits of first and second preimage resistance and N/2 |
| 1621 | /// bits of collision resistance, for any N up to 256. Longer outputs don't provide any additional |
| 1622 | /// security. |
| 1623 | /// |
| 1624 | /// Avoid relying on the secrecy of the output offset, that is, the number of output bytes read or |
| 1625 | /// the arguments to [`seek`](struct.OutputReader.html#method.seek) or |
| 1626 | /// [`set_position`](struct.OutputReader.html#method.set_position). [_Block-Cipher-Based Tree |
| 1627 | /// Hashing_ by Aldo Gunsing](https://eprint.iacr.org/2022/283) shows that an attacker who knows |
| 1628 | /// both the message and the key (if any) can easily determine the offset of an extended output. |
| 1629 | /// For comparison, AES-CTR has a similar property: if you know the key, you can decrypt a block |
| 1630 | /// from an unknown position in the output stream to recover its block index. Callers with strong |
| 1631 | /// secret keys aren't affected in practice, but secret offsets are a [design |
| 1632 | /// smell](https://en.wikipedia.org/wiki/Design_smell) in any case. |
| 1633 | #[derive (Clone)] |
| 1634 | pub struct OutputReader { |
| 1635 | inner: Output, |
| 1636 | position_within_block: u8, |
| 1637 | } |
| 1638 | |
| 1639 | impl OutputReader { |
| 1640 | fn new(inner: Output) -> Self { |
| 1641 | Self { |
| 1642 | inner, |
| 1643 | position_within_block: 0, |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | // This helper function handles both the case where the output buffer is |
| 1648 | // shorter than one block, and the case where our position_within_block is |
| 1649 | // non-zero. |
| 1650 | fn fill_one_block(&mut self, buf: &mut &mut [u8]) { |
| 1651 | let output_block: [u8; BLOCK_LEN] = self.inner.root_output_block(); |
| 1652 | let output_bytes = &output_block[self.position_within_block as usize..]; |
| 1653 | let take = cmp::min(buf.len(), output_bytes.len()); |
| 1654 | buf[..take].copy_from_slice(&output_bytes[..take]); |
| 1655 | self.position_within_block += take as u8; |
| 1656 | if self.position_within_block == BLOCK_LEN as u8 { |
| 1657 | self.inner.counter += 1; |
| 1658 | self.position_within_block = 0; |
| 1659 | } |
| 1660 | // Advance the dest buffer. mem::take() is a borrowck workaround. |
| 1661 | *buf = &mut core::mem::take(buf)[take..]; |
| 1662 | } |
| 1663 | |
| 1664 | /// Fill a buffer with output bytes and advance the position of the |
| 1665 | /// `OutputReader`. This is equivalent to [`Read::read`], except that it |
| 1666 | /// doesn't return a `Result`. Both methods always fill the entire buffer. |
| 1667 | /// |
| 1668 | /// Note that `OutputReader` doesn't buffer output bytes internally, so |
| 1669 | /// calling `fill` repeatedly with a short-length or odd-length slice will |
| 1670 | /// end up performing the same compression multiple times. If you're |
| 1671 | /// reading output in a loop, prefer a slice length that's a multiple of |
| 1672 | /// 64. |
| 1673 | /// |
| 1674 | /// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try |
| 1675 | /// to extract more than that, for example by seeking near the end and |
| 1676 | /// reading further, the behavior is unspecified. |
| 1677 | /// |
| 1678 | /// [`Read::read`]: #method.read |
| 1679 | pub fn fill(&mut self, mut buf: &mut [u8]) { |
| 1680 | if buf.is_empty() { |
| 1681 | return; |
| 1682 | } |
| 1683 | |
| 1684 | // If we're partway through a block, try to get to a block boundary. |
| 1685 | if self.position_within_block != 0 { |
| 1686 | self.fill_one_block(&mut buf); |
| 1687 | } |
| 1688 | |
| 1689 | let full_blocks = buf.len() / BLOCK_LEN; |
| 1690 | let full_blocks_len = full_blocks * BLOCK_LEN; |
| 1691 | if full_blocks > 0 { |
| 1692 | debug_assert_eq!(0, self.position_within_block); |
| 1693 | self.inner.platform.xof_many( |
| 1694 | &self.inner.input_chaining_value, |
| 1695 | &self.inner.block, |
| 1696 | self.inner.block_len, |
| 1697 | self.inner.counter, |
| 1698 | self.inner.flags | ROOT, |
| 1699 | &mut buf[..full_blocks_len], |
| 1700 | ); |
| 1701 | self.inner.counter += full_blocks as u64; |
| 1702 | buf = &mut buf[full_blocks * BLOCK_LEN..]; |
| 1703 | } |
| 1704 | |
| 1705 | if !buf.is_empty() { |
| 1706 | debug_assert!(buf.len() < BLOCK_LEN); |
| 1707 | self.fill_one_block(&mut buf); |
| 1708 | debug_assert!(buf.is_empty()); |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | /// Return the current read position in the output stream. This is |
| 1713 | /// equivalent to [`Seek::stream_position`], except that it doesn't return |
| 1714 | /// a `Result`. The position of a new `OutputReader` starts at 0, and each |
| 1715 | /// call to [`fill`] or [`Read::read`] moves the position forward by the |
| 1716 | /// number of bytes read. |
| 1717 | /// |
| 1718 | /// [`Seek::stream_position`]: #method.stream_position |
| 1719 | /// [`fill`]: #method.fill |
| 1720 | /// [`Read::read`]: #method.read |
| 1721 | pub fn position(&self) -> u64 { |
| 1722 | self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64 |
| 1723 | } |
| 1724 | |
| 1725 | /// Seek to a new read position in the output stream. This is equivalent to |
| 1726 | /// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't |
| 1727 | /// return a `Result`. |
| 1728 | /// |
| 1729 | /// [`Seek::seek`]: #method.seek |
| 1730 | /// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html |
| 1731 | pub fn set_position(&mut self, position: u64) { |
| 1732 | self.position_within_block = (position % BLOCK_LEN as u64) as u8; |
| 1733 | self.inner.counter = position / BLOCK_LEN as u64; |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | // Don't derive(Debug), because the state may be secret. |
| 1738 | impl fmt::Debug for OutputReader { |
| 1739 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1740 | f&mut DebugStruct<'_, '_>.debug_struct("OutputReader" ) |
| 1741 | .field(name:"position" , &self.position()) |
| 1742 | .finish() |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | #[cfg (feature = "std" )] |
| 1747 | impl std::io::Read for OutputReader { |
| 1748 | #[inline ] |
| 1749 | fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> { |
| 1750 | self.fill(buf); |
| 1751 | Ok(buf.len()) |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | #[cfg (feature = "std" )] |
| 1756 | impl std::io::Seek for OutputReader { |
| 1757 | fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> { |
| 1758 | let max_position: i128 = u64::max_value() as i128; |
| 1759 | let target_position: i128 = match pos { |
| 1760 | std::io::SeekFrom::Start(x: u64) => x as i128, |
| 1761 | std::io::SeekFrom::Current(x: i64) => self.position() as i128 + x as i128, |
| 1762 | std::io::SeekFrom::End(_) => { |
| 1763 | return Err(std::io::Error::new( |
| 1764 | kind:std::io::ErrorKind::InvalidInput, |
| 1765 | error:"seek from end not supported" , |
| 1766 | )); |
| 1767 | } |
| 1768 | }; |
| 1769 | if target_position < 0 { |
| 1770 | return Err(std::io::Error::new( |
| 1771 | kind:std::io::ErrorKind::InvalidInput, |
| 1772 | error:"seek before start" , |
| 1773 | )); |
| 1774 | } |
| 1775 | self.set_position(cmp::min(v1:target_position, v2:max_position) as u64); |
| 1776 | Ok(self.position()) |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | #[cfg (feature = "zeroize" )] |
| 1781 | impl Zeroize for OutputReader { |
| 1782 | fn zeroize(&mut self) { |
| 1783 | // Destructuring to trigger compile error as a reminder to update this impl. |
| 1784 | let Self { |
| 1785 | inner, |
| 1786 | position_within_block, |
| 1787 | } = self; |
| 1788 | |
| 1789 | inner.zeroize(); |
| 1790 | position_within_block.zeroize(); |
| 1791 | } |
| 1792 | } |
| 1793 | |