1 | use crate::iter::FusedIterator; |
2 | use crate::mem::MaybeUninit; |
3 | use crate::{fmt, ptr}; |
4 | |
5 | /// An iterator over the mapped windows of another iterator. |
6 | /// |
7 | /// This `struct` is created by the [`Iterator::map_windows`]. See its |
8 | /// documentation for more information. |
9 | #[must_use = "iterators are lazy and do nothing unless consumed" ] |
10 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
11 | pub struct MapWindows<I: Iterator, F, const N: usize> { |
12 | f: F, |
13 | inner: MapWindowsInner<I, N>, |
14 | } |
15 | |
16 | struct MapWindowsInner<I: Iterator, const N: usize> { |
17 | // We fuse the inner iterator because there shouldn't be "holes" in |
18 | // the sliding window. Once the iterator returns a `None`, we make |
19 | // our `MapWindows` iterator return `None` forever. |
20 | iter: Option<I>, |
21 | // Since iterators are assumed lazy, i.e. it only yields an item when |
22 | // `Iterator::next()` is called, and `MapWindows` is not an exception. |
23 | // |
24 | // Before the first iteration, we keep the buffer `None`. When the user |
25 | // first call `next` or other methods that makes the iterator advance, |
26 | // we collect the first `N` items yielded from the inner iterator and |
27 | // put it into the buffer. |
28 | // |
29 | // When the inner iterator has returned a `None` (i.e. fused), we take |
30 | // away this `buffer` and leave it `None` to reclaim its resources. |
31 | // |
32 | // FIXME: should we shrink the size of `buffer` using niche optimization? |
33 | buffer: Option<Buffer<I::Item, N>>, |
34 | } |
35 | |
36 | // `Buffer` uses two times of space to reduce moves among the iterations. |
37 | // `Buffer<T, N>` is semantically `[MaybeUninit<T>; 2 * N]`. However, due |
38 | // to limitations of const generics, we use this different type. Note that |
39 | // it has the same underlying memory layout. |
40 | struct Buffer<T, const N: usize> { |
41 | // Invariant: `self.buffer[self.start..self.start + N]` is initialized, |
42 | // with all other elements being uninitialized. This also |
43 | // implies that `self.start <= N`. |
44 | buffer: [[MaybeUninit<T>; N]; 2], |
45 | start: usize, |
46 | } |
47 | |
48 | impl<I: Iterator, F, const N: usize> MapWindows<I, F, N> { |
49 | pub(in crate::iter) fn new(iter: I, f: F) -> Self { |
50 | assert!(N != 0, "array in `Iterator::map_windows` must contain more than 0 elements" ); |
51 | |
52 | // Only ZST arrays' length can be so large. |
53 | if size_of::<I::Item>() == 0 { |
54 | assert!( |
55 | N.checked_mul(2).is_some(), |
56 | "array size of `Iterator::map_windows` is too large" |
57 | ); |
58 | } |
59 | |
60 | Self { inner: MapWindowsInner::new(iter), f } |
61 | } |
62 | } |
63 | |
64 | impl<I: Iterator, const N: usize> MapWindowsInner<I, N> { |
65 | #[inline ] |
66 | fn new(iter: I) -> Self { |
67 | Self { iter: Some(iter), buffer: None } |
68 | } |
69 | |
70 | fn next_window(&mut self) -> Option<&[I::Item; N]> { |
71 | let iter = self.iter.as_mut()?; |
72 | match self.buffer { |
73 | // It is the first time to advance. We collect |
74 | // the first `N` items from `self.iter` to initialize `self.buffer`. |
75 | None => self.buffer = Buffer::try_from_iter(iter), |
76 | Some(ref mut buffer) => match iter.next() { |
77 | None => { |
78 | // Fuse the inner iterator since it yields a `None`. |
79 | self.iter.take(); |
80 | self.buffer.take(); |
81 | } |
82 | // Advance the iterator. We first call `next` before changing our buffer |
83 | // at all. This means that if `next` panics, our invariant is upheld and |
84 | // our `Drop` impl drops the correct elements. |
85 | Some(item) => buffer.push(item), |
86 | }, |
87 | } |
88 | self.buffer.as_ref().map(Buffer::as_array_ref) |
89 | } |
90 | |
91 | fn size_hint(&self) -> (usize, Option<usize>) { |
92 | let Some(ref iter) = self.iter else { return (0, Some(0)) }; |
93 | let (lo, hi) = iter.size_hint(); |
94 | if self.buffer.is_some() { |
95 | // If the first `N` items are already yielded by the inner iterator, |
96 | // the size hint is then equal to the that of the inner iterator's. |
97 | (lo, hi) |
98 | } else { |
99 | // If the first `N` items are not yet yielded by the inner iterator, |
100 | // the first `N` elements should be counted as one window, so both bounds |
101 | // should subtract `N - 1`. |
102 | (lo.saturating_sub(N - 1), hi.map(|hi| hi.saturating_sub(N - 1))) |
103 | } |
104 | } |
105 | } |
106 | |
107 | impl<T, const N: usize> Buffer<T, N> { |
108 | fn try_from_iter(iter: &mut impl Iterator<Item = T>) -> Option<Self> { |
109 | let first_half = crate::array::iter_next_chunk(iter).ok()?; |
110 | let buffer = |
111 | [MaybeUninit::new(first_half).transpose(), [const { MaybeUninit::uninit() }; N]]; |
112 | Some(Self { buffer, start: 0 }) |
113 | } |
114 | |
115 | #[inline ] |
116 | fn buffer_ptr(&self) -> *const MaybeUninit<T> { |
117 | self.buffer.as_ptr().cast() |
118 | } |
119 | |
120 | #[inline ] |
121 | fn buffer_mut_ptr(&mut self) -> *mut MaybeUninit<T> { |
122 | self.buffer.as_mut_ptr().cast() |
123 | } |
124 | |
125 | #[inline ] |
126 | fn as_array_ref(&self) -> &[T; N] { |
127 | debug_assert!(self.start + N <= 2 * N); |
128 | |
129 | // SAFETY: our invariant guarantees these elements are initialized. |
130 | unsafe { &*self.buffer_ptr().add(self.start).cast() } |
131 | } |
132 | |
133 | #[inline ] |
134 | fn as_uninit_array_mut(&mut self) -> &mut MaybeUninit<[T; N]> { |
135 | debug_assert!(self.start + N <= 2 * N); |
136 | |
137 | // SAFETY: our invariant guarantees these elements are in bounds. |
138 | unsafe { &mut *self.buffer_mut_ptr().add(self.start).cast() } |
139 | } |
140 | |
141 | /// Pushes a new item `next` to the back, and pops the front-most one. |
142 | /// |
143 | /// All the elements will be shifted to the front end when pushing reaches |
144 | /// the back end. |
145 | fn push(&mut self, next: T) { |
146 | let buffer_mut_ptr = self.buffer_mut_ptr(); |
147 | debug_assert!(self.start + N <= 2 * N); |
148 | |
149 | let to_drop = if self.start == N { |
150 | // We have reached the end of our buffer and have to copy |
151 | // everything to the start. Example layout for N = 3. |
152 | // |
153 | // 0 1 2 3 4 5 0 1 2 3 4 5 |
154 | // ┌───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┐ |
155 | // │ - │ - │ - │ a │ b │ c │ -> │ b │ c │ n │ - │ - │ - │ |
156 | // └───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┘ |
157 | // ↑ ↑ |
158 | // start start |
159 | |
160 | // SAFETY: the two pointers are valid for reads/writes of N -1 |
161 | // elements because our array's size is semantically 2 * N. The |
162 | // regions also don't overlap for the same reason. |
163 | // |
164 | // We leave the old elements in place. As soon as `start` is set |
165 | // to 0, we treat them as uninitialized and treat their copies |
166 | // as initialized. |
167 | let to_drop = unsafe { |
168 | ptr::copy_nonoverlapping(buffer_mut_ptr.add(self.start + 1), buffer_mut_ptr, N - 1); |
169 | (*buffer_mut_ptr.add(N - 1)).write(next); |
170 | buffer_mut_ptr.add(self.start) |
171 | }; |
172 | self.start = 0; |
173 | to_drop |
174 | } else { |
175 | // SAFETY: `self.start` is < N as guaranteed by the invariant |
176 | // plus the check above. Even if the drop at the end panics, |
177 | // the invariant is upheld. |
178 | // |
179 | // Example layout for N = 3: |
180 | // |
181 | // 0 1 2 3 4 5 0 1 2 3 4 5 |
182 | // ┌───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┐ |
183 | // │ - │ a │ b │ c │ - │ - │ -> │ - │ - │ b │ c │ n │ - │ |
184 | // └───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┘ |
185 | // ↑ ↑ |
186 | // start start |
187 | // |
188 | let to_drop = unsafe { |
189 | (*buffer_mut_ptr.add(self.start + N)).write(next); |
190 | buffer_mut_ptr.add(self.start) |
191 | }; |
192 | self.start += 1; |
193 | to_drop |
194 | }; |
195 | |
196 | // SAFETY: the index is valid and this is element `a` in the |
197 | // diagram above and has not been dropped yet. |
198 | unsafe { ptr::drop_in_place(to_drop.cast::<T>()) }; |
199 | } |
200 | } |
201 | |
202 | impl<T: Clone, const N: usize> Clone for Buffer<T, N> { |
203 | fn clone(&self) -> Self { |
204 | let mut buffer: Buffer = Buffer { |
205 | buffer: [[const { MaybeUninit::uninit() }; N], [const { MaybeUninit::uninit() }; N]], |
206 | start: self.start, |
207 | }; |
208 | buffer.as_uninit_array_mut().write(self.as_array_ref().clone()); |
209 | buffer |
210 | } |
211 | } |
212 | |
213 | impl<I, const N: usize> Clone for MapWindowsInner<I, N> |
214 | where |
215 | I: Iterator + Clone, |
216 | I::Item: Clone, |
217 | { |
218 | fn clone(&self) -> Self { |
219 | Self { iter: self.iter.clone(), buffer: self.buffer.clone() } |
220 | } |
221 | } |
222 | |
223 | impl<T, const N: usize> Drop for Buffer<T, N> { |
224 | fn drop(&mut self) { |
225 | // SAFETY: our invariant guarantees that N elements starting from |
226 | // `self.start` are initialized. We drop them here. |
227 | unsafe { |
228 | let initialized_part: *mut [T] = crate::ptr::slice_from_raw_parts_mut( |
229 | self.buffer_mut_ptr().add(self.start).cast(), |
230 | N, |
231 | ); |
232 | ptr::drop_in_place(to_drop:initialized_part); |
233 | } |
234 | } |
235 | } |
236 | |
237 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
238 | impl<I, F, R, const N: usize> Iterator for MapWindows<I, F, N> |
239 | where |
240 | I: Iterator, |
241 | F: FnMut(&[I::Item; N]) -> R, |
242 | { |
243 | type Item = R; |
244 | |
245 | fn next(&mut self) -> Option<Self::Item> { |
246 | let window: &[::Item; N] = self.inner.next_window()?; |
247 | let out: R = (self.f)(window); |
248 | Some(out) |
249 | } |
250 | |
251 | fn size_hint(&self) -> (usize, Option<usize>) { |
252 | self.inner.size_hint() |
253 | } |
254 | } |
255 | |
256 | // Note that even if the inner iterator not fused, the `MapWindows` is still fused, |
257 | // because we don't allow "holes" in the mapping window. |
258 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
259 | impl<I, F, R, const N: usize> FusedIterator for MapWindows<I, F, N> |
260 | where |
261 | I: Iterator, |
262 | F: FnMut(&[I::Item; N]) -> R, |
263 | { |
264 | } |
265 | |
266 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
267 | impl<I, F, R, const N: usize> ExactSizeIterator for MapWindows<I, F, N> |
268 | where |
269 | I: ExactSizeIterator, |
270 | F: FnMut(&[I::Item; N]) -> R, |
271 | { |
272 | } |
273 | |
274 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
275 | impl<I: Iterator + fmt::Debug, F, const N: usize> fmt::Debug for MapWindows<I, F, N> { |
276 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
277 | f.debug_struct("MapWindows" ).field(name:"iter" , &self.inner.iter).finish() |
278 | } |
279 | } |
280 | |
281 | #[unstable (feature = "iter_map_windows" , reason = "recently added" , issue = "87155" )] |
282 | impl<I, F, const N: usize> Clone for MapWindows<I, F, N> |
283 | where |
284 | I: Iterator + Clone, |
285 | F: Clone, |
286 | I::Item: Clone, |
287 | { |
288 | fn clone(&self) -> Self { |
289 | Self { f: self.f.clone(), inner: self.inner.clone() } |
290 | } |
291 | } |
292 | |