1 | //! The official Rust implementation of the [BLAKE3] cryptographic hash |
2 | //! function. |
3 | //! |
4 | //! # Examples |
5 | //! |
6 | //! ``` |
7 | //! # fn main() -> Result<(), Box<dyn std::error::Error>> { |
8 | //! // Hash an input all at once. |
9 | //! let hash1 = blake3::hash(b"foobarbaz" ); |
10 | //! |
11 | //! // Hash an input incrementally. |
12 | //! let mut hasher = blake3::Hasher::new(); |
13 | //! hasher.update(b"foo" ); |
14 | //! hasher.update(b"bar" ); |
15 | //! hasher.update(b"baz" ); |
16 | //! let hash2 = hasher.finalize(); |
17 | //! assert_eq!(hash1, hash2); |
18 | //! |
19 | //! // Extended output. OutputReader also implements Read and Seek. |
20 | //! # #[cfg (feature = "std" )] { |
21 | //! let mut output = [0; 1000]; |
22 | //! let mut output_reader = hasher.finalize_xof(); |
23 | //! output_reader.fill(&mut output); |
24 | //! assert_eq!(hash1, output[..32]); |
25 | //! # } |
26 | //! |
27 | //! // Print a hash as hex. |
28 | //! println!("{}" , hash1); |
29 | //! # Ok(()) |
30 | //! # } |
31 | //! ``` |
32 | //! |
33 | //! # Cargo Features |
34 | //! |
35 | //! The `std` feature (the only feature enabled by default) is required for |
36 | //! implementations of the [`Write`] and [`Seek`] traits, the |
37 | //! [`update_reader`](Hasher::update_reader) helper method, and runtime CPU |
38 | //! feature detection on x86. If this feature is disabled, the only way to use |
39 | //! the x86 SIMD implementations is to enable the corresponding instruction sets |
40 | //! globally, with e.g. `RUSTFLAGS="-C target-cpu=native"`. The resulting binary |
41 | //! will not be portable to other machines. |
42 | //! |
43 | //! The `rayon` feature (disabled by default, but enabled for [docs.rs]) adds |
44 | //! the [`update_rayon`](Hasher::update_rayon) and (in combination with `mmap` |
45 | //! below) [`update_mmap_rayon`](Hasher::update_mmap_rayon) methods, for |
46 | //! multithreaded hashing. However, even if this feature is enabled, all other |
47 | //! APIs remain single-threaded. |
48 | //! |
49 | //! The `mmap` feature (disabled by default, but enabled for [docs.rs]) adds the |
50 | //! [`update_mmap`](Hasher::update_mmap) and (in combination with `rayon` above) |
51 | //! [`update_mmap_rayon`](Hasher::update_mmap_rayon) helper methods for |
52 | //! memory-mapped IO. |
53 | //! |
54 | //! The `zeroize` feature (disabled by default, but enabled for [docs.rs]) |
55 | //! implements |
56 | //! [`Zeroize`](https://docs.rs/zeroize/latest/zeroize/trait.Zeroize.html) for |
57 | //! this crate's types. |
58 | //! |
59 | //! The `serde` feature (disabled by default, but enabled for [docs.rs]) implements |
60 | //! [`serde::Serialize`](https://docs.rs/serde/latest/serde/trait.Serialize.html) and |
61 | //! [`serde::Deserialize`](https://docs.rs/serde/latest/serde/trait.Deserialize.html) |
62 | //! for [`Hash`](struct@Hash). |
63 | //! |
64 | //! The NEON implementation is enabled by default for AArch64 but requires the |
65 | //! `neon` feature for other ARM targets. Not all ARMv7 CPUs support NEON, and |
66 | //! enabling this feature will produce a binary that's not portable to CPUs |
67 | //! without NEON support. |
68 | //! |
69 | //! The `traits-preview` feature enables implementations of traits from the |
70 | //! RustCrypto [`digest`] crate, and re-exports that crate as `traits::digest`. |
71 | //! However, the traits aren't stable, and they're expected to change in |
72 | //! incompatible ways before that crate reaches 1.0. For that reason, this crate |
73 | //! makes no SemVer guarantees for this feature, and callers who use it should |
74 | //! expect breaking changes between patch versions. (The "-preview" feature name |
75 | //! follows the conventions of the RustCrypto [`signature`] crate.) |
76 | //! |
77 | //! [`Hasher::update_rayon`]: struct.Hasher.html#method.update_rayon |
78 | //! [BLAKE3]: https://blake3.io |
79 | //! [Rayon]: https://github.com/rayon-rs/rayon |
80 | //! [docs.rs]: https://docs.rs/ |
81 | //! [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html |
82 | //! [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html |
83 | //! [`digest`]: https://crates.io/crates/digest |
84 | //! [`signature`]: https://crates.io/crates/signature |
85 | |
86 | #![cfg_attr (not(feature = "std" ), no_std)] |
87 | |
88 | #[cfg (test)] |
89 | mod test; |
90 | |
91 | // The guts module is for incremental use cases like the `bao` crate that need |
92 | // to explicitly compute chunk and parent chaining values. It is semi-stable |
93 | // and likely to keep working, but largely undocumented and not intended for |
94 | // widespread use. |
95 | #[doc (hidden)] |
96 | pub mod guts; |
97 | |
98 | /// Undocumented and unstable, for benchmarks only. |
99 | #[doc (hidden)] |
100 | pub mod platform; |
101 | |
102 | // Platform-specific implementations of the compression function. These |
103 | // BLAKE3-specific cfg flags are set in build.rs. |
104 | #[cfg (blake3_avx2_rust)] |
105 | #[path = "rust_avx2.rs" ] |
106 | mod avx2; |
107 | #[cfg (blake3_avx2_ffi)] |
108 | #[path = "ffi_avx2.rs" ] |
109 | mod avx2; |
110 | #[cfg (blake3_avx512_ffi)] |
111 | #[path = "ffi_avx512.rs" ] |
112 | mod avx512; |
113 | #[cfg (blake3_neon)] |
114 | #[path = "ffi_neon.rs" ] |
115 | mod neon; |
116 | mod portable; |
117 | #[cfg (blake3_sse2_rust)] |
118 | #[path = "rust_sse2.rs" ] |
119 | mod sse2; |
120 | #[cfg (blake3_sse2_ffi)] |
121 | #[path = "ffi_sse2.rs" ] |
122 | mod sse2; |
123 | #[cfg (blake3_sse41_rust)] |
124 | #[path = "rust_sse41.rs" ] |
125 | mod sse41; |
126 | #[cfg (blake3_sse41_ffi)] |
127 | #[path = "ffi_sse41.rs" ] |
128 | mod sse41; |
129 | |
130 | #[cfg (feature = "traits-preview" )] |
131 | pub mod traits; |
132 | |
133 | mod io; |
134 | mod join; |
135 | |
136 | use arrayref::{array_mut_ref, array_ref}; |
137 | use arrayvec::{ArrayString, ArrayVec}; |
138 | use core::cmp; |
139 | use core::fmt; |
140 | use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2}; |
141 | #[cfg (feature = "zeroize" )] |
142 | use zeroize::Zeroize; |
143 | |
144 | /// The number of bytes in a [`Hash`](struct.Hash.html), 32. |
145 | pub const OUT_LEN: usize = 32; |
146 | |
147 | /// The number of bytes in a key, 32. |
148 | pub const KEY_LEN: usize = 32; |
149 | |
150 | const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64 |
151 | use guts::{BLOCK_LEN, CHUNK_LEN}; |
152 | |
153 | // While iterating the compression function within a chunk, the CV is |
154 | // represented as words, to avoid doing two extra endianness conversions for |
155 | // each compression in the portable implementation. But the hash_many interface |
156 | // needs to hash both input bytes and parent nodes, so its better for its |
157 | // output CVs to be represented as bytes. |
158 | type CVWords = [u32; 8]; |
159 | type CVBytes = [u8; 32]; // little-endian |
160 | |
161 | const IV: &CVWords = &[ |
162 | 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, |
163 | ]; |
164 | |
165 | const MSG_SCHEDULE: [[usize; 16]; 7] = [ |
166 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], |
167 | [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8], |
168 | [3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1], |
169 | [10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6], |
170 | [12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4], |
171 | [9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7], |
172 | [11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13], |
173 | ]; |
174 | |
175 | // These are the internal flags that we use to domain separate root/non-root, |
176 | // chunk/parent, and chunk beginning/middle/end. These get set at the high end |
177 | // of the block flags word in the compression function, so their values start |
178 | // high and go down. |
179 | const CHUNK_START: u8 = 1 << 0; |
180 | const CHUNK_END: u8 = 1 << 1; |
181 | const PARENT: u8 = 1 << 2; |
182 | const ROOT: u8 = 1 << 3; |
183 | const KEYED_HASH: u8 = 1 << 4; |
184 | const DERIVE_KEY_CONTEXT: u8 = 1 << 5; |
185 | const DERIVE_KEY_MATERIAL: u8 = 1 << 6; |
186 | |
187 | #[inline ] |
188 | fn counter_low(counter: u64) -> u32 { |
189 | counter as u32 |
190 | } |
191 | |
192 | #[inline ] |
193 | fn counter_high(counter: u64) -> u32 { |
194 | (counter >> 32) as u32 |
195 | } |
196 | |
197 | /// An output of the default size, 32 bytes, which provides constant-time |
198 | /// equality checking. |
199 | /// |
200 | /// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides |
201 | /// [`from_bytes`] and [`as_bytes`] for explicit conversions between itself and |
202 | /// `[u8; 32]`. However, byte arrays and slices don't provide constant-time |
203 | /// equality checking, which is often a security requirement in software that |
204 | /// handles private data. `Hash` doesn't implement [`Deref`] or [`AsRef`], to |
205 | /// avoid situations where a type conversion happens implicitly and the |
206 | /// constant-time property is accidentally lost. |
207 | /// |
208 | /// `Hash` provides the [`to_hex`] and [`from_hex`] methods for converting to |
209 | /// and from hexadecimal. It also implements [`Display`] and [`FromStr`]. |
210 | /// |
211 | /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html |
212 | /// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html |
213 | /// [`as_bytes`]: #method.as_bytes |
214 | /// [`from_bytes`]: #method.from_bytes |
215 | /// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html |
216 | /// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html |
217 | /// [`to_hex`]: #method.to_hex |
218 | /// [`from_hex`]: #method.from_hex |
219 | /// [`Display`]: https://doc.rust-lang.org/std/fmt/trait.Display.html |
220 | /// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html |
221 | #[cfg_attr (feature = "serde" , derive(serde::Deserialize, serde::Serialize))] |
222 | #[derive (Clone, Copy, Hash)] |
223 | pub struct Hash([u8; OUT_LEN]); |
224 | |
225 | impl Hash { |
226 | /// The raw bytes of the `Hash`. Note that byte arrays don't provide |
227 | /// constant-time equality checking, so if you need to compare hashes, |
228 | /// prefer the `Hash` type. |
229 | #[inline ] |
230 | pub const fn as_bytes(&self) -> &[u8; OUT_LEN] { |
231 | &self.0 |
232 | } |
233 | |
234 | /// Create a `Hash` from its raw bytes representation. |
235 | pub const fn from_bytes(bytes: [u8; OUT_LEN]) -> Self { |
236 | Self(bytes) |
237 | } |
238 | |
239 | /// Encode a `Hash` in lowercase hexadecimal. |
240 | /// |
241 | /// The returned [`ArrayString`] is a fixed size and doesn't allocate memory |
242 | /// on the heap. Note that [`ArrayString`] doesn't provide constant-time |
243 | /// equality checking, so if you need to compare hashes, prefer the `Hash` |
244 | /// type. |
245 | /// |
246 | /// [`ArrayString`]: https://docs.rs/arrayvec/0.5.1/arrayvec/struct.ArrayString.html |
247 | pub fn to_hex(&self) -> ArrayString<{ 2 * OUT_LEN }> { |
248 | let mut s = ArrayString::new(); |
249 | let table = b"0123456789abcdef" ; |
250 | for &b in self.0.iter() { |
251 | s.push(table[(b >> 4) as usize] as char); |
252 | s.push(table[(b & 0xf) as usize] as char); |
253 | } |
254 | s |
255 | } |
256 | |
257 | /// Decode a `Hash` from hexadecimal. Both uppercase and lowercase ASCII |
258 | /// bytes are supported. |
259 | /// |
260 | /// Any byte outside the ranges `'0'...'9'`, `'a'...'f'`, and `'A'...'F'` |
261 | /// results in an error. An input length other than 64 also results in an |
262 | /// error. |
263 | /// |
264 | /// Note that `Hash` also implements `FromStr`, so `Hash::from_hex("...")` |
265 | /// is equivalent to `"...".parse()`. |
266 | pub fn from_hex(hex: impl AsRef<[u8]>) -> Result<Self, HexError> { |
267 | fn hex_val(byte: u8) -> Result<u8, HexError> { |
268 | match byte { |
269 | b'A' ..=b'F' => Ok(byte - b'A' + 10), |
270 | b'a' ..=b'f' => Ok(byte - b'a' + 10), |
271 | b'0' ..=b'9' => Ok(byte - b'0' ), |
272 | _ => Err(HexError(HexErrorInner::InvalidByte(byte))), |
273 | } |
274 | } |
275 | let hex_bytes: &[u8] = hex.as_ref(); |
276 | if hex_bytes.len() != OUT_LEN * 2 { |
277 | return Err(HexError(HexErrorInner::InvalidLen(hex_bytes.len()))); |
278 | } |
279 | let mut hash_bytes: [u8; OUT_LEN] = [0; OUT_LEN]; |
280 | for i in 0..OUT_LEN { |
281 | hash_bytes[i] = 16 * hex_val(hex_bytes[2 * i])? + hex_val(hex_bytes[2 * i + 1])?; |
282 | } |
283 | Ok(Hash::from(hash_bytes)) |
284 | } |
285 | } |
286 | |
287 | impl From<[u8; OUT_LEN]> for Hash { |
288 | #[inline ] |
289 | fn from(bytes: [u8; OUT_LEN]) -> Self { |
290 | Self::from_bytes(bytes) |
291 | } |
292 | } |
293 | |
294 | impl From<Hash> for [u8; OUT_LEN] { |
295 | #[inline ] |
296 | fn from(hash: Hash) -> Self { |
297 | hash.0 |
298 | } |
299 | } |
300 | |
301 | impl core::str::FromStr for Hash { |
302 | type Err = HexError; |
303 | |
304 | fn from_str(s: &str) -> Result<Self, Self::Err> { |
305 | Hash::from_hex(s) |
306 | } |
307 | } |
308 | |
309 | #[cfg (feature = "zeroize" )] |
310 | impl Zeroize for Hash { |
311 | fn zeroize(&mut self) { |
312 | // Destructuring to trigger compile error as a reminder to update this impl. |
313 | let Self(bytes) = self; |
314 | bytes.zeroize(); |
315 | } |
316 | } |
317 | |
318 | /// This implementation is constant-time. |
319 | impl PartialEq for Hash { |
320 | #[inline ] |
321 | fn eq(&self, other: &Hash) -> bool { |
322 | constant_time_eq::constant_time_eq_32(&self.0, &other.0) |
323 | } |
324 | } |
325 | |
326 | /// This implementation is constant-time. |
327 | impl PartialEq<[u8; OUT_LEN]> for Hash { |
328 | #[inline ] |
329 | fn eq(&self, other: &[u8; OUT_LEN]) -> bool { |
330 | constant_time_eq::constant_time_eq_32(&self.0, b:other) |
331 | } |
332 | } |
333 | |
334 | /// This implementation is constant-time if the target is 32 bytes long. |
335 | impl PartialEq<[u8]> for Hash { |
336 | #[inline ] |
337 | fn eq(&self, other: &[u8]) -> bool { |
338 | constant_time_eq::constant_time_eq(&self.0, b:other) |
339 | } |
340 | } |
341 | |
342 | impl Eq for Hash {} |
343 | |
344 | impl fmt::Display for Hash { |
345 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
346 | // Formatting field as `&str` to reduce code size since the `Debug` |
347 | // dynamic dispatch table for `&str` is likely needed elsewhere already, |
348 | // but that for `ArrayString<[u8; 64]>` is not. |
349 | let hex: ArrayString<_> = self.to_hex(); |
350 | let hex: &str = hex.as_str(); |
351 | |
352 | f.write_str(data:hex) |
353 | } |
354 | } |
355 | |
356 | impl fmt::Debug for Hash { |
357 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
358 | // Formatting field as `&str` to reduce code size since the `Debug` |
359 | // dynamic dispatch table for `&str` is likely needed elsewhere already, |
360 | // but that for `ArrayString<[u8; 64]>` is not. |
361 | let hex: ArrayString<_> = self.to_hex(); |
362 | let hex: &str = hex.as_str(); |
363 | |
364 | f.debug_tuple(name:"Hash" ).field(&hex).finish() |
365 | } |
366 | } |
367 | |
368 | /// The error type for [`Hash::from_hex`]. |
369 | /// |
370 | /// The `.to_string()` representation of this error currently distinguishes between bad length |
371 | /// errors and bad character errors. This is to help with logging and debugging, but it isn't a |
372 | /// stable API detail, and it may change at any time. |
373 | #[derive (Clone, Debug)] |
374 | pub struct HexError(HexErrorInner); |
375 | |
376 | #[derive (Clone, Debug)] |
377 | enum HexErrorInner { |
378 | InvalidByte(u8), |
379 | InvalidLen(usize), |
380 | } |
381 | |
382 | impl fmt::Display for HexError { |
383 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
384 | match self.0 { |
385 | HexErrorInner::InvalidByte(byte: u8) => { |
386 | if byte < 128 { |
387 | write!(f, "invalid hex character: {:?}" , byte as char) |
388 | } else { |
389 | write!(f, "invalid hex character: 0x {:x}" , byte) |
390 | } |
391 | } |
392 | HexErrorInner::InvalidLen(len: usize) => { |
393 | write!(f, "expected 64 hex bytes, received {}" , len) |
394 | } |
395 | } |
396 | } |
397 | } |
398 | |
399 | #[cfg (feature = "std" )] |
400 | impl std::error::Error for HexError {} |
401 | |
402 | // Each chunk or parent node can produce either a 32-byte chaining value or, by |
403 | // setting the ROOT flag, any number of final output bytes. The Output struct |
404 | // captures the state just prior to choosing between those two possibilities. |
405 | #[derive (Clone)] |
406 | struct Output { |
407 | input_chaining_value: CVWords, |
408 | block: [u8; 64], |
409 | block_len: u8, |
410 | counter: u64, |
411 | flags: u8, |
412 | platform: Platform, |
413 | } |
414 | |
415 | impl Output { |
416 | fn chaining_value(&self) -> CVBytes { |
417 | let mut cv = self.input_chaining_value; |
418 | self.platform.compress_in_place( |
419 | &mut cv, |
420 | &self.block, |
421 | self.block_len, |
422 | self.counter, |
423 | self.flags, |
424 | ); |
425 | platform::le_bytes_from_words_32(&cv) |
426 | } |
427 | |
428 | fn root_hash(&self) -> Hash { |
429 | debug_assert_eq!(self.counter, 0); |
430 | let mut cv = self.input_chaining_value; |
431 | self.platform |
432 | .compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT); |
433 | Hash(platform::le_bytes_from_words_32(&cv)) |
434 | } |
435 | |
436 | fn root_output_block(&self) -> [u8; 2 * OUT_LEN] { |
437 | self.platform.compress_xof( |
438 | &self.input_chaining_value, |
439 | &self.block, |
440 | self.block_len, |
441 | self.counter, |
442 | self.flags | ROOT, |
443 | ) |
444 | } |
445 | } |
446 | |
447 | #[cfg (feature = "zeroize" )] |
448 | impl Zeroize for Output { |
449 | fn zeroize(&mut self) { |
450 | // Destructuring to trigger compile error as a reminder to update this impl. |
451 | let Self { |
452 | input_chaining_value, |
453 | block, |
454 | block_len, |
455 | counter, |
456 | flags, |
457 | platform: _, |
458 | } = self; |
459 | |
460 | input_chaining_value.zeroize(); |
461 | block.zeroize(); |
462 | block_len.zeroize(); |
463 | counter.zeroize(); |
464 | flags.zeroize(); |
465 | } |
466 | } |
467 | |
468 | #[derive (Clone)] |
469 | struct ChunkState { |
470 | cv: CVWords, |
471 | chunk_counter: u64, |
472 | buf: [u8; BLOCK_LEN], |
473 | buf_len: u8, |
474 | blocks_compressed: u8, |
475 | flags: u8, |
476 | platform: Platform, |
477 | } |
478 | |
479 | impl ChunkState { |
480 | fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self { |
481 | Self { |
482 | cv: *key, |
483 | chunk_counter, |
484 | buf: [0; BLOCK_LEN], |
485 | buf_len: 0, |
486 | blocks_compressed: 0, |
487 | flags, |
488 | platform, |
489 | } |
490 | } |
491 | |
492 | fn len(&self) -> usize { |
493 | BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize |
494 | } |
495 | |
496 | fn fill_buf(&mut self, input: &mut &[u8]) { |
497 | let want = BLOCK_LEN - self.buf_len as usize; |
498 | let take = cmp::min(want, input.len()); |
499 | self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]); |
500 | self.buf_len += take as u8; |
501 | *input = &input[take..]; |
502 | } |
503 | |
504 | fn start_flag(&self) -> u8 { |
505 | if self.blocks_compressed == 0 { |
506 | CHUNK_START |
507 | } else { |
508 | 0 |
509 | } |
510 | } |
511 | |
512 | // Try to avoid buffering as much as possible, by compressing directly from |
513 | // the input slice when full blocks are available. |
514 | fn update(&mut self, mut input: &[u8]) -> &mut Self { |
515 | if self.buf_len > 0 { |
516 | self.fill_buf(&mut input); |
517 | if !input.is_empty() { |
518 | debug_assert_eq!(self.buf_len as usize, BLOCK_LEN); |
519 | let block_flags = self.flags | self.start_flag(); // borrowck |
520 | self.platform.compress_in_place( |
521 | &mut self.cv, |
522 | &self.buf, |
523 | BLOCK_LEN as u8, |
524 | self.chunk_counter, |
525 | block_flags, |
526 | ); |
527 | self.buf_len = 0; |
528 | self.buf = [0; BLOCK_LEN]; |
529 | self.blocks_compressed += 1; |
530 | } |
531 | } |
532 | |
533 | while input.len() > BLOCK_LEN { |
534 | debug_assert_eq!(self.buf_len, 0); |
535 | let block_flags = self.flags | self.start_flag(); // borrowck |
536 | self.platform.compress_in_place( |
537 | &mut self.cv, |
538 | array_ref!(input, 0, BLOCK_LEN), |
539 | BLOCK_LEN as u8, |
540 | self.chunk_counter, |
541 | block_flags, |
542 | ); |
543 | self.blocks_compressed += 1; |
544 | input = &input[BLOCK_LEN..]; |
545 | } |
546 | |
547 | self.fill_buf(&mut input); |
548 | debug_assert!(input.is_empty()); |
549 | debug_assert!(self.len() <= CHUNK_LEN); |
550 | self |
551 | } |
552 | |
553 | fn output(&self) -> Output { |
554 | let block_flags = self.flags | self.start_flag() | CHUNK_END; |
555 | Output { |
556 | input_chaining_value: self.cv, |
557 | block: self.buf, |
558 | block_len: self.buf_len, |
559 | counter: self.chunk_counter, |
560 | flags: block_flags, |
561 | platform: self.platform, |
562 | } |
563 | } |
564 | } |
565 | |
566 | // Don't derive(Debug), because the state may be secret. |
567 | impl fmt::Debug for ChunkState { |
568 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
569 | f&mut DebugStruct<'_, '_>.debug_struct("ChunkState" ) |
570 | .field("len" , &self.len()) |
571 | .field("chunk_counter" , &self.chunk_counter) |
572 | .field("flags" , &self.flags) |
573 | .field(name:"platform" , &self.platform) |
574 | .finish() |
575 | } |
576 | } |
577 | |
578 | #[cfg (feature = "zeroize" )] |
579 | impl Zeroize for ChunkState { |
580 | fn zeroize(&mut self) { |
581 | // Destructuring to trigger compile error as a reminder to update this impl. |
582 | let Self { |
583 | cv, |
584 | chunk_counter, |
585 | buf, |
586 | buf_len, |
587 | blocks_compressed, |
588 | flags, |
589 | platform: _, |
590 | } = self; |
591 | |
592 | cv.zeroize(); |
593 | chunk_counter.zeroize(); |
594 | buf.zeroize(); |
595 | buf_len.zeroize(); |
596 | blocks_compressed.zeroize(); |
597 | flags.zeroize(); |
598 | } |
599 | } |
600 | |
601 | // IMPLEMENTATION NOTE |
602 | // =================== |
603 | // The recursive function compress_subtree_wide(), implemented below, is the |
604 | // basis of high-performance BLAKE3. We use it both for all-at-once hashing, |
605 | // and for the incremental input with Hasher (though we have to be careful with |
606 | // subtree boundaries in the incremental case). compress_subtree_wide() applies |
607 | // several optimizations at the same time: |
608 | // - Multithreading with Rayon. |
609 | // - Parallel chunk hashing with SIMD. |
610 | // - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing |
611 | // maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues |
612 | // to benefit from larger inputs, because more levels of the tree benefit can |
613 | // use full-width SIMD vectors for parent hashing. Without parallel parent |
614 | // hashing, we lose about 10% of overall throughput on AVX2 and AVX-512. |
615 | |
616 | /// Undocumented and unstable, for benchmarks only. |
617 | #[doc (hidden)] |
618 | #[derive (Clone, Copy)] |
619 | pub enum IncrementCounter { |
620 | Yes, |
621 | No, |
622 | } |
623 | |
624 | impl IncrementCounter { |
625 | #[inline ] |
626 | fn yes(&self) -> bool { |
627 | match self { |
628 | IncrementCounter::Yes => true, |
629 | IncrementCounter::No => false, |
630 | } |
631 | } |
632 | } |
633 | |
634 | // The largest power of two less than or equal to `n`, used for left_len() |
635 | // immediately below, and also directly in Hasher::update(). |
636 | fn largest_power_of_two_leq(n: usize) -> usize { |
637 | ((n / 2) + 1).next_power_of_two() |
638 | } |
639 | |
640 | // Given some input larger than one chunk, return the number of bytes that |
641 | // should go in the left subtree. This is the largest power-of-2 number of |
642 | // chunks that leaves at least 1 byte for the right subtree. |
643 | fn left_len(content_len: usize) -> usize { |
644 | debug_assert!(content_len > CHUNK_LEN); |
645 | // Subtract 1 to reserve at least one byte for the right side. |
646 | let full_chunks: usize = (content_len - 1) / CHUNK_LEN; |
647 | largest_power_of_two_leq(full_chunks) * CHUNK_LEN |
648 | } |
649 | |
650 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time |
651 | // on a single thread. Write out the chunk chaining values and return the |
652 | // number of chunks hashed. These chunks are never the root and never empty; |
653 | // those cases use a different codepath. |
654 | fn compress_chunks_parallel( |
655 | input: &[u8], |
656 | key: &CVWords, |
657 | chunk_counter: u64, |
658 | flags: u8, |
659 | platform: Platform, |
660 | out: &mut [u8], |
661 | ) -> usize { |
662 | debug_assert!(!input.is_empty(), "empty chunks below the root" ); |
663 | debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN); |
664 | |
665 | let mut chunks_exact = input.chunks_exact(CHUNK_LEN); |
666 | let mut chunks_array = ArrayVec::<&[u8; CHUNK_LEN], MAX_SIMD_DEGREE>::new(); |
667 | for chunk in &mut chunks_exact { |
668 | chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN)); |
669 | } |
670 | platform.hash_many( |
671 | &chunks_array, |
672 | key, |
673 | chunk_counter, |
674 | IncrementCounter::Yes, |
675 | flags, |
676 | CHUNK_START, |
677 | CHUNK_END, |
678 | out, |
679 | ); |
680 | |
681 | // Hash the remaining partial chunk, if there is one. Note that the empty |
682 | // chunk (meaning the empty message) is a different codepath. |
683 | let chunks_so_far = chunks_array.len(); |
684 | if !chunks_exact.remainder().is_empty() { |
685 | let counter = chunk_counter + chunks_so_far as u64; |
686 | let mut chunk_state = ChunkState::new(key, counter, flags, platform); |
687 | chunk_state.update(chunks_exact.remainder()); |
688 | *array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) = |
689 | chunk_state.output().chaining_value(); |
690 | chunks_so_far + 1 |
691 | } else { |
692 | chunks_so_far |
693 | } |
694 | } |
695 | |
696 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time |
697 | // on a single thread. Write out the parent chaining values and return the |
698 | // number of parents hashed. (If there's an odd input chaining value left over, |
699 | // return it as an additional output.) These parents are never the root and |
700 | // never empty; those cases use a different codepath. |
701 | fn compress_parents_parallel( |
702 | child_chaining_values: &[u8], |
703 | key: &CVWords, |
704 | flags: u8, |
705 | platform: Platform, |
706 | out: &mut [u8], |
707 | ) -> usize { |
708 | debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes" ); |
709 | let num_children = child_chaining_values.len() / OUT_LEN; |
710 | debug_assert!(num_children >= 2, "not enough children" ); |
711 | debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many" ); |
712 | |
713 | let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN); |
714 | // Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of |
715 | // the requirements of compress_subtree_wide(). |
716 | let mut parents_array = ArrayVec::<&[u8; BLOCK_LEN], MAX_SIMD_DEGREE_OR_2>::new(); |
717 | for parent in &mut parents_exact { |
718 | parents_array.push(array_ref!(parent, 0, BLOCK_LEN)); |
719 | } |
720 | platform.hash_many( |
721 | &parents_array, |
722 | key, |
723 | 0, // Parents always use counter 0. |
724 | IncrementCounter::No, |
725 | flags | PARENT, |
726 | 0, // Parents have no start flags. |
727 | 0, // Parents have no end flags. |
728 | out, |
729 | ); |
730 | |
731 | // If there's an odd child left over, it becomes an output. |
732 | let parents_so_far = parents_array.len(); |
733 | if !parents_exact.remainder().is_empty() { |
734 | out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder()); |
735 | parents_so_far + 1 |
736 | } else { |
737 | parents_so_far |
738 | } |
739 | } |
740 | |
741 | // The wide helper function returns (writes out) an array of chaining values |
742 | // and returns the length of that array. The number of chaining values returned |
743 | // is the dynamically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, |
744 | // if the input is shorter than that many chunks. The reason for maintaining a |
745 | // wide array of chaining values going back up the tree, is to allow the |
746 | // implementation to hash as many parents in parallel as possible. |
747 | // |
748 | // As a special case when the SIMD degree is 1, this function will still return |
749 | // at least 2 outputs. This guarantees that this function doesn't perform the |
750 | // root compression. (If it did, it would use the wrong flags, and also we |
751 | // wouldn't be able to implement extendable output.) Note that this function is |
752 | // not used when the whole input is only 1 chunk long; that's a different |
753 | // codepath. |
754 | // |
755 | // Why not just have the caller split the input on the first update(), instead |
756 | // of implementing this special rule? Because we don't want to limit SIMD or |
757 | // multithreading parallelism for that update(). |
758 | fn compress_subtree_wide<J: join::Join>( |
759 | input: &[u8], |
760 | key: &CVWords, |
761 | chunk_counter: u64, |
762 | flags: u8, |
763 | platform: Platform, |
764 | out: &mut [u8], |
765 | ) -> usize { |
766 | // Note that the single chunk case does *not* bump the SIMD degree up to 2 |
767 | // when it is 1. This allows Rayon the option of multithreading even the |
768 | // 2-chunk case, which can help performance on smaller platforms. |
769 | if input.len() <= platform.simd_degree() * CHUNK_LEN { |
770 | return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out); |
771 | } |
772 | |
773 | // With more than simd_degree chunks, we need to recurse. Start by dividing |
774 | // the input into left and right subtrees. (Note that this is only optimal |
775 | // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree |
776 | // of 3 or something, we'll need a more complicated strategy.) |
777 | debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2" ); |
778 | let (left, right) = input.split_at(left_len(input.len())); |
779 | let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64; |
780 | |
781 | // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to |
782 | // account for the special case of returning 2 outputs when the SIMD degree |
783 | // is 1. |
784 | let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN]; |
785 | let degree = if left.len() == CHUNK_LEN { |
786 | // The "simd_degree=1 and we're at the leaf nodes" case. |
787 | debug_assert_eq!(platform.simd_degree(), 1); |
788 | 1 |
789 | } else { |
790 | cmp::max(platform.simd_degree(), 2) |
791 | }; |
792 | let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN); |
793 | |
794 | // Recurse! For update_rayon(), this is where we take advantage of RayonJoin and use multiple |
795 | // threads. |
796 | let (left_n, right_n) = J::join( |
797 | || compress_subtree_wide::<J>(left, key, chunk_counter, flags, platform, left_out), |
798 | || compress_subtree_wide::<J>(right, key, right_chunk_counter, flags, platform, right_out), |
799 | ); |
800 | |
801 | // The special case again. If simd_degree=1, then we'll have left_n=1 and |
802 | // right_n=1. Rather than compressing them into a single output, return |
803 | // them directly, to make sure we always have at least two outputs. |
804 | debug_assert_eq!(left_n, degree); |
805 | debug_assert!(right_n >= 1 && right_n <= left_n); |
806 | if left_n == 1 { |
807 | out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]); |
808 | return 2; |
809 | } |
810 | |
811 | // Otherwise, do one layer of parent node compression. |
812 | let num_children = left_n + right_n; |
813 | compress_parents_parallel( |
814 | &cv_array[..num_children * OUT_LEN], |
815 | key, |
816 | flags, |
817 | platform, |
818 | out, |
819 | ) |
820 | } |
821 | |
822 | // Hash a subtree with compress_subtree_wide(), and then condense the resulting |
823 | // list of chaining values down to a single parent node. Don't compress that |
824 | // last parent node, however. Instead, return its message bytes (the |
825 | // concatenated chaining values of its children). This is necessary when the |
826 | // first call to update() supplies a complete subtree, because the topmost |
827 | // parent node of that subtree could end up being the root. It's also necessary |
828 | // for extended output in the general case. |
829 | // |
830 | // As with compress_subtree_wide(), this function is not used on inputs of 1 |
831 | // chunk or less. That's a different codepath. |
832 | fn compress_subtree_to_parent_node<J: join::Join>( |
833 | input: &[u8], |
834 | key: &CVWords, |
835 | chunk_counter: u64, |
836 | flags: u8, |
837 | platform: Platform, |
838 | ) -> [u8; BLOCK_LEN] { |
839 | debug_assert!(input.len() > CHUNK_LEN); |
840 | let mut cv_array: [u8; 512] = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN]; |
841 | let mut num_cvs: usize = |
842 | compress_subtree_wide::<J>(input, &key, chunk_counter, flags, platform, &mut cv_array); |
843 | debug_assert!(num_cvs >= 2); |
844 | |
845 | // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, |
846 | // compress_subtree_wide() returns more than 2 chaining values. Condense |
847 | // them into 2 by forming parent nodes repeatedly. |
848 | let mut out_array: [u8; 256] = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2]; |
849 | while num_cvs > 2 { |
850 | let cv_slice: &[u8] = &cv_array[..num_cvs * OUT_LEN]; |
851 | num_cvs = compress_parents_parallel(child_chaining_values:cv_slice, key, flags, platform, &mut out_array); |
852 | cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]); |
853 | } |
854 | *array_ref!(cv_array, 0, 2 * OUT_LEN) |
855 | } |
856 | |
857 | // Hash a complete input all at once. Unlike compress_subtree_wide() and |
858 | // compress_subtree_to_parent_node(), this function handles the 1 chunk case. |
859 | fn hash_all_at_once<J: join::Join>(input: &[u8], key: &CVWords, flags: u8) -> Output { |
860 | let platform: Platform = Platform::detect(); |
861 | |
862 | // If the whole subtree is one chunk, hash it directly with a ChunkState. |
863 | if input.len() <= CHUNK_LEN { |
864 | return ChunkState&mut ChunkState::new(key, chunk_counter:0, flags, platform) |
865 | .update(input) |
866 | .output(); |
867 | } |
868 | |
869 | // Otherwise construct an Output object from the parent node returned by |
870 | // compress_subtree_to_parent_node(). |
871 | Output { |
872 | input_chaining_value: *key, |
873 | block: compress_subtree_to_parent_node::<J>(input, key, chunk_counter:0, flags, platform), |
874 | block_len: BLOCK_LEN as u8, |
875 | counter: 0, |
876 | flags: flags | PARENT, |
877 | platform, |
878 | } |
879 | } |
880 | |
881 | /// The default hash function. |
882 | /// |
883 | /// For an incremental version that accepts multiple writes, see [`Hasher::new`], |
884 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent: |
885 | /// |
886 | /// ``` |
887 | /// let hash = blake3::hash(b"foo" ); |
888 | /// # let hash1 = hash; |
889 | /// |
890 | /// let hash = blake3::Hasher::new().update(b"foo" ).finalize(); |
891 | /// # let hash2 = hash; |
892 | /// # assert_eq!(hash1, hash2); |
893 | /// ``` |
894 | /// |
895 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`] and |
896 | /// [`OutputReader`]. |
897 | /// |
898 | /// This function is always single-threaded. For multithreading support, see |
899 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
900 | pub fn hash(input: &[u8]) -> Hash { |
901 | hash_all_at_once::<join::SerialJoin>(input, IV, flags:0).root_hash() |
902 | } |
903 | |
904 | /// The keyed hash function. |
905 | /// |
906 | /// This is suitable for use as a message authentication code, for example to |
907 | /// replace an HMAC instance. In that use case, the constant-time equality |
908 | /// checking provided by [`Hash`](struct.Hash.html) is almost always a security |
909 | /// requirement, and callers need to be careful not to compare MACs as raw |
910 | /// bytes. |
911 | /// |
912 | /// For an incremental version that accepts multiple writes, see [`Hasher::new_keyed`], |
913 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two lines are equivalent: |
914 | /// |
915 | /// ``` |
916 | /// # const KEY: &[u8; 32] = &[0; 32]; |
917 | /// let mac = blake3::keyed_hash(KEY, b"foo" ); |
918 | /// # let mac1 = mac; |
919 | /// |
920 | /// let mac = blake3::Hasher::new_keyed(KEY).update(b"foo" ).finalize(); |
921 | /// # let mac2 = mac; |
922 | /// # assert_eq!(mac1, mac2); |
923 | /// ``` |
924 | /// |
925 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`]. |
926 | /// |
927 | /// This function is always single-threaded. For multithreading support, see |
928 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
929 | pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash { |
930 | let key_words: [u32; 8] = platform::words_from_le_bytes_32(bytes:key); |
931 | hash_all_at_once::<join::SerialJoin>(input, &key_words, KEYED_HASH).root_hash() |
932 | } |
933 | |
934 | /// The key derivation function. |
935 | /// |
936 | /// Given cryptographic key material of any length and a context string of any |
937 | /// length, this function outputs a 32-byte derived subkey. **The context string |
938 | /// should be hardcoded, globally unique, and application-specific.** A good |
939 | /// default format for such strings is `"[application] [commit timestamp] |
940 | /// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`. |
941 | /// |
942 | /// Key derivation is important when you want to use the same key in multiple |
943 | /// algorithms or use cases. Using the same key with different cryptographic |
944 | /// algorithms is generally forbidden, and deriving a separate subkey for each |
945 | /// use case protects you from bad interactions. Derived keys also mitigate the |
946 | /// damage from one part of your application accidentally leaking its key. |
947 | /// |
948 | /// As a rare exception to that general rule, however, it is possible to use |
949 | /// `derive_key` itself with key material that you are already using with |
950 | /// another algorithm. You might need to do this if you're adding features to |
951 | /// an existing application, which does not yet use key derivation internally. |
952 | /// However, you still must not share key material with algorithms that forbid |
953 | /// key reuse entirely, like a one-time pad. For more on this, see sections 6.2 |
954 | /// and 7.8 of the [BLAKE3 paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf). |
955 | /// |
956 | /// Note that BLAKE3 is not a password hash, and **`derive_key` should never be |
957 | /// used with passwords.** Instead, use a dedicated password hash like |
958 | /// [Argon2]. Password hashes are entirely different from generic hash |
959 | /// functions, with opposite design requirements. |
960 | /// |
961 | /// For an incremental version that accepts multiple writes, see [`Hasher::new_derive_key`], |
962 | /// [`Hasher::update`], and [`Hasher::finalize`]. These two statements are equivalent: |
963 | /// |
964 | /// ``` |
965 | /// # const CONTEXT: &str = "example.com 2019-12-25 16:18:03 session tokens v1" ; |
966 | /// let key = blake3::derive_key(CONTEXT, b"key material, not a password" ); |
967 | /// # let key1 = key; |
968 | /// |
969 | /// let key: [u8; 32] = blake3::Hasher::new_derive_key(CONTEXT) |
970 | /// .update(b"key material, not a password" ) |
971 | /// .finalize() |
972 | /// .into(); |
973 | /// # let key2 = key; |
974 | /// # assert_eq!(key1, key2); |
975 | /// ``` |
976 | /// |
977 | /// For output sizes other than 32 bytes, see [`Hasher::finalize_xof`], and [`OutputReader`]. |
978 | /// |
979 | /// This function is always single-threaded. For multithreading support, see |
980 | /// [`Hasher::update_rayon`](struct.Hasher.html#method.update_rayon). |
981 | /// |
982 | /// [Argon2]: https://en.wikipedia.org/wiki/Argon2 |
983 | pub fn derive_key(context: &str, key_material: &[u8]) -> [u8; OUT_LEN] { |
984 | let context_key: Hash = |
985 | hash_all_at_onceOutput::<join::SerialJoin>(input:context.as_bytes(), IV, DERIVE_KEY_CONTEXT) |
986 | .root_hash(); |
987 | let context_key_words: [u32; 8] = platform::words_from_le_bytes_32(context_key.as_bytes()); |
988 | hash_all_at_onceHash::<join::SerialJoin>(input:key_material, &context_key_words, DERIVE_KEY_MATERIAL) |
989 | .root_hash() |
990 | .0 |
991 | } |
992 | |
993 | fn parent_node_output( |
994 | left_child: &CVBytes, |
995 | right_child: &CVBytes, |
996 | key: &CVWords, |
997 | flags: u8, |
998 | platform: Platform, |
999 | ) -> Output { |
1000 | let mut block: [u8; 64] = [0; BLOCK_LEN]; |
1001 | block[..32].copy_from_slice(src:left_child); |
1002 | block[32..].copy_from_slice(src:right_child); |
1003 | Output { |
1004 | input_chaining_value: *key, |
1005 | block, |
1006 | block_len: BLOCK_LEN as u8, |
1007 | counter: 0, |
1008 | flags: flags | PARENT, |
1009 | platform, |
1010 | } |
1011 | } |
1012 | |
1013 | /// An incremental hash state that can accept any number of writes. |
1014 | /// |
1015 | /// The `rayon` and `mmap` Cargo features enable additional methods on this |
1016 | /// type related to multithreading and memory-mapped IO. |
1017 | /// |
1018 | /// When the `traits-preview` Cargo feature is enabled, this type implements |
1019 | /// several commonly used traits from the |
1020 | /// [`digest`](https://crates.io/crates/digest) crate. However, those |
1021 | /// traits aren't stable, and they're expected to change in incompatible ways |
1022 | /// before that crate reaches 1.0. For that reason, this crate makes no SemVer |
1023 | /// guarantees for this feature, and callers who use it should expect breaking |
1024 | /// changes between patch versions. |
1025 | /// |
1026 | /// # Examples |
1027 | /// |
1028 | /// ``` |
1029 | /// # fn main() -> Result<(), Box<dyn std::error::Error>> { |
1030 | /// // Hash an input incrementally. |
1031 | /// let mut hasher = blake3::Hasher::new(); |
1032 | /// hasher.update(b"foo" ); |
1033 | /// hasher.update(b"bar" ); |
1034 | /// hasher.update(b"baz" ); |
1035 | /// assert_eq!(hasher.finalize(), blake3::hash(b"foobarbaz" )); |
1036 | /// |
1037 | /// // Extended output. OutputReader also implements Read and Seek. |
1038 | /// # #[cfg (feature = "std" )] { |
1039 | /// let mut output = [0; 1000]; |
1040 | /// let mut output_reader = hasher.finalize_xof(); |
1041 | /// output_reader.fill(&mut output); |
1042 | /// assert_eq!(&output[..32], blake3::hash(b"foobarbaz" ).as_bytes()); |
1043 | /// # } |
1044 | /// # Ok(()) |
1045 | /// # } |
1046 | /// ``` |
1047 | #[derive (Clone)] |
1048 | pub struct Hasher { |
1049 | key: CVWords, |
1050 | chunk_state: ChunkState, |
1051 | // The stack size is MAX_DEPTH + 1 because we do lazy merging. For example, |
1052 | // with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk |
1053 | // requires a 4th entry, rather than merging everything down to 1, because |
1054 | // we don't know whether more input is coming. This is different from how |
1055 | // the reference implementation does things. |
1056 | cv_stack: ArrayVec<CVBytes, { MAX_DEPTH + 1 }>, |
1057 | } |
1058 | |
1059 | impl Hasher { |
1060 | fn new_internal(key: &CVWords, flags: u8) -> Self { |
1061 | Self { |
1062 | key: *key, |
1063 | chunk_state: ChunkState::new(key, 0, flags, Platform::detect()), |
1064 | cv_stack: ArrayVec::new(), |
1065 | } |
1066 | } |
1067 | |
1068 | /// Construct a new `Hasher` for the regular hash function. |
1069 | pub fn new() -> Self { |
1070 | Self::new_internal(IV, 0) |
1071 | } |
1072 | |
1073 | /// Construct a new `Hasher` for the keyed hash function. See |
1074 | /// [`keyed_hash`]. |
1075 | /// |
1076 | /// [`keyed_hash`]: fn.keyed_hash.html |
1077 | pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self { |
1078 | let key_words = platform::words_from_le_bytes_32(key); |
1079 | Self::new_internal(&key_words, KEYED_HASH) |
1080 | } |
1081 | |
1082 | /// Construct a new `Hasher` for the key derivation function. See |
1083 | /// [`derive_key`]. The context string should be hardcoded, globally |
1084 | /// unique, and application-specific. |
1085 | /// |
1086 | /// [`derive_key`]: fn.derive_key.html |
1087 | pub fn new_derive_key(context: &str) -> Self { |
1088 | let context_key = |
1089 | hash_all_at_once::<join::SerialJoin>(context.as_bytes(), IV, DERIVE_KEY_CONTEXT) |
1090 | .root_hash(); |
1091 | let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes()); |
1092 | Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL) |
1093 | } |
1094 | |
1095 | /// Reset the `Hasher` to its initial state. |
1096 | /// |
1097 | /// This is functionally the same as overwriting the `Hasher` with a new |
1098 | /// one, using the same key or context string if any. |
1099 | pub fn reset(&mut self) -> &mut Self { |
1100 | self.chunk_state = ChunkState::new( |
1101 | &self.key, |
1102 | 0, |
1103 | self.chunk_state.flags, |
1104 | self.chunk_state.platform, |
1105 | ); |
1106 | self.cv_stack.clear(); |
1107 | self |
1108 | } |
1109 | |
1110 | // As described in push_cv() below, we do "lazy merging", delaying merges |
1111 | // until right before the next CV is about to be added. This is different |
1112 | // from the reference implementation. Another difference is that we aren't |
1113 | // always merging 1 chunk at a time. Instead, each CV might represent any |
1114 | // power-of-two number of chunks, as long as the smaller-above-larger stack |
1115 | // order is maintained. Instead of the "count the trailing 0-bits" |
1116 | // algorithm described in the spec, we use a "count the total number of |
1117 | // 1-bits" variant that doesn't require us to retain the subtree size of |
1118 | // the CV on top of the stack. The principle is the same: each CV that |
1119 | // should remain in the stack is represented by a 1-bit in the total number |
1120 | // of chunks (or bytes) so far. |
1121 | fn merge_cv_stack(&mut self, total_len: u64) { |
1122 | let post_merge_stack_len = total_len.count_ones() as usize; |
1123 | while self.cv_stack.len() > post_merge_stack_len { |
1124 | let right_child = self.cv_stack.pop().unwrap(); |
1125 | let left_child = self.cv_stack.pop().unwrap(); |
1126 | let parent_output = parent_node_output( |
1127 | &left_child, |
1128 | &right_child, |
1129 | &self.key, |
1130 | self.chunk_state.flags, |
1131 | self.chunk_state.platform, |
1132 | ); |
1133 | self.cv_stack.push(parent_output.chaining_value()); |
1134 | } |
1135 | } |
1136 | |
1137 | // In reference_impl.rs, we merge the new CV with existing CVs from the |
1138 | // stack before pushing it. We can do that because we know more input is |
1139 | // coming, so we know none of the merges are root. |
1140 | // |
1141 | // This setting is different. We want to feed as much input as possible to |
1142 | // compress_subtree_wide(), without setting aside anything for the |
1143 | // chunk_state. If the user gives us 64 KiB, we want to parallelize over |
1144 | // all 64 KiB at once as a single subtree, if at all possible. |
1145 | // |
1146 | // This leads to two problems: |
1147 | // 1) This 64 KiB input might be the only call that ever gets made to |
1148 | // update. In this case, the root node of the 64 KiB subtree would be |
1149 | // the root node of the whole tree, and it would need to be ROOT |
1150 | // finalized. We can't compress it until we know. |
1151 | // 2) This 64 KiB input might complete a larger tree, whose root node is |
1152 | // similarly going to be the root of the whole tree. For example, |
1153 | // maybe we have 196 KiB (that is, 128 + 64) hashed so far. We can't |
1154 | // compress the node at the root of the 256 KiB subtree until we know |
1155 | // how to finalize it. |
1156 | // |
1157 | // The second problem is solved with "lazy merging". That is, when we're |
1158 | // about to add a CV to the stack, we don't merge it with anything first, |
1159 | // as the reference impl does. Instead we do merges using the *previous* CV |
1160 | // that was added, which is sitting on top of the stack, and we put the new |
1161 | // CV (unmerged) on top of the stack afterwards. This guarantees that we |
1162 | // never merge the root node until finalize(). |
1163 | // |
1164 | // Solving the first problem requires an additional tool, |
1165 | // compress_subtree_to_parent_node(). That function always returns the top |
1166 | // *two* chaining values of the subtree it's compressing. We then do lazy |
1167 | // merging with each of them separately, so that the second CV will always |
1168 | // remain unmerged. (That also helps us support extendable output when |
1169 | // we're hashing an input all-at-once.) |
1170 | fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) { |
1171 | self.merge_cv_stack(chunk_counter); |
1172 | self.cv_stack.push(*new_cv); |
1173 | } |
1174 | |
1175 | /// Add input bytes to the hash state. You can call this any number of times. |
1176 | /// |
1177 | /// This method is always single-threaded. For multithreading support, see |
1178 | /// [`update_rayon`](#method.update_rayon) (enabled with the `rayon` Cargo feature). |
1179 | /// |
1180 | /// Note that the degree of SIMD parallelism that `update` can use is limited by the size of |
1181 | /// this input buffer. See [`update_reader`](#method.update_reader). |
1182 | pub fn update(&mut self, input: &[u8]) -> &mut Self { |
1183 | self.update_with_join::<join::SerialJoin>(input) |
1184 | } |
1185 | |
1186 | fn update_with_join<J: join::Join>(&mut self, mut input: &[u8]) -> &mut Self { |
1187 | // If we have some partial chunk bytes in the internal chunk_state, we |
1188 | // need to finish that chunk first. |
1189 | if self.chunk_state.len() > 0 { |
1190 | let want = CHUNK_LEN - self.chunk_state.len(); |
1191 | let take = cmp::min(want, input.len()); |
1192 | self.chunk_state.update(&input[..take]); |
1193 | input = &input[take..]; |
1194 | if !input.is_empty() { |
1195 | // We've filled the current chunk, and there's more input |
1196 | // coming, so we know it's not the root and we can finalize it. |
1197 | // Then we'll proceed to hashing whole chunks below. |
1198 | debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN); |
1199 | let chunk_cv = self.chunk_state.output().chaining_value(); |
1200 | self.push_cv(&chunk_cv, self.chunk_state.chunk_counter); |
1201 | self.chunk_state = ChunkState::new( |
1202 | &self.key, |
1203 | self.chunk_state.chunk_counter + 1, |
1204 | self.chunk_state.flags, |
1205 | self.chunk_state.platform, |
1206 | ); |
1207 | } else { |
1208 | return self; |
1209 | } |
1210 | } |
1211 | |
1212 | // Now the chunk_state is clear, and we have more input. If there's |
1213 | // more than a single chunk (so, definitely not the root chunk), hash |
1214 | // the largest whole subtree we can, with the full benefits of SIMD and |
1215 | // multithreading parallelism. Two restrictions: |
1216 | // - The subtree has to be a power-of-2 number of chunks. Only subtrees |
1217 | // along the right edge can be incomplete, and we don't know where |
1218 | // the right edge is going to be until we get to finalize(). |
1219 | // - The subtree must evenly divide the total number of chunks up until |
1220 | // this point (if total is not 0). If the current incomplete subtree |
1221 | // is only waiting for 1 more chunk, we can't hash a subtree of 4 |
1222 | // chunks. We have to complete the current subtree first. |
1223 | // Because we might need to break up the input to form powers of 2, or |
1224 | // to evenly divide what we already have, this part runs in a loop. |
1225 | while input.len() > CHUNK_LEN { |
1226 | debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data" ); |
1227 | debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len" ); |
1228 | let mut subtree_len = largest_power_of_two_leq(input.len()); |
1229 | let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64; |
1230 | // Shrink the subtree_len until it evenly divides the count so far. |
1231 | // We know that subtree_len itself is a power of 2, so we can use a |
1232 | // bitmasking trick instead of an actual remainder operation. (Note |
1233 | // that if the caller consistently passes power-of-2 inputs of the |
1234 | // same size, as is hopefully typical, this loop condition will |
1235 | // always fail, and subtree_len will always be the full length of |
1236 | // the input.) |
1237 | // |
1238 | // An aside: We don't have to shrink subtree_len quite this much. |
1239 | // For example, if count_so_far is 1, we could pass 2 chunks to |
1240 | // compress_subtree_to_parent_node. Since we'll get 2 CVs back, |
1241 | // we'll still get the right answer in the end, and we might get to |
1242 | // use 2-way SIMD parallelism. The problem with this optimization, |
1243 | // is that it gets us stuck always hashing 2 chunks. The total |
1244 | // number of chunks will remain odd, and we'll never graduate to |
1245 | // higher degrees of parallelism. See |
1246 | // https://github.com/BLAKE3-team/BLAKE3/issues/69. |
1247 | while (subtree_len - 1) as u64 & count_so_far != 0 { |
1248 | subtree_len /= 2; |
1249 | } |
1250 | // The shrunken subtree_len might now be 1 chunk long. If so, hash |
1251 | // that one chunk by itself. Otherwise, compress the subtree into a |
1252 | // pair of CVs. |
1253 | let subtree_chunks = (subtree_len / CHUNK_LEN) as u64; |
1254 | if subtree_len <= CHUNK_LEN { |
1255 | debug_assert_eq!(subtree_len, CHUNK_LEN); |
1256 | self.push_cv( |
1257 | &ChunkState::new( |
1258 | &self.key, |
1259 | self.chunk_state.chunk_counter, |
1260 | self.chunk_state.flags, |
1261 | self.chunk_state.platform, |
1262 | ) |
1263 | .update(&input[..subtree_len]) |
1264 | .output() |
1265 | .chaining_value(), |
1266 | self.chunk_state.chunk_counter, |
1267 | ); |
1268 | } else { |
1269 | // This is the high-performance happy path, though getting here |
1270 | // depends on the caller giving us a long enough input. |
1271 | let cv_pair = compress_subtree_to_parent_node::<J>( |
1272 | &input[..subtree_len], |
1273 | &self.key, |
1274 | self.chunk_state.chunk_counter, |
1275 | self.chunk_state.flags, |
1276 | self.chunk_state.platform, |
1277 | ); |
1278 | let left_cv = array_ref!(cv_pair, 0, 32); |
1279 | let right_cv = array_ref!(cv_pair, 32, 32); |
1280 | // Push the two CVs we received into the CV stack in order. Because |
1281 | // the stack merges lazily, this guarantees we aren't merging the |
1282 | // root. |
1283 | self.push_cv(left_cv, self.chunk_state.chunk_counter); |
1284 | self.push_cv( |
1285 | right_cv, |
1286 | self.chunk_state.chunk_counter + (subtree_chunks / 2), |
1287 | ); |
1288 | } |
1289 | self.chunk_state.chunk_counter += subtree_chunks; |
1290 | input = &input[subtree_len..]; |
1291 | } |
1292 | |
1293 | // What remains is 1 chunk or less. Add it to the chunk state. |
1294 | debug_assert!(input.len() <= CHUNK_LEN); |
1295 | if !input.is_empty() { |
1296 | self.chunk_state.update(input); |
1297 | // Having added some input to the chunk_state, we know what's in |
1298 | // the CV stack won't become the root node, and we can do an extra |
1299 | // merge. This simplifies finalize(). |
1300 | self.merge_cv_stack(self.chunk_state.chunk_counter); |
1301 | } |
1302 | |
1303 | self |
1304 | } |
1305 | |
1306 | fn final_output(&self) -> Output { |
1307 | // If the current chunk is the only chunk, that makes it the root node |
1308 | // also. Convert it directly into an Output. Otherwise, we need to |
1309 | // merge subtrees below. |
1310 | if self.cv_stack.is_empty() { |
1311 | debug_assert_eq!(self.chunk_state.chunk_counter, 0); |
1312 | return self.chunk_state.output(); |
1313 | } |
1314 | |
1315 | // If there are any bytes in the ChunkState, finalize that chunk and |
1316 | // merge its CV with everything in the CV stack. In that case, the work |
1317 | // we did at the end of update() above guarantees that the stack |
1318 | // doesn't contain any unmerged subtrees that need to be merged first. |
1319 | // (This is important, because if there were two chunk hashes sitting |
1320 | // on top of the stack, they would need to merge with each other, and |
1321 | // merging a new chunk hash into them would be incorrect.) |
1322 | // |
1323 | // If there are no bytes in the ChunkState, we'll merge what's already |
1324 | // in the stack. In this case it's fine if there are unmerged chunks on |
1325 | // top, because we'll merge them with each other. Note that the case of |
1326 | // the empty chunk is taken care of above. |
1327 | let mut output: Output; |
1328 | let mut num_cvs_remaining = self.cv_stack.len(); |
1329 | if self.chunk_state.len() > 0 { |
1330 | debug_assert_eq!( |
1331 | self.cv_stack.len(), |
1332 | self.chunk_state.chunk_counter.count_ones() as usize, |
1333 | "cv stack does not need a merge" |
1334 | ); |
1335 | output = self.chunk_state.output(); |
1336 | } else { |
1337 | debug_assert!(self.cv_stack.len() >= 2); |
1338 | output = parent_node_output( |
1339 | &self.cv_stack[num_cvs_remaining - 2], |
1340 | &self.cv_stack[num_cvs_remaining - 1], |
1341 | &self.key, |
1342 | self.chunk_state.flags, |
1343 | self.chunk_state.platform, |
1344 | ); |
1345 | num_cvs_remaining -= 2; |
1346 | } |
1347 | while num_cvs_remaining > 0 { |
1348 | output = parent_node_output( |
1349 | &self.cv_stack[num_cvs_remaining - 1], |
1350 | &output.chaining_value(), |
1351 | &self.key, |
1352 | self.chunk_state.flags, |
1353 | self.chunk_state.platform, |
1354 | ); |
1355 | num_cvs_remaining -= 1; |
1356 | } |
1357 | output |
1358 | } |
1359 | |
1360 | /// Finalize the hash state and return the [`Hash`](struct.Hash.html) of |
1361 | /// the input. |
1362 | /// |
1363 | /// This method is idempotent. Calling it twice will give the same result. |
1364 | /// You can also add more input and finalize again. |
1365 | pub fn finalize(&self) -> Hash { |
1366 | self.final_output().root_hash() |
1367 | } |
1368 | |
1369 | /// Finalize the hash state and return an [`OutputReader`], which can |
1370 | /// supply any number of output bytes. |
1371 | /// |
1372 | /// This method is idempotent. Calling it twice will give the same result. |
1373 | /// You can also add more input and finalize again. |
1374 | /// |
1375 | /// [`OutputReader`]: struct.OutputReader.html |
1376 | pub fn finalize_xof(&self) -> OutputReader { |
1377 | OutputReader::new(self.final_output()) |
1378 | } |
1379 | |
1380 | /// Return the total number of bytes hashed so far. |
1381 | pub fn count(&self) -> u64 { |
1382 | self.chunk_state.chunk_counter * CHUNK_LEN as u64 + self.chunk_state.len() as u64 |
1383 | } |
1384 | |
1385 | /// As [`update`](Hasher::update), but reading from a |
1386 | /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) implementation. |
1387 | /// |
1388 | /// [`Hasher`] implements |
1389 | /// [`std::io::Write`](https://doc.rust-lang.org/std/io/trait.Write.html), so it's possible to |
1390 | /// use [`std::io::copy`](https://doc.rust-lang.org/std/io/fn.copy.html) to update a [`Hasher`] |
1391 | /// from any reader. Unfortunately, this standard approach can limit performance, because |
1392 | /// `copy` currently uses an internal 8 KiB buffer that isn't big enough to take advantage of |
1393 | /// all SIMD instruction sets. (In particular, [AVX-512](https://en.wikipedia.org/wiki/AVX-512) |
1394 | /// needs a 16 KiB buffer.) `update_reader` avoids this performance problem and is slightly |
1395 | /// more convenient. |
1396 | /// |
1397 | /// The internal buffer size this method uses may change at any time, and it may be different |
1398 | /// for different targets. The only guarantee is that it will be large enough for all of this |
1399 | /// crate's SIMD implementations on the current platform. |
1400 | /// |
1401 | /// The most common implementer of |
1402 | /// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html) might be |
1403 | /// [`std::fs::File`](https://doc.rust-lang.org/std/fs/struct.File.html), but note that memory |
1404 | /// mapping can be faster than this method for hashing large files. See |
1405 | /// [`update_mmap`](Hasher::update_mmap) and [`update_mmap_rayon`](Hasher::update_mmap_rayon), |
1406 | /// which require the `mmap` and (for the latter) `rayon` Cargo features. |
1407 | /// |
1408 | /// This method requires the `std` Cargo feature, which is enabled by default. |
1409 | /// |
1410 | /// # Example |
1411 | /// |
1412 | /// ```no_run |
1413 | /// # use std::fs::File; |
1414 | /// # use std::io; |
1415 | /// # fn main() -> io::Result<()> { |
1416 | /// // Hash standard input. |
1417 | /// let mut hasher = blake3::Hasher::new(); |
1418 | /// hasher.update_reader(std::io::stdin().lock())?; |
1419 | /// println!("{}" , hasher.finalize()); |
1420 | /// # Ok(()) |
1421 | /// # } |
1422 | /// ``` |
1423 | #[cfg (feature = "std" )] |
1424 | pub fn update_reader(&mut self, reader: impl std::io::Read) -> std::io::Result<&mut Self> { |
1425 | io::copy_wide(reader, self)?; |
1426 | Ok(self) |
1427 | } |
1428 | |
1429 | /// As [`update`](Hasher::update), but using Rayon-based multithreading |
1430 | /// internally. |
1431 | /// |
1432 | /// This method is gated by the `rayon` Cargo feature, which is disabled by |
1433 | /// default but enabled on [docs.rs](https://docs.rs). |
1434 | /// |
1435 | /// To get any performance benefit from multithreading, the input buffer |
1436 | /// needs to be large. As a rule of thumb on x86_64, `update_rayon` is |
1437 | /// _slower_ than `update` for inputs under 128 KiB. That threshold varies |
1438 | /// quite a lot across different processors, and it's important to benchmark |
1439 | /// your specific use case. See also the performance warning associated with |
1440 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon). |
1441 | /// |
1442 | /// If you already have a large buffer in memory, and you want to hash it |
1443 | /// with multiple threads, this method is a good option. However, reading a |
1444 | /// file into memory just to call this method can be a performance mistake, |
1445 | /// both because it requires lots of memory and because single-threaded |
1446 | /// reads can be slow. For hashing whole files, see |
1447 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon), which is gated by both |
1448 | /// the `rayon` and `mmap` Cargo features. |
1449 | #[cfg (feature = "rayon" )] |
1450 | pub fn update_rayon(&mut self, input: &[u8]) -> &mut Self { |
1451 | self.update_with_join::<join::RayonJoin>(input) |
1452 | } |
1453 | |
1454 | /// As [`update`](Hasher::update), but reading the contents of a file using memory mapping. |
1455 | /// |
1456 | /// Not all files can be memory mapped, and memory mapping small files can be slower than |
1457 | /// reading them the usual way. In those cases, this method will fall back to standard file IO. |
1458 | /// The heuristic for whether to use memory mapping is currently very simple (file size >= |
1459 | /// 16 KiB), and it might change at any time. |
1460 | /// |
1461 | /// Like [`update`](Hasher::update), this method is single-threaded. In this author's |
1462 | /// experience, memory mapping improves single-threaded performance by ~10% for large files |
1463 | /// that are already in cache. This probably varies between platforms, and as always it's a |
1464 | /// good idea to benchmark your own use case. In comparison, the multithreaded |
1465 | /// [`update_mmap_rayon`](Hasher::update_mmap_rayon) method can have a much larger impact on |
1466 | /// performance. |
1467 | /// |
1468 | /// There's a correctness reason that this method takes |
1469 | /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) instead of |
1470 | /// [`File`](https://doc.rust-lang.org/std/fs/struct.File.html): reading from a memory-mapped |
1471 | /// file ignores the seek position of the original file handle (it neither respects the current |
1472 | /// position nor updates the position). This difference in behavior would've caused |
1473 | /// `update_mmap` and [`update_reader`](Hasher::update_reader) to give different answers and |
1474 | /// have different side effects in some cases. Taking a |
1475 | /// [`Path`](https://doc.rust-lang.org/stable/std/path/struct.Path.html) avoids this problem by |
1476 | /// making it clear that a new [`File`](https://doc.rust-lang.org/std/fs/struct.File.html) is |
1477 | /// opened internally. |
1478 | /// |
1479 | /// This method requires the `mmap` Cargo feature, which is disabled by default but enabled on |
1480 | /// [docs.rs](https://docs.rs). |
1481 | /// |
1482 | /// # Example |
1483 | /// |
1484 | /// ```no_run |
1485 | /// # use std::io; |
1486 | /// # use std::path::Path; |
1487 | /// # fn main() -> io::Result<()> { |
1488 | /// let path = Path::new("file.dat"); |
1489 | /// let mut hasher = blake3::Hasher::new(); |
1490 | /// hasher.update_mmap(path)?; |
1491 | /// println!("{}", hasher.finalize()); |
1492 | /// # Ok(()) |
1493 | /// # } |
1494 | /// ``` |
1495 | #[cfg (feature = "mmap" )] |
1496 | pub fn update_mmap(&mut self, path: impl AsRef<std::path::Path>) -> std::io::Result<&mut Self> { |
1497 | let file = std::fs::File::open(path.as_ref())?; |
1498 | if let Some(mmap) = io::maybe_mmap_file(&file)? { |
1499 | self.update(&mmap); |
1500 | } else { |
1501 | io::copy_wide(&file, self)?; |
1502 | } |
1503 | Ok(self) |
1504 | } |
1505 | |
1506 | /// As [`update_rayon`](Hasher::update_rayon), but reading the contents of a file using |
1507 | /// memory mapping. This is the default behavior of `b3sum`. |
1508 | /// |
1509 | /// For large files that are likely to be in cache, this can be much faster than |
1510 | /// single-threaded hashing. When benchmarks report that BLAKE3 is 10x or 20x faster than other |
1511 | /// cryptographic hashes, this is usually what they're measuring. However... |
1512 | /// |
1513 | /// **Performance Warning:** There are cases where multithreading hurts performance. The worst |
1514 | /// case is [a large file on a spinning disk](https://github.com/BLAKE3-team/BLAKE3/issues/31), |
1515 | /// where simultaneous reads from multiple threads can cause "thrashing" (i.e. the disk spends |
1516 | /// more time seeking around than reading data). Windows tends to be somewhat worse about this, |
1517 | /// in part because it's less likely than Linux to keep very large files in cache. More |
1518 | /// generally, if your CPU cores are already busy, then multithreading will add overhead |
1519 | /// without improving performance. If your code runs in different environments that you don't |
1520 | /// control and can't measure, then unfortunately there's no one-size-fits-all answer for |
1521 | /// whether multithreading is a good idea. |
1522 | /// |
1523 | /// The memory mapping behavior of this function is the same as |
1524 | /// [`update_mmap`](Hasher::update_mmap), and the heuristic for when to fall back to standard |
1525 | /// file IO might change at any time. |
1526 | /// |
1527 | /// This method requires both the `mmap` and `rayon` Cargo features, which are disabled by |
1528 | /// default but enabled on [docs.rs](https://docs.rs). |
1529 | /// |
1530 | /// # Example |
1531 | /// |
1532 | /// ```no_run |
1533 | /// # use std::io; |
1534 | /// # use std::path::Path; |
1535 | /// # fn main() -> io::Result<()> { |
1536 | /// # #[cfg(feature = "rayon")] |
1537 | /// # { |
1538 | /// let path = Path::new("big_file.dat"); |
1539 | /// let mut hasher = blake3::Hasher::new(); |
1540 | /// hasher.update_mmap_rayon(path)?; |
1541 | /// println!("{}", hasher.finalize()); |
1542 | /// # } |
1543 | /// # Ok(()) |
1544 | /// # } |
1545 | /// ``` |
1546 | #[cfg (feature = "mmap" )] |
1547 | #[cfg (feature = "rayon" )] |
1548 | pub fn update_mmap_rayon( |
1549 | &mut self, |
1550 | path: impl AsRef<std::path::Path>, |
1551 | ) -> std::io::Result<&mut Self> { |
1552 | let file = std::fs::File::open(path.as_ref())?; |
1553 | if let Some(mmap) = io::maybe_mmap_file(&file)? { |
1554 | self.update_rayon(&mmap); |
1555 | } else { |
1556 | io::copy_wide(&file, self)?; |
1557 | } |
1558 | Ok(self) |
1559 | } |
1560 | } |
1561 | |
1562 | // Don't derive(Debug), because the state may be secret. |
1563 | impl fmt::Debug for Hasher { |
1564 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1565 | f&mut DebugStruct<'_, '_>.debug_struct("Hasher" ) |
1566 | .field("flags" , &self.chunk_state.flags) |
1567 | .field(name:"platform" , &self.chunk_state.platform) |
1568 | .finish() |
1569 | } |
1570 | } |
1571 | |
1572 | impl Default for Hasher { |
1573 | #[inline ] |
1574 | fn default() -> Self { |
1575 | Self::new() |
1576 | } |
1577 | } |
1578 | |
1579 | #[cfg (feature = "std" )] |
1580 | impl std::io::Write for Hasher { |
1581 | /// This is equivalent to [`update`](#method.update). |
1582 | #[inline ] |
1583 | fn write(&mut self, input: &[u8]) -> std::io::Result<usize> { |
1584 | self.update(input); |
1585 | Ok(input.len()) |
1586 | } |
1587 | |
1588 | #[inline ] |
1589 | fn flush(&mut self) -> std::io::Result<()> { |
1590 | Ok(()) |
1591 | } |
1592 | } |
1593 | |
1594 | #[cfg (feature = "zeroize" )] |
1595 | impl Zeroize for Hasher { |
1596 | fn zeroize(&mut self) { |
1597 | // Destructuring to trigger compile error as a reminder to update this impl. |
1598 | let Self { |
1599 | key, |
1600 | chunk_state, |
1601 | cv_stack, |
1602 | } = self; |
1603 | |
1604 | key.zeroize(); |
1605 | chunk_state.zeroize(); |
1606 | cv_stack.zeroize(); |
1607 | } |
1608 | } |
1609 | |
1610 | /// An incremental reader for extended output, returned by |
1611 | /// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof). |
1612 | /// |
1613 | /// Shorter BLAKE3 outputs are prefixes of longer ones, and explicitly requesting a short output is |
1614 | /// equivalent to truncating the default-length output. Note that this is a difference between |
1615 | /// BLAKE2 and BLAKE3. |
1616 | /// |
1617 | /// # Security notes |
1618 | /// |
1619 | /// Outputs shorter than the default length of 32 bytes (256 bits) provide less security. An N-bit |
1620 | /// BLAKE3 output is intended to provide N bits of first and second preimage resistance and N/2 |
1621 | /// bits of collision resistance, for any N up to 256. Longer outputs don't provide any additional |
1622 | /// security. |
1623 | /// |
1624 | /// Avoid relying on the secrecy of the output offset, that is, the number of output bytes read or |
1625 | /// the arguments to [`seek`](struct.OutputReader.html#method.seek) or |
1626 | /// [`set_position`](struct.OutputReader.html#method.set_position). [_Block-Cipher-Based Tree |
1627 | /// Hashing_ by Aldo Gunsing](https://eprint.iacr.org/2022/283) shows that an attacker who knows |
1628 | /// both the message and the key (if any) can easily determine the offset of an extended output. |
1629 | /// For comparison, AES-CTR has a similar property: if you know the key, you can decrypt a block |
1630 | /// from an unknown position in the output stream to recover its block index. Callers with strong |
1631 | /// secret keys aren't affected in practice, but secret offsets are a [design |
1632 | /// smell](https://en.wikipedia.org/wiki/Design_smell) in any case. |
1633 | #[derive (Clone)] |
1634 | pub struct OutputReader { |
1635 | inner: Output, |
1636 | position_within_block: u8, |
1637 | } |
1638 | |
1639 | impl OutputReader { |
1640 | fn new(inner: Output) -> Self { |
1641 | Self { |
1642 | inner, |
1643 | position_within_block: 0, |
1644 | } |
1645 | } |
1646 | |
1647 | // This helper function handles both the case where the output buffer is |
1648 | // shorter than one block, and the case where our position_within_block is |
1649 | // non-zero. |
1650 | fn fill_one_block(&mut self, buf: &mut &mut [u8]) { |
1651 | let output_block: [u8; BLOCK_LEN] = self.inner.root_output_block(); |
1652 | let output_bytes = &output_block[self.position_within_block as usize..]; |
1653 | let take = cmp::min(buf.len(), output_bytes.len()); |
1654 | buf[..take].copy_from_slice(&output_bytes[..take]); |
1655 | self.position_within_block += take as u8; |
1656 | if self.position_within_block == BLOCK_LEN as u8 { |
1657 | self.inner.counter += 1; |
1658 | self.position_within_block = 0; |
1659 | } |
1660 | // Advance the dest buffer. mem::take() is a borrowck workaround. |
1661 | *buf = &mut core::mem::take(buf)[take..]; |
1662 | } |
1663 | |
1664 | /// Fill a buffer with output bytes and advance the position of the |
1665 | /// `OutputReader`. This is equivalent to [`Read::read`], except that it |
1666 | /// doesn't return a `Result`. Both methods always fill the entire buffer. |
1667 | /// |
1668 | /// Note that `OutputReader` doesn't buffer output bytes internally, so |
1669 | /// calling `fill` repeatedly with a short-length or odd-length slice will |
1670 | /// end up performing the same compression multiple times. If you're |
1671 | /// reading output in a loop, prefer a slice length that's a multiple of |
1672 | /// 64. |
1673 | /// |
1674 | /// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try |
1675 | /// to extract more than that, for example by seeking near the end and |
1676 | /// reading further, the behavior is unspecified. |
1677 | /// |
1678 | /// [`Read::read`]: #method.read |
1679 | pub fn fill(&mut self, mut buf: &mut [u8]) { |
1680 | if buf.is_empty() { |
1681 | return; |
1682 | } |
1683 | |
1684 | // If we're partway through a block, try to get to a block boundary. |
1685 | if self.position_within_block != 0 { |
1686 | self.fill_one_block(&mut buf); |
1687 | } |
1688 | |
1689 | let full_blocks = buf.len() / BLOCK_LEN; |
1690 | let full_blocks_len = full_blocks * BLOCK_LEN; |
1691 | if full_blocks > 0 { |
1692 | debug_assert_eq!(0, self.position_within_block); |
1693 | self.inner.platform.xof_many( |
1694 | &self.inner.input_chaining_value, |
1695 | &self.inner.block, |
1696 | self.inner.block_len, |
1697 | self.inner.counter, |
1698 | self.inner.flags | ROOT, |
1699 | &mut buf[..full_blocks_len], |
1700 | ); |
1701 | self.inner.counter += full_blocks as u64; |
1702 | buf = &mut buf[full_blocks * BLOCK_LEN..]; |
1703 | } |
1704 | |
1705 | if !buf.is_empty() { |
1706 | debug_assert!(buf.len() < BLOCK_LEN); |
1707 | self.fill_one_block(&mut buf); |
1708 | debug_assert!(buf.is_empty()); |
1709 | } |
1710 | } |
1711 | |
1712 | /// Return the current read position in the output stream. This is |
1713 | /// equivalent to [`Seek::stream_position`], except that it doesn't return |
1714 | /// a `Result`. The position of a new `OutputReader` starts at 0, and each |
1715 | /// call to [`fill`] or [`Read::read`] moves the position forward by the |
1716 | /// number of bytes read. |
1717 | /// |
1718 | /// [`Seek::stream_position`]: #method.stream_position |
1719 | /// [`fill`]: #method.fill |
1720 | /// [`Read::read`]: #method.read |
1721 | pub fn position(&self) -> u64 { |
1722 | self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64 |
1723 | } |
1724 | |
1725 | /// Seek to a new read position in the output stream. This is equivalent to |
1726 | /// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't |
1727 | /// return a `Result`. |
1728 | /// |
1729 | /// [`Seek::seek`]: #method.seek |
1730 | /// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html |
1731 | pub fn set_position(&mut self, position: u64) { |
1732 | self.position_within_block = (position % BLOCK_LEN as u64) as u8; |
1733 | self.inner.counter = position / BLOCK_LEN as u64; |
1734 | } |
1735 | } |
1736 | |
1737 | // Don't derive(Debug), because the state may be secret. |
1738 | impl fmt::Debug for OutputReader { |
1739 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1740 | f&mut DebugStruct<'_, '_>.debug_struct("OutputReader" ) |
1741 | .field(name:"position" , &self.position()) |
1742 | .finish() |
1743 | } |
1744 | } |
1745 | |
1746 | #[cfg (feature = "std" )] |
1747 | impl std::io::Read for OutputReader { |
1748 | #[inline ] |
1749 | fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> { |
1750 | self.fill(buf); |
1751 | Ok(buf.len()) |
1752 | } |
1753 | } |
1754 | |
1755 | #[cfg (feature = "std" )] |
1756 | impl std::io::Seek for OutputReader { |
1757 | fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> { |
1758 | let max_position: i128 = u64::max_value() as i128; |
1759 | let target_position: i128 = match pos { |
1760 | std::io::SeekFrom::Start(x: u64) => x as i128, |
1761 | std::io::SeekFrom::Current(x: i64) => self.position() as i128 + x as i128, |
1762 | std::io::SeekFrom::End(_) => { |
1763 | return Err(std::io::Error::new( |
1764 | kind:std::io::ErrorKind::InvalidInput, |
1765 | error:"seek from end not supported" , |
1766 | )); |
1767 | } |
1768 | }; |
1769 | if target_position < 0 { |
1770 | return Err(std::io::Error::new( |
1771 | kind:std::io::ErrorKind::InvalidInput, |
1772 | error:"seek before start" , |
1773 | )); |
1774 | } |
1775 | self.set_position(cmp::min(v1:target_position, v2:max_position) as u64); |
1776 | Ok(self.position()) |
1777 | } |
1778 | } |
1779 | |
1780 | #[cfg (feature = "zeroize" )] |
1781 | impl Zeroize for OutputReader { |
1782 | fn zeroize(&mut self) { |
1783 | // Destructuring to trigger compile error as a reminder to update this impl. |
1784 | let Self { |
1785 | inner, |
1786 | position_within_block, |
1787 | } = self; |
1788 | |
1789 | inner.zeroize(); |
1790 | position_within_block.zeroize(); |
1791 | } |
1792 | } |
1793 | |