| 1 | use crate::arch::asm; |
| 2 | use crate::core_arch::{simd::*, x86::*}; |
| 3 | use crate::intrinsics::{fmaf16, simd::*}; |
| 4 | use crate::ptr; |
| 5 | |
| 6 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values. |
| 7 | /// |
| 8 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ph) |
| 9 | #[inline ] |
| 10 | #[target_feature (enable = "avx512fp16" )] |
| 11 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 12 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 13 | pub const fn _mm_set_ph( |
| 14 | e7: f16, |
| 15 | e6: f16, |
| 16 | e5: f16, |
| 17 | e4: f16, |
| 18 | e3: f16, |
| 19 | e2: f16, |
| 20 | e1: f16, |
| 21 | e0: f16, |
| 22 | ) -> __m128h { |
| 23 | __m128h([e0, e1, e2, e3, e4, e5, e6, e7]) |
| 24 | } |
| 25 | |
| 26 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values. |
| 27 | /// |
| 28 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_set_ph) |
| 29 | #[inline ] |
| 30 | #[target_feature (enable = "avx512fp16" )] |
| 31 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 32 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 33 | pub const fn _mm256_set_ph( |
| 34 | e15: f16, |
| 35 | e14: f16, |
| 36 | e13: f16, |
| 37 | e12: f16, |
| 38 | e11: f16, |
| 39 | e10: f16, |
| 40 | e9: f16, |
| 41 | e8: f16, |
| 42 | e7: f16, |
| 43 | e6: f16, |
| 44 | e5: f16, |
| 45 | e4: f16, |
| 46 | e3: f16, |
| 47 | e2: f16, |
| 48 | e1: f16, |
| 49 | e0: f16, |
| 50 | ) -> __m256h { |
| 51 | __m256h([ |
| 52 | e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, |
| 53 | ]) |
| 54 | } |
| 55 | |
| 56 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values. |
| 57 | /// |
| 58 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_set_ph) |
| 59 | #[inline ] |
| 60 | #[target_feature (enable = "avx512fp16" )] |
| 61 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 62 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 63 | pub const fn _mm512_set_ph( |
| 64 | e31: f16, |
| 65 | e30: f16, |
| 66 | e29: f16, |
| 67 | e28: f16, |
| 68 | e27: f16, |
| 69 | e26: f16, |
| 70 | e25: f16, |
| 71 | e24: f16, |
| 72 | e23: f16, |
| 73 | e22: f16, |
| 74 | e21: f16, |
| 75 | e20: f16, |
| 76 | e19: f16, |
| 77 | e18: f16, |
| 78 | e17: f16, |
| 79 | e16: f16, |
| 80 | e15: f16, |
| 81 | e14: f16, |
| 82 | e13: f16, |
| 83 | e12: f16, |
| 84 | e11: f16, |
| 85 | e10: f16, |
| 86 | e9: f16, |
| 87 | e8: f16, |
| 88 | e7: f16, |
| 89 | e6: f16, |
| 90 | e5: f16, |
| 91 | e4: f16, |
| 92 | e3: f16, |
| 93 | e2: f16, |
| 94 | e1: f16, |
| 95 | e0: f16, |
| 96 | ) -> __m512h { |
| 97 | __m512h([ |
| 98 | e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, |
| 99 | e20, e21, e22, e23, e24, e25, e26, e27, e28, e29, e30, e31, |
| 100 | ]) |
| 101 | } |
| 102 | |
| 103 | /// Copy half-precision (16-bit) floating-point elements from a to the lower element of dst and zero |
| 104 | /// the upper 7 elements. |
| 105 | /// |
| 106 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sh) |
| 107 | #[inline ] |
| 108 | #[target_feature (enable = "avx512fp16" )] |
| 109 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 110 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 111 | pub const fn _mm_set_sh(a: f16) -> __m128h { |
| 112 | __m128h([a, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) |
| 113 | } |
| 114 | |
| 115 | /// Broadcast the half-precision (16-bit) floating-point value a to all elements of dst. |
| 116 | /// |
| 117 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_ph) |
| 118 | #[inline ] |
| 119 | #[target_feature (enable = "avx512fp16" )] |
| 120 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 121 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 122 | pub const fn _mm_set1_ph(a: f16) -> __m128h { |
| 123 | unsafe { transmute(src:f16x8::splat(a)) } |
| 124 | } |
| 125 | |
| 126 | /// Broadcast the half-precision (16-bit) floating-point value a to all elements of dst. |
| 127 | /// |
| 128 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_set1_ph) |
| 129 | #[inline ] |
| 130 | #[target_feature (enable = "avx512fp16" )] |
| 131 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 132 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 133 | pub const fn _mm256_set1_ph(a: f16) -> __m256h { |
| 134 | unsafe { transmute(src:f16x16::splat(a)) } |
| 135 | } |
| 136 | |
| 137 | /// Broadcast the half-precision (16-bit) floating-point value a to all elements of dst. |
| 138 | /// |
| 139 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_set1_ph) |
| 140 | #[inline ] |
| 141 | #[target_feature (enable = "avx512fp16" )] |
| 142 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 143 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 144 | pub const fn _mm512_set1_ph(a: f16) -> __m512h { |
| 145 | unsafe { transmute(src:f16x32::splat(a)) } |
| 146 | } |
| 147 | |
| 148 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values in reverse order. |
| 149 | /// |
| 150 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_ph) |
| 151 | #[inline ] |
| 152 | #[target_feature (enable = "avx512fp16" )] |
| 153 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 154 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 155 | pub const fn _mm_setr_ph( |
| 156 | e0: f16, |
| 157 | e1: f16, |
| 158 | e2: f16, |
| 159 | e3: f16, |
| 160 | e4: f16, |
| 161 | e5: f16, |
| 162 | e6: f16, |
| 163 | e7: f16, |
| 164 | ) -> __m128h { |
| 165 | __m128h([e0, e1, e2, e3, e4, e5, e6, e7]) |
| 166 | } |
| 167 | |
| 168 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values in reverse order. |
| 169 | /// |
| 170 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_setr_ph) |
| 171 | #[inline ] |
| 172 | #[target_feature (enable = "avx512fp16" )] |
| 173 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 174 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 175 | pub const fn _mm256_setr_ph( |
| 176 | e0: f16, |
| 177 | e1: f16, |
| 178 | e2: f16, |
| 179 | e3: f16, |
| 180 | e4: f16, |
| 181 | e5: f16, |
| 182 | e6: f16, |
| 183 | e7: f16, |
| 184 | e8: f16, |
| 185 | e9: f16, |
| 186 | e10: f16, |
| 187 | e11: f16, |
| 188 | e12: f16, |
| 189 | e13: f16, |
| 190 | e14: f16, |
| 191 | e15: f16, |
| 192 | ) -> __m256h { |
| 193 | __m256h([ |
| 194 | e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, |
| 195 | ]) |
| 196 | } |
| 197 | |
| 198 | /// Set packed half-precision (16-bit) floating-point elements in dst with the supplied values in reverse order. |
| 199 | /// |
| 200 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_setr_ph) |
| 201 | #[inline ] |
| 202 | #[target_feature (enable = "avx512fp16" )] |
| 203 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 204 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 205 | pub const fn _mm512_setr_ph( |
| 206 | e0: f16, |
| 207 | e1: f16, |
| 208 | e2: f16, |
| 209 | e3: f16, |
| 210 | e4: f16, |
| 211 | e5: f16, |
| 212 | e6: f16, |
| 213 | e7: f16, |
| 214 | e8: f16, |
| 215 | e9: f16, |
| 216 | e10: f16, |
| 217 | e11: f16, |
| 218 | e12: f16, |
| 219 | e13: f16, |
| 220 | e14: f16, |
| 221 | e15: f16, |
| 222 | e16: f16, |
| 223 | e17: f16, |
| 224 | e18: f16, |
| 225 | e19: f16, |
| 226 | e20: f16, |
| 227 | e21: f16, |
| 228 | e22: f16, |
| 229 | e23: f16, |
| 230 | e24: f16, |
| 231 | e25: f16, |
| 232 | e26: f16, |
| 233 | e27: f16, |
| 234 | e28: f16, |
| 235 | e29: f16, |
| 236 | e30: f16, |
| 237 | e31: f16, |
| 238 | ) -> __m512h { |
| 239 | __m512h([ |
| 240 | e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, |
| 241 | e20, e21, e22, e23, e24, e25, e26, e27, e28, e29, e30, e31, |
| 242 | ]) |
| 243 | } |
| 244 | |
| 245 | /// Return vector of type __m128h with all elements set to zero. |
| 246 | /// |
| 247 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_ph) |
| 248 | #[inline ] |
| 249 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 250 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 251 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 252 | pub const fn _mm_setzero_ph() -> __m128h { |
| 253 | unsafe { transmute(src:f16x8::ZERO) } |
| 254 | } |
| 255 | |
| 256 | /// Return vector of type __m256h with all elements set to zero. |
| 257 | /// |
| 258 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_setzero_ph) |
| 259 | #[inline ] |
| 260 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 261 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 262 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 263 | pub const fn _mm256_setzero_ph() -> __m256h { |
| 264 | f16x16::ZERO.as_m256h() |
| 265 | } |
| 266 | |
| 267 | /// Return vector of type __m512h with all elements set to zero. |
| 268 | /// |
| 269 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_setzero_ph) |
| 270 | #[inline ] |
| 271 | #[target_feature (enable = "avx512fp16" )] |
| 272 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 273 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 274 | pub const fn _mm512_setzero_ph() -> __m512h { |
| 275 | f16x32::ZERO.as_m512h() |
| 276 | } |
| 277 | |
| 278 | /// Return vector of type `__m128h` with indetermination elements. |
| 279 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 280 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`](crate::mem::MaybeUninit). |
| 281 | /// In practice, this is typically equivalent to [`mem::zeroed`](crate::mem::zeroed). |
| 282 | /// |
| 283 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ph) |
| 284 | #[inline ] |
| 285 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 286 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 287 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 288 | pub const fn _mm_undefined_ph() -> __m128h { |
| 289 | f16x8::ZERO.as_m128h() |
| 290 | } |
| 291 | |
| 292 | /// Return vector of type `__m256h` with indetermination elements. |
| 293 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 294 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`](crate::mem::MaybeUninit). |
| 295 | /// In practice, this is typically equivalent to [`mem::zeroed`](crate::mem::zeroed). |
| 296 | /// |
| 297 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_undefined_ph) |
| 298 | #[inline ] |
| 299 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 300 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 301 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 302 | pub const fn _mm256_undefined_ph() -> __m256h { |
| 303 | f16x16::ZERO.as_m256h() |
| 304 | } |
| 305 | |
| 306 | /// Return vector of type `__m512h` with indetermination elements. |
| 307 | /// Despite using the word "undefined" (following Intel's naming scheme), this non-deterministically |
| 308 | /// picks some valid value and is not equivalent to [`mem::MaybeUninit`](crate::mem::MaybeUninit). |
| 309 | /// In practice, this is typically equivalent to [`mem::zeroed`](crate::mem::zeroed). |
| 310 | /// |
| 311 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_undefined_ph) |
| 312 | #[inline ] |
| 313 | #[target_feature (enable = "avx512fp16" )] |
| 314 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 315 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 316 | pub const fn _mm512_undefined_ph() -> __m512h { |
| 317 | f16x32::ZERO.as_m512h() |
| 318 | } |
| 319 | |
| 320 | /// Cast vector of type `__m128d` to type `__m128h`. This intrinsic is only used for compilation and |
| 321 | /// does not generate any instructions, thus it has zero latency. |
| 322 | /// |
| 323 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ph) |
| 324 | #[inline ] |
| 325 | #[target_feature (enable = "avx512fp16" )] |
| 326 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 327 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 328 | pub const fn _mm_castpd_ph(a: __m128d) -> __m128h { |
| 329 | unsafe { transmute(src:a) } |
| 330 | } |
| 331 | |
| 332 | /// Cast vector of type `__m256d` to type `__m256h`. This intrinsic is only used for compilation and |
| 333 | /// does not generate any instructions, thus it has zero latency. |
| 334 | /// |
| 335 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castpd_ph) |
| 336 | #[inline ] |
| 337 | #[target_feature (enable = "avx512fp16" )] |
| 338 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 339 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 340 | pub const fn _mm256_castpd_ph(a: __m256d) -> __m256h { |
| 341 | unsafe { transmute(src:a) } |
| 342 | } |
| 343 | |
| 344 | /// Cast vector of type `__m512d` to type `__m512h`. This intrinsic is only used for compilation and |
| 345 | /// does not generate any instructions, thus it has zero latency. |
| 346 | /// |
| 347 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castpd_ph) |
| 348 | #[inline ] |
| 349 | #[target_feature (enable = "avx512fp16" )] |
| 350 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 351 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 352 | pub const fn _mm512_castpd_ph(a: __m512d) -> __m512h { |
| 353 | unsafe { transmute(src:a) } |
| 354 | } |
| 355 | |
| 356 | /// Cast vector of type `__m128h` to type `__m128d`. This intrinsic is only used for compilation and |
| 357 | /// does not generate any instructions, thus it has zero latency. |
| 358 | /// |
| 359 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castph_pd) |
| 360 | #[inline ] |
| 361 | #[target_feature (enable = "avx512fp16" )] |
| 362 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 363 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 364 | pub const fn _mm_castph_pd(a: __m128h) -> __m128d { |
| 365 | unsafe { transmute(src:a) } |
| 366 | } |
| 367 | |
| 368 | /// Cast vector of type `__m256h` to type `__m256d`. This intrinsic is only used for compilation and |
| 369 | /// does not generate any instructions, thus it has zero latency. |
| 370 | /// |
| 371 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castph_pd) |
| 372 | #[inline ] |
| 373 | #[target_feature (enable = "avx512fp16" )] |
| 374 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 375 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 376 | pub const fn _mm256_castph_pd(a: __m256h) -> __m256d { |
| 377 | unsafe { transmute(src:a) } |
| 378 | } |
| 379 | |
| 380 | /// Cast vector of type `__m512h` to type `__m512d`. This intrinsic is only used for compilation and |
| 381 | /// does not generate any instructions, thus it has zero latency. |
| 382 | /// |
| 383 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph_pd) |
| 384 | #[inline ] |
| 385 | #[target_feature (enable = "avx512fp16" )] |
| 386 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 387 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 388 | pub const fn _mm512_castph_pd(a: __m512h) -> __m512d { |
| 389 | unsafe { transmute(src:a) } |
| 390 | } |
| 391 | |
| 392 | /// Cast vector of type `__m128` to type `__m128h`. This intrinsic is only used for compilation and |
| 393 | /// does not generate any instructions, thus it has zero latency. |
| 394 | /// |
| 395 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_ph) |
| 396 | #[inline ] |
| 397 | #[target_feature (enable = "avx512fp16" )] |
| 398 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 399 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 400 | pub const fn _mm_castps_ph(a: __m128) -> __m128h { |
| 401 | unsafe { transmute(src:a) } |
| 402 | } |
| 403 | |
| 404 | /// Cast vector of type `__m256` to type `__m256h`. This intrinsic is only used for compilation and |
| 405 | /// does not generate any instructions, thus it has zero latency. |
| 406 | /// |
| 407 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castps_ph) |
| 408 | #[inline ] |
| 409 | #[target_feature (enable = "avx512fp16" )] |
| 410 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 411 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 412 | pub const fn _mm256_castps_ph(a: __m256) -> __m256h { |
| 413 | unsafe { transmute(src:a) } |
| 414 | } |
| 415 | |
| 416 | /// Cast vector of type `__m512` to type `__m512h`. This intrinsic is only used for compilation and |
| 417 | /// does not generate any instructions, thus it has zero latency. |
| 418 | /// |
| 419 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castps_ph) |
| 420 | #[inline ] |
| 421 | #[target_feature (enable = "avx512fp16" )] |
| 422 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 423 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 424 | pub const fn _mm512_castps_ph(a: __m512) -> __m512h { |
| 425 | unsafe { transmute(src:a) } |
| 426 | } |
| 427 | |
| 428 | /// Cast vector of type `__m128h` to type `__m128`. This intrinsic is only used for compilation and |
| 429 | /// does not generate any instructions, thus it has zero latency. |
| 430 | /// |
| 431 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castph_ps) |
| 432 | #[inline ] |
| 433 | #[target_feature (enable = "avx512fp16" )] |
| 434 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 435 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 436 | pub const fn _mm_castph_ps(a: __m128h) -> __m128 { |
| 437 | unsafe { transmute(src:a) } |
| 438 | } |
| 439 | |
| 440 | /// Cast vector of type `__m256h` to type `__m256`. This intrinsic is only used for compilation and |
| 441 | /// does not generate any instructions, thus it has zero latency. |
| 442 | /// |
| 443 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castph_ps) |
| 444 | #[inline ] |
| 445 | #[target_feature (enable = "avx512fp16" )] |
| 446 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 447 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 448 | pub const fn _mm256_castph_ps(a: __m256h) -> __m256 { |
| 449 | unsafe { transmute(src:a) } |
| 450 | } |
| 451 | |
| 452 | /// Cast vector of type `__m512h` to type `__m512`. This intrinsic is only used for compilation and |
| 453 | /// does not generate any instructions, thus it has zero latency. |
| 454 | /// |
| 455 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph_ps) |
| 456 | #[inline ] |
| 457 | #[target_feature (enable = "avx512fp16" )] |
| 458 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 459 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 460 | pub const fn _mm512_castph_ps(a: __m512h) -> __m512 { |
| 461 | unsafe { transmute(src:a) } |
| 462 | } |
| 463 | |
| 464 | /// Cast vector of type `__m128i` to type `__m128h`. This intrinsic is only used for compilation and |
| 465 | /// does not generate any instructions, thus it has zero latency. |
| 466 | /// |
| 467 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_ph) |
| 468 | #[inline ] |
| 469 | #[target_feature (enable = "avx512fp16" )] |
| 470 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 471 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 472 | pub const fn _mm_castsi128_ph(a: __m128i) -> __m128h { |
| 473 | unsafe { transmute(src:a) } |
| 474 | } |
| 475 | |
| 476 | /// Cast vector of type `__m256i` to type `__m256h`. This intrinsic is only used for compilation and |
| 477 | /// does not generate any instructions, thus it has zero latency. |
| 478 | /// |
| 479 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castsi256_ph) |
| 480 | #[inline ] |
| 481 | #[target_feature (enable = "avx512fp16" )] |
| 482 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 483 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 484 | pub const fn _mm256_castsi256_ph(a: __m256i) -> __m256h { |
| 485 | unsafe { transmute(src:a) } |
| 486 | } |
| 487 | |
| 488 | /// Cast vector of type `__m512i` to type `__m512h`. This intrinsic is only used for compilation and |
| 489 | /// does not generate any instructions, thus it has zero latency. |
| 490 | /// |
| 491 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castsi512_ph) |
| 492 | #[inline ] |
| 493 | #[target_feature (enable = "avx512fp16" )] |
| 494 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 495 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 496 | pub const fn _mm512_castsi512_ph(a: __m512i) -> __m512h { |
| 497 | unsafe { transmute(src:a) } |
| 498 | } |
| 499 | |
| 500 | /// Cast vector of type `__m128h` to type `__m128i`. This intrinsic is only used for compilation and |
| 501 | /// does not generate any instructions, thus it has zero latency. |
| 502 | /// |
| 503 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castph_si128) |
| 504 | #[inline ] |
| 505 | #[target_feature (enable = "avx512fp16" )] |
| 506 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 507 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 508 | pub const fn _mm_castph_si128(a: __m128h) -> __m128i { |
| 509 | unsafe { transmute(src:a) } |
| 510 | } |
| 511 | |
| 512 | /// Cast vector of type `__m256h` to type `__m256i`. This intrinsic is only used for compilation and |
| 513 | /// does not generate any instructions, thus it has zero latency. |
| 514 | /// |
| 515 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castph_si256) |
| 516 | #[inline ] |
| 517 | #[target_feature (enable = "avx512fp16" )] |
| 518 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 519 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 520 | pub const fn _mm256_castph_si256(a: __m256h) -> __m256i { |
| 521 | unsafe { transmute(src:a) } |
| 522 | } |
| 523 | |
| 524 | /// Cast vector of type `__m512h` to type `__m512i`. This intrinsic is only used for compilation and |
| 525 | /// does not generate any instructions, thus it has zero latency. |
| 526 | /// |
| 527 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph_si512) |
| 528 | #[inline ] |
| 529 | #[target_feature (enable = "avx512fp16" )] |
| 530 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 531 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 532 | pub const fn _mm512_castph_si512(a: __m512h) -> __m512i { |
| 533 | unsafe { transmute(src:a) } |
| 534 | } |
| 535 | |
| 536 | /// Cast vector of type `__m256h` to type `__m128h`. This intrinsic is only used for compilation and |
| 537 | /// does not generate any instructions, thus it has zero latency. |
| 538 | /// |
| 539 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castph256_ph128) |
| 540 | #[inline ] |
| 541 | #[target_feature (enable = "avx512fp16" )] |
| 542 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 543 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 544 | pub const fn _mm256_castph256_ph128(a: __m256h) -> __m128h { |
| 545 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 546 | } |
| 547 | |
| 548 | /// Cast vector of type `__m512h` to type `__m128h`. This intrinsic is only used for compilation and |
| 549 | /// does not generate any instructions, thus it has zero latency. |
| 550 | /// |
| 551 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph512_ph128) |
| 552 | #[inline ] |
| 553 | #[target_feature (enable = "avx512fp16" )] |
| 554 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 555 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 556 | pub const fn _mm512_castph512_ph128(a: __m512h) -> __m128h { |
| 557 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]) } |
| 558 | } |
| 559 | |
| 560 | /// Cast vector of type `__m512h` to type `__m256h`. This intrinsic is only used for compilation and |
| 561 | /// does not generate any instructions, thus it has zero latency. |
| 562 | /// |
| 563 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph512_ph256) |
| 564 | #[inline ] |
| 565 | #[target_feature (enable = "avx512fp16" )] |
| 566 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 567 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 568 | pub const fn _mm512_castph512_ph256(a: __m512h) -> __m256h { |
| 569 | unsafe { simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) } |
| 570 | } |
| 571 | |
| 572 | /// Cast vector of type `__m128h` to type `__m256h`. The upper 8 elements of the result are undefined. |
| 573 | /// In practice, the upper elements are zeroed. This intrinsic can generate the `vzeroupper` instruction, |
| 574 | /// but most of the time it does not generate any instructions. |
| 575 | /// |
| 576 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_castph128_ph256) |
| 577 | #[inline ] |
| 578 | #[target_feature (enable = "avx512fp16" )] |
| 579 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 580 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 581 | pub const fn _mm256_castph128_ph256(a: __m128h) -> __m256h { |
| 582 | unsafe { |
| 583 | simd_shuffle!( |
| 584 | a, |
| 585 | _mm_undefined_ph(), |
| 586 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8] |
| 587 | ) |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /// Cast vector of type `__m128h` to type `__m512h`. The upper 24 elements of the result are undefined. |
| 592 | /// In practice, the upper elements are zeroed. This intrinsic can generate the `vzeroupper` instruction, |
| 593 | /// but most of the time it does not generate any instructions. |
| 594 | /// |
| 595 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph128_ph512) |
| 596 | #[inline ] |
| 597 | #[target_feature (enable = "avx512fp16" )] |
| 598 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 599 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 600 | pub const fn _mm512_castph128_ph512(a: __m128h) -> __m512h { |
| 601 | unsafe { |
| 602 | simd_shuffle!( |
| 603 | a, |
| 604 | _mm_undefined_ph(), |
| 605 | [ |
| 606 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 607 | 8, 8, 8, 8 |
| 608 | ] |
| 609 | ) |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | /// Cast vector of type `__m256h` to type `__m512h`. The upper 16 elements of the result are undefined. |
| 614 | /// In practice, the upper elements are zeroed. This intrinsic can generate the `vzeroupper` instruction, |
| 615 | /// but most of the time it does not generate any instructions. |
| 616 | /// |
| 617 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_castph256_ph512) |
| 618 | #[inline ] |
| 619 | #[target_feature (enable = "avx512fp16" )] |
| 620 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 621 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 622 | pub const fn _mm512_castph256_ph512(a: __m256h) -> __m512h { |
| 623 | unsafe { |
| 624 | simd_shuffle!( |
| 625 | a, |
| 626 | _mm256_undefined_ph(), |
| 627 | [ |
| 628 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, |
| 629 | 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| 630 | ] |
| 631 | ) |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | /// Cast vector of type `__m256h` to type `__m128h`. The upper 8 elements of the result are zeroed. |
| 636 | /// This intrinsic can generate the `vzeroupper` instruction, but most of the time it does not generate |
| 637 | /// any instructions. |
| 638 | /// |
| 639 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_zextph128_ph256) |
| 640 | #[inline ] |
| 641 | #[target_feature (enable = "avx512fp16" )] |
| 642 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 643 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 644 | pub const fn _mm256_zextph128_ph256(a: __m128h) -> __m256h { |
| 645 | unsafe { |
| 646 | simd_shuffle!( |
| 647 | a, |
| 648 | _mm_setzero_ph(), |
| 649 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8] |
| 650 | ) |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | /// Cast vector of type `__m256h` to type `__m512h`. The upper 16 elements of the result are zeroed. |
| 655 | /// This intrinsic can generate the `vzeroupper` instruction, but most of the time it does not generate |
| 656 | /// any instructions. |
| 657 | /// |
| 658 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_zextph256_ph512) |
| 659 | #[inline ] |
| 660 | #[target_feature (enable = "avx512fp16" )] |
| 661 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 662 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 663 | pub const fn _mm512_zextph256_ph512(a: __m256h) -> __m512h { |
| 664 | unsafe { |
| 665 | simd_shuffle!( |
| 666 | a, |
| 667 | _mm256_setzero_ph(), |
| 668 | [ |
| 669 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, |
| 670 | 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| 671 | ] |
| 672 | ) |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | /// Cast vector of type `__m128h` to type `__m512h`. The upper 24 elements of the result are zeroed. |
| 677 | /// This intrinsic can generate the `vzeroupper` instruction, but most of the time it does not generate |
| 678 | /// any instructions. |
| 679 | /// |
| 680 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_zextph128_ph512) |
| 681 | #[inline ] |
| 682 | #[target_feature (enable = "avx512fp16" )] |
| 683 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 684 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 685 | pub const fn _mm512_zextph128_ph512(a: __m128h) -> __m512h { |
| 686 | unsafe { |
| 687 | simd_shuffle!( |
| 688 | a, |
| 689 | _mm_setzero_ph(), |
| 690 | [ |
| 691 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 692 | 8, 8, 8, 8 |
| 693 | ] |
| 694 | ) |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | macro_rules! cmp_asm { // FIXME: use LLVM intrinsics |
| 699 | ($mask_type: ty, $reg: ident, $a: expr, $b: expr) => {{ |
| 700 | let dst: $mask_type; |
| 701 | asm!( |
| 702 | "vcmpph {k}, {a}, {b}, {imm8}" , |
| 703 | k = lateout(kreg) dst, |
| 704 | a = in($reg) $a, |
| 705 | b = in($reg) $b, |
| 706 | imm8 = const IMM5, |
| 707 | options(pure, nomem, nostack) |
| 708 | ); |
| 709 | dst |
| 710 | }}; |
| 711 | ($mask_type: ty, $mask: expr, $reg: ident, $a: expr, $b: expr) => {{ |
| 712 | let dst: $mask_type; |
| 713 | asm!( |
| 714 | "vcmpph {k} {{ {mask} }}, {a}, {b}, {imm8}" , |
| 715 | k = lateout(kreg) dst, |
| 716 | mask = in(kreg) $mask, |
| 717 | a = in($reg) $a, |
| 718 | b = in($reg) $b, |
| 719 | imm8 = const IMM5, |
| 720 | options(pure, nomem, nostack) |
| 721 | ); |
| 722 | dst |
| 723 | }}; |
| 724 | } |
| 725 | |
| 726 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 727 | /// operand specified by imm8, and store the results in mask vector k. |
| 728 | /// |
| 729 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmp_ph_mask) |
| 730 | #[inline ] |
| 731 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 732 | #[rustc_legacy_const_generics (2)] |
| 733 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 734 | pub fn _mm_cmp_ph_mask<const IMM5: i32>(a: __m128h, b: __m128h) -> __mmask8 { |
| 735 | unsafe { |
| 736 | static_assert_uimm_bits!(IMM5, 5); |
| 737 | cmp_asm!(__mmask8, xmm_reg, a, b) |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 742 | /// operand specified by imm8, and store the results in mask vector k using zeromask k (elements are |
| 743 | /// zeroed out when the corresponding mask bit is not set). |
| 744 | /// |
| 745 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmp_ph_mask) |
| 746 | #[inline ] |
| 747 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 748 | #[rustc_legacy_const_generics (3)] |
| 749 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 750 | pub fn _mm_mask_cmp_ph_mask<const IMM5: i32>(k1: __mmask8, a: __m128h, b: __m128h) -> __mmask8 { |
| 751 | unsafe { |
| 752 | static_assert_uimm_bits!(IMM5, 5); |
| 753 | cmp_asm!(__mmask8, k1, xmm_reg, a, b) |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 758 | /// operand specified by imm8, and store the results in mask vector k. |
| 759 | /// |
| 760 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cmp_ph_mask) |
| 761 | #[inline ] |
| 762 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 763 | #[rustc_legacy_const_generics (2)] |
| 764 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 765 | pub fn _mm256_cmp_ph_mask<const IMM5: i32>(a: __m256h, b: __m256h) -> __mmask16 { |
| 766 | unsafe { |
| 767 | static_assert_uimm_bits!(IMM5, 5); |
| 768 | cmp_asm!(__mmask16, ymm_reg, a, b) |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 773 | /// operand specified by imm8, and store the results in mask vector k using zeromask k (elements are |
| 774 | /// zeroed out when the corresponding mask bit is not set). |
| 775 | /// |
| 776 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cmp_ph_mask) |
| 777 | #[inline ] |
| 778 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 779 | #[rustc_legacy_const_generics (3)] |
| 780 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 781 | pub fn _mm256_mask_cmp_ph_mask<const IMM5: i32>( |
| 782 | k1: __mmask16, |
| 783 | a: __m256h, |
| 784 | b: __m256h, |
| 785 | ) -> __mmask16 { |
| 786 | unsafe { |
| 787 | static_assert_uimm_bits!(IMM5, 5); |
| 788 | cmp_asm!(__mmask16, k1, ymm_reg, a, b) |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 793 | /// operand specified by imm8, and store the results in mask vector k. |
| 794 | /// |
| 795 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cmp_ph_mask) |
| 796 | #[inline ] |
| 797 | #[target_feature (enable = "avx512fp16" )] |
| 798 | #[rustc_legacy_const_generics (2)] |
| 799 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 800 | pub fn _mm512_cmp_ph_mask<const IMM5: i32>(a: __m512h, b: __m512h) -> __mmask32 { |
| 801 | unsafe { |
| 802 | static_assert_uimm_bits!(IMM5, 5); |
| 803 | cmp_asm!(__mmask32, zmm_reg, a, b) |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 808 | /// operand specified by imm8, and store the results in mask vector k using zeromask k (elements are |
| 809 | /// zeroed out when the corresponding mask bit is not set). |
| 810 | /// |
| 811 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cmp_ph_mask) |
| 812 | #[inline ] |
| 813 | #[target_feature (enable = "avx512fp16" )] |
| 814 | #[rustc_legacy_const_generics (3)] |
| 815 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 816 | pub fn _mm512_mask_cmp_ph_mask<const IMM5: i32>( |
| 817 | k1: __mmask32, |
| 818 | a: __m512h, |
| 819 | b: __m512h, |
| 820 | ) -> __mmask32 { |
| 821 | unsafe { |
| 822 | static_assert_uimm_bits!(IMM5, 5); |
| 823 | cmp_asm!(__mmask32, k1, zmm_reg, a, b) |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 828 | /// operand specified by imm8, and store the results in mask vector k. |
| 829 | /// |
| 830 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 831 | /// |
| 832 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cmp_round_ph_mask) |
| 833 | #[inline ] |
| 834 | #[target_feature (enable = "avx512fp16" )] |
| 835 | #[rustc_legacy_const_generics (2, 3)] |
| 836 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 837 | pub fn _mm512_cmp_round_ph_mask<const IMM5: i32, const SAE: i32>( |
| 838 | a: __m512h, |
| 839 | b: __m512h, |
| 840 | ) -> __mmask32 { |
| 841 | unsafe { |
| 842 | static_assert_uimm_bits!(IMM5, 5); |
| 843 | static_assert_sae!(SAE); |
| 844 | if SAE == _MM_FROUND_NO_EXC { |
| 845 | let dst: __mmask32; |
| 846 | asm!( |
| 847 | "vcmpph { k}, { a}, { b}, {{sae}}, { imm8}" , |
| 848 | k = lateout(kreg) dst, |
| 849 | a = in(zmm_reg) a, |
| 850 | b = in(zmm_reg) b, |
| 851 | imm8 = const IMM5, |
| 852 | options(pure, nomem, nostack) |
| 853 | ); |
| 854 | dst |
| 855 | } else { |
| 856 | cmp_asm!(__mmask32, zmm_reg, a, b) |
| 857 | } |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | /// Compare packed half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 862 | /// operand specified by imm8, and store the results in mask vector k using zeromask k (elements are |
| 863 | /// zeroed out when the corresponding mask bit is not set). |
| 864 | /// |
| 865 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 866 | /// |
| 867 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cmp_round_ph_mask) |
| 868 | #[inline ] |
| 869 | #[target_feature (enable = "avx512fp16" )] |
| 870 | #[rustc_legacy_const_generics (3, 4)] |
| 871 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 872 | pub fn _mm512_mask_cmp_round_ph_mask<const IMM5: i32, const SAE: i32>( |
| 873 | k1: __mmask32, |
| 874 | a: __m512h, |
| 875 | b: __m512h, |
| 876 | ) -> __mmask32 { |
| 877 | unsafe { |
| 878 | static_assert_uimm_bits!(IMM5, 5); |
| 879 | static_assert_sae!(SAE); |
| 880 | if SAE == _MM_FROUND_NO_EXC { |
| 881 | let dst: __mmask32; |
| 882 | asm!( |
| 883 | "vcmpph { k} {{{ k1}}}, { a}, { b}, {{sae}}, { imm8}" , |
| 884 | k = lateout(kreg) dst, |
| 885 | k1 = in(kreg) k1, |
| 886 | a = in(zmm_reg) a, |
| 887 | b = in(zmm_reg) b, |
| 888 | imm8 = const IMM5, |
| 889 | options(pure, nomem, nostack) |
| 890 | ); |
| 891 | dst |
| 892 | } else { |
| 893 | cmp_asm!(__mmask32, k1, zmm_reg, a, b) |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 899 | /// operand specified by imm8, and store the result in mask vector k. Exceptions can be suppressed by |
| 900 | /// passing _MM_FROUND_NO_EXC in the sae parameter. |
| 901 | /// |
| 902 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmp_round_sh_mask) |
| 903 | #[inline ] |
| 904 | #[target_feature (enable = "avx512fp16" )] |
| 905 | #[rustc_legacy_const_generics (2, 3)] |
| 906 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 907 | pub fn _mm_cmp_round_sh_mask<const IMM5: i32, const SAE: i32>(a: __m128h, b: __m128h) -> __mmask8 { |
| 908 | static_assert_uimm_bits!(IMM5, 5); |
| 909 | static_assert_sae!(SAE); |
| 910 | _mm_mask_cmp_round_sh_mask::<IMM5, SAE>(k1:0xff, a, b) |
| 911 | } |
| 912 | |
| 913 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 914 | /// operand specified by imm8, and store the result in mask vector k using zeromask k1. Exceptions can be |
| 915 | /// suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 916 | /// |
| 917 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmp_round_sh_mask) |
| 918 | #[inline ] |
| 919 | #[target_feature (enable = "avx512fp16" )] |
| 920 | #[rustc_legacy_const_generics (3, 4)] |
| 921 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 922 | pub fn _mm_mask_cmp_round_sh_mask<const IMM5: i32, const SAE: i32>( |
| 923 | k1: __mmask8, |
| 924 | a: __m128h, |
| 925 | b: __m128h, |
| 926 | ) -> __mmask8 { |
| 927 | unsafe { |
| 928 | static_assert_uimm_bits!(IMM5, 5); |
| 929 | static_assert_sae!(SAE); |
| 930 | vcmpsh(a, b, IMM5, mask:k1, SAE) |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 935 | /// operand specified by imm8, and store the result in mask vector k. |
| 936 | /// |
| 937 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmp_sh_mask) |
| 938 | #[inline ] |
| 939 | #[target_feature (enable = "avx512fp16" )] |
| 940 | #[rustc_legacy_const_generics (2)] |
| 941 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 942 | pub fn _mm_cmp_sh_mask<const IMM5: i32>(a: __m128h, b: __m128h) -> __mmask8 { |
| 943 | static_assert_uimm_bits!(IMM5, 5); |
| 944 | _mm_cmp_round_sh_mask::<IMM5, _MM_FROUND_CUR_DIRECTION>(a, b) |
| 945 | } |
| 946 | |
| 947 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 948 | /// operand specified by imm8, and store the result in mask vector k using zeromask k1. |
| 949 | /// |
| 950 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmp_sh_mask) |
| 951 | #[inline ] |
| 952 | #[target_feature (enable = "avx512fp16" )] |
| 953 | #[rustc_legacy_const_generics (3)] |
| 954 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 955 | pub fn _mm_mask_cmp_sh_mask<const IMM5: i32>(k1: __mmask8, a: __m128h, b: __m128h) -> __mmask8 { |
| 956 | static_assert_uimm_bits!(IMM5, 5); |
| 957 | _mm_mask_cmp_round_sh_mask::<IMM5, _MM_FROUND_CUR_DIRECTION>(k1, a, b) |
| 958 | } |
| 959 | |
| 960 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 961 | /// operand specified by imm8, and return the boolean result (0 or 1). |
| 962 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 963 | /// |
| 964 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comi_round_sh) |
| 965 | #[inline ] |
| 966 | #[target_feature (enable = "avx512fp16" )] |
| 967 | #[rustc_legacy_const_generics (2, 3)] |
| 968 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 969 | pub fn _mm_comi_round_sh<const IMM5: i32, const SAE: i32>(a: __m128h, b: __m128h) -> i32 { |
| 970 | unsafe { |
| 971 | static_assert_uimm_bits!(IMM5, 5); |
| 972 | static_assert_sae!(SAE); |
| 973 | vcomish(a, b, IMM5, SAE) |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b based on the comparison |
| 978 | /// operand specified by imm8, and return the boolean result (0 or 1). |
| 979 | /// |
| 980 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comi_sh) |
| 981 | #[inline ] |
| 982 | #[target_feature (enable = "avx512fp16" )] |
| 983 | #[rustc_legacy_const_generics (2)] |
| 984 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 985 | pub fn _mm_comi_sh<const IMM5: i32>(a: __m128h, b: __m128h) -> i32 { |
| 986 | static_assert_uimm_bits!(IMM5, 5); |
| 987 | _mm_comi_round_sh::<IMM5, _MM_FROUND_CUR_DIRECTION>(a, b) |
| 988 | } |
| 989 | |
| 990 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for equality, and return |
| 991 | /// the boolean result (0 or 1). |
| 992 | /// |
| 993 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sh) |
| 994 | #[inline ] |
| 995 | #[target_feature (enable = "avx512fp16" )] |
| 996 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 997 | pub fn _mm_comieq_sh(a: __m128h, b: __m128h) -> i32 { |
| 998 | _mm_comi_sh::<_CMP_EQ_OS>(a, b) |
| 999 | } |
| 1000 | |
| 1001 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for greater-than-or-equal, |
| 1002 | /// and return the boolean result (0 or 1). |
| 1003 | /// |
| 1004 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sh) |
| 1005 | #[inline ] |
| 1006 | #[target_feature (enable = "avx512fp16" )] |
| 1007 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1008 | pub fn _mm_comige_sh(a: __m128h, b: __m128h) -> i32 { |
| 1009 | _mm_comi_sh::<_CMP_GE_OS>(a, b) |
| 1010 | } |
| 1011 | |
| 1012 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for greater-than, and return |
| 1013 | /// the boolean result (0 or 1). |
| 1014 | /// |
| 1015 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sh) |
| 1016 | #[inline ] |
| 1017 | #[target_feature (enable = "avx512fp16" )] |
| 1018 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1019 | pub fn _mm_comigt_sh(a: __m128h, b: __m128h) -> i32 { |
| 1020 | _mm_comi_sh::<_CMP_GT_OS>(a, b) |
| 1021 | } |
| 1022 | |
| 1023 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for less-than-or-equal, and |
| 1024 | /// return the boolean result (0 or 1). |
| 1025 | /// |
| 1026 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sh) |
| 1027 | #[inline ] |
| 1028 | #[target_feature (enable = "avx512fp16" )] |
| 1029 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1030 | pub fn _mm_comile_sh(a: __m128h, b: __m128h) -> i32 { |
| 1031 | _mm_comi_sh::<_CMP_LE_OS>(a, b) |
| 1032 | } |
| 1033 | |
| 1034 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for less-than, and return |
| 1035 | /// the boolean result (0 or 1). |
| 1036 | /// |
| 1037 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sh) |
| 1038 | #[inline ] |
| 1039 | #[target_feature (enable = "avx512fp16" )] |
| 1040 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1041 | pub fn _mm_comilt_sh(a: __m128h, b: __m128h) -> i32 { |
| 1042 | _mm_comi_sh::<_CMP_LT_OS>(a, b) |
| 1043 | } |
| 1044 | |
| 1045 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for not-equal, and return |
| 1046 | /// the boolean result (0 or 1). |
| 1047 | /// |
| 1048 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sh) |
| 1049 | #[inline ] |
| 1050 | #[target_feature (enable = "avx512fp16" )] |
| 1051 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1052 | pub fn _mm_comineq_sh(a: __m128h, b: __m128h) -> i32 { |
| 1053 | _mm_comi_sh::<_CMP_NEQ_US>(a, b) |
| 1054 | } |
| 1055 | |
| 1056 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for equality, and |
| 1057 | /// return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1058 | /// |
| 1059 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomieq_sh) |
| 1060 | #[inline ] |
| 1061 | #[target_feature (enable = "avx512fp16" )] |
| 1062 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1063 | pub fn _mm_ucomieq_sh(a: __m128h, b: __m128h) -> i32 { |
| 1064 | _mm_comi_sh::<_CMP_EQ_OQ>(a, b) |
| 1065 | } |
| 1066 | |
| 1067 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for greater-than-or-equal, |
| 1068 | /// and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1069 | /// |
| 1070 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomige_sh) |
| 1071 | #[inline ] |
| 1072 | #[target_feature (enable = "avx512fp16" )] |
| 1073 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1074 | pub fn _mm_ucomige_sh(a: __m128h, b: __m128h) -> i32 { |
| 1075 | _mm_comi_sh::<_CMP_GE_OQ>(a, b) |
| 1076 | } |
| 1077 | |
| 1078 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for greater-than, and return |
| 1079 | /// the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1080 | /// |
| 1081 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomigt_sh) |
| 1082 | #[inline ] |
| 1083 | #[target_feature (enable = "avx512fp16" )] |
| 1084 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1085 | pub fn _mm_ucomigt_sh(a: __m128h, b: __m128h) -> i32 { |
| 1086 | _mm_comi_sh::<_CMP_GT_OQ>(a, b) |
| 1087 | } |
| 1088 | |
| 1089 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for less-than-or-equal, and |
| 1090 | /// return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1091 | /// |
| 1092 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomile_sh) |
| 1093 | #[inline ] |
| 1094 | #[target_feature (enable = "avx512fp16" )] |
| 1095 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1096 | pub fn _mm_ucomile_sh(a: __m128h, b: __m128h) -> i32 { |
| 1097 | _mm_comi_sh::<_CMP_LE_OQ>(a, b) |
| 1098 | } |
| 1099 | |
| 1100 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for less-than, and return |
| 1101 | /// the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1102 | /// |
| 1103 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomilt_sh) |
| 1104 | #[inline ] |
| 1105 | #[target_feature (enable = "avx512fp16" )] |
| 1106 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1107 | pub fn _mm_ucomilt_sh(a: __m128h, b: __m128h) -> i32 { |
| 1108 | _mm_comi_sh::<_CMP_LT_OQ>(a, b) |
| 1109 | } |
| 1110 | |
| 1111 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b for not-equal, and return |
| 1112 | /// the boolean result (0 or 1). This instruction will not signal an exception for QNaNs. |
| 1113 | /// |
| 1114 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ucomineq_sh) |
| 1115 | #[inline ] |
| 1116 | #[target_feature (enable = "avx512fp16" )] |
| 1117 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1118 | pub fn _mm_ucomineq_sh(a: __m128h, b: __m128h) -> i32 { |
| 1119 | _mm_comi_sh::<_CMP_NEQ_UQ>(a, b) |
| 1120 | } |
| 1121 | |
| 1122 | /// Load 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from memory into |
| 1123 | /// a new vector. The address must be aligned to 16 bytes or a general-protection exception may be generated. |
| 1124 | /// |
| 1125 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ph) |
| 1126 | #[inline ] |
| 1127 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1128 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1129 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1130 | pub const unsafe fn _mm_load_ph(mem_addr: *const f16) -> __m128h { |
| 1131 | *mem_addr.cast() |
| 1132 | } |
| 1133 | |
| 1134 | /// Load 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from memory into |
| 1135 | /// a new vector. The address must be aligned to 32 bytes or a general-protection exception may be generated. |
| 1136 | /// |
| 1137 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_load_ph) |
| 1138 | #[inline ] |
| 1139 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1140 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1141 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1142 | pub const unsafe fn _mm256_load_ph(mem_addr: *const f16) -> __m256h { |
| 1143 | *mem_addr.cast() |
| 1144 | } |
| 1145 | |
| 1146 | /// Load 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from memory into |
| 1147 | /// a new vector. The address must be aligned to 64 bytes or a general-protection exception may be generated. |
| 1148 | /// |
| 1149 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_load_ph) |
| 1150 | #[inline ] |
| 1151 | #[target_feature (enable = "avx512fp16" )] |
| 1152 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1153 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1154 | pub const unsafe fn _mm512_load_ph(mem_addr: *const f16) -> __m512h { |
| 1155 | *mem_addr.cast() |
| 1156 | } |
| 1157 | |
| 1158 | /// Load a half-precision (16-bit) floating-point element from memory into the lower element of a new vector, |
| 1159 | /// and zero the upper elements |
| 1160 | /// |
| 1161 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sh) |
| 1162 | #[inline ] |
| 1163 | #[target_feature (enable = "avx512fp16" )] |
| 1164 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1165 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1166 | pub const unsafe fn _mm_load_sh(mem_addr: *const f16) -> __m128h { |
| 1167 | _mm_set_sh(*mem_addr) |
| 1168 | } |
| 1169 | |
| 1170 | /// Load a half-precision (16-bit) floating-point element from memory into the lower element of a new vector |
| 1171 | /// using writemask k (the element is copied from src when mask bit 0 is not set), and zero the upper elements. |
| 1172 | /// |
| 1173 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_load_sh) |
| 1174 | #[inline ] |
| 1175 | #[target_feature (enable = "avx512fp16" )] |
| 1176 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1177 | pub unsafe fn _mm_mask_load_sh(src: __m128h, k: __mmask8, mem_addr: *const f16) -> __m128h { |
| 1178 | let mut dst: __m128h = src; |
| 1179 | asm!( |
| 1180 | vpl!("vmovsh {dst}{{{k}}}" ), |
| 1181 | dst = inout(xmm_reg) dst, |
| 1182 | k = in(kreg) k, |
| 1183 | p = in(reg) mem_addr, |
| 1184 | options(pure, readonly, nostack, preserves_flags) |
| 1185 | ); |
| 1186 | dst |
| 1187 | } |
| 1188 | |
| 1189 | /// Load a half-precision (16-bit) floating-point element from memory into the lower element of a new vector |
| 1190 | /// using zeromask k (the element is zeroed out when mask bit 0 is not set), and zero the upper elements. |
| 1191 | /// |
| 1192 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_load_sh) |
| 1193 | #[inline ] |
| 1194 | #[target_feature (enable = "avx512fp16" )] |
| 1195 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1196 | pub unsafe fn _mm_maskz_load_sh(k: __mmask8, mem_addr: *const f16) -> __m128h { |
| 1197 | let mut dst: __m128h; |
| 1198 | asm!( |
| 1199 | vpl!("vmovsh {dst}{{{k}}}{{z}}" ), |
| 1200 | dst = out(xmm_reg) dst, |
| 1201 | k = in(kreg) k, |
| 1202 | p = in(reg) mem_addr, |
| 1203 | options(pure, readonly, nostack, preserves_flags) |
| 1204 | ); |
| 1205 | dst |
| 1206 | } |
| 1207 | |
| 1208 | /// Load 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from memory into |
| 1209 | /// a new vector. The address does not need to be aligned to any particular boundary. |
| 1210 | /// |
| 1211 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_ph) |
| 1212 | #[inline ] |
| 1213 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1214 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1215 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1216 | pub const unsafe fn _mm_loadu_ph(mem_addr: *const f16) -> __m128h { |
| 1217 | ptr::read_unaligned(src:mem_addr.cast()) |
| 1218 | } |
| 1219 | |
| 1220 | /// Load 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from memory into |
| 1221 | /// a new vector. The address does not need to be aligned to any particular boundary. |
| 1222 | /// |
| 1223 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_loadu_ph) |
| 1224 | #[inline ] |
| 1225 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1226 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1227 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1228 | pub const unsafe fn _mm256_loadu_ph(mem_addr: *const f16) -> __m256h { |
| 1229 | ptr::read_unaligned(src:mem_addr.cast()) |
| 1230 | } |
| 1231 | |
| 1232 | /// Load 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from memory into |
| 1233 | /// a new vector. The address does not need to be aligned to any particular boundary. |
| 1234 | /// |
| 1235 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_loadu_ph) |
| 1236 | #[inline ] |
| 1237 | #[target_feature (enable = "avx512fp16" )] |
| 1238 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1239 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1240 | pub const unsafe fn _mm512_loadu_ph(mem_addr: *const f16) -> __m512h { |
| 1241 | ptr::read_unaligned(src:mem_addr.cast()) |
| 1242 | } |
| 1243 | |
| 1244 | /// Move the lower half-precision (16-bit) floating-point element from b to the lower element of dst |
| 1245 | /// using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper |
| 1246 | /// 7 packed elements from a to the upper elements of dst. |
| 1247 | /// |
| 1248 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_move_sh) |
| 1249 | #[inline ] |
| 1250 | #[target_feature (enable = "avx512fp16" )] |
| 1251 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1252 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1253 | pub const fn _mm_mask_move_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1254 | unsafe { |
| 1255 | let mut mov: f16 = simd_extract!(src, 0); |
| 1256 | if (k & 1) != 0 { |
| 1257 | mov = simd_extract!(b, 0); |
| 1258 | } |
| 1259 | simd_insert!(a, 0, mov) |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | /// Move the lower half-precision (16-bit) floating-point element from b to the lower element of dst |
| 1264 | /// using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed |
| 1265 | /// elements from a to the upper elements of dst. |
| 1266 | /// |
| 1267 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_move_sh) |
| 1268 | #[inline ] |
| 1269 | #[target_feature (enable = "avx512fp16" )] |
| 1270 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1271 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1272 | pub const fn _mm_maskz_move_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1273 | unsafe { |
| 1274 | let mut mov: f16 = 0.; |
| 1275 | if (k & 1) != 0 { |
| 1276 | mov = simd_extract!(b, 0); |
| 1277 | } |
| 1278 | simd_insert!(a, 0, mov) |
| 1279 | } |
| 1280 | } |
| 1281 | |
| 1282 | /// Move the lower half-precision (16-bit) floating-point element from b to the lower element of dst, |
| 1283 | /// and copy the upper 7 packed elements from a to the upper elements of dst. |
| 1284 | /// |
| 1285 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sh) |
| 1286 | #[inline ] |
| 1287 | #[target_feature (enable = "avx512fp16" )] |
| 1288 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1289 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1290 | pub const fn _mm_move_sh(a: __m128h, b: __m128h) -> __m128h { |
| 1291 | unsafe { |
| 1292 | let mov: f16 = simd_extract!(b, 0); |
| 1293 | simd_insert!(a, 0, mov) |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | /// Store 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1298 | /// The address must be aligned to 16 bytes or a general-protection exception may be generated. |
| 1299 | /// |
| 1300 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ph) |
| 1301 | #[inline ] |
| 1302 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1303 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1304 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1305 | pub const unsafe fn _mm_store_ph(mem_addr: *mut f16, a: __m128h) { |
| 1306 | *mem_addr.cast() = a; |
| 1307 | } |
| 1308 | |
| 1309 | /// Store 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1310 | /// The address must be aligned to 32 bytes or a general-protection exception may be generated. |
| 1311 | /// |
| 1312 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_store_ph) |
| 1313 | #[inline ] |
| 1314 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1315 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1316 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1317 | pub const unsafe fn _mm256_store_ph(mem_addr: *mut f16, a: __m256h) { |
| 1318 | *mem_addr.cast() = a; |
| 1319 | } |
| 1320 | |
| 1321 | /// Store 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1322 | /// The address must be aligned to 64 bytes or a general-protection exception may be generated. |
| 1323 | /// |
| 1324 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_store_ph) |
| 1325 | #[inline ] |
| 1326 | #[target_feature (enable = "avx512fp16" )] |
| 1327 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1328 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1329 | pub const unsafe fn _mm512_store_ph(mem_addr: *mut f16, a: __m512h) { |
| 1330 | *mem_addr.cast() = a; |
| 1331 | } |
| 1332 | |
| 1333 | /// Store the lower half-precision (16-bit) floating-point element from a into memory. |
| 1334 | /// |
| 1335 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_sh) |
| 1336 | #[inline ] |
| 1337 | #[target_feature (enable = "avx512fp16" )] |
| 1338 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1339 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1340 | pub const unsafe fn _mm_store_sh(mem_addr: *mut f16, a: __m128h) { |
| 1341 | *mem_addr = simd_extract!(a, 0); |
| 1342 | } |
| 1343 | |
| 1344 | /// Store the lower half-precision (16-bit) floating-point element from a into memory using writemask k |
| 1345 | /// |
| 1346 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_store_sh) |
| 1347 | #[inline ] |
| 1348 | #[target_feature (enable = "avx512fp16" )] |
| 1349 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1350 | pub unsafe fn _mm_mask_store_sh(mem_addr: *mut f16, k: __mmask8, a: __m128h) { |
| 1351 | asm!( |
| 1352 | vps!("vmovdqu16" , "{{{k}}}, {src}" ), |
| 1353 | p = in(reg) mem_addr, |
| 1354 | k = in(kreg) k, |
| 1355 | src = in(xmm_reg) a, |
| 1356 | options(nostack, preserves_flags) |
| 1357 | ); |
| 1358 | } |
| 1359 | |
| 1360 | /// Store 128-bits (composed of 8 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1361 | /// The address does not need to be aligned to any particular boundary. |
| 1362 | /// |
| 1363 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_ph) |
| 1364 | #[inline ] |
| 1365 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1366 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1367 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1368 | pub const unsafe fn _mm_storeu_ph(mem_addr: *mut f16, a: __m128h) { |
| 1369 | ptr::write_unaligned(dst:mem_addr.cast(), src:a); |
| 1370 | } |
| 1371 | |
| 1372 | /// Store 256-bits (composed of 16 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1373 | /// The address does not need to be aligned to any particular boundary. |
| 1374 | /// |
| 1375 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_storeu_ph) |
| 1376 | #[inline ] |
| 1377 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1378 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1379 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1380 | pub const unsafe fn _mm256_storeu_ph(mem_addr: *mut f16, a: __m256h) { |
| 1381 | ptr::write_unaligned(dst:mem_addr.cast(), src:a); |
| 1382 | } |
| 1383 | |
| 1384 | /// Store 512-bits (composed of 32 packed half-precision (16-bit) floating-point elements) from a into memory. |
| 1385 | /// The address does not need to be aligned to any particular boundary. |
| 1386 | /// |
| 1387 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_storeu_ph) |
| 1388 | #[inline ] |
| 1389 | #[target_feature (enable = "avx512fp16" )] |
| 1390 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 1391 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1392 | pub const unsafe fn _mm512_storeu_ph(mem_addr: *mut f16, a: __m512h) { |
| 1393 | ptr::write_unaligned(dst:mem_addr.cast(), src:a); |
| 1394 | } |
| 1395 | |
| 1396 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 1397 | /// |
| 1398 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_ph) |
| 1399 | #[inline ] |
| 1400 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1401 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1402 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1403 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1404 | pub const fn _mm_add_ph(a: __m128h, b: __m128h) -> __m128h { |
| 1405 | unsafe { simd_add(x:a, y:b) } |
| 1406 | } |
| 1407 | |
| 1408 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1409 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1410 | /// |
| 1411 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_add_ph) |
| 1412 | #[inline ] |
| 1413 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1414 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1415 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1416 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1417 | pub const fn _mm_mask_add_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1418 | unsafe { |
| 1419 | let r: __m128h = _mm_add_ph(a, b); |
| 1420 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1425 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1426 | /// |
| 1427 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_add_ph) |
| 1428 | #[inline ] |
| 1429 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1430 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1431 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1432 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1433 | pub const fn _mm_maskz_add_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1434 | unsafe { |
| 1435 | let r: __m128h = _mm_add_ph(a, b); |
| 1436 | simd_select_bitmask(m:k, yes:r, no:_mm_setzero_ph()) |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 1441 | /// |
| 1442 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_add_ph) |
| 1443 | #[inline ] |
| 1444 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1445 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1446 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1447 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1448 | pub const fn _mm256_add_ph(a: __m256h, b: __m256h) -> __m256h { |
| 1449 | unsafe { simd_add(x:a, y:b) } |
| 1450 | } |
| 1451 | |
| 1452 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1453 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1454 | /// |
| 1455 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_add_ph) |
| 1456 | #[inline ] |
| 1457 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1458 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1459 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1460 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1461 | pub const fn _mm256_mask_add_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 1462 | unsafe { |
| 1463 | let r: __m256h = _mm256_add_ph(a, b); |
| 1464 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1469 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1470 | /// |
| 1471 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_add_ph) |
| 1472 | #[inline ] |
| 1473 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1474 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1475 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1476 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1477 | pub const fn _mm256_maskz_add_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 1478 | unsafe { |
| 1479 | let r: __m256h = _mm256_add_ph(a, b); |
| 1480 | simd_select_bitmask(m:k, yes:r, no:_mm256_setzero_ph()) |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 1485 | /// |
| 1486 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_add_ph) |
| 1487 | #[inline ] |
| 1488 | #[target_feature (enable = "avx512fp16" )] |
| 1489 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1490 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1491 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1492 | pub const fn _mm512_add_ph(a: __m512h, b: __m512h) -> __m512h { |
| 1493 | unsafe { simd_add(x:a, y:b) } |
| 1494 | } |
| 1495 | |
| 1496 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1497 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1498 | /// |
| 1499 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_add_ph) |
| 1500 | #[inline ] |
| 1501 | #[target_feature (enable = "avx512fp16" )] |
| 1502 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1503 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1504 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1505 | pub const fn _mm512_mask_add_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 1506 | unsafe { |
| 1507 | let r: __m512h = _mm512_add_ph(a, b); |
| 1508 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1513 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1514 | /// |
| 1515 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_add_ph) |
| 1516 | #[inline ] |
| 1517 | #[target_feature (enable = "avx512fp16" )] |
| 1518 | #[cfg_attr (test, assert_instr(vaddph))] |
| 1519 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1520 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1521 | pub const fn _mm512_maskz_add_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 1522 | unsafe { |
| 1523 | let r: __m512h = _mm512_add_ph(a, b); |
| 1524 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 1529 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1530 | /// |
| 1531 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1532 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1533 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1534 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1535 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1536 | /// |
| 1537 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_add_round_ph) |
| 1538 | #[inline ] |
| 1539 | #[target_feature (enable = "avx512fp16" )] |
| 1540 | #[cfg_attr (test, assert_instr(vaddph, ROUNDING = 8))] |
| 1541 | #[rustc_legacy_const_generics (2)] |
| 1542 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1543 | pub fn _mm512_add_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 1544 | unsafe { |
| 1545 | static_assert_rounding!(ROUNDING); |
| 1546 | vaddph(a, b, ROUNDING) |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1551 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1552 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1553 | /// |
| 1554 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1555 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1556 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1557 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1558 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1559 | /// |
| 1560 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_add_round_ph) |
| 1561 | #[inline ] |
| 1562 | #[target_feature (enable = "avx512fp16" )] |
| 1563 | #[cfg_attr (test, assert_instr(vaddph, ROUNDING = 8))] |
| 1564 | #[rustc_legacy_const_generics (4)] |
| 1565 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1566 | pub fn _mm512_mask_add_round_ph<const ROUNDING: i32>( |
| 1567 | src: __m512h, |
| 1568 | k: __mmask32, |
| 1569 | a: __m512h, |
| 1570 | b: __m512h, |
| 1571 | ) -> __m512h { |
| 1572 | unsafe { |
| 1573 | static_assert_rounding!(ROUNDING); |
| 1574 | let r: __m512h = _mm512_add_round_ph::<ROUNDING>(a, b); |
| 1575 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | /// Add packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 1580 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1581 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1582 | /// |
| 1583 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1584 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1585 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1586 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1587 | /// |
| 1588 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_add_round_ph) |
| 1589 | #[inline ] |
| 1590 | #[target_feature (enable = "avx512fp16" )] |
| 1591 | #[cfg_attr (test, assert_instr(vaddph, ROUNDING = 8))] |
| 1592 | #[rustc_legacy_const_generics (3)] |
| 1593 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1594 | pub fn _mm512_maskz_add_round_ph<const ROUNDING: i32>( |
| 1595 | k: __mmask32, |
| 1596 | a: __m512h, |
| 1597 | b: __m512h, |
| 1598 | ) -> __m512h { |
| 1599 | unsafe { |
| 1600 | static_assert_rounding!(ROUNDING); |
| 1601 | let r: __m512h = _mm512_add_round_ph::<ROUNDING>(a, b); |
| 1602 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1607 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 1608 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1609 | /// |
| 1610 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1611 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1612 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1613 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1614 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1615 | /// |
| 1616 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_round_sh) |
| 1617 | #[inline ] |
| 1618 | #[target_feature (enable = "avx512fp16" )] |
| 1619 | #[cfg_attr (test, assert_instr(vaddsh, ROUNDING = 8))] |
| 1620 | #[rustc_legacy_const_generics (2)] |
| 1621 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1622 | pub fn _mm_add_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 1623 | static_assert_rounding!(ROUNDING); |
| 1624 | _mm_mask_add_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 1625 | } |
| 1626 | |
| 1627 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1628 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1629 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 1630 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1631 | /// |
| 1632 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1633 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1634 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1635 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1636 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1637 | /// |
| 1638 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_add_round_sh) |
| 1639 | #[inline ] |
| 1640 | #[target_feature (enable = "avx512fp16" )] |
| 1641 | #[cfg_attr (test, assert_instr(vaddsh, ROUNDING = 8))] |
| 1642 | #[rustc_legacy_const_generics (4)] |
| 1643 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1644 | pub fn _mm_mask_add_round_sh<const ROUNDING: i32>( |
| 1645 | src: __m128h, |
| 1646 | k: __mmask8, |
| 1647 | a: __m128h, |
| 1648 | b: __m128h, |
| 1649 | ) -> __m128h { |
| 1650 | unsafe { |
| 1651 | static_assert_rounding!(ROUNDING); |
| 1652 | vaddsh(a, b, src, k, ROUNDING) |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1657 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1658 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 1659 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1660 | /// |
| 1661 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1662 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1663 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1664 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1665 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1666 | /// |
| 1667 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_add_round_sh) |
| 1668 | #[inline ] |
| 1669 | #[target_feature (enable = "avx512fp16" )] |
| 1670 | #[cfg_attr (test, assert_instr(vaddsh, ROUNDING = 8))] |
| 1671 | #[rustc_legacy_const_generics (3)] |
| 1672 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1673 | pub fn _mm_maskz_add_round_sh<const ROUNDING: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1674 | static_assert_rounding!(ROUNDING); |
| 1675 | _mm_mask_add_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 1676 | } |
| 1677 | |
| 1678 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1679 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 1680 | /// |
| 1681 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sh) |
| 1682 | #[inline ] |
| 1683 | #[target_feature (enable = "avx512fp16" )] |
| 1684 | #[cfg_attr (test, assert_instr(vaddsh))] |
| 1685 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1686 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1687 | pub const fn _mm_add_sh(a: __m128h, b: __m128h) -> __m128h { |
| 1688 | unsafe { simd_insert!(a, 0, _mm_cvtsh_h(a) + _mm_cvtsh_h(b)) } |
| 1689 | } |
| 1690 | |
| 1691 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1692 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1693 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 1694 | /// |
| 1695 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_add_sh) |
| 1696 | #[inline ] |
| 1697 | #[target_feature (enable = "avx512fp16" )] |
| 1698 | #[cfg_attr (test, assert_instr(vaddsh))] |
| 1699 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1700 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1701 | pub const fn _mm_mask_add_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1702 | unsafe { |
| 1703 | let extractsrc: f16 = simd_extract!(src, 0); |
| 1704 | let mut add: f16 = extractsrc; |
| 1705 | if (k & 0b00000001) != 0 { |
| 1706 | let extracta: f16 = simd_extract!(a, 0); |
| 1707 | let extractb: f16 = simd_extract!(b, 0); |
| 1708 | add = extracta + extractb; |
| 1709 | } |
| 1710 | simd_insert!(a, 0, add) |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | /// Add the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 1715 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1716 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 1717 | /// |
| 1718 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_add_sh) |
| 1719 | #[inline ] |
| 1720 | #[target_feature (enable = "avx512fp16" )] |
| 1721 | #[cfg_attr (test, assert_instr(vaddsh))] |
| 1722 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1723 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1724 | pub const fn _mm_maskz_add_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1725 | unsafe { |
| 1726 | let mut add: f16 = 0.; |
| 1727 | if (k & 0b00000001) != 0 { |
| 1728 | let extracta: f16 = simd_extract!(a, 0); |
| 1729 | let extractb: f16 = simd_extract!(b, 0); |
| 1730 | add = extracta + extractb; |
| 1731 | } |
| 1732 | simd_insert!(a, 0, add) |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst. |
| 1737 | /// |
| 1738 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ph) |
| 1739 | #[inline ] |
| 1740 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1741 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1742 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1743 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1744 | pub const fn _mm_sub_ph(a: __m128h, b: __m128h) -> __m128h { |
| 1745 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 1746 | } |
| 1747 | |
| 1748 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1749 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1750 | /// |
| 1751 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sub_ph) |
| 1752 | #[inline ] |
| 1753 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1754 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1755 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1756 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1757 | pub const fn _mm_mask_sub_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1758 | unsafe { |
| 1759 | let r: __m128h = _mm_sub_ph(a, b); |
| 1760 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1765 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1766 | /// |
| 1767 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sub_ph) |
| 1768 | #[inline ] |
| 1769 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1770 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1771 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1772 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1773 | pub const fn _mm_maskz_sub_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 1774 | unsafe { |
| 1775 | let r: __m128h = _mm_sub_ph(a, b); |
| 1776 | simd_select_bitmask(m:k, yes:r, no:_mm_setzero_ph()) |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst. |
| 1781 | /// |
| 1782 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_sub_ph) |
| 1783 | #[inline ] |
| 1784 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1785 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1786 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1787 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1788 | pub const fn _mm256_sub_ph(a: __m256h, b: __m256h) -> __m256h { |
| 1789 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 1790 | } |
| 1791 | |
| 1792 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1793 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1794 | /// |
| 1795 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_sub_ph) |
| 1796 | #[inline ] |
| 1797 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1798 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1799 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1800 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1801 | pub const fn _mm256_mask_sub_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 1802 | unsafe { |
| 1803 | let r: __m256h = _mm256_sub_ph(a, b); |
| 1804 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1809 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1810 | /// |
| 1811 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_sub_ph) |
| 1812 | #[inline ] |
| 1813 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 1814 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1815 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1816 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1817 | pub const fn _mm256_maskz_sub_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 1818 | unsafe { |
| 1819 | let r: __m256h = _mm256_sub_ph(a, b); |
| 1820 | simd_select_bitmask(m:k, yes:r, no:_mm256_setzero_ph()) |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst. |
| 1825 | /// |
| 1826 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_sub_ph) |
| 1827 | #[inline ] |
| 1828 | #[target_feature (enable = "avx512fp16" )] |
| 1829 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1830 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1831 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1832 | pub const fn _mm512_sub_ph(a: __m512h, b: __m512h) -> __m512h { |
| 1833 | unsafe { simd_sub(lhs:a, rhs:b) } |
| 1834 | } |
| 1835 | |
| 1836 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1837 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1838 | /// |
| 1839 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_sub_ph) |
| 1840 | #[inline ] |
| 1841 | #[target_feature (enable = "avx512fp16" )] |
| 1842 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1843 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1844 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1845 | pub const fn _mm512_mask_sub_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 1846 | unsafe { |
| 1847 | let r: __m512h = _mm512_sub_ph(a, b); |
| 1848 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1853 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1854 | /// |
| 1855 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_sub_ph) |
| 1856 | #[inline ] |
| 1857 | #[target_feature (enable = "avx512fp16" )] |
| 1858 | #[cfg_attr (test, assert_instr(vsubph))] |
| 1859 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1860 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 1861 | pub const fn _mm512_maskz_sub_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 1862 | unsafe { |
| 1863 | let r: __m512h = _mm512_sub_ph(a, b); |
| 1864 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst. |
| 1869 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1870 | /// |
| 1871 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1872 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1873 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1874 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1875 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1876 | /// |
| 1877 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_sub_round_ph) |
| 1878 | #[inline ] |
| 1879 | #[target_feature (enable = "avx512fp16" )] |
| 1880 | #[cfg_attr (test, assert_instr(vsubph, ROUNDING = 8))] |
| 1881 | #[rustc_legacy_const_generics (2)] |
| 1882 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1883 | pub fn _mm512_sub_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 1884 | unsafe { |
| 1885 | static_assert_rounding!(ROUNDING); |
| 1886 | vsubph(a, b, ROUNDING) |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1891 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 1892 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1893 | /// |
| 1894 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1895 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1896 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1897 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1898 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1899 | /// |
| 1900 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_sub_round_ph) |
| 1901 | #[inline ] |
| 1902 | #[target_feature (enable = "avx512fp16" )] |
| 1903 | #[cfg_attr (test, assert_instr(vsubph, ROUNDING = 8))] |
| 1904 | #[rustc_legacy_const_generics (4)] |
| 1905 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1906 | pub fn _mm512_mask_sub_round_ph<const ROUNDING: i32>( |
| 1907 | src: __m512h, |
| 1908 | k: __mmask32, |
| 1909 | a: __m512h, |
| 1910 | b: __m512h, |
| 1911 | ) -> __m512h { |
| 1912 | unsafe { |
| 1913 | static_assert_rounding!(ROUNDING); |
| 1914 | let r: __m512h = _mm512_sub_round_ph::<ROUNDING>(a, b); |
| 1915 | simd_select_bitmask(m:k, yes:r, no:src) |
| 1916 | } |
| 1917 | } |
| 1918 | |
| 1919 | /// Subtract packed half-precision (16-bit) floating-point elements in b from a, and store the results in dst using |
| 1920 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 1921 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1922 | /// |
| 1923 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1924 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1925 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1926 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1927 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1928 | /// |
| 1929 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_sub_round_ph) |
| 1930 | #[inline ] |
| 1931 | #[target_feature (enable = "avx512fp16" )] |
| 1932 | #[cfg_attr (test, assert_instr(vsubph, ROUNDING = 8))] |
| 1933 | #[rustc_legacy_const_generics (3)] |
| 1934 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1935 | pub fn _mm512_maskz_sub_round_ph<const ROUNDING: i32>( |
| 1936 | k: __mmask32, |
| 1937 | a: __m512h, |
| 1938 | b: __m512h, |
| 1939 | ) -> __m512h { |
| 1940 | unsafe { |
| 1941 | static_assert_rounding!(ROUNDING); |
| 1942 | let r: __m512h = _mm512_sub_round_ph::<ROUNDING>(a, b); |
| 1943 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 1948 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 1949 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1950 | /// |
| 1951 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1952 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1953 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1954 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1955 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1956 | /// |
| 1957 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_round_sh) |
| 1958 | #[inline ] |
| 1959 | #[target_feature (enable = "avx512fp16" )] |
| 1960 | #[cfg_attr (test, assert_instr(vsubsh, ROUNDING = 8))] |
| 1961 | #[rustc_legacy_const_generics (2)] |
| 1962 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1963 | pub fn _mm_sub_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 1964 | static_assert_rounding!(ROUNDING); |
| 1965 | _mm_mask_sub_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 1966 | } |
| 1967 | |
| 1968 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 1969 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1970 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 1971 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 1972 | /// |
| 1973 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 1974 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 1975 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 1976 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 1977 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 1978 | /// |
| 1979 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sub_round_sh) |
| 1980 | #[inline ] |
| 1981 | #[target_feature (enable = "avx512fp16" )] |
| 1982 | #[cfg_attr (test, assert_instr(vsubsh, ROUNDING = 8))] |
| 1983 | #[rustc_legacy_const_generics (4)] |
| 1984 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 1985 | pub fn _mm_mask_sub_round_sh<const ROUNDING: i32>( |
| 1986 | src: __m128h, |
| 1987 | k: __mmask8, |
| 1988 | a: __m128h, |
| 1989 | b: __m128h, |
| 1990 | ) -> __m128h { |
| 1991 | unsafe { |
| 1992 | static_assert_rounding!(ROUNDING); |
| 1993 | vsubsh(a, b, src, k, ROUNDING) |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 1998 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 1999 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2000 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2001 | /// |
| 2002 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2003 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2004 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2005 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2006 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2007 | /// |
| 2008 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sub_round_sh) |
| 2009 | #[inline ] |
| 2010 | #[target_feature (enable = "avx512fp16" )] |
| 2011 | #[cfg_attr (test, assert_instr(vsubsh, ROUNDING = 8))] |
| 2012 | #[rustc_legacy_const_generics (3)] |
| 2013 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2014 | pub fn _mm_maskz_sub_round_sh<const ROUNDING: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2015 | static_assert_rounding!(ROUNDING); |
| 2016 | _mm_mask_sub_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 2017 | } |
| 2018 | |
| 2019 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 2020 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 2021 | /// |
| 2022 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sh) |
| 2023 | #[inline ] |
| 2024 | #[target_feature (enable = "avx512fp16" )] |
| 2025 | #[cfg_attr (test, assert_instr(vsubsh))] |
| 2026 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2027 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2028 | pub const fn _mm_sub_sh(a: __m128h, b: __m128h) -> __m128h { |
| 2029 | unsafe { simd_insert!(a, 0, _mm_cvtsh_h(a) - _mm_cvtsh_h(b)) } |
| 2030 | } |
| 2031 | |
| 2032 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 2033 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2034 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 2035 | /// |
| 2036 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sub_sh) |
| 2037 | #[inline ] |
| 2038 | #[target_feature (enable = "avx512fp16" )] |
| 2039 | #[cfg_attr (test, assert_instr(vsubsh))] |
| 2040 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2041 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2042 | pub const fn _mm_mask_sub_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2043 | unsafe { |
| 2044 | let extractsrc: f16 = simd_extract!(src, 0); |
| 2045 | let mut add: f16 = extractsrc; |
| 2046 | if (k & 0b00000001) != 0 { |
| 2047 | let extracta: f16 = simd_extract!(a, 0); |
| 2048 | let extractb: f16 = simd_extract!(b, 0); |
| 2049 | add = extracta - extractb; |
| 2050 | } |
| 2051 | simd_insert!(a, 0, add) |
| 2052 | } |
| 2053 | } |
| 2054 | |
| 2055 | /// Subtract the lower half-precision (16-bit) floating-point elements in b from a, store the result in the |
| 2056 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2057 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2058 | /// |
| 2059 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sub_sh) |
| 2060 | #[inline ] |
| 2061 | #[target_feature (enable = "avx512fp16" )] |
| 2062 | #[cfg_attr (test, assert_instr(vsubsh))] |
| 2063 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2064 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2065 | pub const fn _mm_maskz_sub_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2066 | unsafe { |
| 2067 | let mut add: f16 = 0.; |
| 2068 | if (k & 0b00000001) != 0 { |
| 2069 | let extracta: f16 = simd_extract!(a, 0); |
| 2070 | let extractb: f16 = simd_extract!(b, 0); |
| 2071 | add = extracta - extractb; |
| 2072 | } |
| 2073 | simd_insert!(a, 0, add) |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 2078 | /// |
| 2079 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ph) |
| 2080 | #[inline ] |
| 2081 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2082 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2083 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2084 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2085 | pub const fn _mm_mul_ph(a: __m128h, b: __m128h) -> __m128h { |
| 2086 | unsafe { simd_mul(x:a, y:b) } |
| 2087 | } |
| 2088 | |
| 2089 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2090 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2091 | /// |
| 2092 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_ph) |
| 2093 | #[inline ] |
| 2094 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2095 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2096 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2097 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2098 | pub const fn _mm_mask_mul_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2099 | unsafe { |
| 2100 | let r: __m128h = _mm_mul_ph(a, b); |
| 2101 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2106 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2107 | /// |
| 2108 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_ph) |
| 2109 | #[inline ] |
| 2110 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2111 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2112 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2113 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2114 | pub const fn _mm_maskz_mul_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2115 | unsafe { |
| 2116 | let r: __m128h = _mm_mul_ph(a, b); |
| 2117 | simd_select_bitmask(m:k, yes:r, no:_mm_setzero_ph()) |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 2122 | /// |
| 2123 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mul_ph) |
| 2124 | #[inline ] |
| 2125 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2126 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2127 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2128 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2129 | pub const fn _mm256_mul_ph(a: __m256h, b: __m256h) -> __m256h { |
| 2130 | unsafe { simd_mul(x:a, y:b) } |
| 2131 | } |
| 2132 | |
| 2133 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2134 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2135 | /// |
| 2136 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_mul_ph) |
| 2137 | #[inline ] |
| 2138 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2139 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2140 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2141 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2142 | pub const fn _mm256_mask_mul_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 2143 | unsafe { |
| 2144 | let r: __m256h = _mm256_mul_ph(a, b); |
| 2145 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2150 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2151 | /// |
| 2152 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_mul_ph) |
| 2153 | #[inline ] |
| 2154 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2155 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2156 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2157 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2158 | pub const fn _mm256_maskz_mul_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 2159 | unsafe { |
| 2160 | let r: __m256h = _mm256_mul_ph(a, b); |
| 2161 | simd_select_bitmask(m:k, yes:r, no:_mm256_setzero_ph()) |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 2166 | /// |
| 2167 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mul_ph) |
| 2168 | #[inline ] |
| 2169 | #[target_feature (enable = "avx512fp16" )] |
| 2170 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2171 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2172 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2173 | pub const fn _mm512_mul_ph(a: __m512h, b: __m512h) -> __m512h { |
| 2174 | unsafe { simd_mul(x:a, y:b) } |
| 2175 | } |
| 2176 | |
| 2177 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2178 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2179 | /// |
| 2180 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_mul_ph) |
| 2181 | #[inline ] |
| 2182 | #[target_feature (enable = "avx512fp16" )] |
| 2183 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2184 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2185 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2186 | pub const fn _mm512_mask_mul_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 2187 | unsafe { |
| 2188 | let r: __m512h = _mm512_mul_ph(a, b); |
| 2189 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2190 | } |
| 2191 | } |
| 2192 | |
| 2193 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2194 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2195 | /// |
| 2196 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_mul_ph) |
| 2197 | #[inline ] |
| 2198 | #[target_feature (enable = "avx512fp16" )] |
| 2199 | #[cfg_attr (test, assert_instr(vmulph))] |
| 2200 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2201 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2202 | pub const fn _mm512_maskz_mul_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 2203 | unsafe { |
| 2204 | let r: __m512h = _mm512_mul_ph(a, b); |
| 2205 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst. |
| 2210 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2211 | /// |
| 2212 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2213 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2214 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2215 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2216 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2217 | /// |
| 2218 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mul_round_ph) |
| 2219 | #[inline ] |
| 2220 | #[target_feature (enable = "avx512fp16" )] |
| 2221 | #[cfg_attr (test, assert_instr(vmulph, ROUNDING = 8))] |
| 2222 | #[rustc_legacy_const_generics (2)] |
| 2223 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2224 | pub fn _mm512_mul_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 2225 | unsafe { |
| 2226 | static_assert_rounding!(ROUNDING); |
| 2227 | vmulph(a, b, ROUNDING) |
| 2228 | } |
| 2229 | } |
| 2230 | |
| 2231 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2232 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2233 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2234 | /// |
| 2235 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2236 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2237 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2238 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2239 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2240 | /// |
| 2241 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_mul_round_ph) |
| 2242 | #[inline ] |
| 2243 | #[target_feature (enable = "avx512fp16" )] |
| 2244 | #[cfg_attr (test, assert_instr(vmulph, ROUNDING = 8))] |
| 2245 | #[rustc_legacy_const_generics (4)] |
| 2246 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2247 | pub fn _mm512_mask_mul_round_ph<const ROUNDING: i32>( |
| 2248 | src: __m512h, |
| 2249 | k: __mmask32, |
| 2250 | a: __m512h, |
| 2251 | b: __m512h, |
| 2252 | ) -> __m512h { |
| 2253 | unsafe { |
| 2254 | static_assert_rounding!(ROUNDING); |
| 2255 | let r: __m512h = _mm512_mul_round_ph::<ROUNDING>(a, b); |
| 2256 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, and store the results in dst using |
| 2261 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2262 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2263 | /// |
| 2264 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2265 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2266 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2267 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2268 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2269 | /// |
| 2270 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_mul_round_ph) |
| 2271 | #[inline ] |
| 2272 | #[target_feature (enable = "avx512fp16" )] |
| 2273 | #[cfg_attr (test, assert_instr(vmulph, ROUNDING = 8))] |
| 2274 | #[rustc_legacy_const_generics (3)] |
| 2275 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2276 | pub fn _mm512_maskz_mul_round_ph<const ROUNDING: i32>( |
| 2277 | k: __mmask32, |
| 2278 | a: __m512h, |
| 2279 | b: __m512h, |
| 2280 | ) -> __m512h { |
| 2281 | unsafe { |
| 2282 | static_assert_rounding!(ROUNDING); |
| 2283 | let r: __m512h = _mm512_mul_round_ph::<ROUNDING>(a, b); |
| 2284 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 2285 | } |
| 2286 | } |
| 2287 | |
| 2288 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2289 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 2290 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2291 | /// |
| 2292 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2293 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2294 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2295 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2296 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2297 | /// |
| 2298 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_round_sh) |
| 2299 | #[inline ] |
| 2300 | #[target_feature (enable = "avx512fp16" )] |
| 2301 | #[cfg_attr (test, assert_instr(vmulsh, ROUNDING = 8))] |
| 2302 | #[rustc_legacy_const_generics (2)] |
| 2303 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2304 | pub fn _mm_mul_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 2305 | static_assert_rounding!(ROUNDING); |
| 2306 | _mm_mask_mul_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 2307 | } |
| 2308 | |
| 2309 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2310 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2311 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 2312 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2313 | /// |
| 2314 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2315 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2316 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2317 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2318 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2319 | /// |
| 2320 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_round_sh) |
| 2321 | #[inline ] |
| 2322 | #[target_feature (enable = "avx512fp16" )] |
| 2323 | #[cfg_attr (test, assert_instr(vmulsh, ROUNDING = 8))] |
| 2324 | #[rustc_legacy_const_generics (4)] |
| 2325 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2326 | pub fn _mm_mask_mul_round_sh<const ROUNDING: i32>( |
| 2327 | src: __m128h, |
| 2328 | k: __mmask8, |
| 2329 | a: __m128h, |
| 2330 | b: __m128h, |
| 2331 | ) -> __m128h { |
| 2332 | unsafe { |
| 2333 | static_assert_rounding!(ROUNDING); |
| 2334 | vmulsh(a, b, src, k, ROUNDING) |
| 2335 | } |
| 2336 | } |
| 2337 | |
| 2338 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2339 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2340 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2341 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2342 | /// |
| 2343 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2344 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2345 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2346 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2347 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2348 | /// |
| 2349 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_round_sh) |
| 2350 | #[inline ] |
| 2351 | #[target_feature (enable = "avx512fp16" )] |
| 2352 | #[cfg_attr (test, assert_instr(vmulsh, ROUNDING = 8))] |
| 2353 | #[rustc_legacy_const_generics (3)] |
| 2354 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2355 | pub fn _mm_maskz_mul_round_sh<const ROUNDING: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2356 | static_assert_rounding!(ROUNDING); |
| 2357 | _mm_mask_mul_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 2358 | } |
| 2359 | |
| 2360 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2361 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 2362 | /// |
| 2363 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_sh) |
| 2364 | #[inline ] |
| 2365 | #[target_feature (enable = "avx512fp16" )] |
| 2366 | #[cfg_attr (test, assert_instr(vmulsh))] |
| 2367 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2368 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2369 | pub const fn _mm_mul_sh(a: __m128h, b: __m128h) -> __m128h { |
| 2370 | unsafe { simd_insert!(a, 0, _mm_cvtsh_h(a) * _mm_cvtsh_h(b)) } |
| 2371 | } |
| 2372 | |
| 2373 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2374 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2375 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 2376 | /// |
| 2377 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_sh) |
| 2378 | #[inline ] |
| 2379 | #[target_feature (enable = "avx512fp16" )] |
| 2380 | #[cfg_attr (test, assert_instr(vmulsh))] |
| 2381 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2382 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2383 | pub const fn _mm_mask_mul_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2384 | unsafe { |
| 2385 | let extractsrc: f16 = simd_extract!(src, 0); |
| 2386 | let mut add: f16 = extractsrc; |
| 2387 | if (k & 0b00000001) != 0 { |
| 2388 | let extracta: f16 = simd_extract!(a, 0); |
| 2389 | let extractb: f16 = simd_extract!(b, 0); |
| 2390 | add = extracta * extractb; |
| 2391 | } |
| 2392 | simd_insert!(a, 0, add) |
| 2393 | } |
| 2394 | } |
| 2395 | |
| 2396 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, store the result in the |
| 2397 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2398 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2399 | /// |
| 2400 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_sh) |
| 2401 | #[inline ] |
| 2402 | #[target_feature (enable = "avx512fp16" )] |
| 2403 | #[cfg_attr (test, assert_instr(vmulsh))] |
| 2404 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2405 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2406 | pub const fn _mm_maskz_mul_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2407 | unsafe { |
| 2408 | let mut add: f16 = 0.; |
| 2409 | if (k & 0b00000001) != 0 { |
| 2410 | let extracta: f16 = simd_extract!(a, 0); |
| 2411 | let extractb: f16 = simd_extract!(b, 0); |
| 2412 | add = extracta * extractb; |
| 2413 | } |
| 2414 | simd_insert!(a, 0, add) |
| 2415 | } |
| 2416 | } |
| 2417 | |
| 2418 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst. |
| 2419 | /// |
| 2420 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_ph) |
| 2421 | #[inline ] |
| 2422 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2423 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2424 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2425 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2426 | pub const fn _mm_div_ph(a: __m128h, b: __m128h) -> __m128h { |
| 2427 | unsafe { simd_div(lhs:a, rhs:b) } |
| 2428 | } |
| 2429 | |
| 2430 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2431 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2432 | /// |
| 2433 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_div_ph) |
| 2434 | #[inline ] |
| 2435 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2436 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2437 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2438 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2439 | pub const fn _mm_mask_div_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2440 | unsafe { |
| 2441 | let r: __m128h = _mm_div_ph(a, b); |
| 2442 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2447 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2448 | /// |
| 2449 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_div_ph) |
| 2450 | #[inline ] |
| 2451 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2452 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2453 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2454 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2455 | pub const fn _mm_maskz_div_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2456 | unsafe { |
| 2457 | let r: __m128h = _mm_div_ph(a, b); |
| 2458 | simd_select_bitmask(m:k, yes:r, no:_mm_setzero_ph()) |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst. |
| 2463 | /// |
| 2464 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_div_ph) |
| 2465 | #[inline ] |
| 2466 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2467 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2468 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2469 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2470 | pub const fn _mm256_div_ph(a: __m256h, b: __m256h) -> __m256h { |
| 2471 | unsafe { simd_div(lhs:a, rhs:b) } |
| 2472 | } |
| 2473 | |
| 2474 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2475 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2476 | /// |
| 2477 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_div_ph) |
| 2478 | #[inline ] |
| 2479 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2480 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2481 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2482 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2483 | pub const fn _mm256_mask_div_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 2484 | unsafe { |
| 2485 | let r: __m256h = _mm256_div_ph(a, b); |
| 2486 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2491 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2492 | /// |
| 2493 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_div_ph) |
| 2494 | #[inline ] |
| 2495 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2496 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2497 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2498 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2499 | pub const fn _mm256_maskz_div_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 2500 | unsafe { |
| 2501 | let r: __m256h = _mm256_div_ph(a, b); |
| 2502 | simd_select_bitmask(m:k, yes:r, no:_mm256_setzero_ph()) |
| 2503 | } |
| 2504 | } |
| 2505 | |
| 2506 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst. |
| 2507 | /// |
| 2508 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_div_ph) |
| 2509 | #[inline ] |
| 2510 | #[target_feature (enable = "avx512fp16" )] |
| 2511 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2512 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2513 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2514 | pub const fn _mm512_div_ph(a: __m512h, b: __m512h) -> __m512h { |
| 2515 | unsafe { simd_div(lhs:a, rhs:b) } |
| 2516 | } |
| 2517 | |
| 2518 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2519 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2520 | /// |
| 2521 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_div_ph) |
| 2522 | #[inline ] |
| 2523 | #[target_feature (enable = "avx512fp16" )] |
| 2524 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2525 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2526 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2527 | pub const fn _mm512_mask_div_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 2528 | unsafe { |
| 2529 | let r: __m512h = _mm512_div_ph(a, b); |
| 2530 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2531 | } |
| 2532 | } |
| 2533 | |
| 2534 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2535 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2536 | /// |
| 2537 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_div_ph) |
| 2538 | #[inline ] |
| 2539 | #[target_feature (enable = "avx512fp16" )] |
| 2540 | #[cfg_attr (test, assert_instr(vdivph))] |
| 2541 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2542 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2543 | pub const fn _mm512_maskz_div_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 2544 | unsafe { |
| 2545 | let r: __m512h = _mm512_div_ph(a, b); |
| 2546 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 2547 | } |
| 2548 | } |
| 2549 | |
| 2550 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst. |
| 2551 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2552 | /// |
| 2553 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2554 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2555 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2556 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2557 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2558 | /// |
| 2559 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_div_round_ph) |
| 2560 | #[inline ] |
| 2561 | #[target_feature (enable = "avx512fp16" )] |
| 2562 | #[cfg_attr (test, assert_instr(vdivph, ROUNDING = 8))] |
| 2563 | #[rustc_legacy_const_generics (2)] |
| 2564 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2565 | pub fn _mm512_div_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 2566 | unsafe { |
| 2567 | static_assert_rounding!(ROUNDING); |
| 2568 | vdivph(a, b, ROUNDING) |
| 2569 | } |
| 2570 | } |
| 2571 | |
| 2572 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2573 | /// writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 2574 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2575 | /// |
| 2576 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2577 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2578 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2579 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2580 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2581 | /// |
| 2582 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_div_round_ph) |
| 2583 | #[inline ] |
| 2584 | #[target_feature (enable = "avx512fp16" )] |
| 2585 | #[cfg_attr (test, assert_instr(vdivph, ROUNDING = 8))] |
| 2586 | #[rustc_legacy_const_generics (4)] |
| 2587 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2588 | pub fn _mm512_mask_div_round_ph<const ROUNDING: i32>( |
| 2589 | src: __m512h, |
| 2590 | k: __mmask32, |
| 2591 | a: __m512h, |
| 2592 | b: __m512h, |
| 2593 | ) -> __m512h { |
| 2594 | unsafe { |
| 2595 | static_assert_rounding!(ROUNDING); |
| 2596 | let r: __m512h = _mm512_div_round_ph::<ROUNDING>(a, b); |
| 2597 | simd_select_bitmask(m:k, yes:r, no:src) |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | /// Divide packed half-precision (16-bit) floating-point elements in a by b, and store the results in dst using |
| 2602 | /// zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 2603 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2604 | /// |
| 2605 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2606 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2607 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2608 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2609 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2610 | /// |
| 2611 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_div_round_ph) |
| 2612 | #[inline ] |
| 2613 | #[target_feature (enable = "avx512fp16" )] |
| 2614 | #[cfg_attr (test, assert_instr(vdivph, ROUNDING = 8))] |
| 2615 | #[rustc_legacy_const_generics (3)] |
| 2616 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2617 | pub fn _mm512_maskz_div_round_ph<const ROUNDING: i32>( |
| 2618 | k: __mmask32, |
| 2619 | a: __m512h, |
| 2620 | b: __m512h, |
| 2621 | ) -> __m512h { |
| 2622 | unsafe { |
| 2623 | static_assert_rounding!(ROUNDING); |
| 2624 | let r: __m512h = _mm512_div_round_ph::<ROUNDING>(a, b); |
| 2625 | simd_select_bitmask(m:k, yes:r, no:_mm512_setzero_ph()) |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2630 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 2631 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2632 | /// |
| 2633 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2634 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2635 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2636 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2637 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2638 | /// |
| 2639 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_round_sh) |
| 2640 | #[inline ] |
| 2641 | #[target_feature (enable = "avx512fp16" )] |
| 2642 | #[cfg_attr (test, assert_instr(vdivsh, ROUNDING = 8))] |
| 2643 | #[rustc_legacy_const_generics (2)] |
| 2644 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2645 | pub fn _mm_div_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 2646 | static_assert_rounding!(ROUNDING); |
| 2647 | _mm_mask_div_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 2648 | } |
| 2649 | |
| 2650 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2651 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2652 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 2653 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2654 | /// |
| 2655 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2656 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2657 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2658 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2659 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2660 | /// |
| 2661 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_div_round_sh) |
| 2662 | #[inline ] |
| 2663 | #[target_feature (enable = "avx512fp16" )] |
| 2664 | #[cfg_attr (test, assert_instr(vdivsh, ROUNDING = 8))] |
| 2665 | #[rustc_legacy_const_generics (4)] |
| 2666 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2667 | pub fn _mm_mask_div_round_sh<const ROUNDING: i32>( |
| 2668 | src: __m128h, |
| 2669 | k: __mmask8, |
| 2670 | a: __m128h, |
| 2671 | b: __m128h, |
| 2672 | ) -> __m128h { |
| 2673 | unsafe { |
| 2674 | static_assert_rounding!(ROUNDING); |
| 2675 | vdivsh(a, b, src, k, ROUNDING) |
| 2676 | } |
| 2677 | } |
| 2678 | |
| 2679 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2680 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2681 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2682 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2683 | /// |
| 2684 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2685 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2686 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2687 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2688 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2689 | /// |
| 2690 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_div_round_sh) |
| 2691 | #[inline ] |
| 2692 | #[target_feature (enable = "avx512fp16" )] |
| 2693 | #[cfg_attr (test, assert_instr(vdivsh, ROUNDING = 8))] |
| 2694 | #[rustc_legacy_const_generics (3)] |
| 2695 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2696 | pub fn _mm_maskz_div_round_sh<const ROUNDING: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2697 | static_assert_rounding!(ROUNDING); |
| 2698 | _mm_mask_div_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 2699 | } |
| 2700 | |
| 2701 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2702 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 2703 | /// |
| 2704 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sh) |
| 2705 | #[inline ] |
| 2706 | #[target_feature (enable = "avx512fp16" )] |
| 2707 | #[cfg_attr (test, assert_instr(vdivsh))] |
| 2708 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2709 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2710 | pub const fn _mm_div_sh(a: __m128h, b: __m128h) -> __m128h { |
| 2711 | unsafe { simd_insert!(a, 0, _mm_cvtsh_h(a) / _mm_cvtsh_h(b)) } |
| 2712 | } |
| 2713 | |
| 2714 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2715 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2716 | /// writemask k (the element is copied from src when mask bit 0 is not set). |
| 2717 | /// |
| 2718 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_div_sh) |
| 2719 | #[inline ] |
| 2720 | #[target_feature (enable = "avx512fp16" )] |
| 2721 | #[cfg_attr (test, assert_instr(vdivsh))] |
| 2722 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2723 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2724 | pub const fn _mm_mask_div_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2725 | unsafe { |
| 2726 | let extractsrc: f16 = simd_extract!(src, 0); |
| 2727 | let mut add: f16 = extractsrc; |
| 2728 | if (k & 0b00000001) != 0 { |
| 2729 | let extracta: f16 = simd_extract!(a, 0); |
| 2730 | let extractb: f16 = simd_extract!(b, 0); |
| 2731 | add = extracta / extractb; |
| 2732 | } |
| 2733 | simd_insert!(a, 0, add) |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | /// Divide the lower half-precision (16-bit) floating-point elements in a by b, store the result in the |
| 2738 | /// lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst using |
| 2739 | /// zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 2740 | /// |
| 2741 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_div_sh) |
| 2742 | #[inline ] |
| 2743 | #[target_feature (enable = "avx512fp16" )] |
| 2744 | #[cfg_attr (test, assert_instr(vdivsh))] |
| 2745 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2746 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 2747 | pub const fn _mm_maskz_div_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2748 | unsafe { |
| 2749 | let mut add: f16 = 0.; |
| 2750 | if (k & 0b00000001) != 0 { |
| 2751 | let extracta: f16 = simd_extract!(a, 0); |
| 2752 | let extractb: f16 = simd_extract!(b, 0); |
| 2753 | add = extracta / extractb; |
| 2754 | } |
| 2755 | simd_insert!(a, 0, add) |
| 2756 | } |
| 2757 | } |
| 2758 | |
| 2759 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 2760 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 2761 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2762 | /// |
| 2763 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pch) |
| 2764 | #[inline ] |
| 2765 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2766 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2767 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2768 | pub fn _mm_mul_pch(a: __m128h, b: __m128h) -> __m128h { |
| 2769 | _mm_mask_mul_pch(src:_mm_undefined_ph(), k:0xff, a, b) |
| 2770 | } |
| 2771 | |
| 2772 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 2773 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2774 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2775 | /// |
| 2776 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_pch) |
| 2777 | #[inline ] |
| 2778 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2779 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2780 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2781 | pub fn _mm_mask_mul_pch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2782 | unsafe { transmute(src:vfmulcph_128(a:transmute(a), b:transmute(b), src:transmute(src), k)) } |
| 2783 | } |
| 2784 | |
| 2785 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 2786 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2787 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2788 | /// |
| 2789 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_pch) |
| 2790 | #[inline ] |
| 2791 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2792 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2793 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2794 | pub fn _mm_maskz_mul_pch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2795 | _mm_mask_mul_pch(src:_mm_setzero_ph(), k, a, b) |
| 2796 | } |
| 2797 | |
| 2798 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 2799 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 2800 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2801 | /// |
| 2802 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mul_pch) |
| 2803 | #[inline ] |
| 2804 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2805 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2806 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2807 | pub fn _mm256_mul_pch(a: __m256h, b: __m256h) -> __m256h { |
| 2808 | _mm256_mask_mul_pch(src:_mm256_undefined_ph(), k:0xff, a, b) |
| 2809 | } |
| 2810 | |
| 2811 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 2812 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2813 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2814 | /// |
| 2815 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_mul_pch) |
| 2816 | #[inline ] |
| 2817 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2818 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2819 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2820 | pub fn _mm256_mask_mul_pch(src: __m256h, k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 2821 | unsafe { transmute(src:vfmulcph_256(a:transmute(a), b:transmute(b), src:transmute(src), k)) } |
| 2822 | } |
| 2823 | |
| 2824 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 2825 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2826 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2827 | /// |
| 2828 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_mul_pch) |
| 2829 | #[inline ] |
| 2830 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 2831 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2832 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2833 | pub fn _mm256_maskz_mul_pch(k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 2834 | _mm256_mask_mul_pch(src:_mm256_setzero_ph(), k, a, b) |
| 2835 | } |
| 2836 | |
| 2837 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 2838 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 2839 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2840 | /// |
| 2841 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mul_pch) |
| 2842 | #[inline ] |
| 2843 | #[target_feature (enable = "avx512fp16" )] |
| 2844 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2845 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2846 | pub fn _mm512_mul_pch(a: __m512h, b: __m512h) -> __m512h { |
| 2847 | _mm512_mask_mul_pch(src:_mm512_undefined_ph(), k:0xffff, a, b) |
| 2848 | } |
| 2849 | |
| 2850 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 2851 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2852 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2853 | /// |
| 2854 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_mul_pch) |
| 2855 | #[inline ] |
| 2856 | #[target_feature (enable = "avx512fp16" )] |
| 2857 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2858 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2859 | pub fn _mm512_mask_mul_pch(src: __m512h, k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 2860 | _mm512_mask_mul_round_pch::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 2861 | } |
| 2862 | |
| 2863 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 2864 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2865 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2866 | /// |
| 2867 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_mul_pch) |
| 2868 | #[inline ] |
| 2869 | #[target_feature (enable = "avx512fp16" )] |
| 2870 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 2871 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2872 | pub fn _mm512_maskz_mul_pch(k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 2873 | _mm512_mask_mul_pch(src:_mm512_setzero_ph(), k, a, b) |
| 2874 | } |
| 2875 | |
| 2876 | /// Multiply the packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 2877 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 2878 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2879 | /// |
| 2880 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2881 | /// |
| 2882 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2883 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2884 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2885 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2886 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2887 | /// |
| 2888 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mul_round_pch) |
| 2889 | #[inline ] |
| 2890 | #[target_feature (enable = "avx512fp16" )] |
| 2891 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 2892 | #[rustc_legacy_const_generics (2)] |
| 2893 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2894 | pub fn _mm512_mul_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 2895 | static_assert_rounding!(ROUNDING); |
| 2896 | _mm512_mask_mul_round_pch::<ROUNDING>(src:_mm512_undefined_ph(), k:0xffff, a, b) |
| 2897 | } |
| 2898 | |
| 2899 | /// Multiply the packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 2900 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2901 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2902 | /// |
| 2903 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2904 | /// |
| 2905 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2906 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2907 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2908 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2909 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2910 | /// |
| 2911 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_mul_round_pch) |
| 2912 | #[inline ] |
| 2913 | #[target_feature (enable = "avx512fp16" )] |
| 2914 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 2915 | #[rustc_legacy_const_generics (4)] |
| 2916 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2917 | pub fn _mm512_mask_mul_round_pch<const ROUNDING: i32>( |
| 2918 | src: __m512h, |
| 2919 | k: __mmask16, |
| 2920 | a: __m512h, |
| 2921 | b: __m512h, |
| 2922 | ) -> __m512h { |
| 2923 | unsafe { |
| 2924 | static_assert_rounding!(ROUNDING); |
| 2925 | transmute(src:vfmulcph_512( |
| 2926 | a:transmute(a), |
| 2927 | b:transmute(b), |
| 2928 | src:transmute(src), |
| 2929 | k, |
| 2930 | ROUNDING, |
| 2931 | )) |
| 2932 | } |
| 2933 | } |
| 2934 | |
| 2935 | /// Multiply the packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 2936 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 2937 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2938 | /// |
| 2939 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 2940 | /// |
| 2941 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 2942 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 2943 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 2944 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 2945 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 2946 | /// |
| 2947 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_mul_round_pch) |
| 2948 | #[inline ] |
| 2949 | #[target_feature (enable = "avx512fp16" )] |
| 2950 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 2951 | #[rustc_legacy_const_generics (3)] |
| 2952 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2953 | pub fn _mm512_maskz_mul_round_pch<const ROUNDING: i32>( |
| 2954 | k: __mmask16, |
| 2955 | a: __m512h, |
| 2956 | b: __m512h, |
| 2957 | ) -> __m512h { |
| 2958 | static_assert_rounding!(ROUNDING); |
| 2959 | _mm512_mask_mul_round_pch::<ROUNDING>(src:_mm512_setzero_ph(), k, a, b) |
| 2960 | } |
| 2961 | |
| 2962 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst, |
| 2963 | /// and copy the upper 6 packed elements from a to the upper elements of dst. Each complex number is |
| 2964 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 2965 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2966 | /// |
| 2967 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_sch) |
| 2968 | #[inline ] |
| 2969 | #[target_feature (enable = "avx512fp16" )] |
| 2970 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 2971 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2972 | pub fn _mm_mul_sch(a: __m128h, b: __m128h) -> __m128h { |
| 2973 | _mm_mask_mul_sch(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 2974 | } |
| 2975 | |
| 2976 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst using |
| 2977 | /// writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 6 packed |
| 2978 | /// elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 2979 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2980 | /// |
| 2981 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_sch) |
| 2982 | #[inline ] |
| 2983 | #[target_feature (enable = "avx512fp16" )] |
| 2984 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 2985 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 2986 | pub fn _mm_mask_mul_sch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 2987 | _mm_mask_mul_round_sch::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 2988 | } |
| 2989 | |
| 2990 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst using |
| 2991 | /// zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements |
| 2992 | /// from a to the upper elements of dst. Each complex number is composed of two adjacent half-precision |
| 2993 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 2994 | /// |
| 2995 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_sch) |
| 2996 | #[inline ] |
| 2997 | #[target_feature (enable = "avx512fp16" )] |
| 2998 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 2999 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3000 | pub fn _mm_maskz_mul_sch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3001 | _mm_mask_mul_sch(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 3002 | } |
| 3003 | |
| 3004 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst, |
| 3005 | /// and copy the upper 6 packed elements from a to the upper elements of dst. Each complex number is |
| 3006 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 3007 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3008 | /// |
| 3009 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3010 | /// |
| 3011 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3012 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3013 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3014 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3015 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3016 | /// |
| 3017 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_round_sch) |
| 3018 | #[inline ] |
| 3019 | #[target_feature (enable = "avx512fp16" )] |
| 3020 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3021 | #[rustc_legacy_const_generics (2)] |
| 3022 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3023 | pub fn _mm_mul_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 3024 | static_assert_rounding!(ROUNDING); |
| 3025 | _mm_mask_mul_round_sch::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 3026 | } |
| 3027 | |
| 3028 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst using |
| 3029 | /// writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 6 packed |
| 3030 | /// elements from a to the upper elements of dst. Each complex number is composed of two adjacent half-precision |
| 3031 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3032 | /// |
| 3033 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3034 | /// |
| 3035 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3036 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3037 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3038 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3039 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3040 | /// |
| 3041 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_mul_round_sch) |
| 3042 | #[inline ] |
| 3043 | #[target_feature (enable = "avx512fp16" )] |
| 3044 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3045 | #[rustc_legacy_const_generics (4)] |
| 3046 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3047 | pub fn _mm_mask_mul_round_sch<const ROUNDING: i32>( |
| 3048 | src: __m128h, |
| 3049 | k: __mmask8, |
| 3050 | a: __m128h, |
| 3051 | b: __m128h, |
| 3052 | ) -> __m128h { |
| 3053 | unsafe { |
| 3054 | static_assert_rounding!(ROUNDING); |
| 3055 | transmute(src:vfmulcsh( |
| 3056 | a:transmute(a), |
| 3057 | b:transmute(b), |
| 3058 | src:transmute(src), |
| 3059 | k, |
| 3060 | ROUNDING, |
| 3061 | )) |
| 3062 | } |
| 3063 | } |
| 3064 | |
| 3065 | /// Multiply the lower complex numbers in a and b, and store the result in the lower elements of dst using |
| 3066 | /// zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 6 packed elements |
| 3067 | /// from a to the upper elements of dst. Each complex number is composed of two adjacent half-precision |
| 3068 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3069 | /// |
| 3070 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3071 | /// |
| 3072 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3073 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3074 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3075 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3076 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3077 | /// |
| 3078 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_mul_round_sch) |
| 3079 | #[inline ] |
| 3080 | #[target_feature (enable = "avx512fp16" )] |
| 3081 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3082 | #[rustc_legacy_const_generics (3)] |
| 3083 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3084 | pub fn _mm_maskz_mul_round_sch<const ROUNDING: i32>( |
| 3085 | k: __mmask8, |
| 3086 | a: __m128h, |
| 3087 | b: __m128h, |
| 3088 | ) -> __m128h { |
| 3089 | static_assert_rounding!(ROUNDING); |
| 3090 | _mm_mask_mul_round_sch::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 3091 | } |
| 3092 | |
| 3093 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 3094 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 3095 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3096 | /// |
| 3097 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmul_pch) |
| 3098 | #[inline ] |
| 3099 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3100 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3101 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3102 | pub fn _mm_fmul_pch(a: __m128h, b: __m128h) -> __m128h { |
| 3103 | _mm_mul_pch(a, b) |
| 3104 | } |
| 3105 | |
| 3106 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3107 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 3108 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3109 | /// |
| 3110 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmul_pch) |
| 3111 | #[inline ] |
| 3112 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3113 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3114 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3115 | pub fn _mm_mask_fmul_pch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3116 | _mm_mask_mul_pch(src, k, a, b) |
| 3117 | } |
| 3118 | |
| 3119 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3120 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3121 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3122 | /// |
| 3123 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmul_pch) |
| 3124 | #[inline ] |
| 3125 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3126 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3127 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3128 | pub fn _mm_maskz_fmul_pch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3129 | _mm_maskz_mul_pch(k, a, b) |
| 3130 | } |
| 3131 | |
| 3132 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is |
| 3133 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 3134 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3135 | /// |
| 3136 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmul_pch) |
| 3137 | #[inline ] |
| 3138 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3139 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3140 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3141 | pub fn _mm256_fmul_pch(a: __m256h, b: __m256h) -> __m256h { |
| 3142 | _mm256_mul_pch(a, b) |
| 3143 | } |
| 3144 | |
| 3145 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3146 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3147 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3148 | /// |
| 3149 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmul_pch) |
| 3150 | #[inline ] |
| 3151 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3152 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3153 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3154 | pub fn _mm256_mask_fmul_pch(src: __m256h, k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3155 | _mm256_mask_mul_pch(src, k, a, b) |
| 3156 | } |
| 3157 | |
| 3158 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3159 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3160 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3161 | /// |
| 3162 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmul_pch) |
| 3163 | #[inline ] |
| 3164 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3165 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3166 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3167 | pub fn _mm256_maskz_fmul_pch(k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3168 | _mm256_maskz_mul_pch(k, a, b) |
| 3169 | } |
| 3170 | |
| 3171 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is composed |
| 3172 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3173 | /// |
| 3174 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmul_pch) |
| 3175 | #[inline ] |
| 3176 | #[target_feature (enable = "avx512fp16" )] |
| 3177 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3178 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3179 | pub fn _mm512_fmul_pch(a: __m512h, b: __m512h) -> __m512h { |
| 3180 | _mm512_mul_pch(a, b) |
| 3181 | } |
| 3182 | |
| 3183 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3184 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3185 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3186 | /// |
| 3187 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmul_pch) |
| 3188 | #[inline ] |
| 3189 | #[target_feature (enable = "avx512fp16" )] |
| 3190 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3191 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3192 | pub fn _mm512_mask_fmul_pch(src: __m512h, k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3193 | _mm512_mask_mul_pch(src, k, a, b) |
| 3194 | } |
| 3195 | |
| 3196 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3197 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3198 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3199 | /// |
| 3200 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmul_pch) |
| 3201 | #[inline ] |
| 3202 | #[target_feature (enable = "avx512fp16" )] |
| 3203 | #[cfg_attr (test, assert_instr(vfmulcph))] |
| 3204 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3205 | pub fn _mm512_maskz_fmul_pch(k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3206 | _mm512_maskz_mul_pch(k, a, b) |
| 3207 | } |
| 3208 | |
| 3209 | /// Multiply packed complex numbers in a and b, and store the results in dst. Each complex number is composed |
| 3210 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3211 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3212 | /// |
| 3213 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3214 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3215 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3216 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3217 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3218 | /// |
| 3219 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmul_round_pch) |
| 3220 | #[inline ] |
| 3221 | #[target_feature (enable = "avx512fp16" )] |
| 3222 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 3223 | #[rustc_legacy_const_generics (2)] |
| 3224 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3225 | pub fn _mm512_fmul_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 3226 | static_assert_rounding!(ROUNDING); |
| 3227 | _mm512_mul_round_pch::<ROUNDING>(a, b) |
| 3228 | } |
| 3229 | |
| 3230 | /// Multiply packed complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3231 | /// is copied from src when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3232 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3233 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3234 | /// |
| 3235 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3236 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3237 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3238 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3239 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3240 | /// |
| 3241 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmul_round_pch) |
| 3242 | #[inline ] |
| 3243 | #[target_feature (enable = "avx512fp16" )] |
| 3244 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 3245 | #[rustc_legacy_const_generics (4)] |
| 3246 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3247 | pub fn _mm512_mask_fmul_round_pch<const ROUNDING: i32>( |
| 3248 | src: __m512h, |
| 3249 | k: __mmask16, |
| 3250 | a: __m512h, |
| 3251 | b: __m512h, |
| 3252 | ) -> __m512h { |
| 3253 | static_assert_rounding!(ROUNDING); |
| 3254 | _mm512_mask_mul_round_pch::<ROUNDING>(src, k, a, b) |
| 3255 | } |
| 3256 | |
| 3257 | /// Multiply packed complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3258 | /// is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent half-precision |
| 3259 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3260 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3261 | /// |
| 3262 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3263 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3264 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3265 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3266 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3267 | /// |
| 3268 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmul_round_pch) |
| 3269 | #[inline ] |
| 3270 | #[target_feature (enable = "avx512fp16" )] |
| 3271 | #[cfg_attr (test, assert_instr(vfmulcph, ROUNDING = 8))] |
| 3272 | #[rustc_legacy_const_generics (3)] |
| 3273 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3274 | pub fn _mm512_maskz_fmul_round_pch<const ROUNDING: i32>( |
| 3275 | k: __mmask16, |
| 3276 | a: __m512h, |
| 3277 | b: __m512h, |
| 3278 | ) -> __m512h { |
| 3279 | static_assert_rounding!(ROUNDING); |
| 3280 | _mm512_maskz_mul_round_pch::<ROUNDING>(k, a, b) |
| 3281 | } |
| 3282 | |
| 3283 | /// Multiply the lower complex numbers in a and b, and store the results in dst. Each complex number is |
| 3284 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 3285 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3286 | /// |
| 3287 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmul_sch) |
| 3288 | #[inline ] |
| 3289 | #[target_feature (enable = "avx512fp16" )] |
| 3290 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 3291 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3292 | pub fn _mm_fmul_sch(a: __m128h, b: __m128h) -> __m128h { |
| 3293 | _mm_mul_sch(a, b) |
| 3294 | } |
| 3295 | |
| 3296 | /// Multiply the lower complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3297 | /// is copied from src when mask bit 0 is not set). Each complex number is composed of two adjacent half-precision |
| 3298 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3299 | /// |
| 3300 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmul_sch) |
| 3301 | #[inline ] |
| 3302 | #[target_feature (enable = "avx512fp16" )] |
| 3303 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 3304 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3305 | pub fn _mm_mask_fmul_sch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3306 | _mm_mask_mul_sch(src, k, a, b) |
| 3307 | } |
| 3308 | |
| 3309 | /// Multiply the lower complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3310 | /// is zeroed out when mask bit 0 is not set). Each complex number is composed of two adjacent half-precision |
| 3311 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3312 | /// |
| 3313 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmul_sch) |
| 3314 | #[inline ] |
| 3315 | #[target_feature (enable = "avx512fp16" )] |
| 3316 | #[cfg_attr (test, assert_instr(vfmulcsh))] |
| 3317 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3318 | pub fn _mm_maskz_fmul_sch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3319 | _mm_maskz_mul_sch(k, a, b) |
| 3320 | } |
| 3321 | |
| 3322 | /// Multiply the lower complex numbers in a and b, and store the results in dst. Each complex number is composed |
| 3323 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3324 | /// |
| 3325 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3326 | /// |
| 3327 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3328 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3329 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3330 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3331 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3332 | /// |
| 3333 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmul_round_sch) |
| 3334 | #[inline ] |
| 3335 | #[target_feature (enable = "avx512fp16" )] |
| 3336 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3337 | #[rustc_legacy_const_generics (2)] |
| 3338 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3339 | pub fn _mm_fmul_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 3340 | static_assert_rounding!(ROUNDING); |
| 3341 | _mm_mul_round_sch::<ROUNDING>(a, b) |
| 3342 | } |
| 3343 | |
| 3344 | /// Multiply the lower complex numbers in a and b, and store the results in dst using writemask k (the element |
| 3345 | /// is copied from src when mask bit 0 is not set). Each complex number is composed of two adjacent half-precision |
| 3346 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3347 | /// |
| 3348 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3349 | /// |
| 3350 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3351 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3352 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3353 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3354 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3355 | /// |
| 3356 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmul_round_sch) |
| 3357 | #[inline ] |
| 3358 | #[target_feature (enable = "avx512fp16" )] |
| 3359 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3360 | #[rustc_legacy_const_generics (4)] |
| 3361 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3362 | pub fn _mm_mask_fmul_round_sch<const ROUNDING: i32>( |
| 3363 | src: __m128h, |
| 3364 | k: __mmask8, |
| 3365 | a: __m128h, |
| 3366 | b: __m128h, |
| 3367 | ) -> __m128h { |
| 3368 | static_assert_rounding!(ROUNDING); |
| 3369 | _mm_mask_mul_round_sch::<ROUNDING>(src, k, a, b) |
| 3370 | } |
| 3371 | |
| 3372 | /// Multiply the lower complex numbers in a and b, and store the results in dst using zeromask k (the element |
| 3373 | /// is zeroed out when mask bit 0 is not set). Each complex number is composed of two adjacent half-precision |
| 3374 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 3375 | /// |
| 3376 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3377 | /// |
| 3378 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3379 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3380 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3381 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3382 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3383 | /// |
| 3384 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmul_round_sch) |
| 3385 | #[inline ] |
| 3386 | #[target_feature (enable = "avx512fp16" )] |
| 3387 | #[cfg_attr (test, assert_instr(vfmulcsh, ROUNDING = 8))] |
| 3388 | #[rustc_legacy_const_generics (3)] |
| 3389 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3390 | pub fn _mm_maskz_fmul_round_sch<const ROUNDING: i32>( |
| 3391 | k: __mmask8, |
| 3392 | a: __m128h, |
| 3393 | b: __m128h, |
| 3394 | ) -> __m128h { |
| 3395 | static_assert_rounding!(ROUNDING); |
| 3396 | _mm_maskz_mul_round_sch::<ROUNDING>(k, a, b) |
| 3397 | } |
| 3398 | |
| 3399 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3400 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3401 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3402 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3403 | /// |
| 3404 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmul_pch) |
| 3405 | #[inline ] |
| 3406 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3407 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3408 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3409 | pub fn _mm_cmul_pch(a: __m128h, b: __m128h) -> __m128h { |
| 3410 | _mm_mask_cmul_pch(src:_mm_undefined_ph(), k:0xff, a, b) |
| 3411 | } |
| 3412 | |
| 3413 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3414 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3415 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3416 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3417 | /// |
| 3418 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmul_pch) |
| 3419 | #[inline ] |
| 3420 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3421 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3422 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3423 | pub fn _mm_mask_cmul_pch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3424 | unsafe { transmute(src:vfcmulcph_128(a:transmute(a), b:transmute(b), src:transmute(src), k)) } |
| 3425 | } |
| 3426 | |
| 3427 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3428 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3429 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3430 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3431 | /// |
| 3432 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cmul_pch) |
| 3433 | #[inline ] |
| 3434 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3435 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3436 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3437 | pub fn _mm_maskz_cmul_pch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3438 | _mm_mask_cmul_pch(src:_mm_setzero_ph(), k, a, b) |
| 3439 | } |
| 3440 | |
| 3441 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3442 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3443 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3444 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3445 | /// |
| 3446 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cmul_pch) |
| 3447 | #[inline ] |
| 3448 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3449 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3450 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3451 | pub fn _mm256_cmul_pch(a: __m256h, b: __m256h) -> __m256h { |
| 3452 | _mm256_mask_cmul_pch(src:_mm256_undefined_ph(), k:0xff, a, b) |
| 3453 | } |
| 3454 | |
| 3455 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3456 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3457 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3458 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3459 | /// |
| 3460 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cmul_pch) |
| 3461 | #[inline ] |
| 3462 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3463 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3464 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3465 | pub fn _mm256_mask_cmul_pch(src: __m256h, k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3466 | unsafe { transmute(src:vfcmulcph_256(a:transmute(a), b:transmute(b), src:transmute(src), k)) } |
| 3467 | } |
| 3468 | |
| 3469 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3470 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3471 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3472 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3473 | /// |
| 3474 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cmul_pch) |
| 3475 | #[inline ] |
| 3476 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3477 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3478 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3479 | pub fn _mm256_maskz_cmul_pch(k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3480 | _mm256_mask_cmul_pch(src:_mm256_setzero_ph(), k, a, b) |
| 3481 | } |
| 3482 | |
| 3483 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3484 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3485 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3486 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3487 | /// |
| 3488 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cmul_pch) |
| 3489 | #[inline ] |
| 3490 | #[target_feature (enable = "avx512fp16" )] |
| 3491 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3492 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3493 | pub fn _mm512_cmul_pch(a: __m512h, b: __m512h) -> __m512h { |
| 3494 | _mm512_mask_cmul_pch(src:_mm512_undefined_ph(), k:0xffff, a, b) |
| 3495 | } |
| 3496 | |
| 3497 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3498 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3499 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3500 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3501 | /// |
| 3502 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cmul_pch) |
| 3503 | #[inline ] |
| 3504 | #[target_feature (enable = "avx512fp16" )] |
| 3505 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3506 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3507 | pub fn _mm512_mask_cmul_pch(src: __m512h, k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3508 | _mm512_mask_cmul_round_pch::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 3509 | } |
| 3510 | |
| 3511 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3512 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3513 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3514 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3515 | /// |
| 3516 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cmul_pch) |
| 3517 | #[inline ] |
| 3518 | #[target_feature (enable = "avx512fp16" )] |
| 3519 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3520 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3521 | pub fn _mm512_maskz_cmul_pch(k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3522 | _mm512_mask_cmul_pch(src:_mm512_setzero_ph(), k, a, b) |
| 3523 | } |
| 3524 | |
| 3525 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3526 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3527 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3528 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3529 | /// |
| 3530 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3531 | /// |
| 3532 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3533 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3534 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3535 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3536 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3537 | /// |
| 3538 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cmul_round_pch) |
| 3539 | #[inline ] |
| 3540 | #[target_feature (enable = "avx512fp16" )] |
| 3541 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3542 | #[rustc_legacy_const_generics (2)] |
| 3543 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3544 | pub fn _mm512_cmul_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 3545 | static_assert_rounding!(ROUNDING); |
| 3546 | _mm512_mask_cmul_round_pch::<ROUNDING>(src:_mm512_undefined_ph(), k:0xffff, a, b) |
| 3547 | } |
| 3548 | |
| 3549 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3550 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3551 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3552 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3553 | /// |
| 3554 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3555 | /// |
| 3556 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3557 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3558 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3559 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3560 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3561 | /// |
| 3562 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cmul_round_pch) |
| 3563 | #[inline ] |
| 3564 | #[target_feature (enable = "avx512fp16" )] |
| 3565 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3566 | #[rustc_legacy_const_generics (4)] |
| 3567 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3568 | pub fn _mm512_mask_cmul_round_pch<const ROUNDING: i32>( |
| 3569 | src: __m512h, |
| 3570 | k: __mmask16, |
| 3571 | a: __m512h, |
| 3572 | b: __m512h, |
| 3573 | ) -> __m512h { |
| 3574 | unsafe { |
| 3575 | static_assert_rounding!(ROUNDING); |
| 3576 | transmute(src:vfcmulcph_512( |
| 3577 | a:transmute(a), |
| 3578 | b:transmute(b), |
| 3579 | src:transmute(src), |
| 3580 | k, |
| 3581 | ROUNDING, |
| 3582 | )) |
| 3583 | } |
| 3584 | } |
| 3585 | |
| 3586 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3587 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3588 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3589 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3590 | /// |
| 3591 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3592 | /// |
| 3593 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3594 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3595 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3596 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3597 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3598 | /// |
| 3599 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cmul_round_pch) |
| 3600 | #[inline ] |
| 3601 | #[target_feature (enable = "avx512fp16" )] |
| 3602 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3603 | #[rustc_legacy_const_generics (3)] |
| 3604 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3605 | pub fn _mm512_maskz_cmul_round_pch<const ROUNDING: i32>( |
| 3606 | k: __mmask16, |
| 3607 | a: __m512h, |
| 3608 | b: __m512h, |
| 3609 | ) -> __m512h { |
| 3610 | static_assert_rounding!(ROUNDING); |
| 3611 | _mm512_mask_cmul_round_pch::<ROUNDING>(src:_mm512_setzero_ph(), k, a, b) |
| 3612 | } |
| 3613 | |
| 3614 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3615 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3616 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3617 | /// |
| 3618 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmul_sch) |
| 3619 | #[inline ] |
| 3620 | #[target_feature (enable = "avx512fp16" )] |
| 3621 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3622 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3623 | pub fn _mm_cmul_sch(a: __m128h, b: __m128h) -> __m128h { |
| 3624 | _mm_mask_cmul_sch(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 3625 | } |
| 3626 | |
| 3627 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3628 | /// and store the results in dst using writemask k (the element is copied from src when mask bit 0 is not set). |
| 3629 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3630 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3631 | /// |
| 3632 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmul_sch) |
| 3633 | #[inline ] |
| 3634 | #[target_feature (enable = "avx512fp16" )] |
| 3635 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3636 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3637 | pub fn _mm_mask_cmul_sch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3638 | _mm_mask_cmul_round_sch::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 3639 | } |
| 3640 | |
| 3641 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3642 | /// and store the results in dst using zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 3643 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3644 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3645 | /// |
| 3646 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cmul_sch) |
| 3647 | #[inline ] |
| 3648 | #[target_feature (enable = "avx512fp16" )] |
| 3649 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3650 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3651 | pub fn _mm_maskz_cmul_sch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3652 | _mm_mask_cmul_sch(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 3653 | } |
| 3654 | |
| 3655 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3656 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3657 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3658 | /// |
| 3659 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3660 | /// |
| 3661 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3662 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3663 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3664 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3665 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3666 | /// |
| 3667 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmul_round_sch) |
| 3668 | #[inline ] |
| 3669 | #[target_feature (enable = "avx512fp16" )] |
| 3670 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 3671 | #[rustc_legacy_const_generics (2)] |
| 3672 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3673 | pub fn _mm_cmul_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 3674 | static_assert_rounding!(ROUNDING); |
| 3675 | _mm_mask_cmul_round_sch::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 3676 | } |
| 3677 | |
| 3678 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3679 | /// and store the results in dst using writemask k (the element is copied from src when mask bit 0 is not set). |
| 3680 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3681 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3682 | /// |
| 3683 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3684 | /// |
| 3685 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3686 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3687 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3688 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3689 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3690 | /// |
| 3691 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cmul_round_sch) |
| 3692 | #[inline ] |
| 3693 | #[target_feature (enable = "avx512fp16" )] |
| 3694 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 3695 | #[rustc_legacy_const_generics (4)] |
| 3696 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3697 | pub fn _mm_mask_cmul_round_sch<const ROUNDING: i32>( |
| 3698 | src: __m128h, |
| 3699 | k: __mmask8, |
| 3700 | a: __m128h, |
| 3701 | b: __m128h, |
| 3702 | ) -> __m128h { |
| 3703 | unsafe { |
| 3704 | static_assert_rounding!(ROUNDING); |
| 3705 | transmute(src:vfcmulcsh( |
| 3706 | a:transmute(a), |
| 3707 | b:transmute(b), |
| 3708 | src:transmute(src), |
| 3709 | k, |
| 3710 | ROUNDING, |
| 3711 | )) |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3716 | /// and store the results in dst using zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 3717 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3718 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3719 | /// |
| 3720 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3721 | /// |
| 3722 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3723 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3724 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3725 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3726 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3727 | /// |
| 3728 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cmul_round_sch) |
| 3729 | #[inline ] |
| 3730 | #[target_feature (enable = "avx512fp16" )] |
| 3731 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 3732 | #[rustc_legacy_const_generics (3)] |
| 3733 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3734 | pub fn _mm_maskz_cmul_round_sch<const ROUNDING: i32>( |
| 3735 | k: __mmask8, |
| 3736 | a: __m128h, |
| 3737 | b: __m128h, |
| 3738 | ) -> __m128h { |
| 3739 | static_assert_rounding!(ROUNDING); |
| 3740 | _mm_mask_cmul_round_sch::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 3741 | } |
| 3742 | |
| 3743 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3744 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3745 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3746 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3747 | /// |
| 3748 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmul_pch) |
| 3749 | #[inline ] |
| 3750 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3751 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3752 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3753 | pub fn _mm_fcmul_pch(a: __m128h, b: __m128h) -> __m128h { |
| 3754 | _mm_cmul_pch(a, b) |
| 3755 | } |
| 3756 | |
| 3757 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3758 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3759 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3760 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3761 | /// |
| 3762 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmul_pch) |
| 3763 | #[inline ] |
| 3764 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3765 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3766 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3767 | pub fn _mm_mask_fcmul_pch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3768 | _mm_mask_cmul_pch(src, k, a, b) |
| 3769 | } |
| 3770 | |
| 3771 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3772 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3773 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3774 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3775 | /// |
| 3776 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmul_pch) |
| 3777 | #[inline ] |
| 3778 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3779 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3780 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3781 | pub fn _mm_maskz_fcmul_pch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3782 | _mm_maskz_cmul_pch(k, a, b) |
| 3783 | } |
| 3784 | |
| 3785 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3786 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3787 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3788 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3789 | /// |
| 3790 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fcmul_pch) |
| 3791 | #[inline ] |
| 3792 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3793 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3794 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3795 | pub fn _mm256_fcmul_pch(a: __m256h, b: __m256h) -> __m256h { |
| 3796 | _mm256_cmul_pch(a, b) |
| 3797 | } |
| 3798 | |
| 3799 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3800 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3801 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3802 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3803 | /// |
| 3804 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fcmul_pch) |
| 3805 | #[inline ] |
| 3806 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3807 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3808 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3809 | pub fn _mm256_mask_fcmul_pch(src: __m256h, k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3810 | _mm256_mask_cmul_pch(src, k, a, b) |
| 3811 | } |
| 3812 | |
| 3813 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3814 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3815 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3816 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3817 | /// |
| 3818 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fcmul_pch) |
| 3819 | #[inline ] |
| 3820 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 3821 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3822 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3823 | pub fn _mm256_maskz_fcmul_pch(k: __mmask8, a: __m256h, b: __m256h) -> __m256h { |
| 3824 | _mm256_maskz_cmul_pch(k, a, b) |
| 3825 | } |
| 3826 | |
| 3827 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3828 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3829 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3830 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3831 | /// |
| 3832 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fcmul_pch) |
| 3833 | #[inline ] |
| 3834 | #[target_feature (enable = "avx512fp16" )] |
| 3835 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3836 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3837 | pub fn _mm512_fcmul_pch(a: __m512h, b: __m512h) -> __m512h { |
| 3838 | _mm512_cmul_pch(a, b) |
| 3839 | } |
| 3840 | |
| 3841 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3842 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3843 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3844 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3845 | /// |
| 3846 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fcmul_pch) |
| 3847 | #[inline ] |
| 3848 | #[target_feature (enable = "avx512fp16" )] |
| 3849 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3850 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3851 | pub fn _mm512_mask_fcmul_pch(src: __m512h, k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3852 | _mm512_mask_cmul_pch(src, k, a, b) |
| 3853 | } |
| 3854 | |
| 3855 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3856 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3857 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3858 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3859 | /// |
| 3860 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fcmul_pch) |
| 3861 | #[inline ] |
| 3862 | #[target_feature (enable = "avx512fp16" )] |
| 3863 | #[cfg_attr (test, assert_instr(vfcmulcph))] |
| 3864 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3865 | pub fn _mm512_maskz_fcmul_pch(k: __mmask16, a: __m512h, b: __m512h) -> __m512h { |
| 3866 | _mm512_maskz_cmul_pch(k, a, b) |
| 3867 | } |
| 3868 | |
| 3869 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3870 | /// store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3871 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3872 | /// |
| 3873 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3874 | /// |
| 3875 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3876 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3877 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3878 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3879 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3880 | /// |
| 3881 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fcmul_round_pch) |
| 3882 | #[inline ] |
| 3883 | #[target_feature (enable = "avx512fp16" )] |
| 3884 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3885 | #[rustc_legacy_const_generics (2)] |
| 3886 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3887 | pub fn _mm512_fcmul_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 3888 | static_assert_rounding!(ROUNDING); |
| 3889 | _mm512_cmul_round_pch::<ROUNDING>(a, b) |
| 3890 | } |
| 3891 | |
| 3892 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3893 | /// store the results in dst using writemask k (the element is copied from src when corresponding mask bit is not set). |
| 3894 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3895 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3896 | /// |
| 3897 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3898 | /// |
| 3899 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3900 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3901 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3902 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3903 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3904 | /// |
| 3905 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fcmul_round_pch) |
| 3906 | #[inline ] |
| 3907 | #[target_feature (enable = "avx512fp16" )] |
| 3908 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3909 | #[rustc_legacy_const_generics (4)] |
| 3910 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3911 | pub fn _mm512_mask_fcmul_round_pch<const ROUNDING: i32>( |
| 3912 | src: __m512h, |
| 3913 | k: __mmask16, |
| 3914 | a: __m512h, |
| 3915 | b: __m512h, |
| 3916 | ) -> __m512h { |
| 3917 | static_assert_rounding!(ROUNDING); |
| 3918 | _mm512_mask_cmul_round_pch::<ROUNDING>(src, k, a, b) |
| 3919 | } |
| 3920 | |
| 3921 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, and |
| 3922 | /// store the results in dst using zeromask k (the element is zeroed out when corresponding mask bit is not set). |
| 3923 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3924 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3925 | /// |
| 3926 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3927 | /// |
| 3928 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3929 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3930 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 3931 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 3932 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 3933 | /// |
| 3934 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fcmul_round_pch) |
| 3935 | #[inline ] |
| 3936 | #[target_feature (enable = "avx512fp16" )] |
| 3937 | #[cfg_attr (test, assert_instr(vfcmulcph, ROUNDING = 8))] |
| 3938 | #[rustc_legacy_const_generics (3)] |
| 3939 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3940 | pub fn _mm512_maskz_fcmul_round_pch<const ROUNDING: i32>( |
| 3941 | k: __mmask16, |
| 3942 | a: __m512h, |
| 3943 | b: __m512h, |
| 3944 | ) -> __m512h { |
| 3945 | static_assert_rounding!(ROUNDING); |
| 3946 | _mm512_maskz_cmul_round_pch::<ROUNDING>(k, a, b) |
| 3947 | } |
| 3948 | |
| 3949 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3950 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3951 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3952 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3953 | /// |
| 3954 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmul_sch) |
| 3955 | #[inline ] |
| 3956 | #[target_feature (enable = "avx512fp16" )] |
| 3957 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3958 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3959 | pub fn _mm_fcmul_sch(a: __m128h, b: __m128h) -> __m128h { |
| 3960 | _mm_cmul_sch(a, b) |
| 3961 | } |
| 3962 | |
| 3963 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3964 | /// and store the results in dst using writemask k (the element is copied from src when mask bit 0 is not set). |
| 3965 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3966 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3967 | /// |
| 3968 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmul_sch) |
| 3969 | #[inline ] |
| 3970 | #[target_feature (enable = "avx512fp16" )] |
| 3971 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3972 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3973 | pub fn _mm_mask_fcmul_sch(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3974 | _mm_mask_cmul_sch(src, k, a, b) |
| 3975 | } |
| 3976 | |
| 3977 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3978 | /// and store the results in dst using zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 3979 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 3980 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 3981 | /// |
| 3982 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmul_sch) |
| 3983 | #[inline ] |
| 3984 | #[target_feature (enable = "avx512fp16" )] |
| 3985 | #[cfg_attr (test, assert_instr(vfcmulcsh))] |
| 3986 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 3987 | pub fn _mm_maskz_fcmul_sch(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 3988 | _mm_maskz_cmul_sch(k, a, b) |
| 3989 | } |
| 3990 | |
| 3991 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 3992 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 3993 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 3994 | /// |
| 3995 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 3996 | /// |
| 3997 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 3998 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 3999 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4000 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4001 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4002 | /// |
| 4003 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmul_round_sch) |
| 4004 | #[inline ] |
| 4005 | #[target_feature (enable = "avx512fp16" )] |
| 4006 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 4007 | #[rustc_legacy_const_generics (2)] |
| 4008 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4009 | pub fn _mm_fcmul_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 4010 | static_assert_rounding!(ROUNDING); |
| 4011 | _mm_cmul_round_sch::<ROUNDING>(a, b) |
| 4012 | } |
| 4013 | |
| 4014 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 4015 | /// and store the results in dst using writemask k (the element is copied from src when mask bit 0 is not set). |
| 4016 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 4017 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4018 | /// |
| 4019 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4020 | /// |
| 4021 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4022 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4023 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4024 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4025 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4026 | /// |
| 4027 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmul_round_sch) |
| 4028 | #[inline ] |
| 4029 | #[target_feature (enable = "avx512fp16" )] |
| 4030 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 4031 | #[rustc_legacy_const_generics (4)] |
| 4032 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4033 | pub fn _mm_mask_fcmul_round_sch<const ROUNDING: i32>( |
| 4034 | src: __m128h, |
| 4035 | k: __mmask8, |
| 4036 | a: __m128h, |
| 4037 | b: __m128h, |
| 4038 | ) -> __m128h { |
| 4039 | static_assert_rounding!(ROUNDING); |
| 4040 | _mm_mask_cmul_round_sch::<ROUNDING>(src, k, a, b) |
| 4041 | } |
| 4042 | |
| 4043 | /// Multiply the lower complex numbers in a by the complex conjugates of the lower complex numbers in b, |
| 4044 | /// and store the results in dst using zeromask k (the element is zeroed out when mask bit 0 is not set). |
| 4045 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 4046 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4047 | /// |
| 4048 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4049 | /// |
| 4050 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4051 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4052 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4053 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4054 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4055 | /// |
| 4056 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmul_round_sch) |
| 4057 | #[inline ] |
| 4058 | #[target_feature (enable = "avx512fp16" )] |
| 4059 | #[cfg_attr (test, assert_instr(vfcmulcsh, ROUNDING = 8))] |
| 4060 | #[rustc_legacy_const_generics (3)] |
| 4061 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4062 | pub fn _mm_maskz_fcmul_round_sch<const ROUNDING: i32>( |
| 4063 | k: __mmask8, |
| 4064 | a: __m128h, |
| 4065 | b: __m128h, |
| 4066 | ) -> __m128h { |
| 4067 | static_assert_rounding!(ROUNDING); |
| 4068 | _mm_maskz_cmul_round_sch::<ROUNDING>(k, a, b) |
| 4069 | } |
| 4070 | |
| 4071 | /// Finds the absolute value of each packed half-precision (16-bit) floating-point element in v2, storing |
| 4072 | /// the results in dst. |
| 4073 | /// |
| 4074 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_ph) |
| 4075 | #[inline ] |
| 4076 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4077 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4078 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4079 | pub const fn _mm_abs_ph(v2: __m128h) -> __m128h { |
| 4080 | unsafe { transmute(src:_mm_and_si128(a:transmute(v2), b:_mm_set1_epi16(i16::MAX))) } |
| 4081 | } |
| 4082 | |
| 4083 | /// Finds the absolute value of each packed half-precision (16-bit) floating-point element in v2, storing |
| 4084 | /// the result in dst. |
| 4085 | /// |
| 4086 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_abs_ph) |
| 4087 | #[inline ] |
| 4088 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4089 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4090 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4091 | pub const fn _mm256_abs_ph(v2: __m256h) -> __m256h { |
| 4092 | unsafe { transmute(src:_mm256_and_si256(a:transmute(v2), b:_mm256_set1_epi16(i16::MAX))) } |
| 4093 | } |
| 4094 | |
| 4095 | /// Finds the absolute value of each packed half-precision (16-bit) floating-point element in v2, storing |
| 4096 | /// the result in dst. |
| 4097 | /// |
| 4098 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_abs_ph) |
| 4099 | #[inline ] |
| 4100 | #[target_feature (enable = "avx512fp16" )] |
| 4101 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4102 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4103 | pub const fn _mm512_abs_ph(v2: __m512h) -> __m512h { |
| 4104 | unsafe { transmute(src:_mm512_and_si512(a:transmute(v2), b:_mm512_set1_epi16(i16::MAX))) } |
| 4105 | } |
| 4106 | |
| 4107 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst. Each complex |
| 4108 | /// number is composed of two adjacent half-precision (16-bit) floating-point elements, which defines |
| 4109 | /// the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate |
| 4110 | /// `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4111 | /// |
| 4112 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_conj_pch) |
| 4113 | #[inline ] |
| 4114 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4115 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4116 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4117 | pub const fn _mm_conj_pch(a: __m128h) -> __m128h { |
| 4118 | unsafe { transmute(src:_mm_xor_si128(a:transmute(a), b:_mm_set1_epi32(i32::MIN))) } |
| 4119 | } |
| 4120 | |
| 4121 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using writemask k |
| 4122 | /// (the element is copied from src when corresponding mask bit is not set). Each complex number is composed of two |
| 4123 | /// adjacent half-precision (16-bit) floating-point elements, which defines the complex number |
| 4124 | /// `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4125 | /// |
| 4126 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_conj_pch) |
| 4127 | #[inline ] |
| 4128 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4129 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4130 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4131 | pub const fn _mm_mask_conj_pch(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 4132 | unsafe { |
| 4133 | let r: __m128 = transmute(src:_mm_conj_pch(a)); |
| 4134 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src))) |
| 4135 | } |
| 4136 | } |
| 4137 | |
| 4138 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using zeromask k |
| 4139 | /// (the element is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4140 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4141 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4142 | /// |
| 4143 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_conj_pch) |
| 4144 | #[inline ] |
| 4145 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4146 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4147 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4148 | pub const fn _mm_maskz_conj_pch(k: __mmask8, a: __m128h) -> __m128h { |
| 4149 | _mm_mask_conj_pch(src:_mm_setzero_ph(), k, a) |
| 4150 | } |
| 4151 | |
| 4152 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst. Each complex number |
| 4153 | /// is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 4154 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4155 | /// |
| 4156 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_conj_pch) |
| 4157 | #[inline ] |
| 4158 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4159 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4160 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4161 | pub const fn _mm256_conj_pch(a: __m256h) -> __m256h { |
| 4162 | unsafe { transmute(src:_mm256_xor_si256(a:transmute(a), b:_mm256_set1_epi32(i32::MIN))) } |
| 4163 | } |
| 4164 | |
| 4165 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using writemask k |
| 4166 | /// (the element is copied from src when corresponding mask bit is not set). Each complex number is composed of two |
| 4167 | /// adjacent half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4168 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4169 | /// |
| 4170 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_conj_pch) |
| 4171 | #[inline ] |
| 4172 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4173 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4174 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4175 | pub const fn _mm256_mask_conj_pch(src: __m256h, k: __mmask8, a: __m256h) -> __m256h { |
| 4176 | unsafe { |
| 4177 | let r: __m256 = transmute(src:_mm256_conj_pch(a)); |
| 4178 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src))) |
| 4179 | } |
| 4180 | } |
| 4181 | |
| 4182 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using zeromask k |
| 4183 | /// (the element is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4184 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4185 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4186 | /// |
| 4187 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_conj_pch) |
| 4188 | #[inline ] |
| 4189 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4190 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4191 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4192 | pub const fn _mm256_maskz_conj_pch(k: __mmask8, a: __m256h) -> __m256h { |
| 4193 | _mm256_mask_conj_pch(src:_mm256_setzero_ph(), k, a) |
| 4194 | } |
| 4195 | |
| 4196 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst. Each complex number |
| 4197 | /// is composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 4198 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4199 | /// |
| 4200 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_conj_pch) |
| 4201 | #[inline ] |
| 4202 | #[target_feature (enable = "avx512fp16" )] |
| 4203 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4204 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4205 | pub const fn _mm512_conj_pch(a: __m512h) -> __m512h { |
| 4206 | unsafe { transmute(src:_mm512_xor_si512(a:transmute(a), b:_mm512_set1_epi32(i32::MIN))) } |
| 4207 | } |
| 4208 | |
| 4209 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using writemask k |
| 4210 | /// (the element is copied from src when corresponding mask bit is not set). Each complex number is composed of two |
| 4211 | /// adjacent half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4212 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4213 | /// |
| 4214 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_conj_pch) |
| 4215 | #[inline ] |
| 4216 | #[target_feature (enable = "avx512fp16" )] |
| 4217 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4218 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4219 | pub const fn _mm512_mask_conj_pch(src: __m512h, k: __mmask16, a: __m512h) -> __m512h { |
| 4220 | unsafe { |
| 4221 | let r: __m512 = transmute(src:_mm512_conj_pch(a)); |
| 4222 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src))) |
| 4223 | } |
| 4224 | } |
| 4225 | |
| 4226 | /// Compute the complex conjugates of complex numbers in a, and store the results in dst using zeromask k |
| 4227 | /// (the element is zeroed out when corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4228 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4229 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4230 | /// |
| 4231 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_conj_pch) |
| 4232 | #[inline ] |
| 4233 | #[target_feature (enable = "avx512fp16" )] |
| 4234 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4235 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 4236 | pub const fn _mm512_maskz_conj_pch(k: __mmask16, a: __m512h) -> __m512h { |
| 4237 | _mm512_mask_conj_pch(src:_mm512_setzero_ph(), k, a) |
| 4238 | } |
| 4239 | |
| 4240 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4241 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 4242 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4243 | /// |
| 4244 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_pch) |
| 4245 | #[inline ] |
| 4246 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4247 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4248 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4249 | pub fn _mm_fmadd_pch(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4250 | _mm_mask3_fmadd_pch(a, b, c, k:0xff) |
| 4251 | } |
| 4252 | |
| 4253 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4254 | /// and store the results in dst using writemask k (the element is copied from a when the corresponding |
| 4255 | /// mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) |
| 4256 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4257 | /// |
| 4258 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_pch) |
| 4259 | #[inline ] |
| 4260 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4261 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4262 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4263 | pub fn _mm_mask_fmadd_pch(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 4264 | unsafe { |
| 4265 | let r: __m128 = transmute(src:_mm_mask3_fmadd_pch(a, b, c, k)); // using `0xff` would have been fine here, but this is what CLang does |
| 4266 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 4267 | } |
| 4268 | } |
| 4269 | |
| 4270 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4271 | /// and store the results in dst using writemask k (the element is copied from c when the corresponding |
| 4272 | /// mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) |
| 4273 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4274 | /// |
| 4275 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_pch) |
| 4276 | #[inline ] |
| 4277 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4278 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4279 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4280 | pub fn _mm_mask3_fmadd_pch(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 4281 | unsafe { |
| 4282 | transmute(src:vfmaddcph_mask3_128( |
| 4283 | a:transmute(a), |
| 4284 | b:transmute(b), |
| 4285 | c:transmute(src:c), |
| 4286 | k, |
| 4287 | )) |
| 4288 | } |
| 4289 | } |
| 4290 | |
| 4291 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4292 | /// and store the results in dst using zeromask k (the element is zeroed out when the corresponding mask |
| 4293 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4294 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4295 | /// |
| 4296 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_pch) |
| 4297 | #[inline ] |
| 4298 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4299 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4300 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4301 | pub fn _mm_maskz_fmadd_pch(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4302 | unsafe { |
| 4303 | transmute(src:vfmaddcph_maskz_128( |
| 4304 | a:transmute(a), |
| 4305 | b:transmute(b), |
| 4306 | c:transmute(src:c), |
| 4307 | k, |
| 4308 | )) |
| 4309 | } |
| 4310 | } |
| 4311 | |
| 4312 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4313 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 4314 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4315 | /// |
| 4316 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmadd_pch) |
| 4317 | #[inline ] |
| 4318 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4319 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4320 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4321 | pub fn _mm256_fmadd_pch(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 4322 | _mm256_mask3_fmadd_pch(a, b, c, k:0xff) |
| 4323 | } |
| 4324 | |
| 4325 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4326 | /// and store the results in dst using writemask k (the element is copied from a when the corresponding mask |
| 4327 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4328 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4329 | /// |
| 4330 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmadd_pch) |
| 4331 | #[inline ] |
| 4332 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4333 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4334 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4335 | pub fn _mm256_mask_fmadd_pch(a: __m256h, k: __mmask8, b: __m256h, c: __m256h) -> __m256h { |
| 4336 | unsafe { |
| 4337 | let r: __m256 = transmute(src:_mm256_mask3_fmadd_pch(a, b, c, k)); // using `0xff` would have been fine here, but this is what CLang does |
| 4338 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 4339 | } |
| 4340 | } |
| 4341 | |
| 4342 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4343 | /// and store the results in dst using writemask k (the element is copied from c when the corresponding |
| 4344 | /// mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) |
| 4345 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4346 | /// |
| 4347 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fmadd_pch) |
| 4348 | #[inline ] |
| 4349 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4350 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4351 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4352 | pub fn _mm256_mask3_fmadd_pch(a: __m256h, b: __m256h, c: __m256h, k: __mmask8) -> __m256h { |
| 4353 | unsafe { |
| 4354 | transmute(src:vfmaddcph_mask3_256( |
| 4355 | a:transmute(a), |
| 4356 | b:transmute(b), |
| 4357 | c:transmute(src:c), |
| 4358 | k, |
| 4359 | )) |
| 4360 | } |
| 4361 | } |
| 4362 | |
| 4363 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4364 | /// and store the results in dst using zeromask k (the element is zeroed out when the corresponding mask |
| 4365 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4366 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4367 | /// |
| 4368 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmadd_pch) |
| 4369 | #[inline ] |
| 4370 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4371 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4372 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4373 | pub fn _mm256_maskz_fmadd_pch(k: __mmask8, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 4374 | unsafe { |
| 4375 | transmute(src:vfmaddcph_maskz_256( |
| 4376 | a:transmute(a), |
| 4377 | b:transmute(b), |
| 4378 | c:transmute(src:c), |
| 4379 | k, |
| 4380 | )) |
| 4381 | } |
| 4382 | } |
| 4383 | |
| 4384 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4385 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 4386 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4387 | /// |
| 4388 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmadd_pch) |
| 4389 | #[inline ] |
| 4390 | #[target_feature (enable = "avx512fp16" )] |
| 4391 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4392 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4393 | pub fn _mm512_fmadd_pch(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4394 | _mm512_fmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, b, c) |
| 4395 | } |
| 4396 | |
| 4397 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4398 | /// and store the results in dst using writemask k (the element is copied from a when the corresponding mask |
| 4399 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4400 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4401 | /// |
| 4402 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmadd_pch) |
| 4403 | #[inline ] |
| 4404 | #[target_feature (enable = "avx512fp16" )] |
| 4405 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4406 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4407 | pub fn _mm512_mask_fmadd_pch(a: __m512h, k: __mmask16, b: __m512h, c: __m512h) -> __m512h { |
| 4408 | _mm512_mask_fmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, k, b, c) |
| 4409 | } |
| 4410 | |
| 4411 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4412 | /// and store the results in dst using writemask k (the element is copied from c when the corresponding |
| 4413 | /// mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) |
| 4414 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4415 | /// |
| 4416 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmadd_pch) |
| 4417 | #[inline ] |
| 4418 | #[target_feature (enable = "avx512fp16" )] |
| 4419 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4420 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4421 | pub fn _mm512_mask3_fmadd_pch(a: __m512h, b: __m512h, c: __m512h, k: __mmask16) -> __m512h { |
| 4422 | _mm512_mask3_fmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, b, c, k) |
| 4423 | } |
| 4424 | |
| 4425 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4426 | /// and store the results in dst using zeromask k (the element is zeroed out when the corresponding mask |
| 4427 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4428 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4429 | /// |
| 4430 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmadd_pch) |
| 4431 | #[inline ] |
| 4432 | #[target_feature (enable = "avx512fp16" )] |
| 4433 | #[cfg_attr (test, assert_instr(vfmaddcph))] |
| 4434 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4435 | pub fn _mm512_maskz_fmadd_pch(k: __mmask16, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4436 | _mm512_maskz_fmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(k, a, b, c) |
| 4437 | } |
| 4438 | |
| 4439 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4440 | /// and store the results in dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 4441 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4442 | /// |
| 4443 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4444 | /// |
| 4445 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4446 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4447 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4448 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4449 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4450 | /// |
| 4451 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmadd_round_pch) |
| 4452 | #[inline ] |
| 4453 | #[target_feature (enable = "avx512fp16" )] |
| 4454 | #[cfg_attr (test, assert_instr(vfmaddcph, ROUNDING = 8))] |
| 4455 | #[rustc_legacy_const_generics (3)] |
| 4456 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4457 | pub fn _mm512_fmadd_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4458 | static_assert_rounding!(ROUNDING); |
| 4459 | _mm512_mask3_fmadd_round_pch::<ROUNDING>(a, b, c, k:0xffff) |
| 4460 | } |
| 4461 | |
| 4462 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4463 | /// and store the results in dst using writemask k (the element is copied from a when the corresponding mask |
| 4464 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4465 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4466 | /// |
| 4467 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4468 | /// |
| 4469 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4470 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4471 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4472 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4473 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4474 | /// |
| 4475 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmadd_round_pch) |
| 4476 | #[inline ] |
| 4477 | #[target_feature (enable = "avx512fp16" )] |
| 4478 | #[cfg_attr (test, assert_instr(vfmaddcph, ROUNDING = 8))] |
| 4479 | #[rustc_legacy_const_generics (4)] |
| 4480 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4481 | pub fn _mm512_mask_fmadd_round_pch<const ROUNDING: i32>( |
| 4482 | a: __m512h, |
| 4483 | k: __mmask16, |
| 4484 | b: __m512h, |
| 4485 | c: __m512h, |
| 4486 | ) -> __m512h { |
| 4487 | unsafe { |
| 4488 | static_assert_rounding!(ROUNDING); |
| 4489 | let r: __m512 = transmute(src:_mm512_mask3_fmadd_round_pch::<ROUNDING>(a, b, c, k)); // using `0xffff` would have been fine here, but this is what CLang does |
| 4490 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 4491 | } |
| 4492 | } |
| 4493 | |
| 4494 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4495 | /// and store the results in dst using writemask k (the element is copied from c when the corresponding |
| 4496 | /// mask bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) |
| 4497 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4498 | /// |
| 4499 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4500 | /// |
| 4501 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4502 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4503 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4504 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4505 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4506 | /// |
| 4507 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmadd_round_pch) |
| 4508 | #[inline ] |
| 4509 | #[target_feature (enable = "avx512fp16" )] |
| 4510 | #[cfg_attr (test, assert_instr(vfmaddcph, ROUNDING = 8))] |
| 4511 | #[rustc_legacy_const_generics (4)] |
| 4512 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4513 | pub fn _mm512_mask3_fmadd_round_pch<const ROUNDING: i32>( |
| 4514 | a: __m512h, |
| 4515 | b: __m512h, |
| 4516 | c: __m512h, |
| 4517 | k: __mmask16, |
| 4518 | ) -> __m512h { |
| 4519 | unsafe { |
| 4520 | static_assert_rounding!(ROUNDING); |
| 4521 | transmute(src:vfmaddcph_mask3_512( |
| 4522 | a:transmute(a), |
| 4523 | b:transmute(b), |
| 4524 | c:transmute(src:c), |
| 4525 | k, |
| 4526 | ROUNDING, |
| 4527 | )) |
| 4528 | } |
| 4529 | } |
| 4530 | |
| 4531 | /// Multiply packed complex numbers in a and b, accumulate to the corresponding complex numbers in c, |
| 4532 | /// and store the results in dst using zeromask k (the element is zeroed out when the corresponding mask |
| 4533 | /// bit is not set). Each complex number is composed of two adjacent half-precision (16-bit) floating-point |
| 4534 | /// elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4535 | /// |
| 4536 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4537 | /// |
| 4538 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4539 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4540 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4541 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4542 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4543 | /// |
| 4544 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmadd_round_pch) |
| 4545 | #[inline ] |
| 4546 | #[target_feature (enable = "avx512fp16" )] |
| 4547 | #[cfg_attr (test, assert_instr(vfmaddcph, ROUNDING = 8))] |
| 4548 | #[rustc_legacy_const_generics (4)] |
| 4549 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4550 | pub fn _mm512_maskz_fmadd_round_pch<const ROUNDING: i32>( |
| 4551 | k: __mmask16, |
| 4552 | a: __m512h, |
| 4553 | b: __m512h, |
| 4554 | c: __m512h, |
| 4555 | ) -> __m512h { |
| 4556 | unsafe { |
| 4557 | static_assert_rounding!(ROUNDING); |
| 4558 | transmute(src:vfmaddcph_maskz_512( |
| 4559 | a:transmute(a), |
| 4560 | b:transmute(b), |
| 4561 | c:transmute(src:c), |
| 4562 | k, |
| 4563 | ROUNDING, |
| 4564 | )) |
| 4565 | } |
| 4566 | } |
| 4567 | |
| 4568 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4569 | /// store the result in the lower elements of dst, and copy the upper 6 packed elements from a to the |
| 4570 | /// upper elements of dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 4571 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4572 | /// |
| 4573 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_sch) |
| 4574 | #[inline ] |
| 4575 | #[target_feature (enable = "avx512fp16" )] |
| 4576 | #[cfg_attr (test, assert_instr(vfmaddcsh))] |
| 4577 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4578 | pub fn _mm_fmadd_sch(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4579 | _mm_fmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, b, c) |
| 4580 | } |
| 4581 | |
| 4582 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4583 | /// store the result in the lower elements of dst using writemask k (elements are copied from a when |
| 4584 | /// mask bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. |
| 4585 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, |
| 4586 | /// which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4587 | /// |
| 4588 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_sch) |
| 4589 | #[inline ] |
| 4590 | #[target_feature (enable = "avx512fp16" )] |
| 4591 | #[cfg_attr (test, assert_instr(vfmaddcsh))] |
| 4592 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4593 | pub fn _mm_mask_fmadd_sch(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 4594 | _mm_mask_fmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, k, b, c) |
| 4595 | } |
| 4596 | |
| 4597 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4598 | /// store the result in the lower elements of dst using writemask k (elements are copied from c when |
| 4599 | /// mask bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. |
| 4600 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, |
| 4601 | /// which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4602 | /// |
| 4603 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_sch) |
| 4604 | #[inline ] |
| 4605 | #[target_feature (enable = "avx512fp16" )] |
| 4606 | #[cfg_attr (test, assert_instr(vfmaddcsh))] |
| 4607 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4608 | pub fn _mm_mask3_fmadd_sch(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 4609 | _mm_mask3_fmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, b, c, k) |
| 4610 | } |
| 4611 | |
| 4612 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4613 | /// store the result in the lower elements of dst using zeromask k (elements are zeroed out when mask |
| 4614 | /// bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. Each |
| 4615 | /// complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 4616 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4617 | /// |
| 4618 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_sch) |
| 4619 | #[inline ] |
| 4620 | #[target_feature (enable = "avx512fp16" )] |
| 4621 | #[cfg_attr (test, assert_instr(vfmaddcsh))] |
| 4622 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4623 | pub fn _mm_maskz_fmadd_sch(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4624 | _mm_maskz_fmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(k, a, b, c) |
| 4625 | } |
| 4626 | |
| 4627 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4628 | /// store the result in the lower elements of dst. Each complex number is composed of two adjacent |
| 4629 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4630 | /// |
| 4631 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4632 | /// |
| 4633 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4634 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4635 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4636 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4637 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4638 | /// |
| 4639 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_round_sch) |
| 4640 | #[inline ] |
| 4641 | #[target_feature (enable = "avx512fp16" )] |
| 4642 | #[cfg_attr (test, assert_instr(vfmaddcsh, ROUNDING = 8))] |
| 4643 | #[rustc_legacy_const_generics (3)] |
| 4644 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4645 | pub fn _mm_fmadd_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4646 | unsafe { |
| 4647 | static_assert_rounding!(ROUNDING); |
| 4648 | transmute(src:vfmaddcsh_mask( |
| 4649 | a:transmute(a), |
| 4650 | b:transmute(b), |
| 4651 | c:transmute(c), |
| 4652 | k:0xff, |
| 4653 | ROUNDING, |
| 4654 | )) |
| 4655 | } |
| 4656 | } |
| 4657 | |
| 4658 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4659 | /// store the result in the lower elements of dst using writemask k (elements are copied from a when |
| 4660 | /// mask bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. |
| 4661 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, |
| 4662 | /// which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4663 | /// |
| 4664 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4665 | /// |
| 4666 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4667 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4668 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4669 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4670 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4671 | /// |
| 4672 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_round_sch) |
| 4673 | #[inline ] |
| 4674 | #[target_feature (enable = "avx512fp16" )] |
| 4675 | #[cfg_attr (test, assert_instr(vfmaddcsh, ROUNDING = 8))] |
| 4676 | #[rustc_legacy_const_generics (4)] |
| 4677 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4678 | pub fn _mm_mask_fmadd_round_sch<const ROUNDING: i32>( |
| 4679 | a: __m128h, |
| 4680 | k: __mmask8, |
| 4681 | b: __m128h, |
| 4682 | c: __m128h, |
| 4683 | ) -> __m128h { |
| 4684 | unsafe { |
| 4685 | static_assert_rounding!(ROUNDING); |
| 4686 | let a: __m128 = transmute(src:a); |
| 4687 | let r: __m128 = vfmaddcsh_mask(a, b:transmute(b), c:transmute(src:c), k, ROUNDING); // using `0xff` would have been fine here, but this is what CLang does |
| 4688 | transmute(src:_mm_mask_move_ss(src:a, k, a, b:r)) |
| 4689 | } |
| 4690 | } |
| 4691 | |
| 4692 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4693 | /// store the result in the lower elements of dst using writemask k (elements are copied from c when |
| 4694 | /// mask bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. |
| 4695 | /// Each complex number is composed of two adjacent half-precision (16-bit) floating-point elements, |
| 4696 | /// which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4697 | /// |
| 4698 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4699 | /// |
| 4700 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4701 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4702 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4703 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4704 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4705 | /// |
| 4706 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_round_sch) |
| 4707 | #[inline ] |
| 4708 | #[target_feature (enable = "avx512fp16" )] |
| 4709 | #[cfg_attr (test, assert_instr(vfmaddcsh, ROUNDING = 8))] |
| 4710 | #[rustc_legacy_const_generics (4)] |
| 4711 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4712 | pub fn _mm_mask3_fmadd_round_sch<const ROUNDING: i32>( |
| 4713 | a: __m128h, |
| 4714 | b: __m128h, |
| 4715 | c: __m128h, |
| 4716 | k: __mmask8, |
| 4717 | ) -> __m128h { |
| 4718 | unsafe { |
| 4719 | static_assert_rounding!(ROUNDING); |
| 4720 | let c: __m128 = transmute(src:c); |
| 4721 | let r: __m128 = vfmaddcsh_mask(a:transmute(a), b:transmute(src:b), c, k, ROUNDING); |
| 4722 | transmute(src:_mm_move_ss(a:c, b:r)) |
| 4723 | } |
| 4724 | } |
| 4725 | |
| 4726 | /// Multiply the lower complex numbers in a and b, accumulate to the lower complex number in c, and |
| 4727 | /// store the result in the lower elements of dst using zeromask k (elements are zeroed out when mask |
| 4728 | /// bit 0 is not set), and copy the upper 6 packed elements from a to the upper elements of dst. Each |
| 4729 | /// complex number is composed of two adjacent half-precision (16-bit) floating-point elements, which |
| 4730 | /// defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`. |
| 4731 | /// |
| 4732 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4733 | /// |
| 4734 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4735 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4736 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4737 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4738 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4739 | /// |
| 4740 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_round_sch) |
| 4741 | #[inline ] |
| 4742 | #[target_feature (enable = "avx512fp16" )] |
| 4743 | #[cfg_attr (test, assert_instr(vfmaddcsh, ROUNDING = 8))] |
| 4744 | #[rustc_legacy_const_generics (4)] |
| 4745 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4746 | pub fn _mm_maskz_fmadd_round_sch<const ROUNDING: i32>( |
| 4747 | k: __mmask8, |
| 4748 | a: __m128h, |
| 4749 | b: __m128h, |
| 4750 | c: __m128h, |
| 4751 | ) -> __m128h { |
| 4752 | unsafe { |
| 4753 | static_assert_rounding!(ROUNDING); |
| 4754 | transmute(src:vfmaddcsh_maskz( |
| 4755 | a:transmute(a), |
| 4756 | b:transmute(b), |
| 4757 | c:transmute(src:c), |
| 4758 | k, |
| 4759 | ROUNDING, |
| 4760 | )) |
| 4761 | } |
| 4762 | } |
| 4763 | |
| 4764 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4765 | /// to the corresponding complex numbers in c, and store the results in dst. Each complex number is composed |
| 4766 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number |
| 4767 | /// `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4768 | /// |
| 4769 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmadd_pch) |
| 4770 | #[inline ] |
| 4771 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4772 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4773 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4774 | pub fn _mm_fcmadd_pch(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4775 | _mm_mask3_fcmadd_pch(a, b, c, k:0xff) |
| 4776 | } |
| 4777 | |
| 4778 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4779 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4780 | /// copied from a when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4781 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4782 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4783 | /// |
| 4784 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmadd_pch) |
| 4785 | #[inline ] |
| 4786 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4787 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4788 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4789 | pub fn _mm_mask_fcmadd_pch(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 4790 | unsafe { |
| 4791 | let r: __m128 = transmute(src:_mm_mask3_fcmadd_pch(a, b, c, k)); // using `0xff` would have been fine here, but this is what CLang does |
| 4792 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 4793 | } |
| 4794 | } |
| 4795 | |
| 4796 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4797 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4798 | /// copied from c when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4799 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4800 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4801 | /// |
| 4802 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fcmadd_pch) |
| 4803 | #[inline ] |
| 4804 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4805 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4806 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4807 | pub fn _mm_mask3_fcmadd_pch(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 4808 | unsafe { |
| 4809 | transmute(src:vfcmaddcph_mask3_128( |
| 4810 | a:transmute(a), |
| 4811 | b:transmute(b), |
| 4812 | c:transmute(src:c), |
| 4813 | k, |
| 4814 | )) |
| 4815 | } |
| 4816 | } |
| 4817 | |
| 4818 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4819 | /// to the corresponding complex numbers in c, and store the results in dst using zeromask k (the element is |
| 4820 | /// zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4821 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4822 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4823 | /// |
| 4824 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmadd_pch) |
| 4825 | #[inline ] |
| 4826 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4827 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4828 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4829 | pub fn _mm_maskz_fcmadd_pch(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 4830 | unsafe { |
| 4831 | transmute(src:vfcmaddcph_maskz_128( |
| 4832 | a:transmute(a), |
| 4833 | b:transmute(b), |
| 4834 | c:transmute(src:c), |
| 4835 | k, |
| 4836 | )) |
| 4837 | } |
| 4838 | } |
| 4839 | |
| 4840 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4841 | /// to the corresponding complex numbers in c, and store the results in dst. Each complex number is composed |
| 4842 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number |
| 4843 | /// `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4844 | /// |
| 4845 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fcmadd_pch) |
| 4846 | #[inline ] |
| 4847 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4848 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4849 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4850 | pub fn _mm256_fcmadd_pch(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 4851 | _mm256_mask3_fcmadd_pch(a, b, c, k:0xff) |
| 4852 | } |
| 4853 | |
| 4854 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4855 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4856 | /// copied from a when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4857 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4858 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4859 | /// |
| 4860 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fcmadd_pch) |
| 4861 | #[inline ] |
| 4862 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4863 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4864 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4865 | pub fn _mm256_mask_fcmadd_pch(a: __m256h, k: __mmask8, b: __m256h, c: __m256h) -> __m256h { |
| 4866 | unsafe { |
| 4867 | let r: __m256 = transmute(src:_mm256_mask3_fcmadd_pch(a, b, c, k)); // using `0xff` would have been fine here, but this is what CLang does |
| 4868 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 4869 | } |
| 4870 | } |
| 4871 | |
| 4872 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4873 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4874 | /// copied from c when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4875 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4876 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4877 | /// |
| 4878 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fcmadd_pch) |
| 4879 | #[inline ] |
| 4880 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4881 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4882 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4883 | pub fn _mm256_mask3_fcmadd_pch(a: __m256h, b: __m256h, c: __m256h, k: __mmask8) -> __m256h { |
| 4884 | unsafe { |
| 4885 | transmute(src:vfcmaddcph_mask3_256( |
| 4886 | a:transmute(a), |
| 4887 | b:transmute(b), |
| 4888 | c:transmute(src:c), |
| 4889 | k, |
| 4890 | )) |
| 4891 | } |
| 4892 | } |
| 4893 | |
| 4894 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4895 | /// to the corresponding complex numbers in c, and store the results in dst using zeromask k (the element is |
| 4896 | /// zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4897 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4898 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4899 | /// |
| 4900 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fcmadd_pch) |
| 4901 | #[inline ] |
| 4902 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 4903 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4904 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4905 | pub fn _mm256_maskz_fcmadd_pch(k: __mmask8, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 4906 | unsafe { |
| 4907 | transmute(src:vfcmaddcph_maskz_256( |
| 4908 | a:transmute(a), |
| 4909 | b:transmute(b), |
| 4910 | c:transmute(src:c), |
| 4911 | k, |
| 4912 | )) |
| 4913 | } |
| 4914 | } |
| 4915 | |
| 4916 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4917 | /// to the corresponding complex numbers in c, and store the results in dst. Each complex number is composed |
| 4918 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number |
| 4919 | /// `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4920 | /// |
| 4921 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fcmadd_pch) |
| 4922 | #[inline ] |
| 4923 | #[target_feature (enable = "avx512fp16" )] |
| 4924 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4925 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4926 | pub fn _mm512_fcmadd_pch(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4927 | _mm512_fcmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, b, c) |
| 4928 | } |
| 4929 | |
| 4930 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4931 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4932 | /// copied from a when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4933 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4934 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4935 | /// |
| 4936 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fcmadd_pch) |
| 4937 | #[inline ] |
| 4938 | #[target_feature (enable = "avx512fp16" )] |
| 4939 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4940 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4941 | pub fn _mm512_mask_fcmadd_pch(a: __m512h, k: __mmask16, b: __m512h, c: __m512h) -> __m512h { |
| 4942 | _mm512_mask_fcmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, k, b, c) |
| 4943 | } |
| 4944 | |
| 4945 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4946 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 4947 | /// copied from c when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4948 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4949 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4950 | /// |
| 4951 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fcmadd_pch) |
| 4952 | #[inline ] |
| 4953 | #[target_feature (enable = "avx512fp16" )] |
| 4954 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4955 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4956 | pub fn _mm512_mask3_fcmadd_pch(a: __m512h, b: __m512h, c: __m512h, k: __mmask16) -> __m512h { |
| 4957 | _mm512_mask3_fcmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(a, b, c, k) |
| 4958 | } |
| 4959 | |
| 4960 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4961 | /// to the corresponding complex numbers in c, and store the results in dst using zeromask k (the element is |
| 4962 | /// zeroed out when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 4963 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 4964 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4965 | /// |
| 4966 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fcmadd_pch) |
| 4967 | #[inline ] |
| 4968 | #[target_feature (enable = "avx512fp16" )] |
| 4969 | #[cfg_attr (test, assert_instr(vfcmaddcph))] |
| 4970 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4971 | pub fn _mm512_maskz_fcmadd_pch(k: __mmask16, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4972 | _mm512_maskz_fcmadd_round_pch::<_MM_FROUND_CUR_DIRECTION>(k, a, b, c) |
| 4973 | } |
| 4974 | |
| 4975 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 4976 | /// to the corresponding complex numbers in c, and store the results in dst. Each complex number is composed |
| 4977 | /// of two adjacent half-precision (16-bit) floating-point elements, which defines the complex number |
| 4978 | /// `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 4979 | /// |
| 4980 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 4981 | /// |
| 4982 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 4983 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 4984 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 4985 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 4986 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 4987 | /// |
| 4988 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fcmadd_round_pch) |
| 4989 | #[inline ] |
| 4990 | #[target_feature (enable = "avx512fp16" )] |
| 4991 | #[cfg_attr (test, assert_instr(vfcmaddcph, ROUNDING = 8))] |
| 4992 | #[rustc_legacy_const_generics (3)] |
| 4993 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 4994 | pub fn _mm512_fcmadd_round_pch<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 4995 | static_assert_rounding!(ROUNDING); |
| 4996 | _mm512_mask3_fcmadd_round_pch::<ROUNDING>(a, b, c, k:0xffff) |
| 4997 | } |
| 4998 | |
| 4999 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 5000 | /// to the corresponding complex numbers in c, and store the results in dst using writemask k (the element is |
| 5001 | /// copied from a when the corresponding mask bit is not set). Each complex number is composed of two adjacent |
| 5002 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5003 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5004 | /// |
| 5005 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5006 | /// |
| 5007 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5008 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5009 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5010 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5011 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5012 | /// |
| 5013 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fcmadd_round_pch) |
| 5014 | #[inline ] |
| 5015 | #[target_feature (enable = "avx512fp16" )] |
| 5016 | #[cfg_attr (test, assert_instr(vfcmaddcph, ROUNDING = 8))] |
| 5017 | #[rustc_legacy_const_generics (4)] |
| 5018 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5019 | pub fn _mm512_mask_fcmadd_round_pch<const ROUNDING: i32>( |
| 5020 | a: __m512h, |
| 5021 | k: __mmask16, |
| 5022 | b: __m512h, |
| 5023 | c: __m512h, |
| 5024 | ) -> __m512h { |
| 5025 | unsafe { |
| 5026 | static_assert_rounding!(ROUNDING); |
| 5027 | let r: __m512 = transmute(src:_mm512_mask3_fcmadd_round_pch::<ROUNDING>(a, b, c, k)); // using `0xffff` would have been fine here, but this is what CLang does |
| 5028 | transmute(src:simd_select_bitmask(m:k, yes:r, no:transmute(src:a))) |
| 5029 | } |
| 5030 | } |
| 5031 | |
| 5032 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 5033 | /// to the corresponding complex numbers in c using writemask k (the element is copied from c when the corresponding |
| 5034 | /// mask bit is not set), and store the results in dst. Each complex number is composed of two adjacent half-precision |
| 5035 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1`, or the complex |
| 5036 | /// conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5037 | /// |
| 5038 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5039 | /// |
| 5040 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5041 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5042 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5043 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5044 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5045 | /// |
| 5046 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fcmadd_round_pch) |
| 5047 | #[inline ] |
| 5048 | #[target_feature (enable = "avx512fp16" )] |
| 5049 | #[cfg_attr (test, assert_instr(vfcmaddcph, ROUNDING = 8))] |
| 5050 | #[rustc_legacy_const_generics (4)] |
| 5051 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5052 | pub fn _mm512_mask3_fcmadd_round_pch<const ROUNDING: i32>( |
| 5053 | a: __m512h, |
| 5054 | b: __m512h, |
| 5055 | c: __m512h, |
| 5056 | k: __mmask16, |
| 5057 | ) -> __m512h { |
| 5058 | unsafe { |
| 5059 | static_assert_rounding!(ROUNDING); |
| 5060 | transmute(src:vfcmaddcph_mask3_512( |
| 5061 | a:transmute(a), |
| 5062 | b:transmute(b), |
| 5063 | c:transmute(src:c), |
| 5064 | k, |
| 5065 | ROUNDING, |
| 5066 | )) |
| 5067 | } |
| 5068 | } |
| 5069 | |
| 5070 | /// Multiply packed complex numbers in a by the complex conjugates of packed complex numbers in b, accumulate |
| 5071 | /// to the corresponding complex numbers in c using zeromask k (the element is zeroed out when the corresponding |
| 5072 | /// mask bit is not set), and store the results in dst. Each complex number is composed of two adjacent half-precision |
| 5073 | /// (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1`, or the complex |
| 5074 | /// conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5075 | /// |
| 5076 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5077 | /// |
| 5078 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5079 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5080 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5081 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5082 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5083 | /// |
| 5084 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fcmadd_round_pch) |
| 5085 | #[inline ] |
| 5086 | #[target_feature (enable = "avx512fp16" )] |
| 5087 | #[cfg_attr (test, assert_instr(vfcmaddcph, ROUNDING = 8))] |
| 5088 | #[rustc_legacy_const_generics (4)] |
| 5089 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5090 | pub fn _mm512_maskz_fcmadd_round_pch<const ROUNDING: i32>( |
| 5091 | k: __mmask16, |
| 5092 | a: __m512h, |
| 5093 | b: __m512h, |
| 5094 | c: __m512h, |
| 5095 | ) -> __m512h { |
| 5096 | unsafe { |
| 5097 | static_assert_rounding!(ROUNDING); |
| 5098 | transmute(src:vfcmaddcph_maskz_512( |
| 5099 | a:transmute(a), |
| 5100 | b:transmute(b), |
| 5101 | c:transmute(src:c), |
| 5102 | k, |
| 5103 | ROUNDING, |
| 5104 | )) |
| 5105 | } |
| 5106 | } |
| 5107 | |
| 5108 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5109 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst, |
| 5110 | /// and copy the upper 6 packed elements from a to the upper elements of dst. Each complex number is |
| 5111 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 5112 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5113 | /// |
| 5114 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmadd_sch) |
| 5115 | #[inline ] |
| 5116 | #[target_feature (enable = "avx512fp16" )] |
| 5117 | #[cfg_attr (test, assert_instr(vfcmaddcsh))] |
| 5118 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5119 | pub fn _mm_fcmadd_sch(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5120 | _mm_fcmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, b, c) |
| 5121 | } |
| 5122 | |
| 5123 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5124 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst using |
| 5125 | /// writemask k (the element is copied from a when the corresponding mask bit is not set), and copy the upper |
| 5126 | /// 6 packed elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 5127 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5128 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5129 | /// |
| 5130 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmadd_sch) |
| 5131 | #[inline ] |
| 5132 | #[target_feature (enable = "avx512fp16" )] |
| 5133 | #[cfg_attr (test, assert_instr(vfcmaddcsh))] |
| 5134 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5135 | pub fn _mm_mask_fcmadd_sch(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 5136 | _mm_mask_fcmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, k, b, c) |
| 5137 | } |
| 5138 | |
| 5139 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5140 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst using |
| 5141 | /// writemask k (the element is copied from c when the corresponding mask bit is not set), and copy the upper |
| 5142 | /// 6 packed elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 5143 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5144 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5145 | /// |
| 5146 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fcmadd_sch) |
| 5147 | #[inline ] |
| 5148 | #[target_feature (enable = "avx512fp16" )] |
| 5149 | #[cfg_attr (test, assert_instr(vfcmaddcsh))] |
| 5150 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5151 | pub fn _mm_mask3_fcmadd_sch(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 5152 | _mm_mask3_fcmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(a, b, c, k) |
| 5153 | } |
| 5154 | |
| 5155 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5156 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst using |
| 5157 | /// zeromask k (the element is zeroed out when the corresponding mask bit is not set), and copy the upper |
| 5158 | /// 6 packed elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 5159 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5160 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5161 | /// |
| 5162 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmadd_sch) |
| 5163 | #[inline ] |
| 5164 | #[target_feature (enable = "avx512fp16" )] |
| 5165 | #[cfg_attr (test, assert_instr(vfcmaddcsh))] |
| 5166 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5167 | pub fn _mm_maskz_fcmadd_sch(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5168 | _mm_maskz_fcmadd_round_sch::<_MM_FROUND_CUR_DIRECTION>(k, a, b, c) |
| 5169 | } |
| 5170 | |
| 5171 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5172 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst, |
| 5173 | /// and copy the upper 6 packed elements from a to the upper elements of dst. Each complex number is |
| 5174 | /// composed of two adjacent half-precision (16-bit) floating-point elements, which defines the complex |
| 5175 | /// number `complex = vec.fp16[0] + i * vec.fp16[1]`, or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5176 | /// |
| 5177 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5178 | /// |
| 5179 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5180 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5181 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5182 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5183 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5184 | /// |
| 5185 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fcmadd_round_sch) |
| 5186 | #[inline ] |
| 5187 | #[target_feature (enable = "avx512fp16" )] |
| 5188 | #[cfg_attr (test, assert_instr(vfcmaddcsh, ROUNDING = 8))] |
| 5189 | #[rustc_legacy_const_generics (3)] |
| 5190 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5191 | pub fn _mm_fcmadd_round_sch<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5192 | unsafe { |
| 5193 | static_assert_rounding!(ROUNDING); |
| 5194 | transmute(src:vfcmaddcsh_mask( |
| 5195 | a:transmute(a), |
| 5196 | b:transmute(b), |
| 5197 | c:transmute(c), |
| 5198 | k:0xff, |
| 5199 | ROUNDING, |
| 5200 | )) |
| 5201 | } |
| 5202 | } |
| 5203 | |
| 5204 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5205 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst using |
| 5206 | /// writemask k (the element is copied from a when the corresponding mask bit is not set), and copy the upper |
| 5207 | /// 6 packed elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 5208 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5209 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5210 | /// |
| 5211 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5212 | /// |
| 5213 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5214 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5215 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5216 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5217 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5218 | /// |
| 5219 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fcmadd_round_sch) |
| 5220 | #[inline ] |
| 5221 | #[target_feature (enable = "avx512fp16" )] |
| 5222 | #[cfg_attr (test, assert_instr(vfcmaddcsh, ROUNDING = 8))] |
| 5223 | #[rustc_legacy_const_generics (4)] |
| 5224 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5225 | pub fn _mm_mask_fcmadd_round_sch<const ROUNDING: i32>( |
| 5226 | a: __m128h, |
| 5227 | k: __mmask8, |
| 5228 | b: __m128h, |
| 5229 | c: __m128h, |
| 5230 | ) -> __m128h { |
| 5231 | unsafe { |
| 5232 | static_assert_rounding!(ROUNDING); |
| 5233 | let a: __m128 = transmute(src:a); |
| 5234 | let r: __m128 = vfcmaddcsh_mask(a, b:transmute(b), c:transmute(src:c), k, ROUNDING); |
| 5235 | transmute(src:_mm_mask_move_ss(src:a, k, a, b:r)) |
| 5236 | } |
| 5237 | } |
| 5238 | |
| 5239 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5240 | /// accumulate to the lower complex number in c, and store the result in the lower elements of dst using |
| 5241 | /// writemask k (the element is copied from c when the corresponding mask bit is not set), and copy the upper |
| 5242 | /// 6 packed elements from a to the upper elements of dst. Each complex number is composed of two adjacent |
| 5243 | /// half-precision (16-bit) floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1]`, |
| 5244 | /// or the complex conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5245 | /// |
| 5246 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5247 | /// |
| 5248 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5249 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5250 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5251 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5252 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5253 | /// |
| 5254 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fcmadd_round_sch) |
| 5255 | #[inline ] |
| 5256 | #[target_feature (enable = "avx512fp16" )] |
| 5257 | #[cfg_attr (test, assert_instr(vfcmaddcsh, ROUNDING = 8))] |
| 5258 | #[rustc_legacy_const_generics (4)] |
| 5259 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5260 | pub fn _mm_mask3_fcmadd_round_sch<const ROUNDING: i32>( |
| 5261 | a: __m128h, |
| 5262 | b: __m128h, |
| 5263 | c: __m128h, |
| 5264 | k: __mmask8, |
| 5265 | ) -> __m128h { |
| 5266 | unsafe { |
| 5267 | static_assert_rounding!(ROUNDING); |
| 5268 | let c: __m128 = transmute(src:c); |
| 5269 | let r: __m128 = vfcmaddcsh_mask(a:transmute(a), b:transmute(src:b), c, k, ROUNDING); |
| 5270 | transmute(src:_mm_move_ss(a:c, b:r)) |
| 5271 | } |
| 5272 | } |
| 5273 | |
| 5274 | /// Multiply the lower complex number in a by the complex conjugate of the lower complex number in b, |
| 5275 | /// accumulate to the lower complex number in c using zeromask k (the element is zeroed out when the corresponding |
| 5276 | /// mask bit is not set), and store the result in the lower elements of dst, and copy the upper 6 packed elements |
| 5277 | /// from a to the upper elements of dst. Each complex number is composed of two adjacent half-precision (16-bit) |
| 5278 | /// floating-point elements, which defines the complex number `complex = vec.fp16[0] + i * vec.fp16[1`, or the complex |
| 5279 | /// conjugate `conjugate = vec.fp16[0] - i * vec.fp16[1]`. |
| 5280 | /// |
| 5281 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5282 | /// |
| 5283 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5284 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5285 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5286 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5287 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5288 | /// |
| 5289 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fcmadd_round_sch) |
| 5290 | #[inline ] |
| 5291 | #[target_feature (enable = "avx512fp16" )] |
| 5292 | #[cfg_attr (test, assert_instr(vfcmaddcsh, ROUNDING = 8))] |
| 5293 | #[rustc_legacy_const_generics (4)] |
| 5294 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5295 | pub fn _mm_maskz_fcmadd_round_sch<const ROUNDING: i32>( |
| 5296 | k: __mmask8, |
| 5297 | a: __m128h, |
| 5298 | b: __m128h, |
| 5299 | c: __m128h, |
| 5300 | ) -> __m128h { |
| 5301 | unsafe { |
| 5302 | static_assert_rounding!(ROUNDING); |
| 5303 | transmute(src:vfcmaddcsh_maskz( |
| 5304 | a:transmute(a), |
| 5305 | b:transmute(b), |
| 5306 | c:transmute(src:c), |
| 5307 | k, |
| 5308 | ROUNDING, |
| 5309 | )) |
| 5310 | } |
| 5311 | } |
| 5312 | |
| 5313 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5314 | /// result to packed elements in c, and store the results in dst. |
| 5315 | /// |
| 5316 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_ph) |
| 5317 | #[inline ] |
| 5318 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5319 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5320 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5321 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5322 | pub const fn _mm_fmadd_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5323 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 5324 | } |
| 5325 | |
| 5326 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5327 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5328 | /// from a when the corresponding mask bit is not set). |
| 5329 | /// |
| 5330 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_ph) |
| 5331 | #[inline ] |
| 5332 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5333 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5334 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5335 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5336 | pub const fn _mm_mask_fmadd_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 5337 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmadd_ph(a, b, c), no:a) } |
| 5338 | } |
| 5339 | |
| 5340 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5341 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5342 | /// from c when the corresponding mask bit is not set). |
| 5343 | /// |
| 5344 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_ph) |
| 5345 | #[inline ] |
| 5346 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5347 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5348 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5349 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5350 | pub const fn _mm_mask3_fmadd_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 5351 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmadd_ph(a, b, c), no:c) } |
| 5352 | } |
| 5353 | |
| 5354 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5355 | /// result to packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 5356 | /// out when the corresponding mask bit is not set). |
| 5357 | /// |
| 5358 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_ph) |
| 5359 | #[inline ] |
| 5360 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5361 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5362 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5363 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5364 | pub const fn _mm_maskz_fmadd_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5365 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmadd_ph(a, b, c), no:_mm_setzero_ph()) } |
| 5366 | } |
| 5367 | |
| 5368 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5369 | /// result to packed elements in c, and store the results in dst. |
| 5370 | /// |
| 5371 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmadd_ph) |
| 5372 | #[inline ] |
| 5373 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5374 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5375 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5376 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5377 | pub const fn _mm256_fmadd_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 5378 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 5379 | } |
| 5380 | |
| 5381 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5382 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5383 | /// from a when the corresponding mask bit is not set). |
| 5384 | /// |
| 5385 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmadd_ph) |
| 5386 | #[inline ] |
| 5387 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5388 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5389 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5390 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5391 | pub const fn _mm256_mask_fmadd_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 5392 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmadd_ph(a, b, c), no:a) } |
| 5393 | } |
| 5394 | |
| 5395 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5396 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5397 | /// from c when the corresponding mask bit is not set). |
| 5398 | /// |
| 5399 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fmadd_ph) |
| 5400 | #[inline ] |
| 5401 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5402 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5403 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5404 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5405 | pub const fn _mm256_mask3_fmadd_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 5406 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmadd_ph(a, b, c), no:c) } |
| 5407 | } |
| 5408 | |
| 5409 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5410 | /// result to packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 5411 | /// out when the corresponding mask bit is not set). |
| 5412 | /// |
| 5413 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmadd_ph) |
| 5414 | #[inline ] |
| 5415 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5416 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5417 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5418 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5419 | pub const fn _mm256_maskz_fmadd_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 5420 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmadd_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 5421 | } |
| 5422 | |
| 5423 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5424 | /// result to packed elements in c, and store the results in dst. |
| 5425 | /// |
| 5426 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmadd_ph) |
| 5427 | #[inline ] |
| 5428 | #[target_feature (enable = "avx512fp16" )] |
| 5429 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5430 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5431 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5432 | pub const fn _mm512_fmadd_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 5433 | unsafe { simd_fma(x:a, y:b, z:c) } |
| 5434 | } |
| 5435 | |
| 5436 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5437 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5438 | /// from a when the corresponding mask bit is not set). |
| 5439 | /// |
| 5440 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmadd_ph) |
| 5441 | #[inline ] |
| 5442 | #[target_feature (enable = "avx512fp16" )] |
| 5443 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5444 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5445 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5446 | pub const fn _mm512_mask_fmadd_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 5447 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmadd_ph(a, b, c), no:a) } |
| 5448 | } |
| 5449 | |
| 5450 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5451 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5452 | /// from c when the corresponding mask bit is not set). |
| 5453 | /// |
| 5454 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmadd_ph) |
| 5455 | #[inline ] |
| 5456 | #[target_feature (enable = "avx512fp16" )] |
| 5457 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5458 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5459 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5460 | pub const fn _mm512_mask3_fmadd_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 5461 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmadd_ph(a, b, c), no:c) } |
| 5462 | } |
| 5463 | |
| 5464 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5465 | /// result to packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 5466 | /// out when the corresponding mask bit is not set). |
| 5467 | /// |
| 5468 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmadd_ph) |
| 5469 | #[inline ] |
| 5470 | #[target_feature (enable = "avx512fp16" )] |
| 5471 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5472 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5473 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5474 | pub const fn _mm512_maskz_fmadd_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 5475 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmadd_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 5476 | } |
| 5477 | |
| 5478 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5479 | /// result to packed elements in c, and store the results in dst. |
| 5480 | /// |
| 5481 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5482 | /// |
| 5483 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5484 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5485 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5486 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5487 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5488 | /// |
| 5489 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmadd_round_ph) |
| 5490 | #[inline ] |
| 5491 | #[target_feature (enable = "avx512fp16" )] |
| 5492 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5493 | #[rustc_legacy_const_generics (3)] |
| 5494 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5495 | pub fn _mm512_fmadd_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 5496 | unsafe { |
| 5497 | static_assert_rounding!(ROUNDING); |
| 5498 | vfmaddph_512(a, b, c, ROUNDING) |
| 5499 | } |
| 5500 | } |
| 5501 | |
| 5502 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5503 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5504 | /// from a when the corresponding mask bit is not set). |
| 5505 | /// |
| 5506 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5507 | /// |
| 5508 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5509 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5510 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5511 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5512 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5513 | /// |
| 5514 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmadd_round_ph) |
| 5515 | #[inline ] |
| 5516 | #[target_feature (enable = "avx512fp16" )] |
| 5517 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5518 | #[rustc_legacy_const_generics (4)] |
| 5519 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5520 | pub fn _mm512_mask_fmadd_round_ph<const ROUNDING: i32>( |
| 5521 | a: __m512h, |
| 5522 | k: __mmask32, |
| 5523 | b: __m512h, |
| 5524 | c: __m512h, |
| 5525 | ) -> __m512h { |
| 5526 | unsafe { |
| 5527 | static_assert_rounding!(ROUNDING); |
| 5528 | simd_select_bitmask(m:k, yes:_mm512_fmadd_round_ph::<ROUNDING>(a, b, c), no:a) |
| 5529 | } |
| 5530 | } |
| 5531 | |
| 5532 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5533 | /// result to packed elements in c, and store the results in dst using writemask k (the element is copied |
| 5534 | /// from c when the corresponding mask bit is not set). |
| 5535 | /// |
| 5536 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5537 | /// |
| 5538 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5539 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5540 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5541 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5542 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5543 | /// |
| 5544 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmadd_round_ph) |
| 5545 | #[inline ] |
| 5546 | #[target_feature (enable = "avx512fp16" )] |
| 5547 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5548 | #[rustc_legacy_const_generics (4)] |
| 5549 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5550 | pub fn _mm512_mask3_fmadd_round_ph<const ROUNDING: i32>( |
| 5551 | a: __m512h, |
| 5552 | b: __m512h, |
| 5553 | c: __m512h, |
| 5554 | k: __mmask32, |
| 5555 | ) -> __m512h { |
| 5556 | unsafe { |
| 5557 | static_assert_rounding!(ROUNDING); |
| 5558 | simd_select_bitmask(m:k, yes:_mm512_fmadd_round_ph::<ROUNDING>(a, b, c), no:c) |
| 5559 | } |
| 5560 | } |
| 5561 | |
| 5562 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, add the intermediate |
| 5563 | /// result to packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 5564 | /// out when the corresponding mask bit is not set). |
| 5565 | /// |
| 5566 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5567 | /// |
| 5568 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5569 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5570 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5571 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5572 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5573 | /// |
| 5574 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmadd_round_ph) |
| 5575 | #[inline ] |
| 5576 | #[target_feature (enable = "avx512fp16" )] |
| 5577 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5578 | #[rustc_legacy_const_generics (4)] |
| 5579 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5580 | pub fn _mm512_maskz_fmadd_round_ph<const ROUNDING: i32>( |
| 5581 | k: __mmask32, |
| 5582 | a: __m512h, |
| 5583 | b: __m512h, |
| 5584 | c: __m512h, |
| 5585 | ) -> __m512h { |
| 5586 | unsafe { |
| 5587 | static_assert_rounding!(ROUNDING); |
| 5588 | simd_select_bitmask( |
| 5589 | m:k, |
| 5590 | yes:_mm512_fmadd_round_ph::<ROUNDING>(a, b, c), |
| 5591 | no:_mm512_setzero_ph(), |
| 5592 | ) |
| 5593 | } |
| 5594 | } |
| 5595 | |
| 5596 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5597 | /// result to the lower element in c. Store the result in the lower element of dst, and copy the upper |
| 5598 | /// 7 packed elements from a to the upper elements of dst. |
| 5599 | /// |
| 5600 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_sh) |
| 5601 | #[inline ] |
| 5602 | #[target_feature (enable = "avx512fp16" )] |
| 5603 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5604 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5605 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5606 | pub const fn _mm_fmadd_sh(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5607 | unsafe { |
| 5608 | let extracta: f16 = simd_extract!(a, 0); |
| 5609 | let extractb: f16 = simd_extract!(b, 0); |
| 5610 | let extractc: f16 = simd_extract!(c, 0); |
| 5611 | let r: f16 = fmaf16(a:extracta, b:extractb, c:extractc); |
| 5612 | simd_insert!(a, 0, r) |
| 5613 | } |
| 5614 | } |
| 5615 | |
| 5616 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5617 | /// result to the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 5618 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 5619 | /// upper elements of dst. |
| 5620 | /// |
| 5621 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_sh) |
| 5622 | #[inline ] |
| 5623 | #[target_feature (enable = "avx512fp16" )] |
| 5624 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5625 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5626 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5627 | pub const fn _mm_mask_fmadd_sh(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 5628 | unsafe { |
| 5629 | let mut fmadd: f16 = simd_extract!(a, 0); |
| 5630 | if k & 1 != 0 { |
| 5631 | let extractb: f16 = simd_extract!(b, 0); |
| 5632 | let extractc: f16 = simd_extract!(c, 0); |
| 5633 | fmadd = fmaf16(a:fmadd, b:extractb, c:extractc); |
| 5634 | } |
| 5635 | simd_insert!(a, 0, fmadd) |
| 5636 | } |
| 5637 | } |
| 5638 | |
| 5639 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5640 | /// result to the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 5641 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the |
| 5642 | /// upper elements of dst. |
| 5643 | /// |
| 5644 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_sh) |
| 5645 | #[inline ] |
| 5646 | #[target_feature (enable = "avx512fp16" )] |
| 5647 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5648 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5649 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5650 | pub const fn _mm_mask3_fmadd_sh(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 5651 | unsafe { |
| 5652 | let mut fmadd: f16 = simd_extract!(c, 0); |
| 5653 | if k & 1 != 0 { |
| 5654 | let extracta: f16 = simd_extract!(a, 0); |
| 5655 | let extractb: f16 = simd_extract!(b, 0); |
| 5656 | fmadd = fmaf16(a:extracta, b:extractb, c:fmadd); |
| 5657 | } |
| 5658 | simd_insert!(c, 0, fmadd) |
| 5659 | } |
| 5660 | } |
| 5661 | |
| 5662 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5663 | /// result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 5664 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 5665 | /// upper elements of dst. |
| 5666 | /// |
| 5667 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_sh) |
| 5668 | #[inline ] |
| 5669 | #[target_feature (enable = "avx512fp16" )] |
| 5670 | #[cfg_attr (test, assert_instr(vfmadd))] |
| 5671 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5672 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5673 | pub const fn _mm_maskz_fmadd_sh(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5674 | unsafe { |
| 5675 | let mut fmadd: f16 = 0.0; |
| 5676 | if k & 1 != 0 { |
| 5677 | let extracta: f16 = simd_extract!(a, 0); |
| 5678 | let extractb: f16 = simd_extract!(b, 0); |
| 5679 | let extractc: f16 = simd_extract!(c, 0); |
| 5680 | fmadd = fmaf16(a:extracta, b:extractb, c:extractc); |
| 5681 | } |
| 5682 | simd_insert!(a, 0, fmadd) |
| 5683 | } |
| 5684 | } |
| 5685 | |
| 5686 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5687 | /// result to the lower element in c. Store the result in the lower element of dst, and copy the upper |
| 5688 | /// 7 packed elements from a to the upper elements of dst. |
| 5689 | /// |
| 5690 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5691 | /// |
| 5692 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5693 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5694 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5695 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5696 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5697 | /// |
| 5698 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_round_sh) |
| 5699 | #[inline ] |
| 5700 | #[target_feature (enable = "avx512fp16" )] |
| 5701 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5702 | #[rustc_legacy_const_generics (3)] |
| 5703 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5704 | pub fn _mm_fmadd_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5705 | unsafe { |
| 5706 | static_assert_rounding!(ROUNDING); |
| 5707 | let extracta: f16 = simd_extract!(a, 0); |
| 5708 | let extractb: f16 = simd_extract!(b, 0); |
| 5709 | let extractc: f16 = simd_extract!(c, 0); |
| 5710 | let r: f16 = vfmaddsh(a:extracta, b:extractb, c:extractc, ROUNDING); |
| 5711 | simd_insert!(a, 0, r) |
| 5712 | } |
| 5713 | } |
| 5714 | |
| 5715 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5716 | /// result to the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 5717 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 5718 | /// upper elements of dst. |
| 5719 | /// |
| 5720 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5721 | /// |
| 5722 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5723 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5724 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5725 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5726 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5727 | /// |
| 5728 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmadd_round_sh) |
| 5729 | #[inline ] |
| 5730 | #[target_feature (enable = "avx512fp16" )] |
| 5731 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5732 | #[rustc_legacy_const_generics (4)] |
| 5733 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5734 | pub fn _mm_mask_fmadd_round_sh<const ROUNDING: i32>( |
| 5735 | a: __m128h, |
| 5736 | k: __mmask8, |
| 5737 | b: __m128h, |
| 5738 | c: __m128h, |
| 5739 | ) -> __m128h { |
| 5740 | unsafe { |
| 5741 | static_assert_rounding!(ROUNDING); |
| 5742 | let mut fmadd: f16 = simd_extract!(a, 0); |
| 5743 | if k & 1 != 0 { |
| 5744 | let extractb: f16 = simd_extract!(b, 0); |
| 5745 | let extractc: f16 = simd_extract!(c, 0); |
| 5746 | fmadd = vfmaddsh(a:fmadd, b:extractb, c:extractc, ROUNDING); |
| 5747 | } |
| 5748 | simd_insert!(a, 0, fmadd) |
| 5749 | } |
| 5750 | } |
| 5751 | |
| 5752 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5753 | /// result to the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 5754 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the |
| 5755 | /// upper elements of dst. |
| 5756 | /// |
| 5757 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5758 | /// |
| 5759 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5760 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5761 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5762 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5763 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5764 | /// |
| 5765 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmadd_round_sh) |
| 5766 | #[inline ] |
| 5767 | #[target_feature (enable = "avx512fp16" )] |
| 5768 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5769 | #[rustc_legacy_const_generics (4)] |
| 5770 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5771 | pub fn _mm_mask3_fmadd_round_sh<const ROUNDING: i32>( |
| 5772 | a: __m128h, |
| 5773 | b: __m128h, |
| 5774 | c: __m128h, |
| 5775 | k: __mmask8, |
| 5776 | ) -> __m128h { |
| 5777 | unsafe { |
| 5778 | static_assert_rounding!(ROUNDING); |
| 5779 | let mut fmadd: f16 = simd_extract!(c, 0); |
| 5780 | if k & 1 != 0 { |
| 5781 | let extracta: f16 = simd_extract!(a, 0); |
| 5782 | let extractb: f16 = simd_extract!(b, 0); |
| 5783 | fmadd = vfmaddsh(a:extracta, b:extractb, c:fmadd, ROUNDING); |
| 5784 | } |
| 5785 | simd_insert!(c, 0, fmadd) |
| 5786 | } |
| 5787 | } |
| 5788 | |
| 5789 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and add the intermediate |
| 5790 | /// result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 5791 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 5792 | /// upper elements of dst. |
| 5793 | /// |
| 5794 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5795 | /// |
| 5796 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5797 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 5798 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 5799 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 5800 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5801 | /// |
| 5802 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmadd_round_sh) |
| 5803 | #[inline ] |
| 5804 | #[target_feature (enable = "avx512fp16" )] |
| 5805 | #[cfg_attr (test, assert_instr(vfmadd, ROUNDING = 8))] |
| 5806 | #[rustc_legacy_const_generics (4)] |
| 5807 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5808 | pub fn _mm_maskz_fmadd_round_sh<const ROUNDING: i32>( |
| 5809 | k: __mmask8, |
| 5810 | a: __m128h, |
| 5811 | b: __m128h, |
| 5812 | c: __m128h, |
| 5813 | ) -> __m128h { |
| 5814 | unsafe { |
| 5815 | static_assert_rounding!(ROUNDING); |
| 5816 | let mut fmadd: f16 = 0.0; |
| 5817 | if k & 1 != 0 { |
| 5818 | let extracta: f16 = simd_extract!(a, 0); |
| 5819 | let extractb: f16 = simd_extract!(b, 0); |
| 5820 | let extractc: f16 = simd_extract!(c, 0); |
| 5821 | fmadd = vfmaddsh(a:extracta, b:extractb, c:extractc, ROUNDING); |
| 5822 | } |
| 5823 | simd_insert!(a, 0, fmadd) |
| 5824 | } |
| 5825 | } |
| 5826 | |
| 5827 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5828 | /// in c from the intermediate result, and store the results in dst. |
| 5829 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 5830 | /// |
| 5831 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_ph) |
| 5832 | #[inline ] |
| 5833 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5834 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5835 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5836 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5837 | pub const fn _mm_fmsub_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5838 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 5839 | } |
| 5840 | |
| 5841 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5842 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5843 | /// from a when the corresponding mask bit is not set). |
| 5844 | /// |
| 5845 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmsub_ph) |
| 5846 | #[inline ] |
| 5847 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5848 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5849 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5850 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5851 | pub const fn _mm_mask_fmsub_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 5852 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsub_ph(a, b, c), no:a) } |
| 5853 | } |
| 5854 | |
| 5855 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5856 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5857 | /// from c when the corresponding mask bit is not set). |
| 5858 | /// |
| 5859 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmsub_ph) |
| 5860 | #[inline ] |
| 5861 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5862 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5863 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5864 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5865 | pub const fn _mm_mask3_fmsub_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 5866 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsub_ph(a, b, c), no:c) } |
| 5867 | } |
| 5868 | |
| 5869 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5870 | /// in c from the intermediate result, and store the results in dst using zeromask k (the element is zeroed |
| 5871 | /// out when the corresponding mask bit is not set). |
| 5872 | /// |
| 5873 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmsub_ph) |
| 5874 | #[inline ] |
| 5875 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5876 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5877 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5878 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5879 | pub const fn _mm_maskz_fmsub_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 5880 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsub_ph(a, b, c), no:_mm_setzero_ph()) } |
| 5881 | } |
| 5882 | |
| 5883 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5884 | /// in c from the intermediate result, and store the results in dst. |
| 5885 | /// |
| 5886 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsub_ph) |
| 5887 | #[inline ] |
| 5888 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5889 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5890 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5891 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5892 | pub const fn _mm256_fmsub_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 5893 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 5894 | } |
| 5895 | |
| 5896 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5897 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5898 | /// from a when the corresponding mask bit is not set). |
| 5899 | /// |
| 5900 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmsub_ph) |
| 5901 | #[inline ] |
| 5902 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5903 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5904 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5905 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5906 | pub const fn _mm256_mask_fmsub_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 5907 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsub_ph(a, b, c), no:a) } |
| 5908 | } |
| 5909 | |
| 5910 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5911 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5912 | /// from c when the corresponding mask bit is not set). |
| 5913 | /// |
| 5914 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fmsub_ph) |
| 5915 | #[inline ] |
| 5916 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5917 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5918 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5919 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5920 | pub const fn _mm256_mask3_fmsub_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 5921 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsub_ph(a, b, c), no:c) } |
| 5922 | } |
| 5923 | |
| 5924 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5925 | /// in c from the intermediate result, and store the results in dst using zeromask k (the element is zeroed |
| 5926 | /// out when the corresponding mask bit is not set). |
| 5927 | /// |
| 5928 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmsub_ph) |
| 5929 | #[inline ] |
| 5930 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 5931 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5932 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5933 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5934 | pub const fn _mm256_maskz_fmsub_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 5935 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsub_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 5936 | } |
| 5937 | |
| 5938 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5939 | /// in c from the intermediate result, and store the results in dst. |
| 5940 | /// |
| 5941 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmsub_ph) |
| 5942 | #[inline ] |
| 5943 | #[target_feature (enable = "avx512fp16" )] |
| 5944 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5945 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5946 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5947 | pub const fn _mm512_fmsub_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 5948 | unsafe { simd_fma(x:a, y:b, z:simd_neg(c)) } |
| 5949 | } |
| 5950 | |
| 5951 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5952 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5953 | /// from a when the corresponding mask bit is not set). |
| 5954 | /// |
| 5955 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmsub_ph) |
| 5956 | #[inline ] |
| 5957 | #[target_feature (enable = "avx512fp16" )] |
| 5958 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5959 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5960 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5961 | pub const fn _mm512_mask_fmsub_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 5962 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsub_ph(a, b, c), no:a) } |
| 5963 | } |
| 5964 | |
| 5965 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5966 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 5967 | /// from c when the corresponding mask bit is not set). |
| 5968 | /// |
| 5969 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmsub_ph) |
| 5970 | #[inline ] |
| 5971 | #[target_feature (enable = "avx512fp16" )] |
| 5972 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5973 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5974 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5975 | pub const fn _mm512_mask3_fmsub_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 5976 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsub_ph(a, b, c), no:c) } |
| 5977 | } |
| 5978 | |
| 5979 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5980 | /// in c from the intermediate result, and store the results in dst using zeromask k (the element is zeroed |
| 5981 | /// out when the corresponding mask bit is not set). |
| 5982 | /// |
| 5983 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmsub_ph) |
| 5984 | #[inline ] |
| 5985 | #[target_feature (enable = "avx512fp16" )] |
| 5986 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 5987 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 5988 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 5989 | pub const fn _mm512_maskz_fmsub_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 5990 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsub_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 5991 | } |
| 5992 | |
| 5993 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 5994 | /// in c from the intermediate result, and store the results in dst. |
| 5995 | /// |
| 5996 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 5997 | /// |
| 5998 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 5999 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6000 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6001 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6002 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6003 | /// |
| 6004 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmsub_round_ph) |
| 6005 | #[inline ] |
| 6006 | #[target_feature (enable = "avx512fp16" )] |
| 6007 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6008 | #[rustc_legacy_const_generics (3)] |
| 6009 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6010 | pub fn _mm512_fmsub_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 6011 | unsafe { |
| 6012 | static_assert_rounding!(ROUNDING); |
| 6013 | vfmaddph_512(a, b, c:simd_neg(c), ROUNDING) |
| 6014 | } |
| 6015 | } |
| 6016 | |
| 6017 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6018 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 6019 | /// from a when the corresponding mask bit is not set). |
| 6020 | /// |
| 6021 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6022 | /// |
| 6023 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6024 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6025 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6026 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6027 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6028 | /// |
| 6029 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmsub_round_ph) |
| 6030 | #[inline ] |
| 6031 | #[target_feature (enable = "avx512fp16" )] |
| 6032 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6033 | #[rustc_legacy_const_generics (4)] |
| 6034 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6035 | pub fn _mm512_mask_fmsub_round_ph<const ROUNDING: i32>( |
| 6036 | a: __m512h, |
| 6037 | k: __mmask32, |
| 6038 | b: __m512h, |
| 6039 | c: __m512h, |
| 6040 | ) -> __m512h { |
| 6041 | unsafe { |
| 6042 | static_assert_rounding!(ROUNDING); |
| 6043 | simd_select_bitmask(m:k, yes:_mm512_fmsub_round_ph::<ROUNDING>(a, b, c), no:a) |
| 6044 | } |
| 6045 | } |
| 6046 | |
| 6047 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6048 | /// in c from the intermediate result, and store the results in dst using writemask k (the element is copied |
| 6049 | /// from c when the corresponding mask bit is not set). |
| 6050 | /// |
| 6051 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6052 | /// |
| 6053 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6054 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6055 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6056 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6057 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6058 | /// |
| 6059 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmsub_round_ph) |
| 6060 | #[inline ] |
| 6061 | #[target_feature (enable = "avx512fp16" )] |
| 6062 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6063 | #[rustc_legacy_const_generics (4)] |
| 6064 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6065 | pub fn _mm512_mask3_fmsub_round_ph<const ROUNDING: i32>( |
| 6066 | a: __m512h, |
| 6067 | b: __m512h, |
| 6068 | c: __m512h, |
| 6069 | k: __mmask32, |
| 6070 | ) -> __m512h { |
| 6071 | unsafe { |
| 6072 | static_assert_rounding!(ROUNDING); |
| 6073 | simd_select_bitmask(m:k, yes:_mm512_fmsub_round_ph::<ROUNDING>(a, b, c), no:c) |
| 6074 | } |
| 6075 | } |
| 6076 | |
| 6077 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6078 | /// in c from the intermediate result, and store the results in dst using zeromask k (the element is zeroed |
| 6079 | /// out when the corresponding mask bit is not set). |
| 6080 | /// |
| 6081 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6082 | /// |
| 6083 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6084 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6085 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6086 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6087 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6088 | /// |
| 6089 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmsub_round_ph) |
| 6090 | #[inline ] |
| 6091 | #[target_feature (enable = "avx512fp16" )] |
| 6092 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6093 | #[rustc_legacy_const_generics (4)] |
| 6094 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6095 | pub fn _mm512_maskz_fmsub_round_ph<const ROUNDING: i32>( |
| 6096 | k: __mmask32, |
| 6097 | a: __m512h, |
| 6098 | b: __m512h, |
| 6099 | c: __m512h, |
| 6100 | ) -> __m512h { |
| 6101 | unsafe { |
| 6102 | static_assert_rounding!(ROUNDING); |
| 6103 | simd_select_bitmask( |
| 6104 | m:k, |
| 6105 | yes:_mm512_fmsub_round_ph::<ROUNDING>(a, b, c), |
| 6106 | no:_mm512_setzero_ph(), |
| 6107 | ) |
| 6108 | } |
| 6109 | } |
| 6110 | |
| 6111 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6112 | /// in c from the intermediate result. Store the result in the lower element of dst, and copy the upper |
| 6113 | /// 7 packed elements from a to the upper elements of dst. |
| 6114 | /// |
| 6115 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_sh) |
| 6116 | #[inline ] |
| 6117 | #[target_feature (enable = "avx512fp16" )] |
| 6118 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 6119 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6120 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6121 | pub const fn _mm_fmsub_sh(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6122 | unsafe { |
| 6123 | let extracta: f16 = simd_extract!(a, 0); |
| 6124 | let extractb: f16 = simd_extract!(b, 0); |
| 6125 | let extractc: f16 = simd_extract!(c, 0); |
| 6126 | let r: f16 = fmaf16(a:extracta, b:extractb, -extractc); |
| 6127 | simd_insert!(a, 0, r) |
| 6128 | } |
| 6129 | } |
| 6130 | |
| 6131 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6132 | /// in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element |
| 6133 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 6134 | /// upper elements of dst. |
| 6135 | /// |
| 6136 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmsub_sh) |
| 6137 | #[inline ] |
| 6138 | #[target_feature (enable = "avx512fp16" )] |
| 6139 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 6140 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6141 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6142 | pub const fn _mm_mask_fmsub_sh(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 6143 | unsafe { |
| 6144 | let mut fmsub: f16 = simd_extract!(a, 0); |
| 6145 | if k & 1 != 0 { |
| 6146 | let extractb: f16 = simd_extract!(b, 0); |
| 6147 | let extractc: f16 = simd_extract!(c, 0); |
| 6148 | fmsub = fmaf16(a:fmsub, b:extractb, -extractc); |
| 6149 | } |
| 6150 | simd_insert!(a, 0, fmsub) |
| 6151 | } |
| 6152 | } |
| 6153 | |
| 6154 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6155 | /// in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element |
| 6156 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the |
| 6157 | /// upper elements of dst. |
| 6158 | /// |
| 6159 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmsub_sh) |
| 6160 | #[inline ] |
| 6161 | #[target_feature (enable = "avx512fp16" )] |
| 6162 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 6163 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6164 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6165 | pub const fn _mm_mask3_fmsub_sh(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 6166 | unsafe { |
| 6167 | let mut fmsub: f16 = simd_extract!(c, 0); |
| 6168 | if k & 1 != 0 { |
| 6169 | let extracta: f16 = simd_extract!(a, 0); |
| 6170 | let extractb: f16 = simd_extract!(b, 0); |
| 6171 | fmsub = fmaf16(a:extracta, b:extractb, -fmsub); |
| 6172 | } |
| 6173 | simd_insert!(c, 0, fmsub) |
| 6174 | } |
| 6175 | } |
| 6176 | |
| 6177 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6178 | /// in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element |
| 6179 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 6180 | /// upper elements of dst. |
| 6181 | /// |
| 6182 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmsub_sh) |
| 6183 | #[inline ] |
| 6184 | #[target_feature (enable = "avx512fp16" )] |
| 6185 | #[cfg_attr (test, assert_instr(vfmsub))] |
| 6186 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6187 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6188 | pub const fn _mm_maskz_fmsub_sh(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6189 | unsafe { |
| 6190 | let mut fmsub: f16 = 0.0; |
| 6191 | if k & 1 != 0 { |
| 6192 | let extracta: f16 = simd_extract!(a, 0); |
| 6193 | let extractb: f16 = simd_extract!(b, 0); |
| 6194 | let extractc: f16 = simd_extract!(c, 0); |
| 6195 | fmsub = fmaf16(a:extracta, b:extractb, -extractc); |
| 6196 | } |
| 6197 | simd_insert!(a, 0, fmsub) |
| 6198 | } |
| 6199 | } |
| 6200 | |
| 6201 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6202 | /// in c from the intermediate result. Store the result in the lower element of dst, and copy the upper |
| 6203 | /// 7 packed elements from a to the upper elements of dst. |
| 6204 | /// |
| 6205 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6206 | /// |
| 6207 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6208 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6209 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6210 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6211 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6212 | /// |
| 6213 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_round_sh) |
| 6214 | #[inline ] |
| 6215 | #[target_feature (enable = "avx512fp16" )] |
| 6216 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6217 | #[rustc_legacy_const_generics (3)] |
| 6218 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6219 | pub fn _mm_fmsub_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6220 | unsafe { |
| 6221 | static_assert_rounding!(ROUNDING); |
| 6222 | let extracta: f16 = simd_extract!(a, 0); |
| 6223 | let extractb: f16 = simd_extract!(b, 0); |
| 6224 | let extractc: f16 = simd_extract!(c, 0); |
| 6225 | let r: f16 = vfmaddsh(a:extracta, b:extractb, -extractc, ROUNDING); |
| 6226 | simd_insert!(a, 0, r) |
| 6227 | } |
| 6228 | } |
| 6229 | |
| 6230 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6231 | /// in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element |
| 6232 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 6233 | /// upper elements of dst. |
| 6234 | /// |
| 6235 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6236 | /// |
| 6237 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6238 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6239 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6240 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6241 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6242 | /// |
| 6243 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmsub_round_sh) |
| 6244 | #[inline ] |
| 6245 | #[target_feature (enable = "avx512fp16" )] |
| 6246 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6247 | #[rustc_legacy_const_generics (4)] |
| 6248 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6249 | pub fn _mm_mask_fmsub_round_sh<const ROUNDING: i32>( |
| 6250 | a: __m128h, |
| 6251 | k: __mmask8, |
| 6252 | b: __m128h, |
| 6253 | c: __m128h, |
| 6254 | ) -> __m128h { |
| 6255 | unsafe { |
| 6256 | static_assert_rounding!(ROUNDING); |
| 6257 | let mut fmsub: f16 = simd_extract!(a, 0); |
| 6258 | if k & 1 != 0 { |
| 6259 | let extractb: f16 = simd_extract!(b, 0); |
| 6260 | let extractc: f16 = simd_extract!(c, 0); |
| 6261 | fmsub = vfmaddsh(a:fmsub, b:extractb, -extractc, ROUNDING); |
| 6262 | } |
| 6263 | simd_insert!(a, 0, fmsub) |
| 6264 | } |
| 6265 | } |
| 6266 | |
| 6267 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6268 | /// in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element |
| 6269 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the |
| 6270 | /// upper elements of dst. |
| 6271 | /// |
| 6272 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6273 | /// |
| 6274 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6275 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6276 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6277 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6278 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6279 | /// |
| 6280 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmsub_round_sh) |
| 6281 | #[inline ] |
| 6282 | #[target_feature (enable = "avx512fp16" )] |
| 6283 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6284 | #[rustc_legacy_const_generics (4)] |
| 6285 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6286 | pub fn _mm_mask3_fmsub_round_sh<const ROUNDING: i32>( |
| 6287 | a: __m128h, |
| 6288 | b: __m128h, |
| 6289 | c: __m128h, |
| 6290 | k: __mmask8, |
| 6291 | ) -> __m128h { |
| 6292 | unsafe { |
| 6293 | static_assert_rounding!(ROUNDING); |
| 6294 | let mut fmsub: f16 = simd_extract!(c, 0); |
| 6295 | if k & 1 != 0 { |
| 6296 | let extracta: f16 = simd_extract!(a, 0); |
| 6297 | let extractb: f16 = simd_extract!(b, 0); |
| 6298 | fmsub = vfmaddsh(a:extracta, b:extractb, -fmsub, ROUNDING); |
| 6299 | } |
| 6300 | simd_insert!(c, 0, fmsub) |
| 6301 | } |
| 6302 | } |
| 6303 | |
| 6304 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract packed elements |
| 6305 | /// in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element |
| 6306 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 6307 | /// upper elements of dst. |
| 6308 | /// |
| 6309 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmsub_round_sh) |
| 6310 | #[inline ] |
| 6311 | #[target_feature (enable = "avx512fp16" )] |
| 6312 | #[cfg_attr (test, assert_instr(vfmsub, ROUNDING = 8))] |
| 6313 | #[rustc_legacy_const_generics (4)] |
| 6314 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6315 | pub fn _mm_maskz_fmsub_round_sh<const ROUNDING: i32>( |
| 6316 | k: __mmask8, |
| 6317 | a: __m128h, |
| 6318 | b: __m128h, |
| 6319 | c: __m128h, |
| 6320 | ) -> __m128h { |
| 6321 | unsafe { |
| 6322 | static_assert_rounding!(ROUNDING); |
| 6323 | let mut fmsub: f16 = 0.0; |
| 6324 | if k & 1 != 0 { |
| 6325 | let extracta: f16 = simd_extract!(a, 0); |
| 6326 | let extractb: f16 = simd_extract!(b, 0); |
| 6327 | let extractc: f16 = simd_extract!(c, 0); |
| 6328 | fmsub = vfmaddsh(a:extracta, b:extractb, -extractc, ROUNDING); |
| 6329 | } |
| 6330 | simd_insert!(a, 0, fmsub) |
| 6331 | } |
| 6332 | } |
| 6333 | |
| 6334 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6335 | /// result from packed elements in c, and store the results in dst. |
| 6336 | /// |
| 6337 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_ph) |
| 6338 | #[inline ] |
| 6339 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6340 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6341 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6342 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6343 | pub const fn _mm_fnmadd_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6344 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 6345 | } |
| 6346 | |
| 6347 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6348 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6349 | /// from a when the corresponding mask bit is not set). |
| 6350 | /// |
| 6351 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmadd_ph) |
| 6352 | #[inline ] |
| 6353 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6354 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6355 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6356 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6357 | pub const fn _mm_mask_fnmadd_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 6358 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmadd_ph(a, b, c), no:a) } |
| 6359 | } |
| 6360 | |
| 6361 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6362 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6363 | /// from c when the corresponding mask bit is not set). |
| 6364 | /// |
| 6365 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmadd_ph) |
| 6366 | #[inline ] |
| 6367 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6368 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6369 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6370 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6371 | pub const fn _mm_mask3_fnmadd_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 6372 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmadd_ph(a, b, c), no:c) } |
| 6373 | } |
| 6374 | |
| 6375 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6376 | /// result from packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 6377 | /// out when the corresponding mask bit is not set). |
| 6378 | /// |
| 6379 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmadd_ph) |
| 6380 | #[inline ] |
| 6381 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6382 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6383 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6384 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6385 | pub const fn _mm_maskz_fnmadd_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6386 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmadd_ph(a, b, c), no:_mm_setzero_ph()) } |
| 6387 | } |
| 6388 | |
| 6389 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6390 | /// result from packed elements in c, and store the results in dst. |
| 6391 | /// |
| 6392 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmadd_ph) |
| 6393 | #[inline ] |
| 6394 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6395 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6396 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6397 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6398 | pub const fn _mm256_fnmadd_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 6399 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 6400 | } |
| 6401 | |
| 6402 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6403 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6404 | /// from a when the corresponding mask bit is not set). |
| 6405 | /// |
| 6406 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fnmadd_ph) |
| 6407 | #[inline ] |
| 6408 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6409 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6410 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6411 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6412 | pub const fn _mm256_mask_fnmadd_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 6413 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmadd_ph(a, b, c), no:a) } |
| 6414 | } |
| 6415 | |
| 6416 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6417 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6418 | /// from c when the corresponding mask bit is not set). |
| 6419 | /// |
| 6420 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fnmadd_ph) |
| 6421 | #[inline ] |
| 6422 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6423 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6424 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6425 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6426 | pub const fn _mm256_mask3_fnmadd_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 6427 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmadd_ph(a, b, c), no:c) } |
| 6428 | } |
| 6429 | |
| 6430 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6431 | /// result from packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 6432 | /// out when the corresponding mask bit is not set). |
| 6433 | /// |
| 6434 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fnmadd_ph) |
| 6435 | #[inline ] |
| 6436 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6437 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6438 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6439 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6440 | pub const fn _mm256_maskz_fnmadd_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 6441 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmadd_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 6442 | } |
| 6443 | |
| 6444 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6445 | /// result from packed elements in c, and store the results in dst. |
| 6446 | /// |
| 6447 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fnmadd_ph) |
| 6448 | #[inline ] |
| 6449 | #[target_feature (enable = "avx512fp16" )] |
| 6450 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6451 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6452 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6453 | pub const fn _mm512_fnmadd_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 6454 | unsafe { simd_fma(x:simd_neg(a), y:b, z:c) } |
| 6455 | } |
| 6456 | |
| 6457 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6458 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6459 | /// from a when the corresponding mask bit is not set). |
| 6460 | /// |
| 6461 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fnmadd_ph) |
| 6462 | #[inline ] |
| 6463 | #[target_feature (enable = "avx512fp16" )] |
| 6464 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6465 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6466 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6467 | pub const fn _mm512_mask_fnmadd_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 6468 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmadd_ph(a, b, c), no:a) } |
| 6469 | } |
| 6470 | |
| 6471 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6472 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6473 | /// from c when the corresponding mask bit is not set). |
| 6474 | /// |
| 6475 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fnmadd_ph) |
| 6476 | #[inline ] |
| 6477 | #[target_feature (enable = "avx512fp16" )] |
| 6478 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6479 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6480 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6481 | pub const fn _mm512_mask3_fnmadd_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 6482 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmadd_ph(a, b, c), no:c) } |
| 6483 | } |
| 6484 | |
| 6485 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6486 | /// result from packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 6487 | /// out when the corresponding mask bit is not set). |
| 6488 | /// |
| 6489 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fnmadd_ph) |
| 6490 | #[inline ] |
| 6491 | #[target_feature (enable = "avx512fp16" )] |
| 6492 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6493 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6494 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6495 | pub const fn _mm512_maskz_fnmadd_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 6496 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmadd_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 6497 | } |
| 6498 | |
| 6499 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6500 | /// result from packed elements in c, and store the results in dst. |
| 6501 | /// |
| 6502 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6503 | /// |
| 6504 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6505 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6506 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6507 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6508 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6509 | /// |
| 6510 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fnmadd_round_ph) |
| 6511 | #[inline ] |
| 6512 | #[target_feature (enable = "avx512fp16" )] |
| 6513 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6514 | #[rustc_legacy_const_generics (3)] |
| 6515 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6516 | pub fn _mm512_fnmadd_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 6517 | unsafe { |
| 6518 | static_assert_rounding!(ROUNDING); |
| 6519 | vfmaddph_512(a:simd_neg(a), b, c, ROUNDING) |
| 6520 | } |
| 6521 | } |
| 6522 | |
| 6523 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6524 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6525 | /// from a when the corresponding mask bit is not set). |
| 6526 | /// |
| 6527 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6528 | /// |
| 6529 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6530 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6531 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6532 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6533 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6534 | /// |
| 6535 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fnmadd_round_ph) |
| 6536 | #[inline ] |
| 6537 | #[target_feature (enable = "avx512fp16" )] |
| 6538 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6539 | #[rustc_legacy_const_generics (4)] |
| 6540 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6541 | pub fn _mm512_mask_fnmadd_round_ph<const ROUNDING: i32>( |
| 6542 | a: __m512h, |
| 6543 | k: __mmask32, |
| 6544 | b: __m512h, |
| 6545 | c: __m512h, |
| 6546 | ) -> __m512h { |
| 6547 | unsafe { |
| 6548 | static_assert_rounding!(ROUNDING); |
| 6549 | simd_select_bitmask(m:k, yes:_mm512_fnmadd_round_ph::<ROUNDING>(a, b, c), no:a) |
| 6550 | } |
| 6551 | } |
| 6552 | |
| 6553 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6554 | /// result from packed elements in c, and store the results in dst using writemask k (the element is copied |
| 6555 | /// from c when the corresponding mask bit is not set). |
| 6556 | /// |
| 6557 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6558 | /// |
| 6559 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6560 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6561 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6562 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6563 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6564 | /// |
| 6565 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fnmadd_round_ph) |
| 6566 | #[inline ] |
| 6567 | #[target_feature (enable = "avx512fp16" )] |
| 6568 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6569 | #[rustc_legacy_const_generics (4)] |
| 6570 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6571 | pub fn _mm512_mask3_fnmadd_round_ph<const ROUNDING: i32>( |
| 6572 | a: __m512h, |
| 6573 | b: __m512h, |
| 6574 | c: __m512h, |
| 6575 | k: __mmask32, |
| 6576 | ) -> __m512h { |
| 6577 | unsafe { |
| 6578 | static_assert_rounding!(ROUNDING); |
| 6579 | simd_select_bitmask(m:k, yes:_mm512_fnmadd_round_ph::<ROUNDING>(a, b, c), no:c) |
| 6580 | } |
| 6581 | } |
| 6582 | |
| 6583 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract the intermediate |
| 6584 | /// result from packed elements in c, and store the results in dst using zeromask k (the element is zeroed |
| 6585 | /// out when the corresponding mask bit is not set). |
| 6586 | /// |
| 6587 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6588 | /// |
| 6589 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6590 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6591 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6592 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6593 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6594 | /// |
| 6595 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fnmadd_round_ph) |
| 6596 | #[inline ] |
| 6597 | #[target_feature (enable = "avx512fp16" )] |
| 6598 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6599 | #[rustc_legacy_const_generics (4)] |
| 6600 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6601 | pub fn _mm512_maskz_fnmadd_round_ph<const ROUNDING: i32>( |
| 6602 | k: __mmask32, |
| 6603 | a: __m512h, |
| 6604 | b: __m512h, |
| 6605 | c: __m512h, |
| 6606 | ) -> __m512h { |
| 6607 | unsafe { |
| 6608 | static_assert_rounding!(ROUNDING); |
| 6609 | simd_select_bitmask( |
| 6610 | m:k, |
| 6611 | yes:_mm512_fnmadd_round_ph::<ROUNDING>(a, b, c), |
| 6612 | no:_mm512_setzero_ph(), |
| 6613 | ) |
| 6614 | } |
| 6615 | } |
| 6616 | |
| 6617 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6618 | /// result from the lower element in c. Store the result in the lower element of dst, and copy the upper 7 packed |
| 6619 | /// elements from a to the upper elements of dst. |
| 6620 | /// |
| 6621 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_sh) |
| 6622 | #[inline ] |
| 6623 | #[target_feature (enable = "avx512fp16" )] |
| 6624 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6625 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6626 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6627 | pub const fn _mm_fnmadd_sh(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6628 | unsafe { |
| 6629 | let extracta: f16 = simd_extract!(a, 0); |
| 6630 | let extractb: f16 = simd_extract!(b, 0); |
| 6631 | let extractc: f16 = simd_extract!(c, 0); |
| 6632 | let r: f16 = fmaf16(-extracta, b:extractb, c:extractc); |
| 6633 | simd_insert!(a, 0, r) |
| 6634 | } |
| 6635 | } |
| 6636 | |
| 6637 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6638 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 6639 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 6640 | /// elements of dst. |
| 6641 | /// |
| 6642 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmadd_sh) |
| 6643 | #[inline ] |
| 6644 | #[target_feature (enable = "avx512fp16" )] |
| 6645 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6646 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6647 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6648 | pub const fn _mm_mask_fnmadd_sh(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 6649 | unsafe { |
| 6650 | let mut fnmadd: f16 = simd_extract!(a, 0); |
| 6651 | if k & 1 != 0 { |
| 6652 | let extractb: f16 = simd_extract!(b, 0); |
| 6653 | let extractc: f16 = simd_extract!(c, 0); |
| 6654 | fnmadd = fmaf16(-fnmadd, b:extractb, c:extractc); |
| 6655 | } |
| 6656 | simd_insert!(a, 0, fnmadd) |
| 6657 | } |
| 6658 | } |
| 6659 | |
| 6660 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6661 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 6662 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the upper |
| 6663 | /// elements of dst. |
| 6664 | /// |
| 6665 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmadd_sh) |
| 6666 | #[inline ] |
| 6667 | #[target_feature (enable = "avx512fp16" )] |
| 6668 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6669 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6670 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6671 | pub const fn _mm_mask3_fnmadd_sh(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 6672 | unsafe { |
| 6673 | let mut fnmadd: f16 = simd_extract!(c, 0); |
| 6674 | if k & 1 != 0 { |
| 6675 | let extracta: f16 = simd_extract!(a, 0); |
| 6676 | let extractb: f16 = simd_extract!(b, 0); |
| 6677 | fnmadd = fmaf16(-extracta, b:extractb, c:fnmadd); |
| 6678 | } |
| 6679 | simd_insert!(c, 0, fnmadd) |
| 6680 | } |
| 6681 | } |
| 6682 | |
| 6683 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6684 | /// result from the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 6685 | /// is zeroed out when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 6686 | /// elements of dst. |
| 6687 | /// |
| 6688 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmadd_sh) |
| 6689 | #[inline ] |
| 6690 | #[target_feature (enable = "avx512fp16" )] |
| 6691 | #[cfg_attr (test, assert_instr(vfnmadd))] |
| 6692 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6693 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6694 | pub const fn _mm_maskz_fnmadd_sh(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6695 | unsafe { |
| 6696 | let mut fnmadd: f16 = 0.0; |
| 6697 | if k & 1 != 0 { |
| 6698 | let extracta: f16 = simd_extract!(a, 0); |
| 6699 | let extractb: f16 = simd_extract!(b, 0); |
| 6700 | let extractc: f16 = simd_extract!(c, 0); |
| 6701 | fnmadd = fmaf16(-extracta, b:extractb, c:extractc); |
| 6702 | } |
| 6703 | simd_insert!(a, 0, fnmadd) |
| 6704 | } |
| 6705 | } |
| 6706 | |
| 6707 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6708 | /// result from the lower element in c. Store the result in the lower element of dst, and copy the upper 7 packed |
| 6709 | /// elements from a to the upper elements of dst. |
| 6710 | /// |
| 6711 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6712 | /// |
| 6713 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6714 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6715 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6716 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6717 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6718 | /// |
| 6719 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_round_sh) |
| 6720 | #[inline ] |
| 6721 | #[target_feature (enable = "avx512fp16" )] |
| 6722 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6723 | #[rustc_legacy_const_generics (3)] |
| 6724 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6725 | pub fn _mm_fnmadd_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6726 | unsafe { |
| 6727 | static_assert_rounding!(ROUNDING); |
| 6728 | let extracta: f16 = simd_extract!(a, 0); |
| 6729 | let extractb: f16 = simd_extract!(b, 0); |
| 6730 | let extractc: f16 = simd_extract!(c, 0); |
| 6731 | let r: f16 = vfmaddsh(-extracta, b:extractb, c:extractc, ROUNDING); |
| 6732 | simd_insert!(a, 0, r) |
| 6733 | } |
| 6734 | } |
| 6735 | |
| 6736 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6737 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 6738 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 6739 | /// elements of dst. |
| 6740 | /// |
| 6741 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6742 | /// |
| 6743 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6744 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6745 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6746 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6747 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6748 | /// |
| 6749 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmadd_round_sh) |
| 6750 | #[inline ] |
| 6751 | #[target_feature (enable = "avx512fp16" )] |
| 6752 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6753 | #[rustc_legacy_const_generics (4)] |
| 6754 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6755 | pub fn _mm_mask_fnmadd_round_sh<const ROUNDING: i32>( |
| 6756 | a: __m128h, |
| 6757 | k: __mmask8, |
| 6758 | b: __m128h, |
| 6759 | c: __m128h, |
| 6760 | ) -> __m128h { |
| 6761 | unsafe { |
| 6762 | static_assert_rounding!(ROUNDING); |
| 6763 | let mut fnmadd: f16 = simd_extract!(a, 0); |
| 6764 | if k & 1 != 0 { |
| 6765 | let extractb: f16 = simd_extract!(b, 0); |
| 6766 | let extractc: f16 = simd_extract!(c, 0); |
| 6767 | fnmadd = vfmaddsh(-fnmadd, b:extractb, c:extractc, ROUNDING); |
| 6768 | } |
| 6769 | simd_insert!(a, 0, fnmadd) |
| 6770 | } |
| 6771 | } |
| 6772 | |
| 6773 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6774 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 6775 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the upper |
| 6776 | /// elements of dst. |
| 6777 | /// |
| 6778 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6779 | /// |
| 6780 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6781 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6782 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6783 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6784 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6785 | /// |
| 6786 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmadd_round_sh) |
| 6787 | #[inline ] |
| 6788 | #[target_feature (enable = "avx512fp16" )] |
| 6789 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6790 | #[rustc_legacy_const_generics (4)] |
| 6791 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6792 | pub fn _mm_mask3_fnmadd_round_sh<const ROUNDING: i32>( |
| 6793 | a: __m128h, |
| 6794 | b: __m128h, |
| 6795 | c: __m128h, |
| 6796 | k: __mmask8, |
| 6797 | ) -> __m128h { |
| 6798 | unsafe { |
| 6799 | static_assert_rounding!(ROUNDING); |
| 6800 | let mut fnmadd: f16 = simd_extract!(c, 0); |
| 6801 | if k & 1 != 0 { |
| 6802 | let extracta: f16 = simd_extract!(a, 0); |
| 6803 | let extractb: f16 = simd_extract!(b, 0); |
| 6804 | fnmadd = vfmaddsh(-extracta, b:extractb, c:fnmadd, ROUNDING); |
| 6805 | } |
| 6806 | simd_insert!(c, 0, fnmadd) |
| 6807 | } |
| 6808 | } |
| 6809 | |
| 6810 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 6811 | /// result from the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 6812 | /// is zeroed out when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 6813 | /// elements of dst. |
| 6814 | /// |
| 6815 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 6816 | /// |
| 6817 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 6818 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 6819 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 6820 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 6821 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 6822 | /// |
| 6823 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmadd_round_sh) |
| 6824 | #[inline ] |
| 6825 | #[target_feature (enable = "avx512fp16" )] |
| 6826 | #[cfg_attr (test, assert_instr(vfnmadd, ROUNDING = 8))] |
| 6827 | #[rustc_legacy_const_generics (4)] |
| 6828 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6829 | pub fn _mm_maskz_fnmadd_round_sh<const ROUNDING: i32>( |
| 6830 | k: __mmask8, |
| 6831 | a: __m128h, |
| 6832 | b: __m128h, |
| 6833 | c: __m128h, |
| 6834 | ) -> __m128h { |
| 6835 | unsafe { |
| 6836 | static_assert_rounding!(ROUNDING); |
| 6837 | let mut fnmadd: f16 = 0.0; |
| 6838 | if k & 1 != 0 { |
| 6839 | let extracta: f16 = simd_extract!(a, 0); |
| 6840 | let extractb: f16 = simd_extract!(b, 0); |
| 6841 | let extractc: f16 = simd_extract!(c, 0); |
| 6842 | fnmadd = vfmaddsh(-extracta, b:extractb, c:extractc, ROUNDING); |
| 6843 | } |
| 6844 | simd_insert!(a, 0, fnmadd) |
| 6845 | } |
| 6846 | } |
| 6847 | |
| 6848 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6849 | /// in c from the negated intermediate result, and store the results in dst. |
| 6850 | /// |
| 6851 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_ph) |
| 6852 | #[inline ] |
| 6853 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6854 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6855 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6856 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6857 | pub const fn _mm_fnmsub_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6858 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 6859 | } |
| 6860 | |
| 6861 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6862 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6863 | /// copied from a when the corresponding mask bit is not set). |
| 6864 | /// |
| 6865 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmsub_ph) |
| 6866 | #[inline ] |
| 6867 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6868 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6869 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6870 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6871 | pub const fn _mm_mask_fnmsub_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 6872 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmsub_ph(a, b, c), no:a) } |
| 6873 | } |
| 6874 | |
| 6875 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6876 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6877 | /// copied from c when the corresponding mask bit is not set). |
| 6878 | /// |
| 6879 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmsub_ph) |
| 6880 | #[inline ] |
| 6881 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6882 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6883 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6884 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6885 | pub const fn _mm_mask3_fnmsub_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 6886 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmsub_ph(a, b, c), no:c) } |
| 6887 | } |
| 6888 | |
| 6889 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6890 | /// in c from the negated intermediate result, and store the results in dst using zeromask k (the element is |
| 6891 | /// zeroed out when the corresponding mask bit is not set). |
| 6892 | /// |
| 6893 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmsub_ph) |
| 6894 | #[inline ] |
| 6895 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6896 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6897 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6898 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6899 | pub const fn _mm_maskz_fnmsub_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 6900 | unsafe { simd_select_bitmask(m:k, yes:_mm_fnmsub_ph(a, b, c), no:_mm_setzero_ph()) } |
| 6901 | } |
| 6902 | |
| 6903 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6904 | /// in c from the negated intermediate result, and store the results in dst. |
| 6905 | /// |
| 6906 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmsub_ph) |
| 6907 | #[inline ] |
| 6908 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6909 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6910 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6911 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6912 | pub const fn _mm256_fnmsub_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 6913 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 6914 | } |
| 6915 | |
| 6916 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6917 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6918 | /// copied from a when the corresponding mask bit is not set). |
| 6919 | /// |
| 6920 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fnmsub_ph) |
| 6921 | #[inline ] |
| 6922 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6923 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6924 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6925 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6926 | pub const fn _mm256_mask_fnmsub_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 6927 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmsub_ph(a, b, c), no:a) } |
| 6928 | } |
| 6929 | |
| 6930 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6931 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6932 | /// copied from c when the corresponding mask bit is not set). |
| 6933 | /// |
| 6934 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fnmsub_ph) |
| 6935 | #[inline ] |
| 6936 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6937 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6938 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6939 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6940 | pub const fn _mm256_mask3_fnmsub_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 6941 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmsub_ph(a, b, c), no:c) } |
| 6942 | } |
| 6943 | |
| 6944 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6945 | /// in c from the negated intermediate result, and store the results in dst using zeromask k (the element is |
| 6946 | /// zeroed out when the corresponding mask bit is not set). |
| 6947 | /// |
| 6948 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fnmsub_ph) |
| 6949 | #[inline ] |
| 6950 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 6951 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6952 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6953 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6954 | pub const fn _mm256_maskz_fnmsub_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 6955 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fnmsub_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 6956 | } |
| 6957 | |
| 6958 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6959 | /// in c from the negated intermediate result, and store the results in dst. |
| 6960 | /// |
| 6961 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fnmsub_ph) |
| 6962 | #[inline ] |
| 6963 | #[target_feature (enable = "avx512fp16" )] |
| 6964 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6965 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6966 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6967 | pub const fn _mm512_fnmsub_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 6968 | unsafe { simd_fma(x:simd_neg(a), y:b, z:simd_neg(c)) } |
| 6969 | } |
| 6970 | |
| 6971 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6972 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6973 | /// copied from a when the corresponding mask bit is not set). |
| 6974 | /// |
| 6975 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fnmsub_ph) |
| 6976 | #[inline ] |
| 6977 | #[target_feature (enable = "avx512fp16" )] |
| 6978 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6979 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6980 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6981 | pub const fn _mm512_mask_fnmsub_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 6982 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmsub_ph(a, b, c), no:a) } |
| 6983 | } |
| 6984 | |
| 6985 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 6986 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 6987 | /// copied from c when the corresponding mask bit is not set). |
| 6988 | /// |
| 6989 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fnmsub_ph) |
| 6990 | #[inline ] |
| 6991 | #[target_feature (enable = "avx512fp16" )] |
| 6992 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 6993 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 6994 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 6995 | pub const fn _mm512_mask3_fnmsub_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 6996 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmsub_ph(a, b, c), no:c) } |
| 6997 | } |
| 6998 | |
| 6999 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 7000 | /// in c from the negated intermediate result, and store the results in dst using zeromask k (the element is |
| 7001 | /// zeroed out when the corresponding mask bit is not set). |
| 7002 | /// |
| 7003 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fnmsub_ph) |
| 7004 | #[inline ] |
| 7005 | #[target_feature (enable = "avx512fp16" )] |
| 7006 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 7007 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7008 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7009 | pub const fn _mm512_maskz_fnmsub_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7010 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fnmsub_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 7011 | } |
| 7012 | |
| 7013 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 7014 | /// in c from the negated intermediate result, and store the results in dst. |
| 7015 | /// |
| 7016 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7017 | /// |
| 7018 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7019 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7020 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7021 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7022 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7023 | /// |
| 7024 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fnmsub_round_ph) |
| 7025 | #[inline ] |
| 7026 | #[target_feature (enable = "avx512fp16" )] |
| 7027 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7028 | #[rustc_legacy_const_generics (3)] |
| 7029 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7030 | pub fn _mm512_fnmsub_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7031 | unsafe { |
| 7032 | static_assert_rounding!(ROUNDING); |
| 7033 | vfmaddph_512(a:simd_neg(a), b, c:simd_neg(c), ROUNDING) |
| 7034 | } |
| 7035 | } |
| 7036 | |
| 7037 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 7038 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 7039 | /// copied from a when the corresponding mask bit is not set). |
| 7040 | /// |
| 7041 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7042 | /// |
| 7043 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7044 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7045 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7046 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7047 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7048 | /// |
| 7049 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fnmsub_round_ph) |
| 7050 | #[inline ] |
| 7051 | #[target_feature (enable = "avx512fp16" )] |
| 7052 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7053 | #[rustc_legacy_const_generics (4)] |
| 7054 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7055 | pub fn _mm512_mask_fnmsub_round_ph<const ROUNDING: i32>( |
| 7056 | a: __m512h, |
| 7057 | k: __mmask32, |
| 7058 | b: __m512h, |
| 7059 | c: __m512h, |
| 7060 | ) -> __m512h { |
| 7061 | unsafe { |
| 7062 | static_assert_rounding!(ROUNDING); |
| 7063 | simd_select_bitmask(m:k, yes:_mm512_fnmsub_round_ph::<ROUNDING>(a, b, c), no:a) |
| 7064 | } |
| 7065 | } |
| 7066 | |
| 7067 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 7068 | /// in c from the negated intermediate result, and store the results in dst using writemask k (the element is |
| 7069 | /// copied from c when the corresponding mask bit is not set). |
| 7070 | /// |
| 7071 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7072 | /// |
| 7073 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7074 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7075 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7076 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7077 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7078 | /// |
| 7079 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fnmsub_round_ph) |
| 7080 | #[inline ] |
| 7081 | #[target_feature (enable = "avx512fp16" )] |
| 7082 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7083 | #[rustc_legacy_const_generics (4)] |
| 7084 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7085 | pub fn _mm512_mask3_fnmsub_round_ph<const ROUNDING: i32>( |
| 7086 | a: __m512h, |
| 7087 | b: __m512h, |
| 7088 | c: __m512h, |
| 7089 | k: __mmask32, |
| 7090 | ) -> __m512h { |
| 7091 | unsafe { |
| 7092 | static_assert_rounding!(ROUNDING); |
| 7093 | simd_select_bitmask(m:k, yes:_mm512_fnmsub_round_ph::<ROUNDING>(a, b, c), no:c) |
| 7094 | } |
| 7095 | } |
| 7096 | |
| 7097 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, subtract packed elements |
| 7098 | /// in c from the negated intermediate result, and store the results in dst using zeromask k (the element is |
| 7099 | /// zeroed out when the corresponding mask bit is not set). |
| 7100 | /// |
| 7101 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7102 | /// |
| 7103 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7104 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7105 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7106 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7107 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7108 | /// |
| 7109 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fnmsub_round_ph) |
| 7110 | #[inline ] |
| 7111 | #[target_feature (enable = "avx512fp16" )] |
| 7112 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7113 | #[rustc_legacy_const_generics (4)] |
| 7114 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7115 | pub fn _mm512_maskz_fnmsub_round_ph<const ROUNDING: i32>( |
| 7116 | k: __mmask32, |
| 7117 | a: __m512h, |
| 7118 | b: __m512h, |
| 7119 | c: __m512h, |
| 7120 | ) -> __m512h { |
| 7121 | unsafe { |
| 7122 | static_assert_rounding!(ROUNDING); |
| 7123 | simd_select_bitmask( |
| 7124 | m:k, |
| 7125 | yes:_mm512_fnmsub_round_ph::<ROUNDING>(a, b, c), |
| 7126 | no:_mm512_setzero_ph(), |
| 7127 | ) |
| 7128 | } |
| 7129 | } |
| 7130 | |
| 7131 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7132 | /// result from the lower element in c. Store the result in the lower element of dst, and copy the upper 7 packed |
| 7133 | /// elements from a to the upper elements of dst. |
| 7134 | /// |
| 7135 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_sh) |
| 7136 | #[inline ] |
| 7137 | #[target_feature (enable = "avx512fp16" )] |
| 7138 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 7139 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7140 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7141 | pub const fn _mm_fnmsub_sh(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7142 | unsafe { |
| 7143 | let extracta: f16 = simd_extract!(a, 0); |
| 7144 | let extractb: f16 = simd_extract!(b, 0); |
| 7145 | let extractc: f16 = simd_extract!(c, 0); |
| 7146 | let r: f16 = fmaf16(-extracta, b:extractb, -extractc); |
| 7147 | simd_insert!(a, 0, r) |
| 7148 | } |
| 7149 | } |
| 7150 | |
| 7151 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7152 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 7153 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 7154 | /// elements of dst. |
| 7155 | /// |
| 7156 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmsub_sh) |
| 7157 | #[inline ] |
| 7158 | #[target_feature (enable = "avx512fp16" )] |
| 7159 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 7160 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7161 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7162 | pub const fn _mm_mask_fnmsub_sh(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 7163 | unsafe { |
| 7164 | let mut fnmsub: f16 = simd_extract!(a, 0); |
| 7165 | if k & 1 != 0 { |
| 7166 | let extractb: f16 = simd_extract!(b, 0); |
| 7167 | let extractc: f16 = simd_extract!(c, 0); |
| 7168 | fnmsub = fmaf16(-fnmsub, b:extractb, -extractc); |
| 7169 | } |
| 7170 | simd_insert!(a, 0, fnmsub) |
| 7171 | } |
| 7172 | } |
| 7173 | |
| 7174 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7175 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 7176 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the upper |
| 7177 | /// elements of dst. |
| 7178 | /// |
| 7179 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmsub_sh) |
| 7180 | #[inline ] |
| 7181 | #[target_feature (enable = "avx512fp16" )] |
| 7182 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 7183 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7184 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7185 | pub const fn _mm_mask3_fnmsub_sh(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 7186 | unsafe { |
| 7187 | let mut fnmsub: f16 = simd_extract!(c, 0); |
| 7188 | if k & 1 != 0 { |
| 7189 | let extracta: f16 = simd_extract!(a, 0); |
| 7190 | let extractb: f16 = simd_extract!(b, 0); |
| 7191 | fnmsub = fmaf16(-extracta, b:extractb, -fnmsub); |
| 7192 | } |
| 7193 | simd_insert!(c, 0, fnmsub) |
| 7194 | } |
| 7195 | } |
| 7196 | |
| 7197 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7198 | /// result from the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 7199 | /// is zeroed out when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 7200 | /// elements of dst. |
| 7201 | /// |
| 7202 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmsub_sh) |
| 7203 | #[inline ] |
| 7204 | #[target_feature (enable = "avx512fp16" )] |
| 7205 | #[cfg_attr (test, assert_instr(vfnmsub))] |
| 7206 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7207 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7208 | pub const fn _mm_maskz_fnmsub_sh(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7209 | unsafe { |
| 7210 | let mut fnmsub: f16 = 0.0; |
| 7211 | if k & 1 != 0 { |
| 7212 | let extracta: f16 = simd_extract!(a, 0); |
| 7213 | let extractb: f16 = simd_extract!(b, 0); |
| 7214 | let extractc: f16 = simd_extract!(c, 0); |
| 7215 | fnmsub = fmaf16(-extracta, b:extractb, -extractc); |
| 7216 | } |
| 7217 | simd_insert!(a, 0, fnmsub) |
| 7218 | } |
| 7219 | } |
| 7220 | |
| 7221 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7222 | /// result from the lower element in c. Store the result in the lower element of dst, and copy the upper 7 packed |
| 7223 | /// elements from a to the upper elements of dst. |
| 7224 | /// |
| 7225 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7226 | /// |
| 7227 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7228 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7229 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7230 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7231 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7232 | /// |
| 7233 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_round_sh) |
| 7234 | #[inline ] |
| 7235 | #[target_feature (enable = "avx512fp16" )] |
| 7236 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7237 | #[rustc_legacy_const_generics (3)] |
| 7238 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7239 | pub fn _mm_fnmsub_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7240 | unsafe { |
| 7241 | static_assert_rounding!(ROUNDING); |
| 7242 | let extracta: f16 = simd_extract!(a, 0); |
| 7243 | let extractb: f16 = simd_extract!(b, 0); |
| 7244 | let extractc: f16 = simd_extract!(c, 0); |
| 7245 | let r: f16 = vfmaddsh(-extracta, b:extractb, -extractc, ROUNDING); |
| 7246 | simd_insert!(a, 0, r) |
| 7247 | } |
| 7248 | } |
| 7249 | |
| 7250 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7251 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 7252 | /// is copied from a when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 7253 | /// elements of dst. |
| 7254 | /// |
| 7255 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7256 | /// |
| 7257 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7258 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7259 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7260 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7261 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7262 | /// |
| 7263 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fnmsub_round_sh) |
| 7264 | #[inline ] |
| 7265 | #[target_feature (enable = "avx512fp16" )] |
| 7266 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7267 | #[rustc_legacy_const_generics (4)] |
| 7268 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7269 | pub fn _mm_mask_fnmsub_round_sh<const ROUNDING: i32>( |
| 7270 | a: __m128h, |
| 7271 | k: __mmask8, |
| 7272 | b: __m128h, |
| 7273 | c: __m128h, |
| 7274 | ) -> __m128h { |
| 7275 | unsafe { |
| 7276 | static_assert_rounding!(ROUNDING); |
| 7277 | let mut fnmsub: f16 = simd_extract!(a, 0); |
| 7278 | if k & 1 != 0 { |
| 7279 | let extractb: f16 = simd_extract!(b, 0); |
| 7280 | let extractc: f16 = simd_extract!(c, 0); |
| 7281 | fnmsub = vfmaddsh(-fnmsub, b:extractb, -extractc, ROUNDING); |
| 7282 | } |
| 7283 | simd_insert!(a, 0, fnmsub) |
| 7284 | } |
| 7285 | } |
| 7286 | |
| 7287 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7288 | /// result from the lower element in c. Store the result in the lower element of dst using writemask k (the element |
| 7289 | /// is copied from c when the mask bit 0 is not set), and copy the upper 7 packed elements from c to the upper |
| 7290 | /// elements of dst. |
| 7291 | /// |
| 7292 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7293 | /// |
| 7294 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7295 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7296 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7297 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7298 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7299 | /// |
| 7300 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fnmsub_round_sh) |
| 7301 | #[inline ] |
| 7302 | #[target_feature (enable = "avx512fp16" )] |
| 7303 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7304 | #[rustc_legacy_const_generics (4)] |
| 7305 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7306 | pub fn _mm_mask3_fnmsub_round_sh<const ROUNDING: i32>( |
| 7307 | a: __m128h, |
| 7308 | b: __m128h, |
| 7309 | c: __m128h, |
| 7310 | k: __mmask8, |
| 7311 | ) -> __m128h { |
| 7312 | unsafe { |
| 7313 | static_assert_rounding!(ROUNDING); |
| 7314 | let mut fnmsub: f16 = simd_extract!(c, 0); |
| 7315 | if k & 1 != 0 { |
| 7316 | let extracta: f16 = simd_extract!(a, 0); |
| 7317 | let extractb: f16 = simd_extract!(b, 0); |
| 7318 | fnmsub = vfmaddsh(-extracta, b:extractb, -fnmsub, ROUNDING); |
| 7319 | } |
| 7320 | simd_insert!(c, 0, fnmsub) |
| 7321 | } |
| 7322 | } |
| 7323 | |
| 7324 | /// Multiply the lower half-precision (16-bit) floating-point elements in a and b, and subtract the intermediate |
| 7325 | /// result from the lower element in c. Store the result in the lower element of dst using zeromask k (the element |
| 7326 | /// is zeroed out when the mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 7327 | /// elements of dst. |
| 7328 | /// |
| 7329 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7330 | /// |
| 7331 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7332 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7333 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7334 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7335 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7336 | /// |
| 7337 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fnmsub_round_sh) |
| 7338 | #[inline ] |
| 7339 | #[target_feature (enable = "avx512fp16" )] |
| 7340 | #[cfg_attr (test, assert_instr(vfnmsub, ROUNDING = 8))] |
| 7341 | #[rustc_legacy_const_generics (4)] |
| 7342 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7343 | pub fn _mm_maskz_fnmsub_round_sh<const ROUNDING: i32>( |
| 7344 | k: __mmask8, |
| 7345 | a: __m128h, |
| 7346 | b: __m128h, |
| 7347 | c: __m128h, |
| 7348 | ) -> __m128h { |
| 7349 | unsafe { |
| 7350 | static_assert_rounding!(ROUNDING); |
| 7351 | let mut fnmsub: f16 = 0.0; |
| 7352 | if k & 1 != 0 { |
| 7353 | let extracta: f16 = simd_extract!(a, 0); |
| 7354 | let extractb: f16 = simd_extract!(b, 0); |
| 7355 | let extractc: f16 = simd_extract!(c, 0); |
| 7356 | fnmsub = vfmaddsh(-extracta, b:extractb, -extractc, ROUNDING); |
| 7357 | } |
| 7358 | simd_insert!(a, 0, fnmsub) |
| 7359 | } |
| 7360 | } |
| 7361 | |
| 7362 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7363 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst. |
| 7364 | /// |
| 7365 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmaddsub_ph) |
| 7366 | #[inline ] |
| 7367 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7368 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7369 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7370 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7371 | pub const fn _mm_fmaddsub_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7372 | unsafe { |
| 7373 | let add: __m128h = simd_fma(x:a, y:b, z:c); |
| 7374 | let sub: __m128h = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 7375 | simd_shuffle!(sub, add, [0, 9, 2, 11, 4, 13, 6, 15]) |
| 7376 | } |
| 7377 | } |
| 7378 | |
| 7379 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7380 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7381 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7382 | /// |
| 7383 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmaddsub_ph) |
| 7384 | #[inline ] |
| 7385 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7386 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7387 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7388 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7389 | pub const fn _mm_mask_fmaddsub_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 7390 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmaddsub_ph(a, b, c), no:a) } |
| 7391 | } |
| 7392 | |
| 7393 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7394 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7395 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7396 | /// |
| 7397 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmaddsub_ph) |
| 7398 | #[inline ] |
| 7399 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7400 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7401 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7402 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7403 | pub const fn _mm_mask3_fmaddsub_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 7404 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmaddsub_ph(a, b, c), no:c) } |
| 7405 | } |
| 7406 | |
| 7407 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7408 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7409 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7410 | /// |
| 7411 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmaddsub_ph) |
| 7412 | #[inline ] |
| 7413 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7414 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7415 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7416 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7417 | pub const fn _mm_maskz_fmaddsub_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7418 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmaddsub_ph(a, b, c), no:_mm_setzero_ph()) } |
| 7419 | } |
| 7420 | |
| 7421 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7422 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst. |
| 7423 | /// |
| 7424 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmaddsub_ph) |
| 7425 | #[inline ] |
| 7426 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7427 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7428 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7429 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7430 | pub const fn _mm256_fmaddsub_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 7431 | unsafe { |
| 7432 | let add: __m256h = simd_fma(x:a, y:b, z:c); |
| 7433 | let sub: __m256h = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 7434 | simd_shuffle!( |
| 7435 | sub, |
| 7436 | add, |
| 7437 | [0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31] |
| 7438 | ) |
| 7439 | } |
| 7440 | } |
| 7441 | |
| 7442 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7443 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7444 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7445 | /// |
| 7446 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmaddsub_ph) |
| 7447 | #[inline ] |
| 7448 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7449 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7450 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7451 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7452 | pub const fn _mm256_mask_fmaddsub_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 7453 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmaddsub_ph(a, b, c), no:a) } |
| 7454 | } |
| 7455 | |
| 7456 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7457 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7458 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7459 | /// |
| 7460 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fmaddsub_ph) |
| 7461 | #[inline ] |
| 7462 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7463 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7464 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7465 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7466 | pub const fn _mm256_mask3_fmaddsub_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 7467 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmaddsub_ph(a, b, c), no:c) } |
| 7468 | } |
| 7469 | |
| 7470 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7471 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7472 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7473 | /// |
| 7474 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmaddsub_ph) |
| 7475 | #[inline ] |
| 7476 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7477 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7478 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7479 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7480 | pub const fn _mm256_maskz_fmaddsub_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 7481 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmaddsub_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 7482 | } |
| 7483 | |
| 7484 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7485 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst. |
| 7486 | /// |
| 7487 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmaddsub_ph) |
| 7488 | #[inline ] |
| 7489 | #[target_feature (enable = "avx512fp16" )] |
| 7490 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7491 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7492 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7493 | pub const fn _mm512_fmaddsub_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7494 | unsafe { |
| 7495 | let add: __m512h = simd_fma(x:a, y:b, z:c); |
| 7496 | let sub: __m512h = simd_fma(x:a, y:b, z:simd_neg(c)); |
| 7497 | simd_shuffle!( |
| 7498 | sub, |
| 7499 | add, |
| 7500 | [ |
| 7501 | 0, 33, 2, 35, 4, 37, 6, 39, 8, 41, 10, 43, 12, 45, 14, 47, 16, 49, 18, 51, 20, 53, |
| 7502 | 22, 55, 24, 57, 26, 59, 28, 61, 30, 63 |
| 7503 | ] |
| 7504 | ) |
| 7505 | } |
| 7506 | } |
| 7507 | |
| 7508 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7509 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7510 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7511 | /// |
| 7512 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmaddsub_ph) |
| 7513 | #[inline ] |
| 7514 | #[target_feature (enable = "avx512fp16" )] |
| 7515 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7516 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7517 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7518 | pub const fn _mm512_mask_fmaddsub_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 7519 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmaddsub_ph(a, b, c), no:a) } |
| 7520 | } |
| 7521 | |
| 7522 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7523 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7524 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7525 | /// |
| 7526 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmaddsub_ph) |
| 7527 | #[inline ] |
| 7528 | #[target_feature (enable = "avx512fp16" )] |
| 7529 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7530 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7531 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7532 | pub const fn _mm512_mask3_fmaddsub_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 7533 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmaddsub_ph(a, b, c), no:c) } |
| 7534 | } |
| 7535 | |
| 7536 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7537 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7538 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7539 | /// |
| 7540 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmaddsub_ph) |
| 7541 | #[inline ] |
| 7542 | #[target_feature (enable = "avx512fp16" )] |
| 7543 | #[cfg_attr (test, assert_instr(vfmaddsub))] |
| 7544 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7545 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7546 | pub const fn _mm512_maskz_fmaddsub_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7547 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmaddsub_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 7548 | } |
| 7549 | |
| 7550 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7551 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst. |
| 7552 | /// |
| 7553 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7554 | /// |
| 7555 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7556 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7557 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7558 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7559 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7560 | /// |
| 7561 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmaddsub_round_ph) |
| 7562 | #[inline ] |
| 7563 | #[target_feature (enable = "avx512fp16" )] |
| 7564 | #[cfg_attr (test, assert_instr(vfmaddsub, ROUNDING = 8))] |
| 7565 | #[rustc_legacy_const_generics (3)] |
| 7566 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7567 | pub fn _mm512_fmaddsub_round_ph<const ROUNDING: i32>( |
| 7568 | a: __m512h, |
| 7569 | b: __m512h, |
| 7570 | c: __m512h, |
| 7571 | ) -> __m512h { |
| 7572 | unsafe { |
| 7573 | static_assert_rounding!(ROUNDING); |
| 7574 | vfmaddsubph_512(a, b, c, ROUNDING) |
| 7575 | } |
| 7576 | } |
| 7577 | |
| 7578 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7579 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7580 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7581 | /// |
| 7582 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7583 | /// |
| 7584 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7585 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7586 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7587 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7588 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7589 | /// |
| 7590 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmaddsub_round_ph) |
| 7591 | #[inline ] |
| 7592 | #[target_feature (enable = "avx512fp16" )] |
| 7593 | #[cfg_attr (test, assert_instr(vfmaddsub, ROUNDING = 8))] |
| 7594 | #[rustc_legacy_const_generics (4)] |
| 7595 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7596 | pub fn _mm512_mask_fmaddsub_round_ph<const ROUNDING: i32>( |
| 7597 | a: __m512h, |
| 7598 | k: __mmask32, |
| 7599 | b: __m512h, |
| 7600 | c: __m512h, |
| 7601 | ) -> __m512h { |
| 7602 | unsafe { |
| 7603 | static_assert_rounding!(ROUNDING); |
| 7604 | simd_select_bitmask(m:k, yes:_mm512_fmaddsub_round_ph::<ROUNDING>(a, b, c), no:a) |
| 7605 | } |
| 7606 | } |
| 7607 | |
| 7608 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7609 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7610 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7611 | /// |
| 7612 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7613 | /// |
| 7614 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7615 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7616 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7617 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7618 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7619 | /// |
| 7620 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmaddsub_round_ph) |
| 7621 | #[inline ] |
| 7622 | #[target_feature (enable = "avx512fp16" )] |
| 7623 | #[cfg_attr (test, assert_instr(vfmaddsub, ROUNDING = 8))] |
| 7624 | #[rustc_legacy_const_generics (4)] |
| 7625 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7626 | pub fn _mm512_mask3_fmaddsub_round_ph<const ROUNDING: i32>( |
| 7627 | a: __m512h, |
| 7628 | b: __m512h, |
| 7629 | c: __m512h, |
| 7630 | k: __mmask32, |
| 7631 | ) -> __m512h { |
| 7632 | unsafe { |
| 7633 | static_assert_rounding!(ROUNDING); |
| 7634 | simd_select_bitmask(m:k, yes:_mm512_fmaddsub_round_ph::<ROUNDING>(a, b, c), no:c) |
| 7635 | } |
| 7636 | } |
| 7637 | |
| 7638 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively add and |
| 7639 | /// subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7640 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7641 | /// |
| 7642 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7643 | /// |
| 7644 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7645 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7646 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7647 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7648 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7649 | /// |
| 7650 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmaddsub_round_ph) |
| 7651 | #[inline ] |
| 7652 | #[target_feature (enable = "avx512fp16" )] |
| 7653 | #[cfg_attr (test, assert_instr(vfmaddsub, ROUNDING = 8))] |
| 7654 | #[rustc_legacy_const_generics (4)] |
| 7655 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7656 | pub fn _mm512_maskz_fmaddsub_round_ph<const ROUNDING: i32>( |
| 7657 | k: __mmask32, |
| 7658 | a: __m512h, |
| 7659 | b: __m512h, |
| 7660 | c: __m512h, |
| 7661 | ) -> __m512h { |
| 7662 | unsafe { |
| 7663 | static_assert_rounding!(ROUNDING); |
| 7664 | simd_select_bitmask( |
| 7665 | m:k, |
| 7666 | yes:_mm512_fmaddsub_round_ph::<ROUNDING>(a, b, c), |
| 7667 | no:_mm512_setzero_ph(), |
| 7668 | ) |
| 7669 | } |
| 7670 | } |
| 7671 | |
| 7672 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7673 | /// and add packed elements in c to/from the intermediate result, and store the results in dst. |
| 7674 | /// |
| 7675 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsubadd_ph) |
| 7676 | #[inline ] |
| 7677 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7678 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7679 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7680 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7681 | pub const fn _mm_fmsubadd_ph(a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7682 | _mm_fmaddsub_ph(a, b, c:unsafe { simd_neg(c) }) |
| 7683 | } |
| 7684 | |
| 7685 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7686 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7687 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7688 | /// |
| 7689 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fmsubadd_ph) |
| 7690 | #[inline ] |
| 7691 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7692 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7693 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7694 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7695 | pub const fn _mm_mask_fmsubadd_ph(a: __m128h, k: __mmask8, b: __m128h, c: __m128h) -> __m128h { |
| 7696 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsubadd_ph(a, b, c), no:a) } |
| 7697 | } |
| 7698 | |
| 7699 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7700 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7701 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7702 | /// |
| 7703 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask3_fmsubadd_ph) |
| 7704 | #[inline ] |
| 7705 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7706 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7707 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7708 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7709 | pub const fn _mm_mask3_fmsubadd_ph(a: __m128h, b: __m128h, c: __m128h, k: __mmask8) -> __m128h { |
| 7710 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsubadd_ph(a, b, c), no:c) } |
| 7711 | } |
| 7712 | |
| 7713 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7714 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7715 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7716 | /// |
| 7717 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_fmsubadd_ph) |
| 7718 | #[inline ] |
| 7719 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7720 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7721 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7722 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7723 | pub const fn _mm_maskz_fmsubadd_ph(k: __mmask8, a: __m128h, b: __m128h, c: __m128h) -> __m128h { |
| 7724 | unsafe { simd_select_bitmask(m:k, yes:_mm_fmsubadd_ph(a, b, c), no:_mm_setzero_ph()) } |
| 7725 | } |
| 7726 | |
| 7727 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7728 | /// and add packed elements in c to/from the intermediate result, and store the results in dst. |
| 7729 | /// |
| 7730 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsubadd_ph) |
| 7731 | #[inline ] |
| 7732 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7733 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7734 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7735 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7736 | pub const fn _mm256_fmsubadd_ph(a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 7737 | _mm256_fmaddsub_ph(a, b, c:unsafe { simd_neg(c) }) |
| 7738 | } |
| 7739 | |
| 7740 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7741 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7742 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7743 | /// |
| 7744 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fmsubadd_ph) |
| 7745 | #[inline ] |
| 7746 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7747 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7748 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7749 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7750 | pub const fn _mm256_mask_fmsubadd_ph(a: __m256h, k: __mmask16, b: __m256h, c: __m256h) -> __m256h { |
| 7751 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsubadd_ph(a, b, c), no:a) } |
| 7752 | } |
| 7753 | |
| 7754 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7755 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7756 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7757 | /// |
| 7758 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask3_fmsubadd_ph) |
| 7759 | #[inline ] |
| 7760 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7761 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7762 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7763 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7764 | pub const fn _mm256_mask3_fmsubadd_ph(a: __m256h, b: __m256h, c: __m256h, k: __mmask16) -> __m256h { |
| 7765 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsubadd_ph(a, b, c), no:c) } |
| 7766 | } |
| 7767 | |
| 7768 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7769 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7770 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7771 | /// |
| 7772 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_fmsubadd_ph) |
| 7773 | #[inline ] |
| 7774 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7775 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7776 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7777 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7778 | pub const fn _mm256_maskz_fmsubadd_ph(k: __mmask16, a: __m256h, b: __m256h, c: __m256h) -> __m256h { |
| 7779 | unsafe { simd_select_bitmask(m:k, yes:_mm256_fmsubadd_ph(a, b, c), no:_mm256_setzero_ph()) } |
| 7780 | } |
| 7781 | |
| 7782 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7783 | /// and add packed elements in c to/from the intermediate result, and store the results in dst. |
| 7784 | /// |
| 7785 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmsubadd_ph) |
| 7786 | #[inline ] |
| 7787 | #[target_feature (enable = "avx512fp16" )] |
| 7788 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7789 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7790 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7791 | pub const fn _mm512_fmsubadd_ph(a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7792 | _mm512_fmaddsub_ph(a, b, c:unsafe { simd_neg(c) }) |
| 7793 | } |
| 7794 | |
| 7795 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7796 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7797 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7798 | /// |
| 7799 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmsubadd_ph) |
| 7800 | #[inline ] |
| 7801 | #[target_feature (enable = "avx512fp16" )] |
| 7802 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7803 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7804 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7805 | pub const fn _mm512_mask_fmsubadd_ph(a: __m512h, k: __mmask32, b: __m512h, c: __m512h) -> __m512h { |
| 7806 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsubadd_ph(a, b, c), no:a) } |
| 7807 | } |
| 7808 | |
| 7809 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7810 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7811 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7812 | /// |
| 7813 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmsubadd_ph) |
| 7814 | #[inline ] |
| 7815 | #[target_feature (enable = "avx512fp16" )] |
| 7816 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7817 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7818 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7819 | pub const fn _mm512_mask3_fmsubadd_ph(a: __m512h, b: __m512h, c: __m512h, k: __mmask32) -> __m512h { |
| 7820 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsubadd_ph(a, b, c), no:c) } |
| 7821 | } |
| 7822 | |
| 7823 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7824 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7825 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7826 | /// |
| 7827 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmsubadd_ph) |
| 7828 | #[inline ] |
| 7829 | #[target_feature (enable = "avx512fp16" )] |
| 7830 | #[cfg_attr (test, assert_instr(vfmsubadd))] |
| 7831 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7832 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 7833 | pub const fn _mm512_maskz_fmsubadd_ph(k: __mmask32, a: __m512h, b: __m512h, c: __m512h) -> __m512h { |
| 7834 | unsafe { simd_select_bitmask(m:k, yes:_mm512_fmsubadd_ph(a, b, c), no:_mm512_setzero_ph()) } |
| 7835 | } |
| 7836 | |
| 7837 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7838 | /// and add packed elements in c to/from the intermediate result, and store the results in dst. |
| 7839 | /// |
| 7840 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7841 | /// |
| 7842 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7843 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7844 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7845 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7846 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7847 | /// |
| 7848 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fmsubadd_round_ph) |
| 7849 | #[inline ] |
| 7850 | #[target_feature (enable = "avx512fp16" )] |
| 7851 | #[cfg_attr (test, assert_instr(vfmsubadd, ROUNDING = 8))] |
| 7852 | #[rustc_legacy_const_generics (3)] |
| 7853 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7854 | pub fn _mm512_fmsubadd_round_ph<const ROUNDING: i32>( |
| 7855 | a: __m512h, |
| 7856 | b: __m512h, |
| 7857 | c: __m512h, |
| 7858 | ) -> __m512h { |
| 7859 | unsafe { |
| 7860 | static_assert_rounding!(ROUNDING); |
| 7861 | vfmaddsubph_512(a, b, c:simd_neg(c), ROUNDING) |
| 7862 | } |
| 7863 | } |
| 7864 | |
| 7865 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7866 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7867 | /// (the element is copied from a when the corresponding mask bit is not set). |
| 7868 | /// |
| 7869 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7870 | /// |
| 7871 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7872 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7873 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7874 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7875 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7876 | /// |
| 7877 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fmsubadd_round_ph) |
| 7878 | #[inline ] |
| 7879 | #[target_feature (enable = "avx512fp16" )] |
| 7880 | #[cfg_attr (test, assert_instr(vfmsubadd, ROUNDING = 8))] |
| 7881 | #[rustc_legacy_const_generics (4)] |
| 7882 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7883 | pub fn _mm512_mask_fmsubadd_round_ph<const ROUNDING: i32>( |
| 7884 | a: __m512h, |
| 7885 | k: __mmask32, |
| 7886 | b: __m512h, |
| 7887 | c: __m512h, |
| 7888 | ) -> __m512h { |
| 7889 | unsafe { |
| 7890 | static_assert_rounding!(ROUNDING); |
| 7891 | simd_select_bitmask(m:k, yes:_mm512_fmsubadd_round_ph::<ROUNDING>(a, b, c), no:a) |
| 7892 | } |
| 7893 | } |
| 7894 | |
| 7895 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7896 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using writemask k |
| 7897 | /// (the element is copied from c when the corresponding mask bit is not set). |
| 7898 | /// |
| 7899 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7900 | /// |
| 7901 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7902 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7903 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7904 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7905 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7906 | /// |
| 7907 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask3_fmsubadd_round_ph) |
| 7908 | #[inline ] |
| 7909 | #[target_feature (enable = "avx512fp16" )] |
| 7910 | #[cfg_attr (test, assert_instr(vfmsubadd, ROUNDING = 8))] |
| 7911 | #[rustc_legacy_const_generics (4)] |
| 7912 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7913 | pub fn _mm512_mask3_fmsubadd_round_ph<const ROUNDING: i32>( |
| 7914 | a: __m512h, |
| 7915 | b: __m512h, |
| 7916 | c: __m512h, |
| 7917 | k: __mmask32, |
| 7918 | ) -> __m512h { |
| 7919 | unsafe { |
| 7920 | static_assert_rounding!(ROUNDING); |
| 7921 | simd_select_bitmask(m:k, yes:_mm512_fmsubadd_round_ph::<ROUNDING>(a, b, c), no:c) |
| 7922 | } |
| 7923 | } |
| 7924 | |
| 7925 | /// Multiply packed half-precision (16-bit) floating-point elements in a and b, alternatively subtract |
| 7926 | /// and add packed elements in c to/from the intermediate result, and store the results in dst using zeromask k |
| 7927 | /// (the element is zeroed out when the corresponding mask bit is not set). |
| 7928 | /// |
| 7929 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 7930 | /// |
| 7931 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 7932 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 7933 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 7934 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 7935 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 7936 | /// |
| 7937 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_fmsubadd_round_ph) |
| 7938 | #[inline ] |
| 7939 | #[target_feature (enable = "avx512fp16" )] |
| 7940 | #[cfg_attr (test, assert_instr(vfmsubadd, ROUNDING = 8))] |
| 7941 | #[rustc_legacy_const_generics (4)] |
| 7942 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7943 | pub fn _mm512_maskz_fmsubadd_round_ph<const ROUNDING: i32>( |
| 7944 | k: __mmask32, |
| 7945 | a: __m512h, |
| 7946 | b: __m512h, |
| 7947 | c: __m512h, |
| 7948 | ) -> __m512h { |
| 7949 | unsafe { |
| 7950 | static_assert_rounding!(ROUNDING); |
| 7951 | simd_select_bitmask( |
| 7952 | m:k, |
| 7953 | yes:_mm512_fmsubadd_round_ph::<ROUNDING>(a, b, c), |
| 7954 | no:_mm512_setzero_ph(), |
| 7955 | ) |
| 7956 | } |
| 7957 | } |
| 7958 | |
| 7959 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst`. |
| 7960 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 7961 | /// |
| 7962 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ph) |
| 7963 | #[inline ] |
| 7964 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7965 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 7966 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7967 | pub fn _mm_rcp_ph(a: __m128h) -> __m128h { |
| 7968 | _mm_mask_rcp_ph(src:_mm_undefined_ph(), k:0xff, a) |
| 7969 | } |
| 7970 | |
| 7971 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 7972 | /// using writemask `k` (elements are copied from `src` when the corresponding mask bit is not set). |
| 7973 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 7974 | /// |
| 7975 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_rcp_ph) |
| 7976 | #[inline ] |
| 7977 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7978 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 7979 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7980 | pub fn _mm_mask_rcp_ph(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 7981 | unsafe { vrcpph_128(a, src, k) } |
| 7982 | } |
| 7983 | |
| 7984 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 7985 | /// using zeromask `k` (elements are zeroed out when the corresponding mask bit is not set). |
| 7986 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 7987 | /// |
| 7988 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_rcp_ph) |
| 7989 | #[inline ] |
| 7990 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 7991 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 7992 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 7993 | pub fn _mm_maskz_rcp_ph(k: __mmask8, a: __m128h) -> __m128h { |
| 7994 | _mm_mask_rcp_ph(src:_mm_setzero_ph(), k, a) |
| 7995 | } |
| 7996 | |
| 7997 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst`. |
| 7998 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 7999 | /// |
| 8000 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_rcp_ph) |
| 8001 | #[inline ] |
| 8002 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8003 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8004 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8005 | pub fn _mm256_rcp_ph(a: __m256h) -> __m256h { |
| 8006 | _mm256_mask_rcp_ph(src:_mm256_undefined_ph(), k:0xffff, a) |
| 8007 | } |
| 8008 | |
| 8009 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 8010 | /// using writemask `k` (elements are copied from `src` when the corresponding mask bit is not set). |
| 8011 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8012 | /// |
| 8013 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_rcp_ph) |
| 8014 | #[inline ] |
| 8015 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8016 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8017 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8018 | pub fn _mm256_mask_rcp_ph(src: __m256h, k: __mmask16, a: __m256h) -> __m256h { |
| 8019 | unsafe { vrcpph_256(a, src, k) } |
| 8020 | } |
| 8021 | |
| 8022 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 8023 | /// using zeromask `k` (elements are zeroed out when the corresponding mask bit is not set). |
| 8024 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8025 | /// |
| 8026 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_rcp_ph) |
| 8027 | #[inline ] |
| 8028 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8029 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8030 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8031 | pub fn _mm256_maskz_rcp_ph(k: __mmask16, a: __m256h) -> __m256h { |
| 8032 | _mm256_mask_rcp_ph(src:_mm256_setzero_ph(), k, a) |
| 8033 | } |
| 8034 | |
| 8035 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst`. |
| 8036 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8037 | /// |
| 8038 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_rcp_ph) |
| 8039 | #[inline ] |
| 8040 | #[target_feature (enable = "avx512fp16" )] |
| 8041 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8042 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8043 | pub fn _mm512_rcp_ph(a: __m512h) -> __m512h { |
| 8044 | _mm512_mask_rcp_ph(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 8045 | } |
| 8046 | |
| 8047 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 8048 | /// using writemask `k` (elements are copied from `src` when the corresponding mask bit is not set). |
| 8049 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8050 | /// |
| 8051 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_rcp_ph) |
| 8052 | #[inline ] |
| 8053 | #[target_feature (enable = "avx512fp16" )] |
| 8054 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8055 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8056 | pub fn _mm512_mask_rcp_ph(src: __m512h, k: __mmask32, a: __m512h) -> __m512h { |
| 8057 | unsafe { vrcpph_512(a, src, k) } |
| 8058 | } |
| 8059 | |
| 8060 | /// Compute the approximate reciprocal of packed 16-bit floating-point elements in `a` and stores the results in `dst` |
| 8061 | /// using zeromask `k` (elements are zeroed out when the corresponding mask bit is not set). |
| 8062 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8063 | /// |
| 8064 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_rcp_ph) |
| 8065 | #[inline ] |
| 8066 | #[target_feature (enable = "avx512fp16" )] |
| 8067 | #[cfg_attr (test, assert_instr(vrcpph))] |
| 8068 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8069 | pub fn _mm512_maskz_rcp_ph(k: __mmask32, a: __m512h) -> __m512h { |
| 8070 | _mm512_mask_rcp_ph(src:_mm512_setzero_ph(), k, a) |
| 8071 | } |
| 8072 | |
| 8073 | /// Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in b, |
| 8074 | /// store the result in the lower element of dst, and copy the upper 7 packed elements from a to the |
| 8075 | /// upper elements of dst. |
| 8076 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8077 | /// |
| 8078 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_sh) |
| 8079 | #[inline ] |
| 8080 | #[target_feature (enable = "avx512fp16" )] |
| 8081 | #[cfg_attr (test, assert_instr(vrcpsh))] |
| 8082 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8083 | pub fn _mm_rcp_sh(a: __m128h, b: __m128h) -> __m128h { |
| 8084 | _mm_mask_rcp_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 8085 | } |
| 8086 | |
| 8087 | /// Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in b, |
| 8088 | /// store the result in the lower element of dst using writemask k (the element is copied from src when |
| 8089 | /// mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8090 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8091 | /// |
| 8092 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_rcp_sh) |
| 8093 | #[inline ] |
| 8094 | #[target_feature (enable = "avx512fp16" )] |
| 8095 | #[cfg_attr (test, assert_instr(vrcpsh))] |
| 8096 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8097 | pub fn _mm_mask_rcp_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8098 | unsafe { vrcpsh(a, b, src, k) } |
| 8099 | } |
| 8100 | |
| 8101 | /// Compute the approximate reciprocal of the lower half-precision (16-bit) floating-point element in b, |
| 8102 | /// store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 |
| 8103 | /// is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8104 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8105 | /// |
| 8106 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_rcp_sh) |
| 8107 | #[inline ] |
| 8108 | #[target_feature (enable = "avx512fp16" )] |
| 8109 | #[cfg_attr (test, assert_instr(vrcpsh))] |
| 8110 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8111 | pub fn _mm_maskz_rcp_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8112 | _mm_mask_rcp_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8113 | } |
| 8114 | |
| 8115 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8116 | /// elements in a, and store the results in dst. |
| 8117 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8118 | /// |
| 8119 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ph) |
| 8120 | #[inline ] |
| 8121 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8122 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8123 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8124 | pub fn _mm_rsqrt_ph(a: __m128h) -> __m128h { |
| 8125 | _mm_mask_rsqrt_ph(src:_mm_undefined_ph(), k:0xff, a) |
| 8126 | } |
| 8127 | |
| 8128 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8129 | /// elements in a, and store the results in dst using writemask k (elements are copied from src when |
| 8130 | /// the corresponding mask bit is not set). |
| 8131 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8132 | /// |
| 8133 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_rsqrt_ph) |
| 8134 | #[inline ] |
| 8135 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8136 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8137 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8138 | pub fn _mm_mask_rsqrt_ph(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 8139 | unsafe { vrsqrtph_128(a, src, k) } |
| 8140 | } |
| 8141 | |
| 8142 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8143 | /// elements in a, and store the results in dst using zeromask k (elements are zeroed out when the |
| 8144 | /// corresponding mask bit is not set). |
| 8145 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8146 | /// |
| 8147 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_rsqrt_ph) |
| 8148 | #[inline ] |
| 8149 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8150 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8151 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8152 | pub fn _mm_maskz_rsqrt_ph(k: __mmask8, a: __m128h) -> __m128h { |
| 8153 | _mm_mask_rsqrt_ph(src:_mm_setzero_ph(), k, a) |
| 8154 | } |
| 8155 | |
| 8156 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8157 | /// elements in a, and store the results in dst. |
| 8158 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8159 | /// |
| 8160 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_rsqrt_ph) |
| 8161 | #[inline ] |
| 8162 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8163 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8164 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8165 | pub fn _mm256_rsqrt_ph(a: __m256h) -> __m256h { |
| 8166 | _mm256_mask_rsqrt_ph(src:_mm256_undefined_ph(), k:0xffff, a) |
| 8167 | } |
| 8168 | |
| 8169 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8170 | /// elements in a, and store the results in dst using writemask k (elements are copied from src when |
| 8171 | /// the corresponding mask bit is not set). |
| 8172 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8173 | /// |
| 8174 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_rsqrt_ph) |
| 8175 | #[inline ] |
| 8176 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8177 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8178 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8179 | pub fn _mm256_mask_rsqrt_ph(src: __m256h, k: __mmask16, a: __m256h) -> __m256h { |
| 8180 | unsafe { vrsqrtph_256(a, src, k) } |
| 8181 | } |
| 8182 | |
| 8183 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8184 | /// elements in a, and store the results in dst using zeromask k (elements are zeroed out when the |
| 8185 | /// corresponding mask bit is not set). |
| 8186 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8187 | /// |
| 8188 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_rsqrt_ph) |
| 8189 | #[inline ] |
| 8190 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8191 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8192 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8193 | pub fn _mm256_maskz_rsqrt_ph(k: __mmask16, a: __m256h) -> __m256h { |
| 8194 | _mm256_mask_rsqrt_ph(src:_mm256_setzero_ph(), k, a) |
| 8195 | } |
| 8196 | |
| 8197 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8198 | /// elements in a, and store the results in dst. |
| 8199 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8200 | /// |
| 8201 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_rsqrt_ph) |
| 8202 | #[inline ] |
| 8203 | #[target_feature (enable = "avx512fp16" )] |
| 8204 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8205 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8206 | pub fn _mm512_rsqrt_ph(a: __m512h) -> __m512h { |
| 8207 | _mm512_mask_rsqrt_ph(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 8208 | } |
| 8209 | |
| 8210 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8211 | /// elements in a, and store the results in dst using writemask k (elements are copied from src when |
| 8212 | /// the corresponding mask bit is not set). |
| 8213 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8214 | /// |
| 8215 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_rsqrt_ph) |
| 8216 | #[inline ] |
| 8217 | #[target_feature (enable = "avx512fp16" )] |
| 8218 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8219 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8220 | pub fn _mm512_mask_rsqrt_ph(src: __m512h, k: __mmask32, a: __m512h) -> __m512h { |
| 8221 | unsafe { vrsqrtph_512(a, src, k) } |
| 8222 | } |
| 8223 | |
| 8224 | /// Compute the approximate reciprocal square root of packed half-precision (16-bit) floating-point |
| 8225 | /// elements in a, and store the results in dst using zeromask k (elements are zeroed out when the |
| 8226 | /// corresponding mask bit is not set). |
| 8227 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8228 | /// |
| 8229 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_rsqrt_ph) |
| 8230 | #[inline ] |
| 8231 | #[target_feature (enable = "avx512fp16" )] |
| 8232 | #[cfg_attr (test, assert_instr(vrsqrtph))] |
| 8233 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8234 | pub fn _mm512_maskz_rsqrt_ph(k: __mmask32, a: __m512h) -> __m512h { |
| 8235 | _mm512_mask_rsqrt_ph(src:_mm512_setzero_ph(), k, a) |
| 8236 | } |
| 8237 | |
| 8238 | /// Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point |
| 8239 | /// element in b, store the result in the lower element of dst, and copy the upper 7 packed elements from a |
| 8240 | /// to the upper elements of dst. |
| 8241 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8242 | /// |
| 8243 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_sh) |
| 8244 | #[inline ] |
| 8245 | #[target_feature (enable = "avx512fp16" )] |
| 8246 | #[cfg_attr (test, assert_instr(vrsqrtsh))] |
| 8247 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8248 | pub fn _mm_rsqrt_sh(a: __m128h, b: __m128h) -> __m128h { |
| 8249 | _mm_mask_rsqrt_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 8250 | } |
| 8251 | |
| 8252 | /// Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point |
| 8253 | /// element in b, store the result in the lower element of dst using writemask k (the element is copied from src |
| 8254 | /// when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8255 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8256 | /// |
| 8257 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_rsqrt_sh) |
| 8258 | #[inline ] |
| 8259 | #[target_feature (enable = "avx512fp16" )] |
| 8260 | #[cfg_attr (test, assert_instr(vrsqrtsh))] |
| 8261 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8262 | pub fn _mm_mask_rsqrt_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8263 | unsafe { vrsqrtsh(a, b, src, k) } |
| 8264 | } |
| 8265 | |
| 8266 | /// Compute the approximate reciprocal square root of the lower half-precision (16-bit) floating-point |
| 8267 | /// element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when |
| 8268 | /// mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8269 | /// The maximum relative error for this approximation is less than `1.5*2^-12`. |
| 8270 | /// |
| 8271 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_rsqrt_sh) |
| 8272 | #[inline ] |
| 8273 | #[target_feature (enable = "avx512fp16" )] |
| 8274 | #[cfg_attr (test, assert_instr(vrsqrtsh))] |
| 8275 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8276 | pub fn _mm_maskz_rsqrt_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8277 | _mm_mask_rsqrt_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8278 | } |
| 8279 | |
| 8280 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8281 | /// results in dst. |
| 8282 | /// |
| 8283 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_ph) |
| 8284 | #[inline ] |
| 8285 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8286 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8287 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8288 | pub fn _mm_sqrt_ph(a: __m128h) -> __m128h { |
| 8289 | unsafe { simd_fsqrt(a) } |
| 8290 | } |
| 8291 | |
| 8292 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8293 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8294 | /// |
| 8295 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sqrt_ph) |
| 8296 | #[inline ] |
| 8297 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8298 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8299 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8300 | pub fn _mm_mask_sqrt_ph(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 8301 | unsafe { simd_select_bitmask(m:k, yes:_mm_sqrt_ph(a), no:src) } |
| 8302 | } |
| 8303 | |
| 8304 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8305 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8306 | /// |
| 8307 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sqrt_ph) |
| 8308 | #[inline ] |
| 8309 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8310 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8311 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8312 | pub fn _mm_maskz_sqrt_ph(k: __mmask8, a: __m128h) -> __m128h { |
| 8313 | unsafe { simd_select_bitmask(m:k, yes:_mm_sqrt_ph(a), no:_mm_setzero_ph()) } |
| 8314 | } |
| 8315 | |
| 8316 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8317 | /// results in dst. |
| 8318 | /// |
| 8319 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_sqrt_ph) |
| 8320 | #[inline ] |
| 8321 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8322 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8323 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8324 | pub fn _mm256_sqrt_ph(a: __m256h) -> __m256h { |
| 8325 | unsafe { simd_fsqrt(a) } |
| 8326 | } |
| 8327 | |
| 8328 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8329 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8330 | /// |
| 8331 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_sqrt_ph) |
| 8332 | #[inline ] |
| 8333 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8334 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8335 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8336 | pub fn _mm256_mask_sqrt_ph(src: __m256h, k: __mmask16, a: __m256h) -> __m256h { |
| 8337 | unsafe { simd_select_bitmask(m:k, yes:_mm256_sqrt_ph(a), no:src) } |
| 8338 | } |
| 8339 | |
| 8340 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8341 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8342 | /// |
| 8343 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_sqrt_ph) |
| 8344 | #[inline ] |
| 8345 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8346 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8347 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8348 | pub fn _mm256_maskz_sqrt_ph(k: __mmask16, a: __m256h) -> __m256h { |
| 8349 | unsafe { simd_select_bitmask(m:k, yes:_mm256_sqrt_ph(a), no:_mm256_setzero_ph()) } |
| 8350 | } |
| 8351 | |
| 8352 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8353 | /// results in dst. |
| 8354 | /// |
| 8355 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_sqrt_ph) |
| 8356 | #[inline ] |
| 8357 | #[target_feature (enable = "avx512fp16" )] |
| 8358 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8359 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8360 | pub fn _mm512_sqrt_ph(a: __m512h) -> __m512h { |
| 8361 | unsafe { simd_fsqrt(a) } |
| 8362 | } |
| 8363 | |
| 8364 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8365 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8366 | /// |
| 8367 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_sqrt_ph) |
| 8368 | #[inline ] |
| 8369 | #[target_feature (enable = "avx512fp16" )] |
| 8370 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8371 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8372 | pub fn _mm512_mask_sqrt_ph(src: __m512h, k: __mmask32, a: __m512h) -> __m512h { |
| 8373 | unsafe { simd_select_bitmask(m:k, yes:_mm512_sqrt_ph(a), no:src) } |
| 8374 | } |
| 8375 | |
| 8376 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8377 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8378 | /// |
| 8379 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_sqrt_ph) |
| 8380 | #[inline ] |
| 8381 | #[target_feature (enable = "avx512fp16" )] |
| 8382 | #[cfg_attr (test, assert_instr(vsqrtph))] |
| 8383 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8384 | pub fn _mm512_maskz_sqrt_ph(k: __mmask32, a: __m512h) -> __m512h { |
| 8385 | unsafe { simd_select_bitmask(m:k, yes:_mm512_sqrt_ph(a), no:_mm512_setzero_ph()) } |
| 8386 | } |
| 8387 | |
| 8388 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8389 | /// results in dst. |
| 8390 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8391 | /// |
| 8392 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8393 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8394 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8395 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8396 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8397 | /// |
| 8398 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_sqrt_round_ph) |
| 8399 | #[inline ] |
| 8400 | #[target_feature (enable = "avx512fp16" )] |
| 8401 | #[cfg_attr (test, assert_instr(vsqrtph, ROUNDING = 8))] |
| 8402 | #[rustc_legacy_const_generics (1)] |
| 8403 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8404 | pub fn _mm512_sqrt_round_ph<const ROUNDING: i32>(a: __m512h) -> __m512h { |
| 8405 | unsafe { |
| 8406 | static_assert_rounding!(ROUNDING); |
| 8407 | vsqrtph_512(a, ROUNDING) |
| 8408 | } |
| 8409 | } |
| 8410 | |
| 8411 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8412 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8413 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8414 | /// |
| 8415 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8416 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8417 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8418 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8419 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8420 | /// |
| 8421 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_sqrt_round_ph) |
| 8422 | #[inline ] |
| 8423 | #[target_feature (enable = "avx512fp16" )] |
| 8424 | #[cfg_attr (test, assert_instr(vsqrtph, ROUNDING = 8))] |
| 8425 | #[rustc_legacy_const_generics (3)] |
| 8426 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8427 | pub fn _mm512_mask_sqrt_round_ph<const ROUNDING: i32>( |
| 8428 | src: __m512h, |
| 8429 | k: __mmask32, |
| 8430 | a: __m512h, |
| 8431 | ) -> __m512h { |
| 8432 | unsafe { |
| 8433 | static_assert_rounding!(ROUNDING); |
| 8434 | simd_select_bitmask(m:k, yes:_mm512_sqrt_round_ph::<ROUNDING>(a), no:src) |
| 8435 | } |
| 8436 | } |
| 8437 | |
| 8438 | /// Compute the square root of packed half-precision (16-bit) floating-point elements in a, and store the |
| 8439 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8440 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8441 | /// |
| 8442 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8443 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8444 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8445 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8446 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8447 | /// |
| 8448 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_sqrt_round_ph) |
| 8449 | #[inline ] |
| 8450 | #[target_feature (enable = "avx512fp16" )] |
| 8451 | #[cfg_attr (test, assert_instr(vsqrtph, ROUNDING = 8))] |
| 8452 | #[rustc_legacy_const_generics (2)] |
| 8453 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8454 | pub fn _mm512_maskz_sqrt_round_ph<const ROUNDING: i32>(k: __mmask32, a: __m512h) -> __m512h { |
| 8455 | unsafe { |
| 8456 | static_assert_rounding!(ROUNDING); |
| 8457 | simd_select_bitmask(m:k, yes:_mm512_sqrt_round_ph::<ROUNDING>(a), no:_mm512_setzero_ph()) |
| 8458 | } |
| 8459 | } |
| 8460 | |
| 8461 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8462 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 8463 | /// elements of dst. |
| 8464 | /// |
| 8465 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sh) |
| 8466 | #[inline ] |
| 8467 | #[target_feature (enable = "avx512fp16" )] |
| 8468 | #[cfg_attr (test, assert_instr(vsqrtsh))] |
| 8469 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8470 | pub fn _mm_sqrt_sh(a: __m128h, b: __m128h) -> __m128h { |
| 8471 | _mm_mask_sqrt_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 8472 | } |
| 8473 | |
| 8474 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8475 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask |
| 8476 | /// bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8477 | /// |
| 8478 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sqrt_sh) |
| 8479 | #[inline ] |
| 8480 | #[target_feature (enable = "avx512fp16" )] |
| 8481 | #[cfg_attr (test, assert_instr(vsqrtsh))] |
| 8482 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8483 | pub fn _mm_mask_sqrt_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8484 | _mm_mask_sqrt_round_sh::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 8485 | } |
| 8486 | |
| 8487 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8488 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 |
| 8489 | /// is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8490 | /// |
| 8491 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sqrt_sh) |
| 8492 | #[inline ] |
| 8493 | #[target_feature (enable = "avx512fp16" )] |
| 8494 | #[cfg_attr (test, assert_instr(vsqrtsh))] |
| 8495 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8496 | pub fn _mm_maskz_sqrt_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8497 | _mm_mask_sqrt_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8498 | } |
| 8499 | |
| 8500 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8501 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 8502 | /// elements of dst. |
| 8503 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8504 | /// |
| 8505 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8506 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8507 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8508 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8509 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8510 | /// |
| 8511 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_round_sh) |
| 8512 | #[inline ] |
| 8513 | #[target_feature (enable = "avx512fp16" )] |
| 8514 | #[cfg_attr (test, assert_instr(vsqrtsh, ROUNDING = 8))] |
| 8515 | #[rustc_legacy_const_generics (2)] |
| 8516 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8517 | pub fn _mm_sqrt_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 8518 | static_assert_rounding!(ROUNDING); |
| 8519 | _mm_mask_sqrt_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 8520 | } |
| 8521 | |
| 8522 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8523 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask |
| 8524 | /// bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8525 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8526 | /// |
| 8527 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8528 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8529 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8530 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8531 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8532 | /// |
| 8533 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_sqrt_round_sh) |
| 8534 | #[inline ] |
| 8535 | #[target_feature (enable = "avx512fp16" )] |
| 8536 | #[cfg_attr (test, assert_instr(vsqrtsh, ROUNDING = 8))] |
| 8537 | #[rustc_legacy_const_generics (4)] |
| 8538 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8539 | pub fn _mm_mask_sqrt_round_sh<const ROUNDING: i32>( |
| 8540 | src: __m128h, |
| 8541 | k: __mmask8, |
| 8542 | a: __m128h, |
| 8543 | b: __m128h, |
| 8544 | ) -> __m128h { |
| 8545 | unsafe { |
| 8546 | static_assert_rounding!(ROUNDING); |
| 8547 | vsqrtsh(a, b, src, k, ROUNDING) |
| 8548 | } |
| 8549 | } |
| 8550 | |
| 8551 | /// Compute the square root of the lower half-precision (16-bit) floating-point element in b, store |
| 8552 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 |
| 8553 | /// is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8554 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 8555 | /// |
| 8556 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 8557 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 8558 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 8559 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 8560 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 8561 | /// |
| 8562 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_sqrt_round_sh) |
| 8563 | #[inline ] |
| 8564 | #[target_feature (enable = "avx512fp16" )] |
| 8565 | #[cfg_attr (test, assert_instr(vsqrtsh, ROUNDING = 8))] |
| 8566 | #[rustc_legacy_const_generics (3)] |
| 8567 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8568 | pub fn _mm_maskz_sqrt_round_sh<const ROUNDING: i32>( |
| 8569 | k: __mmask8, |
| 8570 | a: __m128h, |
| 8571 | b: __m128h, |
| 8572 | ) -> __m128h { |
| 8573 | static_assert_rounding!(ROUNDING); |
| 8574 | _mm_mask_sqrt_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8575 | } |
| 8576 | |
| 8577 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8578 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum |
| 8579 | /// value when inputs are NaN or signed-zero values. |
| 8580 | /// |
| 8581 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_ph) |
| 8582 | #[inline ] |
| 8583 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8584 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8585 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8586 | pub fn _mm_max_ph(a: __m128h, b: __m128h) -> __m128h { |
| 8587 | unsafe { vmaxph_128(a, b) } |
| 8588 | } |
| 8589 | |
| 8590 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8591 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8592 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8593 | /// NaN or signed-zero values. |
| 8594 | /// |
| 8595 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_max_ph) |
| 8596 | #[inline ] |
| 8597 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8598 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8599 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8600 | pub fn _mm_mask_max_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8601 | unsafe { simd_select_bitmask(m:k, yes:_mm_max_ph(a, b), no:src) } |
| 8602 | } |
| 8603 | |
| 8604 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8605 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8606 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8607 | /// NaN or signed-zero values. |
| 8608 | /// |
| 8609 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_max_ph) |
| 8610 | #[inline ] |
| 8611 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8612 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8613 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8614 | pub fn _mm_maskz_max_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8615 | unsafe { simd_select_bitmask(m:k, yes:_mm_max_ph(a, b), no:_mm_setzero_ph()) } |
| 8616 | } |
| 8617 | |
| 8618 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8619 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum |
| 8620 | /// value when inputs are NaN or signed-zero values. |
| 8621 | /// |
| 8622 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_max_ph) |
| 8623 | #[inline ] |
| 8624 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8625 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8626 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8627 | pub fn _mm256_max_ph(a: __m256h, b: __m256h) -> __m256h { |
| 8628 | unsafe { vmaxph_256(a, b) } |
| 8629 | } |
| 8630 | |
| 8631 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8632 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8633 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8634 | /// NaN or signed-zero values. |
| 8635 | /// |
| 8636 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_max_ph) |
| 8637 | #[inline ] |
| 8638 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8639 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8640 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8641 | pub fn _mm256_mask_max_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 8642 | unsafe { simd_select_bitmask(m:k, yes:_mm256_max_ph(a, b), no:src) } |
| 8643 | } |
| 8644 | |
| 8645 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8646 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8647 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8648 | /// NaN or signed-zero values. |
| 8649 | /// |
| 8650 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_max_ph) |
| 8651 | #[inline ] |
| 8652 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8653 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8654 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8655 | pub fn _mm256_maskz_max_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 8656 | unsafe { simd_select_bitmask(m:k, yes:_mm256_max_ph(a, b), no:_mm256_setzero_ph()) } |
| 8657 | } |
| 8658 | |
| 8659 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8660 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum |
| 8661 | /// value when inputs are NaN or signed-zero values. |
| 8662 | /// |
| 8663 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_max_ph) |
| 8664 | #[inline ] |
| 8665 | #[target_feature (enable = "avx512fp16" )] |
| 8666 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8667 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8668 | pub fn _mm512_max_ph(a: __m512h, b: __m512h) -> __m512h { |
| 8669 | _mm512_max_round_ph::<_MM_FROUND_CUR_DIRECTION>(a, b) |
| 8670 | } |
| 8671 | |
| 8672 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8673 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8674 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8675 | /// NaN or signed-zero values. |
| 8676 | /// |
| 8677 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_max_ph) |
| 8678 | #[inline ] |
| 8679 | #[target_feature (enable = "avx512fp16" )] |
| 8680 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8681 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8682 | pub fn _mm512_mask_max_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 8683 | unsafe { simd_select_bitmask(m:k, yes:_mm512_max_ph(a, b), no:src) } |
| 8684 | } |
| 8685 | |
| 8686 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8687 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8688 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8689 | /// NaN or signed-zero values. |
| 8690 | /// |
| 8691 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_max_ph) |
| 8692 | #[inline ] |
| 8693 | #[target_feature (enable = "avx512fp16" )] |
| 8694 | #[cfg_attr (test, assert_instr(vmaxph))] |
| 8695 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8696 | pub fn _mm512_maskz_max_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 8697 | unsafe { simd_select_bitmask(m:k, yes:_mm512_max_ph(a, b), no:_mm512_setzero_ph()) } |
| 8698 | } |
| 8699 | |
| 8700 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8701 | /// values in dst. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 8702 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are |
| 8703 | /// NaN or signed-zero values. |
| 8704 | /// |
| 8705 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_max_round_ph) |
| 8706 | #[inline ] |
| 8707 | #[target_feature (enable = "avx512fp16" )] |
| 8708 | #[cfg_attr (test, assert_instr(vmaxph, SAE = 8))] |
| 8709 | #[rustc_legacy_const_generics (2)] |
| 8710 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8711 | pub fn _mm512_max_round_ph<const SAE: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 8712 | unsafe { |
| 8713 | static_assert_sae!(SAE); |
| 8714 | vmaxph_512(a, b, SAE) |
| 8715 | } |
| 8716 | } |
| 8717 | |
| 8718 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8719 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8720 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 8721 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8722 | /// |
| 8723 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_max_round_ph) |
| 8724 | #[inline ] |
| 8725 | #[target_feature (enable = "avx512fp16" )] |
| 8726 | #[cfg_attr (test, assert_instr(vmaxph, SAE = 8))] |
| 8727 | #[rustc_legacy_const_generics (4)] |
| 8728 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8729 | pub fn _mm512_mask_max_round_ph<const SAE: i32>( |
| 8730 | src: __m512h, |
| 8731 | k: __mmask32, |
| 8732 | a: __m512h, |
| 8733 | b: __m512h, |
| 8734 | ) -> __m512h { |
| 8735 | unsafe { |
| 8736 | static_assert_sae!(SAE); |
| 8737 | simd_select_bitmask(m:k, yes:_mm512_max_round_ph::<SAE>(a, b), no:src) |
| 8738 | } |
| 8739 | } |
| 8740 | |
| 8741 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed maximum |
| 8742 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8743 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 8744 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8745 | /// |
| 8746 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_max_round_ph) |
| 8747 | #[inline ] |
| 8748 | #[target_feature (enable = "avx512fp16" )] |
| 8749 | #[cfg_attr (test, assert_instr(vmaxph, SAE = 8))] |
| 8750 | #[rustc_legacy_const_generics (3)] |
| 8751 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8752 | pub fn _mm512_maskz_max_round_ph<const SAE: i32>(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 8753 | unsafe { |
| 8754 | static_assert_sae!(SAE); |
| 8755 | simd_select_bitmask(m:k, yes:_mm512_max_round_ph::<SAE>(a, b), no:_mm512_setzero_ph()) |
| 8756 | } |
| 8757 | } |
| 8758 | |
| 8759 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum |
| 8760 | /// value in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 8761 | /// of dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value |
| 8762 | /// when inputs are NaN or signed-zero values. |
| 8763 | /// |
| 8764 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sh) |
| 8765 | #[inline ] |
| 8766 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8767 | #[cfg_attr (test, assert_instr(vmaxsh))] |
| 8768 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8769 | pub fn _mm_max_sh(a: __m128h, b: __m128h) -> __m128h { |
| 8770 | _mm_mask_max_sh(src:_mm_undefined_ph(), k:0xff, a, b) |
| 8771 | } |
| 8772 | |
| 8773 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum |
| 8774 | /// value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 |
| 8775 | /// is not set), and copy the upper 7 packed elements from a to the upper elements of dst. Does not follow |
| 8776 | /// the IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8777 | /// |
| 8778 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_max_sh) |
| 8779 | #[inline ] |
| 8780 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8781 | #[cfg_attr (test, assert_instr(vmaxsh))] |
| 8782 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8783 | pub fn _mm_mask_max_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8784 | _mm_mask_max_round_sh::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 8785 | } |
| 8786 | |
| 8787 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum value |
| 8788 | /// in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and |
| 8789 | /// copy the upper 7 packed elements from a to the upper elements of dst. Does not follow the IEEE Standard |
| 8790 | /// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8791 | /// |
| 8792 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_max_sh) |
| 8793 | #[inline ] |
| 8794 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8795 | #[cfg_attr (test, assert_instr(vmaxsh))] |
| 8796 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8797 | pub fn _mm_maskz_max_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8798 | _mm_mask_max_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8799 | } |
| 8800 | |
| 8801 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum value |
| 8802 | /// in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 8803 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 8804 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8805 | /// |
| 8806 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_round_sh) |
| 8807 | #[inline ] |
| 8808 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8809 | #[cfg_attr (test, assert_instr(vmaxsh, SAE = 8))] |
| 8810 | #[rustc_legacy_const_generics (2)] |
| 8811 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8812 | pub fn _mm_max_round_sh<const SAE: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 8813 | static_assert_sae!(SAE); |
| 8814 | _mm_mask_max_round_sh::<SAE>(src:_mm_undefined_ph(), k:0xff, a, b) |
| 8815 | } |
| 8816 | |
| 8817 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum value |
| 8818 | /// in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 8819 | /// and copy the upper 7 packed elements from a to the upper elements of dst. Exceptions can be suppressed by |
| 8820 | /// passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the IEEE Standard for Floating-Point Arithmetic |
| 8821 | /// (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8822 | /// |
| 8823 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_max_round_sh) |
| 8824 | #[inline ] |
| 8825 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8826 | #[cfg_attr (test, assert_instr(vmaxsh, SAE = 8))] |
| 8827 | #[rustc_legacy_const_generics (4)] |
| 8828 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8829 | pub fn _mm_mask_max_round_sh<const SAE: i32>( |
| 8830 | src: __m128h, |
| 8831 | k: __mmask8, |
| 8832 | a: __m128h, |
| 8833 | b: __m128h, |
| 8834 | ) -> __m128h { |
| 8835 | unsafe { |
| 8836 | static_assert_sae!(SAE); |
| 8837 | vmaxsh(a, b, src, k, SAE) |
| 8838 | } |
| 8839 | } |
| 8840 | |
| 8841 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the maximum value |
| 8842 | /// in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and |
| 8843 | /// copy the upper 7 packed elements from a to the upper elements of dst. Exceptions can be suppressed by |
| 8844 | /// passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the IEEE Standard for Floating-Point Arithmetic |
| 8845 | /// (IEEE 754) maximum value when inputs are NaN or signed-zero values. |
| 8846 | /// |
| 8847 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_max_round_sh) |
| 8848 | #[inline ] |
| 8849 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8850 | #[cfg_attr (test, assert_instr(vmaxsh, SAE = 8))] |
| 8851 | #[rustc_legacy_const_generics (3)] |
| 8852 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8853 | pub fn _mm_maskz_max_round_sh<const SAE: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8854 | static_assert_sae!(SAE); |
| 8855 | _mm_mask_max_round_sh::<SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 8856 | } |
| 8857 | |
| 8858 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8859 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value |
| 8860 | /// when inputs are NaN or signed-zero values. |
| 8861 | /// |
| 8862 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_ph) |
| 8863 | #[inline ] |
| 8864 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8865 | #[cfg_attr (test, assert_instr(vminph))] |
| 8866 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8867 | pub fn _mm_min_ph(a: __m128h, b: __m128h) -> __m128h { |
| 8868 | unsafe { vminph_128(a, b) } |
| 8869 | } |
| 8870 | |
| 8871 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8872 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8873 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8874 | /// NaN or signed-zero values. |
| 8875 | /// |
| 8876 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_min_ph) |
| 8877 | #[inline ] |
| 8878 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8879 | #[cfg_attr (test, assert_instr(vminph))] |
| 8880 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8881 | pub fn _mm_mask_min_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8882 | unsafe { simd_select_bitmask(m:k, yes:_mm_min_ph(a, b), no:src) } |
| 8883 | } |
| 8884 | |
| 8885 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8886 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8887 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8888 | /// NaN or signed-zero values. |
| 8889 | /// |
| 8890 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_min_ph) |
| 8891 | #[inline ] |
| 8892 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8893 | #[cfg_attr (test, assert_instr(vminph))] |
| 8894 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8895 | pub fn _mm_maskz_min_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 8896 | unsafe { simd_select_bitmask(m:k, yes:_mm_min_ph(a, b), no:_mm_setzero_ph()) } |
| 8897 | } |
| 8898 | |
| 8899 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8900 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value |
| 8901 | /// when inputs are NaN or signed-zero values. |
| 8902 | /// |
| 8903 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_min_ph) |
| 8904 | #[inline ] |
| 8905 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8906 | #[cfg_attr (test, assert_instr(vminph))] |
| 8907 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8908 | pub fn _mm256_min_ph(a: __m256h, b: __m256h) -> __m256h { |
| 8909 | unsafe { vminph_256(a, b) } |
| 8910 | } |
| 8911 | |
| 8912 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8913 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8914 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8915 | /// NaN or signed-zero values. |
| 8916 | /// |
| 8917 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_min_ph) |
| 8918 | #[inline ] |
| 8919 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8920 | #[cfg_attr (test, assert_instr(vminph))] |
| 8921 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8922 | pub fn _mm256_mask_min_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 8923 | unsafe { simd_select_bitmask(m:k, yes:_mm256_min_ph(a, b), no:src) } |
| 8924 | } |
| 8925 | |
| 8926 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8927 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8928 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8929 | /// NaN or signed-zero values. |
| 8930 | /// |
| 8931 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_min_ph) |
| 8932 | #[inline ] |
| 8933 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 8934 | #[cfg_attr (test, assert_instr(vminph))] |
| 8935 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8936 | pub fn _mm256_maskz_min_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 8937 | unsafe { simd_select_bitmask(m:k, yes:_mm256_min_ph(a, b), no:_mm256_setzero_ph()) } |
| 8938 | } |
| 8939 | |
| 8940 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8941 | /// values in dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value |
| 8942 | /// when inputs are NaN or signed-zero values. |
| 8943 | /// |
| 8944 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_min_ph) |
| 8945 | #[inline ] |
| 8946 | #[target_feature (enable = "avx512fp16" )] |
| 8947 | #[cfg_attr (test, assert_instr(vminph))] |
| 8948 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8949 | pub fn _mm512_min_ph(a: __m512h, b: __m512h) -> __m512h { |
| 8950 | _mm512_min_round_ph::<_MM_FROUND_CUR_DIRECTION>(a, b) |
| 8951 | } |
| 8952 | |
| 8953 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8954 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 8955 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8956 | /// NaN or signed-zero values. |
| 8957 | /// |
| 8958 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_min_ph) |
| 8959 | #[inline ] |
| 8960 | #[target_feature (enable = "avx512fp16" )] |
| 8961 | #[cfg_attr (test, assert_instr(vminph))] |
| 8962 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8963 | pub fn _mm512_mask_min_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 8964 | unsafe { simd_select_bitmask(m:k, yes:_mm512_min_ph(a, b), no:src) } |
| 8965 | } |
| 8966 | |
| 8967 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8968 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 8969 | /// Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are |
| 8970 | /// NaN or signed-zero values. |
| 8971 | /// |
| 8972 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_min_ph) |
| 8973 | #[inline ] |
| 8974 | #[target_feature (enable = "avx512fp16" )] |
| 8975 | #[cfg_attr (test, assert_instr(vminph))] |
| 8976 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8977 | pub fn _mm512_maskz_min_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 8978 | unsafe { simd_select_bitmask(m:k, yes:_mm512_min_ph(a, b), no:_mm512_setzero_ph()) } |
| 8979 | } |
| 8980 | |
| 8981 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8982 | /// values in dst. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not |
| 8983 | /// follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 8984 | /// |
| 8985 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_min_round_ph) |
| 8986 | #[inline ] |
| 8987 | #[target_feature (enable = "avx512fp16" )] |
| 8988 | #[cfg_attr (test, assert_instr(vminph, SAE = 8))] |
| 8989 | #[rustc_legacy_const_generics (2)] |
| 8990 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 8991 | pub fn _mm512_min_round_ph<const SAE: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 8992 | unsafe { |
| 8993 | static_assert_sae!(SAE); |
| 8994 | vminph_512(a, b, SAE) |
| 8995 | } |
| 8996 | } |
| 8997 | |
| 8998 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 8999 | /// values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 9000 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 9001 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9002 | /// |
| 9003 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_min_round_ph) |
| 9004 | #[inline ] |
| 9005 | #[target_feature (enable = "avx512fp16" )] |
| 9006 | #[cfg_attr (test, assert_instr(vminph, SAE = 8))] |
| 9007 | #[rustc_legacy_const_generics (4)] |
| 9008 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9009 | pub fn _mm512_mask_min_round_ph<const SAE: i32>( |
| 9010 | src: __m512h, |
| 9011 | k: __mmask32, |
| 9012 | a: __m512h, |
| 9013 | b: __m512h, |
| 9014 | ) -> __m512h { |
| 9015 | unsafe { |
| 9016 | static_assert_sae!(SAE); |
| 9017 | simd_select_bitmask(m:k, yes:_mm512_min_round_ph::<SAE>(a, b), no:src) |
| 9018 | } |
| 9019 | } |
| 9020 | |
| 9021 | /// Compare packed half-precision (16-bit) floating-point elements in a and b, and store packed minimum |
| 9022 | /// values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 9023 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 9024 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9025 | /// |
| 9026 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_min_round_ph) |
| 9027 | #[inline ] |
| 9028 | #[target_feature (enable = "avx512fp16" )] |
| 9029 | #[cfg_attr (test, assert_instr(vminph, SAE = 8))] |
| 9030 | #[rustc_legacy_const_generics (3)] |
| 9031 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9032 | pub fn _mm512_maskz_min_round_ph<const SAE: i32>(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 9033 | unsafe { |
| 9034 | static_assert_sae!(SAE); |
| 9035 | simd_select_bitmask(m:k, yes:_mm512_min_round_ph::<SAE>(a, b), no:_mm512_setzero_ph()) |
| 9036 | } |
| 9037 | } |
| 9038 | |
| 9039 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum |
| 9040 | /// value in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 9041 | /// of dst. Does not follow the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when |
| 9042 | /// inputs are NaN or signed-zero values. |
| 9043 | /// |
| 9044 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sh) |
| 9045 | #[inline ] |
| 9046 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9047 | #[cfg_attr (test, assert_instr(vminsh))] |
| 9048 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9049 | pub fn _mm_min_sh(a: __m128h, b: __m128h) -> __m128h { |
| 9050 | _mm_mask_min_sh(src:_mm_undefined_ph(), k:0xff, a, b) |
| 9051 | } |
| 9052 | |
| 9053 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum |
| 9054 | /// value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 |
| 9055 | /// is not set), and copy the upper 7 packed elements from a to the upper elements of dst. Does not follow |
| 9056 | /// the IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9057 | /// |
| 9058 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_min_sh) |
| 9059 | #[inline ] |
| 9060 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9061 | #[cfg_attr (test, assert_instr(vminsh))] |
| 9062 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9063 | pub fn _mm_mask_min_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9064 | _mm_mask_min_round_sh::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 9065 | } |
| 9066 | |
| 9067 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum value |
| 9068 | /// in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and |
| 9069 | /// copy the upper 7 packed elements from a to the upper elements of dst. Does not follow the IEEE Standard |
| 9070 | /// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9071 | /// |
| 9072 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_min_sh) |
| 9073 | #[inline ] |
| 9074 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9075 | #[cfg_attr (test, assert_instr(vminsh))] |
| 9076 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9077 | pub fn _mm_maskz_min_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9078 | _mm_mask_min_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 9079 | } |
| 9080 | |
| 9081 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum value |
| 9082 | /// in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements of dst. |
| 9083 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the |
| 9084 | /// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9085 | /// |
| 9086 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_round_sh) |
| 9087 | #[inline ] |
| 9088 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9089 | #[cfg_attr (test, assert_instr(vminsh, SAE = 8))] |
| 9090 | #[rustc_legacy_const_generics (2)] |
| 9091 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9092 | pub fn _mm_min_round_sh<const SAE: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 9093 | static_assert_sae!(SAE); |
| 9094 | _mm_mask_min_round_sh::<SAE>(src:_mm_undefined_ph(), k:0xff, a, b) |
| 9095 | } |
| 9096 | |
| 9097 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum value |
| 9098 | /// in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 9099 | /// and copy the upper 7 packed elements from a to the upper elements of dst. Exceptions can be suppressed by |
| 9100 | /// passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the IEEE Standard for Floating-Point Arithmetic |
| 9101 | /// (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9102 | /// |
| 9103 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_min_round_sh) |
| 9104 | #[inline ] |
| 9105 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9106 | #[cfg_attr (test, assert_instr(vminsh, SAE = 8))] |
| 9107 | #[rustc_legacy_const_generics (4)] |
| 9108 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9109 | pub fn _mm_mask_min_round_sh<const SAE: i32>( |
| 9110 | src: __m128h, |
| 9111 | k: __mmask8, |
| 9112 | a: __m128h, |
| 9113 | b: __m128h, |
| 9114 | ) -> __m128h { |
| 9115 | unsafe { |
| 9116 | static_assert_sae!(SAE); |
| 9117 | vminsh(a, b, src, k, SAE) |
| 9118 | } |
| 9119 | } |
| 9120 | |
| 9121 | /// Compare the lower half-precision (16-bit) floating-point elements in a and b, store the minimum value |
| 9122 | /// in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and |
| 9123 | /// copy the upper 7 packed elements from a to the upper elements of dst. Exceptions can be suppressed by |
| 9124 | /// passing _MM_FROUND_NO_EXC in the sae parameter. Does not follow the IEEE Standard for Floating-Point Arithmetic |
| 9125 | /// (IEEE 754) minimum value when inputs are NaN or signed-zero values. |
| 9126 | /// |
| 9127 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_min_round_sh) |
| 9128 | #[inline ] |
| 9129 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9130 | #[cfg_attr (test, assert_instr(vminsh, SAE = 8))] |
| 9131 | #[rustc_legacy_const_generics (3)] |
| 9132 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9133 | pub fn _mm_maskz_min_round_sh<const SAE: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9134 | static_assert_sae!(SAE); |
| 9135 | _mm_mask_min_round_sh::<SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 9136 | } |
| 9137 | |
| 9138 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9139 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst. |
| 9140 | /// This intrinsic essentially calculates `floor(log2(x))` for each element. |
| 9141 | /// |
| 9142 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getexp_ph) |
| 9143 | #[inline ] |
| 9144 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9145 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9146 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9147 | pub fn _mm_getexp_ph(a: __m128h) -> __m128h { |
| 9148 | _mm_mask_getexp_ph(src:_mm_undefined_ph(), k:0xff, a) |
| 9149 | } |
| 9150 | |
| 9151 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9152 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k |
| 9153 | /// (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9154 | /// `floor(log2(x))` for each element. |
| 9155 | /// |
| 9156 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getexp_ph) |
| 9157 | #[inline ] |
| 9158 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9159 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9160 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9161 | pub fn _mm_mask_getexp_ph(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 9162 | unsafe { vgetexpph_128(a, src, k) } |
| 9163 | } |
| 9164 | |
| 9165 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9166 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask |
| 9167 | /// k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9168 | /// `floor(log2(x))` for each element. |
| 9169 | /// |
| 9170 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getexp_ph) |
| 9171 | #[inline ] |
| 9172 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9173 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9174 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9175 | pub fn _mm_maskz_getexp_ph(k: __mmask8, a: __m128h) -> __m128h { |
| 9176 | _mm_mask_getexp_ph(src:_mm_setzero_ph(), k, a) |
| 9177 | } |
| 9178 | |
| 9179 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9180 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst. |
| 9181 | /// This intrinsic essentially calculates `floor(log2(x))` for each element. |
| 9182 | /// |
| 9183 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_getexp_ph) |
| 9184 | #[inline ] |
| 9185 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9186 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9187 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9188 | pub fn _mm256_getexp_ph(a: __m256h) -> __m256h { |
| 9189 | _mm256_mask_getexp_ph(src:_mm256_undefined_ph(), k:0xffff, a) |
| 9190 | } |
| 9191 | |
| 9192 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9193 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k |
| 9194 | /// (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9195 | /// `floor(log2(x))` for each element. |
| 9196 | /// |
| 9197 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_getexp_ph) |
| 9198 | #[inline ] |
| 9199 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9200 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9201 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9202 | pub fn _mm256_mask_getexp_ph(src: __m256h, k: __mmask16, a: __m256h) -> __m256h { |
| 9203 | unsafe { vgetexpph_256(a, src, k) } |
| 9204 | } |
| 9205 | |
| 9206 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9207 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask |
| 9208 | /// k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9209 | /// `floor(log2(x))` for each element. |
| 9210 | /// |
| 9211 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_getexp_ph) |
| 9212 | #[inline ] |
| 9213 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9214 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9215 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9216 | pub fn _mm256_maskz_getexp_ph(k: __mmask16, a: __m256h) -> __m256h { |
| 9217 | _mm256_mask_getexp_ph(src:_mm256_setzero_ph(), k, a) |
| 9218 | } |
| 9219 | |
| 9220 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9221 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst. |
| 9222 | /// This intrinsic essentially calculates `floor(log2(x))` for each element. |
| 9223 | /// |
| 9224 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_getexp_ph) |
| 9225 | #[inline ] |
| 9226 | #[target_feature (enable = "avx512fp16" )] |
| 9227 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9228 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9229 | pub fn _mm512_getexp_ph(a: __m512h) -> __m512h { |
| 9230 | _mm512_mask_getexp_ph(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 9231 | } |
| 9232 | |
| 9233 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9234 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k |
| 9235 | /// (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9236 | /// `floor(log2(x))` for each element. |
| 9237 | /// |
| 9238 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_getexp_ph) |
| 9239 | #[inline ] |
| 9240 | #[target_feature (enable = "avx512fp16" )] |
| 9241 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9242 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9243 | pub fn _mm512_mask_getexp_ph(src: __m512h, k: __mmask32, a: __m512h) -> __m512h { |
| 9244 | _mm512_mask_getexp_round_ph::<_MM_FROUND_CUR_DIRECTION>(src, k, a) |
| 9245 | } |
| 9246 | |
| 9247 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9248 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask |
| 9249 | /// k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9250 | /// `floor(log2(x))` for each element. |
| 9251 | /// |
| 9252 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_getexp_ph) |
| 9253 | #[inline ] |
| 9254 | #[target_feature (enable = "avx512fp16" )] |
| 9255 | #[cfg_attr (test, assert_instr(vgetexpph))] |
| 9256 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9257 | pub fn _mm512_maskz_getexp_ph(k: __mmask32, a: __m512h) -> __m512h { |
| 9258 | _mm512_mask_getexp_ph(src:_mm512_setzero_ph(), k, a) |
| 9259 | } |
| 9260 | |
| 9261 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9262 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst. |
| 9263 | /// This intrinsic essentially calculates `floor(log2(x))` for each element. Exceptions can be suppressed |
| 9264 | /// by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9265 | /// |
| 9266 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_getexp_round_ph) |
| 9267 | #[inline ] |
| 9268 | #[target_feature (enable = "avx512fp16" )] |
| 9269 | #[cfg_attr (test, assert_instr(vgetexpph, SAE = 8))] |
| 9270 | #[rustc_legacy_const_generics (1)] |
| 9271 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9272 | pub fn _mm512_getexp_round_ph<const SAE: i32>(a: __m512h) -> __m512h { |
| 9273 | static_assert_sae!(SAE); |
| 9274 | _mm512_mask_getexp_round_ph::<SAE>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 9275 | } |
| 9276 | |
| 9277 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9278 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k |
| 9279 | /// (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9280 | /// `floor(log2(x))` for each element. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9281 | /// |
| 9282 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_getexp_round_ph) |
| 9283 | #[inline ] |
| 9284 | #[target_feature (enable = "avx512fp16" )] |
| 9285 | #[cfg_attr (test, assert_instr(vgetexpph, SAE = 8))] |
| 9286 | #[rustc_legacy_const_generics (3)] |
| 9287 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9288 | pub fn _mm512_mask_getexp_round_ph<const SAE: i32>( |
| 9289 | src: __m512h, |
| 9290 | k: __mmask32, |
| 9291 | a: __m512h, |
| 9292 | ) -> __m512h { |
| 9293 | unsafe { |
| 9294 | static_assert_sae!(SAE); |
| 9295 | vgetexpph_512(a, src, k, SAE) |
| 9296 | } |
| 9297 | } |
| 9298 | |
| 9299 | /// Convert the exponent of each packed half-precision (16-bit) floating-point element in a to a half-precision |
| 9300 | /// (16-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask |
| 9301 | /// k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates |
| 9302 | /// `floor(log2(x))` for each element. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9303 | /// |
| 9304 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_getexp_round_ph) |
| 9305 | #[inline ] |
| 9306 | #[target_feature (enable = "avx512fp16" )] |
| 9307 | #[cfg_attr (test, assert_instr(vgetexpph, SAE = 8))] |
| 9308 | #[rustc_legacy_const_generics (2)] |
| 9309 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9310 | pub fn _mm512_maskz_getexp_round_ph<const SAE: i32>(k: __mmask32, a: __m512h) -> __m512h { |
| 9311 | static_assert_sae!(SAE); |
| 9312 | _mm512_mask_getexp_round_ph::<SAE>(src:_mm512_setzero_ph(), k, a) |
| 9313 | } |
| 9314 | |
| 9315 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9316 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9317 | /// of dst, and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially |
| 9318 | /// calculates `floor(log2(x))` for the lower element. |
| 9319 | /// |
| 9320 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getexp_sh) |
| 9321 | #[inline ] |
| 9322 | #[target_feature (enable = "avx512fp16" )] |
| 9323 | #[cfg_attr (test, assert_instr(vgetexpsh))] |
| 9324 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9325 | pub fn _mm_getexp_sh(a: __m128h, b: __m128h) -> __m128h { |
| 9326 | _mm_mask_getexp_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 9327 | } |
| 9328 | |
| 9329 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9330 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9331 | /// of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 7 |
| 9332 | /// packed elements from a to the upper elements of dst. This intrinsic essentially calculates `floor(log2(x))` |
| 9333 | /// for the lower element. |
| 9334 | /// |
| 9335 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getexp_sh) |
| 9336 | #[inline ] |
| 9337 | #[target_feature (enable = "avx512fp16" )] |
| 9338 | #[cfg_attr (test, assert_instr(vgetexpsh))] |
| 9339 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9340 | pub fn _mm_mask_getexp_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9341 | _mm_mask_getexp_round_sh::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 9342 | } |
| 9343 | |
| 9344 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9345 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9346 | /// of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed |
| 9347 | /// elements from a to the upper elements of dst. This intrinsic essentially calculates `floor(log2(x))` for the |
| 9348 | /// lower element. |
| 9349 | /// |
| 9350 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getexp_sh) |
| 9351 | #[inline ] |
| 9352 | #[target_feature (enable = "avx512fp16" )] |
| 9353 | #[cfg_attr (test, assert_instr(vgetexpsh))] |
| 9354 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9355 | pub fn _mm_maskz_getexp_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9356 | _mm_mask_getexp_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 9357 | } |
| 9358 | |
| 9359 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9360 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9361 | /// of dst, and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially |
| 9362 | /// calculates `floor(log2(x))` for the lower element. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC |
| 9363 | /// in the sae parameter |
| 9364 | /// |
| 9365 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getexp_round_sh) |
| 9366 | #[inline ] |
| 9367 | #[target_feature (enable = "avx512fp16" )] |
| 9368 | #[cfg_attr (test, assert_instr(vgetexpsh, SAE = 8))] |
| 9369 | #[rustc_legacy_const_generics (2)] |
| 9370 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9371 | pub fn _mm_getexp_round_sh<const SAE: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 9372 | static_assert_sae!(SAE); |
| 9373 | _mm_mask_getexp_round_sh::<SAE>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 9374 | } |
| 9375 | |
| 9376 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9377 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9378 | /// of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 7 |
| 9379 | /// packed elements from a to the upper elements of dst. This intrinsic essentially calculates `floor(log2(x))` |
| 9380 | /// for the lower element. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9381 | /// |
| 9382 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getexp_round_sh) |
| 9383 | #[inline ] |
| 9384 | #[target_feature (enable = "avx512fp16" )] |
| 9385 | #[cfg_attr (test, assert_instr(vgetexpsh, SAE = 8))] |
| 9386 | #[rustc_legacy_const_generics (4)] |
| 9387 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9388 | pub fn _mm_mask_getexp_round_sh<const SAE: i32>( |
| 9389 | src: __m128h, |
| 9390 | k: __mmask8, |
| 9391 | a: __m128h, |
| 9392 | b: __m128h, |
| 9393 | ) -> __m128h { |
| 9394 | unsafe { |
| 9395 | static_assert_sae!(SAE); |
| 9396 | vgetexpsh(a, b, src, k, SAE) |
| 9397 | } |
| 9398 | } |
| 9399 | |
| 9400 | /// Convert the exponent of the lower half-precision (16-bit) floating-point element in b to a half-precision |
| 9401 | /// (16-bit) floating-point number representing the integer exponent, store the result in the lower element |
| 9402 | /// of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed |
| 9403 | /// elements from a to the upper elements of dst. This intrinsic essentially calculates `floor(log2(x))` for the |
| 9404 | /// lower element. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9405 | /// |
| 9406 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getexp_round_sh) |
| 9407 | #[inline ] |
| 9408 | #[target_feature (enable = "avx512fp16" )] |
| 9409 | #[cfg_attr (test, assert_instr(vgetexpsh, SAE = 8))] |
| 9410 | #[rustc_legacy_const_generics (3)] |
| 9411 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9412 | pub fn _mm_maskz_getexp_round_sh<const SAE: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 9413 | static_assert_sae!(SAE); |
| 9414 | _mm_mask_getexp_round_sh::<SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 9415 | } |
| 9416 | |
| 9417 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9418 | /// the results in dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9419 | /// on the interval range defined by norm and the sign depends on sign and the source sign. |
| 9420 | /// |
| 9421 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9422 | /// |
| 9423 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9424 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9425 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9426 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9427 | /// |
| 9428 | /// The sign is determined by sc which can take the following values: |
| 9429 | /// |
| 9430 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9431 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9432 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9433 | /// |
| 9434 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getmant_ph) |
| 9435 | #[inline ] |
| 9436 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9437 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9438 | #[rustc_legacy_const_generics (1, 2)] |
| 9439 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9440 | pub fn _mm_getmant_ph<const NORM: _MM_MANTISSA_NORM_ENUM, const SIGN: _MM_MANTISSA_SIGN_ENUM>( |
| 9441 | a: __m128h, |
| 9442 | ) -> __m128h { |
| 9443 | static_assert_uimm_bits!(NORM, 4); |
| 9444 | static_assert_uimm_bits!(SIGN, 2); |
| 9445 | _mm_mask_getmant_ph::<NORM, SIGN>(src:_mm_undefined_ph(), k:0xff, a) |
| 9446 | } |
| 9447 | |
| 9448 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9449 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 9450 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9451 | /// by norm and the sign depends on sign and the source sign. |
| 9452 | /// |
| 9453 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9454 | /// |
| 9455 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9456 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9457 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9458 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9459 | /// |
| 9460 | /// The sign is determined by sc which can take the following values: |
| 9461 | /// |
| 9462 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9463 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9464 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9465 | /// |
| 9466 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getmant_ph) |
| 9467 | #[inline ] |
| 9468 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9469 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9470 | #[rustc_legacy_const_generics (3, 4)] |
| 9471 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9472 | pub fn _mm_mask_getmant_ph< |
| 9473 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9474 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9475 | >( |
| 9476 | src: __m128h, |
| 9477 | k: __mmask8, |
| 9478 | a: __m128h, |
| 9479 | ) -> __m128h { |
| 9480 | unsafe { |
| 9481 | static_assert_uimm_bits!(NORM, 4); |
| 9482 | static_assert_uimm_bits!(SIGN, 2); |
| 9483 | vgetmantph_128(a, (SIGN << 2) | NORM, src, k) |
| 9484 | } |
| 9485 | } |
| 9486 | |
| 9487 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9488 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 9489 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9490 | /// by norm and the sign depends on sign and the source sign. |
| 9491 | /// |
| 9492 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9493 | /// |
| 9494 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9495 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9496 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9497 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9498 | /// |
| 9499 | /// The sign is determined by sc which can take the following values: |
| 9500 | /// |
| 9501 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9502 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9503 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9504 | /// |
| 9505 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getmant_ph) |
| 9506 | #[inline ] |
| 9507 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9508 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9509 | #[rustc_legacy_const_generics (2, 3)] |
| 9510 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9511 | pub fn _mm_maskz_getmant_ph< |
| 9512 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9513 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9514 | >( |
| 9515 | k: __mmask8, |
| 9516 | a: __m128h, |
| 9517 | ) -> __m128h { |
| 9518 | static_assert_uimm_bits!(NORM, 4); |
| 9519 | static_assert_uimm_bits!(SIGN, 2); |
| 9520 | _mm_mask_getmant_ph::<NORM, SIGN>(src:_mm_setzero_ph(), k, a) |
| 9521 | } |
| 9522 | |
| 9523 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9524 | /// the results in dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9525 | /// on the interval range defined by norm and the sign depends on sign and the source sign. |
| 9526 | /// |
| 9527 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9528 | /// |
| 9529 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9530 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9531 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9532 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9533 | /// |
| 9534 | /// The sign is determined by sc which can take the following values: |
| 9535 | /// |
| 9536 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9537 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9538 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9539 | /// |
| 9540 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_getmant_ph) |
| 9541 | #[inline ] |
| 9542 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9543 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9544 | #[rustc_legacy_const_generics (1, 2)] |
| 9545 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9546 | pub fn _mm256_getmant_ph<const NORM: _MM_MANTISSA_NORM_ENUM, const SIGN: _MM_MANTISSA_SIGN_ENUM>( |
| 9547 | a: __m256h, |
| 9548 | ) -> __m256h { |
| 9549 | static_assert_uimm_bits!(NORM, 4); |
| 9550 | static_assert_uimm_bits!(SIGN, 2); |
| 9551 | _mm256_mask_getmant_ph::<NORM, SIGN>(src:_mm256_undefined_ph(), k:0xffff, a) |
| 9552 | } |
| 9553 | |
| 9554 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9555 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 9556 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9557 | /// by norm and the sign depends on sign and the source sign. |
| 9558 | /// |
| 9559 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9560 | /// |
| 9561 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9562 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9563 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9564 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9565 | /// |
| 9566 | /// The sign is determined by sc which can take the following values: |
| 9567 | /// |
| 9568 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9569 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9570 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9571 | /// |
| 9572 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_getmant_ph) |
| 9573 | #[inline ] |
| 9574 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9575 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9576 | #[rustc_legacy_const_generics (3, 4)] |
| 9577 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9578 | pub fn _mm256_mask_getmant_ph< |
| 9579 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9580 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9581 | >( |
| 9582 | src: __m256h, |
| 9583 | k: __mmask16, |
| 9584 | a: __m256h, |
| 9585 | ) -> __m256h { |
| 9586 | unsafe { |
| 9587 | static_assert_uimm_bits!(NORM, 4); |
| 9588 | static_assert_uimm_bits!(SIGN, 2); |
| 9589 | vgetmantph_256(a, (SIGN << 2) | NORM, src, k) |
| 9590 | } |
| 9591 | } |
| 9592 | |
| 9593 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9594 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 9595 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9596 | /// by norm and the sign depends on sign and the source sign. |
| 9597 | /// |
| 9598 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9599 | /// |
| 9600 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9601 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9602 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9603 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9604 | /// |
| 9605 | /// The sign is determined by sc which can take the following values: |
| 9606 | /// |
| 9607 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9608 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9609 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9610 | /// |
| 9611 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_getmant_ph) |
| 9612 | #[inline ] |
| 9613 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 9614 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9615 | #[rustc_legacy_const_generics (2, 3)] |
| 9616 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9617 | pub fn _mm256_maskz_getmant_ph< |
| 9618 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9619 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9620 | >( |
| 9621 | k: __mmask16, |
| 9622 | a: __m256h, |
| 9623 | ) -> __m256h { |
| 9624 | static_assert_uimm_bits!(NORM, 4); |
| 9625 | static_assert_uimm_bits!(SIGN, 2); |
| 9626 | _mm256_mask_getmant_ph::<NORM, SIGN>(src:_mm256_setzero_ph(), k, a) |
| 9627 | } |
| 9628 | |
| 9629 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9630 | /// the results in dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9631 | /// on the interval range defined by norm and the sign depends on sign and the source sign. |
| 9632 | /// |
| 9633 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9634 | /// |
| 9635 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9636 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9637 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9638 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9639 | /// |
| 9640 | /// The sign is determined by sc which can take the following values: |
| 9641 | /// |
| 9642 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9643 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9644 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9645 | /// |
| 9646 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_getmant_ph) |
| 9647 | #[inline ] |
| 9648 | #[target_feature (enable = "avx512fp16" )] |
| 9649 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9650 | #[rustc_legacy_const_generics (1, 2)] |
| 9651 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9652 | pub fn _mm512_getmant_ph<const NORM: _MM_MANTISSA_NORM_ENUM, const SIGN: _MM_MANTISSA_SIGN_ENUM>( |
| 9653 | a: __m512h, |
| 9654 | ) -> __m512h { |
| 9655 | static_assert_uimm_bits!(NORM, 4); |
| 9656 | static_assert_uimm_bits!(SIGN, 2); |
| 9657 | _mm512_mask_getmant_ph::<NORM, SIGN>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 9658 | } |
| 9659 | |
| 9660 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9661 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 9662 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9663 | /// by norm and the sign depends on sign and the source sign. |
| 9664 | /// |
| 9665 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9666 | /// |
| 9667 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9668 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9669 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9670 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9671 | /// |
| 9672 | /// The sign is determined by sc which can take the following values: |
| 9673 | /// |
| 9674 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9675 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9676 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9677 | /// |
| 9678 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_getmant_ph) |
| 9679 | #[inline ] |
| 9680 | #[target_feature (enable = "avx512fp16" )] |
| 9681 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9682 | #[rustc_legacy_const_generics (3, 4)] |
| 9683 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9684 | pub fn _mm512_mask_getmant_ph< |
| 9685 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9686 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9687 | >( |
| 9688 | src: __m512h, |
| 9689 | k: __mmask32, |
| 9690 | a: __m512h, |
| 9691 | ) -> __m512h { |
| 9692 | static_assert_uimm_bits!(NORM, 4); |
| 9693 | static_assert_uimm_bits!(SIGN, 2); |
| 9694 | _mm512_mask_getmant_round_ph::<NORM, SIGN, _MM_FROUND_CUR_DIRECTION>(src, k, a) |
| 9695 | } |
| 9696 | |
| 9697 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9698 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 9699 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9700 | /// by norm and the sign depends on sign and the source sign. |
| 9701 | /// |
| 9702 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9703 | /// |
| 9704 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9705 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9706 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9707 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9708 | /// |
| 9709 | /// The sign is determined by sc which can take the following values: |
| 9710 | /// |
| 9711 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9712 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9713 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9714 | /// |
| 9715 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_getmant_ph) |
| 9716 | #[inline ] |
| 9717 | #[target_feature (enable = "avx512fp16" )] |
| 9718 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0))] |
| 9719 | #[rustc_legacy_const_generics (2, 3)] |
| 9720 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9721 | pub fn _mm512_maskz_getmant_ph< |
| 9722 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9723 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9724 | >( |
| 9725 | k: __mmask32, |
| 9726 | a: __m512h, |
| 9727 | ) -> __m512h { |
| 9728 | static_assert_uimm_bits!(NORM, 4); |
| 9729 | static_assert_uimm_bits!(SIGN, 2); |
| 9730 | _mm512_mask_getmant_ph::<NORM, SIGN>(src:_mm512_setzero_ph(), k, a) |
| 9731 | } |
| 9732 | |
| 9733 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9734 | /// the results in dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9735 | /// on the interval range defined by norm and the sign depends on sign and the source sign. Exceptions can |
| 9736 | /// be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9737 | /// |
| 9738 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9739 | /// |
| 9740 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9741 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9742 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9743 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9744 | /// |
| 9745 | /// The sign is determined by sc which can take the following values: |
| 9746 | /// |
| 9747 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9748 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9749 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9750 | /// |
| 9751 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9752 | /// |
| 9753 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_getmant_round_ph) |
| 9754 | #[inline ] |
| 9755 | #[target_feature (enable = "avx512fp16" )] |
| 9756 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0, SAE = 8))] |
| 9757 | #[rustc_legacy_const_generics (1, 2, 3)] |
| 9758 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9759 | pub fn _mm512_getmant_round_ph< |
| 9760 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9761 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9762 | const SAE: i32, |
| 9763 | >( |
| 9764 | a: __m512h, |
| 9765 | ) -> __m512h { |
| 9766 | static_assert_uimm_bits!(NORM, 4); |
| 9767 | static_assert_uimm_bits!(SIGN, 2); |
| 9768 | static_assert_sae!(SAE); |
| 9769 | _mm512_mask_getmant_round_ph::<NORM, SIGN, SAE>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 9770 | } |
| 9771 | |
| 9772 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9773 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 9774 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9775 | /// by norm and the sign depends on sign and the source sign. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC |
| 9776 | /// in the sae parameter |
| 9777 | /// |
| 9778 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9779 | /// |
| 9780 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9781 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9782 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9783 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9784 | /// |
| 9785 | /// The sign is determined by sc which can take the following values: |
| 9786 | /// |
| 9787 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9788 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9789 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9790 | /// |
| 9791 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9792 | /// |
| 9793 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_getmant_round_ph) |
| 9794 | #[inline ] |
| 9795 | #[target_feature (enable = "avx512fp16" )] |
| 9796 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0, SAE = 8))] |
| 9797 | #[rustc_legacy_const_generics (3, 4, 5)] |
| 9798 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9799 | pub fn _mm512_mask_getmant_round_ph< |
| 9800 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9801 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9802 | const SAE: i32, |
| 9803 | >( |
| 9804 | src: __m512h, |
| 9805 | k: __mmask32, |
| 9806 | a: __m512h, |
| 9807 | ) -> __m512h { |
| 9808 | unsafe { |
| 9809 | static_assert_uimm_bits!(NORM, 4); |
| 9810 | static_assert_uimm_bits!(SIGN, 2); |
| 9811 | static_assert_sae!(SAE); |
| 9812 | vgetmantph_512(a, (SIGN << 2) | NORM, src, k, SAE) |
| 9813 | } |
| 9814 | } |
| 9815 | |
| 9816 | /// Normalize the mantissas of packed half-precision (16-bit) floating-point elements in a, and store |
| 9817 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 9818 | /// This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends on the interval range defined |
| 9819 | /// by norm and the sign depends on sign and the source sign. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC |
| 9820 | /// in the sae parameter |
| 9821 | /// |
| 9822 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9823 | /// |
| 9824 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9825 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9826 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9827 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9828 | /// |
| 9829 | /// The sign is determined by sc which can take the following values: |
| 9830 | /// |
| 9831 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9832 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9833 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9834 | /// |
| 9835 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9836 | /// |
| 9837 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_getmant_round_ph) |
| 9838 | #[inline ] |
| 9839 | #[target_feature (enable = "avx512fp16" )] |
| 9840 | #[cfg_attr (test, assert_instr(vgetmantph, NORM = 0, SIGN = 0, SAE = 8))] |
| 9841 | #[rustc_legacy_const_generics (2, 3, 4)] |
| 9842 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9843 | pub fn _mm512_maskz_getmant_round_ph< |
| 9844 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9845 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9846 | const SAE: i32, |
| 9847 | >( |
| 9848 | k: __mmask32, |
| 9849 | a: __m512h, |
| 9850 | ) -> __m512h { |
| 9851 | static_assert_uimm_bits!(NORM, 4); |
| 9852 | static_assert_uimm_bits!(SIGN, 2); |
| 9853 | static_assert_sae!(SAE); |
| 9854 | _mm512_mask_getmant_round_ph::<NORM, SIGN, SAE>(src:_mm512_setzero_ph(), k, a) |
| 9855 | } |
| 9856 | |
| 9857 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 9858 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 9859 | /// elements of dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9860 | /// on the interval range defined by norm and the sign depends on sign and the source sign. |
| 9861 | /// |
| 9862 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9863 | /// |
| 9864 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9865 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9866 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9867 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9868 | /// |
| 9869 | /// The sign is determined by sc which can take the following values: |
| 9870 | /// |
| 9871 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9872 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9873 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9874 | /// |
| 9875 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getmant_sh) |
| 9876 | #[inline ] |
| 9877 | #[target_feature (enable = "avx512fp16" )] |
| 9878 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0))] |
| 9879 | #[rustc_legacy_const_generics (2, 3)] |
| 9880 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9881 | pub fn _mm_getmant_sh<const NORM: _MM_MANTISSA_NORM_ENUM, const SIGN: _MM_MANTISSA_SIGN_ENUM>( |
| 9882 | a: __m128h, |
| 9883 | b: __m128h, |
| 9884 | ) -> __m128h { |
| 9885 | static_assert_uimm_bits!(NORM, 4); |
| 9886 | static_assert_uimm_bits!(SIGN, 2); |
| 9887 | _mm_mask_getmant_sh::<NORM, SIGN>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 9888 | } |
| 9889 | |
| 9890 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 9891 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 9892 | /// and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially calculates |
| 9893 | /// `±(2^k)*|x.significand|`, where k depends on the interval range defined by norm and the sign depends on sign and |
| 9894 | /// the source sign. |
| 9895 | /// |
| 9896 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9897 | /// |
| 9898 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9899 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9900 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9901 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9902 | /// |
| 9903 | /// The sign is determined by sc which can take the following values: |
| 9904 | /// |
| 9905 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9906 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9907 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9908 | /// |
| 9909 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getmant_sh) |
| 9910 | #[inline ] |
| 9911 | #[target_feature (enable = "avx512fp16" )] |
| 9912 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0))] |
| 9913 | #[rustc_legacy_const_generics (4, 5)] |
| 9914 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9915 | pub fn _mm_mask_getmant_sh< |
| 9916 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9917 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9918 | >( |
| 9919 | src: __m128h, |
| 9920 | k: __mmask8, |
| 9921 | a: __m128h, |
| 9922 | b: __m128h, |
| 9923 | ) -> __m128h { |
| 9924 | static_assert_uimm_bits!(NORM, 4); |
| 9925 | static_assert_uimm_bits!(SIGN, 2); |
| 9926 | _mm_mask_getmant_round_sh::<NORM, SIGN, _MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 9927 | } |
| 9928 | |
| 9929 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 9930 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), |
| 9931 | /// and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially calculates |
| 9932 | /// `±(2^k)*|x.significand|`, where k depends on the interval range defined by norm and the sign depends on sign and |
| 9933 | /// the source sign. |
| 9934 | /// |
| 9935 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9936 | /// |
| 9937 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9938 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9939 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9940 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9941 | /// |
| 9942 | /// The sign is determined by sc which can take the following values: |
| 9943 | /// |
| 9944 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9945 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9946 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9947 | /// |
| 9948 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getmant_sh) |
| 9949 | #[inline ] |
| 9950 | #[target_feature (enable = "avx512fp16" )] |
| 9951 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0))] |
| 9952 | #[rustc_legacy_const_generics (3, 4)] |
| 9953 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9954 | pub fn _mm_maskz_getmant_sh< |
| 9955 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9956 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9957 | >( |
| 9958 | k: __mmask8, |
| 9959 | a: __m128h, |
| 9960 | b: __m128h, |
| 9961 | ) -> __m128h { |
| 9962 | static_assert_uimm_bits!(NORM, 4); |
| 9963 | static_assert_uimm_bits!(SIGN, 2); |
| 9964 | _mm_mask_getmant_sh::<NORM, SIGN>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 9965 | } |
| 9966 | |
| 9967 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 9968 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 9969 | /// elements of dst. This intrinsic essentially calculates `±(2^k)*|x.significand|`, where k depends |
| 9970 | /// on the interval range defined by norm and the sign depends on sign and the source sign. Exceptions can |
| 9971 | /// be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9972 | /// |
| 9973 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 9974 | /// |
| 9975 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 9976 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 9977 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 9978 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 9979 | /// |
| 9980 | /// The sign is determined by sc which can take the following values: |
| 9981 | /// |
| 9982 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 9983 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 9984 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 9985 | /// |
| 9986 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 9987 | /// |
| 9988 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_getmant_round_sh) |
| 9989 | #[inline ] |
| 9990 | #[target_feature (enable = "avx512fp16" )] |
| 9991 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0, SAE = 8))] |
| 9992 | #[rustc_legacy_const_generics (2, 3, 4)] |
| 9993 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 9994 | pub fn _mm_getmant_round_sh< |
| 9995 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 9996 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 9997 | const SAE: i32, |
| 9998 | >( |
| 9999 | a: __m128h, |
| 10000 | b: __m128h, |
| 10001 | ) -> __m128h { |
| 10002 | static_assert_uimm_bits!(NORM, 4); |
| 10003 | static_assert_uimm_bits!(SIGN, 2); |
| 10004 | static_assert_sae!(SAE); |
| 10005 | _mm_mask_getmant_round_sh::<NORM, SIGN, SAE>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 10006 | } |
| 10007 | |
| 10008 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 10009 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 10010 | /// and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially calculates |
| 10011 | /// `±(2^k)*|x.significand|`, where k depends on the interval range defined by norm and the sign depends on sign and |
| 10012 | /// the source sign. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10013 | /// |
| 10014 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 10015 | /// |
| 10016 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 10017 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 10018 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 10019 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 10020 | /// |
| 10021 | /// The sign is determined by sc which can take the following values: |
| 10022 | /// |
| 10023 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 10024 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 10025 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 10026 | /// |
| 10027 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10028 | /// |
| 10029 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_getmant_round_sh) |
| 10030 | #[inline ] |
| 10031 | #[target_feature (enable = "avx512fp16" )] |
| 10032 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0, SAE = 8))] |
| 10033 | #[rustc_legacy_const_generics (4, 5, 6)] |
| 10034 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10035 | pub fn _mm_mask_getmant_round_sh< |
| 10036 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 10037 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 10038 | const SAE: i32, |
| 10039 | >( |
| 10040 | src: __m128h, |
| 10041 | k: __mmask8, |
| 10042 | a: __m128h, |
| 10043 | b: __m128h, |
| 10044 | ) -> __m128h { |
| 10045 | unsafe { |
| 10046 | static_assert_uimm_bits!(NORM, 4); |
| 10047 | static_assert_uimm_bits!(SIGN, 2); |
| 10048 | static_assert_sae!(SAE); |
| 10049 | vgetmantsh(a, b, (SIGN << 2) | NORM, src, k, SAE) |
| 10050 | } |
| 10051 | } |
| 10052 | |
| 10053 | /// Normalize the mantissas of the lower half-precision (16-bit) floating-point element in b, store |
| 10054 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), |
| 10055 | /// and copy the upper 7 packed elements from a to the upper elements of dst. This intrinsic essentially calculates |
| 10056 | /// `±(2^k)*|x.significand|`, where k depends on the interval range defined by norm and the sign depends on sign and |
| 10057 | /// the source sign. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10058 | /// |
| 10059 | /// The mantissa is normalized to the interval specified by interv, which can take the following values: |
| 10060 | /// |
| 10061 | /// _MM_MANT_NORM_1_2 // interval [1, 2) |
| 10062 | /// _MM_MANT_NORM_p5_2 // interval [0.5, 2) |
| 10063 | /// _MM_MANT_NORM_p5_1 // interval [0.5, 1) |
| 10064 | /// _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) |
| 10065 | /// |
| 10066 | /// The sign is determined by sc which can take the following values: |
| 10067 | /// |
| 10068 | /// _MM_MANT_SIGN_src // sign = sign(src) |
| 10069 | /// _MM_MANT_SIGN_zero // sign = 0 |
| 10070 | /// _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1 |
| 10071 | /// |
| 10072 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10073 | /// |
| 10074 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_getmant_round_sh) |
| 10075 | #[inline ] |
| 10076 | #[target_feature (enable = "avx512fp16" )] |
| 10077 | #[cfg_attr (test, assert_instr(vgetmantsh, NORM = 0, SIGN = 0, SAE = 8))] |
| 10078 | #[rustc_legacy_const_generics (3, 4, 5)] |
| 10079 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10080 | pub fn _mm_maskz_getmant_round_sh< |
| 10081 | const NORM: _MM_MANTISSA_NORM_ENUM, |
| 10082 | const SIGN: _MM_MANTISSA_SIGN_ENUM, |
| 10083 | const SAE: i32, |
| 10084 | >( |
| 10085 | k: __mmask8, |
| 10086 | a: __m128h, |
| 10087 | b: __m128h, |
| 10088 | ) -> __m128h { |
| 10089 | static_assert_uimm_bits!(NORM, 4); |
| 10090 | static_assert_uimm_bits!(SIGN, 2); |
| 10091 | static_assert_sae!(SAE); |
| 10092 | _mm_mask_getmant_round_sh::<NORM, SIGN, SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 10093 | } |
| 10094 | |
| 10095 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10096 | /// specified by imm8, and store the results in dst. |
| 10097 | /// |
| 10098 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10099 | /// |
| 10100 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10101 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10102 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10103 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10104 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10105 | /// |
| 10106 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_roundscale_ph) |
| 10107 | #[inline ] |
| 10108 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10109 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10110 | #[rustc_legacy_const_generics (1)] |
| 10111 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10112 | pub fn _mm_roundscale_ph<const IMM8: i32>(a: __m128h) -> __m128h { |
| 10113 | static_assert_uimm_bits!(IMM8, 8); |
| 10114 | _mm_mask_roundscale_ph::<IMM8>(src:_mm_undefined_ph(), k:0xff, a) |
| 10115 | } |
| 10116 | |
| 10117 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10118 | /// specified by imm8, and store the results in dst using writemask k (elements are copied from src when |
| 10119 | /// the corresponding mask bit is not set). |
| 10120 | /// |
| 10121 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10122 | /// |
| 10123 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10124 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10125 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10126 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10127 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10128 | /// |
| 10129 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_roundscale_ph) |
| 10130 | #[inline ] |
| 10131 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10132 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10133 | #[rustc_legacy_const_generics (3)] |
| 10134 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10135 | pub fn _mm_mask_roundscale_ph<const IMM8: i32>(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 10136 | unsafe { |
| 10137 | static_assert_uimm_bits!(IMM8, 8); |
| 10138 | vrndscaleph_128(a, IMM8, src, k) |
| 10139 | } |
| 10140 | } |
| 10141 | |
| 10142 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10143 | /// specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 10144 | /// mask bit is not set). |
| 10145 | /// |
| 10146 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10147 | /// |
| 10148 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10149 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10150 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10151 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10152 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10153 | /// |
| 10154 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_roundscale_ph) |
| 10155 | #[inline ] |
| 10156 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10157 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10158 | #[rustc_legacy_const_generics (2)] |
| 10159 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10160 | pub fn _mm_maskz_roundscale_ph<const IMM8: i32>(k: __mmask8, a: __m128h) -> __m128h { |
| 10161 | static_assert_uimm_bits!(IMM8, 8); |
| 10162 | _mm_mask_roundscale_ph::<IMM8>(src:_mm_setzero_ph(), k, a) |
| 10163 | } |
| 10164 | |
| 10165 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10166 | /// specified by imm8, and store the results in dst. |
| 10167 | /// |
| 10168 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10169 | /// |
| 10170 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10171 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10172 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10173 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10174 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10175 | /// |
| 10176 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_roundscale_ph) |
| 10177 | #[inline ] |
| 10178 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10179 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10180 | #[rustc_legacy_const_generics (1)] |
| 10181 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10182 | pub fn _mm256_roundscale_ph<const IMM8: i32>(a: __m256h) -> __m256h { |
| 10183 | static_assert_uimm_bits!(IMM8, 8); |
| 10184 | _mm256_mask_roundscale_ph::<IMM8>(src:_mm256_undefined_ph(), k:0xffff, a) |
| 10185 | } |
| 10186 | |
| 10187 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10188 | /// specified by imm8, and store the results in dst using writemask k (elements are copied from src when |
| 10189 | /// the corresponding mask bit is not set). |
| 10190 | /// |
| 10191 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10192 | /// |
| 10193 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10194 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10195 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10196 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10197 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10198 | /// |
| 10199 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_roundscale_ph) |
| 10200 | #[inline ] |
| 10201 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10202 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10203 | #[rustc_legacy_const_generics (3)] |
| 10204 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10205 | pub fn _mm256_mask_roundscale_ph<const IMM8: i32>( |
| 10206 | src: __m256h, |
| 10207 | k: __mmask16, |
| 10208 | a: __m256h, |
| 10209 | ) -> __m256h { |
| 10210 | unsafe { |
| 10211 | static_assert_uimm_bits!(IMM8, 8); |
| 10212 | vrndscaleph_256(a, IMM8, src, k) |
| 10213 | } |
| 10214 | } |
| 10215 | |
| 10216 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10217 | /// specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 10218 | /// mask bit is not set). |
| 10219 | /// |
| 10220 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10221 | /// |
| 10222 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10223 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10224 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10225 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10226 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10227 | /// |
| 10228 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_roundscale_ph) |
| 10229 | #[inline ] |
| 10230 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10231 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10232 | #[rustc_legacy_const_generics (2)] |
| 10233 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10234 | pub fn _mm256_maskz_roundscale_ph<const IMM8: i32>(k: __mmask16, a: __m256h) -> __m256h { |
| 10235 | static_assert_uimm_bits!(IMM8, 8); |
| 10236 | _mm256_mask_roundscale_ph::<IMM8>(src:_mm256_setzero_ph(), k, a) |
| 10237 | } |
| 10238 | |
| 10239 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10240 | /// specified by imm8, and store the results in dst. |
| 10241 | /// |
| 10242 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10243 | /// |
| 10244 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10245 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10246 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10247 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10248 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10249 | /// |
| 10250 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_roundscale_ph) |
| 10251 | #[inline ] |
| 10252 | #[target_feature (enable = "avx512fp16" )] |
| 10253 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10254 | #[rustc_legacy_const_generics (1)] |
| 10255 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10256 | pub fn _mm512_roundscale_ph<const IMM8: i32>(a: __m512h) -> __m512h { |
| 10257 | static_assert_uimm_bits!(IMM8, 8); |
| 10258 | _mm512_mask_roundscale_ph::<IMM8>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 10259 | } |
| 10260 | |
| 10261 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10262 | /// specified by imm8, and store the results in dst using writemask k (elements are copied from src when |
| 10263 | /// the corresponding mask bit is not set). |
| 10264 | /// |
| 10265 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10266 | /// |
| 10267 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10268 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10269 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10270 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10271 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10272 | /// |
| 10273 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_roundscale_ph) |
| 10274 | #[inline ] |
| 10275 | #[target_feature (enable = "avx512fp16" )] |
| 10276 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10277 | #[rustc_legacy_const_generics (3)] |
| 10278 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10279 | pub fn _mm512_mask_roundscale_ph<const IMM8: i32>( |
| 10280 | src: __m512h, |
| 10281 | k: __mmask32, |
| 10282 | a: __m512h, |
| 10283 | ) -> __m512h { |
| 10284 | static_assert_uimm_bits!(IMM8, 8); |
| 10285 | _mm512_mask_roundscale_round_ph::<IMM8, _MM_FROUND_CUR_DIRECTION>(src, k, a) |
| 10286 | } |
| 10287 | |
| 10288 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10289 | /// specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 10290 | /// mask bit is not set). |
| 10291 | /// |
| 10292 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10293 | /// |
| 10294 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10295 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10296 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10297 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10298 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10299 | /// |
| 10300 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_roundscale_ph) |
| 10301 | #[inline ] |
| 10302 | #[target_feature (enable = "avx512fp16" )] |
| 10303 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0))] |
| 10304 | #[rustc_legacy_const_generics (2)] |
| 10305 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10306 | pub fn _mm512_maskz_roundscale_ph<const IMM8: i32>(k: __mmask32, a: __m512h) -> __m512h { |
| 10307 | static_assert_uimm_bits!(IMM8, 8); |
| 10308 | _mm512_mask_roundscale_ph::<IMM8>(src:_mm512_setzero_ph(), k, a) |
| 10309 | } |
| 10310 | |
| 10311 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10312 | /// specified by imm8, and store the results in dst. Exceptions can be suppressed by passing _MM_FROUND_NO_EXC |
| 10313 | /// in the sae parameter |
| 10314 | /// |
| 10315 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10316 | /// |
| 10317 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10318 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10319 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10320 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10321 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10322 | /// |
| 10323 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_roundscale_round_ph) |
| 10324 | #[inline ] |
| 10325 | #[target_feature (enable = "avx512fp16" )] |
| 10326 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0, SAE = 8))] |
| 10327 | #[rustc_legacy_const_generics (1, 2)] |
| 10328 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10329 | pub fn _mm512_roundscale_round_ph<const IMM8: i32, const SAE: i32>(a: __m512h) -> __m512h { |
| 10330 | static_assert_uimm_bits!(IMM8, 8); |
| 10331 | static_assert_sae!(SAE); |
| 10332 | _mm512_mask_roundscale_round_ph::<IMM8, SAE>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 10333 | } |
| 10334 | |
| 10335 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10336 | /// specified by imm8, and store the results in dst using writemask k (elements are copied from src when |
| 10337 | /// the corresponding mask bit is not set). Exceptions can be suppressed by passing _MM_FROUND_NO_EXC |
| 10338 | /// in the sae parameter |
| 10339 | /// |
| 10340 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10341 | /// |
| 10342 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10343 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10344 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10345 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10346 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10347 | /// |
| 10348 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_roundscale_round_ph) |
| 10349 | #[inline ] |
| 10350 | #[target_feature (enable = "avx512fp16" )] |
| 10351 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0, SAE = 8))] |
| 10352 | #[rustc_legacy_const_generics (3, 4)] |
| 10353 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10354 | pub fn _mm512_mask_roundscale_round_ph<const IMM8: i32, const SAE: i32>( |
| 10355 | src: __m512h, |
| 10356 | k: __mmask32, |
| 10357 | a: __m512h, |
| 10358 | ) -> __m512h { |
| 10359 | unsafe { |
| 10360 | static_assert_uimm_bits!(IMM8, 8); |
| 10361 | static_assert_sae!(SAE); |
| 10362 | vrndscaleph_512(a, IMM8, src, k, SAE) |
| 10363 | } |
| 10364 | } |
| 10365 | |
| 10366 | /// Round packed half-precision (16-bit) floating-point elements in a to the number of fraction bits |
| 10367 | /// specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 10368 | /// mask bit is not set). Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10369 | /// |
| 10370 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10371 | /// |
| 10372 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10373 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10374 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10375 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10376 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10377 | /// |
| 10378 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_roundscale_round_ph) |
| 10379 | #[inline ] |
| 10380 | #[target_feature (enable = "avx512fp16" )] |
| 10381 | #[cfg_attr (test, assert_instr(vrndscaleph, IMM8 = 0, SAE = 8))] |
| 10382 | #[rustc_legacy_const_generics (2, 3)] |
| 10383 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10384 | pub fn _mm512_maskz_roundscale_round_ph<const IMM8: i32, const SAE: i32>( |
| 10385 | k: __mmask32, |
| 10386 | a: __m512h, |
| 10387 | ) -> __m512h { |
| 10388 | static_assert_uimm_bits!(IMM8, 8); |
| 10389 | static_assert_sae!(SAE); |
| 10390 | _mm512_mask_roundscale_round_ph::<IMM8, SAE>(src:_mm512_setzero_ph(), k, a) |
| 10391 | } |
| 10392 | |
| 10393 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10394 | /// specified by imm8, store the result in the lower element of dst, and copy the upper 7 packed elements |
| 10395 | /// from a to the upper elements of dst. |
| 10396 | /// |
| 10397 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10398 | /// |
| 10399 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10400 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10401 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10402 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10403 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10404 | /// |
| 10405 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_roundscale_sh) |
| 10406 | #[inline ] |
| 10407 | #[target_feature (enable = "avx512fp16" )] |
| 10408 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0))] |
| 10409 | #[rustc_legacy_const_generics (2)] |
| 10410 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10411 | pub fn _mm_roundscale_sh<const IMM8: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 10412 | static_assert_uimm_bits!(IMM8, 8); |
| 10413 | _mm_mask_roundscale_sh::<IMM8>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 10414 | } |
| 10415 | |
| 10416 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10417 | /// specified by imm8, store the result in the lower element of dst using writemask k (the element is copied |
| 10418 | /// from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10419 | /// |
| 10420 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10421 | /// |
| 10422 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10423 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10424 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10425 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10426 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10427 | /// |
| 10428 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_roundscale_sh) |
| 10429 | #[inline ] |
| 10430 | #[target_feature (enable = "avx512fp16" )] |
| 10431 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0))] |
| 10432 | #[rustc_legacy_const_generics (4)] |
| 10433 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10434 | pub fn _mm_mask_roundscale_sh<const IMM8: i32>( |
| 10435 | src: __m128h, |
| 10436 | k: __mmask8, |
| 10437 | a: __m128h, |
| 10438 | b: __m128h, |
| 10439 | ) -> __m128h { |
| 10440 | static_assert_uimm_bits!(IMM8, 8); |
| 10441 | _mm_mask_roundscale_round_sh::<IMM8, _MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 10442 | } |
| 10443 | |
| 10444 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10445 | /// specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed |
| 10446 | /// out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10447 | /// |
| 10448 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10449 | /// |
| 10450 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10451 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10452 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10453 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10454 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10455 | /// |
| 10456 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_roundscale_sh) |
| 10457 | #[inline ] |
| 10458 | #[target_feature (enable = "avx512fp16" )] |
| 10459 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0))] |
| 10460 | #[rustc_legacy_const_generics (3)] |
| 10461 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10462 | pub fn _mm_maskz_roundscale_sh<const IMM8: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 10463 | static_assert_uimm_bits!(IMM8, 8); |
| 10464 | _mm_mask_roundscale_sh::<IMM8>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 10465 | } |
| 10466 | |
| 10467 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10468 | /// specified by imm8, store the result in the lower element of dst, and copy the upper 7 packed elements |
| 10469 | /// from a to the upper elements of dst. |
| 10470 | /// |
| 10471 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10472 | /// |
| 10473 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10474 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10475 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10476 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10477 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10478 | /// |
| 10479 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10480 | /// |
| 10481 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_roundscale_round_sh) |
| 10482 | #[inline ] |
| 10483 | #[target_feature (enable = "avx512fp16" )] |
| 10484 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0, SAE = 8))] |
| 10485 | #[rustc_legacy_const_generics (2, 3)] |
| 10486 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10487 | pub fn _mm_roundscale_round_sh<const IMM8: i32, const SAE: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 10488 | static_assert_uimm_bits!(IMM8, 8); |
| 10489 | static_assert_sae!(SAE); |
| 10490 | _mm_mask_roundscale_round_sh::<IMM8, SAE>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 10491 | } |
| 10492 | |
| 10493 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10494 | /// specified by imm8, store the result in the lower element of dst using writemask k (the element is copied |
| 10495 | /// from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10496 | /// |
| 10497 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10498 | /// |
| 10499 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10500 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10501 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10502 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10503 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10504 | /// |
| 10505 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10506 | /// |
| 10507 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_roundscale_round_sh) |
| 10508 | #[inline ] |
| 10509 | #[target_feature (enable = "avx512fp16" )] |
| 10510 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0, SAE = 8))] |
| 10511 | #[rustc_legacy_const_generics (4, 5)] |
| 10512 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10513 | pub fn _mm_mask_roundscale_round_sh<const IMM8: i32, const SAE: i32>( |
| 10514 | src: __m128h, |
| 10515 | k: __mmask8, |
| 10516 | a: __m128h, |
| 10517 | b: __m128h, |
| 10518 | ) -> __m128h { |
| 10519 | unsafe { |
| 10520 | static_assert_uimm_bits!(IMM8, 8); |
| 10521 | static_assert_sae!(SAE); |
| 10522 | vrndscalesh(a, b, src, k, IMM8, SAE) |
| 10523 | } |
| 10524 | } |
| 10525 | |
| 10526 | /// Round the lower half-precision (16-bit) floating-point element in b to the number of fraction bits |
| 10527 | /// specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed |
| 10528 | /// out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10529 | /// |
| 10530 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10531 | /// |
| 10532 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10533 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10534 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10535 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10536 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10537 | /// |
| 10538 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter |
| 10539 | /// |
| 10540 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_roundscale_round_sh) |
| 10541 | #[inline ] |
| 10542 | #[target_feature (enable = "avx512fp16" )] |
| 10543 | #[cfg_attr (test, assert_instr(vrndscalesh, IMM8 = 0, SAE = 8))] |
| 10544 | #[rustc_legacy_const_generics (3, 4)] |
| 10545 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10546 | pub fn _mm_maskz_roundscale_round_sh<const IMM8: i32, const SAE: i32>( |
| 10547 | k: __mmask8, |
| 10548 | a: __m128h, |
| 10549 | b: __m128h, |
| 10550 | ) -> __m128h { |
| 10551 | static_assert_uimm_bits!(IMM8, 8); |
| 10552 | static_assert_sae!(SAE); |
| 10553 | _mm_mask_roundscale_round_sh::<IMM8, SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 10554 | } |
| 10555 | |
| 10556 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10557 | /// the results in dst. |
| 10558 | /// |
| 10559 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_scalef_ph) |
| 10560 | #[inline ] |
| 10561 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10562 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10563 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10564 | pub fn _mm_scalef_ph(a: __m128h, b: __m128h) -> __m128h { |
| 10565 | _mm_mask_scalef_ph(src:_mm_undefined_ph(), k:0xff, a, b) |
| 10566 | } |
| 10567 | |
| 10568 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10569 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 10570 | /// |
| 10571 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_scalef_ph) |
| 10572 | #[inline ] |
| 10573 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10574 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10575 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10576 | pub fn _mm_mask_scalef_ph(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 10577 | unsafe { vscalefph_128(a, b, src, k) } |
| 10578 | } |
| 10579 | |
| 10580 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10581 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 10582 | /// |
| 10583 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_scalef_ph) |
| 10584 | #[inline ] |
| 10585 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10586 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10587 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10588 | pub fn _mm_maskz_scalef_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 10589 | _mm_mask_scalef_ph(src:_mm_setzero_ph(), k, a, b) |
| 10590 | } |
| 10591 | |
| 10592 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10593 | /// the results in dst. |
| 10594 | /// |
| 10595 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_scalef_ph) |
| 10596 | #[inline ] |
| 10597 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10598 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10599 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10600 | pub fn _mm256_scalef_ph(a: __m256h, b: __m256h) -> __m256h { |
| 10601 | _mm256_mask_scalef_ph(src:_mm256_undefined_ph(), k:0xffff, a, b) |
| 10602 | } |
| 10603 | |
| 10604 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10605 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 10606 | /// |
| 10607 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_scalef_ph) |
| 10608 | #[inline ] |
| 10609 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10610 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10611 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10612 | pub fn _mm256_mask_scalef_ph(src: __m256h, k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 10613 | unsafe { vscalefph_256(a, b, src, k) } |
| 10614 | } |
| 10615 | |
| 10616 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10617 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 10618 | /// |
| 10619 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_scalef_ph) |
| 10620 | #[inline ] |
| 10621 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10622 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10623 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10624 | pub fn _mm256_maskz_scalef_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 10625 | _mm256_mask_scalef_ph(src:_mm256_setzero_ph(), k, a, b) |
| 10626 | } |
| 10627 | |
| 10628 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10629 | /// the results in dst. |
| 10630 | /// |
| 10631 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_scalef_ph) |
| 10632 | #[inline ] |
| 10633 | #[target_feature (enable = "avx512fp16" )] |
| 10634 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10635 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10636 | pub fn _mm512_scalef_ph(a: __m512h, b: __m512h) -> __m512h { |
| 10637 | _mm512_mask_scalef_ph(src:_mm512_undefined_ph(), k:0xffffffff, a, b) |
| 10638 | } |
| 10639 | |
| 10640 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10641 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 10642 | /// |
| 10643 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_scalef_ph) |
| 10644 | #[inline ] |
| 10645 | #[target_feature (enable = "avx512fp16" )] |
| 10646 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10647 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10648 | pub fn _mm512_mask_scalef_ph(src: __m512h, k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 10649 | _mm512_mask_scalef_round_ph::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 10650 | } |
| 10651 | |
| 10652 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10653 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 10654 | /// |
| 10655 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_scalef_ph) |
| 10656 | #[inline ] |
| 10657 | #[target_feature (enable = "avx512fp16" )] |
| 10658 | #[cfg_attr (test, assert_instr(vscalefph))] |
| 10659 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10660 | pub fn _mm512_maskz_scalef_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 10661 | _mm512_mask_scalef_ph(src:_mm512_setzero_ph(), k, a, b) |
| 10662 | } |
| 10663 | |
| 10664 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10665 | /// the results in dst. |
| 10666 | /// |
| 10667 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10668 | /// |
| 10669 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10670 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10671 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10672 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10673 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10674 | /// |
| 10675 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_scalef_round_ph) |
| 10676 | #[inline ] |
| 10677 | #[target_feature (enable = "avx512fp16" )] |
| 10678 | #[cfg_attr (test, assert_instr(vscalefph, ROUNDING = 8))] |
| 10679 | #[rustc_legacy_const_generics (2)] |
| 10680 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10681 | pub fn _mm512_scalef_round_ph<const ROUNDING: i32>(a: __m512h, b: __m512h) -> __m512h { |
| 10682 | static_assert_rounding!(ROUNDING); |
| 10683 | _mm512_mask_scalef_round_ph::<ROUNDING>(src:_mm512_undefined_ph(), k:0xffffffff, a, b) |
| 10684 | } |
| 10685 | |
| 10686 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10687 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 10688 | /// |
| 10689 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10690 | /// |
| 10691 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10692 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10693 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10694 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10695 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10696 | /// |
| 10697 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_scalef_round_ph) |
| 10698 | #[inline ] |
| 10699 | #[target_feature (enable = "avx512fp16" )] |
| 10700 | #[cfg_attr (test, assert_instr(vscalefph, ROUNDING = 8))] |
| 10701 | #[rustc_legacy_const_generics (4)] |
| 10702 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10703 | pub fn _mm512_mask_scalef_round_ph<const ROUNDING: i32>( |
| 10704 | src: __m512h, |
| 10705 | k: __mmask32, |
| 10706 | a: __m512h, |
| 10707 | b: __m512h, |
| 10708 | ) -> __m512h { |
| 10709 | unsafe { |
| 10710 | static_assert_rounding!(ROUNDING); |
| 10711 | vscalefph_512(a, b, src, k, ROUNDING) |
| 10712 | } |
| 10713 | } |
| 10714 | |
| 10715 | /// Scale the packed half-precision (16-bit) floating-point elements in a using values from b, and store |
| 10716 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 10717 | /// |
| 10718 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10719 | /// |
| 10720 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10721 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10722 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10723 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10724 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10725 | /// |
| 10726 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_scalef_round_ph) |
| 10727 | #[inline ] |
| 10728 | #[target_feature (enable = "avx512fp16" )] |
| 10729 | #[cfg_attr (test, assert_instr(vscalefph, ROUNDING = 8))] |
| 10730 | #[rustc_legacy_const_generics (3)] |
| 10731 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10732 | pub fn _mm512_maskz_scalef_round_ph<const ROUNDING: i32>( |
| 10733 | k: __mmask32, |
| 10734 | a: __m512h, |
| 10735 | b: __m512h, |
| 10736 | ) -> __m512h { |
| 10737 | static_assert_rounding!(ROUNDING); |
| 10738 | _mm512_mask_scalef_round_ph::<ROUNDING>(src:_mm512_setzero_ph(), k, a, b) |
| 10739 | } |
| 10740 | |
| 10741 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10742 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 10743 | /// elements of dst. |
| 10744 | /// |
| 10745 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_scalef_sh) |
| 10746 | #[inline ] |
| 10747 | #[target_feature (enable = "avx512fp16" )] |
| 10748 | #[cfg_attr (test, assert_instr(vscalefsh))] |
| 10749 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10750 | pub fn _mm_scalef_sh(a: __m128h, b: __m128h) -> __m128h { |
| 10751 | _mm_mask_scalef_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 10752 | } |
| 10753 | |
| 10754 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10755 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 10756 | /// and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10757 | /// |
| 10758 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_scalef_sh) |
| 10759 | #[inline ] |
| 10760 | #[target_feature (enable = "avx512fp16" )] |
| 10761 | #[cfg_attr (test, assert_instr(vscalefsh))] |
| 10762 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10763 | pub fn _mm_mask_scalef_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 10764 | _mm_mask_scalef_round_sh::<_MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 10765 | } |
| 10766 | |
| 10767 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10768 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), |
| 10769 | /// and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10770 | /// |
| 10771 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_scalef_sh) |
| 10772 | #[inline ] |
| 10773 | #[target_feature (enable = "avx512fp16" )] |
| 10774 | #[cfg_attr (test, assert_instr(vscalefsh))] |
| 10775 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10776 | pub fn _mm_maskz_scalef_sh(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 10777 | _mm_mask_scalef_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 10778 | } |
| 10779 | |
| 10780 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10781 | /// the result in the lower element of dst, and copy the upper 7 packed elements from a to the upper |
| 10782 | /// elements of dst. |
| 10783 | /// |
| 10784 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10785 | /// |
| 10786 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10787 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10788 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10789 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10790 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10791 | /// |
| 10792 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_scalef_round_sh) |
| 10793 | #[inline ] |
| 10794 | #[target_feature (enable = "avx512fp16" )] |
| 10795 | #[cfg_attr (test, assert_instr(vscalefsh, ROUNDING = 8))] |
| 10796 | #[rustc_legacy_const_generics (2)] |
| 10797 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10798 | pub fn _mm_scalef_round_sh<const ROUNDING: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 10799 | static_assert_rounding!(ROUNDING); |
| 10800 | _mm_mask_scalef_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 10801 | } |
| 10802 | |
| 10803 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10804 | /// the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), |
| 10805 | /// and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10806 | /// |
| 10807 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10808 | /// |
| 10809 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10810 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10811 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10812 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10813 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10814 | /// |
| 10815 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_scalef_round_sh) |
| 10816 | #[inline ] |
| 10817 | #[target_feature (enable = "avx512fp16" )] |
| 10818 | #[cfg_attr (test, assert_instr(vscalefsh, ROUNDING = 8))] |
| 10819 | #[rustc_legacy_const_generics (4)] |
| 10820 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10821 | pub fn _mm_mask_scalef_round_sh<const ROUNDING: i32>( |
| 10822 | src: __m128h, |
| 10823 | k: __mmask8, |
| 10824 | a: __m128h, |
| 10825 | b: __m128h, |
| 10826 | ) -> __m128h { |
| 10827 | unsafe { |
| 10828 | static_assert_rounding!(ROUNDING); |
| 10829 | vscalefsh(a, b, src, k, ROUNDING) |
| 10830 | } |
| 10831 | } |
| 10832 | |
| 10833 | /// Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store |
| 10834 | /// the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), |
| 10835 | /// and copy the upper 7 packed elements from a to the upper elements of dst. |
| 10836 | /// |
| 10837 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 10838 | /// |
| 10839 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 10840 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 10841 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 10842 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 10843 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10844 | /// |
| 10845 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_scalef_round_sh) |
| 10846 | #[inline ] |
| 10847 | #[target_feature (enable = "avx512fp16" )] |
| 10848 | #[cfg_attr (test, assert_instr(vscalefsh, ROUNDING = 8))] |
| 10849 | #[rustc_legacy_const_generics (3)] |
| 10850 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10851 | pub fn _mm_maskz_scalef_round_sh<const ROUNDING: i32>( |
| 10852 | k: __mmask8, |
| 10853 | a: __m128h, |
| 10854 | b: __m128h, |
| 10855 | ) -> __m128h { |
| 10856 | static_assert_rounding!(ROUNDING); |
| 10857 | _mm_mask_scalef_round_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 10858 | } |
| 10859 | |
| 10860 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10861 | /// number of bits specified by imm8, and store the results in dst. |
| 10862 | /// |
| 10863 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10864 | /// |
| 10865 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10866 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10867 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10868 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10869 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10870 | /// |
| 10871 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_ph) |
| 10872 | #[inline ] |
| 10873 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10874 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10875 | #[rustc_legacy_const_generics (1)] |
| 10876 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10877 | pub fn _mm_reduce_ph<const IMM8: i32>(a: __m128h) -> __m128h { |
| 10878 | static_assert_uimm_bits!(IMM8, 8); |
| 10879 | _mm_mask_reduce_ph::<IMM8>(src:_mm_undefined_ph(), k:0xff, a) |
| 10880 | } |
| 10881 | |
| 10882 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10883 | /// number of bits specified by imm8, and store the results in dst using writemask k (elements are copied |
| 10884 | /// from src when the corresponding mask bit is not set). |
| 10885 | /// |
| 10886 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10887 | /// |
| 10888 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10889 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10890 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10891 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10892 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10893 | /// |
| 10894 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_reduce_ph) |
| 10895 | #[inline ] |
| 10896 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10897 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10898 | #[rustc_legacy_const_generics (3)] |
| 10899 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10900 | pub fn _mm_mask_reduce_ph<const IMM8: i32>(src: __m128h, k: __mmask8, a: __m128h) -> __m128h { |
| 10901 | unsafe { |
| 10902 | static_assert_uimm_bits!(IMM8, 8); |
| 10903 | vreduceph_128(a, IMM8, src, k) |
| 10904 | } |
| 10905 | } |
| 10906 | |
| 10907 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10908 | /// number of bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed |
| 10909 | /// out when the corresponding mask bit is not set). |
| 10910 | /// |
| 10911 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10912 | /// |
| 10913 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10914 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10915 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10916 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10917 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10918 | /// |
| 10919 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_reduce_ph) |
| 10920 | #[inline ] |
| 10921 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10922 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10923 | #[rustc_legacy_const_generics (2)] |
| 10924 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10925 | pub fn _mm_maskz_reduce_ph<const IMM8: i32>(k: __mmask8, a: __m128h) -> __m128h { |
| 10926 | static_assert_uimm_bits!(IMM8, 8); |
| 10927 | _mm_mask_reduce_ph::<IMM8>(src:_mm_setzero_ph(), k, a) |
| 10928 | } |
| 10929 | |
| 10930 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10931 | /// number of bits specified by imm8, and store the results in dst. |
| 10932 | /// |
| 10933 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10934 | /// |
| 10935 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10936 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10937 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10938 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10939 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10940 | /// |
| 10941 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_reduce_ph) |
| 10942 | #[inline ] |
| 10943 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10944 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10945 | #[rustc_legacy_const_generics (1)] |
| 10946 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10947 | pub fn _mm256_reduce_ph<const IMM8: i32>(a: __m256h) -> __m256h { |
| 10948 | static_assert_uimm_bits!(IMM8, 8); |
| 10949 | _mm256_mask_reduce_ph::<IMM8>(src:_mm256_undefined_ph(), k:0xffff, a) |
| 10950 | } |
| 10951 | |
| 10952 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10953 | /// number of bits specified by imm8, and store the results in dst using writemask k (elements are copied |
| 10954 | /// from src when the corresponding mask bit is not set). |
| 10955 | /// |
| 10956 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10957 | /// |
| 10958 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10959 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10960 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10961 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10962 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10963 | /// |
| 10964 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_reduce_ph) |
| 10965 | #[inline ] |
| 10966 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10967 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10968 | #[rustc_legacy_const_generics (3)] |
| 10969 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10970 | pub fn _mm256_mask_reduce_ph<const IMM8: i32>(src: __m256h, k: __mmask16, a: __m256h) -> __m256h { |
| 10971 | unsafe { |
| 10972 | static_assert_uimm_bits!(IMM8, 8); |
| 10973 | vreduceph_256(a, IMM8, src, k) |
| 10974 | } |
| 10975 | } |
| 10976 | |
| 10977 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 10978 | /// number of bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed |
| 10979 | /// out when the corresponding mask bit is not set). |
| 10980 | /// |
| 10981 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 10982 | /// |
| 10983 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 10984 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 10985 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 10986 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 10987 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 10988 | /// |
| 10989 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_reduce_ph) |
| 10990 | #[inline ] |
| 10991 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 10992 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 10993 | #[rustc_legacy_const_generics (2)] |
| 10994 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 10995 | pub fn _mm256_maskz_reduce_ph<const IMM8: i32>(k: __mmask16, a: __m256h) -> __m256h { |
| 10996 | static_assert_uimm_bits!(IMM8, 8); |
| 10997 | _mm256_mask_reduce_ph::<IMM8>(src:_mm256_setzero_ph(), k, a) |
| 10998 | } |
| 10999 | |
| 11000 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11001 | /// number of bits specified by imm8, and store the results in dst. |
| 11002 | /// |
| 11003 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11004 | /// |
| 11005 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11006 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11007 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11008 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11009 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11010 | /// |
| 11011 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_ph) |
| 11012 | #[inline ] |
| 11013 | #[target_feature (enable = "avx512fp16" )] |
| 11014 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 11015 | #[rustc_legacy_const_generics (1)] |
| 11016 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11017 | pub fn _mm512_reduce_ph<const IMM8: i32>(a: __m512h) -> __m512h { |
| 11018 | static_assert_uimm_bits!(IMM8, 8); |
| 11019 | _mm512_mask_reduce_ph::<IMM8>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 11020 | } |
| 11021 | |
| 11022 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11023 | /// number of bits specified by imm8, and store the results in dst using writemask k (elements are copied |
| 11024 | /// from src when the corresponding mask bit is not set). |
| 11025 | /// |
| 11026 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11027 | /// |
| 11028 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11029 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11030 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11031 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11032 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11033 | /// |
| 11034 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_reduce_ph) |
| 11035 | #[inline ] |
| 11036 | #[target_feature (enable = "avx512fp16" )] |
| 11037 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 11038 | #[rustc_legacy_const_generics (3)] |
| 11039 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11040 | pub fn _mm512_mask_reduce_ph<const IMM8: i32>(src: __m512h, k: __mmask32, a: __m512h) -> __m512h { |
| 11041 | static_assert_uimm_bits!(IMM8, 8); |
| 11042 | _mm512_mask_reduce_round_ph::<IMM8, _MM_FROUND_CUR_DIRECTION>(src, k, a) |
| 11043 | } |
| 11044 | |
| 11045 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11046 | /// number of bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed |
| 11047 | /// out when the corresponding mask bit is not set). |
| 11048 | /// |
| 11049 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11050 | /// |
| 11051 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11052 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11053 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11054 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11055 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11056 | /// |
| 11057 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_reduce_ph) |
| 11058 | #[inline ] |
| 11059 | #[target_feature (enable = "avx512fp16" )] |
| 11060 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0))] |
| 11061 | #[rustc_legacy_const_generics (2)] |
| 11062 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11063 | pub fn _mm512_maskz_reduce_ph<const IMM8: i32>(k: __mmask32, a: __m512h) -> __m512h { |
| 11064 | static_assert_uimm_bits!(IMM8, 8); |
| 11065 | _mm512_mask_reduce_ph::<IMM8>(src:_mm512_setzero_ph(), k, a) |
| 11066 | } |
| 11067 | |
| 11068 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11069 | /// number of bits specified by imm8, and store the results in dst. |
| 11070 | /// |
| 11071 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11072 | /// |
| 11073 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11074 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11075 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11076 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11077 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11078 | /// |
| 11079 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11080 | /// |
| 11081 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_round_ph) |
| 11082 | #[inline ] |
| 11083 | #[target_feature (enable = "avx512fp16" )] |
| 11084 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0, SAE = 8))] |
| 11085 | #[rustc_legacy_const_generics (1, 2)] |
| 11086 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11087 | pub fn _mm512_reduce_round_ph<const IMM8: i32, const SAE: i32>(a: __m512h) -> __m512h { |
| 11088 | static_assert_uimm_bits!(IMM8, 8); |
| 11089 | static_assert_sae!(SAE); |
| 11090 | _mm512_mask_reduce_round_ph::<IMM8, SAE>(src:_mm512_undefined_ph(), k:0xffffffff, a) |
| 11091 | } |
| 11092 | |
| 11093 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11094 | /// number of bits specified by imm8, and store the results in dst using writemask k (elements are copied |
| 11095 | /// from src when the corresponding mask bit is not set). |
| 11096 | /// |
| 11097 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11098 | /// |
| 11099 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11100 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11101 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11102 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11103 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11104 | /// |
| 11105 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11106 | /// |
| 11107 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_reduce_round_ph) |
| 11108 | #[inline ] |
| 11109 | #[target_feature (enable = "avx512fp16" )] |
| 11110 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0, SAE = 8))] |
| 11111 | #[rustc_legacy_const_generics (3, 4)] |
| 11112 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11113 | pub fn _mm512_mask_reduce_round_ph<const IMM8: i32, const SAE: i32>( |
| 11114 | src: __m512h, |
| 11115 | k: __mmask32, |
| 11116 | a: __m512h, |
| 11117 | ) -> __m512h { |
| 11118 | unsafe { |
| 11119 | static_assert_uimm_bits!(IMM8, 8); |
| 11120 | static_assert_sae!(SAE); |
| 11121 | vreduceph_512(a, IMM8, src, k, SAE) |
| 11122 | } |
| 11123 | } |
| 11124 | |
| 11125 | /// Extract the reduced argument of packed half-precision (16-bit) floating-point elements in a by the |
| 11126 | /// number of bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed |
| 11127 | /// out when the corresponding mask bit is not set). |
| 11128 | /// |
| 11129 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11130 | /// |
| 11131 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11132 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11133 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11134 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11135 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11136 | /// |
| 11137 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11138 | /// |
| 11139 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_reduce_round_ph) |
| 11140 | #[inline ] |
| 11141 | #[target_feature (enable = "avx512fp16" )] |
| 11142 | #[cfg_attr (test, assert_instr(vreduceph, IMM8 = 0, SAE = 8))] |
| 11143 | #[rustc_legacy_const_generics (2, 3)] |
| 11144 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11145 | pub fn _mm512_maskz_reduce_round_ph<const IMM8: i32, const SAE: i32>( |
| 11146 | k: __mmask32, |
| 11147 | a: __m512h, |
| 11148 | ) -> __m512h { |
| 11149 | static_assert_uimm_bits!(IMM8, 8); |
| 11150 | static_assert_sae!(SAE); |
| 11151 | _mm512_mask_reduce_round_ph::<IMM8, SAE>(src:_mm512_setzero_ph(), k, a) |
| 11152 | } |
| 11153 | |
| 11154 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11155 | /// the number of bits specified by imm8, store the result in the lower element of dst, and copy the |
| 11156 | /// upper 7 packed elements from a to the upper elements of dst. |
| 11157 | /// |
| 11158 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11159 | /// |
| 11160 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11161 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11162 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11163 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11164 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11165 | /// |
| 11166 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_sh) |
| 11167 | #[inline ] |
| 11168 | #[target_feature (enable = "avx512fp16" )] |
| 11169 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0))] |
| 11170 | #[rustc_legacy_const_generics (2)] |
| 11171 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11172 | pub fn _mm_reduce_sh<const IMM8: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 11173 | static_assert_uimm_bits!(IMM8, 8); |
| 11174 | _mm_mask_reduce_sh::<IMM8>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 11175 | } |
| 11176 | |
| 11177 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11178 | /// the number of bits specified by imm8, store the result in the lower element of dst using writemask k |
| 11179 | /// (the element is copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from |
| 11180 | /// a to the upper elements of dst. |
| 11181 | /// |
| 11182 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11183 | /// |
| 11184 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11185 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11186 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11187 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11188 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11189 | /// |
| 11190 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_reduce_sh) |
| 11191 | #[inline ] |
| 11192 | #[target_feature (enable = "avx512fp16" )] |
| 11193 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0))] |
| 11194 | #[rustc_legacy_const_generics (4)] |
| 11195 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11196 | pub fn _mm_mask_reduce_sh<const IMM8: i32>( |
| 11197 | src: __m128h, |
| 11198 | k: __mmask8, |
| 11199 | a: __m128h, |
| 11200 | b: __m128h, |
| 11201 | ) -> __m128h { |
| 11202 | static_assert_uimm_bits!(IMM8, 8); |
| 11203 | _mm_mask_reduce_round_sh::<IMM8, _MM_FROUND_CUR_DIRECTION>(src, k, a, b) |
| 11204 | } |
| 11205 | |
| 11206 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11207 | /// the number of bits specified by imm8, store the result in the lower element of dst using zeromask k |
| 11208 | /// (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a |
| 11209 | /// to the upper elements of dst. |
| 11210 | /// |
| 11211 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11212 | /// |
| 11213 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11214 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11215 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11216 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11217 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11218 | /// |
| 11219 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_reduce_sh) |
| 11220 | #[inline ] |
| 11221 | #[target_feature (enable = "avx512fp16" )] |
| 11222 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0))] |
| 11223 | #[rustc_legacy_const_generics (3)] |
| 11224 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11225 | pub fn _mm_maskz_reduce_sh<const IMM8: i32>(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 11226 | static_assert_uimm_bits!(IMM8, 8); |
| 11227 | _mm_mask_reduce_sh::<IMM8>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 11228 | } |
| 11229 | |
| 11230 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11231 | /// the number of bits specified by imm8, store the result in the lower element of dst, and copy the upper |
| 11232 | /// 7 packed elements from a to the upper elements of dst. |
| 11233 | /// |
| 11234 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11235 | /// |
| 11236 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11237 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11238 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11239 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11240 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11241 | /// |
| 11242 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11243 | /// |
| 11244 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_round_sh) |
| 11245 | #[inline ] |
| 11246 | #[target_feature (enable = "avx512fp16" )] |
| 11247 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0, SAE = 8))] |
| 11248 | #[rustc_legacy_const_generics (2, 3)] |
| 11249 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11250 | pub fn _mm_reduce_round_sh<const IMM8: i32, const SAE: i32>(a: __m128h, b: __m128h) -> __m128h { |
| 11251 | static_assert_uimm_bits!(IMM8, 8); |
| 11252 | static_assert_sae!(SAE); |
| 11253 | _mm_mask_reduce_round_sh::<IMM8, SAE>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 11254 | } |
| 11255 | |
| 11256 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11257 | /// the number of bits specified by imm8, store the result in the lower element of dst using writemask k |
| 11258 | /// (the element is copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from a |
| 11259 | /// to the upper elements of dst. |
| 11260 | /// |
| 11261 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11262 | /// |
| 11263 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11264 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11265 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11266 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11267 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11268 | /// |
| 11269 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11270 | /// |
| 11271 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_reduce_round_sh) |
| 11272 | #[inline ] |
| 11273 | #[target_feature (enable = "avx512fp16" )] |
| 11274 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0, SAE = 8))] |
| 11275 | #[rustc_legacy_const_generics (4, 5)] |
| 11276 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11277 | pub fn _mm_mask_reduce_round_sh<const IMM8: i32, const SAE: i32>( |
| 11278 | src: __m128h, |
| 11279 | k: __mmask8, |
| 11280 | a: __m128h, |
| 11281 | b: __m128h, |
| 11282 | ) -> __m128h { |
| 11283 | unsafe { |
| 11284 | static_assert_uimm_bits!(IMM8, 8); |
| 11285 | static_assert_sae!(SAE); |
| 11286 | vreducesh(a, b, src, k, IMM8, SAE) |
| 11287 | } |
| 11288 | } |
| 11289 | |
| 11290 | /// Extract the reduced argument of the lower half-precision (16-bit) floating-point element in b by |
| 11291 | /// the number of bits specified by imm8, store the result in the lower element of dst using zeromask k |
| 11292 | /// (the element is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a |
| 11293 | /// to the upper elements of dst. |
| 11294 | /// |
| 11295 | /// Rounding is done according to the imm8 parameter, which can be one of: |
| 11296 | /// |
| 11297 | /// * [`_MM_FROUND_TO_NEAREST_INT`] : round to nearest |
| 11298 | /// * [`_MM_FROUND_TO_NEG_INF`] : round down |
| 11299 | /// * [`_MM_FROUND_TO_POS_INF`] : round up |
| 11300 | /// * [`_MM_FROUND_TO_ZERO`] : truncate |
| 11301 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 11302 | /// |
| 11303 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 11304 | /// |
| 11305 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_reduce_round_sh) |
| 11306 | #[inline ] |
| 11307 | #[target_feature (enable = "avx512fp16" )] |
| 11308 | #[cfg_attr (test, assert_instr(vreducesh, IMM8 = 0, SAE = 8))] |
| 11309 | #[rustc_legacy_const_generics (3, 4)] |
| 11310 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11311 | pub fn _mm_maskz_reduce_round_sh<const IMM8: i32, const SAE: i32>( |
| 11312 | k: __mmask8, |
| 11313 | a: __m128h, |
| 11314 | b: __m128h, |
| 11315 | ) -> __m128h { |
| 11316 | static_assert_uimm_bits!(IMM8, 8); |
| 11317 | static_assert_sae!(SAE); |
| 11318 | _mm_mask_reduce_round_sh::<IMM8, SAE>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 11319 | } |
| 11320 | |
| 11321 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by addition. Returns the |
| 11322 | /// sum of all elements in a. |
| 11323 | /// |
| 11324 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_add_ph) |
| 11325 | #[inline ] |
| 11326 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11327 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11328 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11329 | pub const fn _mm_reduce_add_ph(a: __m128h) -> f16 { |
| 11330 | unsafe { |
| 11331 | let b: __m128h = simd_shuffle!(a, a, [4, 5, 6, 7, 0, 1, 2, 3]); |
| 11332 | let a: __m128h = _mm_add_ph(a, b); |
| 11333 | let b: __m128h = simd_shuffle!(a, a, [2, 3, 0, 1, 4, 5, 6, 7]); |
| 11334 | let a: __m128h = _mm_add_ph(a, b); |
| 11335 | simd_extract!(a, 0, f16) + simd_extract!(a, 1, f16) |
| 11336 | } |
| 11337 | } |
| 11338 | |
| 11339 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by addition. Returns the |
| 11340 | /// sum of all elements in a. |
| 11341 | /// |
| 11342 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_reduce_add_ph) |
| 11343 | #[inline ] |
| 11344 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11345 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11346 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11347 | pub const fn _mm256_reduce_add_ph(a: __m256h) -> f16 { |
| 11348 | unsafe { |
| 11349 | let p: __m128h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 11350 | let q: __m128h = simd_shuffle!(a, a, [8, 9, 10, 11, 12, 13, 14, 15]); |
| 11351 | _mm_reduce_add_ph(_mm_add_ph(a:p, b:q)) |
| 11352 | } |
| 11353 | } |
| 11354 | |
| 11355 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by addition. Returns the |
| 11356 | /// sum of all elements in a. |
| 11357 | /// |
| 11358 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_add_ph) |
| 11359 | #[inline ] |
| 11360 | #[target_feature (enable = "avx512fp16" )] |
| 11361 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11362 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11363 | pub const fn _mm512_reduce_add_ph(a: __m512h) -> f16 { |
| 11364 | unsafe { |
| 11365 | let p: __m256h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| 11366 | let q: __m256h = simd_shuffle!( |
| 11367 | a, |
| 11368 | a, |
| 11369 | [ |
| 11370 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 |
| 11371 | ] |
| 11372 | ); |
| 11373 | _mm256_reduce_add_ph(_mm256_add_ph(a:p, b:q)) |
| 11374 | } |
| 11375 | } |
| 11376 | |
| 11377 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by multiplication. Returns |
| 11378 | /// the product of all elements in a. |
| 11379 | /// |
| 11380 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_mul_ph) |
| 11381 | #[inline ] |
| 11382 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11383 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11384 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11385 | pub const fn _mm_reduce_mul_ph(a: __m128h) -> f16 { |
| 11386 | unsafe { |
| 11387 | let b: __m128h = simd_shuffle!(a, a, [4, 5, 6, 7, 0, 1, 2, 3]); |
| 11388 | let a: __m128h = _mm_mul_ph(a, b); |
| 11389 | let b: __m128h = simd_shuffle!(a, a, [2, 3, 0, 1, 4, 5, 6, 7]); |
| 11390 | let a: __m128h = _mm_mul_ph(a, b); |
| 11391 | simd_extract!(a, 0, f16) * simd_extract!(a, 1, f16) |
| 11392 | } |
| 11393 | } |
| 11394 | |
| 11395 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by multiplication. Returns |
| 11396 | /// the product of all elements in a. |
| 11397 | /// |
| 11398 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_reduce_mul_ph) |
| 11399 | #[inline ] |
| 11400 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11401 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11402 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11403 | pub const fn _mm256_reduce_mul_ph(a: __m256h) -> f16 { |
| 11404 | unsafe { |
| 11405 | let p: __m128h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 11406 | let q: __m128h = simd_shuffle!(a, a, [8, 9, 10, 11, 12, 13, 14, 15]); |
| 11407 | _mm_reduce_mul_ph(_mm_mul_ph(a:p, b:q)) |
| 11408 | } |
| 11409 | } |
| 11410 | |
| 11411 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by multiplication. Returns |
| 11412 | /// the product of all elements in a. |
| 11413 | /// |
| 11414 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_mul_ph) |
| 11415 | #[inline ] |
| 11416 | #[target_feature (enable = "avx512fp16" )] |
| 11417 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11418 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11419 | pub const fn _mm512_reduce_mul_ph(a: __m512h) -> f16 { |
| 11420 | unsafe { |
| 11421 | let p: __m256h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| 11422 | let q: __m256h = simd_shuffle!( |
| 11423 | a, |
| 11424 | a, |
| 11425 | [ |
| 11426 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 |
| 11427 | ] |
| 11428 | ); |
| 11429 | _mm256_reduce_mul_ph(_mm256_mul_ph(a:p, b:q)) |
| 11430 | } |
| 11431 | } |
| 11432 | |
| 11433 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by minimum. Returns the |
| 11434 | /// minimum of all elements in a. |
| 11435 | /// |
| 11436 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_min_ph) |
| 11437 | #[inline ] |
| 11438 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11439 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11440 | pub fn _mm_reduce_min_ph(a: __m128h) -> f16 { |
| 11441 | unsafe { |
| 11442 | let b: __m128h = simd_shuffle!(a, a, [4, 5, 6, 7, 0, 1, 2, 3]); |
| 11443 | let a: __m128h = _mm_min_ph(a, b); |
| 11444 | let b: __m128h = simd_shuffle!(a, a, [2, 3, 0, 1, 4, 5, 6, 7]); |
| 11445 | let a: __m128h = _mm_min_ph(a, b); |
| 11446 | let b: __m128h = simd_shuffle!(a, a, [1, 0, 2, 3, 4, 5, 6, 7]); |
| 11447 | simd_extract!(_mm_min_sh(a, b), 0) |
| 11448 | } |
| 11449 | } |
| 11450 | |
| 11451 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by minimum. Returns the |
| 11452 | /// minimum of all elements in a. |
| 11453 | /// |
| 11454 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_reduce_min_ph) |
| 11455 | #[inline ] |
| 11456 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11457 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11458 | pub fn _mm256_reduce_min_ph(a: __m256h) -> f16 { |
| 11459 | unsafe { |
| 11460 | let p: __m128h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 11461 | let q: __m128h = simd_shuffle!(a, a, [8, 9, 10, 11, 12, 13, 14, 15]); |
| 11462 | _mm_reduce_min_ph(_mm_min_ph(a:p, b:q)) |
| 11463 | } |
| 11464 | } |
| 11465 | |
| 11466 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by minimum. Returns the |
| 11467 | /// minimum of all elements in a. |
| 11468 | /// |
| 11469 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_min_ph) |
| 11470 | #[inline ] |
| 11471 | #[target_feature (enable = "avx512fp16" )] |
| 11472 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11473 | pub fn _mm512_reduce_min_ph(a: __m512h) -> f16 { |
| 11474 | unsafe { |
| 11475 | let p: __m256h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| 11476 | let q: __m256h = simd_shuffle!( |
| 11477 | a, |
| 11478 | a, |
| 11479 | [ |
| 11480 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 |
| 11481 | ] |
| 11482 | ); |
| 11483 | _mm256_reduce_min_ph(_mm256_min_ph(a:p, b:q)) |
| 11484 | } |
| 11485 | } |
| 11486 | |
| 11487 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by maximum. Returns the |
| 11488 | /// maximum of all elements in a. |
| 11489 | /// |
| 11490 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_reduce_max_ph) |
| 11491 | #[inline ] |
| 11492 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11493 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11494 | pub fn _mm_reduce_max_ph(a: __m128h) -> f16 { |
| 11495 | unsafe { |
| 11496 | let b: __m128h = simd_shuffle!(a, a, [4, 5, 6, 7, 0, 1, 2, 3]); |
| 11497 | let a: __m128h = _mm_max_ph(a, b); |
| 11498 | let b: __m128h = simd_shuffle!(a, a, [2, 3, 0, 1, 4, 5, 6, 7]); |
| 11499 | let a: __m128h = _mm_max_ph(a, b); |
| 11500 | let b: __m128h = simd_shuffle!(a, a, [1, 0, 2, 3, 4, 5, 6, 7]); |
| 11501 | simd_extract!(_mm_max_sh(a, b), 0) |
| 11502 | } |
| 11503 | } |
| 11504 | |
| 11505 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by maximum. Returns the |
| 11506 | /// maximum of all elements in a. |
| 11507 | /// |
| 11508 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_reduce_max_ph) |
| 11509 | #[inline ] |
| 11510 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11511 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11512 | pub fn _mm256_reduce_max_ph(a: __m256h) -> f16 { |
| 11513 | unsafe { |
| 11514 | let p: __m128h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7]); |
| 11515 | let q: __m128h = simd_shuffle!(a, a, [8, 9, 10, 11, 12, 13, 14, 15]); |
| 11516 | _mm_reduce_max_ph(_mm_max_ph(a:p, b:q)) |
| 11517 | } |
| 11518 | } |
| 11519 | |
| 11520 | /// Reduce the packed half-precision (16-bit) floating-point elements in a by maximum. Returns the |
| 11521 | /// maximum of all elements in a. |
| 11522 | /// |
| 11523 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_reduce_max_ph) |
| 11524 | #[inline ] |
| 11525 | #[target_feature (enable = "avx512fp16" )] |
| 11526 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 11527 | pub fn _mm512_reduce_max_ph(a: __m512h) -> f16 { |
| 11528 | unsafe { |
| 11529 | let p: __m256h = simd_shuffle!(a, a, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| 11530 | let q: __m256h = simd_shuffle!( |
| 11531 | a, |
| 11532 | a, |
| 11533 | [ |
| 11534 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 |
| 11535 | ] |
| 11536 | ); |
| 11537 | _mm256_reduce_max_ph(_mm256_max_ph(a:p, b:q)) |
| 11538 | } |
| 11539 | } |
| 11540 | |
| 11541 | macro_rules! fpclass_asm { // FIXME: use LLVM intrinsics |
| 11542 | ($mask_type: ty, $reg: ident, $a: expr) => {{ |
| 11543 | let dst: $mask_type; |
| 11544 | asm!( |
| 11545 | "vfpclassph {k}, {src}, {imm8}" , |
| 11546 | k = lateout(kreg) dst, |
| 11547 | src = in($reg) $a, |
| 11548 | imm8 = const IMM8, |
| 11549 | options(pure, nomem, nostack) |
| 11550 | ); |
| 11551 | dst |
| 11552 | }}; |
| 11553 | ($mask_type: ty, $mask: expr, $reg: ident, $a: expr) => {{ |
| 11554 | let dst: $mask_type; |
| 11555 | asm!( |
| 11556 | "vfpclassph {k} {{ {mask} }}, {src}, {imm8}" , |
| 11557 | k = lateout(kreg) dst, |
| 11558 | mask = in(kreg) $mask, |
| 11559 | src = in($reg) $a, |
| 11560 | imm8 = const IMM8, |
| 11561 | options(pure, nomem, nostack) |
| 11562 | ); |
| 11563 | dst |
| 11564 | }}; |
| 11565 | } |
| 11566 | |
| 11567 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11568 | /// by imm8, and store the results in mask vector k. |
| 11569 | /// imm can be a combination of: |
| 11570 | /// |
| 11571 | /// 0x01 // QNaN |
| 11572 | /// 0x02 // Positive Zero |
| 11573 | /// 0x04 // Negative Zero |
| 11574 | /// 0x08 // Positive Infinity |
| 11575 | /// 0x10 // Negative Infinity |
| 11576 | /// 0x20 // Denormal |
| 11577 | /// 0x40 // Negative |
| 11578 | /// 0x80 // SNaN |
| 11579 | /// |
| 11580 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fpclass_ph_mask) |
| 11581 | #[inline ] |
| 11582 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11583 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11584 | #[rustc_legacy_const_generics (1)] |
| 11585 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11586 | pub fn _mm_fpclass_ph_mask<const IMM8: i32>(a: __m128h) -> __mmask8 { |
| 11587 | unsafe { |
| 11588 | static_assert_uimm_bits!(IMM8, 8); |
| 11589 | fpclass_asm!(__mmask8, xmm_reg, a) |
| 11590 | } |
| 11591 | } |
| 11592 | |
| 11593 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11594 | /// by imm8, and store the results in mask vector k using zeromask k (elements are zeroed out when the |
| 11595 | /// corresponding mask bit is not set). |
| 11596 | /// imm can be a combination of: |
| 11597 | /// |
| 11598 | /// 0x01 // QNaN |
| 11599 | /// 0x02 // Positive Zero |
| 11600 | /// 0x04 // Negative Zero |
| 11601 | /// 0x08 // Positive Infinity |
| 11602 | /// 0x10 // Negative Infinity |
| 11603 | /// 0x20 // Denormal |
| 11604 | /// 0x40 // Negative |
| 11605 | /// 0x80 // SNaN |
| 11606 | /// |
| 11607 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fpclass_ph_mask) |
| 11608 | #[inline ] |
| 11609 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11610 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11611 | #[rustc_legacy_const_generics (2)] |
| 11612 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11613 | pub fn _mm_mask_fpclass_ph_mask<const IMM8: i32>(k1: __mmask8, a: __m128h) -> __mmask8 { |
| 11614 | unsafe { |
| 11615 | static_assert_uimm_bits!(IMM8, 8); |
| 11616 | fpclass_asm!(__mmask8, k1, xmm_reg, a) |
| 11617 | } |
| 11618 | } |
| 11619 | |
| 11620 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11621 | /// by imm8, and store the results in mask vector k. |
| 11622 | /// imm can be a combination of: |
| 11623 | /// |
| 11624 | /// 0x01 // QNaN |
| 11625 | /// 0x02 // Positive Zero |
| 11626 | /// 0x04 // Negative Zero |
| 11627 | /// 0x08 // Positive Infinity |
| 11628 | /// 0x10 // Negative Infinity |
| 11629 | /// 0x20 // Denormal |
| 11630 | /// 0x40 // Negative |
| 11631 | /// 0x80 // SNaN |
| 11632 | /// |
| 11633 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fpclass_ph_mask) |
| 11634 | #[inline ] |
| 11635 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11636 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11637 | #[rustc_legacy_const_generics (1)] |
| 11638 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11639 | pub fn _mm256_fpclass_ph_mask<const IMM8: i32>(a: __m256h) -> __mmask16 { |
| 11640 | unsafe { |
| 11641 | static_assert_uimm_bits!(IMM8, 8); |
| 11642 | fpclass_asm!(__mmask16, ymm_reg, a) |
| 11643 | } |
| 11644 | } |
| 11645 | |
| 11646 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11647 | /// by imm8, and store the results in mask vector k using zeromask k (elements are zeroed out when the |
| 11648 | /// corresponding mask bit is not set). |
| 11649 | /// imm can be a combination of: |
| 11650 | /// |
| 11651 | /// 0x01 // QNaN |
| 11652 | /// 0x02 // Positive Zero |
| 11653 | /// 0x04 // Negative Zero |
| 11654 | /// 0x08 // Positive Infinity |
| 11655 | /// 0x10 // Negative Infinity |
| 11656 | /// 0x20 // Denormal |
| 11657 | /// 0x40 // Negative |
| 11658 | /// 0x80 // SNaN |
| 11659 | /// |
| 11660 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_fpclass_ph_mask) |
| 11661 | #[inline ] |
| 11662 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11663 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11664 | #[rustc_legacy_const_generics (2)] |
| 11665 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11666 | pub fn _mm256_mask_fpclass_ph_mask<const IMM8: i32>(k1: __mmask16, a: __m256h) -> __mmask16 { |
| 11667 | unsafe { |
| 11668 | static_assert_uimm_bits!(IMM8, 8); |
| 11669 | fpclass_asm!(__mmask16, k1, ymm_reg, a) |
| 11670 | } |
| 11671 | } |
| 11672 | |
| 11673 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11674 | /// by imm8, and store the results in mask vector k. |
| 11675 | /// imm can be a combination of: |
| 11676 | /// |
| 11677 | /// 0x01 // QNaN |
| 11678 | /// 0x02 // Positive Zero |
| 11679 | /// 0x04 // Negative Zero |
| 11680 | /// 0x08 // Positive Infinity |
| 11681 | /// 0x10 // Negative Infinity |
| 11682 | /// 0x20 // Denormal |
| 11683 | /// 0x40 // Negative |
| 11684 | /// 0x80 // SNaN |
| 11685 | /// |
| 11686 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_fpclass_ph_mask) |
| 11687 | #[inline ] |
| 11688 | #[target_feature (enable = "avx512fp16" )] |
| 11689 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11690 | #[rustc_legacy_const_generics (1)] |
| 11691 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11692 | pub fn _mm512_fpclass_ph_mask<const IMM8: i32>(a: __m512h) -> __mmask32 { |
| 11693 | unsafe { |
| 11694 | static_assert_uimm_bits!(IMM8, 8); |
| 11695 | fpclass_asm!(__mmask32, zmm_reg, a) |
| 11696 | } |
| 11697 | } |
| 11698 | |
| 11699 | /// Test packed half-precision (16-bit) floating-point elements in a for special categories specified |
| 11700 | /// by imm8, and store the results in mask vector k using zeromask k (elements are zeroed out when the |
| 11701 | /// corresponding mask bit is not set). |
| 11702 | /// imm can be a combination of: |
| 11703 | /// |
| 11704 | /// 0x01 // QNaN |
| 11705 | /// 0x02 // Positive Zero |
| 11706 | /// 0x04 // Negative Zero |
| 11707 | /// 0x08 // Positive Infinity |
| 11708 | /// 0x10 // Negative Infinity |
| 11709 | /// 0x20 // Denormal |
| 11710 | /// 0x40 // Negative |
| 11711 | /// 0x80 // SNaN |
| 11712 | /// |
| 11713 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_fpclass_ph_mask) |
| 11714 | #[inline ] |
| 11715 | #[target_feature (enable = "avx512fp16" )] |
| 11716 | #[cfg_attr (test, assert_instr(vfpclassph, IMM8 = 0))] |
| 11717 | #[rustc_legacy_const_generics (2)] |
| 11718 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11719 | pub fn _mm512_mask_fpclass_ph_mask<const IMM8: i32>(k1: __mmask32, a: __m512h) -> __mmask32 { |
| 11720 | unsafe { |
| 11721 | static_assert_uimm_bits!(IMM8, 8); |
| 11722 | fpclass_asm!(__mmask32, k1, zmm_reg, a) |
| 11723 | } |
| 11724 | } |
| 11725 | |
| 11726 | /// Test the lower half-precision (16-bit) floating-point element in a for special categories specified |
| 11727 | /// by imm8, and store the result in mask vector k. |
| 11728 | /// imm can be a combination of: |
| 11729 | /// |
| 11730 | /// 0x01 // QNaN |
| 11731 | /// 0x02 // Positive Zero |
| 11732 | /// 0x04 // Negative Zero |
| 11733 | /// 0x08 // Positive Infinity |
| 11734 | /// 0x10 // Negative Infinity |
| 11735 | /// 0x20 // Denormal |
| 11736 | /// 0x40 // Negative |
| 11737 | /// 0x80 // SNaN |
| 11738 | /// |
| 11739 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fpclass_sh_mask) |
| 11740 | #[inline ] |
| 11741 | #[target_feature (enable = "avx512fp16" )] |
| 11742 | #[cfg_attr (test, assert_instr(vfpclasssh, IMM8 = 0))] |
| 11743 | #[rustc_legacy_const_generics (1)] |
| 11744 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11745 | pub fn _mm_fpclass_sh_mask<const IMM8: i32>(a: __m128h) -> __mmask8 { |
| 11746 | _mm_mask_fpclass_sh_mask::<IMM8>(k1:0xff, a) |
| 11747 | } |
| 11748 | |
| 11749 | /// Test the lower half-precision (16-bit) floating-point element in a for special categories specified |
| 11750 | /// by imm8, and store the result in mask vector k using zeromask k (elements are zeroed out when the |
| 11751 | /// corresponding mask bit is not set). |
| 11752 | /// imm can be a combination of: |
| 11753 | /// |
| 11754 | /// 0x01 // QNaN |
| 11755 | /// 0x02 // Positive Zero |
| 11756 | /// 0x04 // Negative Zero |
| 11757 | /// 0x08 // Positive Infinity |
| 11758 | /// 0x10 // Negative Infinity |
| 11759 | /// 0x20 // Denormal |
| 11760 | /// 0x40 // Negative |
| 11761 | /// 0x80 // SNaN |
| 11762 | /// |
| 11763 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_fpclass_sh_mask) |
| 11764 | #[inline ] |
| 11765 | #[target_feature (enable = "avx512fp16" )] |
| 11766 | #[cfg_attr (test, assert_instr(vfpclasssh, IMM8 = 0))] |
| 11767 | #[rustc_legacy_const_generics (2)] |
| 11768 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11769 | pub fn _mm_mask_fpclass_sh_mask<const IMM8: i32>(k1: __mmask8, a: __m128h) -> __mmask8 { |
| 11770 | unsafe { |
| 11771 | static_assert_uimm_bits!(IMM8, 8); |
| 11772 | vfpclasssh(a, IMM8, k:k1) |
| 11773 | } |
| 11774 | } |
| 11775 | |
| 11776 | /// Blend packed half-precision (16-bit) floating-point elements from a and b using control mask k, |
| 11777 | /// and store the results in dst. |
| 11778 | /// |
| 11779 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_blend_ph) |
| 11780 | #[inline ] |
| 11781 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11782 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11783 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11784 | pub const fn _mm_mask_blend_ph(k: __mmask8, a: __m128h, b: __m128h) -> __m128h { |
| 11785 | unsafe { simd_select_bitmask(m:k, yes:b, no:a) } |
| 11786 | } |
| 11787 | |
| 11788 | /// Blend packed half-precision (16-bit) floating-point elements from a and b using control mask k, |
| 11789 | /// and store the results in dst. |
| 11790 | /// |
| 11791 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_blend_ph) |
| 11792 | #[inline ] |
| 11793 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11794 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11795 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11796 | pub const fn _mm256_mask_blend_ph(k: __mmask16, a: __m256h, b: __m256h) -> __m256h { |
| 11797 | unsafe { simd_select_bitmask(m:k, yes:b, no:a) } |
| 11798 | } |
| 11799 | |
| 11800 | /// Blend packed half-precision (16-bit) floating-point elements from a and b using control mask k, |
| 11801 | /// and store the results in dst. |
| 11802 | /// |
| 11803 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_blend_ph) |
| 11804 | #[inline ] |
| 11805 | #[target_feature (enable = "avx512fp16" )] |
| 11806 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11807 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 11808 | pub const fn _mm512_mask_blend_ph(k: __mmask32, a: __m512h, b: __m512h) -> __m512h { |
| 11809 | unsafe { simd_select_bitmask(m:k, yes:b, no:a) } |
| 11810 | } |
| 11811 | |
| 11812 | /// Shuffle half-precision (16-bit) floating-point elements in a and b using the corresponding selector |
| 11813 | /// and index in idx, and store the results in dst. |
| 11814 | /// |
| 11815 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_permutex2var_ph) |
| 11816 | #[inline ] |
| 11817 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11818 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11819 | pub fn _mm_permutex2var_ph(a: __m128h, idx: __m128i, b: __m128h) -> __m128h { |
| 11820 | _mm_castsi128_ph(_mm_permutex2var_epi16( |
| 11821 | a:_mm_castph_si128(a), |
| 11822 | idx, |
| 11823 | b:_mm_castph_si128(b), |
| 11824 | )) |
| 11825 | } |
| 11826 | |
| 11827 | /// Shuffle half-precision (16-bit) floating-point elements in a and b using the corresponding selector |
| 11828 | /// and index in idx, and store the results in dst. |
| 11829 | /// |
| 11830 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_permutex2var_ph) |
| 11831 | #[inline ] |
| 11832 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11833 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11834 | pub fn _mm256_permutex2var_ph(a: __m256h, idx: __m256i, b: __m256h) -> __m256h { |
| 11835 | _mm256_castsi256_ph(_mm256_permutex2var_epi16( |
| 11836 | a:_mm256_castph_si256(a), |
| 11837 | idx, |
| 11838 | b:_mm256_castph_si256(b), |
| 11839 | )) |
| 11840 | } |
| 11841 | |
| 11842 | /// Shuffle half-precision (16-bit) floating-point elements in a and b using the corresponding selector |
| 11843 | /// and index in idx, and store the results in dst. |
| 11844 | /// |
| 11845 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_permutex2var_ph) |
| 11846 | #[inline ] |
| 11847 | #[target_feature (enable = "avx512fp16" )] |
| 11848 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11849 | pub fn _mm512_permutex2var_ph(a: __m512h, idx: __m512i, b: __m512h) -> __m512h { |
| 11850 | _mm512_castsi512_ph(_mm512_permutex2var_epi16( |
| 11851 | a:_mm512_castph_si512(a), |
| 11852 | idx, |
| 11853 | b:_mm512_castph_si512(b), |
| 11854 | )) |
| 11855 | } |
| 11856 | |
| 11857 | /// Shuffle half-precision (16-bit) floating-point elements in a using the corresponding index in idx, |
| 11858 | /// and store the results in dst. |
| 11859 | /// |
| 11860 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_permutexvar_ph) |
| 11861 | #[inline ] |
| 11862 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11863 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11864 | pub fn _mm_permutexvar_ph(idx: __m128i, a: __m128h) -> __m128h { |
| 11865 | _mm_castsi128_ph(_mm_permutexvar_epi16(idx, a:_mm_castph_si128(a))) |
| 11866 | } |
| 11867 | |
| 11868 | /// Shuffle half-precision (16-bit) floating-point elements in a using the corresponding index in idx, |
| 11869 | /// and store the results in dst. |
| 11870 | /// |
| 11871 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_permutexvar_ph) |
| 11872 | #[inline ] |
| 11873 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11874 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11875 | pub fn _mm256_permutexvar_ph(idx: __m256i, a: __m256h) -> __m256h { |
| 11876 | _mm256_castsi256_ph(_mm256_permutexvar_epi16(idx, a:_mm256_castph_si256(a))) |
| 11877 | } |
| 11878 | |
| 11879 | /// Shuffle half-precision (16-bit) floating-point elements in a using the corresponding index in idx, |
| 11880 | /// and store the results in dst. |
| 11881 | /// |
| 11882 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_permutexvar_ph) |
| 11883 | #[inline ] |
| 11884 | #[target_feature (enable = "avx512fp16" )] |
| 11885 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11886 | pub fn _mm512_permutexvar_ph(idx: __m512i, a: __m512h) -> __m512h { |
| 11887 | _mm512_castsi512_ph(_mm512_permutexvar_epi16(idx, a:_mm512_castph_si512(a))) |
| 11888 | } |
| 11889 | |
| 11890 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11891 | /// and store the results in dst. |
| 11892 | /// |
| 11893 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi16_ph) |
| 11894 | #[inline ] |
| 11895 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11896 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11897 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11898 | pub fn _mm_cvtepi16_ph(a: __m128i) -> __m128h { |
| 11899 | unsafe { vcvtw2ph_128(a.as_i16x8(), _MM_FROUND_CUR_DIRECTION) } |
| 11900 | } |
| 11901 | |
| 11902 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11903 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 11904 | /// mask bit is not set). |
| 11905 | /// |
| 11906 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepi16_ph) |
| 11907 | #[inline ] |
| 11908 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11909 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11910 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11911 | pub fn _mm_mask_cvtepi16_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 11912 | unsafe { simd_select_bitmask(m:k, yes:_mm_cvtepi16_ph(a), no:src) } |
| 11913 | } |
| 11914 | |
| 11915 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11916 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 11917 | /// |
| 11918 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepi16_ph) |
| 11919 | #[inline ] |
| 11920 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11921 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11922 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11923 | pub fn _mm_maskz_cvtepi16_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 11924 | _mm_mask_cvtepi16_ph(src:_mm_setzero_ph(), k, a) |
| 11925 | } |
| 11926 | |
| 11927 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11928 | /// and store the results in dst. |
| 11929 | /// |
| 11930 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepi16_ph) |
| 11931 | #[inline ] |
| 11932 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11933 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11934 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11935 | pub fn _mm256_cvtepi16_ph(a: __m256i) -> __m256h { |
| 11936 | unsafe { vcvtw2ph_256(a.as_i16x16(), _MM_FROUND_CUR_DIRECTION) } |
| 11937 | } |
| 11938 | |
| 11939 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11940 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 11941 | /// mask bit is not set). |
| 11942 | /// |
| 11943 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepi16_ph) |
| 11944 | #[inline ] |
| 11945 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11946 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11947 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11948 | pub fn _mm256_mask_cvtepi16_ph(src: __m256h, k: __mmask16, a: __m256i) -> __m256h { |
| 11949 | unsafe { simd_select_bitmask(m:k, yes:_mm256_cvtepi16_ph(a), no:src) } |
| 11950 | } |
| 11951 | |
| 11952 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11953 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 11954 | /// |
| 11955 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepi16_ph) |
| 11956 | #[inline ] |
| 11957 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 11958 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11959 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11960 | pub fn _mm256_maskz_cvtepi16_ph(k: __mmask16, a: __m256i) -> __m256h { |
| 11961 | _mm256_mask_cvtepi16_ph(src:_mm256_setzero_ph(), k, a) |
| 11962 | } |
| 11963 | |
| 11964 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11965 | /// and store the results in dst. |
| 11966 | /// |
| 11967 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepi16_ph) |
| 11968 | #[inline ] |
| 11969 | #[target_feature (enable = "avx512fp16" )] |
| 11970 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11971 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11972 | pub fn _mm512_cvtepi16_ph(a: __m512i) -> __m512h { |
| 11973 | unsafe { vcvtw2ph_512(a.as_i16x32(), _MM_FROUND_CUR_DIRECTION) } |
| 11974 | } |
| 11975 | |
| 11976 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11977 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 11978 | /// mask bit is not set). |
| 11979 | /// |
| 11980 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepi16_ph) |
| 11981 | #[inline ] |
| 11982 | #[target_feature (enable = "avx512fp16" )] |
| 11983 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11984 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11985 | pub fn _mm512_mask_cvtepi16_ph(src: __m512h, k: __mmask32, a: __m512i) -> __m512h { |
| 11986 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepi16_ph(a), no:src) } |
| 11987 | } |
| 11988 | |
| 11989 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 11990 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 11991 | /// |
| 11992 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepi16_ph) |
| 11993 | #[inline ] |
| 11994 | #[target_feature (enable = "avx512fp16" )] |
| 11995 | #[cfg_attr (test, assert_instr(vcvtw2ph))] |
| 11996 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 11997 | pub fn _mm512_maskz_cvtepi16_ph(k: __mmask32, a: __m512i) -> __m512h { |
| 11998 | _mm512_mask_cvtepi16_ph(src:_mm512_setzero_ph(), k, a) |
| 11999 | } |
| 12000 | |
| 12001 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12002 | /// and store the results in dst. |
| 12003 | /// |
| 12004 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12005 | /// |
| 12006 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12007 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12008 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12009 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12010 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12011 | /// |
| 12012 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepi16_ph) |
| 12013 | #[inline ] |
| 12014 | #[target_feature (enable = "avx512fp16" )] |
| 12015 | #[cfg_attr (test, assert_instr(vcvtw2ph, ROUNDING = 8))] |
| 12016 | #[rustc_legacy_const_generics (1)] |
| 12017 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12018 | pub fn _mm512_cvt_roundepi16_ph<const ROUNDING: i32>(a: __m512i) -> __m512h { |
| 12019 | unsafe { |
| 12020 | static_assert_rounding!(ROUNDING); |
| 12021 | vcvtw2ph_512(a.as_i16x32(), ROUNDING) |
| 12022 | } |
| 12023 | } |
| 12024 | |
| 12025 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12026 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12027 | /// mask bit is not set). |
| 12028 | /// |
| 12029 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12030 | /// |
| 12031 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12032 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12033 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12034 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12035 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12036 | /// |
| 12037 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepi16_ph) |
| 12038 | #[inline ] |
| 12039 | #[target_feature (enable = "avx512fp16" )] |
| 12040 | #[cfg_attr (test, assert_instr(vcvtw2ph, ROUNDING = 8))] |
| 12041 | #[rustc_legacy_const_generics (3)] |
| 12042 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12043 | pub fn _mm512_mask_cvt_roundepi16_ph<const ROUNDING: i32>( |
| 12044 | src: __m512h, |
| 12045 | k: __mmask32, |
| 12046 | a: __m512i, |
| 12047 | ) -> __m512h { |
| 12048 | unsafe { |
| 12049 | static_assert_rounding!(ROUNDING); |
| 12050 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepi16_ph::<ROUNDING>(a), no:src) |
| 12051 | } |
| 12052 | } |
| 12053 | |
| 12054 | /// Convert packed signed 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12055 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12056 | /// |
| 12057 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12058 | /// |
| 12059 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12060 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12061 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12062 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12063 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12064 | /// |
| 12065 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepi16_ph) |
| 12066 | #[inline ] |
| 12067 | #[target_feature (enable = "avx512fp16" )] |
| 12068 | #[cfg_attr (test, assert_instr(vcvtw2ph, ROUNDING = 8))] |
| 12069 | #[rustc_legacy_const_generics (2)] |
| 12070 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12071 | pub fn _mm512_maskz_cvt_roundepi16_ph<const ROUNDING: i32>(k: __mmask32, a: __m512i) -> __m512h { |
| 12072 | static_assert_rounding!(ROUNDING); |
| 12073 | _mm512_mask_cvt_roundepi16_ph::<ROUNDING>(src:_mm512_setzero_ph(), k, a) |
| 12074 | } |
| 12075 | |
| 12076 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12077 | /// and store the results in dst. |
| 12078 | /// |
| 12079 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu16_ph) |
| 12080 | #[inline ] |
| 12081 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12082 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12083 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12084 | pub fn _mm_cvtepu16_ph(a: __m128i) -> __m128h { |
| 12085 | unsafe { vcvtuw2ph_128(a.as_u16x8(), _MM_FROUND_CUR_DIRECTION) } |
| 12086 | } |
| 12087 | |
| 12088 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12089 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12090 | /// mask bit is not set). |
| 12091 | /// |
| 12092 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepu16_ph) |
| 12093 | #[inline ] |
| 12094 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12095 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12096 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12097 | pub fn _mm_mask_cvtepu16_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 12098 | unsafe { simd_select_bitmask(m:k, yes:_mm_cvtepu16_ph(a), no:src) } |
| 12099 | } |
| 12100 | |
| 12101 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12102 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12103 | /// |
| 12104 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepu16_ph) |
| 12105 | #[inline ] |
| 12106 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12107 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12108 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12109 | pub fn _mm_maskz_cvtepu16_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 12110 | _mm_mask_cvtepu16_ph(src:_mm_setzero_ph(), k, a) |
| 12111 | } |
| 12112 | |
| 12113 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12114 | /// and store the results in dst. |
| 12115 | /// |
| 12116 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepu16_ph) |
| 12117 | #[inline ] |
| 12118 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12119 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12120 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12121 | pub fn _mm256_cvtepu16_ph(a: __m256i) -> __m256h { |
| 12122 | unsafe { vcvtuw2ph_256(a.as_u16x16(), _MM_FROUND_CUR_DIRECTION) } |
| 12123 | } |
| 12124 | |
| 12125 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12126 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12127 | /// mask bit is not set). |
| 12128 | /// |
| 12129 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepu16_ph) |
| 12130 | #[inline ] |
| 12131 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12132 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12133 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12134 | pub fn _mm256_mask_cvtepu16_ph(src: __m256h, k: __mmask16, a: __m256i) -> __m256h { |
| 12135 | unsafe { simd_select_bitmask(m:k, yes:_mm256_cvtepu16_ph(a), no:src) } |
| 12136 | } |
| 12137 | |
| 12138 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12139 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12140 | /// |
| 12141 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepu16_ph) |
| 12142 | #[inline ] |
| 12143 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12144 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12145 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12146 | pub fn _mm256_maskz_cvtepu16_ph(k: __mmask16, a: __m256i) -> __m256h { |
| 12147 | _mm256_mask_cvtepu16_ph(src:_mm256_setzero_ph(), k, a) |
| 12148 | } |
| 12149 | |
| 12150 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12151 | /// and store the results in dst. |
| 12152 | /// |
| 12153 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepu16_ph) |
| 12154 | #[inline ] |
| 12155 | #[target_feature (enable = "avx512fp16" )] |
| 12156 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12157 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12158 | pub fn _mm512_cvtepu16_ph(a: __m512i) -> __m512h { |
| 12159 | unsafe { vcvtuw2ph_512(a.as_u16x32(), _MM_FROUND_CUR_DIRECTION) } |
| 12160 | } |
| 12161 | |
| 12162 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12163 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12164 | /// mask bit is not set). |
| 12165 | /// |
| 12166 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepu16_ph) |
| 12167 | #[inline ] |
| 12168 | #[target_feature (enable = "avx512fp16" )] |
| 12169 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12170 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12171 | pub fn _mm512_mask_cvtepu16_ph(src: __m512h, k: __mmask32, a: __m512i) -> __m512h { |
| 12172 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepu16_ph(a), no:src) } |
| 12173 | } |
| 12174 | |
| 12175 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12176 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12177 | /// |
| 12178 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepu16_ph) |
| 12179 | #[inline ] |
| 12180 | #[target_feature (enable = "avx512fp16" )] |
| 12181 | #[cfg_attr (test, assert_instr(vcvtuw2ph))] |
| 12182 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12183 | pub fn _mm512_maskz_cvtepu16_ph(k: __mmask32, a: __m512i) -> __m512h { |
| 12184 | _mm512_mask_cvtepu16_ph(src:_mm512_setzero_ph(), k, a) |
| 12185 | } |
| 12186 | |
| 12187 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12188 | /// and store the results in dst. |
| 12189 | /// |
| 12190 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12191 | /// |
| 12192 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12193 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12194 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12195 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12196 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12197 | /// |
| 12198 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepu16_ph) |
| 12199 | #[inline ] |
| 12200 | #[target_feature (enable = "avx512fp16" )] |
| 12201 | #[cfg_attr (test, assert_instr(vcvtuw2ph, ROUNDING = 8))] |
| 12202 | #[rustc_legacy_const_generics (1)] |
| 12203 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12204 | pub fn _mm512_cvt_roundepu16_ph<const ROUNDING: i32>(a: __m512i) -> __m512h { |
| 12205 | unsafe { |
| 12206 | static_assert_rounding!(ROUNDING); |
| 12207 | vcvtuw2ph_512(a.as_u16x32(), ROUNDING) |
| 12208 | } |
| 12209 | } |
| 12210 | |
| 12211 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12212 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12213 | /// mask bit is not set). |
| 12214 | /// |
| 12215 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12216 | /// |
| 12217 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12218 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12219 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12220 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12221 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12222 | /// |
| 12223 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepu16_ph) |
| 12224 | #[inline ] |
| 12225 | #[target_feature (enable = "avx512fp16" )] |
| 12226 | #[cfg_attr (test, assert_instr(vcvtuw2ph, ROUNDING = 8))] |
| 12227 | #[rustc_legacy_const_generics (3)] |
| 12228 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12229 | pub fn _mm512_mask_cvt_roundepu16_ph<const ROUNDING: i32>( |
| 12230 | src: __m512h, |
| 12231 | k: __mmask32, |
| 12232 | a: __m512i, |
| 12233 | ) -> __m512h { |
| 12234 | unsafe { |
| 12235 | static_assert_rounding!(ROUNDING); |
| 12236 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepu16_ph::<ROUNDING>(a), no:src) |
| 12237 | } |
| 12238 | } |
| 12239 | |
| 12240 | /// Convert packed unsigned 16-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12241 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12242 | /// |
| 12243 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12244 | /// |
| 12245 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12246 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12247 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12248 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12249 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12250 | /// |
| 12251 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepu16_ph) |
| 12252 | #[inline ] |
| 12253 | #[target_feature (enable = "avx512fp16" )] |
| 12254 | #[cfg_attr (test, assert_instr(vcvtuw2ph, ROUNDING = 8))] |
| 12255 | #[rustc_legacy_const_generics (2)] |
| 12256 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12257 | pub fn _mm512_maskz_cvt_roundepu16_ph<const ROUNDING: i32>(k: __mmask32, a: __m512i) -> __m512h { |
| 12258 | static_assert_rounding!(ROUNDING); |
| 12259 | _mm512_mask_cvt_roundepu16_ph::<ROUNDING>(src:_mm512_setzero_ph(), k, a) |
| 12260 | } |
| 12261 | |
| 12262 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12263 | /// and store the results in dst. The upper 64 bits of dst are zeroed out. |
| 12264 | /// |
| 12265 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_ph) |
| 12266 | #[inline ] |
| 12267 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12268 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12269 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12270 | pub fn _mm_cvtepi32_ph(a: __m128i) -> __m128h { |
| 12271 | _mm_mask_cvtepi32_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12272 | } |
| 12273 | |
| 12274 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12275 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12276 | /// mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 12277 | /// |
| 12278 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepi32_ph) |
| 12279 | #[inline ] |
| 12280 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12281 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12282 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12283 | pub fn _mm_mask_cvtepi32_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 12284 | unsafe { vcvtdq2ph_128(a.as_i32x4(), src, k) } |
| 12285 | } |
| 12286 | |
| 12287 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12288 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12289 | /// The upper 64 bits of dst are zeroed out. |
| 12290 | /// |
| 12291 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepi32_ph) |
| 12292 | #[inline ] |
| 12293 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12294 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12295 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12296 | pub fn _mm_maskz_cvtepi32_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 12297 | _mm_mask_cvtepi32_ph(src:_mm_setzero_ph(), k, a) |
| 12298 | } |
| 12299 | |
| 12300 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12301 | /// and store the results in dst. |
| 12302 | /// |
| 12303 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepi32_ph) |
| 12304 | #[inline ] |
| 12305 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12306 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12307 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12308 | pub fn _mm256_cvtepi32_ph(a: __m256i) -> __m128h { |
| 12309 | unsafe { vcvtdq2ph_256(a.as_i32x8(), _MM_FROUND_CUR_DIRECTION) } |
| 12310 | } |
| 12311 | |
| 12312 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12313 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12314 | /// mask bit is not set). |
| 12315 | /// |
| 12316 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepi32_ph) |
| 12317 | #[inline ] |
| 12318 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12319 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12320 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12321 | pub fn _mm256_mask_cvtepi32_ph(src: __m128h, k: __mmask8, a: __m256i) -> __m128h { |
| 12322 | unsafe { simd_select_bitmask(m:k, yes:_mm256_cvtepi32_ph(a), no:src) } |
| 12323 | } |
| 12324 | |
| 12325 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12326 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12327 | /// |
| 12328 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepi32_ph) |
| 12329 | #[inline ] |
| 12330 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12331 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12332 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12333 | pub fn _mm256_maskz_cvtepi32_ph(k: __mmask8, a: __m256i) -> __m128h { |
| 12334 | _mm256_mask_cvtepi32_ph(src:_mm_setzero_ph(), k, a) |
| 12335 | } |
| 12336 | |
| 12337 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12338 | /// and store the results in dst. |
| 12339 | /// |
| 12340 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepi32_ph) |
| 12341 | #[inline ] |
| 12342 | #[target_feature (enable = "avx512fp16" )] |
| 12343 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12344 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12345 | pub fn _mm512_cvtepi32_ph(a: __m512i) -> __m256h { |
| 12346 | unsafe { vcvtdq2ph_512(a.as_i32x16(), _MM_FROUND_CUR_DIRECTION) } |
| 12347 | } |
| 12348 | |
| 12349 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12350 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12351 | /// mask bit is not set). |
| 12352 | /// |
| 12353 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepi32_ph) |
| 12354 | #[inline ] |
| 12355 | #[target_feature (enable = "avx512fp16" )] |
| 12356 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12357 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12358 | pub fn _mm512_mask_cvtepi32_ph(src: __m256h, k: __mmask16, a: __m512i) -> __m256h { |
| 12359 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepi32_ph(a), no:src) } |
| 12360 | } |
| 12361 | |
| 12362 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12363 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12364 | /// |
| 12365 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepi32_ph) |
| 12366 | #[inline ] |
| 12367 | #[target_feature (enable = "avx512fp16" )] |
| 12368 | #[cfg_attr (test, assert_instr(vcvtdq2ph))] |
| 12369 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12370 | pub fn _mm512_maskz_cvtepi32_ph(k: __mmask16, a: __m512i) -> __m256h { |
| 12371 | _mm512_mask_cvtepi32_ph(src:f16x16::ZERO.as_m256h(), k, a) |
| 12372 | } |
| 12373 | |
| 12374 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12375 | /// and store the results in dst. |
| 12376 | /// |
| 12377 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12378 | /// |
| 12379 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12380 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12381 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12382 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12383 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12384 | /// |
| 12385 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepi32_ph) |
| 12386 | #[inline ] |
| 12387 | #[target_feature (enable = "avx512fp16" )] |
| 12388 | #[cfg_attr (test, assert_instr(vcvtdq2ph, ROUNDING = 8))] |
| 12389 | #[rustc_legacy_const_generics (1)] |
| 12390 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12391 | pub fn _mm512_cvt_roundepi32_ph<const ROUNDING: i32>(a: __m512i) -> __m256h { |
| 12392 | unsafe { |
| 12393 | static_assert_rounding!(ROUNDING); |
| 12394 | vcvtdq2ph_512(a.as_i32x16(), ROUNDING) |
| 12395 | } |
| 12396 | } |
| 12397 | |
| 12398 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12399 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12400 | /// mask bit is not set). |
| 12401 | /// |
| 12402 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12403 | /// |
| 12404 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12405 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12406 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12407 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12408 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12409 | /// |
| 12410 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepi32_ph) |
| 12411 | #[inline ] |
| 12412 | #[target_feature (enable = "avx512fp16" )] |
| 12413 | #[cfg_attr (test, assert_instr(vcvtdq2ph, ROUNDING = 8))] |
| 12414 | #[rustc_legacy_const_generics (3)] |
| 12415 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12416 | pub fn _mm512_mask_cvt_roundepi32_ph<const ROUNDING: i32>( |
| 12417 | src: __m256h, |
| 12418 | k: __mmask16, |
| 12419 | a: __m512i, |
| 12420 | ) -> __m256h { |
| 12421 | unsafe { |
| 12422 | static_assert_rounding!(ROUNDING); |
| 12423 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepi32_ph::<ROUNDING>(a), no:src) |
| 12424 | } |
| 12425 | } |
| 12426 | |
| 12427 | /// Convert packed signed 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12428 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12429 | /// |
| 12430 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12431 | /// |
| 12432 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12433 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12434 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12435 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12436 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12437 | /// |
| 12438 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepi32_ph) |
| 12439 | #[inline ] |
| 12440 | #[target_feature (enable = "avx512fp16" )] |
| 12441 | #[cfg_attr (test, assert_instr(vcvtdq2ph, ROUNDING = 8))] |
| 12442 | #[rustc_legacy_const_generics (2)] |
| 12443 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12444 | pub fn _mm512_maskz_cvt_roundepi32_ph<const ROUNDING: i32>(k: __mmask16, a: __m512i) -> __m256h { |
| 12445 | static_assert_rounding!(ROUNDING); |
| 12446 | _mm512_mask_cvt_roundepi32_ph::<ROUNDING>(src:f16x16::ZERO.as_m256h(), k, a) |
| 12447 | } |
| 12448 | |
| 12449 | /// Convert the signed 32-bit integer b to a half-precision (16-bit) floating-point element, store the |
| 12450 | /// result in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 12451 | /// of dst. |
| 12452 | /// |
| 12453 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvti32_sh) |
| 12454 | #[inline ] |
| 12455 | #[target_feature (enable = "avx512fp16" )] |
| 12456 | #[cfg_attr (test, assert_instr(vcvtsi2sh))] |
| 12457 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12458 | pub fn _mm_cvti32_sh(a: __m128h, b: i32) -> __m128h { |
| 12459 | unsafe { vcvtsi2sh(a, b, _MM_FROUND_CUR_DIRECTION) } |
| 12460 | } |
| 12461 | |
| 12462 | /// Convert the signed 32-bit integer b to a half-precision (16-bit) floating-point element, store the |
| 12463 | /// result in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 12464 | /// of dst. |
| 12465 | /// |
| 12466 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12467 | /// |
| 12468 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12469 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12470 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12471 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12472 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12473 | /// |
| 12474 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundi32_sh) |
| 12475 | #[inline ] |
| 12476 | #[target_feature (enable = "avx512fp16" )] |
| 12477 | #[cfg_attr (test, assert_instr(vcvtsi2sh, ROUNDING = 8))] |
| 12478 | #[rustc_legacy_const_generics (2)] |
| 12479 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12480 | pub fn _mm_cvt_roundi32_sh<const ROUNDING: i32>(a: __m128h, b: i32) -> __m128h { |
| 12481 | unsafe { |
| 12482 | static_assert_rounding!(ROUNDING); |
| 12483 | vcvtsi2sh(a, b, ROUNDING) |
| 12484 | } |
| 12485 | } |
| 12486 | |
| 12487 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12488 | /// and store the results in dst. The upper 64 bits of dst are zeroed out. |
| 12489 | /// |
| 12490 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu32_ph) |
| 12491 | #[inline ] |
| 12492 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12493 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12494 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12495 | pub fn _mm_cvtepu32_ph(a: __m128i) -> __m128h { |
| 12496 | _mm_mask_cvtepu32_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12497 | } |
| 12498 | |
| 12499 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12500 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12501 | /// mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 12502 | /// |
| 12503 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepu32_ph) |
| 12504 | #[inline ] |
| 12505 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12506 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12507 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12508 | pub fn _mm_mask_cvtepu32_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 12509 | unsafe { vcvtudq2ph_128(a.as_u32x4(), src, k) } |
| 12510 | } |
| 12511 | |
| 12512 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12513 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12514 | /// The upper 64 bits of dst are zeroed out. |
| 12515 | /// |
| 12516 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepu32_ph) |
| 12517 | #[inline ] |
| 12518 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12519 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12520 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12521 | pub fn _mm_maskz_cvtepu32_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 12522 | _mm_mask_cvtepu32_ph(src:_mm_setzero_ph(), k, a) |
| 12523 | } |
| 12524 | |
| 12525 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12526 | /// and store the results in dst. |
| 12527 | /// |
| 12528 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepu32_ph) |
| 12529 | #[inline ] |
| 12530 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12531 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12532 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12533 | pub fn _mm256_cvtepu32_ph(a: __m256i) -> __m128h { |
| 12534 | unsafe { vcvtudq2ph_256(a.as_u32x8(), _MM_FROUND_CUR_DIRECTION) } |
| 12535 | } |
| 12536 | |
| 12537 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12538 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12539 | /// mask bit is not set). |
| 12540 | /// |
| 12541 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepu32_ph) |
| 12542 | #[inline ] |
| 12543 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12544 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12545 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12546 | pub fn _mm256_mask_cvtepu32_ph(src: __m128h, k: __mmask8, a: __m256i) -> __m128h { |
| 12547 | unsafe { simd_select_bitmask(m:k, yes:_mm256_cvtepu32_ph(a), no:src) } |
| 12548 | } |
| 12549 | |
| 12550 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12551 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12552 | /// |
| 12553 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepu32_ph) |
| 12554 | #[inline ] |
| 12555 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12556 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12557 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12558 | pub fn _mm256_maskz_cvtepu32_ph(k: __mmask8, a: __m256i) -> __m128h { |
| 12559 | _mm256_mask_cvtepu32_ph(src:_mm_setzero_ph(), k, a) |
| 12560 | } |
| 12561 | |
| 12562 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12563 | /// and store the results in dst. |
| 12564 | /// |
| 12565 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepu32_ph) |
| 12566 | #[inline ] |
| 12567 | #[target_feature (enable = "avx512fp16" )] |
| 12568 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12569 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12570 | pub fn _mm512_cvtepu32_ph(a: __m512i) -> __m256h { |
| 12571 | unsafe { vcvtudq2ph_512(a.as_u32x16(), _MM_FROUND_CUR_DIRECTION) } |
| 12572 | } |
| 12573 | |
| 12574 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12575 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12576 | /// mask bit is not set). |
| 12577 | /// |
| 12578 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepu32_ph) |
| 12579 | #[inline ] |
| 12580 | #[target_feature (enable = "avx512fp16" )] |
| 12581 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12582 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12583 | pub fn _mm512_mask_cvtepu32_ph(src: __m256h, k: __mmask16, a: __m512i) -> __m256h { |
| 12584 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepu32_ph(a), no:src) } |
| 12585 | } |
| 12586 | |
| 12587 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12588 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12589 | /// |
| 12590 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepu32_ph) |
| 12591 | #[inline ] |
| 12592 | #[target_feature (enable = "avx512fp16" )] |
| 12593 | #[cfg_attr (test, assert_instr(vcvtudq2ph))] |
| 12594 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12595 | pub fn _mm512_maskz_cvtepu32_ph(k: __mmask16, a: __m512i) -> __m256h { |
| 12596 | _mm512_mask_cvtepu32_ph(src:f16x16::ZERO.as_m256h(), k, a) |
| 12597 | } |
| 12598 | |
| 12599 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12600 | /// and store the results in dst. |
| 12601 | /// |
| 12602 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12603 | /// |
| 12604 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12605 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12606 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12607 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12608 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12609 | /// |
| 12610 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepu32_ph) |
| 12611 | #[inline ] |
| 12612 | #[target_feature (enable = "avx512fp16" )] |
| 12613 | #[cfg_attr (test, assert_instr(vcvtudq2ph, ROUNDING = 8))] |
| 12614 | #[rustc_legacy_const_generics (1)] |
| 12615 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12616 | pub fn _mm512_cvt_roundepu32_ph<const ROUNDING: i32>(a: __m512i) -> __m256h { |
| 12617 | unsafe { |
| 12618 | static_assert_rounding!(ROUNDING); |
| 12619 | vcvtudq2ph_512(a.as_u32x16(), ROUNDING) |
| 12620 | } |
| 12621 | } |
| 12622 | |
| 12623 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12624 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12625 | /// mask bit is not set). |
| 12626 | /// |
| 12627 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12628 | /// |
| 12629 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12630 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12631 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12632 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12633 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12634 | /// |
| 12635 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepu32_ph) |
| 12636 | #[inline ] |
| 12637 | #[target_feature (enable = "avx512fp16" )] |
| 12638 | #[cfg_attr (test, assert_instr(vcvtudq2ph, ROUNDING = 8))] |
| 12639 | #[rustc_legacy_const_generics (3)] |
| 12640 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12641 | pub fn _mm512_mask_cvt_roundepu32_ph<const ROUNDING: i32>( |
| 12642 | src: __m256h, |
| 12643 | k: __mmask16, |
| 12644 | a: __m512i, |
| 12645 | ) -> __m256h { |
| 12646 | unsafe { |
| 12647 | static_assert_rounding!(ROUNDING); |
| 12648 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepu32_ph::<ROUNDING>(a), no:src) |
| 12649 | } |
| 12650 | } |
| 12651 | |
| 12652 | /// Convert packed unsigned 32-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12653 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12654 | /// |
| 12655 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12656 | /// |
| 12657 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12658 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12659 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12660 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12661 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12662 | /// |
| 12663 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepu32_ph) |
| 12664 | #[inline ] |
| 12665 | #[target_feature (enable = "avx512fp16" )] |
| 12666 | #[cfg_attr (test, assert_instr(vcvtudq2ph, ROUNDING = 8))] |
| 12667 | #[rustc_legacy_const_generics (2)] |
| 12668 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12669 | pub fn _mm512_maskz_cvt_roundepu32_ph<const ROUNDING: i32>(k: __mmask16, a: __m512i) -> __m256h { |
| 12670 | static_assert_rounding!(ROUNDING); |
| 12671 | _mm512_mask_cvt_roundepu32_ph::<ROUNDING>(src:f16x16::ZERO.as_m256h(), k, a) |
| 12672 | } |
| 12673 | |
| 12674 | /// Convert the unsigned 32-bit integer b to a half-precision (16-bit) floating-point element, store the |
| 12675 | /// result in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 12676 | /// of dst. |
| 12677 | /// |
| 12678 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtu32_sh) |
| 12679 | #[inline ] |
| 12680 | #[target_feature (enable = "avx512fp16" )] |
| 12681 | #[cfg_attr (test, assert_instr(vcvtusi2sh))] |
| 12682 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12683 | pub fn _mm_cvtu32_sh(a: __m128h, b: u32) -> __m128h { |
| 12684 | unsafe { vcvtusi2sh(a, b, _MM_FROUND_CUR_DIRECTION) } |
| 12685 | } |
| 12686 | |
| 12687 | /// Convert the unsigned 32-bit integer b to a half-precision (16-bit) floating-point element, store the |
| 12688 | /// result in the lower element of dst, and copy the upper 7 packed elements from a to the upper elements |
| 12689 | /// of dst. |
| 12690 | /// |
| 12691 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12692 | /// |
| 12693 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12694 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12695 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12696 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12697 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12698 | /// |
| 12699 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundu32_sh) |
| 12700 | #[inline ] |
| 12701 | #[target_feature (enable = "avx512fp16" )] |
| 12702 | #[cfg_attr (test, assert_instr(vcvtusi2sh, ROUNDING = 8))] |
| 12703 | #[rustc_legacy_const_generics (2)] |
| 12704 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12705 | pub fn _mm_cvt_roundu32_sh<const ROUNDING: i32>(a: __m128h, b: u32) -> __m128h { |
| 12706 | unsafe { |
| 12707 | static_assert_rounding!(ROUNDING); |
| 12708 | vcvtusi2sh(a, b, ROUNDING) |
| 12709 | } |
| 12710 | } |
| 12711 | |
| 12712 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12713 | /// and store the results in dst. The upper 96 bits of dst are zeroed out. |
| 12714 | /// |
| 12715 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi64_ph) |
| 12716 | #[inline ] |
| 12717 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12718 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12719 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12720 | pub fn _mm_cvtepi64_ph(a: __m128i) -> __m128h { |
| 12721 | _mm_mask_cvtepi64_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12722 | } |
| 12723 | |
| 12724 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12725 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12726 | /// mask bit is not set). The upper 96 bits of dst are zeroed out. |
| 12727 | /// |
| 12728 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepi64_ph) |
| 12729 | #[inline ] |
| 12730 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12731 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12732 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12733 | pub fn _mm_mask_cvtepi64_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 12734 | unsafe { vcvtqq2ph_128(a.as_i64x2(), src, k) } |
| 12735 | } |
| 12736 | |
| 12737 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12738 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12739 | /// The upper 96 bits of dst are zeroed out. |
| 12740 | /// |
| 12741 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepi64_ph) |
| 12742 | #[inline ] |
| 12743 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12744 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12745 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12746 | pub fn _mm_maskz_cvtepi64_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 12747 | _mm_mask_cvtepi64_ph(src:_mm_setzero_ph(), k, a) |
| 12748 | } |
| 12749 | |
| 12750 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12751 | /// and store the results in dst. The upper 64 bits of dst are zeroed out. |
| 12752 | /// |
| 12753 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepi64_ph) |
| 12754 | #[inline ] |
| 12755 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12756 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12757 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12758 | pub fn _mm256_cvtepi64_ph(a: __m256i) -> __m128h { |
| 12759 | _mm256_mask_cvtepi64_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12760 | } |
| 12761 | |
| 12762 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12763 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12764 | /// mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 12765 | /// |
| 12766 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepi64_ph) |
| 12767 | #[inline ] |
| 12768 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12769 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12770 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12771 | pub fn _mm256_mask_cvtepi64_ph(src: __m128h, k: __mmask8, a: __m256i) -> __m128h { |
| 12772 | unsafe { vcvtqq2ph_256(a.as_i64x4(), src, k) } |
| 12773 | } |
| 12774 | |
| 12775 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12776 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12777 | /// The upper 64 bits of dst are zeroed out. |
| 12778 | /// |
| 12779 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepi64_ph) |
| 12780 | #[inline ] |
| 12781 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12782 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12783 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12784 | pub fn _mm256_maskz_cvtepi64_ph(k: __mmask8, a: __m256i) -> __m128h { |
| 12785 | _mm256_mask_cvtepi64_ph(src:_mm_setzero_ph(), k, a) |
| 12786 | } |
| 12787 | |
| 12788 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12789 | /// and store the results in dst. |
| 12790 | /// |
| 12791 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepi64_ph) |
| 12792 | #[inline ] |
| 12793 | #[target_feature (enable = "avx512fp16" )] |
| 12794 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12795 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12796 | pub fn _mm512_cvtepi64_ph(a: __m512i) -> __m128h { |
| 12797 | unsafe { vcvtqq2ph_512(a.as_i64x8(), _MM_FROUND_CUR_DIRECTION) } |
| 12798 | } |
| 12799 | |
| 12800 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12801 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12802 | /// mask bit is not set). |
| 12803 | /// |
| 12804 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepi64_ph) |
| 12805 | #[inline ] |
| 12806 | #[target_feature (enable = "avx512fp16" )] |
| 12807 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12808 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12809 | pub fn _mm512_mask_cvtepi64_ph(src: __m128h, k: __mmask8, a: __m512i) -> __m128h { |
| 12810 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepi64_ph(a), no:src) } |
| 12811 | } |
| 12812 | |
| 12813 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12814 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12815 | /// |
| 12816 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepi64_ph) |
| 12817 | #[inline ] |
| 12818 | #[target_feature (enable = "avx512fp16" )] |
| 12819 | #[cfg_attr (test, assert_instr(vcvtqq2ph))] |
| 12820 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12821 | pub fn _mm512_maskz_cvtepi64_ph(k: __mmask8, a: __m512i) -> __m128h { |
| 12822 | _mm512_mask_cvtepi64_ph(src:f16x8::ZERO.as_m128h(), k, a) |
| 12823 | } |
| 12824 | |
| 12825 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12826 | /// and store the results in dst. |
| 12827 | /// |
| 12828 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12829 | /// |
| 12830 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12831 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12832 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12833 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12834 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12835 | /// |
| 12836 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepi64_ph) |
| 12837 | #[inline ] |
| 12838 | #[target_feature (enable = "avx512fp16" )] |
| 12839 | #[cfg_attr (test, assert_instr(vcvtqq2ph, ROUNDING = 8))] |
| 12840 | #[rustc_legacy_const_generics (1)] |
| 12841 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12842 | pub fn _mm512_cvt_roundepi64_ph<const ROUNDING: i32>(a: __m512i) -> __m128h { |
| 12843 | unsafe { |
| 12844 | static_assert_rounding!(ROUNDING); |
| 12845 | vcvtqq2ph_512(a.as_i64x8(), ROUNDING) |
| 12846 | } |
| 12847 | } |
| 12848 | |
| 12849 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12850 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12851 | /// mask bit is not set). |
| 12852 | /// |
| 12853 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12854 | /// |
| 12855 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12856 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12857 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12858 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12859 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12860 | /// |
| 12861 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepi64_ph) |
| 12862 | #[inline ] |
| 12863 | #[target_feature (enable = "avx512fp16" )] |
| 12864 | #[cfg_attr (test, assert_instr(vcvtqq2ph, ROUNDING = 8))] |
| 12865 | #[rustc_legacy_const_generics (3)] |
| 12866 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12867 | pub fn _mm512_mask_cvt_roundepi64_ph<const ROUNDING: i32>( |
| 12868 | src: __m128h, |
| 12869 | k: __mmask8, |
| 12870 | a: __m512i, |
| 12871 | ) -> __m128h { |
| 12872 | unsafe { |
| 12873 | static_assert_rounding!(ROUNDING); |
| 12874 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepi64_ph::<ROUNDING>(a), no:src) |
| 12875 | } |
| 12876 | } |
| 12877 | |
| 12878 | /// Convert packed signed 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12879 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12880 | /// |
| 12881 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 12882 | /// |
| 12883 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 12884 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 12885 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 12886 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 12887 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 12888 | /// |
| 12889 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepi64_ph) |
| 12890 | #[inline ] |
| 12891 | #[target_feature (enable = "avx512fp16" )] |
| 12892 | #[cfg_attr (test, assert_instr(vcvtqq2ph, ROUNDING = 8))] |
| 12893 | #[rustc_legacy_const_generics (2)] |
| 12894 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12895 | pub fn _mm512_maskz_cvt_roundepi64_ph<const ROUNDING: i32>(k: __mmask8, a: __m512i) -> __m128h { |
| 12896 | static_assert_rounding!(ROUNDING); |
| 12897 | _mm512_mask_cvt_roundepi64_ph::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a) |
| 12898 | } |
| 12899 | |
| 12900 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12901 | /// and store the results in dst. The upper 96 bits of dst are zeroed out. |
| 12902 | /// |
| 12903 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu64_ph) |
| 12904 | #[inline ] |
| 12905 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12906 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12907 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12908 | pub fn _mm_cvtepu64_ph(a: __m128i) -> __m128h { |
| 12909 | _mm_mask_cvtepu64_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12910 | } |
| 12911 | |
| 12912 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12913 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12914 | /// mask bit is not set). The upper 96 bits of dst are zeroed out. |
| 12915 | /// |
| 12916 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtepu64_ph) |
| 12917 | #[inline ] |
| 12918 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12919 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12920 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12921 | pub fn _mm_mask_cvtepu64_ph(src: __m128h, k: __mmask8, a: __m128i) -> __m128h { |
| 12922 | unsafe { vcvtuqq2ph_128(a.as_u64x2(), src, k) } |
| 12923 | } |
| 12924 | |
| 12925 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12926 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12927 | /// The upper 96 bits of dst are zeroed out. |
| 12928 | /// |
| 12929 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtepu64_ph) |
| 12930 | #[inline ] |
| 12931 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12932 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12933 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12934 | pub fn _mm_maskz_cvtepu64_ph(k: __mmask8, a: __m128i) -> __m128h { |
| 12935 | _mm_mask_cvtepu64_ph(src:_mm_setzero_ph(), k, a) |
| 12936 | } |
| 12937 | |
| 12938 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12939 | /// and store the results in dst. The upper 64 bits of dst are zeroed out. |
| 12940 | /// |
| 12941 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtepu64_ph) |
| 12942 | #[inline ] |
| 12943 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12944 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12945 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12946 | pub fn _mm256_cvtepu64_ph(a: __m256i) -> __m128h { |
| 12947 | _mm256_mask_cvtepu64_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 12948 | } |
| 12949 | |
| 12950 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12951 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12952 | /// mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 12953 | /// |
| 12954 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtepu64_ph) |
| 12955 | #[inline ] |
| 12956 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12957 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12958 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12959 | pub fn _mm256_mask_cvtepu64_ph(src: __m128h, k: __mmask8, a: __m256i) -> __m128h { |
| 12960 | unsafe { vcvtuqq2ph_256(a.as_u64x4(), src, k) } |
| 12961 | } |
| 12962 | |
| 12963 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12964 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 12965 | /// The upper 64 bits of dst are zeroed out. |
| 12966 | /// |
| 12967 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtepu64_ph) |
| 12968 | #[inline ] |
| 12969 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 12970 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12971 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12972 | pub fn _mm256_maskz_cvtepu64_ph(k: __mmask8, a: __m256i) -> __m128h { |
| 12973 | _mm256_mask_cvtepu64_ph(src:_mm_setzero_ph(), k, a) |
| 12974 | } |
| 12975 | |
| 12976 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12977 | /// and store the results in dst. |
| 12978 | /// |
| 12979 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtepu64_ph) |
| 12980 | #[inline ] |
| 12981 | #[target_feature (enable = "avx512fp16" )] |
| 12982 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12983 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12984 | pub fn _mm512_cvtepu64_ph(a: __m512i) -> __m128h { |
| 12985 | unsafe { vcvtuqq2ph_512(a.as_u64x8(), _MM_FROUND_CUR_DIRECTION) } |
| 12986 | } |
| 12987 | |
| 12988 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 12989 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 12990 | /// mask bit is not set). |
| 12991 | /// |
| 12992 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtepu64_ph) |
| 12993 | #[inline ] |
| 12994 | #[target_feature (enable = "avx512fp16" )] |
| 12995 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 12996 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 12997 | pub fn _mm512_mask_cvtepu64_ph(src: __m128h, k: __mmask8, a: __m512i) -> __m128h { |
| 12998 | unsafe { simd_select_bitmask(m:k, yes:_mm512_cvtepu64_ph(a), no:src) } |
| 12999 | } |
| 13000 | |
| 13001 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 13002 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13003 | /// |
| 13004 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtepu64_ph) |
| 13005 | #[inline ] |
| 13006 | #[target_feature (enable = "avx512fp16" )] |
| 13007 | #[cfg_attr (test, assert_instr(vcvtuqq2ph))] |
| 13008 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13009 | pub fn _mm512_maskz_cvtepu64_ph(k: __mmask8, a: __m512i) -> __m128h { |
| 13010 | _mm512_mask_cvtepu64_ph(src:f16x8::ZERO.as_m128h(), k, a) |
| 13011 | } |
| 13012 | |
| 13013 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 13014 | /// and store the results in dst. |
| 13015 | /// |
| 13016 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13017 | /// |
| 13018 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13019 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13020 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13021 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13022 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13023 | /// |
| 13024 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundepu64_ph) |
| 13025 | #[inline ] |
| 13026 | #[target_feature (enable = "avx512fp16" )] |
| 13027 | #[cfg_attr (test, assert_instr(vcvtuqq2ph, ROUNDING = 8))] |
| 13028 | #[rustc_legacy_const_generics (1)] |
| 13029 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13030 | pub fn _mm512_cvt_roundepu64_ph<const ROUNDING: i32>(a: __m512i) -> __m128h { |
| 13031 | unsafe { |
| 13032 | static_assert_rounding!(ROUNDING); |
| 13033 | vcvtuqq2ph_512(a.as_u64x8(), ROUNDING) |
| 13034 | } |
| 13035 | } |
| 13036 | |
| 13037 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 13038 | /// and store the results in dst using writemask k (elements are copied from src to dst when the corresponding |
| 13039 | /// mask bit is not set). |
| 13040 | /// |
| 13041 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13042 | /// |
| 13043 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13044 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13045 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13046 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13047 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13048 | /// |
| 13049 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundepu64_ph) |
| 13050 | #[inline ] |
| 13051 | #[target_feature (enable = "avx512fp16" )] |
| 13052 | #[cfg_attr (test, assert_instr(vcvtuqq2ph, ROUNDING = 8))] |
| 13053 | #[rustc_legacy_const_generics (3)] |
| 13054 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13055 | pub fn _mm512_mask_cvt_roundepu64_ph<const ROUNDING: i32>( |
| 13056 | src: __m128h, |
| 13057 | k: __mmask8, |
| 13058 | a: __m512i, |
| 13059 | ) -> __m128h { |
| 13060 | unsafe { |
| 13061 | static_assert_rounding!(ROUNDING); |
| 13062 | simd_select_bitmask(m:k, yes:_mm512_cvt_roundepu64_ph::<ROUNDING>(a), no:src) |
| 13063 | } |
| 13064 | } |
| 13065 | |
| 13066 | /// Convert packed unsigned 64-bit integers in a to packed half-precision (16-bit) floating-point elements, |
| 13067 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13068 | /// |
| 13069 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13070 | /// |
| 13071 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13072 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13073 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13074 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13075 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13076 | /// |
| 13077 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundepu64_ph) |
| 13078 | #[inline ] |
| 13079 | #[target_feature (enable = "avx512fp16" )] |
| 13080 | #[cfg_attr (test, assert_instr(vcvtuqq2ph, ROUNDING = 8))] |
| 13081 | #[rustc_legacy_const_generics (2)] |
| 13082 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13083 | pub fn _mm512_maskz_cvt_roundepu64_ph<const ROUNDING: i32>(k: __mmask8, a: __m512i) -> __m128h { |
| 13084 | static_assert_rounding!(ROUNDING); |
| 13085 | _mm512_mask_cvt_roundepu64_ph::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a) |
| 13086 | } |
| 13087 | |
| 13088 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13089 | /// floating-point elements, and store the results in dst. |
| 13090 | /// |
| 13091 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtxps_ph) |
| 13092 | #[inline ] |
| 13093 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13094 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13095 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13096 | pub fn _mm_cvtxps_ph(a: __m128) -> __m128h { |
| 13097 | _mm_mask_cvtxps_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 13098 | } |
| 13099 | |
| 13100 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13101 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13102 | /// when the corresponding mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 13103 | /// |
| 13104 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtxps_ph) |
| 13105 | #[inline ] |
| 13106 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13107 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13108 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13109 | pub fn _mm_mask_cvtxps_ph(src: __m128h, k: __mmask8, a: __m128) -> __m128h { |
| 13110 | unsafe { vcvtps2phx_128(a, src, k) } |
| 13111 | } |
| 13112 | |
| 13113 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13114 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13115 | /// corresponding mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 13116 | /// |
| 13117 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtxps_ph) |
| 13118 | #[inline ] |
| 13119 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13120 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13121 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13122 | pub fn _mm_maskz_cvtxps_ph(k: __mmask8, a: __m128) -> __m128h { |
| 13123 | _mm_mask_cvtxps_ph(src:_mm_setzero_ph(), k, a) |
| 13124 | } |
| 13125 | |
| 13126 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13127 | /// floating-point elements, and store the results in dst. |
| 13128 | /// |
| 13129 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtxps_ph) |
| 13130 | #[inline ] |
| 13131 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13132 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13133 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13134 | pub fn _mm256_cvtxps_ph(a: __m256) -> __m128h { |
| 13135 | _mm256_mask_cvtxps_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 13136 | } |
| 13137 | |
| 13138 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13139 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13140 | /// when the corresponding mask bit is not set). |
| 13141 | /// |
| 13142 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtxps_ph) |
| 13143 | #[inline ] |
| 13144 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13145 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13146 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13147 | pub fn _mm256_mask_cvtxps_ph(src: __m128h, k: __mmask8, a: __m256) -> __m128h { |
| 13148 | unsafe { vcvtps2phx_256(a, src, k) } |
| 13149 | } |
| 13150 | |
| 13151 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13152 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13153 | /// corresponding mask bit is not set). |
| 13154 | /// |
| 13155 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtxps_ph) |
| 13156 | #[inline ] |
| 13157 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13158 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13159 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13160 | pub fn _mm256_maskz_cvtxps_ph(k: __mmask8, a: __m256) -> __m128h { |
| 13161 | _mm256_mask_cvtxps_ph(src:_mm_setzero_ph(), k, a) |
| 13162 | } |
| 13163 | |
| 13164 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13165 | /// floating-point elements, and store the results in dst. |
| 13166 | /// |
| 13167 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtxps_ph) |
| 13168 | #[inline ] |
| 13169 | #[target_feature (enable = "avx512fp16" )] |
| 13170 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13171 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13172 | pub fn _mm512_cvtxps_ph(a: __m512) -> __m256h { |
| 13173 | _mm512_mask_cvtxps_ph(src:f16x16::ZERO.as_m256h(), k:0xffff, a) |
| 13174 | } |
| 13175 | |
| 13176 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13177 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13178 | /// when the corresponding mask bit is not set). |
| 13179 | /// |
| 13180 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtxps_ph) |
| 13181 | #[inline ] |
| 13182 | #[target_feature (enable = "avx512fp16" )] |
| 13183 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13184 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13185 | pub fn _mm512_mask_cvtxps_ph(src: __m256h, k: __mmask16, a: __m512) -> __m256h { |
| 13186 | unsafe { vcvtps2phx_512(a, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 13187 | } |
| 13188 | |
| 13189 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13190 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13191 | /// corresponding mask bit is not set). |
| 13192 | /// |
| 13193 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtxps_ph) |
| 13194 | #[inline ] |
| 13195 | #[target_feature (enable = "avx512fp16" )] |
| 13196 | #[cfg_attr (test, assert_instr(vcvtps2phx))] |
| 13197 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13198 | pub fn _mm512_maskz_cvtxps_ph(k: __mmask16, a: __m512) -> __m256h { |
| 13199 | _mm512_mask_cvtxps_ph(src:f16x16::ZERO.as_m256h(), k, a) |
| 13200 | } |
| 13201 | |
| 13202 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13203 | /// floating-point elements, and store the results in dst. |
| 13204 | /// |
| 13205 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13206 | /// |
| 13207 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13208 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13209 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13210 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13211 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13212 | /// |
| 13213 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtx_roundps_ph) |
| 13214 | #[inline ] |
| 13215 | #[target_feature (enable = "avx512fp16" )] |
| 13216 | #[cfg_attr (test, assert_instr(vcvtps2phx, ROUNDING = 8))] |
| 13217 | #[rustc_legacy_const_generics (1)] |
| 13218 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13219 | pub fn _mm512_cvtx_roundps_ph<const ROUNDING: i32>(a: __m512) -> __m256h { |
| 13220 | static_assert_rounding!(ROUNDING); |
| 13221 | _mm512_mask_cvtx_roundps_ph::<ROUNDING>(src:f16x16::ZERO.as_m256h(), k:0xffff, a) |
| 13222 | } |
| 13223 | |
| 13224 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13225 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13226 | /// when the corresponding mask bit is not set). |
| 13227 | /// |
| 13228 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13229 | /// |
| 13230 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13231 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13232 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13233 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13234 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13235 | /// |
| 13236 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtx_roundps_ph) |
| 13237 | #[inline ] |
| 13238 | #[target_feature (enable = "avx512fp16" )] |
| 13239 | #[cfg_attr (test, assert_instr(vcvtps2phx, ROUNDING = 8))] |
| 13240 | #[rustc_legacy_const_generics (3)] |
| 13241 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13242 | pub fn _mm512_mask_cvtx_roundps_ph<const ROUNDING: i32>( |
| 13243 | src: __m256h, |
| 13244 | k: __mmask16, |
| 13245 | a: __m512, |
| 13246 | ) -> __m256h { |
| 13247 | unsafe { |
| 13248 | static_assert_rounding!(ROUNDING); |
| 13249 | vcvtps2phx_512(a, src, k, ROUNDING) |
| 13250 | } |
| 13251 | } |
| 13252 | |
| 13253 | /// Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13254 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13255 | /// corresponding mask bit is not set). |
| 13256 | /// |
| 13257 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13258 | /// |
| 13259 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13260 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13261 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13262 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13263 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13264 | /// |
| 13265 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtx_roundps_ph) |
| 13266 | #[inline ] |
| 13267 | #[target_feature (enable = "avx512fp16" )] |
| 13268 | #[cfg_attr (test, assert_instr(vcvtps2phx, ROUNDING = 8))] |
| 13269 | #[rustc_legacy_const_generics (2)] |
| 13270 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13271 | pub fn _mm512_maskz_cvtx_roundps_ph<const ROUNDING: i32>(k: __mmask16, a: __m512) -> __m256h { |
| 13272 | static_assert_rounding!(ROUNDING); |
| 13273 | _mm512_mask_cvtx_roundps_ph::<ROUNDING>(src:f16x16::ZERO.as_m256h(), k, a) |
| 13274 | } |
| 13275 | |
| 13276 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13277 | /// floating-point elements, store the result in the lower element of dst, and copy the upper 7 packed |
| 13278 | /// elements from a to the upper elements of dst. |
| 13279 | /// |
| 13280 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sh) |
| 13281 | #[inline ] |
| 13282 | #[target_feature (enable = "avx512fp16" )] |
| 13283 | #[cfg_attr (test, assert_instr(vcvtss2sh))] |
| 13284 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13285 | pub fn _mm_cvtss_sh(a: __m128h, b: __m128) -> __m128h { |
| 13286 | _mm_mask_cvtss_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 13287 | } |
| 13288 | |
| 13289 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13290 | /// floating-point elements, store the result in the lower element of dst using writemask k (the element |
| 13291 | /// if copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 13292 | /// upper elements of dst. |
| 13293 | /// |
| 13294 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtss_sh) |
| 13295 | #[inline ] |
| 13296 | #[target_feature (enable = "avx512fp16" )] |
| 13297 | #[cfg_attr (test, assert_instr(vcvtss2sh))] |
| 13298 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13299 | pub fn _mm_mask_cvtss_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128) -> __m128h { |
| 13300 | unsafe { vcvtss2sh(a, b, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 13301 | } |
| 13302 | |
| 13303 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13304 | /// floating-point elements, store the result in the lower element of dst using zeromask k (the element |
| 13305 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 13306 | /// elements of dst. |
| 13307 | /// |
| 13308 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtss_sh) |
| 13309 | #[inline ] |
| 13310 | #[target_feature (enable = "avx512fp16" )] |
| 13311 | #[cfg_attr (test, assert_instr(vcvtss2sh))] |
| 13312 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13313 | pub fn _mm_maskz_cvtss_sh(k: __mmask8, a: __m128h, b: __m128) -> __m128h { |
| 13314 | _mm_mask_cvtss_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 13315 | } |
| 13316 | |
| 13317 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13318 | /// floating-point elements, store the result in the lower element of dst, and copy the upper 7 packed |
| 13319 | /// elements from a to the upper elements of dst. |
| 13320 | /// |
| 13321 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13322 | /// |
| 13323 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13324 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13325 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13326 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13327 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13328 | /// |
| 13329 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundss_sh) |
| 13330 | #[inline ] |
| 13331 | #[target_feature (enable = "avx512fp16" )] |
| 13332 | #[cfg_attr (test, assert_instr(vcvtss2sh, ROUNDING = 8))] |
| 13333 | #[rustc_legacy_const_generics (2)] |
| 13334 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13335 | pub fn _mm_cvt_roundss_sh<const ROUNDING: i32>(a: __m128h, b: __m128) -> __m128h { |
| 13336 | static_assert_rounding!(ROUNDING); |
| 13337 | _mm_mask_cvt_roundss_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 13338 | } |
| 13339 | |
| 13340 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13341 | /// floating-point elements, store the result in the lower element of dst using writemask k (the element |
| 13342 | /// if copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 13343 | /// upper elements of dst. |
| 13344 | /// |
| 13345 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13346 | /// |
| 13347 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13348 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13349 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13350 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13351 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13352 | /// |
| 13353 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvt_roundss_sh) |
| 13354 | #[inline ] |
| 13355 | #[target_feature (enable = "avx512fp16" )] |
| 13356 | #[cfg_attr (test, assert_instr(vcvtss2sh, ROUNDING = 8))] |
| 13357 | #[rustc_legacy_const_generics (4)] |
| 13358 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13359 | pub fn _mm_mask_cvt_roundss_sh<const ROUNDING: i32>( |
| 13360 | src: __m128h, |
| 13361 | k: __mmask8, |
| 13362 | a: __m128h, |
| 13363 | b: __m128, |
| 13364 | ) -> __m128h { |
| 13365 | unsafe { |
| 13366 | static_assert_rounding!(ROUNDING); |
| 13367 | vcvtss2sh(a, b, src, k, ROUNDING) |
| 13368 | } |
| 13369 | } |
| 13370 | |
| 13371 | /// Convert the lower single-precision (32-bit) floating-point element in b to a half-precision (16-bit) |
| 13372 | /// floating-point elements, store the result in the lower element of dst using zeromask k (the element |
| 13373 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 13374 | /// elements of dst. |
| 13375 | /// |
| 13376 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13377 | /// |
| 13378 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13379 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13380 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13381 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13382 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13383 | /// |
| 13384 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvt_roundss_sh) |
| 13385 | #[inline ] |
| 13386 | #[target_feature (enable = "avx512fp16" )] |
| 13387 | #[cfg_attr (test, assert_instr(vcvtss2sh, ROUNDING = 8))] |
| 13388 | #[rustc_legacy_const_generics (3)] |
| 13389 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13390 | pub fn _mm_maskz_cvt_roundss_sh<const ROUNDING: i32>( |
| 13391 | k: __mmask8, |
| 13392 | a: __m128h, |
| 13393 | b: __m128, |
| 13394 | ) -> __m128h { |
| 13395 | static_assert_rounding!(ROUNDING); |
| 13396 | _mm_mask_cvt_roundss_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 13397 | } |
| 13398 | |
| 13399 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13400 | /// floating-point elements, and store the results in dst. The upper 96 bits of dst are zeroed out. |
| 13401 | /// |
| 13402 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ph) |
| 13403 | #[inline ] |
| 13404 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13405 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13406 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13407 | pub fn _mm_cvtpd_ph(a: __m128d) -> __m128h { |
| 13408 | _mm_mask_cvtpd_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 13409 | } |
| 13410 | |
| 13411 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13412 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13413 | /// when the corresponding mask bit is not set). The upper 96 bits of dst are zeroed out. |
| 13414 | /// |
| 13415 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtpd_ph) |
| 13416 | #[inline ] |
| 13417 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13418 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13419 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13420 | pub fn _mm_mask_cvtpd_ph(src: __m128h, k: __mmask8, a: __m128d) -> __m128h { |
| 13421 | unsafe { vcvtpd2ph_128(a, src, k) } |
| 13422 | } |
| 13423 | |
| 13424 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13425 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13426 | /// corresponding mask bit is not set). The upper 96 bits of dst are zeroed out. |
| 13427 | /// |
| 13428 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtpd_ph) |
| 13429 | #[inline ] |
| 13430 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13431 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13432 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13433 | pub fn _mm_maskz_cvtpd_ph(k: __mmask8, a: __m128d) -> __m128h { |
| 13434 | _mm_mask_cvtpd_ph(src:_mm_setzero_ph(), k, a) |
| 13435 | } |
| 13436 | |
| 13437 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13438 | /// floating-point elements, and store the results in dst. The upper 64 bits of dst are zeroed out. |
| 13439 | /// |
| 13440 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtpd_ph) |
| 13441 | #[inline ] |
| 13442 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13443 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13444 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13445 | pub fn _mm256_cvtpd_ph(a: __m256d) -> __m128h { |
| 13446 | _mm256_mask_cvtpd_ph(src:_mm_setzero_ph(), k:0xff, a) |
| 13447 | } |
| 13448 | |
| 13449 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13450 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13451 | /// when the corresponding mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 13452 | /// |
| 13453 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtpd_ph) |
| 13454 | #[inline ] |
| 13455 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13456 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13457 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13458 | pub fn _mm256_mask_cvtpd_ph(src: __m128h, k: __mmask8, a: __m256d) -> __m128h { |
| 13459 | unsafe { vcvtpd2ph_256(a, src, k) } |
| 13460 | } |
| 13461 | |
| 13462 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13463 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13464 | /// corresponding mask bit is not set). The upper 64 bits of dst are zeroed out. |
| 13465 | /// |
| 13466 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtpd_ph) |
| 13467 | #[inline ] |
| 13468 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13469 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13470 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13471 | pub fn _mm256_maskz_cvtpd_ph(k: __mmask8, a: __m256d) -> __m128h { |
| 13472 | _mm256_mask_cvtpd_ph(src:_mm_setzero_ph(), k, a) |
| 13473 | } |
| 13474 | |
| 13475 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13476 | /// floating-point elements, and store the results in dst. |
| 13477 | /// |
| 13478 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtpd_ph) |
| 13479 | #[inline ] |
| 13480 | #[target_feature (enable = "avx512fp16" )] |
| 13481 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13482 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13483 | pub fn _mm512_cvtpd_ph(a: __m512d) -> __m128h { |
| 13484 | _mm512_mask_cvtpd_ph(src:f16x8::ZERO.as_m128h(), k:0xff, a) |
| 13485 | } |
| 13486 | |
| 13487 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13488 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13489 | /// when the corresponding mask bit is not set). |
| 13490 | /// |
| 13491 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtpd_ph) |
| 13492 | #[inline ] |
| 13493 | #[target_feature (enable = "avx512fp16" )] |
| 13494 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13495 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13496 | pub fn _mm512_mask_cvtpd_ph(src: __m128h, k: __mmask8, a: __m512d) -> __m128h { |
| 13497 | unsafe { vcvtpd2ph_512(a, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 13498 | } |
| 13499 | |
| 13500 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13501 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13502 | /// corresponding mask bit is not set). |
| 13503 | /// |
| 13504 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtpd_ph) |
| 13505 | #[inline ] |
| 13506 | #[target_feature (enable = "avx512fp16" )] |
| 13507 | #[cfg_attr (test, assert_instr(vcvtpd2ph))] |
| 13508 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13509 | pub fn _mm512_maskz_cvtpd_ph(k: __mmask8, a: __m512d) -> __m128h { |
| 13510 | _mm512_mask_cvtpd_ph(src:f16x8::ZERO.as_m128h(), k, a) |
| 13511 | } |
| 13512 | |
| 13513 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13514 | /// floating-point elements, and store the results in dst. |
| 13515 | /// |
| 13516 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13517 | /// |
| 13518 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13519 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13520 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13521 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13522 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13523 | /// |
| 13524 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundpd_ph) |
| 13525 | #[inline ] |
| 13526 | #[target_feature (enable = "avx512fp16" )] |
| 13527 | #[cfg_attr (test, assert_instr(vcvtpd2ph, ROUNDING = 8))] |
| 13528 | #[rustc_legacy_const_generics (1)] |
| 13529 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13530 | pub fn _mm512_cvt_roundpd_ph<const ROUNDING: i32>(a: __m512d) -> __m128h { |
| 13531 | static_assert_rounding!(ROUNDING); |
| 13532 | _mm512_mask_cvt_roundpd_ph::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a) |
| 13533 | } |
| 13534 | |
| 13535 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13536 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to dst |
| 13537 | /// when the corresponding mask bit is not set). |
| 13538 | /// |
| 13539 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13540 | /// |
| 13541 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13542 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13543 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13544 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13545 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13546 | /// |
| 13547 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundpd_ph) |
| 13548 | #[inline ] |
| 13549 | #[target_feature (enable = "avx512fp16" )] |
| 13550 | #[cfg_attr (test, assert_instr(vcvtpd2ph, ROUNDING = 8))] |
| 13551 | #[rustc_legacy_const_generics (3)] |
| 13552 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13553 | pub fn _mm512_mask_cvt_roundpd_ph<const ROUNDING: i32>( |
| 13554 | src: __m128h, |
| 13555 | k: __mmask8, |
| 13556 | a: __m512d, |
| 13557 | ) -> __m128h { |
| 13558 | unsafe { |
| 13559 | static_assert_rounding!(ROUNDING); |
| 13560 | vcvtpd2ph_512(a, src, k, ROUNDING) |
| 13561 | } |
| 13562 | } |
| 13563 | |
| 13564 | /// Convert packed double-precision (64-bit) floating-point elements in a to packed half-precision (16-bit) |
| 13565 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 13566 | /// corresponding mask bit is not set). |
| 13567 | /// |
| 13568 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13569 | /// |
| 13570 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13571 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13572 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13573 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13574 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13575 | /// |
| 13576 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundpd_ph) |
| 13577 | #[inline ] |
| 13578 | #[target_feature (enable = "avx512fp16" )] |
| 13579 | #[cfg_attr (test, assert_instr(vcvtpd2ph, ROUNDING = 8))] |
| 13580 | #[rustc_legacy_const_generics (2)] |
| 13581 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13582 | pub fn _mm512_maskz_cvt_roundpd_ph<const ROUNDING: i32>(k: __mmask8, a: __m512d) -> __m128h { |
| 13583 | static_assert_rounding!(ROUNDING); |
| 13584 | _mm512_mask_cvt_roundpd_ph::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a) |
| 13585 | } |
| 13586 | |
| 13587 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13588 | /// floating-point elements, store the result in the lower element of dst, and copy the upper 7 packed |
| 13589 | /// elements from a to the upper elements of dst. |
| 13590 | /// |
| 13591 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_sh) |
| 13592 | #[inline ] |
| 13593 | #[target_feature (enable = "avx512fp16" )] |
| 13594 | #[cfg_attr (test, assert_instr(vcvtsd2sh))] |
| 13595 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13596 | pub fn _mm_cvtsd_sh(a: __m128h, b: __m128d) -> __m128h { |
| 13597 | _mm_mask_cvtsd_sh(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 13598 | } |
| 13599 | |
| 13600 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13601 | /// floating-point elements, store the result in the lower element of dst using writemask k (the element |
| 13602 | /// if copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 13603 | /// upper elements of dst. |
| 13604 | /// |
| 13605 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtsd_sh) |
| 13606 | #[inline ] |
| 13607 | #[target_feature (enable = "avx512fp16" )] |
| 13608 | #[cfg_attr (test, assert_instr(vcvtsd2sh))] |
| 13609 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13610 | pub fn _mm_mask_cvtsd_sh(src: __m128h, k: __mmask8, a: __m128h, b: __m128d) -> __m128h { |
| 13611 | unsafe { vcvtsd2sh(a, b, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 13612 | } |
| 13613 | |
| 13614 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13615 | /// floating-point elements, store the result in the lower element of dst using zeromask k (the element |
| 13616 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 13617 | /// elements of dst. |
| 13618 | /// |
| 13619 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtsd_sh) |
| 13620 | #[inline ] |
| 13621 | #[target_feature (enable = "avx512fp16" )] |
| 13622 | #[cfg_attr (test, assert_instr(vcvtsd2sh))] |
| 13623 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13624 | pub fn _mm_maskz_cvtsd_sh(k: __mmask8, a: __m128h, b: __m128d) -> __m128h { |
| 13625 | _mm_mask_cvtsd_sh(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 13626 | } |
| 13627 | |
| 13628 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13629 | /// floating-point elements, store the result in the lower element of dst, and copy the upper 7 packed |
| 13630 | /// elements from a to the upper elements of dst. |
| 13631 | /// |
| 13632 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13633 | /// |
| 13634 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13635 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13636 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13637 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13638 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13639 | /// |
| 13640 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundsd_sh) |
| 13641 | #[inline ] |
| 13642 | #[target_feature (enable = "avx512fp16" )] |
| 13643 | #[cfg_attr (test, assert_instr(vcvtsd2sh, ROUNDING = 8))] |
| 13644 | #[rustc_legacy_const_generics (2)] |
| 13645 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13646 | pub fn _mm_cvt_roundsd_sh<const ROUNDING: i32>(a: __m128h, b: __m128d) -> __m128h { |
| 13647 | static_assert_rounding!(ROUNDING); |
| 13648 | _mm_mask_cvt_roundsd_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k:0xff, a, b) |
| 13649 | } |
| 13650 | |
| 13651 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13652 | /// floating-point elements, store the result in the lower element of dst using writemask k (the element |
| 13653 | /// if copied from src when mask bit 0 is not set), and copy the upper 7 packed elements from a to the |
| 13654 | /// upper elements of dst. |
| 13655 | /// |
| 13656 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13657 | /// |
| 13658 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13659 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13660 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13661 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13662 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13663 | /// |
| 13664 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvt_roundsd_sh) |
| 13665 | #[inline ] |
| 13666 | #[target_feature (enable = "avx512fp16" )] |
| 13667 | #[cfg_attr (test, assert_instr(vcvtsd2sh, ROUNDING = 8))] |
| 13668 | #[rustc_legacy_const_generics (4)] |
| 13669 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13670 | pub fn _mm_mask_cvt_roundsd_sh<const ROUNDING: i32>( |
| 13671 | src: __m128h, |
| 13672 | k: __mmask8, |
| 13673 | a: __m128h, |
| 13674 | b: __m128d, |
| 13675 | ) -> __m128h { |
| 13676 | unsafe { |
| 13677 | static_assert_rounding!(ROUNDING); |
| 13678 | vcvtsd2sh(a, b, src, k, ROUNDING) |
| 13679 | } |
| 13680 | } |
| 13681 | |
| 13682 | /// Convert the lower double-precision (64-bit) floating-point element in b to a half-precision (16-bit) |
| 13683 | /// floating-point elements, store the result in the lower element of dst using zeromask k (the element |
| 13684 | /// is zeroed out when mask bit 0 is not set), and copy the upper 7 packed elements from a to the upper |
| 13685 | /// elements of dst. |
| 13686 | /// |
| 13687 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13688 | /// |
| 13689 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13690 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13691 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13692 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13693 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13694 | /// |
| 13695 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvt_roundsd_sh) |
| 13696 | #[inline ] |
| 13697 | #[target_feature (enable = "avx512fp16" )] |
| 13698 | #[cfg_attr (test, assert_instr(vcvtsd2sh, ROUNDING = 8))] |
| 13699 | #[rustc_legacy_const_generics (3)] |
| 13700 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13701 | pub fn _mm_maskz_cvt_roundsd_sh<const ROUNDING: i32>( |
| 13702 | k: __mmask8, |
| 13703 | a: __m128h, |
| 13704 | b: __m128d, |
| 13705 | ) -> __m128h { |
| 13706 | static_assert_rounding!(ROUNDING); |
| 13707 | _mm_mask_cvt_roundsd_sh::<ROUNDING>(src:f16x8::ZERO.as_m128h(), k, a, b) |
| 13708 | } |
| 13709 | |
| 13710 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13711 | /// store the results in dst. |
| 13712 | /// |
| 13713 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epi16) |
| 13714 | #[inline ] |
| 13715 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13716 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13717 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13718 | pub fn _mm_cvtph_epi16(a: __m128h) -> __m128i { |
| 13719 | _mm_mask_cvtph_epi16(src:_mm_undefined_si128(), k:0xff, a) |
| 13720 | } |
| 13721 | |
| 13722 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13723 | /// store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13724 | /// mask bit is not set). |
| 13725 | /// |
| 13726 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epi16) |
| 13727 | #[inline ] |
| 13728 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13729 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13730 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13731 | pub fn _mm_mask_cvtph_epi16(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 13732 | unsafe { transmute(src:vcvtph2w_128(a, src.as_i16x8(), k)) } |
| 13733 | } |
| 13734 | |
| 13735 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13736 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13737 | /// |
| 13738 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epi16) |
| 13739 | #[inline ] |
| 13740 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13741 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13742 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13743 | pub fn _mm_maskz_cvtph_epi16(k: __mmask8, a: __m128h) -> __m128i { |
| 13744 | _mm_mask_cvtph_epi16(src:_mm_setzero_si128(), k, a) |
| 13745 | } |
| 13746 | |
| 13747 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13748 | /// store the results in dst. |
| 13749 | /// |
| 13750 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epi16) |
| 13751 | #[inline ] |
| 13752 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13753 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13754 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13755 | pub fn _mm256_cvtph_epi16(a: __m256h) -> __m256i { |
| 13756 | _mm256_mask_cvtph_epi16(src:_mm256_undefined_si256(), k:0xffff, a) |
| 13757 | } |
| 13758 | |
| 13759 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13760 | /// store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13761 | /// mask bit is not set). |
| 13762 | /// |
| 13763 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epi16) |
| 13764 | #[inline ] |
| 13765 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13766 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13767 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13768 | pub fn _mm256_mask_cvtph_epi16(src: __m256i, k: __mmask16, a: __m256h) -> __m256i { |
| 13769 | unsafe { transmute(src:vcvtph2w_256(a, src.as_i16x16(), k)) } |
| 13770 | } |
| 13771 | |
| 13772 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13773 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13774 | /// |
| 13775 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epi16) |
| 13776 | #[inline ] |
| 13777 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13778 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13779 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13780 | pub fn _mm256_maskz_cvtph_epi16(k: __mmask16, a: __m256h) -> __m256i { |
| 13781 | _mm256_mask_cvtph_epi16(src:_mm256_setzero_si256(), k, a) |
| 13782 | } |
| 13783 | |
| 13784 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13785 | /// store the results in dst. |
| 13786 | /// |
| 13787 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epi16) |
| 13788 | #[inline ] |
| 13789 | #[target_feature (enable = "avx512fp16" )] |
| 13790 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13791 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13792 | pub fn _mm512_cvtph_epi16(a: __m512h) -> __m512i { |
| 13793 | _mm512_mask_cvtph_epi16(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 13794 | } |
| 13795 | |
| 13796 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13797 | /// store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13798 | /// mask bit is not set). |
| 13799 | /// |
| 13800 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epi16) |
| 13801 | #[inline ] |
| 13802 | #[target_feature (enable = "avx512fp16" )] |
| 13803 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13804 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13805 | pub fn _mm512_mask_cvtph_epi16(src: __m512i, k: __mmask32, a: __m512h) -> __m512i { |
| 13806 | unsafe { |
| 13807 | transmute(src:vcvtph2w_512( |
| 13808 | a, |
| 13809 | src.as_i16x32(), |
| 13810 | k, |
| 13811 | _MM_FROUND_CUR_DIRECTION, |
| 13812 | )) |
| 13813 | } |
| 13814 | } |
| 13815 | |
| 13816 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13817 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13818 | /// |
| 13819 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epi16) |
| 13820 | #[inline ] |
| 13821 | #[target_feature (enable = "avx512fp16" )] |
| 13822 | #[cfg_attr (test, assert_instr(vcvtph2w))] |
| 13823 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13824 | pub fn _mm512_maskz_cvtph_epi16(k: __mmask32, a: __m512h) -> __m512i { |
| 13825 | _mm512_mask_cvtph_epi16(src:_mm512_setzero_si512(), k, a) |
| 13826 | } |
| 13827 | |
| 13828 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13829 | /// store the results in dst. |
| 13830 | /// |
| 13831 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13832 | /// |
| 13833 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13834 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13835 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13836 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13837 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13838 | /// |
| 13839 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epi16) |
| 13840 | #[inline ] |
| 13841 | #[target_feature (enable = "avx512fp16" )] |
| 13842 | #[cfg_attr (test, assert_instr(vcvtph2w, ROUNDING = 8))] |
| 13843 | #[rustc_legacy_const_generics (1)] |
| 13844 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13845 | pub fn _mm512_cvt_roundph_epi16<const ROUNDING: i32>(a: __m512h) -> __m512i { |
| 13846 | static_assert_rounding!(ROUNDING); |
| 13847 | _mm512_mask_cvt_roundph_epi16::<ROUNDING>(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 13848 | } |
| 13849 | |
| 13850 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13851 | /// store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13852 | /// mask bit is not set). |
| 13853 | /// |
| 13854 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13855 | /// |
| 13856 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13857 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13858 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13859 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13860 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13861 | /// |
| 13862 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epi16) |
| 13863 | #[inline ] |
| 13864 | #[target_feature (enable = "avx512fp16" )] |
| 13865 | #[cfg_attr (test, assert_instr(vcvtph2w, ROUNDING = 8))] |
| 13866 | #[rustc_legacy_const_generics (3)] |
| 13867 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13868 | pub fn _mm512_mask_cvt_roundph_epi16<const ROUNDING: i32>( |
| 13869 | src: __m512i, |
| 13870 | k: __mmask32, |
| 13871 | a: __m512h, |
| 13872 | ) -> __m512i { |
| 13873 | unsafe { |
| 13874 | static_assert_rounding!(ROUNDING); |
| 13875 | transmute(src:vcvtph2w_512(a, src.as_i16x32(), k, ROUNDING)) |
| 13876 | } |
| 13877 | } |
| 13878 | |
| 13879 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers, and |
| 13880 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13881 | /// |
| 13882 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 13883 | /// |
| 13884 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 13885 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 13886 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 13887 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 13888 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 13889 | /// |
| 13890 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epi16) |
| 13891 | #[inline ] |
| 13892 | #[target_feature (enable = "avx512fp16" )] |
| 13893 | #[cfg_attr (test, assert_instr(vcvtph2w, ROUNDING = 8))] |
| 13894 | #[rustc_legacy_const_generics (2)] |
| 13895 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13896 | pub fn _mm512_maskz_cvt_roundph_epi16<const ROUNDING: i32>(k: __mmask32, a: __m512h) -> __m512i { |
| 13897 | static_assert_rounding!(ROUNDING); |
| 13898 | _mm512_mask_cvt_roundph_epi16::<ROUNDING>(src:_mm512_setzero_si512(), k, a) |
| 13899 | } |
| 13900 | |
| 13901 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13902 | /// and store the results in dst. |
| 13903 | /// |
| 13904 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epu16) |
| 13905 | #[inline ] |
| 13906 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13907 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13908 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13909 | pub fn _mm_cvtph_epu16(a: __m128h) -> __m128i { |
| 13910 | _mm_mask_cvtph_epu16(src:_mm_undefined_si128(), k:0xff, a) |
| 13911 | } |
| 13912 | |
| 13913 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13914 | /// and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13915 | /// mask bit is not set). |
| 13916 | /// |
| 13917 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epu16) |
| 13918 | #[inline ] |
| 13919 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13920 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13921 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13922 | pub fn _mm_mask_cvtph_epu16(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 13923 | unsafe { transmute(src:vcvtph2uw_128(a, src.as_u16x8(), k)) } |
| 13924 | } |
| 13925 | |
| 13926 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13927 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13928 | /// |
| 13929 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epu16) |
| 13930 | #[inline ] |
| 13931 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13932 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13933 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13934 | pub fn _mm_maskz_cvtph_epu16(k: __mmask8, a: __m128h) -> __m128i { |
| 13935 | _mm_mask_cvtph_epu16(src:_mm_setzero_si128(), k, a) |
| 13936 | } |
| 13937 | |
| 13938 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13939 | /// and store the results in dst. |
| 13940 | /// |
| 13941 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epu16) |
| 13942 | #[inline ] |
| 13943 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13944 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13945 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13946 | pub fn _mm256_cvtph_epu16(a: __m256h) -> __m256i { |
| 13947 | _mm256_mask_cvtph_epu16(src:_mm256_undefined_si256(), k:0xffff, a) |
| 13948 | } |
| 13949 | |
| 13950 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13951 | /// and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13952 | /// mask bit is not set). |
| 13953 | /// |
| 13954 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epu16) |
| 13955 | #[inline ] |
| 13956 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13957 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13958 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13959 | pub fn _mm256_mask_cvtph_epu16(src: __m256i, k: __mmask16, a: __m256h) -> __m256i { |
| 13960 | unsafe { transmute(src:vcvtph2uw_256(a, src.as_u16x16(), k)) } |
| 13961 | } |
| 13962 | |
| 13963 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13964 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 13965 | /// |
| 13966 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epu16) |
| 13967 | #[inline ] |
| 13968 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 13969 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13970 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13971 | pub fn _mm256_maskz_cvtph_epu16(k: __mmask16, a: __m256h) -> __m256i { |
| 13972 | _mm256_mask_cvtph_epu16(src:_mm256_setzero_si256(), k, a) |
| 13973 | } |
| 13974 | |
| 13975 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13976 | /// and store the results in dst. |
| 13977 | /// |
| 13978 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epu16) |
| 13979 | #[inline ] |
| 13980 | #[target_feature (enable = "avx512fp16" )] |
| 13981 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13982 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13983 | pub fn _mm512_cvtph_epu16(a: __m512h) -> __m512i { |
| 13984 | _mm512_mask_cvtph_epu16(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 13985 | } |
| 13986 | |
| 13987 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 13988 | /// and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 13989 | /// mask bit is not set). |
| 13990 | /// |
| 13991 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epu16) |
| 13992 | #[inline ] |
| 13993 | #[target_feature (enable = "avx512fp16" )] |
| 13994 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 13995 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 13996 | pub fn _mm512_mask_cvtph_epu16(src: __m512i, k: __mmask32, a: __m512h) -> __m512i { |
| 13997 | unsafe { |
| 13998 | transmute(src:vcvtph2uw_512( |
| 13999 | a, |
| 14000 | src.as_u16x32(), |
| 14001 | k, |
| 14002 | _MM_FROUND_CUR_DIRECTION, |
| 14003 | )) |
| 14004 | } |
| 14005 | } |
| 14006 | |
| 14007 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 14008 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14009 | /// |
| 14010 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epu16) |
| 14011 | #[inline ] |
| 14012 | #[target_feature (enable = "avx512fp16" )] |
| 14013 | #[cfg_attr (test, assert_instr(vcvtph2uw))] |
| 14014 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14015 | pub fn _mm512_maskz_cvtph_epu16(k: __mmask32, a: __m512h) -> __m512i { |
| 14016 | _mm512_mask_cvtph_epu16(src:_mm512_setzero_si512(), k, a) |
| 14017 | } |
| 14018 | |
| 14019 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 14020 | /// and store the results in dst. |
| 14021 | /// |
| 14022 | /// Exceptions can be suppressed by passing [`_MM_FROUND_NO_EXC`] in the sae parameter. |
| 14023 | /// |
| 14024 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epu16) |
| 14025 | #[inline ] |
| 14026 | #[target_feature (enable = "avx512fp16" )] |
| 14027 | #[cfg_attr (test, assert_instr(vcvtph2uw, SAE = 8))] |
| 14028 | #[rustc_legacy_const_generics (1)] |
| 14029 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14030 | pub fn _mm512_cvt_roundph_epu16<const SAE: i32>(a: __m512h) -> __m512i { |
| 14031 | static_assert_sae!(SAE); |
| 14032 | _mm512_mask_cvt_roundph_epu16::<SAE>(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 14033 | } |
| 14034 | |
| 14035 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 14036 | /// and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14037 | /// mask bit is not set). |
| 14038 | /// |
| 14039 | /// Exceptions can be suppressed by passing [`_MM_FROUND_NO_EXC`] in the sae parameter. |
| 14040 | /// |
| 14041 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epu16) |
| 14042 | #[inline ] |
| 14043 | #[target_feature (enable = "avx512fp16" )] |
| 14044 | #[cfg_attr (test, assert_instr(vcvtph2uw, SAE = 8))] |
| 14045 | #[rustc_legacy_const_generics (3)] |
| 14046 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14047 | pub fn _mm512_mask_cvt_roundph_epu16<const SAE: i32>( |
| 14048 | src: __m512i, |
| 14049 | k: __mmask32, |
| 14050 | a: __m512h, |
| 14051 | ) -> __m512i { |
| 14052 | unsafe { |
| 14053 | static_assert_sae!(SAE); |
| 14054 | transmute(src:vcvtph2uw_512(a, src.as_u16x32(), k, SAE)) |
| 14055 | } |
| 14056 | } |
| 14057 | |
| 14058 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers, |
| 14059 | /// and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14060 | /// |
| 14061 | /// Exceptions can be suppressed by passing [`_MM_FROUND_NO_EXC`] in the sae parameter. |
| 14062 | /// |
| 14063 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epu16) |
| 14064 | #[inline ] |
| 14065 | #[target_feature (enable = "avx512fp16" )] |
| 14066 | #[cfg_attr (test, assert_instr(vcvtph2uw, SAE = 8))] |
| 14067 | #[rustc_legacy_const_generics (2)] |
| 14068 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14069 | pub fn _mm512_maskz_cvt_roundph_epu16<const SAE: i32>(k: __mmask32, a: __m512h) -> __m512i { |
| 14070 | static_assert_sae!(SAE); |
| 14071 | _mm512_mask_cvt_roundph_epu16::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 14072 | } |
| 14073 | |
| 14074 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14075 | /// truncation, and store the results in dst. |
| 14076 | /// |
| 14077 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epi16) |
| 14078 | #[inline ] |
| 14079 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14080 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14081 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14082 | pub fn _mm_cvttph_epi16(a: __m128h) -> __m128i { |
| 14083 | _mm_mask_cvttph_epi16(src:_mm_undefined_si128(), k:0xff, a) |
| 14084 | } |
| 14085 | |
| 14086 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14087 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14088 | /// mask bit is not set). |
| 14089 | /// |
| 14090 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epi16) |
| 14091 | #[inline ] |
| 14092 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14093 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14094 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14095 | pub fn _mm_mask_cvttph_epi16(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 14096 | unsafe { transmute(src:vcvttph2w_128(a, src.as_i16x8(), k)) } |
| 14097 | } |
| 14098 | |
| 14099 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14100 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14101 | /// mask bit is not set). |
| 14102 | /// |
| 14103 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epi16) |
| 14104 | #[inline ] |
| 14105 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14106 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14107 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14108 | pub fn _mm_maskz_cvttph_epi16(k: __mmask8, a: __m128h) -> __m128i { |
| 14109 | _mm_mask_cvttph_epi16(src:_mm_setzero_si128(), k, a) |
| 14110 | } |
| 14111 | |
| 14112 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14113 | /// truncation, and store the results in dst. |
| 14114 | /// |
| 14115 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epi16) |
| 14116 | #[inline ] |
| 14117 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14118 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14119 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14120 | pub fn _mm256_cvttph_epi16(a: __m256h) -> __m256i { |
| 14121 | _mm256_mask_cvttph_epi16(src:_mm256_undefined_si256(), k:0xffff, a) |
| 14122 | } |
| 14123 | |
| 14124 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14125 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14126 | /// mask bit is not set). |
| 14127 | /// |
| 14128 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epi16) |
| 14129 | #[inline ] |
| 14130 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14131 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14132 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14133 | pub fn _mm256_mask_cvttph_epi16(src: __m256i, k: __mmask16, a: __m256h) -> __m256i { |
| 14134 | unsafe { transmute(src:vcvttph2w_256(a, src.as_i16x16(), k)) } |
| 14135 | } |
| 14136 | |
| 14137 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14138 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14139 | /// mask bit is not set). |
| 14140 | /// |
| 14141 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epi16) |
| 14142 | #[inline ] |
| 14143 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14144 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14145 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14146 | pub fn _mm256_maskz_cvttph_epi16(k: __mmask16, a: __m256h) -> __m256i { |
| 14147 | _mm256_mask_cvttph_epi16(src:_mm256_setzero_si256(), k, a) |
| 14148 | } |
| 14149 | |
| 14150 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14151 | /// truncation, and store the results in dst. |
| 14152 | /// |
| 14153 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epi16) |
| 14154 | #[inline ] |
| 14155 | #[target_feature (enable = "avx512fp16" )] |
| 14156 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14157 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14158 | pub fn _mm512_cvttph_epi16(a: __m512h) -> __m512i { |
| 14159 | _mm512_mask_cvttph_epi16(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 14160 | } |
| 14161 | |
| 14162 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14163 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14164 | /// mask bit is not set). |
| 14165 | /// |
| 14166 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epi16) |
| 14167 | #[inline ] |
| 14168 | #[target_feature (enable = "avx512fp16" )] |
| 14169 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14170 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14171 | pub fn _mm512_mask_cvttph_epi16(src: __m512i, k: __mmask32, a: __m512h) -> __m512i { |
| 14172 | unsafe { |
| 14173 | transmute(src:vcvttph2w_512( |
| 14174 | a, |
| 14175 | src.as_i16x32(), |
| 14176 | k, |
| 14177 | _MM_FROUND_CUR_DIRECTION, |
| 14178 | )) |
| 14179 | } |
| 14180 | } |
| 14181 | |
| 14182 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14183 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14184 | /// mask bit is not set). |
| 14185 | /// |
| 14186 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epi16) |
| 14187 | #[inline ] |
| 14188 | #[target_feature (enable = "avx512fp16" )] |
| 14189 | #[cfg_attr (test, assert_instr(vcvttph2w))] |
| 14190 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14191 | pub fn _mm512_maskz_cvttph_epi16(k: __mmask32, a: __m512h) -> __m512i { |
| 14192 | _mm512_mask_cvttph_epi16(src:_mm512_setzero_si512(), k, a) |
| 14193 | } |
| 14194 | |
| 14195 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14196 | /// truncation, and store the results in dst. |
| 14197 | /// |
| 14198 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14199 | /// |
| 14200 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epi16) |
| 14201 | #[inline ] |
| 14202 | #[target_feature (enable = "avx512fp16" )] |
| 14203 | #[cfg_attr (test, assert_instr(vcvttph2w, SAE = 8))] |
| 14204 | #[rustc_legacy_const_generics (1)] |
| 14205 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14206 | pub fn _mm512_cvtt_roundph_epi16<const SAE: i32>(a: __m512h) -> __m512i { |
| 14207 | static_assert_sae!(SAE); |
| 14208 | _mm512_mask_cvtt_roundph_epi16::<SAE>(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 14209 | } |
| 14210 | |
| 14211 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14212 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14213 | /// mask bit is not set). |
| 14214 | /// |
| 14215 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14216 | /// |
| 14217 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epi16) |
| 14218 | #[inline ] |
| 14219 | #[target_feature (enable = "avx512fp16" )] |
| 14220 | #[cfg_attr (test, assert_instr(vcvttph2w, SAE = 8))] |
| 14221 | #[rustc_legacy_const_generics (3)] |
| 14222 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14223 | pub fn _mm512_mask_cvtt_roundph_epi16<const SAE: i32>( |
| 14224 | src: __m512i, |
| 14225 | k: __mmask32, |
| 14226 | a: __m512h, |
| 14227 | ) -> __m512i { |
| 14228 | unsafe { |
| 14229 | static_assert_sae!(SAE); |
| 14230 | transmute(src:vcvttph2w_512(a, src.as_i16x32(), k, SAE)) |
| 14231 | } |
| 14232 | } |
| 14233 | |
| 14234 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 16-bit integers with |
| 14235 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14236 | /// mask bit is not set). |
| 14237 | /// |
| 14238 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14239 | /// |
| 14240 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epi16) |
| 14241 | #[inline ] |
| 14242 | #[target_feature (enable = "avx512fp16" )] |
| 14243 | #[cfg_attr (test, assert_instr(vcvttph2w, SAE = 8))] |
| 14244 | #[rustc_legacy_const_generics (2)] |
| 14245 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14246 | pub fn _mm512_maskz_cvtt_roundph_epi16<const SAE: i32>(k: __mmask32, a: __m512h) -> __m512i { |
| 14247 | static_assert_sae!(SAE); |
| 14248 | _mm512_mask_cvtt_roundph_epi16::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 14249 | } |
| 14250 | |
| 14251 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14252 | /// truncation, and store the results in dst. |
| 14253 | /// |
| 14254 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epu16) |
| 14255 | #[inline ] |
| 14256 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14257 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14258 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14259 | pub fn _mm_cvttph_epu16(a: __m128h) -> __m128i { |
| 14260 | _mm_mask_cvttph_epu16(src:_mm_undefined_si128(), k:0xff, a) |
| 14261 | } |
| 14262 | |
| 14263 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14264 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14265 | /// mask bit is not set). |
| 14266 | /// |
| 14267 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epu16) |
| 14268 | #[inline ] |
| 14269 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14270 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14271 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14272 | pub fn _mm_mask_cvttph_epu16(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 14273 | unsafe { transmute(src:vcvttph2uw_128(a, src.as_u16x8(), k)) } |
| 14274 | } |
| 14275 | |
| 14276 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14277 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14278 | /// mask bit is not set). |
| 14279 | /// |
| 14280 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epu16) |
| 14281 | #[inline ] |
| 14282 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14283 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14284 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14285 | pub fn _mm_maskz_cvttph_epu16(k: __mmask8, a: __m128h) -> __m128i { |
| 14286 | _mm_mask_cvttph_epu16(src:_mm_setzero_si128(), k, a) |
| 14287 | } |
| 14288 | |
| 14289 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14290 | /// truncation, and store the results in dst. |
| 14291 | /// |
| 14292 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epu16) |
| 14293 | #[inline ] |
| 14294 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14295 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14296 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14297 | pub fn _mm256_cvttph_epu16(a: __m256h) -> __m256i { |
| 14298 | _mm256_mask_cvttph_epu16(src:_mm256_undefined_si256(), k:0xffff, a) |
| 14299 | } |
| 14300 | |
| 14301 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14302 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14303 | /// mask bit is not set). |
| 14304 | /// |
| 14305 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epu16) |
| 14306 | #[inline ] |
| 14307 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14308 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14309 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14310 | pub fn _mm256_mask_cvttph_epu16(src: __m256i, k: __mmask16, a: __m256h) -> __m256i { |
| 14311 | unsafe { transmute(src:vcvttph2uw_256(a, src.as_u16x16(), k)) } |
| 14312 | } |
| 14313 | |
| 14314 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14315 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14316 | /// mask bit is not set). |
| 14317 | /// |
| 14318 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epu16) |
| 14319 | #[inline ] |
| 14320 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14321 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14322 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14323 | pub fn _mm256_maskz_cvttph_epu16(k: __mmask16, a: __m256h) -> __m256i { |
| 14324 | _mm256_mask_cvttph_epu16(src:_mm256_setzero_si256(), k, a) |
| 14325 | } |
| 14326 | |
| 14327 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14328 | /// truncation, and store the results in dst. |
| 14329 | /// |
| 14330 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epu16) |
| 14331 | #[inline ] |
| 14332 | #[target_feature (enable = "avx512fp16" )] |
| 14333 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14334 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14335 | pub fn _mm512_cvttph_epu16(a: __m512h) -> __m512i { |
| 14336 | _mm512_mask_cvttph_epu16(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 14337 | } |
| 14338 | |
| 14339 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14340 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14341 | /// mask bit is not set). |
| 14342 | /// |
| 14343 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epu16) |
| 14344 | #[inline ] |
| 14345 | #[target_feature (enable = "avx512fp16" )] |
| 14346 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14347 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14348 | pub fn _mm512_mask_cvttph_epu16(src: __m512i, k: __mmask32, a: __m512h) -> __m512i { |
| 14349 | unsafe { |
| 14350 | transmute(src:vcvttph2uw_512( |
| 14351 | a, |
| 14352 | src.as_u16x32(), |
| 14353 | k, |
| 14354 | _MM_FROUND_CUR_DIRECTION, |
| 14355 | )) |
| 14356 | } |
| 14357 | } |
| 14358 | |
| 14359 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14360 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14361 | /// mask bit is not set). |
| 14362 | /// |
| 14363 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epu16) |
| 14364 | #[inline ] |
| 14365 | #[target_feature (enable = "avx512fp16" )] |
| 14366 | #[cfg_attr (test, assert_instr(vcvttph2uw))] |
| 14367 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14368 | pub fn _mm512_maskz_cvttph_epu16(k: __mmask32, a: __m512h) -> __m512i { |
| 14369 | _mm512_mask_cvttph_epu16(src:_mm512_setzero_si512(), k, a) |
| 14370 | } |
| 14371 | |
| 14372 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14373 | /// truncation, and store the results in dst. |
| 14374 | /// |
| 14375 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14376 | /// |
| 14377 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epu16) |
| 14378 | #[inline ] |
| 14379 | #[target_feature (enable = "avx512fp16" )] |
| 14380 | #[cfg_attr (test, assert_instr(vcvttph2uw, SAE = 8))] |
| 14381 | #[rustc_legacy_const_generics (1)] |
| 14382 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14383 | pub fn _mm512_cvtt_roundph_epu16<const SAE: i32>(a: __m512h) -> __m512i { |
| 14384 | static_assert_sae!(SAE); |
| 14385 | _mm512_mask_cvtt_roundph_epu16::<SAE>(src:_mm512_undefined_epi32(), k:0xffffffff, a) |
| 14386 | } |
| 14387 | |
| 14388 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14389 | /// truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding |
| 14390 | /// mask bit is not set). |
| 14391 | /// |
| 14392 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14393 | /// |
| 14394 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epu16) |
| 14395 | #[inline ] |
| 14396 | #[target_feature (enable = "avx512fp16" )] |
| 14397 | #[cfg_attr (test, assert_instr(vcvttph2uw, SAE = 8))] |
| 14398 | #[rustc_legacy_const_generics (3)] |
| 14399 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14400 | pub fn _mm512_mask_cvtt_roundph_epu16<const SAE: i32>( |
| 14401 | src: __m512i, |
| 14402 | k: __mmask32, |
| 14403 | a: __m512h, |
| 14404 | ) -> __m512i { |
| 14405 | unsafe { |
| 14406 | static_assert_sae!(SAE); |
| 14407 | transmute(src:vcvttph2uw_512(a, src.as_u16x32(), k, SAE)) |
| 14408 | } |
| 14409 | } |
| 14410 | |
| 14411 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed unsigned 16-bit integers with |
| 14412 | /// truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding |
| 14413 | /// mask bit is not set). |
| 14414 | /// |
| 14415 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 14416 | /// |
| 14417 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epu16) |
| 14418 | #[inline ] |
| 14419 | #[target_feature (enable = "avx512fp16" )] |
| 14420 | #[cfg_attr (test, assert_instr(vcvttph2uw, SAE = 8))] |
| 14421 | #[rustc_legacy_const_generics (2)] |
| 14422 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14423 | pub fn _mm512_maskz_cvtt_roundph_epu16<const SAE: i32>(k: __mmask32, a: __m512h) -> __m512i { |
| 14424 | static_assert_sae!(SAE); |
| 14425 | _mm512_mask_cvtt_roundph_epu16::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 14426 | } |
| 14427 | |
| 14428 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14429 | /// results in dst. |
| 14430 | /// |
| 14431 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epi32) |
| 14432 | #[inline ] |
| 14433 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14434 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14435 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14436 | pub fn _mm_cvtph_epi32(a: __m128h) -> __m128i { |
| 14437 | _mm_mask_cvtph_epi32(src:_mm_undefined_si128(), k:0xff, a) |
| 14438 | } |
| 14439 | |
| 14440 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14441 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14442 | /// |
| 14443 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epi32) |
| 14444 | #[inline ] |
| 14445 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14446 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14447 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14448 | pub fn _mm_mask_cvtph_epi32(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 14449 | unsafe { transmute(src:vcvtph2dq_128(a, src.as_i32x4(), k)) } |
| 14450 | } |
| 14451 | |
| 14452 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14453 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14454 | /// |
| 14455 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epi32) |
| 14456 | #[inline ] |
| 14457 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14458 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14459 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14460 | pub fn _mm_maskz_cvtph_epi32(k: __mmask8, a: __m128h) -> __m128i { |
| 14461 | _mm_mask_cvtph_epi32(src:_mm_setzero_si128(), k, a) |
| 14462 | } |
| 14463 | |
| 14464 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14465 | /// results in dst. |
| 14466 | /// |
| 14467 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epi32) |
| 14468 | #[inline ] |
| 14469 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14470 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14471 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14472 | pub fn _mm256_cvtph_epi32(a: __m128h) -> __m256i { |
| 14473 | _mm256_mask_cvtph_epi32(src:_mm256_undefined_si256(), k:0xff, a) |
| 14474 | } |
| 14475 | |
| 14476 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14477 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14478 | /// |
| 14479 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epi32) |
| 14480 | #[inline ] |
| 14481 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14482 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14483 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14484 | pub fn _mm256_mask_cvtph_epi32(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 14485 | unsafe { transmute(src:vcvtph2dq_256(a, src.as_i32x8(), k)) } |
| 14486 | } |
| 14487 | |
| 14488 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14489 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14490 | /// |
| 14491 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epi32) |
| 14492 | #[inline ] |
| 14493 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14494 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14495 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14496 | pub fn _mm256_maskz_cvtph_epi32(k: __mmask8, a: __m128h) -> __m256i { |
| 14497 | _mm256_mask_cvtph_epi32(src:_mm256_setzero_si256(), k, a) |
| 14498 | } |
| 14499 | |
| 14500 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14501 | /// results in dst. |
| 14502 | /// |
| 14503 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epi32) |
| 14504 | #[inline ] |
| 14505 | #[target_feature (enable = "avx512fp16" )] |
| 14506 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14507 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14508 | pub fn _mm512_cvtph_epi32(a: __m256h) -> __m512i { |
| 14509 | _mm512_mask_cvtph_epi32(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14510 | } |
| 14511 | |
| 14512 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14513 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14514 | /// |
| 14515 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epi32) |
| 14516 | #[inline ] |
| 14517 | #[target_feature (enable = "avx512fp16" )] |
| 14518 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14519 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14520 | pub fn _mm512_mask_cvtph_epi32(src: __m512i, k: __mmask16, a: __m256h) -> __m512i { |
| 14521 | unsafe { |
| 14522 | transmute(src:vcvtph2dq_512( |
| 14523 | a, |
| 14524 | src.as_i32x16(), |
| 14525 | k, |
| 14526 | _MM_FROUND_CUR_DIRECTION, |
| 14527 | )) |
| 14528 | } |
| 14529 | } |
| 14530 | |
| 14531 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14532 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14533 | /// |
| 14534 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epi32) |
| 14535 | #[inline ] |
| 14536 | #[target_feature (enable = "avx512fp16" )] |
| 14537 | #[cfg_attr (test, assert_instr(vcvtph2dq))] |
| 14538 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14539 | pub fn _mm512_maskz_cvtph_epi32(k: __mmask16, a: __m256h) -> __m512i { |
| 14540 | _mm512_mask_cvtph_epi32(src:_mm512_setzero_si512(), k, a) |
| 14541 | } |
| 14542 | |
| 14543 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14544 | /// results in dst. |
| 14545 | /// |
| 14546 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14547 | /// |
| 14548 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14549 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14550 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14551 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14552 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14553 | /// |
| 14554 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epi32) |
| 14555 | #[inline ] |
| 14556 | #[target_feature (enable = "avx512fp16" )] |
| 14557 | #[cfg_attr (test, assert_instr(vcvtph2dq, ROUNDING = 8))] |
| 14558 | #[rustc_legacy_const_generics (1)] |
| 14559 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14560 | pub fn _mm512_cvt_roundph_epi32<const ROUNDING: i32>(a: __m256h) -> __m512i { |
| 14561 | static_assert_rounding!(ROUNDING); |
| 14562 | _mm512_mask_cvt_roundph_epi32::<ROUNDING>(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14563 | } |
| 14564 | |
| 14565 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14566 | /// results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14567 | /// |
| 14568 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14569 | /// |
| 14570 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14571 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14572 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14573 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14574 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14575 | /// |
| 14576 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epi32) |
| 14577 | #[inline ] |
| 14578 | #[target_feature (enable = "avx512fp16" )] |
| 14579 | #[cfg_attr (test, assert_instr(vcvtph2dq, ROUNDING = 8))] |
| 14580 | #[rustc_legacy_const_generics (3)] |
| 14581 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14582 | pub fn _mm512_mask_cvt_roundph_epi32<const ROUNDING: i32>( |
| 14583 | src: __m512i, |
| 14584 | k: __mmask16, |
| 14585 | a: __m256h, |
| 14586 | ) -> __m512i { |
| 14587 | unsafe { |
| 14588 | static_assert_rounding!(ROUNDING); |
| 14589 | transmute(src:vcvtph2dq_512(a, src.as_i32x16(), k, ROUNDING)) |
| 14590 | } |
| 14591 | } |
| 14592 | |
| 14593 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14594 | /// results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14595 | /// |
| 14596 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14597 | /// |
| 14598 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14599 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14600 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14601 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14602 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14603 | /// |
| 14604 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epi32) |
| 14605 | #[inline ] |
| 14606 | #[target_feature (enable = "avx512fp16" )] |
| 14607 | #[cfg_attr (test, assert_instr(vcvtph2dq, ROUNDING = 8))] |
| 14608 | #[rustc_legacy_const_generics (2)] |
| 14609 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14610 | pub fn _mm512_maskz_cvt_roundph_epi32<const ROUNDING: i32>(k: __mmask16, a: __m256h) -> __m512i { |
| 14611 | static_assert_rounding!(ROUNDING); |
| 14612 | _mm512_mask_cvt_roundph_epi32::<ROUNDING>(src:_mm512_setzero_si512(), k, a) |
| 14613 | } |
| 14614 | |
| 14615 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit integer, and store |
| 14616 | /// the result in dst. |
| 14617 | /// |
| 14618 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsh_i32) |
| 14619 | #[inline ] |
| 14620 | #[target_feature (enable = "avx512fp16" )] |
| 14621 | #[cfg_attr (test, assert_instr(vcvtsh2si))] |
| 14622 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14623 | pub fn _mm_cvtsh_i32(a: __m128h) -> i32 { |
| 14624 | unsafe { vcvtsh2si32(a, _MM_FROUND_CUR_DIRECTION) } |
| 14625 | } |
| 14626 | |
| 14627 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit integer, and store |
| 14628 | /// the result in dst. |
| 14629 | /// |
| 14630 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14631 | /// |
| 14632 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14633 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14634 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14635 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14636 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14637 | /// |
| 14638 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundsh_i32) |
| 14639 | #[inline ] |
| 14640 | #[target_feature (enable = "avx512fp16" )] |
| 14641 | #[cfg_attr (test, assert_instr(vcvtsh2si, ROUNDING = 8))] |
| 14642 | #[rustc_legacy_const_generics (1)] |
| 14643 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14644 | pub fn _mm_cvt_roundsh_i32<const ROUNDING: i32>(a: __m128h) -> i32 { |
| 14645 | unsafe { |
| 14646 | static_assert_rounding!(ROUNDING); |
| 14647 | vcvtsh2si32(a, ROUNDING) |
| 14648 | } |
| 14649 | } |
| 14650 | |
| 14651 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers, and store the |
| 14652 | /// results in dst. |
| 14653 | /// |
| 14654 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epu32) |
| 14655 | #[inline ] |
| 14656 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14657 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14658 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14659 | pub fn _mm_cvtph_epu32(a: __m128h) -> __m128i { |
| 14660 | _mm_mask_cvtph_epu32(src:_mm_undefined_si128(), k:0xff, a) |
| 14661 | } |
| 14662 | |
| 14663 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14664 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14665 | /// |
| 14666 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epu32) |
| 14667 | #[inline ] |
| 14668 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14669 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14670 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14671 | pub fn _mm_mask_cvtph_epu32(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 14672 | unsafe { transmute(src:vcvtph2udq_128(a, src.as_u32x4(), k)) } |
| 14673 | } |
| 14674 | |
| 14675 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14676 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14677 | /// |
| 14678 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epu32) |
| 14679 | #[inline ] |
| 14680 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14681 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14682 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14683 | pub fn _mm_maskz_cvtph_epu32(k: __mmask8, a: __m128h) -> __m128i { |
| 14684 | _mm_mask_cvtph_epu32(src:_mm_setzero_si128(), k, a) |
| 14685 | } |
| 14686 | |
| 14687 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14688 | /// the results in dst. |
| 14689 | /// |
| 14690 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epu32) |
| 14691 | #[inline ] |
| 14692 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14693 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14694 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14695 | pub fn _mm256_cvtph_epu32(a: __m128h) -> __m256i { |
| 14696 | _mm256_mask_cvtph_epu32(src:_mm256_undefined_si256(), k:0xff, a) |
| 14697 | } |
| 14698 | |
| 14699 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14700 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14701 | /// |
| 14702 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epu32) |
| 14703 | #[inline ] |
| 14704 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14705 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14706 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14707 | pub fn _mm256_mask_cvtph_epu32(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 14708 | unsafe { transmute(src:vcvtph2udq_256(a, src.as_u32x8(), k)) } |
| 14709 | } |
| 14710 | |
| 14711 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14712 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14713 | /// |
| 14714 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epu32) |
| 14715 | #[inline ] |
| 14716 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14717 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14718 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14719 | pub fn _mm256_maskz_cvtph_epu32(k: __mmask8, a: __m128h) -> __m256i { |
| 14720 | _mm256_mask_cvtph_epu32(src:_mm256_setzero_si256(), k, a) |
| 14721 | } |
| 14722 | |
| 14723 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14724 | /// the results in dst. |
| 14725 | /// |
| 14726 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epu32) |
| 14727 | #[inline ] |
| 14728 | #[target_feature (enable = "avx512fp16" )] |
| 14729 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14730 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14731 | pub fn _mm512_cvtph_epu32(a: __m256h) -> __m512i { |
| 14732 | _mm512_mask_cvtph_epu32(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14733 | } |
| 14734 | |
| 14735 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14736 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14737 | /// |
| 14738 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epu32) |
| 14739 | #[inline ] |
| 14740 | #[target_feature (enable = "avx512fp16" )] |
| 14741 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14742 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14743 | pub fn _mm512_mask_cvtph_epu32(src: __m512i, k: __mmask16, a: __m256h) -> __m512i { |
| 14744 | unsafe { |
| 14745 | transmute(src:vcvtph2udq_512( |
| 14746 | a, |
| 14747 | src.as_u32x16(), |
| 14748 | k, |
| 14749 | _MM_FROUND_CUR_DIRECTION, |
| 14750 | )) |
| 14751 | } |
| 14752 | } |
| 14753 | |
| 14754 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14755 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14756 | /// |
| 14757 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epu32) |
| 14758 | #[inline ] |
| 14759 | #[target_feature (enable = "avx512fp16" )] |
| 14760 | #[cfg_attr (test, assert_instr(vcvtph2udq))] |
| 14761 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14762 | pub fn _mm512_maskz_cvtph_epu32(k: __mmask16, a: __m256h) -> __m512i { |
| 14763 | _mm512_mask_cvtph_epu32(src:_mm512_setzero_si512(), k, a) |
| 14764 | } |
| 14765 | |
| 14766 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14767 | /// the results in dst. |
| 14768 | /// |
| 14769 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14770 | /// |
| 14771 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14772 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14773 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14774 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14775 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14776 | /// |
| 14777 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epu32) |
| 14778 | #[inline ] |
| 14779 | #[target_feature (enable = "avx512fp16" )] |
| 14780 | #[cfg_attr (test, assert_instr(vcvtph2udq, ROUNDING = 8))] |
| 14781 | #[rustc_legacy_const_generics (1)] |
| 14782 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14783 | pub fn _mm512_cvt_roundph_epu32<const ROUNDING: i32>(a: __m256h) -> __m512i { |
| 14784 | static_assert_rounding!(ROUNDING); |
| 14785 | _mm512_mask_cvt_roundph_epu32::<ROUNDING>(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14786 | } |
| 14787 | |
| 14788 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14789 | /// the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14790 | /// |
| 14791 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14792 | /// |
| 14793 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14794 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14795 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14796 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14797 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14798 | /// |
| 14799 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epu32) |
| 14800 | #[inline ] |
| 14801 | #[target_feature (enable = "avx512fp16" )] |
| 14802 | #[cfg_attr (test, assert_instr(vcvtph2udq, ROUNDING = 8))] |
| 14803 | #[rustc_legacy_const_generics (3)] |
| 14804 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14805 | pub fn _mm512_mask_cvt_roundph_epu32<const ROUNDING: i32>( |
| 14806 | src: __m512i, |
| 14807 | k: __mmask16, |
| 14808 | a: __m256h, |
| 14809 | ) -> __m512i { |
| 14810 | unsafe { |
| 14811 | static_assert_rounding!(ROUNDING); |
| 14812 | transmute(src:vcvtph2udq_512(a, src.as_u32x16(), k, ROUNDING)) |
| 14813 | } |
| 14814 | } |
| 14815 | |
| 14816 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers, and store |
| 14817 | /// the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14818 | /// |
| 14819 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 14820 | /// |
| 14821 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 14822 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 14823 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 14824 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 14825 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 14826 | /// |
| 14827 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epu32) |
| 14828 | #[inline ] |
| 14829 | #[target_feature (enable = "avx512fp16" )] |
| 14830 | #[cfg_attr (test, assert_instr(vcvtph2udq, ROUNDING = 8))] |
| 14831 | #[rustc_legacy_const_generics (2)] |
| 14832 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14833 | pub fn _mm512_maskz_cvt_roundph_epu32<const ROUNDING: i32>(k: __mmask16, a: __m256h) -> __m512i { |
| 14834 | static_assert_rounding!(ROUNDING); |
| 14835 | _mm512_mask_cvt_roundph_epu32::<ROUNDING>(src:_mm512_setzero_si512(), k, a) |
| 14836 | } |
| 14837 | |
| 14838 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit unsigned integer, and store |
| 14839 | /// the result in dst. |
| 14840 | /// |
| 14841 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsh_u32) |
| 14842 | #[inline ] |
| 14843 | #[target_feature (enable = "avx512fp16" )] |
| 14844 | #[cfg_attr (test, assert_instr(vcvtsh2usi))] |
| 14845 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14846 | pub fn _mm_cvtsh_u32(a: __m128h) -> u32 { |
| 14847 | unsafe { vcvtsh2usi32(a, _MM_FROUND_CUR_DIRECTION) } |
| 14848 | } |
| 14849 | |
| 14850 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit unsigned integer, and store |
| 14851 | /// the result in dst. |
| 14852 | /// |
| 14853 | /// Exceptions can be suppressed by passing [`_MM_FROUND_NO_EXC`] in the sae parameter. |
| 14854 | /// |
| 14855 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundsh_u32) |
| 14856 | #[inline ] |
| 14857 | #[target_feature (enable = "avx512fp16" )] |
| 14858 | #[cfg_attr (test, assert_instr(vcvtsh2usi, SAE = 8))] |
| 14859 | #[rustc_legacy_const_generics (1)] |
| 14860 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14861 | pub fn _mm_cvt_roundsh_u32<const SAE: i32>(a: __m128h) -> u32 { |
| 14862 | unsafe { |
| 14863 | static_assert_rounding!(SAE); |
| 14864 | vcvtsh2usi32(a, SAE) |
| 14865 | } |
| 14866 | } |
| 14867 | |
| 14868 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14869 | /// store the results in dst. |
| 14870 | /// |
| 14871 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epi32) |
| 14872 | #[inline ] |
| 14873 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14874 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14875 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14876 | pub fn _mm_cvttph_epi32(a: __m128h) -> __m128i { |
| 14877 | _mm_mask_cvttph_epi32(src:_mm_undefined_si128(), k:0xff, a) |
| 14878 | } |
| 14879 | |
| 14880 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14881 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14882 | /// |
| 14883 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epi32) |
| 14884 | #[inline ] |
| 14885 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14886 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14887 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14888 | pub fn _mm_mask_cvttph_epi32(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 14889 | unsafe { transmute(src:vcvttph2dq_128(a, src.as_i32x4(), k)) } |
| 14890 | } |
| 14891 | |
| 14892 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14893 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14894 | /// |
| 14895 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epi32) |
| 14896 | #[inline ] |
| 14897 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14898 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14899 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14900 | pub fn _mm_maskz_cvttph_epi32(k: __mmask8, a: __m128h) -> __m128i { |
| 14901 | _mm_mask_cvttph_epi32(src:_mm_setzero_si128(), k, a) |
| 14902 | } |
| 14903 | |
| 14904 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14905 | /// store the results in dst. |
| 14906 | /// |
| 14907 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epi32) |
| 14908 | #[inline ] |
| 14909 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14910 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14911 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14912 | pub fn _mm256_cvttph_epi32(a: __m128h) -> __m256i { |
| 14913 | _mm256_mask_cvttph_epi32(src:_mm256_undefined_si256(), k:0xff, a) |
| 14914 | } |
| 14915 | |
| 14916 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14917 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14918 | /// |
| 14919 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epi32) |
| 14920 | #[inline ] |
| 14921 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14922 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14923 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14924 | pub fn _mm256_mask_cvttph_epi32(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 14925 | unsafe { transmute(src:vcvttph2dq_256(a, src.as_i32x8(), k)) } |
| 14926 | } |
| 14927 | |
| 14928 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14929 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14930 | /// |
| 14931 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epi32) |
| 14932 | #[inline ] |
| 14933 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 14934 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14935 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14936 | pub fn _mm256_maskz_cvttph_epi32(k: __mmask8, a: __m128h) -> __m256i { |
| 14937 | _mm256_mask_cvttph_epi32(src:_mm256_setzero_si256(), k, a) |
| 14938 | } |
| 14939 | |
| 14940 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14941 | /// store the results in dst. |
| 14942 | /// |
| 14943 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epi32) |
| 14944 | #[inline ] |
| 14945 | #[target_feature (enable = "avx512fp16" )] |
| 14946 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14947 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14948 | pub fn _mm512_cvttph_epi32(a: __m256h) -> __m512i { |
| 14949 | _mm512_mask_cvttph_epi32(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14950 | } |
| 14951 | |
| 14952 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14953 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 14954 | /// |
| 14955 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epi32) |
| 14956 | #[inline ] |
| 14957 | #[target_feature (enable = "avx512fp16" )] |
| 14958 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14959 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14960 | pub fn _mm512_mask_cvttph_epi32(src: __m512i, k: __mmask16, a: __m256h) -> __m512i { |
| 14961 | unsafe { |
| 14962 | transmute(src:vcvttph2dq_512( |
| 14963 | a, |
| 14964 | src.as_i32x16(), |
| 14965 | k, |
| 14966 | _MM_FROUND_CUR_DIRECTION, |
| 14967 | )) |
| 14968 | } |
| 14969 | } |
| 14970 | |
| 14971 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14972 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 14973 | /// |
| 14974 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epi32) |
| 14975 | #[inline ] |
| 14976 | #[target_feature (enable = "avx512fp16" )] |
| 14977 | #[cfg_attr (test, assert_instr(vcvttph2dq))] |
| 14978 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14979 | pub fn _mm512_maskz_cvttph_epi32(k: __mmask16, a: __m256h) -> __m512i { |
| 14980 | _mm512_mask_cvttph_epi32(src:_mm512_setzero_si512(), k, a) |
| 14981 | } |
| 14982 | |
| 14983 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 14984 | /// store the results in dst. |
| 14985 | /// |
| 14986 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 14987 | /// |
| 14988 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epi32) |
| 14989 | #[inline ] |
| 14990 | #[target_feature (enable = "avx512fp16" )] |
| 14991 | #[cfg_attr (test, assert_instr(vcvttph2dq, SAE = 8))] |
| 14992 | #[rustc_legacy_const_generics (1)] |
| 14993 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 14994 | pub fn _mm512_cvtt_roundph_epi32<const SAE: i32>(a: __m256h) -> __m512i { |
| 14995 | static_assert_sae!(SAE); |
| 14996 | _mm512_mask_cvtt_roundph_epi32::<SAE>(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 14997 | } |
| 14998 | |
| 14999 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 15000 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15001 | /// |
| 15002 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15003 | /// |
| 15004 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epi32) |
| 15005 | #[inline ] |
| 15006 | #[target_feature (enable = "avx512fp16" )] |
| 15007 | #[cfg_attr (test, assert_instr(vcvttph2dq, SAE = 8))] |
| 15008 | #[rustc_legacy_const_generics (3)] |
| 15009 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15010 | pub fn _mm512_mask_cvtt_roundph_epi32<const SAE: i32>( |
| 15011 | src: __m512i, |
| 15012 | k: __mmask16, |
| 15013 | a: __m256h, |
| 15014 | ) -> __m512i { |
| 15015 | unsafe { |
| 15016 | static_assert_sae!(SAE); |
| 15017 | transmute(src:vcvttph2dq_512(a, src.as_i32x16(), k, SAE)) |
| 15018 | } |
| 15019 | } |
| 15020 | |
| 15021 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit integers with truncation, and |
| 15022 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15023 | /// |
| 15024 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15025 | /// |
| 15026 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epi32) |
| 15027 | #[inline ] |
| 15028 | #[target_feature (enable = "avx512fp16" )] |
| 15029 | #[cfg_attr (test, assert_instr(vcvttph2dq, SAE = 8))] |
| 15030 | #[rustc_legacy_const_generics (2)] |
| 15031 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15032 | pub fn _mm512_maskz_cvtt_roundph_epi32<const SAE: i32>(k: __mmask16, a: __m256h) -> __m512i { |
| 15033 | static_assert_sae!(SAE); |
| 15034 | _mm512_mask_cvtt_roundph_epi32::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 15035 | } |
| 15036 | |
| 15037 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit integer with truncation, and store |
| 15038 | /// the result in dst. |
| 15039 | /// |
| 15040 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsh_i32) |
| 15041 | #[inline ] |
| 15042 | #[target_feature (enable = "avx512fp16" )] |
| 15043 | #[cfg_attr (test, assert_instr(vcvttsh2si))] |
| 15044 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15045 | pub fn _mm_cvttsh_i32(a: __m128h) -> i32 { |
| 15046 | unsafe { vcvttsh2si32(a, _MM_FROUND_CUR_DIRECTION) } |
| 15047 | } |
| 15048 | |
| 15049 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit integer with truncation, and store |
| 15050 | /// the result in dst. |
| 15051 | /// |
| 15052 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15053 | /// |
| 15054 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_roundsh_i32) |
| 15055 | #[inline ] |
| 15056 | #[target_feature (enable = "avx512fp16" )] |
| 15057 | #[cfg_attr (test, assert_instr(vcvttsh2si, SAE = 8))] |
| 15058 | #[rustc_legacy_const_generics (1)] |
| 15059 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15060 | pub fn _mm_cvtt_roundsh_i32<const SAE: i32>(a: __m128h) -> i32 { |
| 15061 | unsafe { |
| 15062 | static_assert_sae!(SAE); |
| 15063 | vcvttsh2si32(a, SAE) |
| 15064 | } |
| 15065 | } |
| 15066 | |
| 15067 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15068 | /// store the results in dst. |
| 15069 | /// |
| 15070 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epu32) |
| 15071 | #[inline ] |
| 15072 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15073 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15074 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15075 | pub fn _mm_cvttph_epu32(a: __m128h) -> __m128i { |
| 15076 | _mm_mask_cvttph_epu32(src:_mm_undefined_si128(), k:0xff, a) |
| 15077 | } |
| 15078 | |
| 15079 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15080 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15081 | /// |
| 15082 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epu32) |
| 15083 | #[inline ] |
| 15084 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15085 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15086 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15087 | pub fn _mm_mask_cvttph_epu32(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 15088 | unsafe { transmute(src:vcvttph2udq_128(a, src.as_u32x4(), k)) } |
| 15089 | } |
| 15090 | |
| 15091 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15092 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15093 | /// |
| 15094 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epu32) |
| 15095 | #[inline ] |
| 15096 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15097 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15098 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15099 | pub fn _mm_maskz_cvttph_epu32(k: __mmask8, a: __m128h) -> __m128i { |
| 15100 | _mm_mask_cvttph_epu32(src:_mm_setzero_si128(), k, a) |
| 15101 | } |
| 15102 | |
| 15103 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15104 | /// store the results in dst. |
| 15105 | /// |
| 15106 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epu32) |
| 15107 | #[inline ] |
| 15108 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15109 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15110 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15111 | pub fn _mm256_cvttph_epu32(a: __m128h) -> __m256i { |
| 15112 | _mm256_mask_cvttph_epu32(src:_mm256_undefined_si256(), k:0xff, a) |
| 15113 | } |
| 15114 | |
| 15115 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15116 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15117 | /// |
| 15118 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epu32) |
| 15119 | #[inline ] |
| 15120 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15121 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15122 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15123 | pub fn _mm256_mask_cvttph_epu32(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 15124 | unsafe { transmute(src:vcvttph2udq_256(a, src.as_u32x8(), k)) } |
| 15125 | } |
| 15126 | |
| 15127 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15128 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15129 | /// |
| 15130 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epu32) |
| 15131 | #[inline ] |
| 15132 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15133 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15134 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15135 | pub fn _mm256_maskz_cvttph_epu32(k: __mmask8, a: __m128h) -> __m256i { |
| 15136 | _mm256_mask_cvttph_epu32(src:_mm256_setzero_si256(), k, a) |
| 15137 | } |
| 15138 | |
| 15139 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15140 | /// store the results in dst. |
| 15141 | /// |
| 15142 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epu32) |
| 15143 | #[inline ] |
| 15144 | #[target_feature (enable = "avx512fp16" )] |
| 15145 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15146 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15147 | pub fn _mm512_cvttph_epu32(a: __m256h) -> __m512i { |
| 15148 | _mm512_mask_cvttph_epu32(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 15149 | } |
| 15150 | |
| 15151 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15152 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15153 | /// |
| 15154 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epu32) |
| 15155 | #[inline ] |
| 15156 | #[target_feature (enable = "avx512fp16" )] |
| 15157 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15158 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15159 | pub fn _mm512_mask_cvttph_epu32(src: __m512i, k: __mmask16, a: __m256h) -> __m512i { |
| 15160 | unsafe { |
| 15161 | transmute(src:vcvttph2udq_512( |
| 15162 | a, |
| 15163 | src.as_u32x16(), |
| 15164 | k, |
| 15165 | _MM_FROUND_CUR_DIRECTION, |
| 15166 | )) |
| 15167 | } |
| 15168 | } |
| 15169 | |
| 15170 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15171 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15172 | /// |
| 15173 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epu32) |
| 15174 | #[inline ] |
| 15175 | #[target_feature (enable = "avx512fp16" )] |
| 15176 | #[cfg_attr (test, assert_instr(vcvttph2udq))] |
| 15177 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15178 | pub fn _mm512_maskz_cvttph_epu32(k: __mmask16, a: __m256h) -> __m512i { |
| 15179 | _mm512_mask_cvttph_epu32(src:_mm512_setzero_si512(), k, a) |
| 15180 | } |
| 15181 | |
| 15182 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15183 | /// store the results in dst. |
| 15184 | /// |
| 15185 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15186 | /// |
| 15187 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epu32) |
| 15188 | #[inline ] |
| 15189 | #[target_feature (enable = "avx512fp16" )] |
| 15190 | #[cfg_attr (test, assert_instr(vcvttph2udq, SAE = 8))] |
| 15191 | #[rustc_legacy_const_generics (1)] |
| 15192 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15193 | pub fn _mm512_cvtt_roundph_epu32<const SAE: i32>(a: __m256h) -> __m512i { |
| 15194 | static_assert_sae!(SAE); |
| 15195 | _mm512_mask_cvtt_roundph_epu32::<SAE>(src:_mm512_undefined_epi32(), k:0xffff, a) |
| 15196 | } |
| 15197 | |
| 15198 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15199 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15200 | /// |
| 15201 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15202 | /// |
| 15203 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epu32) |
| 15204 | #[inline ] |
| 15205 | #[target_feature (enable = "avx512fp16" )] |
| 15206 | #[cfg_attr (test, assert_instr(vcvttph2udq, SAE = 8))] |
| 15207 | #[rustc_legacy_const_generics (3)] |
| 15208 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15209 | pub fn _mm512_mask_cvtt_roundph_epu32<const SAE: i32>( |
| 15210 | src: __m512i, |
| 15211 | k: __mmask16, |
| 15212 | a: __m256h, |
| 15213 | ) -> __m512i { |
| 15214 | unsafe { |
| 15215 | static_assert_sae!(SAE); |
| 15216 | transmute(src:vcvttph2udq_512(a, src.as_u32x16(), k, SAE)) |
| 15217 | } |
| 15218 | } |
| 15219 | |
| 15220 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 32-bit unsigned integers with truncation, and |
| 15221 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15222 | /// |
| 15223 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15224 | /// |
| 15225 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epu32) |
| 15226 | #[inline ] |
| 15227 | #[target_feature (enable = "avx512fp16" )] |
| 15228 | #[cfg_attr (test, assert_instr(vcvttph2udq, SAE = 8))] |
| 15229 | #[rustc_legacy_const_generics (2)] |
| 15230 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15231 | pub fn _mm512_maskz_cvtt_roundph_epu32<const SAE: i32>(k: __mmask16, a: __m256h) -> __m512i { |
| 15232 | static_assert_sae!(SAE); |
| 15233 | _mm512_mask_cvtt_roundph_epu32::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 15234 | } |
| 15235 | |
| 15236 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit unsigned integer with truncation, and store |
| 15237 | /// the result in dst. |
| 15238 | /// |
| 15239 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsh_u32) |
| 15240 | #[inline ] |
| 15241 | #[target_feature (enable = "avx512fp16" )] |
| 15242 | #[cfg_attr (test, assert_instr(vcvttsh2usi))] |
| 15243 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15244 | pub fn _mm_cvttsh_u32(a: __m128h) -> u32 { |
| 15245 | unsafe { vcvttsh2usi32(a, _MM_FROUND_CUR_DIRECTION) } |
| 15246 | } |
| 15247 | |
| 15248 | /// Convert the lower half-precision (16-bit) floating-point element in a to a 32-bit unsigned integer with truncation, and store |
| 15249 | /// the result in dst. |
| 15250 | /// |
| 15251 | /// Exceptions can be suppressed by passing `_MM_FROUND_NO_EXC` in the `sae` parameter. |
| 15252 | /// |
| 15253 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_roundsh_u32) |
| 15254 | #[inline ] |
| 15255 | #[target_feature (enable = "avx512fp16" )] |
| 15256 | #[cfg_attr (test, assert_instr(vcvttsh2usi, SAE = 8))] |
| 15257 | #[rustc_legacy_const_generics (1)] |
| 15258 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15259 | pub fn _mm_cvtt_roundsh_u32<const SAE: i32>(a: __m128h) -> u32 { |
| 15260 | unsafe { |
| 15261 | static_assert_sae!(SAE); |
| 15262 | vcvttsh2usi32(a, SAE) |
| 15263 | } |
| 15264 | } |
| 15265 | |
| 15266 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15267 | /// store the results in dst. |
| 15268 | /// |
| 15269 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epi64) |
| 15270 | #[inline ] |
| 15271 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15272 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15273 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15274 | pub fn _mm_cvtph_epi64(a: __m128h) -> __m128i { |
| 15275 | _mm_mask_cvtph_epi64(src:_mm_undefined_si128(), k:0xff, a) |
| 15276 | } |
| 15277 | |
| 15278 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15279 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15280 | /// |
| 15281 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epi64) |
| 15282 | #[inline ] |
| 15283 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15284 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15285 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15286 | pub fn _mm_mask_cvtph_epi64(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 15287 | unsafe { transmute(src:vcvtph2qq_128(a, src.as_i64x2(), k)) } |
| 15288 | } |
| 15289 | |
| 15290 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15291 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15292 | /// |
| 15293 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epi64) |
| 15294 | #[inline ] |
| 15295 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15296 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15297 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15298 | pub fn _mm_maskz_cvtph_epi64(k: __mmask8, a: __m128h) -> __m128i { |
| 15299 | _mm_mask_cvtph_epi64(src:_mm_setzero_si128(), k, a) |
| 15300 | } |
| 15301 | |
| 15302 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15303 | /// store the results in dst. |
| 15304 | /// |
| 15305 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epi64) |
| 15306 | #[inline ] |
| 15307 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15308 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15309 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15310 | pub fn _mm256_cvtph_epi64(a: __m128h) -> __m256i { |
| 15311 | _mm256_mask_cvtph_epi64(src:_mm256_undefined_si256(), k:0xff, a) |
| 15312 | } |
| 15313 | |
| 15314 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15315 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15316 | /// |
| 15317 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epi64) |
| 15318 | #[inline ] |
| 15319 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15320 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15321 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15322 | pub fn _mm256_mask_cvtph_epi64(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 15323 | unsafe { transmute(src:vcvtph2qq_256(a, src.as_i64x4(), k)) } |
| 15324 | } |
| 15325 | |
| 15326 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15327 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15328 | /// |
| 15329 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epi64) |
| 15330 | #[inline ] |
| 15331 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15332 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15333 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15334 | pub fn _mm256_maskz_cvtph_epi64(k: __mmask8, a: __m128h) -> __m256i { |
| 15335 | _mm256_mask_cvtph_epi64(src:_mm256_setzero_si256(), k, a) |
| 15336 | } |
| 15337 | |
| 15338 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15339 | /// store the results in dst. |
| 15340 | /// |
| 15341 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epi64) |
| 15342 | #[inline ] |
| 15343 | #[target_feature (enable = "avx512fp16" )] |
| 15344 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15345 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15346 | pub fn _mm512_cvtph_epi64(a: __m128h) -> __m512i { |
| 15347 | _mm512_mask_cvtph_epi64(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15348 | } |
| 15349 | |
| 15350 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15351 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15352 | /// |
| 15353 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epi64) |
| 15354 | #[inline ] |
| 15355 | #[target_feature (enable = "avx512fp16" )] |
| 15356 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15357 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15358 | pub fn _mm512_mask_cvtph_epi64(src: __m512i, k: __mmask8, a: __m128h) -> __m512i { |
| 15359 | unsafe { |
| 15360 | transmute(src:vcvtph2qq_512( |
| 15361 | a, |
| 15362 | src.as_i64x8(), |
| 15363 | k, |
| 15364 | _MM_FROUND_CUR_DIRECTION, |
| 15365 | )) |
| 15366 | } |
| 15367 | } |
| 15368 | |
| 15369 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15370 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15371 | /// |
| 15372 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epi64) |
| 15373 | #[inline ] |
| 15374 | #[target_feature (enable = "avx512fp16" )] |
| 15375 | #[cfg_attr (test, assert_instr(vcvtph2qq))] |
| 15376 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15377 | pub fn _mm512_maskz_cvtph_epi64(k: __mmask8, a: __m128h) -> __m512i { |
| 15378 | _mm512_mask_cvtph_epi64(src:_mm512_setzero_si512(), k, a) |
| 15379 | } |
| 15380 | |
| 15381 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15382 | /// store the results in dst. |
| 15383 | /// |
| 15384 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15385 | /// |
| 15386 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15387 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15388 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15389 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15390 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15391 | /// |
| 15392 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epi64) |
| 15393 | #[inline ] |
| 15394 | #[target_feature (enable = "avx512fp16" )] |
| 15395 | #[cfg_attr (test, assert_instr(vcvtph2qq, ROUNDING = 8))] |
| 15396 | #[rustc_legacy_const_generics (1)] |
| 15397 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15398 | pub fn _mm512_cvt_roundph_epi64<const ROUNDING: i32>(a: __m128h) -> __m512i { |
| 15399 | static_assert_rounding!(ROUNDING); |
| 15400 | _mm512_mask_cvt_roundph_epi64::<ROUNDING>(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15401 | } |
| 15402 | |
| 15403 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15404 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15405 | /// |
| 15406 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15407 | /// |
| 15408 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15409 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15410 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15411 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15412 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15413 | /// |
| 15414 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epi64) |
| 15415 | #[inline ] |
| 15416 | #[target_feature (enable = "avx512fp16" )] |
| 15417 | #[cfg_attr (test, assert_instr(vcvtph2qq, ROUNDING = 8))] |
| 15418 | #[rustc_legacy_const_generics (3)] |
| 15419 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15420 | pub fn _mm512_mask_cvt_roundph_epi64<const ROUNDING: i32>( |
| 15421 | src: __m512i, |
| 15422 | k: __mmask8, |
| 15423 | a: __m128h, |
| 15424 | ) -> __m512i { |
| 15425 | unsafe { |
| 15426 | static_assert_rounding!(ROUNDING); |
| 15427 | transmute(src:vcvtph2qq_512(a, src.as_i64x8(), k, ROUNDING)) |
| 15428 | } |
| 15429 | } |
| 15430 | |
| 15431 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers, and |
| 15432 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15433 | /// |
| 15434 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15435 | /// |
| 15436 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15437 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15438 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15439 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15440 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15441 | /// |
| 15442 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epi64) |
| 15443 | #[inline ] |
| 15444 | #[target_feature (enable = "avx512fp16" )] |
| 15445 | #[cfg_attr (test, assert_instr(vcvtph2qq, ROUNDING = 8))] |
| 15446 | #[rustc_legacy_const_generics (2)] |
| 15447 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15448 | pub fn _mm512_maskz_cvt_roundph_epi64<const ROUNDING: i32>(k: __mmask8, a: __m128h) -> __m512i { |
| 15449 | static_assert_rounding!(ROUNDING); |
| 15450 | _mm512_mask_cvt_roundph_epi64::<ROUNDING>(src:_mm512_setzero_si512(), k, a) |
| 15451 | } |
| 15452 | |
| 15453 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15454 | /// store the results in dst. |
| 15455 | /// |
| 15456 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_epu64) |
| 15457 | #[inline ] |
| 15458 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15459 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15460 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15461 | pub fn _mm_cvtph_epu64(a: __m128h) -> __m128i { |
| 15462 | _mm_mask_cvtph_epu64(src:_mm_undefined_si128(), k:0xff, a) |
| 15463 | } |
| 15464 | |
| 15465 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15466 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15467 | /// |
| 15468 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_epu64) |
| 15469 | #[inline ] |
| 15470 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15471 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15472 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15473 | pub fn _mm_mask_cvtph_epu64(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 15474 | unsafe { transmute(src:vcvtph2uqq_128(a, src.as_u64x2(), k)) } |
| 15475 | } |
| 15476 | |
| 15477 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15478 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15479 | /// |
| 15480 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_epu64) |
| 15481 | #[inline ] |
| 15482 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15483 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15484 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15485 | pub fn _mm_maskz_cvtph_epu64(k: __mmask8, a: __m128h) -> __m128i { |
| 15486 | _mm_mask_cvtph_epu64(src:_mm_setzero_si128(), k, a) |
| 15487 | } |
| 15488 | |
| 15489 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15490 | /// store the results in dst. |
| 15491 | /// |
| 15492 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_epu64) |
| 15493 | #[inline ] |
| 15494 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15495 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15496 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15497 | pub fn _mm256_cvtph_epu64(a: __m128h) -> __m256i { |
| 15498 | _mm256_mask_cvtph_epu64(src:_mm256_undefined_si256(), k:0xff, a) |
| 15499 | } |
| 15500 | |
| 15501 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15502 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15503 | /// |
| 15504 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_epu64) |
| 15505 | #[inline ] |
| 15506 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15507 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15508 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15509 | pub fn _mm256_mask_cvtph_epu64(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 15510 | unsafe { transmute(src:vcvtph2uqq_256(a, src.as_u64x4(), k)) } |
| 15511 | } |
| 15512 | |
| 15513 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15514 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15515 | /// |
| 15516 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_epu64) |
| 15517 | #[inline ] |
| 15518 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15519 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15520 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15521 | pub fn _mm256_maskz_cvtph_epu64(k: __mmask8, a: __m128h) -> __m256i { |
| 15522 | _mm256_mask_cvtph_epu64(src:_mm256_setzero_si256(), k, a) |
| 15523 | } |
| 15524 | |
| 15525 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15526 | /// store the results in dst. |
| 15527 | /// |
| 15528 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_epu64) |
| 15529 | #[inline ] |
| 15530 | #[target_feature (enable = "avx512fp16" )] |
| 15531 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15532 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15533 | pub fn _mm512_cvtph_epu64(a: __m128h) -> __m512i { |
| 15534 | _mm512_mask_cvtph_epu64(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15535 | } |
| 15536 | |
| 15537 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15538 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15539 | /// |
| 15540 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_epu64) |
| 15541 | #[inline ] |
| 15542 | #[target_feature (enable = "avx512fp16" )] |
| 15543 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15544 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15545 | pub fn _mm512_mask_cvtph_epu64(src: __m512i, k: __mmask8, a: __m128h) -> __m512i { |
| 15546 | unsafe { |
| 15547 | transmute(src:vcvtph2uqq_512( |
| 15548 | a, |
| 15549 | src.as_u64x8(), |
| 15550 | k, |
| 15551 | _MM_FROUND_CUR_DIRECTION, |
| 15552 | )) |
| 15553 | } |
| 15554 | } |
| 15555 | |
| 15556 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15557 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15558 | /// |
| 15559 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_epu64) |
| 15560 | #[inline ] |
| 15561 | #[target_feature (enable = "avx512fp16" )] |
| 15562 | #[cfg_attr (test, assert_instr(vcvtph2uqq))] |
| 15563 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15564 | pub fn _mm512_maskz_cvtph_epu64(k: __mmask8, a: __m128h) -> __m512i { |
| 15565 | _mm512_mask_cvtph_epu64(src:_mm512_setzero_si512(), k, a) |
| 15566 | } |
| 15567 | |
| 15568 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15569 | /// store the results in dst. |
| 15570 | /// |
| 15571 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15572 | /// |
| 15573 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15574 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15575 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15576 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15577 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15578 | /// |
| 15579 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_epu64) |
| 15580 | #[inline ] |
| 15581 | #[target_feature (enable = "avx512fp16" )] |
| 15582 | #[cfg_attr (test, assert_instr(vcvtph2uqq, ROUNDING = 8))] |
| 15583 | #[rustc_legacy_const_generics (1)] |
| 15584 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15585 | pub fn _mm512_cvt_roundph_epu64<const ROUNDING: i32>(a: __m128h) -> __m512i { |
| 15586 | static_assert_rounding!(ROUNDING); |
| 15587 | _mm512_mask_cvt_roundph_epu64::<ROUNDING>(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15588 | } |
| 15589 | |
| 15590 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15591 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15592 | /// |
| 15593 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15594 | /// |
| 15595 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15596 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15597 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15598 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15599 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15600 | /// |
| 15601 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_epu64) |
| 15602 | #[inline ] |
| 15603 | #[target_feature (enable = "avx512fp16" )] |
| 15604 | #[cfg_attr (test, assert_instr(vcvtph2uqq, ROUNDING = 8))] |
| 15605 | #[rustc_legacy_const_generics (3)] |
| 15606 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15607 | pub fn _mm512_mask_cvt_roundph_epu64<const ROUNDING: i32>( |
| 15608 | src: __m512i, |
| 15609 | k: __mmask8, |
| 15610 | a: __m128h, |
| 15611 | ) -> __m512i { |
| 15612 | unsafe { |
| 15613 | static_assert_rounding!(ROUNDING); |
| 15614 | transmute(src:vcvtph2uqq_512(a, src.as_u64x8(), k, ROUNDING)) |
| 15615 | } |
| 15616 | } |
| 15617 | |
| 15618 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers, and |
| 15619 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15620 | /// |
| 15621 | /// Rounding is done according to the rounding parameter, which can be one of: |
| 15622 | /// |
| 15623 | /// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions |
| 15624 | /// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions |
| 15625 | /// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions |
| 15626 | /// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions |
| 15627 | /// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`] |
| 15628 | /// |
| 15629 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_epu64) |
| 15630 | #[inline ] |
| 15631 | #[target_feature (enable = "avx512fp16" )] |
| 15632 | #[cfg_attr (test, assert_instr(vcvtph2uqq, ROUNDING = 8))] |
| 15633 | #[rustc_legacy_const_generics (2)] |
| 15634 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15635 | pub fn _mm512_maskz_cvt_roundph_epu64<const ROUNDING: i32>(k: __mmask8, a: __m128h) -> __m512i { |
| 15636 | static_assert_rounding!(ROUNDING); |
| 15637 | _mm512_mask_cvt_roundph_epu64::<ROUNDING>(src:_mm512_setzero_si512(), k, a) |
| 15638 | } |
| 15639 | |
| 15640 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15641 | /// store the results in dst. |
| 15642 | /// |
| 15643 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epi64) |
| 15644 | #[inline ] |
| 15645 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15646 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15647 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15648 | pub fn _mm_cvttph_epi64(a: __m128h) -> __m128i { |
| 15649 | _mm_mask_cvttph_epi64(src:_mm_undefined_si128(), k:0xff, a) |
| 15650 | } |
| 15651 | |
| 15652 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15653 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15654 | /// |
| 15655 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epi64) |
| 15656 | #[inline ] |
| 15657 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15658 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15659 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15660 | pub fn _mm_mask_cvttph_epi64(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 15661 | unsafe { transmute(src:vcvttph2qq_128(a, src.as_i64x2(), k)) } |
| 15662 | } |
| 15663 | |
| 15664 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15665 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15666 | /// |
| 15667 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epi64) |
| 15668 | #[inline ] |
| 15669 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15670 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15671 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15672 | pub fn _mm_maskz_cvttph_epi64(k: __mmask8, a: __m128h) -> __m128i { |
| 15673 | _mm_mask_cvttph_epi64(src:_mm_setzero_si128(), k, a) |
| 15674 | } |
| 15675 | |
| 15676 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15677 | /// store the results in dst. |
| 15678 | /// |
| 15679 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epi64) |
| 15680 | #[inline ] |
| 15681 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15682 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15683 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15684 | pub fn _mm256_cvttph_epi64(a: __m128h) -> __m256i { |
| 15685 | _mm256_mask_cvttph_epi64(src:_mm256_undefined_si256(), k:0xff, a) |
| 15686 | } |
| 15687 | |
| 15688 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15689 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15690 | /// |
| 15691 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epi64) |
| 15692 | #[inline ] |
| 15693 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15694 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15695 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15696 | pub fn _mm256_mask_cvttph_epi64(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 15697 | unsafe { transmute(src:vcvttph2qq_256(a, src.as_i64x4(), k)) } |
| 15698 | } |
| 15699 | |
| 15700 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15701 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15702 | /// |
| 15703 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epi64) |
| 15704 | #[inline ] |
| 15705 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15706 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15707 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15708 | pub fn _mm256_maskz_cvttph_epi64(k: __mmask8, a: __m128h) -> __m256i { |
| 15709 | _mm256_mask_cvttph_epi64(src:_mm256_setzero_si256(), k, a) |
| 15710 | } |
| 15711 | |
| 15712 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15713 | /// store the results in dst. |
| 15714 | /// |
| 15715 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epi64) |
| 15716 | #[inline ] |
| 15717 | #[target_feature (enable = "avx512fp16" )] |
| 15718 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15719 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15720 | pub fn _mm512_cvttph_epi64(a: __m128h) -> __m512i { |
| 15721 | _mm512_mask_cvttph_epi64(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15722 | } |
| 15723 | |
| 15724 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15725 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15726 | /// |
| 15727 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epi64) |
| 15728 | #[inline ] |
| 15729 | #[target_feature (enable = "avx512fp16" )] |
| 15730 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15731 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15732 | pub fn _mm512_mask_cvttph_epi64(src: __m512i, k: __mmask8, a: __m128h) -> __m512i { |
| 15733 | unsafe { |
| 15734 | transmute(src:vcvttph2qq_512( |
| 15735 | a, |
| 15736 | src.as_i64x8(), |
| 15737 | k, |
| 15738 | _MM_FROUND_CUR_DIRECTION, |
| 15739 | )) |
| 15740 | } |
| 15741 | } |
| 15742 | |
| 15743 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15744 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15745 | /// |
| 15746 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epi64) |
| 15747 | #[inline ] |
| 15748 | #[target_feature (enable = "avx512fp16" )] |
| 15749 | #[cfg_attr (test, assert_instr(vcvttph2qq))] |
| 15750 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15751 | pub fn _mm512_maskz_cvttph_epi64(k: __mmask8, a: __m128h) -> __m512i { |
| 15752 | _mm512_mask_cvttph_epi64(src:_mm512_setzero_si512(), k, a) |
| 15753 | } |
| 15754 | |
| 15755 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15756 | /// store the results in dst. |
| 15757 | /// |
| 15758 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15759 | /// |
| 15760 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epi64) |
| 15761 | #[inline ] |
| 15762 | #[target_feature (enable = "avx512fp16" )] |
| 15763 | #[cfg_attr (test, assert_instr(vcvttph2qq, SAE = 8))] |
| 15764 | #[rustc_legacy_const_generics (1)] |
| 15765 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15766 | pub fn _mm512_cvtt_roundph_epi64<const SAE: i32>(a: __m128h) -> __m512i { |
| 15767 | static_assert_sae!(SAE); |
| 15768 | _mm512_mask_cvtt_roundph_epi64::<SAE>(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15769 | } |
| 15770 | |
| 15771 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15772 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15773 | /// |
| 15774 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15775 | /// |
| 15776 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epi64) |
| 15777 | #[inline ] |
| 15778 | #[target_feature (enable = "avx512fp16" )] |
| 15779 | #[cfg_attr (test, assert_instr(vcvttph2qq, SAE = 8))] |
| 15780 | #[rustc_legacy_const_generics (3)] |
| 15781 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15782 | pub fn _mm512_mask_cvtt_roundph_epi64<const SAE: i32>( |
| 15783 | src: __m512i, |
| 15784 | k: __mmask8, |
| 15785 | a: __m128h, |
| 15786 | ) -> __m512i { |
| 15787 | unsafe { |
| 15788 | static_assert_sae!(SAE); |
| 15789 | transmute(src:vcvttph2qq_512(a, src.as_i64x8(), k, SAE)) |
| 15790 | } |
| 15791 | } |
| 15792 | |
| 15793 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit integers with truncation, and |
| 15794 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15795 | /// |
| 15796 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15797 | /// |
| 15798 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epi64) |
| 15799 | #[inline ] |
| 15800 | #[target_feature (enable = "avx512fp16" )] |
| 15801 | #[cfg_attr (test, assert_instr(vcvttph2qq, SAE = 8))] |
| 15802 | #[rustc_legacy_const_generics (2)] |
| 15803 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15804 | pub fn _mm512_maskz_cvtt_roundph_epi64<const SAE: i32>(k: __mmask8, a: __m128h) -> __m512i { |
| 15805 | static_assert_sae!(SAE); |
| 15806 | _mm512_mask_cvtt_roundph_epi64::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 15807 | } |
| 15808 | |
| 15809 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15810 | /// store the results in dst. |
| 15811 | /// |
| 15812 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttph_epu64) |
| 15813 | #[inline ] |
| 15814 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15815 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15816 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15817 | pub fn _mm_cvttph_epu64(a: __m128h) -> __m128i { |
| 15818 | _mm_mask_cvttph_epu64(src:_mm_undefined_si128(), k:0xff, a) |
| 15819 | } |
| 15820 | |
| 15821 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15822 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15823 | /// |
| 15824 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvttph_epu64) |
| 15825 | #[inline ] |
| 15826 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15827 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15828 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15829 | pub fn _mm_mask_cvttph_epu64(src: __m128i, k: __mmask8, a: __m128h) -> __m128i { |
| 15830 | unsafe { transmute(src:vcvttph2uqq_128(a, src.as_u64x2(), k)) } |
| 15831 | } |
| 15832 | |
| 15833 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15834 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15835 | /// |
| 15836 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvttph_epu64) |
| 15837 | #[inline ] |
| 15838 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15839 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15840 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15841 | pub fn _mm_maskz_cvttph_epu64(k: __mmask8, a: __m128h) -> __m128i { |
| 15842 | _mm_mask_cvttph_epu64(src:_mm_setzero_si128(), k, a) |
| 15843 | } |
| 15844 | |
| 15845 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15846 | /// store the results in dst. |
| 15847 | /// |
| 15848 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvttph_epu64) |
| 15849 | #[inline ] |
| 15850 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15851 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15852 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15853 | pub fn _mm256_cvttph_epu64(a: __m128h) -> __m256i { |
| 15854 | _mm256_mask_cvttph_epu64(src:_mm256_undefined_si256(), k:0xff, a) |
| 15855 | } |
| 15856 | |
| 15857 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15858 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15859 | /// |
| 15860 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvttph_epu64) |
| 15861 | #[inline ] |
| 15862 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15863 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15864 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15865 | pub fn _mm256_mask_cvttph_epu64(src: __m256i, k: __mmask8, a: __m128h) -> __m256i { |
| 15866 | unsafe { transmute(src:vcvttph2uqq_256(a, src.as_u64x4(), k)) } |
| 15867 | } |
| 15868 | |
| 15869 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15870 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15871 | /// |
| 15872 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvttph_epu64) |
| 15873 | #[inline ] |
| 15874 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15875 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15876 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15877 | pub fn _mm256_maskz_cvttph_epu64(k: __mmask8, a: __m128h) -> __m256i { |
| 15878 | _mm256_mask_cvttph_epu64(src:_mm256_setzero_si256(), k, a) |
| 15879 | } |
| 15880 | |
| 15881 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15882 | /// store the results in dst. |
| 15883 | /// |
| 15884 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvttph_epu64) |
| 15885 | #[inline ] |
| 15886 | #[target_feature (enable = "avx512fp16" )] |
| 15887 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15888 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15889 | pub fn _mm512_cvttph_epu64(a: __m128h) -> __m512i { |
| 15890 | _mm512_mask_cvttph_epu64(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15891 | } |
| 15892 | |
| 15893 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15894 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15895 | /// |
| 15896 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvttph_epu64) |
| 15897 | #[inline ] |
| 15898 | #[target_feature (enable = "avx512fp16" )] |
| 15899 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15900 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15901 | pub fn _mm512_mask_cvttph_epu64(src: __m512i, k: __mmask8, a: __m128h) -> __m512i { |
| 15902 | unsafe { |
| 15903 | transmute(src:vcvttph2uqq_512( |
| 15904 | a, |
| 15905 | src.as_u64x8(), |
| 15906 | k, |
| 15907 | _MM_FROUND_CUR_DIRECTION, |
| 15908 | )) |
| 15909 | } |
| 15910 | } |
| 15911 | |
| 15912 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15913 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15914 | /// |
| 15915 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvttph_epu64) |
| 15916 | #[inline ] |
| 15917 | #[target_feature (enable = "avx512fp16" )] |
| 15918 | #[cfg_attr (test, assert_instr(vcvttph2uqq))] |
| 15919 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15920 | pub fn _mm512_maskz_cvttph_epu64(k: __mmask8, a: __m128h) -> __m512i { |
| 15921 | _mm512_mask_cvttph_epu64(src:_mm512_setzero_si512(), k, a) |
| 15922 | } |
| 15923 | |
| 15924 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15925 | /// store the results in dst. |
| 15926 | /// |
| 15927 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15928 | /// |
| 15929 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtt_roundph_epu64) |
| 15930 | #[inline ] |
| 15931 | #[target_feature (enable = "avx512fp16" )] |
| 15932 | #[cfg_attr (test, assert_instr(vcvttph2uqq, SAE = 8))] |
| 15933 | #[rustc_legacy_const_generics (1)] |
| 15934 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15935 | pub fn _mm512_cvtt_roundph_epu64<const SAE: i32>(a: __m128h) -> __m512i { |
| 15936 | static_assert_sae!(SAE); |
| 15937 | _mm512_mask_cvtt_roundph_epu64::<SAE>(src:_mm512_undefined_epi32(), k:0xff, a) |
| 15938 | } |
| 15939 | |
| 15940 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15941 | /// store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). |
| 15942 | /// |
| 15943 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15944 | /// |
| 15945 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtt_roundph_epu64) |
| 15946 | #[inline ] |
| 15947 | #[target_feature (enable = "avx512fp16" )] |
| 15948 | #[cfg_attr (test, assert_instr(vcvttph2uqq, SAE = 8))] |
| 15949 | #[rustc_legacy_const_generics (3)] |
| 15950 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15951 | pub fn _mm512_mask_cvtt_roundph_epu64<const SAE: i32>( |
| 15952 | src: __m512i, |
| 15953 | k: __mmask8, |
| 15954 | a: __m128h, |
| 15955 | ) -> __m512i { |
| 15956 | unsafe { |
| 15957 | static_assert_sae!(SAE); |
| 15958 | transmute(src:vcvttph2uqq_512(a, src.as_u64x8(), k, SAE)) |
| 15959 | } |
| 15960 | } |
| 15961 | |
| 15962 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed 64-bit unsigned integers with truncation, and |
| 15963 | /// store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). |
| 15964 | /// |
| 15965 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 15966 | /// |
| 15967 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtt_roundph_epu64) |
| 15968 | #[inline ] |
| 15969 | #[target_feature (enable = "avx512fp16" )] |
| 15970 | #[cfg_attr (test, assert_instr(vcvttph2uqq, SAE = 8))] |
| 15971 | #[rustc_legacy_const_generics (2)] |
| 15972 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15973 | pub fn _mm512_maskz_cvtt_roundph_epu64<const SAE: i32>(k: __mmask8, a: __m128h) -> __m512i { |
| 15974 | static_assert_sae!(SAE); |
| 15975 | _mm512_mask_cvtt_roundph_epu64::<SAE>(src:_mm512_setzero_si512(), k, a) |
| 15976 | } |
| 15977 | |
| 15978 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 15979 | /// floating-point elements, and store the results in dst. |
| 15980 | /// |
| 15981 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtxph_ps) |
| 15982 | #[inline ] |
| 15983 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15984 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 15985 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15986 | pub fn _mm_cvtxph_ps(a: __m128h) -> __m128 { |
| 15987 | _mm_mask_cvtxph_ps(src:_mm_setzero_ps(), k:0xff, a) |
| 15988 | } |
| 15989 | |
| 15990 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 15991 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 15992 | /// dst when the corresponding mask bit is not set). |
| 15993 | /// |
| 15994 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtxph_ps) |
| 15995 | #[inline ] |
| 15996 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 15997 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 15998 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 15999 | pub fn _mm_mask_cvtxph_ps(src: __m128, k: __mmask8, a: __m128h) -> __m128 { |
| 16000 | unsafe { vcvtph2psx_128(a, src, k) } |
| 16001 | } |
| 16002 | |
| 16003 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16004 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16005 | /// corresponding mask bit is not set). |
| 16006 | /// |
| 16007 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtxph_ps) |
| 16008 | #[inline ] |
| 16009 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16010 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16011 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16012 | pub fn _mm_maskz_cvtxph_ps(k: __mmask8, a: __m128h) -> __m128 { |
| 16013 | _mm_mask_cvtxph_ps(src:_mm_setzero_ps(), k, a) |
| 16014 | } |
| 16015 | |
| 16016 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16017 | /// floating-point elements, and store the results in dst. |
| 16018 | /// |
| 16019 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtxph_ps) |
| 16020 | #[inline ] |
| 16021 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16022 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16023 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16024 | pub fn _mm256_cvtxph_ps(a: __m128h) -> __m256 { |
| 16025 | _mm256_mask_cvtxph_ps(src:_mm256_setzero_ps(), k:0xff, a) |
| 16026 | } |
| 16027 | |
| 16028 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16029 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16030 | /// dst when the corresponding mask bit is not set). |
| 16031 | /// |
| 16032 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtxph_ps) |
| 16033 | #[inline ] |
| 16034 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16035 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16036 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16037 | pub fn _mm256_mask_cvtxph_ps(src: __m256, k: __mmask8, a: __m128h) -> __m256 { |
| 16038 | unsafe { vcvtph2psx_256(a, src, k) } |
| 16039 | } |
| 16040 | |
| 16041 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16042 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16043 | /// corresponding mask bit is not set). |
| 16044 | /// |
| 16045 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtxph_ps) |
| 16046 | #[inline ] |
| 16047 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16048 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16049 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16050 | pub fn _mm256_maskz_cvtxph_ps(k: __mmask8, a: __m128h) -> __m256 { |
| 16051 | _mm256_mask_cvtxph_ps(src:_mm256_setzero_ps(), k, a) |
| 16052 | } |
| 16053 | |
| 16054 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16055 | /// floating-point elements, and store the results in dst. |
| 16056 | /// |
| 16057 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtxph_ps) |
| 16058 | #[inline ] |
| 16059 | #[target_feature (enable = "avx512fp16" )] |
| 16060 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16061 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16062 | pub fn _mm512_cvtxph_ps(a: __m256h) -> __m512 { |
| 16063 | _mm512_mask_cvtxph_ps(src:_mm512_setzero_ps(), k:0xffff, a) |
| 16064 | } |
| 16065 | |
| 16066 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16067 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16068 | /// dst when the corresponding mask bit is not set). |
| 16069 | /// |
| 16070 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtxph_ps) |
| 16071 | #[inline ] |
| 16072 | #[target_feature (enable = "avx512fp16" )] |
| 16073 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16074 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16075 | pub fn _mm512_mask_cvtxph_ps(src: __m512, k: __mmask16, a: __m256h) -> __m512 { |
| 16076 | unsafe { vcvtph2psx_512(a, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 16077 | } |
| 16078 | |
| 16079 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16080 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16081 | /// corresponding mask bit is not set). |
| 16082 | /// |
| 16083 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtxph_ps) |
| 16084 | #[inline ] |
| 16085 | #[target_feature (enable = "avx512fp16" )] |
| 16086 | #[cfg_attr (test, assert_instr(vcvtph2psx))] |
| 16087 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16088 | pub fn _mm512_maskz_cvtxph_ps(k: __mmask16, a: __m256h) -> __m512 { |
| 16089 | _mm512_mask_cvtxph_ps(src:_mm512_setzero_ps(), k, a) |
| 16090 | } |
| 16091 | |
| 16092 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16093 | /// floating-point elements, and store the results in dst. |
| 16094 | /// |
| 16095 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16096 | /// |
| 16097 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtx_roundph_ps) |
| 16098 | #[inline ] |
| 16099 | #[target_feature (enable = "avx512fp16" )] |
| 16100 | #[cfg_attr (test, assert_instr(vcvtph2psx, SAE = 8))] |
| 16101 | #[rustc_legacy_const_generics (1)] |
| 16102 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16103 | pub fn _mm512_cvtx_roundph_ps<const SAE: i32>(a: __m256h) -> __m512 { |
| 16104 | static_assert_sae!(SAE); |
| 16105 | _mm512_mask_cvtx_roundph_ps::<SAE>(src:_mm512_setzero_ps(), k:0xffff, a) |
| 16106 | } |
| 16107 | |
| 16108 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16109 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16110 | /// dst when the corresponding mask bit is not set). |
| 16111 | /// |
| 16112 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16113 | /// |
| 16114 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtx_roundph_ps) |
| 16115 | #[inline ] |
| 16116 | #[target_feature (enable = "avx512fp16" )] |
| 16117 | #[cfg_attr (test, assert_instr(vcvtph2psx, SAE = 8))] |
| 16118 | #[rustc_legacy_const_generics (3)] |
| 16119 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16120 | pub fn _mm512_mask_cvtx_roundph_ps<const SAE: i32>( |
| 16121 | src: __m512, |
| 16122 | k: __mmask16, |
| 16123 | a: __m256h, |
| 16124 | ) -> __m512 { |
| 16125 | unsafe { |
| 16126 | static_assert_sae!(SAE); |
| 16127 | vcvtph2psx_512(a, src, k, SAE) |
| 16128 | } |
| 16129 | } |
| 16130 | |
| 16131 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) |
| 16132 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16133 | /// corresponding mask bit is not set). |
| 16134 | /// |
| 16135 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16136 | /// |
| 16137 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtx_roundph_ps) |
| 16138 | #[inline ] |
| 16139 | #[target_feature (enable = "avx512fp16" )] |
| 16140 | #[cfg_attr (test, assert_instr(vcvtph2psx, SAE = 8))] |
| 16141 | #[rustc_legacy_const_generics (2)] |
| 16142 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16143 | pub fn _mm512_maskz_cvtx_roundph_ps<const SAE: i32>(k: __mmask16, a: __m256h) -> __m512 { |
| 16144 | static_assert_sae!(SAE); |
| 16145 | _mm512_mask_cvtx_roundph_ps::<SAE>(src:_mm512_setzero_ps(), k, a) |
| 16146 | } |
| 16147 | |
| 16148 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16149 | /// floating-point element, store the result in the lower element of dst, and copy the upper 3 packed |
| 16150 | /// elements from a to the upper elements of dst. |
| 16151 | /// |
| 16152 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsh_ss) |
| 16153 | #[inline ] |
| 16154 | #[target_feature (enable = "avx512fp16" )] |
| 16155 | #[cfg_attr (test, assert_instr(vcvtsh2ss))] |
| 16156 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16157 | pub fn _mm_cvtsh_ss(a: __m128, b: __m128h) -> __m128 { |
| 16158 | _mm_mask_cvtsh_ss(src:a, k:0xff, a, b) |
| 16159 | } |
| 16160 | |
| 16161 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16162 | /// floating-point element, store the result in the lower element of dst using writemask k (the element is |
| 16163 | /// copied from src to dst when mask bit 0 is not set), and copy the upper 3 packed elements from a to the |
| 16164 | /// upper elements of dst. |
| 16165 | /// |
| 16166 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtsh_ss) |
| 16167 | #[inline ] |
| 16168 | #[target_feature (enable = "avx512fp16" )] |
| 16169 | #[cfg_attr (test, assert_instr(vcvtsh2ss))] |
| 16170 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16171 | pub fn _mm_mask_cvtsh_ss(src: __m128, k: __mmask8, a: __m128, b: __m128h) -> __m128 { |
| 16172 | unsafe { vcvtsh2ss(a, b, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 16173 | } |
| 16174 | |
| 16175 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16176 | /// floating-point element, store the result in the lower element of dst using zeromask k (the element is |
| 16177 | /// zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements |
| 16178 | /// of dst. |
| 16179 | /// |
| 16180 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtsh_ss) |
| 16181 | #[inline ] |
| 16182 | #[target_feature (enable = "avx512fp16" )] |
| 16183 | #[cfg_attr (test, assert_instr(vcvtsh2ss))] |
| 16184 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16185 | pub fn _mm_maskz_cvtsh_ss(k: __mmask8, a: __m128, b: __m128h) -> __m128 { |
| 16186 | _mm_mask_cvtsh_ss(src:_mm_set_ss(0.0), k, a, b) |
| 16187 | } |
| 16188 | |
| 16189 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16190 | /// floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements |
| 16191 | /// from a to the upper elements of dst. |
| 16192 | /// |
| 16193 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16194 | /// |
| 16195 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundsh_ss) |
| 16196 | #[inline ] |
| 16197 | #[target_feature (enable = "avx512fp16" )] |
| 16198 | #[cfg_attr (test, assert_instr(vcvtsh2ss, SAE = 8))] |
| 16199 | #[rustc_legacy_const_generics (2)] |
| 16200 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16201 | pub fn _mm_cvt_roundsh_ss<const SAE: i32>(a: __m128, b: __m128h) -> __m128 { |
| 16202 | static_assert_sae!(SAE); |
| 16203 | _mm_mask_cvt_roundsh_ss::<SAE>(src:_mm_undefined_ps(), k:0xff, a, b) |
| 16204 | } |
| 16205 | |
| 16206 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16207 | /// floating-point element, store the result in the lower element of dst using writemask k (the element is |
| 16208 | /// copied from src to dst when mask bit 0 is not set), and copy the upper 3 packed elements from a to the |
| 16209 | /// upper elements of dst. |
| 16210 | /// |
| 16211 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16212 | /// |
| 16213 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvt_roundsh_ss) |
| 16214 | #[inline ] |
| 16215 | #[target_feature (enable = "avx512fp16" )] |
| 16216 | #[cfg_attr (test, assert_instr(vcvtsh2ss, SAE = 8))] |
| 16217 | #[rustc_legacy_const_generics (4)] |
| 16218 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16219 | pub fn _mm_mask_cvt_roundsh_ss<const SAE: i32>( |
| 16220 | src: __m128, |
| 16221 | k: __mmask8, |
| 16222 | a: __m128, |
| 16223 | b: __m128h, |
| 16224 | ) -> __m128 { |
| 16225 | unsafe { |
| 16226 | static_assert_sae!(SAE); |
| 16227 | vcvtsh2ss(a, b, src, k, SAE) |
| 16228 | } |
| 16229 | } |
| 16230 | |
| 16231 | /// Convert the lower half-precision (16-bit) floating-point element in b to a single-precision (32-bit) |
| 16232 | /// floating-point element, store the result in the lower element of dst using zeromask k (the element is |
| 16233 | /// zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements |
| 16234 | /// of dst. |
| 16235 | /// |
| 16236 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16237 | /// |
| 16238 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvt_roundsh_ss) |
| 16239 | #[inline ] |
| 16240 | #[target_feature (enable = "avx512fp16" )] |
| 16241 | #[cfg_attr (test, assert_instr(vcvtsh2ss, SAE = 8))] |
| 16242 | #[rustc_legacy_const_generics (3)] |
| 16243 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16244 | pub fn _mm_maskz_cvt_roundsh_ss<const SAE: i32>(k: __mmask8, a: __m128, b: __m128h) -> __m128 { |
| 16245 | static_assert_sae!(SAE); |
| 16246 | _mm_mask_cvt_roundsh_ss::<SAE>(src:_mm_set_ss(0.0), k, a, b) |
| 16247 | } |
| 16248 | |
| 16249 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16250 | /// floating-point elements, and store the results in dst. |
| 16251 | /// |
| 16252 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_pd) |
| 16253 | #[inline ] |
| 16254 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16255 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16256 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16257 | pub fn _mm_cvtph_pd(a: __m128h) -> __m128d { |
| 16258 | _mm_mask_cvtph_pd(src:_mm_setzero_pd(), k:0xff, a) |
| 16259 | } |
| 16260 | |
| 16261 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16262 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16263 | /// dst when the corresponding mask bit is not set). |
| 16264 | /// |
| 16265 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtph_pd) |
| 16266 | #[inline ] |
| 16267 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16268 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16269 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16270 | pub fn _mm_mask_cvtph_pd(src: __m128d, k: __mmask8, a: __m128h) -> __m128d { |
| 16271 | unsafe { vcvtph2pd_128(a, src, k) } |
| 16272 | } |
| 16273 | |
| 16274 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16275 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16276 | /// corresponding mask bit is not set). |
| 16277 | /// |
| 16278 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtph_pd) |
| 16279 | #[inline ] |
| 16280 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16281 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16282 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16283 | pub fn _mm_maskz_cvtph_pd(k: __mmask8, a: __m128h) -> __m128d { |
| 16284 | _mm_mask_cvtph_pd(src:_mm_setzero_pd(), k, a) |
| 16285 | } |
| 16286 | |
| 16287 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16288 | /// floating-point elements, and store the results in dst. |
| 16289 | /// |
| 16290 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_pd) |
| 16291 | #[inline ] |
| 16292 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16293 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16294 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16295 | pub fn _mm256_cvtph_pd(a: __m128h) -> __m256d { |
| 16296 | _mm256_mask_cvtph_pd(src:_mm256_setzero_pd(), k:0xff, a) |
| 16297 | } |
| 16298 | |
| 16299 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16300 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16301 | /// dst when the corresponding mask bit is not set). |
| 16302 | /// |
| 16303 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_cvtph_pd) |
| 16304 | #[inline ] |
| 16305 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16306 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16307 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16308 | pub fn _mm256_mask_cvtph_pd(src: __m256d, k: __mmask8, a: __m128h) -> __m256d { |
| 16309 | unsafe { vcvtph2pd_256(a, src, k) } |
| 16310 | } |
| 16311 | |
| 16312 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16313 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16314 | /// corresponding mask bit is not set). |
| 16315 | /// |
| 16316 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_cvtph_pd) |
| 16317 | #[inline ] |
| 16318 | #[target_feature (enable = "avx512fp16,avx512vl" )] |
| 16319 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16320 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16321 | pub fn _mm256_maskz_cvtph_pd(k: __mmask8, a: __m128h) -> __m256d { |
| 16322 | _mm256_mask_cvtph_pd(src:_mm256_setzero_pd(), k, a) |
| 16323 | } |
| 16324 | |
| 16325 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16326 | /// floating-point elements, and store the results in dst. |
| 16327 | /// |
| 16328 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtph_pd) |
| 16329 | #[inline ] |
| 16330 | #[target_feature (enable = "avx512fp16" )] |
| 16331 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16332 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16333 | pub fn _mm512_cvtph_pd(a: __m128h) -> __m512d { |
| 16334 | _mm512_mask_cvtph_pd(src:_mm512_setzero_pd(), k:0xff, a) |
| 16335 | } |
| 16336 | |
| 16337 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16338 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16339 | /// dst when the corresponding mask bit is not set). |
| 16340 | /// |
| 16341 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvtph_pd) |
| 16342 | #[inline ] |
| 16343 | #[target_feature (enable = "avx512fp16" )] |
| 16344 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16345 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16346 | pub fn _mm512_mask_cvtph_pd(src: __m512d, k: __mmask8, a: __m128h) -> __m512d { |
| 16347 | unsafe { vcvtph2pd_512(a, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 16348 | } |
| 16349 | |
| 16350 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16351 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16352 | /// corresponding mask bit is not set). |
| 16353 | /// |
| 16354 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvtph_pd) |
| 16355 | #[inline ] |
| 16356 | #[target_feature (enable = "avx512fp16" )] |
| 16357 | #[cfg_attr (test, assert_instr(vcvtph2pd))] |
| 16358 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16359 | pub fn _mm512_maskz_cvtph_pd(k: __mmask8, a: __m128h) -> __m512d { |
| 16360 | _mm512_mask_cvtph_pd(src:_mm512_setzero_pd(), k, a) |
| 16361 | } |
| 16362 | |
| 16363 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16364 | /// floating-point elements, and store the results in dst. |
| 16365 | /// |
| 16366 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16367 | /// |
| 16368 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvt_roundph_pd) |
| 16369 | #[inline ] |
| 16370 | #[target_feature (enable = "avx512fp16" )] |
| 16371 | #[cfg_attr (test, assert_instr(vcvtph2pd, SAE = 8))] |
| 16372 | #[rustc_legacy_const_generics (1)] |
| 16373 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16374 | pub fn _mm512_cvt_roundph_pd<const SAE: i32>(a: __m128h) -> __m512d { |
| 16375 | static_assert_sae!(SAE); |
| 16376 | _mm512_mask_cvt_roundph_pd::<SAE>(src:_mm512_setzero_pd(), k:0xff, a) |
| 16377 | } |
| 16378 | |
| 16379 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16380 | /// floating-point elements, and store the results in dst using writemask k (elements are copied from src to |
| 16381 | /// dst when the corresponding mask bit is not set). |
| 16382 | /// |
| 16383 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16384 | /// |
| 16385 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_cvt_roundph_pd) |
| 16386 | #[inline ] |
| 16387 | #[target_feature (enable = "avx512fp16" )] |
| 16388 | #[cfg_attr (test, assert_instr(vcvtph2pd, SAE = 8))] |
| 16389 | #[rustc_legacy_const_generics (3)] |
| 16390 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16391 | pub fn _mm512_mask_cvt_roundph_pd<const SAE: i32>( |
| 16392 | src: __m512d, |
| 16393 | k: __mmask8, |
| 16394 | a: __m128h, |
| 16395 | ) -> __m512d { |
| 16396 | unsafe { |
| 16397 | static_assert_sae!(SAE); |
| 16398 | vcvtph2pd_512(a, src, k, SAE) |
| 16399 | } |
| 16400 | } |
| 16401 | |
| 16402 | /// Convert packed half-precision (16-bit) floating-point elements in a to packed double-precision (64-bit) |
| 16403 | /// floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the |
| 16404 | /// corresponding mask bit is not set). |
| 16405 | /// |
| 16406 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16407 | /// |
| 16408 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_cvt_roundph_pd) |
| 16409 | #[inline ] |
| 16410 | #[target_feature (enable = "avx512fp16" )] |
| 16411 | #[cfg_attr (test, assert_instr(vcvtph2pd, SAE = 8))] |
| 16412 | #[rustc_legacy_const_generics (2)] |
| 16413 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16414 | pub fn _mm512_maskz_cvt_roundph_pd<const SAE: i32>(k: __mmask8, a: __m128h) -> __m512d { |
| 16415 | static_assert_sae!(SAE); |
| 16416 | _mm512_mask_cvt_roundph_pd::<SAE>(src:_mm512_setzero_pd(), k, a) |
| 16417 | } |
| 16418 | |
| 16419 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16420 | /// floating-point element, store the result in the lower element of dst, and copy the upper element |
| 16421 | /// from a to the upper element of dst. |
| 16422 | /// |
| 16423 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsh_sd) |
| 16424 | #[inline ] |
| 16425 | #[target_feature (enable = "avx512fp16" )] |
| 16426 | #[cfg_attr (test, assert_instr(vcvtsh2sd))] |
| 16427 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16428 | pub fn _mm_cvtsh_sd(a: __m128d, b: __m128h) -> __m128d { |
| 16429 | _mm_mask_cvtsh_sd(src:a, k:0xff, a, b) |
| 16430 | } |
| 16431 | |
| 16432 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16433 | /// floating-point element, store the result in the lower element of dst using writemask k (the element is |
| 16434 | /// copied from src to dst when mask bit 0 is not set), and copy the upper element from a to the upper element |
| 16435 | /// of dst. |
| 16436 | /// |
| 16437 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvtsh_sd) |
| 16438 | #[inline ] |
| 16439 | #[target_feature (enable = "avx512fp16" )] |
| 16440 | #[cfg_attr (test, assert_instr(vcvtsh2sd))] |
| 16441 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16442 | pub fn _mm_mask_cvtsh_sd(src: __m128d, k: __mmask8, a: __m128d, b: __m128h) -> __m128d { |
| 16443 | unsafe { vcvtsh2sd(a, b, src, k, _MM_FROUND_CUR_DIRECTION) } |
| 16444 | } |
| 16445 | |
| 16446 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16447 | /// floating-point element, store the result in the lower element of dst using zeromask k (the element is |
| 16448 | /// zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. |
| 16449 | /// |
| 16450 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvtsh_sd) |
| 16451 | #[inline ] |
| 16452 | #[target_feature (enable = "avx512fp16" )] |
| 16453 | #[cfg_attr (test, assert_instr(vcvtsh2sd))] |
| 16454 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16455 | pub fn _mm_maskz_cvtsh_sd(k: __mmask8, a: __m128d, b: __m128h) -> __m128d { |
| 16456 | _mm_mask_cvtsh_sd(src:_mm_set_sd(0.0), k, a, b) |
| 16457 | } |
| 16458 | |
| 16459 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16460 | /// floating-point element, store the result in the lower element of dst, and copy the upper element from a |
| 16461 | /// to the upper element of dst. |
| 16462 | /// |
| 16463 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16464 | /// |
| 16465 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_roundsh_sd) |
| 16466 | #[inline ] |
| 16467 | #[target_feature (enable = "avx512fp16" )] |
| 16468 | #[cfg_attr (test, assert_instr(vcvtsh2sd, SAE = 8))] |
| 16469 | #[rustc_legacy_const_generics (2)] |
| 16470 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16471 | pub fn _mm_cvt_roundsh_sd<const SAE: i32>(a: __m128d, b: __m128h) -> __m128d { |
| 16472 | static_assert_sae!(SAE); |
| 16473 | _mm_mask_cvt_roundsh_sd::<SAE>(src:a, k:0xff, a, b) |
| 16474 | } |
| 16475 | |
| 16476 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16477 | /// floating-point element, store the result in the lower element of dst using writemask k (the element is |
| 16478 | /// copied from src to dst when mask bit 0 is not set), and copy the upper element from a to the upper element |
| 16479 | /// of dst. |
| 16480 | /// |
| 16481 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16482 | /// |
| 16483 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_cvt_roundsh_sd) |
| 16484 | #[inline ] |
| 16485 | #[target_feature (enable = "avx512fp16" )] |
| 16486 | #[cfg_attr (test, assert_instr(vcvtsh2sd, SAE = 8))] |
| 16487 | #[rustc_legacy_const_generics (4)] |
| 16488 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16489 | pub fn _mm_mask_cvt_roundsh_sd<const SAE: i32>( |
| 16490 | src: __m128d, |
| 16491 | k: __mmask8, |
| 16492 | a: __m128d, |
| 16493 | b: __m128h, |
| 16494 | ) -> __m128d { |
| 16495 | unsafe { |
| 16496 | static_assert_sae!(SAE); |
| 16497 | vcvtsh2sd(a, b, src, k, SAE) |
| 16498 | } |
| 16499 | } |
| 16500 | |
| 16501 | /// Convert the lower half-precision (16-bit) floating-point element in b to a double-precision (64-bit) |
| 16502 | /// floating-point element, store the result in the lower element of dst using zeromask k (the element is |
| 16503 | /// zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. |
| 16504 | /// |
| 16505 | /// Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter. |
| 16506 | /// |
| 16507 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_cvt_roundsh_sd) |
| 16508 | #[inline ] |
| 16509 | #[target_feature (enable = "avx512fp16" )] |
| 16510 | #[cfg_attr (test, assert_instr(vcvtsh2sd, SAE = 8))] |
| 16511 | #[rustc_legacy_const_generics (3)] |
| 16512 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16513 | pub fn _mm_maskz_cvt_roundsh_sd<const SAE: i32>(k: __mmask8, a: __m128d, b: __m128h) -> __m128d { |
| 16514 | static_assert_sae!(SAE); |
| 16515 | _mm_mask_cvt_roundsh_sd::<SAE>(src:_mm_set_sd(0.0), k, a, b) |
| 16516 | } |
| 16517 | |
| 16518 | /// Copy the lower half-precision (16-bit) floating-point element from `a` to `dst`. |
| 16519 | /// |
| 16520 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsh_h) |
| 16521 | #[inline ] |
| 16522 | #[target_feature (enable = "avx512fp16" )] |
| 16523 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 16524 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 16525 | pub const fn _mm_cvtsh_h(a: __m128h) -> f16 { |
| 16526 | unsafe { simd_extract!(a, 0) } |
| 16527 | } |
| 16528 | |
| 16529 | /// Copy the lower half-precision (16-bit) floating-point element from `a` to `dst`. |
| 16530 | /// |
| 16531 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtsh_h) |
| 16532 | #[inline ] |
| 16533 | #[target_feature (enable = "avx512fp16" )] |
| 16534 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 16535 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 16536 | pub const fn _mm256_cvtsh_h(a: __m256h) -> f16 { |
| 16537 | unsafe { simd_extract!(a, 0) } |
| 16538 | } |
| 16539 | |
| 16540 | /// Copy the lower half-precision (16-bit) floating-point element from `a` to `dst`. |
| 16541 | /// |
| 16542 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_cvtsh_h) |
| 16543 | #[inline ] |
| 16544 | #[target_feature (enable = "avx512fp16" )] |
| 16545 | #[unstable (feature = "stdarch_x86_avx512_f16" , issue = "127213" )] |
| 16546 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 16547 | pub const fn _mm512_cvtsh_h(a: __m512h) -> f16 { |
| 16548 | unsafe { simd_extract!(a, 0) } |
| 16549 | } |
| 16550 | |
| 16551 | /// Copy the lower 16-bit integer in a to dst. |
| 16552 | /// |
| 16553 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si16) |
| 16554 | #[inline ] |
| 16555 | #[target_feature (enable = "avx512fp16" )] |
| 16556 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16557 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 16558 | pub const fn _mm_cvtsi128_si16(a: __m128i) -> i16 { |
| 16559 | unsafe { simd_extract!(a.as_i16x8(), 0) } |
| 16560 | } |
| 16561 | |
| 16562 | /// Copy 16-bit integer a to the lower elements of dst, and zero the upper elements of dst. |
| 16563 | /// |
| 16564 | /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi16_si128) |
| 16565 | #[inline ] |
| 16566 | #[target_feature (enable = "avx512fp16" )] |
| 16567 | #[stable (feature = "stdarch_x86_avx512fp16" , since = "CURRENT_RUSTC_VERSION" )] |
| 16568 | #[rustc_const_unstable (feature = "stdarch_const_x86" , issue = "149298" )] |
| 16569 | pub const fn _mm_cvtsi16_si128(a: i16) -> __m128i { |
| 16570 | unsafe { transmute(src:simd_insert!(i16x8::ZERO, 0, a)) } |
| 16571 | } |
| 16572 | |
| 16573 | #[allow (improper_ctypes)] |
| 16574 | unsafe extern "C" { |
| 16575 | #[link_name = "llvm.x86.avx512fp16.mask.cmp.sh" ] |
| 16576 | unsafefn vcmpsh(a: __m128h, b: __m128h, imm8: i32, mask: __mmask8, sae: i32) -> __mmask8; |
| 16577 | #[link_name = "llvm.x86.avx512fp16.vcomi.sh" ] |
| 16578 | unsafefn vcomish(a: __m128h, b: __m128h, imm8: i32, sae: i32) -> i32; |
| 16579 | |
| 16580 | #[link_name = "llvm.x86.avx512fp16.add.ph.512" ] |
| 16581 | unsafefn vaddph(a: __m512h, b: __m512h, rounding: i32) -> __m512h; |
| 16582 | #[link_name = "llvm.x86.avx512fp16.sub.ph.512" ] |
| 16583 | unsafefn vsubph(a: __m512h, b: __m512h, rounding: i32) -> __m512h; |
| 16584 | #[link_name = "llvm.x86.avx512fp16.mul.ph.512" ] |
| 16585 | unsafefn vmulph(a: __m512h, b: __m512h, rounding: i32) -> __m512h; |
| 16586 | #[link_name = "llvm.x86.avx512fp16.div.ph.512" ] |
| 16587 | unsafefn vdivph(a: __m512h, b: __m512h, rounding: i32) -> __m512h; |
| 16588 | |
| 16589 | #[link_name = "llvm.x86.avx512fp16.mask.add.sh.round" ] |
| 16590 | unsafefn vaddsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16591 | #[link_name = "llvm.x86.avx512fp16.mask.sub.sh.round" ] |
| 16592 | unsafefn vsubsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16593 | #[link_name = "llvm.x86.avx512fp16.mask.mul.sh.round" ] |
| 16594 | unsafefn vmulsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16595 | #[link_name = "llvm.x86.avx512fp16.mask.div.sh.round" ] |
| 16596 | unsafefn vdivsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16597 | |
| 16598 | #[link_name = "llvm.x86.avx512fp16.mask.vfmul.cph.128" ] |
| 16599 | unsafefn vfmulcph_128(a: __m128, b: __m128, src: __m128, k: __mmask8) -> __m128; |
| 16600 | #[link_name = "llvm.x86.avx512fp16.mask.vfmul.cph.256" ] |
| 16601 | unsafefn vfmulcph_256(a: __m256, b: __m256, src: __m256, k: __mmask8) -> __m256; |
| 16602 | #[link_name = "llvm.x86.avx512fp16.mask.vfmul.cph.512" ] |
| 16603 | unsafefn vfmulcph_512(a: __m512, b: __m512, src: __m512, k: __mmask16, rounding: i32) -> __m512; |
| 16604 | #[link_name = "llvm.x86.avx512fp16.mask.vfmul.csh" ] |
| 16605 | unsafefn vfmulcsh(a: __m128, b: __m128, src: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16606 | |
| 16607 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmul.cph.128" ] |
| 16608 | unsafefn vfcmulcph_128(a: __m128, b: __m128, src: __m128, k: __mmask8) -> __m128; |
| 16609 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmul.cph.256" ] |
| 16610 | unsafefn vfcmulcph_256(a: __m256, b: __m256, src: __m256, k: __mmask8) -> __m256; |
| 16611 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmul.cph.512" ] |
| 16612 | unsafefn vfcmulcph_512(a: __m512, b: __m512, src: __m512, k: __mmask16, rounding: i32) -> __m512; |
| 16613 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmul.csh" ] |
| 16614 | unsafefn vfcmulcsh(a: __m128, b: __m128, src: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16615 | |
| 16616 | #[link_name = "llvm.x86.avx512fp16.mask.vfmadd.cph.128" ] |
| 16617 | unsafefn vfmaddcph_mask3_128(a: __m128, b: __m128, c: __m128, k: __mmask8) -> __m128; |
| 16618 | #[link_name = "llvm.x86.avx512fp16.maskz.vfmadd.cph.128" ] |
| 16619 | unsafefn vfmaddcph_maskz_128(a: __m128, b: __m128, c: __m128, k: __mmask8) -> __m128; |
| 16620 | #[link_name = "llvm.x86.avx512fp16.mask.vfmadd.cph.256" ] |
| 16621 | unsafefn vfmaddcph_mask3_256(a: __m256, b: __m256, c: __m256, k: __mmask8) -> __m256; |
| 16622 | #[link_name = "llvm.x86.avx512fp16.maskz.vfmadd.cph.256" ] |
| 16623 | unsafefn vfmaddcph_maskz_256(a: __m256, b: __m256, c: __m256, k: __mmask8) -> __m256; |
| 16624 | #[link_name = "llvm.x86.avx512fp16.mask.vfmadd.cph.512" ] |
| 16625 | unsafefn vfmaddcph_mask3_512(a: __m512, b: __m512, c: __m512, k: __mmask16, rounding: i32) -> __m512; |
| 16626 | #[link_name = "llvm.x86.avx512fp16.maskz.vfmadd.cph.512" ] |
| 16627 | unsafefn vfmaddcph_maskz_512(a: __m512, b: __m512, c: __m512, k: __mmask16, rounding: i32) -> __m512; |
| 16628 | #[link_name = "llvm.x86.avx512fp16.mask.vfmadd.csh" ] |
| 16629 | unsafefn vfmaddcsh_mask(a: __m128, b: __m128, c: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16630 | #[link_name = "llvm.x86.avx512fp16.maskz.vfmadd.csh" ] |
| 16631 | unsafefn vfmaddcsh_maskz(a: __m128, b: __m128, c: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16632 | |
| 16633 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmadd.cph.128" ] |
| 16634 | unsafefn vfcmaddcph_mask3_128(a: __m128, b: __m128, c: __m128, k: __mmask8) -> __m128; |
| 16635 | #[link_name = "llvm.x86.avx512fp16.maskz.vfcmadd.cph.128" ] |
| 16636 | unsafefn vfcmaddcph_maskz_128(a: __m128, b: __m128, c: __m128, k: __mmask8) -> __m128; |
| 16637 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmadd.cph.256" ] |
| 16638 | unsafefn vfcmaddcph_mask3_256(a: __m256, b: __m256, c: __m256, k: __mmask8) -> __m256; |
| 16639 | #[link_name = "llvm.x86.avx512fp16.maskz.vfcmadd.cph.256" ] |
| 16640 | unsafefn vfcmaddcph_maskz_256(a: __m256, b: __m256, c: __m256, k: __mmask8) -> __m256; |
| 16641 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmadd.cph.512" ] |
| 16642 | unsafefn vfcmaddcph_mask3_512(a: __m512, b: __m512, c: __m512, k: __mmask16, rounding: i32) |
| 16643 | -> __m512; |
| 16644 | #[link_name = "llvm.x86.avx512fp16.maskz.vfcmadd.cph.512" ] |
| 16645 | unsafefn vfcmaddcph_maskz_512(a: __m512, b: __m512, c: __m512, k: __mmask16, rounding: i32) |
| 16646 | -> __m512; |
| 16647 | #[link_name = "llvm.x86.avx512fp16.mask.vfcmadd.csh" ] |
| 16648 | unsafefn vfcmaddcsh_mask(a: __m128, b: __m128, c: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16649 | #[link_name = "llvm.x86.avx512fp16.maskz.vfcmadd.csh" ] |
| 16650 | unsafefn vfcmaddcsh_maskz(a: __m128, b: __m128, c: __m128, k: __mmask8, rounding: i32) -> __m128; |
| 16651 | |
| 16652 | #[link_name = "llvm.x86.avx512fp16.vfmadd.ph.512" ] |
| 16653 | unsafefn vfmaddph_512(a: __m512h, b: __m512h, c: __m512h, rounding: i32) -> __m512h; |
| 16654 | #[link_name = "llvm.x86.avx512fp16.vfmadd.f16" ] |
| 16655 | unsafefn vfmaddsh(a: f16, b: f16, c: f16, rounding: i32) -> f16; |
| 16656 | |
| 16657 | #[link_name = "llvm.x86.avx512fp16.vfmaddsub.ph.512" ] |
| 16658 | unsafefn vfmaddsubph_512(a: __m512h, b: __m512h, c: __m512h, rounding: i32) -> __m512h; |
| 16659 | |
| 16660 | #[link_name = "llvm.x86.avx512fp16.mask.rcp.ph.128" ] |
| 16661 | unsafefn vrcpph_128(a: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16662 | #[link_name = "llvm.x86.avx512fp16.mask.rcp.ph.256" ] |
| 16663 | unsafefn vrcpph_256(a: __m256h, src: __m256h, k: __mmask16) -> __m256h; |
| 16664 | #[link_name = "llvm.x86.avx512fp16.mask.rcp.ph.512" ] |
| 16665 | unsafefn vrcpph_512(a: __m512h, src: __m512h, k: __mmask32) -> __m512h; |
| 16666 | #[link_name = "llvm.x86.avx512fp16.mask.rcp.sh" ] |
| 16667 | unsafefn vrcpsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16668 | |
| 16669 | #[link_name = "llvm.x86.avx512fp16.mask.rsqrt.ph.128" ] |
| 16670 | unsafefn vrsqrtph_128(a: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16671 | #[link_name = "llvm.x86.avx512fp16.mask.rsqrt.ph.256" ] |
| 16672 | unsafefn vrsqrtph_256(a: __m256h, src: __m256h, k: __mmask16) -> __m256h; |
| 16673 | #[link_name = "llvm.x86.avx512fp16.mask.rsqrt.ph.512" ] |
| 16674 | unsafefn vrsqrtph_512(a: __m512h, src: __m512h, k: __mmask32) -> __m512h; |
| 16675 | #[link_name = "llvm.x86.avx512fp16.mask.rsqrt.sh" ] |
| 16676 | unsafefn vrsqrtsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16677 | |
| 16678 | #[link_name = "llvm.x86.avx512fp16.sqrt.ph.512" ] |
| 16679 | unsafefn vsqrtph_512(a: __m512h, rounding: i32) -> __m512h; |
| 16680 | #[link_name = "llvm.x86.avx512fp16.mask.sqrt.sh" ] |
| 16681 | unsafefn vsqrtsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16682 | |
| 16683 | #[link_name = "llvm.x86.avx512fp16.max.ph.128" ] |
| 16684 | unsafefn vmaxph_128(a: __m128h, b: __m128h) -> __m128h; |
| 16685 | #[link_name = "llvm.x86.avx512fp16.max.ph.256" ] |
| 16686 | unsafefn vmaxph_256(a: __m256h, b: __m256h) -> __m256h; |
| 16687 | #[link_name = "llvm.x86.avx512fp16.max.ph.512" ] |
| 16688 | unsafefn vmaxph_512(a: __m512h, b: __m512h, sae: i32) -> __m512h; |
| 16689 | #[link_name = "llvm.x86.avx512fp16.mask.max.sh.round" ] |
| 16690 | unsafefn vmaxsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, sae: i32) -> __m128h; |
| 16691 | |
| 16692 | #[link_name = "llvm.x86.avx512fp16.min.ph.128" ] |
| 16693 | unsafefn vminph_128(a: __m128h, b: __m128h) -> __m128h; |
| 16694 | #[link_name = "llvm.x86.avx512fp16.min.ph.256" ] |
| 16695 | unsafefn vminph_256(a: __m256h, b: __m256h) -> __m256h; |
| 16696 | #[link_name = "llvm.x86.avx512fp16.min.ph.512" ] |
| 16697 | unsafefn vminph_512(a: __m512h, b: __m512h, sae: i32) -> __m512h; |
| 16698 | #[link_name = "llvm.x86.avx512fp16.mask.min.sh.round" ] |
| 16699 | unsafefn vminsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, sae: i32) -> __m128h; |
| 16700 | |
| 16701 | #[link_name = "llvm.x86.avx512fp16.mask.getexp.ph.128" ] |
| 16702 | unsafefn vgetexpph_128(a: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16703 | #[link_name = "llvm.x86.avx512fp16.mask.getexp.ph.256" ] |
| 16704 | unsafefn vgetexpph_256(a: __m256h, src: __m256h, k: __mmask16) -> __m256h; |
| 16705 | #[link_name = "llvm.x86.avx512fp16.mask.getexp.ph.512" ] |
| 16706 | unsafefn vgetexpph_512(a: __m512h, src: __m512h, k: __mmask32, sae: i32) -> __m512h; |
| 16707 | #[link_name = "llvm.x86.avx512fp16.mask.getexp.sh" ] |
| 16708 | unsafefn vgetexpsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, sae: i32) -> __m128h; |
| 16709 | |
| 16710 | #[link_name = "llvm.x86.avx512fp16.mask.getmant.ph.128" ] |
| 16711 | unsafefn vgetmantph_128(a: __m128h, imm8: i32, src: __m128h, k: __mmask8) -> __m128h; |
| 16712 | #[link_name = "llvm.x86.avx512fp16.mask.getmant.ph.256" ] |
| 16713 | unsafefn vgetmantph_256(a: __m256h, imm8: i32, src: __m256h, k: __mmask16) -> __m256h; |
| 16714 | #[link_name = "llvm.x86.avx512fp16.mask.getmant.ph.512" ] |
| 16715 | unsafefn vgetmantph_512(a: __m512h, imm8: i32, src: __m512h, k: __mmask32, sae: i32) -> __m512h; |
| 16716 | #[link_name = "llvm.x86.avx512fp16.mask.getmant.sh" ] |
| 16717 | unsafefn vgetmantsh( |
| 16718 | a: __m128h, |
| 16719 | b: __m128h, |
| 16720 | imm8: i32, |
| 16721 | src: __m128h, |
| 16722 | k: __mmask8, |
| 16723 | sae: i32, |
| 16724 | ) -> __m128h; |
| 16725 | |
| 16726 | #[link_name = "llvm.x86.avx512fp16.mask.rndscale.ph.128" ] |
| 16727 | unsafefn vrndscaleph_128(a: __m128h, imm8: i32, src: __m128h, k: __mmask8) -> __m128h; |
| 16728 | #[link_name = "llvm.x86.avx512fp16.mask.rndscale.ph.256" ] |
| 16729 | unsafefn vrndscaleph_256(a: __m256h, imm8: i32, src: __m256h, k: __mmask16) -> __m256h; |
| 16730 | #[link_name = "llvm.x86.avx512fp16.mask.rndscale.ph.512" ] |
| 16731 | unsafefn vrndscaleph_512(a: __m512h, imm8: i32, src: __m512h, k: __mmask32, sae: i32) -> __m512h; |
| 16732 | #[link_name = "llvm.x86.avx512fp16.mask.rndscale.sh" ] |
| 16733 | unsafefn vrndscalesh( |
| 16734 | a: __m128h, |
| 16735 | b: __m128h, |
| 16736 | src: __m128h, |
| 16737 | k: __mmask8, |
| 16738 | imm8: i32, |
| 16739 | sae: i32, |
| 16740 | ) -> __m128h; |
| 16741 | |
| 16742 | #[link_name = "llvm.x86.avx512fp16.mask.scalef.ph.128" ] |
| 16743 | unsafefn vscalefph_128(a: __m128h, b: __m128h, src: __m128h, k: __mmask8) -> __m128h; |
| 16744 | #[link_name = "llvm.x86.avx512fp16.mask.scalef.ph.256" ] |
| 16745 | unsafefn vscalefph_256(a: __m256h, b: __m256h, src: __m256h, k: __mmask16) -> __m256h; |
| 16746 | #[link_name = "llvm.x86.avx512fp16.mask.scalef.ph.512" ] |
| 16747 | unsafefn vscalefph_512(a: __m512h, b: __m512h, src: __m512h, k: __mmask32, rounding: i32) -> __m512h; |
| 16748 | #[link_name = "llvm.x86.avx512fp16.mask.scalef.sh" ] |
| 16749 | unsafefn vscalefsh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16750 | |
| 16751 | #[link_name = "llvm.x86.avx512fp16.mask.reduce.ph.128" ] |
| 16752 | unsafefn vreduceph_128(a: __m128h, imm8: i32, src: __m128h, k: __mmask8) -> __m128h; |
| 16753 | #[link_name = "llvm.x86.avx512fp16.mask.reduce.ph.256" ] |
| 16754 | unsafefn vreduceph_256(a: __m256h, imm8: i32, src: __m256h, k: __mmask16) -> __m256h; |
| 16755 | #[link_name = "llvm.x86.avx512fp16.mask.reduce.ph.512" ] |
| 16756 | unsafefn vreduceph_512(a: __m512h, imm8: i32, src: __m512h, k: __mmask32, sae: i32) -> __m512h; |
| 16757 | #[link_name = "llvm.x86.avx512fp16.mask.reduce.sh" ] |
| 16758 | unsafefn vreducesh(a: __m128h, b: __m128h, src: __m128h, k: __mmask8, imm8: i32, sae: i32) |
| 16759 | -> __m128h; |
| 16760 | |
| 16761 | #[link_name = "llvm.x86.avx512fp16.mask.fpclass.sh" ] |
| 16762 | unsafefn vfpclasssh(a: __m128h, imm8: i32, k: __mmask8) -> __mmask8; |
| 16763 | |
| 16764 | #[link_name = "llvm.x86.avx512.sitofp.round.v8f16.v8i16" ] |
| 16765 | unsafefn vcvtw2ph_128(a: i16x8, rounding: i32) -> __m128h; |
| 16766 | #[link_name = "llvm.x86.avx512.sitofp.round.v16f16.v16i16" ] |
| 16767 | unsafefn vcvtw2ph_256(a: i16x16, rounding: i32) -> __m256h; |
| 16768 | #[link_name = "llvm.x86.avx512.sitofp.round.v32f16.v32i16" ] |
| 16769 | unsafefn vcvtw2ph_512(a: i16x32, rounding: i32) -> __m512h; |
| 16770 | #[link_name = "llvm.x86.avx512.uitofp.round.v8f16.v8i16" ] |
| 16771 | unsafefn vcvtuw2ph_128(a: u16x8, rounding: i32) -> __m128h; |
| 16772 | #[link_name = "llvm.x86.avx512.uitofp.round.v16f16.v16i16" ] |
| 16773 | unsafefn vcvtuw2ph_256(a: u16x16, rounding: i32) -> __m256h; |
| 16774 | #[link_name = "llvm.x86.avx512.uitofp.round.v32f16.v32i16" ] |
| 16775 | unsafefn vcvtuw2ph_512(a: u16x32, rounding: i32) -> __m512h; |
| 16776 | |
| 16777 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtdq2ph.128" ] |
| 16778 | unsafefn vcvtdq2ph_128(a: i32x4, src: __m128h, k: __mmask8) -> __m128h; |
| 16779 | #[link_name = "llvm.x86.avx512.sitofp.round.v8f16.v8i32" ] |
| 16780 | unsafefn vcvtdq2ph_256(a: i32x8, rounding: i32) -> __m128h; |
| 16781 | #[link_name = "llvm.x86.avx512.sitofp.round.v16f16.v16i32" ] |
| 16782 | unsafefn vcvtdq2ph_512(a: i32x16, rounding: i32) -> __m256h; |
| 16783 | #[link_name = "llvm.x86.avx512fp16.vcvtsi2sh" ] |
| 16784 | unsafefn vcvtsi2sh(a: __m128h, b: i32, rounding: i32) -> __m128h; |
| 16785 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtudq2ph.128" ] |
| 16786 | unsafefn vcvtudq2ph_128(a: u32x4, src: __m128h, k: __mmask8) -> __m128h; |
| 16787 | #[link_name = "llvm.x86.avx512.uitofp.round.v8f16.v8i32" ] |
| 16788 | unsafefn vcvtudq2ph_256(a: u32x8, rounding: i32) -> __m128h; |
| 16789 | #[link_name = "llvm.x86.avx512.uitofp.round.v16f16.v16i32" ] |
| 16790 | unsafefn vcvtudq2ph_512(a: u32x16, rounding: i32) -> __m256h; |
| 16791 | #[link_name = "llvm.x86.avx512fp16.vcvtusi2sh" ] |
| 16792 | unsafefn vcvtusi2sh(a: __m128h, b: u32, rounding: i32) -> __m128h; |
| 16793 | |
| 16794 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtqq2ph.128" ] |
| 16795 | unsafefn vcvtqq2ph_128(a: i64x2, src: __m128h, k: __mmask8) -> __m128h; |
| 16796 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtqq2ph.256" ] |
| 16797 | unsafefn vcvtqq2ph_256(a: i64x4, src: __m128h, k: __mmask8) -> __m128h; |
| 16798 | #[link_name = "llvm.x86.avx512.sitofp.round.v8f16.v8i64" ] |
| 16799 | unsafefn vcvtqq2ph_512(a: i64x8, rounding: i32) -> __m128h; |
| 16800 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtuqq2ph.128" ] |
| 16801 | unsafefn vcvtuqq2ph_128(a: u64x2, src: __m128h, k: __mmask8) -> __m128h; |
| 16802 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtuqq2ph.256" ] |
| 16803 | unsafefn vcvtuqq2ph_256(a: u64x4, src: __m128h, k: __mmask8) -> __m128h; |
| 16804 | #[link_name = "llvm.x86.avx512.uitofp.round.v8f16.v8i64" ] |
| 16805 | unsafefn vcvtuqq2ph_512(a: u64x8, rounding: i32) -> __m128h; |
| 16806 | |
| 16807 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtps2phx.128" ] |
| 16808 | unsafefn vcvtps2phx_128(a: __m128, src: __m128h, k: __mmask8) -> __m128h; |
| 16809 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtps2phx.256" ] |
| 16810 | unsafefn vcvtps2phx_256(a: __m256, src: __m128h, k: __mmask8) -> __m128h; |
| 16811 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtps2phx.512" ] |
| 16812 | unsafefn vcvtps2phx_512(a: __m512, src: __m256h, k: __mmask16, rounding: i32) -> __m256h; |
| 16813 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtss2sh.round" ] |
| 16814 | unsafefn vcvtss2sh(a: __m128h, b: __m128, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16815 | |
| 16816 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtpd2ph.128" ] |
| 16817 | unsafefn vcvtpd2ph_128(a: __m128d, src: __m128h, k: __mmask8) -> __m128h; |
| 16818 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtpd2ph.256" ] |
| 16819 | unsafefn vcvtpd2ph_256(a: __m256d, src: __m128h, k: __mmask8) -> __m128h; |
| 16820 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtpd2ph.512" ] |
| 16821 | unsafefn vcvtpd2ph_512(a: __m512d, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16822 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtsd2sh.round" ] |
| 16823 | unsafefn vcvtsd2sh(a: __m128h, b: __m128d, src: __m128h, k: __mmask8, rounding: i32) -> __m128h; |
| 16824 | |
| 16825 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2w.128" ] |
| 16826 | unsafefn vcvtph2w_128(a: __m128h, src: i16x8, k: __mmask8) -> i16x8; |
| 16827 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2w.256" ] |
| 16828 | unsafefn vcvtph2w_256(a: __m256h, src: i16x16, k: __mmask16) -> i16x16; |
| 16829 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2w.512" ] |
| 16830 | unsafefn vcvtph2w_512(a: __m512h, src: i16x32, k: __mmask32, rounding: i32) -> i16x32; |
| 16831 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uw.128" ] |
| 16832 | unsafefn vcvtph2uw_128(a: __m128h, src: u16x8, k: __mmask8) -> u16x8; |
| 16833 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uw.256" ] |
| 16834 | unsafefn vcvtph2uw_256(a: __m256h, src: u16x16, k: __mmask16) -> u16x16; |
| 16835 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uw.512" ] |
| 16836 | unsafefn vcvtph2uw_512(a: __m512h, src: u16x32, k: __mmask32, sae: i32) -> u16x32; |
| 16837 | |
| 16838 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2w.128" ] |
| 16839 | unsafefn vcvttph2w_128(a: __m128h, src: i16x8, k: __mmask8) -> i16x8; |
| 16840 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2w.256" ] |
| 16841 | unsafefn vcvttph2w_256(a: __m256h, src: i16x16, k: __mmask16) -> i16x16; |
| 16842 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2w.512" ] |
| 16843 | unsafefn vcvttph2w_512(a: __m512h, src: i16x32, k: __mmask32, sae: i32) -> i16x32; |
| 16844 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uw.128" ] |
| 16845 | unsafefn vcvttph2uw_128(a: __m128h, src: u16x8, k: __mmask8) -> u16x8; |
| 16846 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uw.256" ] |
| 16847 | unsafefn vcvttph2uw_256(a: __m256h, src: u16x16, k: __mmask16) -> u16x16; |
| 16848 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uw.512" ] |
| 16849 | unsafefn vcvttph2uw_512(a: __m512h, src: u16x32, k: __mmask32, sae: i32) -> u16x32; |
| 16850 | |
| 16851 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2dq.128" ] |
| 16852 | unsafefn vcvtph2dq_128(a: __m128h, src: i32x4, k: __mmask8) -> i32x4; |
| 16853 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2dq.256" ] |
| 16854 | unsafefn vcvtph2dq_256(a: __m128h, src: i32x8, k: __mmask8) -> i32x8; |
| 16855 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2dq.512" ] |
| 16856 | unsafefn vcvtph2dq_512(a: __m256h, src: i32x16, k: __mmask16, rounding: i32) -> i32x16; |
| 16857 | #[link_name = "llvm.x86.avx512fp16.vcvtsh2si32" ] |
| 16858 | unsafefn vcvtsh2si32(a: __m128h, rounding: i32) -> i32; |
| 16859 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2udq.128" ] |
| 16860 | unsafefn vcvtph2udq_128(a: __m128h, src: u32x4, k: __mmask8) -> u32x4; |
| 16861 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2udq.256" ] |
| 16862 | unsafefn vcvtph2udq_256(a: __m128h, src: u32x8, k: __mmask8) -> u32x8; |
| 16863 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2udq.512" ] |
| 16864 | unsafefn vcvtph2udq_512(a: __m256h, src: u32x16, k: __mmask16, rounding: i32) -> u32x16; |
| 16865 | #[link_name = "llvm.x86.avx512fp16.vcvtsh2usi32" ] |
| 16866 | unsafefn vcvtsh2usi32(a: __m128h, sae: i32) -> u32; |
| 16867 | |
| 16868 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2dq.128" ] |
| 16869 | unsafefn vcvttph2dq_128(a: __m128h, src: i32x4, k: __mmask8) -> i32x4; |
| 16870 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2dq.256" ] |
| 16871 | unsafefn vcvttph2dq_256(a: __m128h, src: i32x8, k: __mmask8) -> i32x8; |
| 16872 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2dq.512" ] |
| 16873 | unsafefn vcvttph2dq_512(a: __m256h, src: i32x16, k: __mmask16, sae: i32) -> i32x16; |
| 16874 | #[link_name = "llvm.x86.avx512fp16.vcvttsh2si32" ] |
| 16875 | unsafefn vcvttsh2si32(a: __m128h, sae: i32) -> i32; |
| 16876 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2udq.128" ] |
| 16877 | unsafefn vcvttph2udq_128(a: __m128h, src: u32x4, k: __mmask8) -> u32x4; |
| 16878 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2udq.256" ] |
| 16879 | unsafefn vcvttph2udq_256(a: __m128h, src: u32x8, k: __mmask8) -> u32x8; |
| 16880 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2udq.512" ] |
| 16881 | unsafefn vcvttph2udq_512(a: __m256h, src: u32x16, k: __mmask16, sae: i32) -> u32x16; |
| 16882 | #[link_name = "llvm.x86.avx512fp16.vcvttsh2usi32" ] |
| 16883 | unsafefn vcvttsh2usi32(a: __m128h, sae: i32) -> u32; |
| 16884 | |
| 16885 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2qq.128" ] |
| 16886 | unsafefn vcvtph2qq_128(a: __m128h, src: i64x2, k: __mmask8) -> i64x2; |
| 16887 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2qq.256" ] |
| 16888 | unsafefn vcvtph2qq_256(a: __m128h, src: i64x4, k: __mmask8) -> i64x4; |
| 16889 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2qq.512" ] |
| 16890 | unsafefn vcvtph2qq_512(a: __m128h, src: i64x8, k: __mmask8, rounding: i32) -> i64x8; |
| 16891 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uqq.128" ] |
| 16892 | unsafefn vcvtph2uqq_128(a: __m128h, src: u64x2, k: __mmask8) -> u64x2; |
| 16893 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uqq.256" ] |
| 16894 | unsafefn vcvtph2uqq_256(a: __m128h, src: u64x4, k: __mmask8) -> u64x4; |
| 16895 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2uqq.512" ] |
| 16896 | unsafefn vcvtph2uqq_512(a: __m128h, src: u64x8, k: __mmask8, rounding: i32) -> u64x8; |
| 16897 | |
| 16898 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2qq.128" ] |
| 16899 | unsafefn vcvttph2qq_128(a: __m128h, src: i64x2, k: __mmask8) -> i64x2; |
| 16900 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2qq.256" ] |
| 16901 | unsafefn vcvttph2qq_256(a: __m128h, src: i64x4, k: __mmask8) -> i64x4; |
| 16902 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2qq.512" ] |
| 16903 | unsafefn vcvttph2qq_512(a: __m128h, src: i64x8, k: __mmask8, sae: i32) -> i64x8; |
| 16904 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uqq.128" ] |
| 16905 | unsafefn vcvttph2uqq_128(a: __m128h, src: u64x2, k: __mmask8) -> u64x2; |
| 16906 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uqq.256" ] |
| 16907 | unsafefn vcvttph2uqq_256(a: __m128h, src: u64x4, k: __mmask8) -> u64x4; |
| 16908 | #[link_name = "llvm.x86.avx512fp16.mask.vcvttph2uqq.512" ] |
| 16909 | unsafefn vcvttph2uqq_512(a: __m128h, src: u64x8, k: __mmask8, sae: i32) -> u64x8; |
| 16910 | |
| 16911 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2psx.128" ] |
| 16912 | unsafefn vcvtph2psx_128(a: __m128h, src: __m128, k: __mmask8) -> __m128; |
| 16913 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2psx.256" ] |
| 16914 | unsafefn vcvtph2psx_256(a: __m128h, src: __m256, k: __mmask8) -> __m256; |
| 16915 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2psx.512" ] |
| 16916 | unsafefn vcvtph2psx_512(a: __m256h, src: __m512, k: __mmask16, sae: i32) -> __m512; |
| 16917 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtsh2ss.round" ] |
| 16918 | unsafefn vcvtsh2ss(a: __m128, b: __m128h, src: __m128, k: __mmask8, sae: i32) -> __m128; |
| 16919 | |
| 16920 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2pd.128" ] |
| 16921 | unsafefn vcvtph2pd_128(a: __m128h, src: __m128d, k: __mmask8) -> __m128d; |
| 16922 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2pd.256" ] |
| 16923 | unsafefn vcvtph2pd_256(a: __m128h, src: __m256d, k: __mmask8) -> __m256d; |
| 16924 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtph2pd.512" ] |
| 16925 | unsafefn vcvtph2pd_512(a: __m128h, src: __m512d, k: __mmask8, sae: i32) -> __m512d; |
| 16926 | #[link_name = "llvm.x86.avx512fp16.mask.vcvtsh2sd.round" ] |
| 16927 | unsafefn vcvtsh2sd(a: __m128d, b: __m128h, src: __m128d, k: __mmask8, sae: i32) -> __m128d; |
| 16928 | |
| 16929 | } |
| 16930 | |
| 16931 | #[cfg (test)] |
| 16932 | mod tests { |
| 16933 | use crate::core_arch::assert_eq_const as assert_eq; |
| 16934 | use crate::core_arch::x86::*; |
| 16935 | use crate::ptr::{addr_of, addr_of_mut}; |
| 16936 | use stdarch_test::simd_test; |
| 16937 | |
| 16938 | #[target_feature (enable = "avx512fp16" )] |
| 16939 | #[rustc_const_unstable (feature = "stdarch_const_helpers" , issue = "none" )] |
| 16940 | const fn _mm_set1_pch(re: f16, im: f16) -> __m128h { |
| 16941 | _mm_setr_ph(re, im, re, im, re, im, re, im) |
| 16942 | } |
| 16943 | |
| 16944 | #[target_feature (enable = "avx512fp16" )] |
| 16945 | #[rustc_const_unstable (feature = "stdarch_const_helpers" , issue = "none" )] |
| 16946 | const fn _mm256_set1_pch(re: f16, im: f16) -> __m256h { |
| 16947 | _mm256_setr_ph( |
| 16948 | re, im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, |
| 16949 | ) |
| 16950 | } |
| 16951 | |
| 16952 | #[target_feature (enable = "avx512fp16" )] |
| 16953 | #[rustc_const_unstable (feature = "stdarch_const_helpers" , issue = "none" )] |
| 16954 | const fn _mm512_set1_pch(re: f16, im: f16) -> __m512h { |
| 16955 | _mm512_setr_ph( |
| 16956 | re, im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, |
| 16957 | re, im, re, im, re, im, re, im, re, im, |
| 16958 | ) |
| 16959 | } |
| 16960 | |
| 16961 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 16962 | const fn test_mm_set_ph() { |
| 16963 | let r = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 16964 | let e = _mm_setr_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 16965 | assert_eq_m128h(r, e); |
| 16966 | } |
| 16967 | |
| 16968 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 16969 | const fn test_mm256_set_ph() { |
| 16970 | let r = _mm256_set_ph( |
| 16971 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 16972 | ); |
| 16973 | let e = _mm256_setr_ph( |
| 16974 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 16975 | ); |
| 16976 | assert_eq_m256h(r, e); |
| 16977 | } |
| 16978 | |
| 16979 | #[simd_test(enable = "avx512fp16" )] |
| 16980 | const fn test_mm512_set_ph() { |
| 16981 | let r = _mm512_set_ph( |
| 16982 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 16983 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 16984 | 31.0, 32.0, |
| 16985 | ); |
| 16986 | let e = _mm512_setr_ph( |
| 16987 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 16988 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 16989 | 3.0, 2.0, 1.0, |
| 16990 | ); |
| 16991 | assert_eq_m512h(r, e); |
| 16992 | } |
| 16993 | |
| 16994 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 16995 | const fn test_mm_set_sh() { |
| 16996 | let r = _mm_set_sh(1.0); |
| 16997 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0); |
| 16998 | assert_eq_m128h(r, e); |
| 16999 | } |
| 17000 | |
| 17001 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17002 | const fn test_mm_set1_ph() { |
| 17003 | let r = _mm_set1_ph(1.0); |
| 17004 | let e = _mm_set_ph(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0); |
| 17005 | assert_eq_m128h(r, e); |
| 17006 | } |
| 17007 | |
| 17008 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17009 | const fn test_mm256_set1_ph() { |
| 17010 | let r = _mm256_set1_ph(1.0); |
| 17011 | let e = _mm256_set_ph( |
| 17012 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 17013 | ); |
| 17014 | assert_eq_m256h(r, e); |
| 17015 | } |
| 17016 | |
| 17017 | #[simd_test(enable = "avx512fp16" )] |
| 17018 | const fn test_mm512_set1_ph() { |
| 17019 | let r = _mm512_set1_ph(1.0); |
| 17020 | let e = _mm512_set_ph( |
| 17021 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 17022 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 17023 | ); |
| 17024 | assert_eq_m512h(r, e); |
| 17025 | } |
| 17026 | |
| 17027 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17028 | const fn test_mm_setr_ph() { |
| 17029 | let r = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17030 | let e = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 17031 | assert_eq_m128h(r, e); |
| 17032 | } |
| 17033 | |
| 17034 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17035 | const fn test_mm256_setr_ph() { |
| 17036 | let r = _mm256_setr_ph( |
| 17037 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17038 | ); |
| 17039 | let e = _mm256_set_ph( |
| 17040 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 17041 | ); |
| 17042 | assert_eq_m256h(r, e); |
| 17043 | } |
| 17044 | |
| 17045 | #[simd_test(enable = "avx512fp16" )] |
| 17046 | const fn test_mm512_setr_ph() { |
| 17047 | let r = _mm512_setr_ph( |
| 17048 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17049 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17050 | 31.0, 32.0, |
| 17051 | ); |
| 17052 | let e = _mm512_set_ph( |
| 17053 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17054 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17055 | 3.0, 2.0, 1.0, |
| 17056 | ); |
| 17057 | assert_eq_m512h(r, e); |
| 17058 | } |
| 17059 | |
| 17060 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17061 | const fn test_mm_setzero_ph() { |
| 17062 | let r = _mm_setzero_ph(); |
| 17063 | let e = _mm_set1_ph(0.0); |
| 17064 | assert_eq_m128h(r, e); |
| 17065 | } |
| 17066 | |
| 17067 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17068 | const fn test_mm256_setzero_ph() { |
| 17069 | let r = _mm256_setzero_ph(); |
| 17070 | let e = _mm256_set1_ph(0.0); |
| 17071 | assert_eq_m256h(r, e); |
| 17072 | } |
| 17073 | |
| 17074 | #[simd_test(enable = "avx512fp16" )] |
| 17075 | const fn test_mm512_setzero_ph() { |
| 17076 | let r = _mm512_setzero_ph(); |
| 17077 | let e = _mm512_set1_ph(0.0); |
| 17078 | assert_eq_m512h(r, e); |
| 17079 | } |
| 17080 | |
| 17081 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17082 | const fn test_mm_castsi128_ph() { |
| 17083 | let a = _mm_set1_epi16(0x3c00); |
| 17084 | let r = _mm_castsi128_ph(a); |
| 17085 | let e = _mm_set1_ph(1.0); |
| 17086 | assert_eq_m128h(r, e); |
| 17087 | } |
| 17088 | |
| 17089 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17090 | const fn test_mm256_castsi256_ph() { |
| 17091 | let a = _mm256_set1_epi16(0x3c00); |
| 17092 | let r = _mm256_castsi256_ph(a); |
| 17093 | let e = _mm256_set1_ph(1.0); |
| 17094 | assert_eq_m256h(r, e); |
| 17095 | } |
| 17096 | |
| 17097 | #[simd_test(enable = "avx512fp16" )] |
| 17098 | const fn test_mm512_castsi512_ph() { |
| 17099 | let a = _mm512_set1_epi16(0x3c00); |
| 17100 | let r = _mm512_castsi512_ph(a); |
| 17101 | let e = _mm512_set1_ph(1.0); |
| 17102 | assert_eq_m512h(r, e); |
| 17103 | } |
| 17104 | |
| 17105 | #[simd_test(enable = "avx512fp16" )] |
| 17106 | const fn test_mm_castph_si128() { |
| 17107 | let a = _mm_set1_ph(1.0); |
| 17108 | let r = _mm_castph_si128(a); |
| 17109 | let e = _mm_set1_epi16(0x3c00); |
| 17110 | assert_eq_m128i(r, e); |
| 17111 | } |
| 17112 | |
| 17113 | #[simd_test(enable = "avx512fp16" )] |
| 17114 | const fn test_mm256_castph_si256() { |
| 17115 | let a = _mm256_set1_ph(1.0); |
| 17116 | let r = _mm256_castph_si256(a); |
| 17117 | let e = _mm256_set1_epi16(0x3c00); |
| 17118 | assert_eq_m256i(r, e); |
| 17119 | } |
| 17120 | |
| 17121 | #[simd_test(enable = "avx512fp16" )] |
| 17122 | const fn test_mm512_castph_si512() { |
| 17123 | let a = _mm512_set1_ph(1.0); |
| 17124 | let r = _mm512_castph_si512(a); |
| 17125 | let e = _mm512_set1_epi16(0x3c00); |
| 17126 | assert_eq_m512i(r, e); |
| 17127 | } |
| 17128 | |
| 17129 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17130 | const fn test_mm_castps_ph() { |
| 17131 | let a = _mm_castsi128_ps(_mm_set1_epi16(0x3c00)); |
| 17132 | let r = _mm_castps_ph(a); |
| 17133 | let e = _mm_set1_ph(1.0); |
| 17134 | assert_eq_m128h(r, e); |
| 17135 | } |
| 17136 | |
| 17137 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17138 | const fn test_mm256_castps_ph() { |
| 17139 | let a = _mm256_castsi256_ps(_mm256_set1_epi16(0x3c00)); |
| 17140 | let r = _mm256_castps_ph(a); |
| 17141 | let e = _mm256_set1_ph(1.0); |
| 17142 | assert_eq_m256h(r, e); |
| 17143 | } |
| 17144 | |
| 17145 | #[simd_test(enable = "avx512fp16" )] |
| 17146 | const fn test_mm512_castps_ph() { |
| 17147 | let a = _mm512_castsi512_ps(_mm512_set1_epi16(0x3c00)); |
| 17148 | let r = _mm512_castps_ph(a); |
| 17149 | let e = _mm512_set1_ph(1.0); |
| 17150 | assert_eq_m512h(r, e); |
| 17151 | } |
| 17152 | |
| 17153 | #[simd_test(enable = "avx512fp16" )] |
| 17154 | const fn test_mm_castph_ps() { |
| 17155 | let a = _mm_castsi128_ph(_mm_set1_epi32(0x3f800000)); |
| 17156 | let r = _mm_castph_ps(a); |
| 17157 | let e = _mm_set1_ps(1.0); |
| 17158 | assert_eq_m128(r, e); |
| 17159 | } |
| 17160 | |
| 17161 | #[simd_test(enable = "avx512fp16" )] |
| 17162 | const fn test_mm256_castph_ps() { |
| 17163 | let a = _mm256_castsi256_ph(_mm256_set1_epi32(0x3f800000)); |
| 17164 | let r = _mm256_castph_ps(a); |
| 17165 | let e = _mm256_set1_ps(1.0); |
| 17166 | assert_eq_m256(r, e); |
| 17167 | } |
| 17168 | |
| 17169 | #[simd_test(enable = "avx512fp16" )] |
| 17170 | const fn test_mm512_castph_ps() { |
| 17171 | let a = _mm512_castsi512_ph(_mm512_set1_epi32(0x3f800000)); |
| 17172 | let r = _mm512_castph_ps(a); |
| 17173 | let e = _mm512_set1_ps(1.0); |
| 17174 | assert_eq_m512(r, e); |
| 17175 | } |
| 17176 | |
| 17177 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17178 | const fn test_mm_castpd_ph() { |
| 17179 | let a = _mm_castsi128_pd(_mm_set1_epi16(0x3c00)); |
| 17180 | let r = _mm_castpd_ph(a); |
| 17181 | let e = _mm_set1_ph(1.0); |
| 17182 | assert_eq_m128h(r, e); |
| 17183 | } |
| 17184 | |
| 17185 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17186 | const fn test_mm256_castpd_ph() { |
| 17187 | let a = _mm256_castsi256_pd(_mm256_set1_epi16(0x3c00)); |
| 17188 | let r = _mm256_castpd_ph(a); |
| 17189 | let e = _mm256_set1_ph(1.0); |
| 17190 | assert_eq_m256h(r, e); |
| 17191 | } |
| 17192 | |
| 17193 | #[simd_test(enable = "avx512fp16" )] |
| 17194 | const fn test_mm512_castpd_ph() { |
| 17195 | let a = _mm512_castsi512_pd(_mm512_set1_epi16(0x3c00)); |
| 17196 | let r = _mm512_castpd_ph(a); |
| 17197 | let e = _mm512_set1_ph(1.0); |
| 17198 | assert_eq_m512h(r, e); |
| 17199 | } |
| 17200 | |
| 17201 | #[simd_test(enable = "avx512fp16" )] |
| 17202 | const fn test_mm_castph_pd() { |
| 17203 | let a = _mm_castsi128_ph(_mm_set1_epi64x(0x3ff0000000000000)); |
| 17204 | let r = _mm_castph_pd(a); |
| 17205 | let e = _mm_set1_pd(1.0); |
| 17206 | assert_eq_m128d(r, e); |
| 17207 | } |
| 17208 | |
| 17209 | #[simd_test(enable = "avx512fp16" )] |
| 17210 | const fn test_mm256_castph_pd() { |
| 17211 | let a = _mm256_castsi256_ph(_mm256_set1_epi64x(0x3ff0000000000000)); |
| 17212 | let r = _mm256_castph_pd(a); |
| 17213 | let e = _mm256_set1_pd(1.0); |
| 17214 | assert_eq_m256d(r, e); |
| 17215 | } |
| 17216 | |
| 17217 | #[simd_test(enable = "avx512fp16" )] |
| 17218 | const fn test_mm512_castph_pd() { |
| 17219 | let a = _mm512_castsi512_ph(_mm512_set1_epi64(0x3ff0000000000000)); |
| 17220 | let r = _mm512_castph_pd(a); |
| 17221 | let e = _mm512_set1_pd(1.0); |
| 17222 | assert_eq_m512d(r, e); |
| 17223 | } |
| 17224 | |
| 17225 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17226 | const fn test_mm256_castph256_ph128() { |
| 17227 | let a = _mm256_setr_ph( |
| 17228 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., |
| 17229 | ); |
| 17230 | let r = _mm256_castph256_ph128(a); |
| 17231 | let e = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17232 | assert_eq_m128h(r, e); |
| 17233 | } |
| 17234 | |
| 17235 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17236 | const fn test_mm512_castph512_ph128() { |
| 17237 | let a = _mm512_setr_ph( |
| 17238 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., |
| 17239 | 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., |
| 17240 | ); |
| 17241 | let r = _mm512_castph512_ph128(a); |
| 17242 | let e = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17243 | assert_eq_m128h(r, e); |
| 17244 | } |
| 17245 | |
| 17246 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17247 | const fn test_mm512_castph512_ph256() { |
| 17248 | let a = _mm512_setr_ph( |
| 17249 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., |
| 17250 | 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., |
| 17251 | ); |
| 17252 | let r = _mm512_castph512_ph256(a); |
| 17253 | let e = _mm256_setr_ph( |
| 17254 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., |
| 17255 | ); |
| 17256 | assert_eq_m256h(r, e); |
| 17257 | } |
| 17258 | |
| 17259 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17260 | const fn test_mm256_castph128_ph256() { |
| 17261 | let a = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17262 | let r = _mm256_castph128_ph256(a); |
| 17263 | assert_eq_m128h(_mm256_castph256_ph128(r), a); |
| 17264 | } |
| 17265 | |
| 17266 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17267 | const fn test_mm512_castph128_ph512() { |
| 17268 | let a = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17269 | let r = _mm512_castph128_ph512(a); |
| 17270 | assert_eq_m128h(_mm512_castph512_ph128(r), a); |
| 17271 | } |
| 17272 | |
| 17273 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17274 | const fn test_mm512_castph256_ph512() { |
| 17275 | let a = _mm256_setr_ph( |
| 17276 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., |
| 17277 | ); |
| 17278 | let r = _mm512_castph256_ph512(a); |
| 17279 | assert_eq_m256h(_mm512_castph512_ph256(r), a); |
| 17280 | } |
| 17281 | |
| 17282 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17283 | const fn test_mm256_zextph128_ph256() { |
| 17284 | let a = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17285 | let r = _mm256_zextph128_ph256(a); |
| 17286 | let e = _mm256_setr_ph( |
| 17287 | 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0., 0., 0., |
| 17288 | ); |
| 17289 | assert_eq_m256h(r, e); |
| 17290 | } |
| 17291 | |
| 17292 | #[simd_test(enable = "avx512fp16" )] |
| 17293 | const fn test_mm512_zextph128_ph512() { |
| 17294 | let a = _mm_setr_ph(1., 2., 3., 4., 5., 6., 7., 8.); |
| 17295 | let r = _mm512_zextph128_ph512(a); |
| 17296 | let e = _mm512_setr_ph( |
| 17297 | 1., 2., 3., 4., 5., 6., 7., 8., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., |
| 17298 | 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., |
| 17299 | ); |
| 17300 | assert_eq_m512h(r, e); |
| 17301 | } |
| 17302 | |
| 17303 | #[simd_test(enable = "avx512fp16" )] |
| 17304 | const fn test_mm512_zextph256_ph512() { |
| 17305 | let a = _mm256_setr_ph( |
| 17306 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., |
| 17307 | ); |
| 17308 | let r = _mm512_zextph256_ph512(a); |
| 17309 | let e = _mm512_setr_ph( |
| 17310 | 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 0., 0., 0., 0., |
| 17311 | 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., |
| 17312 | ); |
| 17313 | assert_eq_m512h(r, e); |
| 17314 | } |
| 17315 | |
| 17316 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17317 | fn test_mm_cmp_ph_mask() { |
| 17318 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17319 | let b = _mm_set_ph(1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0); |
| 17320 | let r = _mm_cmp_ph_mask::<_CMP_EQ_OQ>(a, b); |
| 17321 | assert_eq!(r, 0b11110000); |
| 17322 | } |
| 17323 | |
| 17324 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17325 | fn test_mm_mask_cmp_ph_mask() { |
| 17326 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17327 | let b = _mm_set_ph(1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0); |
| 17328 | let r = _mm_mask_cmp_ph_mask::<_CMP_EQ_OQ>(0b01010101, a, b); |
| 17329 | assert_eq!(r, 0b01010000); |
| 17330 | } |
| 17331 | |
| 17332 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17333 | fn test_mm256_cmp_ph_mask() { |
| 17334 | let a = _mm256_set_ph( |
| 17335 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17336 | ); |
| 17337 | let b = _mm256_set_ph( |
| 17338 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17339 | -16.0, |
| 17340 | ); |
| 17341 | let r = _mm256_cmp_ph_mask::<_CMP_EQ_OQ>(a, b); |
| 17342 | assert_eq!(r, 0b1111000011110000); |
| 17343 | } |
| 17344 | |
| 17345 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17346 | fn test_mm256_mask_cmp_ph_mask() { |
| 17347 | let a = _mm256_set_ph( |
| 17348 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17349 | ); |
| 17350 | let b = _mm256_set_ph( |
| 17351 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17352 | -16.0, |
| 17353 | ); |
| 17354 | let r = _mm256_mask_cmp_ph_mask::<_CMP_EQ_OQ>(0b0101010101010101, a, b); |
| 17355 | assert_eq!(r, 0b0101000001010000); |
| 17356 | } |
| 17357 | |
| 17358 | #[simd_test(enable = "avx512fp16" )] |
| 17359 | fn test_mm512_cmp_ph_mask() { |
| 17360 | let a = _mm512_set_ph( |
| 17361 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17362 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17363 | 31.0, 32.0, |
| 17364 | ); |
| 17365 | let b = _mm512_set_ph( |
| 17366 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17367 | -16.0, 17.0, 18.0, 19.0, 20.0, -21.0, -22.0, -23.0, -24.0, 25.0, 26.0, 27.0, 28.0, |
| 17368 | -29.0, -30.0, -31.0, -32.0, |
| 17369 | ); |
| 17370 | let r = _mm512_cmp_ph_mask::<_CMP_EQ_OQ>(a, b); |
| 17371 | assert_eq!(r, 0b11110000111100001111000011110000); |
| 17372 | } |
| 17373 | |
| 17374 | #[simd_test(enable = "avx512fp16" )] |
| 17375 | fn test_mm512_mask_cmp_ph_mask() { |
| 17376 | let a = _mm512_set_ph( |
| 17377 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17378 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17379 | 31.0, 32.0, |
| 17380 | ); |
| 17381 | let b = _mm512_set_ph( |
| 17382 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17383 | -16.0, 17.0, 18.0, 19.0, 20.0, -21.0, -22.0, -23.0, -24.0, 25.0, 26.0, 27.0, 28.0, |
| 17384 | -29.0, -30.0, -31.0, -32.0, |
| 17385 | ); |
| 17386 | let r = _mm512_mask_cmp_ph_mask::<_CMP_EQ_OQ>(0b01010101010101010101010101010101, a, b); |
| 17387 | assert_eq!(r, 0b01010000010100000101000001010000); |
| 17388 | } |
| 17389 | |
| 17390 | #[simd_test(enable = "avx512fp16" )] |
| 17391 | fn test_mm512_cmp_round_ph_mask() { |
| 17392 | let a = _mm512_set_ph( |
| 17393 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17394 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17395 | 31.0, 32.0, |
| 17396 | ); |
| 17397 | let b = _mm512_set_ph( |
| 17398 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17399 | -16.0, 17.0, 18.0, 19.0, 20.0, -21.0, -22.0, -23.0, -24.0, 25.0, 26.0, 27.0, 28.0, |
| 17400 | -29.0, -30.0, -31.0, -32.0, |
| 17401 | ); |
| 17402 | let r = _mm512_cmp_round_ph_mask::<_CMP_EQ_OQ, _MM_FROUND_NO_EXC>(a, b); |
| 17403 | assert_eq!(r, 0b11110000111100001111000011110000); |
| 17404 | } |
| 17405 | |
| 17406 | #[simd_test(enable = "avx512fp16" )] |
| 17407 | fn test_mm512_mask_cmp_round_ph_mask() { |
| 17408 | let a = _mm512_set_ph( |
| 17409 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17410 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17411 | 31.0, 32.0, |
| 17412 | ); |
| 17413 | let b = _mm512_set_ph( |
| 17414 | 1.0, 2.0, 3.0, 4.0, -5.0, -6.0, -7.0, -8.0, 9.0, 10.0, 11.0, 12.0, -13.0, -14.0, -15.0, |
| 17415 | -16.0, 17.0, 18.0, 19.0, 20.0, -21.0, -22.0, -23.0, -24.0, 25.0, 26.0, 27.0, 28.0, |
| 17416 | -29.0, -30.0, -31.0, -32.0, |
| 17417 | ); |
| 17418 | let r = _mm512_mask_cmp_round_ph_mask::<_CMP_EQ_OQ, _MM_FROUND_NO_EXC>( |
| 17419 | 0b01010101010101010101010101010101, |
| 17420 | a, |
| 17421 | b, |
| 17422 | ); |
| 17423 | assert_eq!(r, 0b01010000010100000101000001010000); |
| 17424 | } |
| 17425 | |
| 17426 | #[simd_test(enable = "avx512fp16" )] |
| 17427 | fn test_mm_cmp_round_sh_mask() { |
| 17428 | let a = _mm_set_sh(1.0); |
| 17429 | let b = _mm_set_sh(1.0); |
| 17430 | let r = _mm_cmp_round_sh_mask::<_CMP_EQ_OQ, _MM_FROUND_NO_EXC>(a, b); |
| 17431 | assert_eq!(r, 1); |
| 17432 | } |
| 17433 | |
| 17434 | #[simd_test(enable = "avx512fp16" )] |
| 17435 | fn test_mm_mask_cmp_round_sh_mask() { |
| 17436 | let a = _mm_set_sh(1.0); |
| 17437 | let b = _mm_set_sh(1.0); |
| 17438 | let r = _mm_mask_cmp_round_sh_mask::<_CMP_EQ_OQ, _MM_FROUND_NO_EXC>(0, a, b); |
| 17439 | assert_eq!(r, 0); |
| 17440 | } |
| 17441 | |
| 17442 | #[simd_test(enable = "avx512fp16" )] |
| 17443 | fn test_mm_cmp_sh_mask() { |
| 17444 | let a = _mm_set_sh(1.0); |
| 17445 | let b = _mm_set_sh(1.0); |
| 17446 | let r = _mm_cmp_sh_mask::<_CMP_EQ_OQ>(a, b); |
| 17447 | assert_eq!(r, 1); |
| 17448 | } |
| 17449 | |
| 17450 | #[simd_test(enable = "avx512fp16" )] |
| 17451 | fn test_mm_mask_cmp_sh_mask() { |
| 17452 | let a = _mm_set_sh(1.0); |
| 17453 | let b = _mm_set_sh(1.0); |
| 17454 | let r = _mm_mask_cmp_sh_mask::<_CMP_EQ_OQ>(0, a, b); |
| 17455 | assert_eq!(r, 0); |
| 17456 | } |
| 17457 | |
| 17458 | #[simd_test(enable = "avx512fp16" )] |
| 17459 | fn test_mm_comi_round_sh() { |
| 17460 | let a = _mm_set_sh(1.0); |
| 17461 | let b = _mm_set_sh(1.0); |
| 17462 | let r = _mm_comi_round_sh::<_CMP_EQ_OQ, _MM_FROUND_NO_EXC>(a, b); |
| 17463 | assert_eq!(r, 1); |
| 17464 | } |
| 17465 | |
| 17466 | #[simd_test(enable = "avx512fp16" )] |
| 17467 | fn test_mm_comi_sh() { |
| 17468 | let a = _mm_set_sh(1.0); |
| 17469 | let b = _mm_set_sh(1.0); |
| 17470 | let r = _mm_comi_sh::<_CMP_EQ_OQ>(a, b); |
| 17471 | assert_eq!(r, 1); |
| 17472 | } |
| 17473 | |
| 17474 | #[simd_test(enable = "avx512fp16" )] |
| 17475 | fn test_mm_comieq_sh() { |
| 17476 | let a = _mm_set_sh(1.0); |
| 17477 | let b = _mm_set_sh(1.0); |
| 17478 | let r = _mm_comieq_sh(a, b); |
| 17479 | assert_eq!(r, 1); |
| 17480 | } |
| 17481 | |
| 17482 | #[simd_test(enable = "avx512fp16" )] |
| 17483 | fn test_mm_comige_sh() { |
| 17484 | let a = _mm_set_sh(2.0); |
| 17485 | let b = _mm_set_sh(1.0); |
| 17486 | let r = _mm_comige_sh(a, b); |
| 17487 | assert_eq!(r, 1); |
| 17488 | } |
| 17489 | |
| 17490 | #[simd_test(enable = "avx512fp16" )] |
| 17491 | fn test_mm_comigt_sh() { |
| 17492 | let a = _mm_set_sh(2.0); |
| 17493 | let b = _mm_set_sh(1.0); |
| 17494 | let r = _mm_comigt_sh(a, b); |
| 17495 | assert_eq!(r, 1); |
| 17496 | } |
| 17497 | |
| 17498 | #[simd_test(enable = "avx512fp16" )] |
| 17499 | fn test_mm_comile_sh() { |
| 17500 | let a = _mm_set_sh(1.0); |
| 17501 | let b = _mm_set_sh(2.0); |
| 17502 | let r = _mm_comile_sh(a, b); |
| 17503 | assert_eq!(r, 1); |
| 17504 | } |
| 17505 | |
| 17506 | #[simd_test(enable = "avx512fp16" )] |
| 17507 | fn test_mm_comilt_sh() { |
| 17508 | let a = _mm_set_sh(1.0); |
| 17509 | let b = _mm_set_sh(2.0); |
| 17510 | let r = _mm_comilt_sh(a, b); |
| 17511 | assert_eq!(r, 1); |
| 17512 | } |
| 17513 | |
| 17514 | #[simd_test(enable = "avx512fp16" )] |
| 17515 | fn test_mm_comineq_sh() { |
| 17516 | let a = _mm_set_sh(1.0); |
| 17517 | let b = _mm_set_sh(2.0); |
| 17518 | let r = _mm_comineq_sh(a, b); |
| 17519 | assert_eq!(r, 1); |
| 17520 | } |
| 17521 | |
| 17522 | #[simd_test(enable = "avx512fp16" )] |
| 17523 | fn test_mm_ucomieq_sh() { |
| 17524 | let a = _mm_set_sh(1.0); |
| 17525 | let b = _mm_set_sh(1.0); |
| 17526 | let r = _mm_ucomieq_sh(a, b); |
| 17527 | assert_eq!(r, 1); |
| 17528 | } |
| 17529 | |
| 17530 | #[simd_test(enable = "avx512fp16" )] |
| 17531 | fn test_mm_ucomige_sh() { |
| 17532 | let a = _mm_set_sh(2.0); |
| 17533 | let b = _mm_set_sh(1.0); |
| 17534 | let r = _mm_ucomige_sh(a, b); |
| 17535 | assert_eq!(r, 1); |
| 17536 | } |
| 17537 | |
| 17538 | #[simd_test(enable = "avx512fp16" )] |
| 17539 | fn test_mm_ucomigt_sh() { |
| 17540 | let a = _mm_set_sh(2.0); |
| 17541 | let b = _mm_set_sh(1.0); |
| 17542 | let r = _mm_ucomigt_sh(a, b); |
| 17543 | assert_eq!(r, 1); |
| 17544 | } |
| 17545 | |
| 17546 | #[simd_test(enable = "avx512fp16" )] |
| 17547 | fn test_mm_ucomile_sh() { |
| 17548 | let a = _mm_set_sh(1.0); |
| 17549 | let b = _mm_set_sh(2.0); |
| 17550 | let r = _mm_ucomile_sh(a, b); |
| 17551 | assert_eq!(r, 1); |
| 17552 | } |
| 17553 | |
| 17554 | #[simd_test(enable = "avx512fp16" )] |
| 17555 | fn test_mm_ucomilt_sh() { |
| 17556 | let a = _mm_set_sh(1.0); |
| 17557 | let b = _mm_set_sh(2.0); |
| 17558 | let r = _mm_ucomilt_sh(a, b); |
| 17559 | assert_eq!(r, 1); |
| 17560 | } |
| 17561 | |
| 17562 | #[simd_test(enable = "avx512fp16" )] |
| 17563 | fn test_mm_ucomineq_sh() { |
| 17564 | let a = _mm_set_sh(1.0); |
| 17565 | let b = _mm_set_sh(2.0); |
| 17566 | let r = _mm_ucomineq_sh(a, b); |
| 17567 | assert_eq!(r, 1); |
| 17568 | } |
| 17569 | |
| 17570 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17571 | const fn test_mm_load_ph() { |
| 17572 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17573 | let b = unsafe { _mm_load_ph(addr_of!(a).cast()) }; |
| 17574 | assert_eq_m128h(a, b); |
| 17575 | } |
| 17576 | |
| 17577 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17578 | const fn test_mm256_load_ph() { |
| 17579 | let a = _mm256_set_ph( |
| 17580 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17581 | ); |
| 17582 | let b = unsafe { _mm256_load_ph(addr_of!(a).cast()) }; |
| 17583 | assert_eq_m256h(a, b); |
| 17584 | } |
| 17585 | |
| 17586 | #[simd_test(enable = "avx512fp16" )] |
| 17587 | const fn test_mm512_load_ph() { |
| 17588 | let a = _mm512_set_ph( |
| 17589 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17590 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17591 | 31.0, 32.0, |
| 17592 | ); |
| 17593 | let b = unsafe { _mm512_load_ph(addr_of!(a).cast()) }; |
| 17594 | assert_eq_m512h(a, b); |
| 17595 | } |
| 17596 | |
| 17597 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17598 | const fn test_mm_load_sh() { |
| 17599 | let a = _mm_set_sh(1.0); |
| 17600 | let b = unsafe { _mm_load_sh(addr_of!(a).cast()) }; |
| 17601 | assert_eq_m128h(a, b); |
| 17602 | } |
| 17603 | |
| 17604 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17605 | fn test_mm_mask_load_sh() { |
| 17606 | let a = _mm_set_sh(1.0); |
| 17607 | let src = _mm_set_sh(2.); |
| 17608 | let b = unsafe { _mm_mask_load_sh(src, 1, addr_of!(a).cast()) }; |
| 17609 | assert_eq_m128h(a, b); |
| 17610 | let b = unsafe { _mm_mask_load_sh(src, 0, addr_of!(a).cast()) }; |
| 17611 | assert_eq_m128h(src, b); |
| 17612 | } |
| 17613 | |
| 17614 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17615 | fn test_mm_maskz_load_sh() { |
| 17616 | let a = _mm_set_sh(1.0); |
| 17617 | let b = unsafe { _mm_maskz_load_sh(1, addr_of!(a).cast()) }; |
| 17618 | assert_eq_m128h(a, b); |
| 17619 | let b = unsafe { _mm_maskz_load_sh(0, addr_of!(a).cast()) }; |
| 17620 | assert_eq_m128h(_mm_setzero_ph(), b); |
| 17621 | } |
| 17622 | |
| 17623 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17624 | const fn test_mm_loadu_ph() { |
| 17625 | let array = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; |
| 17626 | let r = unsafe { _mm_loadu_ph(array.as_ptr()) }; |
| 17627 | let e = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17628 | assert_eq_m128h(r, e); |
| 17629 | } |
| 17630 | |
| 17631 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17632 | const fn test_mm256_loadu_ph() { |
| 17633 | let array = [ |
| 17634 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17635 | ]; |
| 17636 | let r = unsafe { _mm256_loadu_ph(array.as_ptr()) }; |
| 17637 | let e = _mm256_setr_ph( |
| 17638 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17639 | ); |
| 17640 | assert_eq_m256h(r, e); |
| 17641 | } |
| 17642 | |
| 17643 | #[simd_test(enable = "avx512fp16" )] |
| 17644 | const fn test_mm512_loadu_ph() { |
| 17645 | let array = [ |
| 17646 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17647 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17648 | 31.0, 32.0, |
| 17649 | ]; |
| 17650 | let r = unsafe { _mm512_loadu_ph(array.as_ptr()) }; |
| 17651 | let e = _mm512_setr_ph( |
| 17652 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17653 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17654 | 31.0, 32.0, |
| 17655 | ); |
| 17656 | assert_eq_m512h(r, e); |
| 17657 | } |
| 17658 | |
| 17659 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17660 | const fn test_mm_move_sh() { |
| 17661 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17662 | let b = _mm_set_sh(9.0); |
| 17663 | let r = _mm_move_sh(a, b); |
| 17664 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0); |
| 17665 | assert_eq_m128h(r, e); |
| 17666 | } |
| 17667 | |
| 17668 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17669 | const fn test_mm_mask_move_sh() { |
| 17670 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17671 | let b = _mm_set_sh(9.0); |
| 17672 | let src = _mm_set_sh(10.0); |
| 17673 | let r = _mm_mask_move_sh(src, 0, a, b); |
| 17674 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 10.0); |
| 17675 | assert_eq_m128h(r, e); |
| 17676 | } |
| 17677 | |
| 17678 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17679 | const fn test_mm_maskz_move_sh() { |
| 17680 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17681 | let b = _mm_set_sh(9.0); |
| 17682 | let r = _mm_maskz_move_sh(0, a, b); |
| 17683 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 0.0); |
| 17684 | assert_eq_m128h(r, e); |
| 17685 | } |
| 17686 | |
| 17687 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17688 | const fn test_mm_store_ph() { |
| 17689 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17690 | let mut b = _mm_setzero_ph(); |
| 17691 | unsafe { |
| 17692 | _mm_store_ph(addr_of_mut!(b).cast(), a); |
| 17693 | } |
| 17694 | assert_eq_m128h(a, b); |
| 17695 | } |
| 17696 | |
| 17697 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17698 | const fn test_mm256_store_ph() { |
| 17699 | let a = _mm256_set_ph( |
| 17700 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17701 | ); |
| 17702 | let mut b = _mm256_setzero_ph(); |
| 17703 | unsafe { |
| 17704 | _mm256_store_ph(addr_of_mut!(b).cast(), a); |
| 17705 | } |
| 17706 | assert_eq_m256h(a, b); |
| 17707 | } |
| 17708 | |
| 17709 | #[simd_test(enable = "avx512fp16" )] |
| 17710 | const fn test_mm512_store_ph() { |
| 17711 | let a = _mm512_set_ph( |
| 17712 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17713 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17714 | 31.0, 32.0, |
| 17715 | ); |
| 17716 | let mut b = _mm512_setzero_ph(); |
| 17717 | unsafe { |
| 17718 | _mm512_store_ph(addr_of_mut!(b).cast(), a); |
| 17719 | } |
| 17720 | assert_eq_m512h(a, b); |
| 17721 | } |
| 17722 | |
| 17723 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17724 | const fn test_mm_store_sh() { |
| 17725 | let a = _mm_set_sh(1.0); |
| 17726 | let mut b = _mm_setzero_ph(); |
| 17727 | unsafe { |
| 17728 | _mm_store_sh(addr_of_mut!(b).cast(), a); |
| 17729 | } |
| 17730 | assert_eq_m128h(a, b); |
| 17731 | } |
| 17732 | |
| 17733 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17734 | fn test_mm_mask_store_sh() { |
| 17735 | let a = _mm_set_sh(1.0); |
| 17736 | let mut b = _mm_setzero_ph(); |
| 17737 | unsafe { |
| 17738 | _mm_mask_store_sh(addr_of_mut!(b).cast(), 0, a); |
| 17739 | } |
| 17740 | assert_eq_m128h(_mm_setzero_ph(), b); |
| 17741 | unsafe { |
| 17742 | _mm_mask_store_sh(addr_of_mut!(b).cast(), 1, a); |
| 17743 | } |
| 17744 | assert_eq_m128h(a, b); |
| 17745 | } |
| 17746 | |
| 17747 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17748 | const fn test_mm_storeu_ph() { |
| 17749 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17750 | let mut array = [0.0; 8]; |
| 17751 | unsafe { |
| 17752 | _mm_storeu_ph(array.as_mut_ptr(), a); |
| 17753 | } |
| 17754 | assert_eq_m128h(a, unsafe { _mm_loadu_ph(array.as_ptr()) }); |
| 17755 | } |
| 17756 | |
| 17757 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17758 | const fn test_mm256_storeu_ph() { |
| 17759 | let a = _mm256_set_ph( |
| 17760 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17761 | ); |
| 17762 | let mut array = [0.0; 16]; |
| 17763 | unsafe { |
| 17764 | _mm256_storeu_ph(array.as_mut_ptr(), a); |
| 17765 | } |
| 17766 | assert_eq_m256h(a, unsafe { _mm256_loadu_ph(array.as_ptr()) }); |
| 17767 | } |
| 17768 | |
| 17769 | #[simd_test(enable = "avx512fp16" )] |
| 17770 | const fn test_mm512_storeu_ph() { |
| 17771 | let a = _mm512_set_ph( |
| 17772 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17773 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17774 | 31.0, 32.0, |
| 17775 | ); |
| 17776 | let mut array = [0.0; 32]; |
| 17777 | unsafe { |
| 17778 | _mm512_storeu_ph(array.as_mut_ptr(), a); |
| 17779 | } |
| 17780 | assert_eq_m512h(a, unsafe { _mm512_loadu_ph(array.as_ptr()) }); |
| 17781 | } |
| 17782 | |
| 17783 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17784 | const fn test_mm_add_ph() { |
| 17785 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17786 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 17787 | let r = _mm_add_ph(a, b); |
| 17788 | let e = _mm_set1_ph(9.0); |
| 17789 | assert_eq_m128h(r, e); |
| 17790 | } |
| 17791 | |
| 17792 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17793 | const fn test_mm_mask_add_ph() { |
| 17794 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17795 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 17796 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 17797 | let r = _mm_mask_add_ph(src, 0b01010101, a, b); |
| 17798 | let e = _mm_set_ph(10., 9., 12., 9., 14., 9., 16., 9.); |
| 17799 | assert_eq_m128h(r, e); |
| 17800 | } |
| 17801 | |
| 17802 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17803 | const fn test_mm_maskz_add_ph() { |
| 17804 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 17805 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 17806 | let r = _mm_maskz_add_ph(0b01010101, a, b); |
| 17807 | let e = _mm_set_ph(0., 9., 0., 9., 0., 9., 0., 9.); |
| 17808 | assert_eq_m128h(r, e); |
| 17809 | } |
| 17810 | |
| 17811 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17812 | const fn test_mm256_add_ph() { |
| 17813 | let a = _mm256_set_ph( |
| 17814 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17815 | ); |
| 17816 | let b = _mm256_set_ph( |
| 17817 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 17818 | ); |
| 17819 | let r = _mm256_add_ph(a, b); |
| 17820 | let e = _mm256_set1_ph(17.0); |
| 17821 | assert_eq_m256h(r, e); |
| 17822 | } |
| 17823 | |
| 17824 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17825 | const fn test_mm256_mask_add_ph() { |
| 17826 | let a = _mm256_set_ph( |
| 17827 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17828 | ); |
| 17829 | let b = _mm256_set_ph( |
| 17830 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 17831 | ); |
| 17832 | let src = _mm256_set_ph( |
| 17833 | 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., |
| 17834 | ); |
| 17835 | let r = _mm256_mask_add_ph(src, 0b0101010101010101, a, b); |
| 17836 | let e = _mm256_set_ph( |
| 17837 | 18., 17., 20., 17., 22., 17., 24., 17., 26., 17., 28., 17., 30., 17., 32., 17., |
| 17838 | ); |
| 17839 | assert_eq_m256h(r, e); |
| 17840 | } |
| 17841 | |
| 17842 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17843 | const fn test_mm256_maskz_add_ph() { |
| 17844 | let a = _mm256_set_ph( |
| 17845 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17846 | ); |
| 17847 | let b = _mm256_set_ph( |
| 17848 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 17849 | ); |
| 17850 | let r = _mm256_maskz_add_ph(0b0101010101010101, a, b); |
| 17851 | let e = _mm256_set_ph( |
| 17852 | 0., 17., 0., 17., 0., 17., 0., 17., 0., 17., 0., 17., 0., 17., 0., 17., |
| 17853 | ); |
| 17854 | assert_eq_m256h(r, e); |
| 17855 | } |
| 17856 | |
| 17857 | #[simd_test(enable = "avx512fp16" )] |
| 17858 | const fn test_mm512_add_ph() { |
| 17859 | let a = _mm512_set_ph( |
| 17860 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17861 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17862 | 31.0, 32.0, |
| 17863 | ); |
| 17864 | let b = _mm512_set_ph( |
| 17865 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17866 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17867 | 3.0, 2.0, 1.0, |
| 17868 | ); |
| 17869 | let r = _mm512_add_ph(a, b); |
| 17870 | let e = _mm512_set1_ph(33.0); |
| 17871 | assert_eq_m512h(r, e); |
| 17872 | } |
| 17873 | |
| 17874 | #[simd_test(enable = "avx512fp16" )] |
| 17875 | const fn test_mm512_mask_add_ph() { |
| 17876 | let a = _mm512_set_ph( |
| 17877 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17878 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17879 | 31.0, 32.0, |
| 17880 | ); |
| 17881 | let b = _mm512_set_ph( |
| 17882 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17883 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17884 | 3.0, 2.0, 1.0, |
| 17885 | ); |
| 17886 | let src = _mm512_set_ph( |
| 17887 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 17888 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 17889 | ); |
| 17890 | let r = _mm512_mask_add_ph(src, 0b01010101010101010101010101010101, a, b); |
| 17891 | let e = _mm512_set_ph( |
| 17892 | 34., 33., 36., 33., 38., 33., 40., 33., 42., 33., 44., 33., 46., 33., 48., 33., 50., |
| 17893 | 33., 52., 33., 54., 33., 56., 33., 58., 33., 60., 33., 62., 33., 64., 33., |
| 17894 | ); |
| 17895 | assert_eq_m512h(r, e); |
| 17896 | } |
| 17897 | |
| 17898 | #[simd_test(enable = "avx512fp16" )] |
| 17899 | const fn test_mm512_maskz_add_ph() { |
| 17900 | let a = _mm512_set_ph( |
| 17901 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17902 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17903 | 31.0, 32.0, |
| 17904 | ); |
| 17905 | let b = _mm512_set_ph( |
| 17906 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17907 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17908 | 3.0, 2.0, 1.0, |
| 17909 | ); |
| 17910 | let r = _mm512_maskz_add_ph(0b01010101010101010101010101010101, a, b); |
| 17911 | let e = _mm512_set_ph( |
| 17912 | 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., |
| 17913 | 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., |
| 17914 | ); |
| 17915 | assert_eq_m512h(r, e); |
| 17916 | } |
| 17917 | |
| 17918 | #[simd_test(enable = "avx512fp16" )] |
| 17919 | fn test_mm512_add_round_ph() { |
| 17920 | let a = _mm512_set_ph( |
| 17921 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17922 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17923 | 31.0, 32.0, |
| 17924 | ); |
| 17925 | let b = _mm512_set_ph( |
| 17926 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17927 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17928 | 3.0, 2.0, 1.0, |
| 17929 | ); |
| 17930 | let r = _mm512_add_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 17931 | let e = _mm512_set1_ph(33.0); |
| 17932 | assert_eq_m512h(r, e); |
| 17933 | } |
| 17934 | |
| 17935 | #[simd_test(enable = "avx512fp16" )] |
| 17936 | fn test_mm512_mask_add_round_ph() { |
| 17937 | let a = _mm512_set_ph( |
| 17938 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17939 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17940 | 31.0, 32.0, |
| 17941 | ); |
| 17942 | let b = _mm512_set_ph( |
| 17943 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17944 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17945 | 3.0, 2.0, 1.0, |
| 17946 | ); |
| 17947 | let src = _mm512_set_ph( |
| 17948 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 17949 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 17950 | ); |
| 17951 | let r = _mm512_mask_add_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 17952 | src, |
| 17953 | 0b01010101010101010101010101010101, |
| 17954 | a, |
| 17955 | b, |
| 17956 | ); |
| 17957 | let e = _mm512_set_ph( |
| 17958 | 34., 33., 36., 33., 38., 33., 40., 33., 42., 33., 44., 33., 46., 33., 48., 33., 50., |
| 17959 | 33., 52., 33., 54., 33., 56., 33., 58., 33., 60., 33., 62., 33., 64., 33., |
| 17960 | ); |
| 17961 | assert_eq_m512h(r, e); |
| 17962 | } |
| 17963 | |
| 17964 | #[simd_test(enable = "avx512fp16" )] |
| 17965 | fn test_mm512_maskz_add_round_ph() { |
| 17966 | let a = _mm512_set_ph( |
| 17967 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 17968 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 17969 | 31.0, 32.0, |
| 17970 | ); |
| 17971 | let b = _mm512_set_ph( |
| 17972 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 17973 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 17974 | 3.0, 2.0, 1.0, |
| 17975 | ); |
| 17976 | let r = _mm512_maskz_add_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 17977 | 0b01010101010101010101010101010101, |
| 17978 | a, |
| 17979 | b, |
| 17980 | ); |
| 17981 | let e = _mm512_set_ph( |
| 17982 | 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., |
| 17983 | 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., 0., 33., |
| 17984 | ); |
| 17985 | assert_eq_m512h(r, e); |
| 17986 | } |
| 17987 | |
| 17988 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17989 | fn test_mm_add_round_sh() { |
| 17990 | let a = _mm_set_sh(1.0); |
| 17991 | let b = _mm_set_sh(2.0); |
| 17992 | let r = _mm_add_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 17993 | let e = _mm_set_sh(3.0); |
| 17994 | assert_eq_m128h(r, e); |
| 17995 | } |
| 17996 | |
| 17997 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 17998 | fn test_mm_mask_add_round_sh() { |
| 17999 | let a = _mm_set_sh(1.0); |
| 18000 | let b = _mm_set_sh(2.0); |
| 18001 | let src = _mm_set_sh(4.0); |
| 18002 | let r = _mm_mask_add_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18003 | src, 0, a, b, |
| 18004 | ); |
| 18005 | let e = _mm_set_sh(4.0); |
| 18006 | assert_eq_m128h(r, e); |
| 18007 | let r = _mm_mask_add_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18008 | src, 1, a, b, |
| 18009 | ); |
| 18010 | let e = _mm_set_sh(3.0); |
| 18011 | assert_eq_m128h(r, e); |
| 18012 | } |
| 18013 | |
| 18014 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18015 | fn test_mm_maskz_add_round_sh() { |
| 18016 | let a = _mm_set_sh(1.0); |
| 18017 | let b = _mm_set_sh(2.0); |
| 18018 | let r = |
| 18019 | _mm_maskz_add_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 18020 | let e = _mm_set_sh(0.0); |
| 18021 | assert_eq_m128h(r, e); |
| 18022 | let r = |
| 18023 | _mm_maskz_add_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 18024 | let e = _mm_set_sh(3.0); |
| 18025 | assert_eq_m128h(r, e); |
| 18026 | } |
| 18027 | |
| 18028 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18029 | const fn test_mm_add_sh() { |
| 18030 | let a = _mm_set_sh(1.0); |
| 18031 | let b = _mm_set_sh(2.0); |
| 18032 | let r = _mm_add_sh(a, b); |
| 18033 | let e = _mm_set_sh(3.0); |
| 18034 | assert_eq_m128h(r, e); |
| 18035 | } |
| 18036 | |
| 18037 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18038 | const fn test_mm_mask_add_sh() { |
| 18039 | let a = _mm_set_sh(1.0); |
| 18040 | let b = _mm_set_sh(2.0); |
| 18041 | let src = _mm_set_sh(4.0); |
| 18042 | let r = _mm_mask_add_sh(src, 0, a, b); |
| 18043 | let e = _mm_set_sh(4.0); |
| 18044 | assert_eq_m128h(r, e); |
| 18045 | let r = _mm_mask_add_sh(src, 1, a, b); |
| 18046 | let e = _mm_set_sh(3.0); |
| 18047 | assert_eq_m128h(r, e); |
| 18048 | } |
| 18049 | |
| 18050 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18051 | const fn test_mm_maskz_add_sh() { |
| 18052 | let a = _mm_set_sh(1.0); |
| 18053 | let b = _mm_set_sh(2.0); |
| 18054 | let r = _mm_maskz_add_sh(0, a, b); |
| 18055 | let e = _mm_set_sh(0.0); |
| 18056 | assert_eq_m128h(r, e); |
| 18057 | let r = _mm_maskz_add_sh(1, a, b); |
| 18058 | let e = _mm_set_sh(3.0); |
| 18059 | assert_eq_m128h(r, e); |
| 18060 | } |
| 18061 | |
| 18062 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18063 | const fn test_mm_sub_ph() { |
| 18064 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18065 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18066 | let r = _mm_sub_ph(a, b); |
| 18067 | let e = _mm_set_ph(-7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0); |
| 18068 | assert_eq_m128h(r, e); |
| 18069 | } |
| 18070 | |
| 18071 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18072 | const fn test_mm_mask_sub_ph() { |
| 18073 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18074 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18075 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 18076 | let r = _mm_mask_sub_ph(src, 0b01010101, a, b); |
| 18077 | let e = _mm_set_ph(10., -5., 12., -1., 14., 3., 16., 7.); |
| 18078 | assert_eq_m128h(r, e); |
| 18079 | } |
| 18080 | |
| 18081 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18082 | const fn test_mm_maskz_sub_ph() { |
| 18083 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18084 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18085 | let r = _mm_maskz_sub_ph(0b01010101, a, b); |
| 18086 | let e = _mm_set_ph(0., -5., 0., -1., 0., 3., 0., 7.); |
| 18087 | assert_eq_m128h(r, e); |
| 18088 | } |
| 18089 | |
| 18090 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18091 | const fn test_mm256_sub_ph() { |
| 18092 | let a = _mm256_set_ph( |
| 18093 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18094 | ); |
| 18095 | let b = _mm256_set_ph( |
| 18096 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18097 | ); |
| 18098 | let r = _mm256_sub_ph(a, b); |
| 18099 | let e = _mm256_set_ph( |
| 18100 | -15.0, -13.0, -11.0, -9.0, -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, |
| 18101 | 15.0, |
| 18102 | ); |
| 18103 | assert_eq_m256h(r, e); |
| 18104 | } |
| 18105 | |
| 18106 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18107 | const fn test_mm256_mask_sub_ph() { |
| 18108 | let a = _mm256_set_ph( |
| 18109 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18110 | ); |
| 18111 | let b = _mm256_set_ph( |
| 18112 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18113 | ); |
| 18114 | let src = _mm256_set_ph( |
| 18115 | 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., |
| 18116 | ); |
| 18117 | let r = _mm256_mask_sub_ph(src, 0b0101010101010101, a, b); |
| 18118 | let e = _mm256_set_ph( |
| 18119 | 18., -13., 20., -9., 22., -5., 24., -1., 26., 3., 28., 7., 30., 11., 32., 15., |
| 18120 | ); |
| 18121 | assert_eq_m256h(r, e); |
| 18122 | } |
| 18123 | |
| 18124 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18125 | const fn test_mm256_maskz_sub_ph() { |
| 18126 | let a = _mm256_set_ph( |
| 18127 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18128 | ); |
| 18129 | let b = _mm256_set_ph( |
| 18130 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18131 | ); |
| 18132 | let r = _mm256_maskz_sub_ph(0b0101010101010101, a, b); |
| 18133 | let e = _mm256_set_ph( |
| 18134 | 0., -13., 0., -9., 0., -5., 0., -1., 0., 3., 0., 7., 0., 11., 0., 15., |
| 18135 | ); |
| 18136 | assert_eq_m256h(r, e); |
| 18137 | } |
| 18138 | |
| 18139 | #[simd_test(enable = "avx512fp16" )] |
| 18140 | const fn test_mm512_sub_ph() { |
| 18141 | let a = _mm512_set_ph( |
| 18142 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18143 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18144 | 31.0, 32.0, |
| 18145 | ); |
| 18146 | let b = _mm512_set_ph( |
| 18147 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18148 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18149 | 3.0, 2.0, 1.0, |
| 18150 | ); |
| 18151 | let r = _mm512_sub_ph(a, b); |
| 18152 | let e = _mm512_set_ph( |
| 18153 | -31.0, -29.0, -27.0, -25.0, -23.0, -21.0, -19.0, -17.0, -15.0, -13.0, -11.0, -9.0, |
| 18154 | -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, |
| 18155 | 23.0, 25.0, 27.0, 29.0, 31.0, |
| 18156 | ); |
| 18157 | assert_eq_m512h(r, e); |
| 18158 | } |
| 18159 | |
| 18160 | #[simd_test(enable = "avx512fp16" )] |
| 18161 | const fn test_mm512_mask_sub_ph() { |
| 18162 | let a = _mm512_set_ph( |
| 18163 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18164 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18165 | 31.0, 32.0, |
| 18166 | ); |
| 18167 | let b = _mm512_set_ph( |
| 18168 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18169 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18170 | 3.0, 2.0, 1.0, |
| 18171 | ); |
| 18172 | let src = _mm512_set_ph( |
| 18173 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 18174 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 18175 | ); |
| 18176 | let r = _mm512_mask_sub_ph(src, 0b01010101010101010101010101010101, a, b); |
| 18177 | let e = _mm512_set_ph( |
| 18178 | 34., -29., 36., -25., 38., -21., 40., -17., 42., -13., 44., -9., 46., -5., 48., -1., |
| 18179 | 50., 3., 52., 7., 54., 11., 56., 15., 58., 19., 60., 23., 62., 27., 64., 31., |
| 18180 | ); |
| 18181 | assert_eq_m512h(r, e); |
| 18182 | } |
| 18183 | |
| 18184 | #[simd_test(enable = "avx512fp16" )] |
| 18185 | const fn test_mm512_maskz_sub_ph() { |
| 18186 | let a = _mm512_set_ph( |
| 18187 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18188 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18189 | 31.0, 32.0, |
| 18190 | ); |
| 18191 | let b = _mm512_set_ph( |
| 18192 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18193 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18194 | 3.0, 2.0, 1.0, |
| 18195 | ); |
| 18196 | let r = _mm512_maskz_sub_ph(0b01010101010101010101010101010101, a, b); |
| 18197 | let e = _mm512_set_ph( |
| 18198 | 0., -29., 0., -25., 0., -21., 0., -17., 0., -13., 0., -9., 0., -5., 0., -1., 0., 3., |
| 18199 | 0., 7., 0., 11., 0., 15., 0., 19., 0., 23., 0., 27., 0., 31., |
| 18200 | ); |
| 18201 | assert_eq_m512h(r, e); |
| 18202 | } |
| 18203 | |
| 18204 | #[simd_test(enable = "avx512fp16" )] |
| 18205 | fn test_mm512_sub_round_ph() { |
| 18206 | let a = _mm512_set_ph( |
| 18207 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18208 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18209 | 31.0, 32.0, |
| 18210 | ); |
| 18211 | let b = _mm512_set_ph( |
| 18212 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18213 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18214 | 3.0, 2.0, 1.0, |
| 18215 | ); |
| 18216 | let r = _mm512_sub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18217 | let e = _mm512_set_ph( |
| 18218 | -31.0, -29.0, -27.0, -25.0, -23.0, -21.0, -19.0, -17.0, -15.0, -13.0, -11.0, -9.0, |
| 18219 | -7.0, -5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, |
| 18220 | 23.0, 25.0, 27.0, 29.0, 31.0, |
| 18221 | ); |
| 18222 | assert_eq_m512h(r, e); |
| 18223 | } |
| 18224 | |
| 18225 | #[simd_test(enable = "avx512fp16" )] |
| 18226 | fn test_mm512_mask_sub_round_ph() { |
| 18227 | let a = _mm512_set_ph( |
| 18228 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18229 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18230 | 31.0, 32.0, |
| 18231 | ); |
| 18232 | let b = _mm512_set_ph( |
| 18233 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18234 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18235 | 3.0, 2.0, 1.0, |
| 18236 | ); |
| 18237 | let src = _mm512_set_ph( |
| 18238 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 18239 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 18240 | ); |
| 18241 | let r = _mm512_mask_sub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18242 | src, |
| 18243 | 0b01010101010101010101010101010101, |
| 18244 | a, |
| 18245 | b, |
| 18246 | ); |
| 18247 | let e = _mm512_set_ph( |
| 18248 | 34., -29., 36., -25., 38., -21., 40., -17., 42., -13., 44., -9., 46., -5., 48., -1., |
| 18249 | 50., 3., 52., 7., 54., 11., 56., 15., 58., 19., 60., 23., 62., 27., 64., 31., |
| 18250 | ); |
| 18251 | assert_eq_m512h(r, e); |
| 18252 | } |
| 18253 | |
| 18254 | #[simd_test(enable = "avx512fp16" )] |
| 18255 | fn test_mm512_maskz_sub_round_ph() { |
| 18256 | let a = _mm512_set_ph( |
| 18257 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18258 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18259 | 31.0, 32.0, |
| 18260 | ); |
| 18261 | let b = _mm512_set_ph( |
| 18262 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18263 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18264 | 3.0, 2.0, 1.0, |
| 18265 | ); |
| 18266 | let r = _mm512_maskz_sub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18267 | 0b01010101010101010101010101010101, |
| 18268 | a, |
| 18269 | b, |
| 18270 | ); |
| 18271 | let e = _mm512_set_ph( |
| 18272 | 0., -29., 0., -25., 0., -21., 0., -17., 0., -13., 0., -9., 0., -5., 0., -1., 0., 3., |
| 18273 | 0., 7., 0., 11., 0., 15., 0., 19., 0., 23., 0., 27., 0., 31., |
| 18274 | ); |
| 18275 | assert_eq_m512h(r, e); |
| 18276 | } |
| 18277 | |
| 18278 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18279 | fn test_mm_sub_round_sh() { |
| 18280 | let a = _mm_set_sh(1.0); |
| 18281 | let b = _mm_set_sh(2.0); |
| 18282 | let r = _mm_sub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18283 | let e = _mm_set_sh(-1.0); |
| 18284 | assert_eq_m128h(r, e); |
| 18285 | } |
| 18286 | |
| 18287 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18288 | fn test_mm_mask_sub_round_sh() { |
| 18289 | let a = _mm_set_sh(1.0); |
| 18290 | let b = _mm_set_sh(2.0); |
| 18291 | let src = _mm_set_sh(4.0); |
| 18292 | let r = _mm_mask_sub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18293 | src, 0, a, b, |
| 18294 | ); |
| 18295 | let e = _mm_set_sh(4.0); |
| 18296 | assert_eq_m128h(r, e); |
| 18297 | let r = _mm_mask_sub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18298 | src, 1, a, b, |
| 18299 | ); |
| 18300 | let e = _mm_set_sh(-1.0); |
| 18301 | assert_eq_m128h(r, e); |
| 18302 | } |
| 18303 | |
| 18304 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18305 | fn test_mm_maskz_sub_round_sh() { |
| 18306 | let a = _mm_set_sh(1.0); |
| 18307 | let b = _mm_set_sh(2.0); |
| 18308 | let r = |
| 18309 | _mm_maskz_sub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 18310 | let e = _mm_set_sh(0.0); |
| 18311 | assert_eq_m128h(r, e); |
| 18312 | let r = |
| 18313 | _mm_maskz_sub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 18314 | let e = _mm_set_sh(-1.0); |
| 18315 | assert_eq_m128h(r, e); |
| 18316 | } |
| 18317 | |
| 18318 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18319 | const fn test_mm_sub_sh() { |
| 18320 | let a = _mm_set_sh(1.0); |
| 18321 | let b = _mm_set_sh(2.0); |
| 18322 | let r = _mm_sub_sh(a, b); |
| 18323 | let e = _mm_set_sh(-1.0); |
| 18324 | assert_eq_m128h(r, e); |
| 18325 | } |
| 18326 | |
| 18327 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18328 | const fn test_mm_mask_sub_sh() { |
| 18329 | let a = _mm_set_sh(1.0); |
| 18330 | let b = _mm_set_sh(2.0); |
| 18331 | let src = _mm_set_sh(4.0); |
| 18332 | let r = _mm_mask_sub_sh(src, 0, a, b); |
| 18333 | let e = _mm_set_sh(4.0); |
| 18334 | assert_eq_m128h(r, e); |
| 18335 | let r = _mm_mask_sub_sh(src, 1, a, b); |
| 18336 | let e = _mm_set_sh(-1.0); |
| 18337 | assert_eq_m128h(r, e); |
| 18338 | } |
| 18339 | |
| 18340 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18341 | const fn test_mm_maskz_sub_sh() { |
| 18342 | let a = _mm_set_sh(1.0); |
| 18343 | let b = _mm_set_sh(2.0); |
| 18344 | let r = _mm_maskz_sub_sh(0, a, b); |
| 18345 | let e = _mm_set_sh(0.0); |
| 18346 | assert_eq_m128h(r, e); |
| 18347 | let r = _mm_maskz_sub_sh(1, a, b); |
| 18348 | let e = _mm_set_sh(-1.0); |
| 18349 | assert_eq_m128h(r, e); |
| 18350 | } |
| 18351 | |
| 18352 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18353 | const fn test_mm_mul_ph() { |
| 18354 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18355 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18356 | let r = _mm_mul_ph(a, b); |
| 18357 | let e = _mm_set_ph(8.0, 14.0, 18.0, 20.0, 20.0, 18.0, 14.0, 8.0); |
| 18358 | assert_eq_m128h(r, e); |
| 18359 | } |
| 18360 | |
| 18361 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18362 | const fn test_mm_mask_mul_ph() { |
| 18363 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18364 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18365 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 18366 | let r = _mm_mask_mul_ph(src, 0b01010101, a, b); |
| 18367 | let e = _mm_set_ph(10., 14., 12., 20., 14., 18., 16., 8.); |
| 18368 | assert_eq_m128h(r, e); |
| 18369 | } |
| 18370 | |
| 18371 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18372 | const fn test_mm_maskz_mul_ph() { |
| 18373 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 18374 | let b = _mm_set_ph(8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0); |
| 18375 | let r = _mm_maskz_mul_ph(0b01010101, a, b); |
| 18376 | let e = _mm_set_ph(0., 14., 0., 20., 0., 18., 0., 8.); |
| 18377 | assert_eq_m128h(r, e); |
| 18378 | } |
| 18379 | |
| 18380 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18381 | const fn test_mm256_mul_ph() { |
| 18382 | let a = _mm256_set_ph( |
| 18383 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18384 | ); |
| 18385 | let b = _mm256_set_ph( |
| 18386 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18387 | ); |
| 18388 | let r = _mm256_mul_ph(a, b); |
| 18389 | let e = _mm256_set_ph( |
| 18390 | 16.0, 30.0, 42.0, 52.0, 60.0, 66.0, 70.0, 72.0, 72.0, 70.0, 66.0, 60.0, 52.0, 42.0, |
| 18391 | 30.0, 16.0, |
| 18392 | ); |
| 18393 | assert_eq_m256h(r, e); |
| 18394 | } |
| 18395 | |
| 18396 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18397 | const fn test_mm256_mask_mul_ph() { |
| 18398 | let a = _mm256_set_ph( |
| 18399 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18400 | ); |
| 18401 | let b = _mm256_set_ph( |
| 18402 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18403 | ); |
| 18404 | let src = _mm256_set_ph( |
| 18405 | 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., |
| 18406 | ); |
| 18407 | let r = _mm256_mask_mul_ph(src, 0b0101010101010101, a, b); |
| 18408 | let e = _mm256_set_ph( |
| 18409 | 18., 30., 20., 52., 22., 66., 24., 72., 26., 70., 28., 60., 30., 42., 32., 16., |
| 18410 | ); |
| 18411 | assert_eq_m256h(r, e); |
| 18412 | } |
| 18413 | |
| 18414 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18415 | const fn test_mm256_maskz_mul_ph() { |
| 18416 | let a = _mm256_set_ph( |
| 18417 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18418 | ); |
| 18419 | let b = _mm256_set_ph( |
| 18420 | 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, |
| 18421 | ); |
| 18422 | let r = _mm256_maskz_mul_ph(0b0101010101010101, a, b); |
| 18423 | let e = _mm256_set_ph( |
| 18424 | 0., 30., 0., 52., 0., 66., 0., 72., 0., 70., 0., 60., 0., 42., 0., 16., |
| 18425 | ); |
| 18426 | assert_eq_m256h(r, e); |
| 18427 | } |
| 18428 | |
| 18429 | #[simd_test(enable = "avx512fp16" )] |
| 18430 | const fn test_mm512_mul_ph() { |
| 18431 | let a = _mm512_set_ph( |
| 18432 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18433 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18434 | 31.0, 32.0, |
| 18435 | ); |
| 18436 | let b = _mm512_set_ph( |
| 18437 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18438 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18439 | 3.0, 2.0, 1.0, |
| 18440 | ); |
| 18441 | let r = _mm512_mul_ph(a, b); |
| 18442 | let e = _mm512_set_ph( |
| 18443 | 32.0, 62.0, 90.0, 116.0, 140.0, 162.0, 182.0, 200.0, 216.0, 230.0, 242.0, 252.0, 260.0, |
| 18444 | 266.0, 270.0, 272.0, 272.0, 270.0, 266.0, 260.0, 252.0, 242.0, 230.0, 216.0, 200.0, |
| 18445 | 182.0, 162.0, 140.0, 116.0, 90.0, 62.0, 32.0, |
| 18446 | ); |
| 18447 | assert_eq_m512h(r, e); |
| 18448 | } |
| 18449 | |
| 18450 | #[simd_test(enable = "avx512fp16" )] |
| 18451 | const fn test_mm512_mask_mul_ph() { |
| 18452 | let a = _mm512_set_ph( |
| 18453 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18454 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18455 | 31.0, 32.0, |
| 18456 | ); |
| 18457 | let b = _mm512_set_ph( |
| 18458 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18459 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18460 | 3.0, 2.0, 1.0, |
| 18461 | ); |
| 18462 | let src = _mm512_set_ph( |
| 18463 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 18464 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 18465 | ); |
| 18466 | let r = _mm512_mask_mul_ph(src, 0b01010101010101010101010101010101, a, b); |
| 18467 | let e = _mm512_set_ph( |
| 18468 | 34., 62., 36., 116., 38., 162., 40., 200., 42., 230., 44., 252., 46., 266., 48., 272., |
| 18469 | 50., 270., 52., 260., 54., 242., 56., 216., 58., 182., 60., 140., 62., 90., 64., 32., |
| 18470 | ); |
| 18471 | assert_eq_m512h(r, e); |
| 18472 | } |
| 18473 | |
| 18474 | #[simd_test(enable = "avx512fp16" )] |
| 18475 | const fn test_mm512_maskz_mul_ph() { |
| 18476 | let a = _mm512_set_ph( |
| 18477 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18478 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18479 | 31.0, 32.0, |
| 18480 | ); |
| 18481 | let b = _mm512_set_ph( |
| 18482 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18483 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18484 | 3.0, 2.0, 1.0, |
| 18485 | ); |
| 18486 | let r = _mm512_maskz_mul_ph(0b01010101010101010101010101010101, a, b); |
| 18487 | let e = _mm512_set_ph( |
| 18488 | 0., 62., 0., 116., 0., 162., 0., 200., 0., 230., 0., 252., 0., 266., 0., 272., 0., |
| 18489 | 270., 0., 260., 0., 242., 0., 216., 0., 182., 0., 140., 0., 90., 0., 32., |
| 18490 | ); |
| 18491 | assert_eq_m512h(r, e); |
| 18492 | } |
| 18493 | |
| 18494 | #[simd_test(enable = "avx512fp16" )] |
| 18495 | fn test_mm512_mul_round_ph() { |
| 18496 | let a = _mm512_set_ph( |
| 18497 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18498 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18499 | 31.0, 32.0, |
| 18500 | ); |
| 18501 | let b = _mm512_set_ph( |
| 18502 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18503 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18504 | 3.0, 2.0, 1.0, |
| 18505 | ); |
| 18506 | let r = _mm512_mul_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18507 | let e = _mm512_set_ph( |
| 18508 | 32.0, 62.0, 90.0, 116.0, 140.0, 162.0, 182.0, 200.0, 216.0, 230.0, 242.0, 252.0, 260.0, |
| 18509 | 266.0, 270.0, 272.0, 272.0, 270.0, 266.0, 260.0, 252.0, 242.0, 230.0, 216.0, 200.0, |
| 18510 | 182.0, 162.0, 140.0, 116.0, 90.0, 62.0, 32.0, |
| 18511 | ); |
| 18512 | assert_eq_m512h(r, e); |
| 18513 | } |
| 18514 | |
| 18515 | #[simd_test(enable = "avx512fp16" )] |
| 18516 | fn test_mm512_mask_mul_round_ph() { |
| 18517 | let a = _mm512_set_ph( |
| 18518 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18519 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18520 | 31.0, 32.0, |
| 18521 | ); |
| 18522 | let b = _mm512_set_ph( |
| 18523 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18524 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18525 | 3.0, 2.0, 1.0, |
| 18526 | ); |
| 18527 | let src = _mm512_set_ph( |
| 18528 | 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., |
| 18529 | 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., |
| 18530 | ); |
| 18531 | let r = _mm512_mask_mul_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18532 | src, |
| 18533 | 0b01010101010101010101010101010101, |
| 18534 | a, |
| 18535 | b, |
| 18536 | ); |
| 18537 | let e = _mm512_set_ph( |
| 18538 | 34., 62., 36., 116., 38., 162., 40., 200., 42., 230., 44., 252., 46., 266., 48., 272., |
| 18539 | 50., 270., 52., 260., 54., 242., 56., 216., 58., 182., 60., 140., 62., 90., 64., 32., |
| 18540 | ); |
| 18541 | assert_eq_m512h(r, e); |
| 18542 | } |
| 18543 | |
| 18544 | #[simd_test(enable = "avx512fp16" )] |
| 18545 | fn test_mm512_maskz_mul_round_ph() { |
| 18546 | let a = _mm512_set_ph( |
| 18547 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 18548 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 18549 | 31.0, 32.0, |
| 18550 | ); |
| 18551 | let b = _mm512_set_ph( |
| 18552 | 32.0, 31.0, 30.0, 29.0, 28.0, 27.0, 26.0, 25.0, 24.0, 23.0, 22.0, 21.0, 20.0, 19.0, |
| 18553 | 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, |
| 18554 | 3.0, 2.0, 1.0, |
| 18555 | ); |
| 18556 | let r = _mm512_maskz_mul_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18557 | 0b01010101010101010101010101010101, |
| 18558 | a, |
| 18559 | b, |
| 18560 | ); |
| 18561 | let e = _mm512_set_ph( |
| 18562 | 0., 62., 0., 116., 0., 162., 0., 200., 0., 230., 0., 252., 0., 266., 0., 272., 0., |
| 18563 | 270., 0., 260., 0., 242., 0., 216., 0., 182., 0., 140., 0., 90., 0., 32., |
| 18564 | ); |
| 18565 | assert_eq_m512h(r, e); |
| 18566 | } |
| 18567 | |
| 18568 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18569 | fn test_mm_mul_round_sh() { |
| 18570 | let a = _mm_set_sh(1.0); |
| 18571 | let b = _mm_set_sh(2.0); |
| 18572 | let r = _mm_mul_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18573 | let e = _mm_set_sh(2.0); |
| 18574 | assert_eq_m128h(r, e); |
| 18575 | } |
| 18576 | |
| 18577 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18578 | fn test_mm_mask_mul_round_sh() { |
| 18579 | let a = _mm_set_sh(1.0); |
| 18580 | let b = _mm_set_sh(2.0); |
| 18581 | let src = _mm_set_sh(4.0); |
| 18582 | let r = _mm_mask_mul_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18583 | src, 0, a, b, |
| 18584 | ); |
| 18585 | let e = _mm_set_sh(4.0); |
| 18586 | assert_eq_m128h(r, e); |
| 18587 | let r = _mm_mask_mul_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18588 | src, 1, a, b, |
| 18589 | ); |
| 18590 | let e = _mm_set_sh(2.0); |
| 18591 | assert_eq_m128h(r, e); |
| 18592 | } |
| 18593 | |
| 18594 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18595 | fn test_mm_maskz_mul_round_sh() { |
| 18596 | let a = _mm_set_sh(1.0); |
| 18597 | let b = _mm_set_sh(2.0); |
| 18598 | let r = |
| 18599 | _mm_maskz_mul_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 18600 | let e = _mm_set_sh(0.0); |
| 18601 | assert_eq_m128h(r, e); |
| 18602 | let r = |
| 18603 | _mm_maskz_mul_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 18604 | let e = _mm_set_sh(2.0); |
| 18605 | assert_eq_m128h(r, e); |
| 18606 | } |
| 18607 | |
| 18608 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18609 | const fn test_mm_mul_sh() { |
| 18610 | let a = _mm_set_sh(1.0); |
| 18611 | let b = _mm_set_sh(2.0); |
| 18612 | let r = _mm_mul_sh(a, b); |
| 18613 | let e = _mm_set_sh(2.0); |
| 18614 | assert_eq_m128h(r, e); |
| 18615 | } |
| 18616 | |
| 18617 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18618 | const fn test_mm_mask_mul_sh() { |
| 18619 | let a = _mm_set_sh(1.0); |
| 18620 | let b = _mm_set_sh(2.0); |
| 18621 | let src = _mm_set_sh(4.0); |
| 18622 | let r = _mm_mask_mul_sh(src, 0, a, b); |
| 18623 | let e = _mm_set_sh(4.0); |
| 18624 | assert_eq_m128h(r, e); |
| 18625 | let r = _mm_mask_mul_sh(src, 1, a, b); |
| 18626 | let e = _mm_set_sh(2.0); |
| 18627 | assert_eq_m128h(r, e); |
| 18628 | } |
| 18629 | |
| 18630 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18631 | const fn test_mm_maskz_mul_sh() { |
| 18632 | let a = _mm_set_sh(1.0); |
| 18633 | let b = _mm_set_sh(2.0); |
| 18634 | let r = _mm_maskz_mul_sh(0, a, b); |
| 18635 | let e = _mm_set_sh(0.0); |
| 18636 | assert_eq_m128h(r, e); |
| 18637 | let r = _mm_maskz_mul_sh(1, a, b); |
| 18638 | let e = _mm_set_sh(2.0); |
| 18639 | assert_eq_m128h(r, e); |
| 18640 | } |
| 18641 | |
| 18642 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18643 | const fn test_mm_div_ph() { |
| 18644 | let a = _mm_set1_ph(1.0); |
| 18645 | let b = _mm_set1_ph(2.0); |
| 18646 | let r = _mm_div_ph(a, b); |
| 18647 | let e = _mm_set1_ph(0.5); |
| 18648 | assert_eq_m128h(r, e); |
| 18649 | } |
| 18650 | |
| 18651 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18652 | const fn test_mm_mask_div_ph() { |
| 18653 | let a = _mm_set1_ph(1.0); |
| 18654 | let b = _mm_set1_ph(2.0); |
| 18655 | let src = _mm_set_ph(4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0); |
| 18656 | let r = _mm_mask_div_ph(src, 0b01010101, a, b); |
| 18657 | let e = _mm_set_ph(4.0, 0.5, 6.0, 0.5, 8.0, 0.5, 10.0, 0.5); |
| 18658 | assert_eq_m128h(r, e); |
| 18659 | } |
| 18660 | |
| 18661 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18662 | const fn test_mm_maskz_div_ph() { |
| 18663 | let a = _mm_set1_ph(1.0); |
| 18664 | let b = _mm_set1_ph(2.0); |
| 18665 | let r = _mm_maskz_div_ph(0b01010101, a, b); |
| 18666 | let e = _mm_set_ph(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5); |
| 18667 | assert_eq_m128h(r, e); |
| 18668 | } |
| 18669 | |
| 18670 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18671 | const fn test_mm256_div_ph() { |
| 18672 | let a = _mm256_set1_ph(1.0); |
| 18673 | let b = _mm256_set1_ph(2.0); |
| 18674 | let r = _mm256_div_ph(a, b); |
| 18675 | let e = _mm256_set1_ph(0.5); |
| 18676 | assert_eq_m256h(r, e); |
| 18677 | } |
| 18678 | |
| 18679 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18680 | const fn test_mm256_mask_div_ph() { |
| 18681 | let a = _mm256_set1_ph(1.0); |
| 18682 | let b = _mm256_set1_ph(2.0); |
| 18683 | let src = _mm256_set_ph( |
| 18684 | 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, |
| 18685 | 19.0, |
| 18686 | ); |
| 18687 | let r = _mm256_mask_div_ph(src, 0b0101010101010101, a, b); |
| 18688 | let e = _mm256_set_ph( |
| 18689 | 4.0, 0.5, 6.0, 0.5, 8.0, 0.5, 10.0, 0.5, 12.0, 0.5, 14.0, 0.5, 16.0, 0.5, 18.0, 0.5, |
| 18690 | ); |
| 18691 | assert_eq_m256h(r, e); |
| 18692 | } |
| 18693 | |
| 18694 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18695 | const fn test_mm256_maskz_div_ph() { |
| 18696 | let a = _mm256_set1_ph(1.0); |
| 18697 | let b = _mm256_set1_ph(2.0); |
| 18698 | let r = _mm256_maskz_div_ph(0b0101010101010101, a, b); |
| 18699 | let e = _mm256_set_ph( |
| 18700 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 18701 | ); |
| 18702 | assert_eq_m256h(r, e); |
| 18703 | } |
| 18704 | |
| 18705 | #[simd_test(enable = "avx512fp16" )] |
| 18706 | const fn test_mm512_div_ph() { |
| 18707 | let a = _mm512_set1_ph(1.0); |
| 18708 | let b = _mm512_set1_ph(2.0); |
| 18709 | let r = _mm512_div_ph(a, b); |
| 18710 | let e = _mm512_set1_ph(0.5); |
| 18711 | assert_eq_m512h(r, e); |
| 18712 | } |
| 18713 | |
| 18714 | #[simd_test(enable = "avx512fp16" )] |
| 18715 | const fn test_mm512_mask_div_ph() { |
| 18716 | let a = _mm512_set1_ph(1.0); |
| 18717 | let b = _mm512_set1_ph(2.0); |
| 18718 | let src = _mm512_set_ph( |
| 18719 | 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, |
| 18720 | 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, |
| 18721 | 33.0, 34.0, 35.0, |
| 18722 | ); |
| 18723 | let r = _mm512_mask_div_ph(src, 0b01010101010101010101010101010101, a, b); |
| 18724 | let e = _mm512_set_ph( |
| 18725 | 4.0, 0.5, 6.0, 0.5, 8.0, 0.5, 10.0, 0.5, 12.0, 0.5, 14.0, 0.5, 16.0, 0.5, 18.0, 0.5, |
| 18726 | 20.0, 0.5, 22.0, 0.5, 24.0, 0.5, 26.0, 0.5, 28.0, 0.5, 30.0, 0.5, 32.0, 0.5, 34.0, 0.5, |
| 18727 | ); |
| 18728 | assert_eq_m512h(r, e); |
| 18729 | } |
| 18730 | |
| 18731 | #[simd_test(enable = "avx512fp16" )] |
| 18732 | const fn test_mm512_maskz_div_ph() { |
| 18733 | let a = _mm512_set1_ph(1.0); |
| 18734 | let b = _mm512_set1_ph(2.0); |
| 18735 | let r = _mm512_maskz_div_ph(0b01010101010101010101010101010101, a, b); |
| 18736 | let e = _mm512_set_ph( |
| 18737 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, |
| 18738 | 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 18739 | ); |
| 18740 | assert_eq_m512h(r, e); |
| 18741 | } |
| 18742 | |
| 18743 | #[simd_test(enable = "avx512fp16" )] |
| 18744 | fn test_mm512_div_round_ph() { |
| 18745 | let a = _mm512_set1_ph(1.0); |
| 18746 | let b = _mm512_set1_ph(2.0); |
| 18747 | let r = _mm512_div_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18748 | let e = _mm512_set1_ph(0.5); |
| 18749 | assert_eq_m512h(r, e); |
| 18750 | } |
| 18751 | |
| 18752 | #[simd_test(enable = "avx512fp16" )] |
| 18753 | fn test_mm512_mask_div_round_ph() { |
| 18754 | let a = _mm512_set1_ph(1.0); |
| 18755 | let b = _mm512_set1_ph(2.0); |
| 18756 | let src = _mm512_set_ph( |
| 18757 | 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, |
| 18758 | 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, |
| 18759 | 33.0, 34.0, 35.0, |
| 18760 | ); |
| 18761 | let r = _mm512_mask_div_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18762 | src, |
| 18763 | 0b01010101010101010101010101010101, |
| 18764 | a, |
| 18765 | b, |
| 18766 | ); |
| 18767 | let e = _mm512_set_ph( |
| 18768 | 4.0, 0.5, 6.0, 0.5, 8.0, 0.5, 10.0, 0.5, 12.0, 0.5, 14.0, 0.5, 16.0, 0.5, 18.0, 0.5, |
| 18769 | 20.0, 0.5, 22.0, 0.5, 24.0, 0.5, 26.0, 0.5, 28.0, 0.5, 30.0, 0.5, 32.0, 0.5, 34.0, 0.5, |
| 18770 | ); |
| 18771 | assert_eq_m512h(r, e); |
| 18772 | } |
| 18773 | |
| 18774 | #[simd_test(enable = "avx512fp16" )] |
| 18775 | fn test_mm512_maskz_div_round_ph() { |
| 18776 | let a = _mm512_set1_ph(1.0); |
| 18777 | let b = _mm512_set1_ph(2.0); |
| 18778 | let r = _mm512_maskz_div_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18779 | 0b01010101010101010101010101010101, |
| 18780 | a, |
| 18781 | b, |
| 18782 | ); |
| 18783 | let e = _mm512_set_ph( |
| 18784 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, |
| 18785 | 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 18786 | ); |
| 18787 | assert_eq_m512h(r, e); |
| 18788 | } |
| 18789 | |
| 18790 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18791 | fn test_mm_div_round_sh() { |
| 18792 | let a = _mm_set_sh(1.0); |
| 18793 | let b = _mm_set_sh(2.0); |
| 18794 | let r = _mm_div_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18795 | let e = _mm_set_sh(0.5); |
| 18796 | assert_eq_m128h(r, e); |
| 18797 | } |
| 18798 | |
| 18799 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18800 | fn test_mm_mask_div_round_sh() { |
| 18801 | let a = _mm_set_sh(1.0); |
| 18802 | let b = _mm_set_sh(2.0); |
| 18803 | let src = _mm_set_sh(4.0); |
| 18804 | let r = _mm_mask_div_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18805 | src, 0, a, b, |
| 18806 | ); |
| 18807 | let e = _mm_set_sh(4.0); |
| 18808 | assert_eq_m128h(r, e); |
| 18809 | let r = _mm_mask_div_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18810 | src, 1, a, b, |
| 18811 | ); |
| 18812 | let e = _mm_set_sh(0.5); |
| 18813 | assert_eq_m128h(r, e); |
| 18814 | } |
| 18815 | |
| 18816 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18817 | fn test_mm_maskz_div_round_sh() { |
| 18818 | let a = _mm_set_sh(1.0); |
| 18819 | let b = _mm_set_sh(2.0); |
| 18820 | let r = |
| 18821 | _mm_maskz_div_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 18822 | let e = _mm_set_sh(0.0); |
| 18823 | assert_eq_m128h(r, e); |
| 18824 | let r = |
| 18825 | _mm_maskz_div_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 18826 | let e = _mm_set_sh(0.5); |
| 18827 | assert_eq_m128h(r, e); |
| 18828 | } |
| 18829 | |
| 18830 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18831 | const fn test_mm_div_sh() { |
| 18832 | let a = _mm_set_sh(1.0); |
| 18833 | let b = _mm_set_sh(2.0); |
| 18834 | let r = _mm_div_sh(a, b); |
| 18835 | let e = _mm_set_sh(0.5); |
| 18836 | assert_eq_m128h(r, e); |
| 18837 | } |
| 18838 | |
| 18839 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18840 | const fn test_mm_mask_div_sh() { |
| 18841 | let a = _mm_set_sh(1.0); |
| 18842 | let b = _mm_set_sh(2.0); |
| 18843 | let src = _mm_set_sh(4.0); |
| 18844 | let r = _mm_mask_div_sh(src, 0, a, b); |
| 18845 | let e = _mm_set_sh(4.0); |
| 18846 | assert_eq_m128h(r, e); |
| 18847 | let r = _mm_mask_div_sh(src, 1, a, b); |
| 18848 | let e = _mm_set_sh(0.5); |
| 18849 | assert_eq_m128h(r, e); |
| 18850 | } |
| 18851 | |
| 18852 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18853 | const fn test_mm_maskz_div_sh() { |
| 18854 | let a = _mm_set_sh(1.0); |
| 18855 | let b = _mm_set_sh(2.0); |
| 18856 | let r = _mm_maskz_div_sh(0, a, b); |
| 18857 | let e = _mm_set_sh(0.0); |
| 18858 | assert_eq_m128h(r, e); |
| 18859 | let r = _mm_maskz_div_sh(1, a, b); |
| 18860 | let e = _mm_set_sh(0.5); |
| 18861 | assert_eq_m128h(r, e); |
| 18862 | } |
| 18863 | |
| 18864 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18865 | fn test_mm_mul_pch() { |
| 18866 | let a = _mm_set1_pch(0.0, 1.0); |
| 18867 | let b = _mm_set1_pch(0.0, 1.0); |
| 18868 | let r = _mm_mul_pch(a, b); |
| 18869 | let e = _mm_set1_pch(-1.0, 0.0); |
| 18870 | assert_eq_m128h(r, e); |
| 18871 | } |
| 18872 | |
| 18873 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18874 | fn test_mm_mask_mul_pch() { |
| 18875 | let a = _mm_set1_pch(0.0, 1.0); |
| 18876 | let b = _mm_set1_pch(0.0, 1.0); |
| 18877 | let src = _mm_setr_ph(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); |
| 18878 | let r = _mm_mask_mul_pch(src, 0b0101, a, b); |
| 18879 | let e = _mm_setr_ph(-1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0); |
| 18880 | assert_eq_m128h(r, e); |
| 18881 | } |
| 18882 | |
| 18883 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18884 | fn test_mm_maskz_mul_pch() { |
| 18885 | let a = _mm_set1_pch(0.0, 1.0); |
| 18886 | let b = _mm_set1_pch(0.0, 1.0); |
| 18887 | let r = _mm_maskz_mul_pch(0b0101, a, b); |
| 18888 | let e = _mm_setr_ph(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0); |
| 18889 | assert_eq_m128h(r, e); |
| 18890 | } |
| 18891 | |
| 18892 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18893 | fn test_mm256_mul_pch() { |
| 18894 | let a = _mm256_set1_pch(0.0, 1.0); |
| 18895 | let b = _mm256_set1_pch(0.0, 1.0); |
| 18896 | let r = _mm256_mul_pch(a, b); |
| 18897 | let e = _mm256_set1_pch(-1.0, 0.0); |
| 18898 | assert_eq_m256h(r, e); |
| 18899 | } |
| 18900 | |
| 18901 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18902 | fn test_mm256_mask_mul_pch() { |
| 18903 | let a = _mm256_set1_pch(0.0, 1.0); |
| 18904 | let b = _mm256_set1_pch(0.0, 1.0); |
| 18905 | let src = _mm256_setr_ph( |
| 18906 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 18907 | ); |
| 18908 | let r = _mm256_mask_mul_pch(src, 0b01010101, a, b); |
| 18909 | let e = _mm256_setr_ph( |
| 18910 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 18911 | ); |
| 18912 | assert_eq_m256h(r, e); |
| 18913 | } |
| 18914 | |
| 18915 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 18916 | fn test_mm256_maskz_mul_pch() { |
| 18917 | let a = _mm256_set1_pch(0.0, 1.0); |
| 18918 | let b = _mm256_set1_pch(0.0, 1.0); |
| 18919 | let r = _mm256_maskz_mul_pch(0b01010101, a, b); |
| 18920 | let e = _mm256_setr_ph( |
| 18921 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 18922 | ); |
| 18923 | assert_eq_m256h(r, e); |
| 18924 | } |
| 18925 | |
| 18926 | #[simd_test(enable = "avx512fp16" )] |
| 18927 | fn test_mm512_mul_pch() { |
| 18928 | let a = _mm512_set1_pch(0.0, 1.0); |
| 18929 | let b = _mm512_set1_pch(0.0, 1.0); |
| 18930 | let r = _mm512_mul_pch(a, b); |
| 18931 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 18932 | assert_eq_m512h(r, e); |
| 18933 | } |
| 18934 | |
| 18935 | #[simd_test(enable = "avx512fp16" )] |
| 18936 | fn test_mm512_mask_mul_pch() { |
| 18937 | let a = _mm512_set1_pch(0.0, 1.0); |
| 18938 | let b = _mm512_set1_pch(0.0, 1.0); |
| 18939 | let src = _mm512_setr_ph( |
| 18940 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 18941 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 18942 | 32.0, 33.0, |
| 18943 | ); |
| 18944 | let r = _mm512_mask_mul_pch(src, 0b0101010101010101, a, b); |
| 18945 | let e = _mm512_setr_ph( |
| 18946 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 18947 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 18948 | 33.0, |
| 18949 | ); |
| 18950 | assert_eq_m512h(r, e); |
| 18951 | } |
| 18952 | |
| 18953 | #[simd_test(enable = "avx512fp16" )] |
| 18954 | fn test_mm512_maskz_mul_pch() { |
| 18955 | let a = _mm512_set1_pch(0.0, 1.0); |
| 18956 | let b = _mm512_set1_pch(0.0, 1.0); |
| 18957 | let r = _mm512_maskz_mul_pch(0b0101010101010101, a, b); |
| 18958 | let e = _mm512_setr_ph( |
| 18959 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 18960 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 18961 | ); |
| 18962 | assert_eq_m512h(r, e); |
| 18963 | } |
| 18964 | |
| 18965 | #[simd_test(enable = "avx512fp16" )] |
| 18966 | fn test_mm512_mul_round_pch() { |
| 18967 | let a = _mm512_set1_pch(0.0, 1.0); |
| 18968 | let b = _mm512_set1_pch(0.0, 1.0); |
| 18969 | let r = _mm512_mul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 18970 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 18971 | assert_eq_m512h(r, e); |
| 18972 | } |
| 18973 | |
| 18974 | #[simd_test(enable = "avx512fp16" )] |
| 18975 | fn test_mm512_mask_mul_round_pch() { |
| 18976 | let a = _mm512_set1_pch(0.0, 1.0); |
| 18977 | let b = _mm512_set1_pch(0.0, 1.0); |
| 18978 | let src = _mm512_setr_ph( |
| 18979 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 18980 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 18981 | 32.0, 33.0, |
| 18982 | ); |
| 18983 | let r = _mm512_mask_mul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 18984 | src, |
| 18985 | 0b0101010101010101, |
| 18986 | a, |
| 18987 | b, |
| 18988 | ); |
| 18989 | let e = _mm512_setr_ph( |
| 18990 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 18991 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 18992 | 33.0, |
| 18993 | ); |
| 18994 | assert_eq_m512h(r, e); |
| 18995 | } |
| 18996 | |
| 18997 | #[simd_test(enable = "avx512fp16" )] |
| 18998 | fn test_mm512_maskz_mul_round_pch() { |
| 18999 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19000 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19001 | let r = _mm512_maskz_mul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19002 | 0b0101010101010101, |
| 19003 | a, |
| 19004 | b, |
| 19005 | ); |
| 19006 | let e = _mm512_setr_ph( |
| 19007 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19008 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19009 | ); |
| 19010 | assert_eq_m512h(r, e); |
| 19011 | } |
| 19012 | |
| 19013 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19014 | fn test_mm_mul_round_sch() { |
| 19015 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19016 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19017 | let r = _mm_mul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19018 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19019 | assert_eq_m128h(r, e); |
| 19020 | } |
| 19021 | |
| 19022 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19023 | fn test_mm_mask_mul_round_sch() { |
| 19024 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19025 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19026 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19027 | let r = _mm_mask_mul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19028 | src, 0, a, b, |
| 19029 | ); |
| 19030 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19031 | assert_eq_m128h(r, e); |
| 19032 | } |
| 19033 | |
| 19034 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19035 | fn test_mm_maskz_mul_round_sch() { |
| 19036 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19037 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19038 | let r = |
| 19039 | _mm_maskz_mul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 19040 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19041 | assert_eq_m128h(r, e); |
| 19042 | } |
| 19043 | |
| 19044 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19045 | fn test_mm_mul_sch() { |
| 19046 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19047 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19048 | let r = _mm_mul_sch(a, b); |
| 19049 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19050 | assert_eq_m128h(r, e); |
| 19051 | } |
| 19052 | |
| 19053 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19054 | fn test_mm_mask_mul_sch() { |
| 19055 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19056 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19057 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19058 | let r = _mm_mask_mul_sch(src, 0, a, b); |
| 19059 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19060 | assert_eq_m128h(r, e); |
| 19061 | } |
| 19062 | |
| 19063 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19064 | fn test_mm_maskz_mul_sch() { |
| 19065 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19066 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19067 | let r = _mm_maskz_mul_sch(0, a, b); |
| 19068 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19069 | assert_eq_m128h(r, e); |
| 19070 | } |
| 19071 | |
| 19072 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19073 | fn test_mm_fmul_pch() { |
| 19074 | let a = _mm_set1_pch(0.0, 1.0); |
| 19075 | let b = _mm_set1_pch(0.0, 1.0); |
| 19076 | let r = _mm_fmul_pch(a, b); |
| 19077 | let e = _mm_set1_pch(-1.0, 0.0); |
| 19078 | assert_eq_m128h(r, e); |
| 19079 | } |
| 19080 | |
| 19081 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19082 | fn test_mm_mask_fmul_pch() { |
| 19083 | let a = _mm_set1_pch(0.0, 1.0); |
| 19084 | let b = _mm_set1_pch(0.0, 1.0); |
| 19085 | let src = _mm_setr_ph(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); |
| 19086 | let r = _mm_mask_fmul_pch(src, 0b0101, a, b); |
| 19087 | let e = _mm_setr_ph(-1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0); |
| 19088 | assert_eq_m128h(r, e); |
| 19089 | } |
| 19090 | |
| 19091 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19092 | fn test_mm_maskz_fmul_pch() { |
| 19093 | let a = _mm_set1_pch(0.0, 1.0); |
| 19094 | let b = _mm_set1_pch(0.0, 1.0); |
| 19095 | let r = _mm_maskz_fmul_pch(0b0101, a, b); |
| 19096 | let e = _mm_setr_ph(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0); |
| 19097 | assert_eq_m128h(r, e); |
| 19098 | } |
| 19099 | |
| 19100 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19101 | fn test_mm256_fmul_pch() { |
| 19102 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19103 | let b = _mm256_set1_pch(0.0, 1.0); |
| 19104 | let r = _mm256_fmul_pch(a, b); |
| 19105 | let e = _mm256_set1_pch(-1.0, 0.0); |
| 19106 | assert_eq_m256h(r, e); |
| 19107 | } |
| 19108 | |
| 19109 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19110 | fn test_mm256_mask_fmul_pch() { |
| 19111 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19112 | let b = _mm256_set1_pch(0.0, 1.0); |
| 19113 | let src = _mm256_setr_ph( |
| 19114 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19115 | ); |
| 19116 | let r = _mm256_mask_fmul_pch(src, 0b01010101, a, b); |
| 19117 | let e = _mm256_setr_ph( |
| 19118 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19119 | ); |
| 19120 | assert_eq_m256h(r, e); |
| 19121 | } |
| 19122 | |
| 19123 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19124 | fn test_mm256_maskz_fmul_pch() { |
| 19125 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19126 | let b = _mm256_set1_pch(0.0, 1.0); |
| 19127 | let r = _mm256_maskz_fmul_pch(0b01010101, a, b); |
| 19128 | let e = _mm256_setr_ph( |
| 19129 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19130 | ); |
| 19131 | assert_eq_m256h(r, e); |
| 19132 | } |
| 19133 | |
| 19134 | #[simd_test(enable = "avx512fp16" )] |
| 19135 | fn test_mm512_fmul_pch() { |
| 19136 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19137 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19138 | let r = _mm512_fmul_pch(a, b); |
| 19139 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19140 | assert_eq_m512h(r, e); |
| 19141 | } |
| 19142 | |
| 19143 | #[simd_test(enable = "avx512fp16" )] |
| 19144 | fn test_mm512_mask_fmul_pch() { |
| 19145 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19146 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19147 | let src = _mm512_setr_ph( |
| 19148 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19149 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19150 | 32.0, 33.0, |
| 19151 | ); |
| 19152 | let r = _mm512_mask_fmul_pch(src, 0b0101010101010101, a, b); |
| 19153 | let e = _mm512_setr_ph( |
| 19154 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19155 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19156 | 33.0, |
| 19157 | ); |
| 19158 | assert_eq_m512h(r, e); |
| 19159 | } |
| 19160 | |
| 19161 | #[simd_test(enable = "avx512fp16" )] |
| 19162 | fn test_mm512_maskz_fmul_pch() { |
| 19163 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19164 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19165 | let r = _mm512_maskz_fmul_pch(0b0101010101010101, a, b); |
| 19166 | let e = _mm512_setr_ph( |
| 19167 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19168 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19169 | ); |
| 19170 | assert_eq_m512h(r, e); |
| 19171 | } |
| 19172 | |
| 19173 | #[simd_test(enable = "avx512fp16" )] |
| 19174 | fn test_mm512_fmul_round_pch() { |
| 19175 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19176 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19177 | let r = _mm512_fmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19178 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19179 | assert_eq_m512h(r, e); |
| 19180 | } |
| 19181 | |
| 19182 | #[simd_test(enable = "avx512fp16" )] |
| 19183 | fn test_mm512_mask_fmul_round_pch() { |
| 19184 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19185 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19186 | let src = _mm512_setr_ph( |
| 19187 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19188 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19189 | 32.0, 33.0, |
| 19190 | ); |
| 19191 | let r = _mm512_mask_fmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19192 | src, |
| 19193 | 0b0101010101010101, |
| 19194 | a, |
| 19195 | b, |
| 19196 | ); |
| 19197 | let e = _mm512_setr_ph( |
| 19198 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19199 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19200 | 33.0, |
| 19201 | ); |
| 19202 | assert_eq_m512h(r, e); |
| 19203 | } |
| 19204 | |
| 19205 | #[simd_test(enable = "avx512fp16" )] |
| 19206 | fn test_mm512_maskz_fmul_round_pch() { |
| 19207 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19208 | let b = _mm512_set1_pch(0.0, 1.0); |
| 19209 | let r = _mm512_maskz_fmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19210 | 0b0101010101010101, |
| 19211 | a, |
| 19212 | b, |
| 19213 | ); |
| 19214 | let e = _mm512_setr_ph( |
| 19215 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19216 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19217 | ); |
| 19218 | assert_eq_m512h(r, e); |
| 19219 | } |
| 19220 | |
| 19221 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19222 | fn test_mm_fmul_round_sch() { |
| 19223 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19224 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19225 | let r = _mm_fmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19226 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19227 | assert_eq_m128h(r, e); |
| 19228 | } |
| 19229 | |
| 19230 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19231 | fn test_mm_mask_fmul_round_sch() { |
| 19232 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19233 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19234 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19235 | let r = _mm_mask_fmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19236 | src, 0, a, b, |
| 19237 | ); |
| 19238 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19239 | assert_eq_m128h(r, e); |
| 19240 | } |
| 19241 | |
| 19242 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19243 | fn test_mm_maskz_fmul_round_sch() { |
| 19244 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19245 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19246 | let r = |
| 19247 | _mm_maskz_fmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 19248 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19249 | assert_eq_m128h(r, e); |
| 19250 | } |
| 19251 | |
| 19252 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19253 | fn test_mm_fmul_sch() { |
| 19254 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19255 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19256 | let r = _mm_fmul_sch(a, b); |
| 19257 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19258 | assert_eq_m128h(r, e); |
| 19259 | } |
| 19260 | |
| 19261 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19262 | fn test_mm_mask_fmul_sch() { |
| 19263 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19264 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19265 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19266 | let r = _mm_mask_fmul_sch(src, 0, a, b); |
| 19267 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19268 | assert_eq_m128h(r, e); |
| 19269 | } |
| 19270 | |
| 19271 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19272 | fn test_mm_maskz_fmul_sch() { |
| 19273 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19274 | let b = _mm_setr_ph(0.0, 1.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 19275 | let r = _mm_maskz_fmul_sch(0, a, b); |
| 19276 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19277 | assert_eq_m128h(r, e); |
| 19278 | } |
| 19279 | |
| 19280 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19281 | fn test_mm_cmul_pch() { |
| 19282 | let a = _mm_set1_pch(0.0, 1.0); |
| 19283 | let b = _mm_set1_pch(0.0, -1.0); |
| 19284 | let r = _mm_cmul_pch(a, b); |
| 19285 | let e = _mm_set1_pch(-1.0, 0.0); |
| 19286 | assert_eq_m128h(r, e); |
| 19287 | } |
| 19288 | |
| 19289 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19290 | fn test_mm_mask_cmul_pch() { |
| 19291 | let a = _mm_set1_pch(0.0, 1.0); |
| 19292 | let b = _mm_set1_pch(0.0, -1.0); |
| 19293 | let src = _mm_setr_ph(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); |
| 19294 | let r = _mm_mask_cmul_pch(src, 0b0101, a, b); |
| 19295 | let e = _mm_setr_ph(-1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0); |
| 19296 | assert_eq_m128h(r, e); |
| 19297 | } |
| 19298 | |
| 19299 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19300 | fn test_mm_maskz_cmul_pch() { |
| 19301 | let a = _mm_set1_pch(0.0, 1.0); |
| 19302 | let b = _mm_set1_pch(0.0, -1.0); |
| 19303 | let r = _mm_maskz_cmul_pch(0b0101, a, b); |
| 19304 | let e = _mm_setr_ph(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0); |
| 19305 | assert_eq_m128h(r, e); |
| 19306 | } |
| 19307 | |
| 19308 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19309 | fn test_mm256_cmul_pch() { |
| 19310 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19311 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19312 | let r = _mm256_cmul_pch(a, b); |
| 19313 | let e = _mm256_set1_pch(-1.0, 0.0); |
| 19314 | assert_eq_m256h(r, e); |
| 19315 | } |
| 19316 | |
| 19317 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19318 | fn test_mm256_mask_cmul_pch() { |
| 19319 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19320 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19321 | let src = _mm256_setr_ph( |
| 19322 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19323 | ); |
| 19324 | let r = _mm256_mask_cmul_pch(src, 0b01010101, a, b); |
| 19325 | let e = _mm256_setr_ph( |
| 19326 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19327 | ); |
| 19328 | assert_eq_m256h(r, e); |
| 19329 | } |
| 19330 | |
| 19331 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19332 | fn test_mm256_maskz_cmul_pch() { |
| 19333 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19334 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19335 | let r = _mm256_maskz_cmul_pch(0b01010101, a, b); |
| 19336 | let e = _mm256_setr_ph( |
| 19337 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19338 | ); |
| 19339 | assert_eq_m256h(r, e); |
| 19340 | } |
| 19341 | |
| 19342 | #[simd_test(enable = "avx512fp16" )] |
| 19343 | fn test_mm512_cmul_pch() { |
| 19344 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19345 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19346 | let r = _mm512_cmul_pch(a, b); |
| 19347 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19348 | assert_eq_m512h(r, e); |
| 19349 | } |
| 19350 | |
| 19351 | #[simd_test(enable = "avx512fp16" )] |
| 19352 | fn test_mm512_mask_cmul_pch() { |
| 19353 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19354 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19355 | let src = _mm512_setr_ph( |
| 19356 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19357 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19358 | 32.0, 33.0, |
| 19359 | ); |
| 19360 | let r = _mm512_mask_cmul_pch(src, 0b0101010101010101, a, b); |
| 19361 | let e = _mm512_setr_ph( |
| 19362 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19363 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19364 | 33.0, |
| 19365 | ); |
| 19366 | assert_eq_m512h(r, e); |
| 19367 | } |
| 19368 | |
| 19369 | #[simd_test(enable = "avx512fp16" )] |
| 19370 | fn test_mm512_maskz_cmul_pch() { |
| 19371 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19372 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19373 | let r = _mm512_maskz_cmul_pch(0b0101010101010101, a, b); |
| 19374 | let e = _mm512_setr_ph( |
| 19375 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19376 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19377 | ); |
| 19378 | assert_eq_m512h(r, e); |
| 19379 | } |
| 19380 | |
| 19381 | #[simd_test(enable = "avx512fp16" )] |
| 19382 | fn test_mm512_cmul_round_pch() { |
| 19383 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19384 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19385 | let r = _mm512_cmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19386 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19387 | assert_eq_m512h(r, e); |
| 19388 | } |
| 19389 | |
| 19390 | #[simd_test(enable = "avx512fp16" )] |
| 19391 | fn test_mm512_mask_cmul_round_pch() { |
| 19392 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19393 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19394 | let src = _mm512_setr_ph( |
| 19395 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19396 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19397 | 32.0, 33.0, |
| 19398 | ); |
| 19399 | let r = _mm512_mask_cmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19400 | src, |
| 19401 | 0b0101010101010101, |
| 19402 | a, |
| 19403 | b, |
| 19404 | ); |
| 19405 | let e = _mm512_setr_ph( |
| 19406 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19407 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19408 | 33.0, |
| 19409 | ); |
| 19410 | assert_eq_m512h(r, e); |
| 19411 | } |
| 19412 | |
| 19413 | #[simd_test(enable = "avx512fp16" )] |
| 19414 | fn test_mm512_maskz_cmul_round_pch() { |
| 19415 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19416 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19417 | let r = _mm512_maskz_cmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19418 | 0b0101010101010101, |
| 19419 | a, |
| 19420 | b, |
| 19421 | ); |
| 19422 | let e = _mm512_setr_ph( |
| 19423 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19424 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19425 | ); |
| 19426 | assert_eq_m512h(r, e); |
| 19427 | } |
| 19428 | |
| 19429 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19430 | fn test_mm_cmul_sch() { |
| 19431 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19432 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19433 | let r = _mm_cmul_sch(a, b); |
| 19434 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19435 | assert_eq_m128h(r, e); |
| 19436 | } |
| 19437 | |
| 19438 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19439 | fn test_mm_mask_cmul_sch() { |
| 19440 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19441 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19442 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19443 | let r = _mm_mask_cmul_sch(src, 0, a, b); |
| 19444 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19445 | assert_eq_m128h(r, e); |
| 19446 | } |
| 19447 | |
| 19448 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19449 | fn test_mm_maskz_cmul_sch() { |
| 19450 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19451 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19452 | let r = _mm_maskz_cmul_sch(0, a, b); |
| 19453 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19454 | assert_eq_m128h(r, e); |
| 19455 | } |
| 19456 | |
| 19457 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19458 | fn test_mm_cmul_round_sch() { |
| 19459 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19460 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19461 | let r = _mm_cmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19462 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19463 | assert_eq_m128h(r, e); |
| 19464 | } |
| 19465 | |
| 19466 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19467 | fn test_mm_mask_cmul_round_sch() { |
| 19468 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19469 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19470 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19471 | let r = _mm_mask_cmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19472 | src, 0, a, b, |
| 19473 | ); |
| 19474 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19475 | assert_eq_m128h(r, e); |
| 19476 | } |
| 19477 | |
| 19478 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19479 | fn test_mm_maskz_cmul_round_sch() { |
| 19480 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19481 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19482 | let r = |
| 19483 | _mm_maskz_cmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 19484 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19485 | assert_eq_m128h(r, e); |
| 19486 | } |
| 19487 | |
| 19488 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19489 | fn test_mm_fcmul_pch() { |
| 19490 | let a = _mm_set1_pch(0.0, 1.0); |
| 19491 | let b = _mm_set1_pch(0.0, -1.0); |
| 19492 | let r = _mm_fcmul_pch(a, b); |
| 19493 | let e = _mm_set1_pch(-1.0, 0.0); |
| 19494 | assert_eq_m128h(r, e); |
| 19495 | } |
| 19496 | |
| 19497 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19498 | fn test_mm_mask_fcmul_pch() { |
| 19499 | let a = _mm_set1_pch(0.0, 1.0); |
| 19500 | let b = _mm_set1_pch(0.0, -1.0); |
| 19501 | let src = _mm_setr_ph(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); |
| 19502 | let r = _mm_mask_fcmul_pch(src, 0b0101, a, b); |
| 19503 | let e = _mm_setr_ph(-1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0); |
| 19504 | assert_eq_m128h(r, e); |
| 19505 | } |
| 19506 | |
| 19507 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19508 | fn test_mm_maskz_fcmul_pch() { |
| 19509 | let a = _mm_set1_pch(0.0, 1.0); |
| 19510 | let b = _mm_set1_pch(0.0, -1.0); |
| 19511 | let r = _mm_maskz_fcmul_pch(0b0101, a, b); |
| 19512 | let e = _mm_setr_ph(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0); |
| 19513 | assert_eq_m128h(r, e); |
| 19514 | } |
| 19515 | |
| 19516 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19517 | fn test_mm256_fcmul_pch() { |
| 19518 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19519 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19520 | let r = _mm256_fcmul_pch(a, b); |
| 19521 | let e = _mm256_set1_pch(-1.0, 0.0); |
| 19522 | assert_eq_m256h(r, e); |
| 19523 | } |
| 19524 | |
| 19525 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19526 | fn test_mm256_mask_fcmul_pch() { |
| 19527 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19528 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19529 | let src = _mm256_setr_ph( |
| 19530 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19531 | ); |
| 19532 | let r = _mm256_mask_fcmul_pch(src, 0b01010101, a, b); |
| 19533 | let e = _mm256_setr_ph( |
| 19534 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19535 | ); |
| 19536 | assert_eq_m256h(r, e); |
| 19537 | } |
| 19538 | |
| 19539 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19540 | fn test_mm256_maskz_fcmul_pch() { |
| 19541 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19542 | let b = _mm256_set1_pch(0.0, -1.0); |
| 19543 | let r = _mm256_maskz_fcmul_pch(0b01010101, a, b); |
| 19544 | let e = _mm256_setr_ph( |
| 19545 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19546 | ); |
| 19547 | assert_eq_m256h(r, e); |
| 19548 | } |
| 19549 | |
| 19550 | #[simd_test(enable = "avx512fp16" )] |
| 19551 | fn test_mm512_fcmul_pch() { |
| 19552 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19553 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19554 | let r = _mm512_fcmul_pch(a, b); |
| 19555 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19556 | assert_eq_m512h(r, e); |
| 19557 | } |
| 19558 | |
| 19559 | #[simd_test(enable = "avx512fp16" )] |
| 19560 | fn test_mm512_mask_fcmul_pch() { |
| 19561 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19562 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19563 | let src = _mm512_setr_ph( |
| 19564 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19565 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19566 | 32.0, 33.0, |
| 19567 | ); |
| 19568 | let r = _mm512_mask_fcmul_pch(src, 0b0101010101010101, a, b); |
| 19569 | let e = _mm512_setr_ph( |
| 19570 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19571 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19572 | 33.0, |
| 19573 | ); |
| 19574 | assert_eq_m512h(r, e); |
| 19575 | } |
| 19576 | |
| 19577 | #[simd_test(enable = "avx512fp16" )] |
| 19578 | fn test_mm512_maskz_fcmul_pch() { |
| 19579 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19580 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19581 | let r = _mm512_maskz_fcmul_pch(0b0101010101010101, a, b); |
| 19582 | let e = _mm512_setr_ph( |
| 19583 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19584 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19585 | ); |
| 19586 | assert_eq_m512h(r, e); |
| 19587 | } |
| 19588 | |
| 19589 | #[simd_test(enable = "avx512fp16" )] |
| 19590 | fn test_mm512_fcmul_round_pch() { |
| 19591 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19592 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19593 | let r = _mm512_fcmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19594 | let e = _mm512_set1_pch(-1.0, 0.0); |
| 19595 | assert_eq_m512h(r, e); |
| 19596 | } |
| 19597 | |
| 19598 | #[simd_test(enable = "avx512fp16" )] |
| 19599 | fn test_mm512_mask_fcmul_round_pch() { |
| 19600 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19601 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19602 | let src = _mm512_setr_ph( |
| 19603 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19604 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19605 | 32.0, 33.0, |
| 19606 | ); |
| 19607 | let r = _mm512_mask_fcmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19608 | src, |
| 19609 | 0b0101010101010101, |
| 19610 | a, |
| 19611 | b, |
| 19612 | ); |
| 19613 | let e = _mm512_setr_ph( |
| 19614 | -1.0, 0.0, 4.0, 5.0, -1.0, 0.0, 8.0, 9.0, -1.0, 0.0, 12.0, 13.0, -1.0, 0.0, 16.0, 17.0, |
| 19615 | -1.0, 0.0, 20.0, 21.0, -1.0, 0.0, 24.0, 25.0, -1.0, 0.0, 28.0, 29.0, -1.0, 0.0, 32.0, |
| 19616 | 33.0, |
| 19617 | ); |
| 19618 | assert_eq_m512h(r, e); |
| 19619 | } |
| 19620 | |
| 19621 | #[simd_test(enable = "avx512fp16" )] |
| 19622 | fn test_mm512_maskz_fcmul_round_pch() { |
| 19623 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19624 | let b = _mm512_set1_pch(0.0, -1.0); |
| 19625 | let r = _mm512_maskz_fcmul_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19626 | 0b0101010101010101, |
| 19627 | a, |
| 19628 | b, |
| 19629 | ); |
| 19630 | let e = _mm512_setr_ph( |
| 19631 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19632 | -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, |
| 19633 | ); |
| 19634 | assert_eq_m512h(r, e); |
| 19635 | } |
| 19636 | |
| 19637 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19638 | fn test_mm_fcmul_sch() { |
| 19639 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19640 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19641 | let r = _mm_fcmul_sch(a, b); |
| 19642 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19643 | assert_eq_m128h(r, e); |
| 19644 | } |
| 19645 | |
| 19646 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19647 | fn test_mm_mask_fcmul_sch() { |
| 19648 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19649 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19650 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19651 | let r = _mm_mask_fcmul_sch(src, 0, a, b); |
| 19652 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19653 | assert_eq_m128h(r, e); |
| 19654 | } |
| 19655 | |
| 19656 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19657 | fn test_mm_maskz_fcmul_sch() { |
| 19658 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19659 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19660 | let r = _mm_maskz_fcmul_sch(0, a, b); |
| 19661 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19662 | assert_eq_m128h(r, e); |
| 19663 | } |
| 19664 | |
| 19665 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19666 | fn test_mm_fcmul_round_sch() { |
| 19667 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19668 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19669 | let r = _mm_fcmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 19670 | let e = _mm_setr_ph(-1.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19671 | assert_eq_m128h(r, e); |
| 19672 | } |
| 19673 | |
| 19674 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19675 | fn test_mm_mask_fcmul_round_sch() { |
| 19676 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19677 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19678 | let src = _mm_setr_ph(14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0); |
| 19679 | let r = _mm_mask_fcmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19680 | src, 0, a, b, |
| 19681 | ); |
| 19682 | let e = _mm_setr_ph(14.0, 15.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19683 | assert_eq_m128h(r, e); |
| 19684 | } |
| 19685 | |
| 19686 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19687 | fn test_mm_maskz_fcmul_round_sch() { |
| 19688 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19689 | let b = _mm_setr_ph(0.0, -1.0, 8.0, -9.0, 10.0, -11.0, 12.0, -13.0); |
| 19690 | let r = |
| 19691 | _mm_maskz_fcmul_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 19692 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 19693 | assert_eq_m128h(r, e); |
| 19694 | } |
| 19695 | |
| 19696 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19697 | const fn test_mm_abs_ph() { |
| 19698 | let a = _mm_set_ph(-1.0, 0.0, 1.0, -2.0, 3.0, -4.0, 5.0, -6.0); |
| 19699 | let r = _mm_abs_ph(a); |
| 19700 | let e = _mm_set_ph(1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0); |
| 19701 | assert_eq_m128h(r, e); |
| 19702 | } |
| 19703 | |
| 19704 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19705 | const fn test_mm256_abs_ph() { |
| 19706 | let a = _mm256_set_ph( |
| 19707 | -1.0, 0.0, 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0, |
| 19708 | -14.0, |
| 19709 | ); |
| 19710 | let r = _mm256_abs_ph(a); |
| 19711 | let e = _mm256_set_ph( |
| 19712 | 1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, |
| 19713 | ); |
| 19714 | assert_eq_m256h(r, e); |
| 19715 | } |
| 19716 | |
| 19717 | #[simd_test(enable = "avx512fp16" )] |
| 19718 | const fn test_mm512_abs_ph() { |
| 19719 | let a = _mm512_set_ph( |
| 19720 | -1.0, 0.0, 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0, |
| 19721 | -14.0, 15.0, -16.0, 17.0, -18.0, 19.0, -20.0, 21.0, -22.0, 23.0, -24.0, 25.0, -26.0, |
| 19722 | 27.0, -28.0, 29.0, -30.0, |
| 19723 | ); |
| 19724 | let r = _mm512_abs_ph(a); |
| 19725 | let e = _mm512_set_ph( |
| 19726 | 1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, |
| 19727 | 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, |
| 19728 | 29.0, 30.0, |
| 19729 | ); |
| 19730 | assert_eq_m512h(r, e); |
| 19731 | } |
| 19732 | |
| 19733 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19734 | const fn test_mm_conj_pch() { |
| 19735 | let a = _mm_set1_pch(0.0, 1.0); |
| 19736 | let r = _mm_conj_pch(a); |
| 19737 | let e = _mm_set1_pch(0.0, -1.0); |
| 19738 | assert_eq_m128h(r, e); |
| 19739 | } |
| 19740 | |
| 19741 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19742 | const fn test_mm_mask_conj_pch() { |
| 19743 | let a = _mm_set1_pch(0.0, 1.0); |
| 19744 | let src = _mm_setr_ph(2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); |
| 19745 | let r = _mm_mask_conj_pch(src, 0b0101, a); |
| 19746 | let e = _mm_setr_ph(0.0, -1.0, 4.0, 5.0, 0.0, -1.0, 8.0, 9.0); |
| 19747 | assert_eq_m128h(r, e); |
| 19748 | } |
| 19749 | |
| 19750 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19751 | const fn test_mm_maskz_conj_pch() { |
| 19752 | let a = _mm_set1_pch(0.0, 1.0); |
| 19753 | let r = _mm_maskz_conj_pch(0b0101, a); |
| 19754 | let e = _mm_setr_ph(0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0); |
| 19755 | assert_eq_m128h(r, e); |
| 19756 | } |
| 19757 | |
| 19758 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19759 | const fn test_mm256_conj_pch() { |
| 19760 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19761 | let r = _mm256_conj_pch(a); |
| 19762 | let e = _mm256_set1_pch(0.0, -1.0); |
| 19763 | assert_eq_m256h(r, e); |
| 19764 | } |
| 19765 | |
| 19766 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19767 | const fn test_mm256_mask_conj_pch() { |
| 19768 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19769 | let src = _mm256_setr_ph( |
| 19770 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19771 | ); |
| 19772 | let r = _mm256_mask_conj_pch(src, 0b01010101, a); |
| 19773 | let e = _mm256_setr_ph( |
| 19774 | 0.0, -1.0, 4.0, 5.0, 0.0, -1.0, 8.0, 9.0, 0.0, -1.0, 12.0, 13.0, 0.0, -1.0, 16.0, 17.0, |
| 19775 | ); |
| 19776 | assert_eq_m256h(r, e); |
| 19777 | } |
| 19778 | |
| 19779 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19780 | const fn test_mm256_maskz_conj_pch() { |
| 19781 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19782 | let r = _mm256_maskz_conj_pch(0b01010101, a); |
| 19783 | let e = _mm256_setr_ph( |
| 19784 | 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, |
| 19785 | ); |
| 19786 | assert_eq_m256h(r, e); |
| 19787 | } |
| 19788 | |
| 19789 | #[simd_test(enable = "avx512fp16" )] |
| 19790 | const fn test_mm512_conj_pch() { |
| 19791 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19792 | let r = _mm512_conj_pch(a); |
| 19793 | let e = _mm512_set1_pch(0.0, -1.0); |
| 19794 | assert_eq_m512h(r, e); |
| 19795 | } |
| 19796 | |
| 19797 | #[simd_test(enable = "avx512fp16" )] |
| 19798 | const fn test_mm512_mask_conj_pch() { |
| 19799 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19800 | let src = _mm512_setr_ph( |
| 19801 | 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, |
| 19802 | 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, |
| 19803 | 32.0, 33.0, |
| 19804 | ); |
| 19805 | let r = _mm512_mask_conj_pch(src, 0b0101010101010101, a); |
| 19806 | let e = _mm512_setr_ph( |
| 19807 | 0.0, -1.0, 4.0, 5.0, 0.0, -1.0, 8.0, 9.0, 0.0, -1.0, 12.0, 13.0, 0.0, -1.0, 16.0, 17.0, |
| 19808 | 0.0, -1.0, 20.0, 21.0, 0.0, -1.0, 24.0, 25.0, 0.0, -1.0, 28.0, 29.0, 0.0, -1.0, 32.0, |
| 19809 | 33.0, |
| 19810 | ); |
| 19811 | assert_eq_m512h(r, e); |
| 19812 | } |
| 19813 | |
| 19814 | #[simd_test(enable = "avx512fp16" )] |
| 19815 | const fn test_mm512_maskz_conj_pch() { |
| 19816 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19817 | let r = _mm512_maskz_conj_pch(0b0101010101010101, a); |
| 19818 | let e = _mm512_setr_ph( |
| 19819 | 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, |
| 19820 | 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, |
| 19821 | ); |
| 19822 | assert_eq_m512h(r, e); |
| 19823 | } |
| 19824 | |
| 19825 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19826 | fn test_mm_fmadd_pch() { |
| 19827 | let a = _mm_set1_pch(0.0, 1.0); |
| 19828 | let b = _mm_set1_pch(0.0, 2.0); |
| 19829 | let c = _mm_set1_pch(0.0, 3.0); |
| 19830 | let r = _mm_fmadd_pch(a, b, c); |
| 19831 | let e = _mm_set1_pch(-2.0, 3.0); |
| 19832 | assert_eq_m128h(r, e); |
| 19833 | } |
| 19834 | |
| 19835 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19836 | fn test_mm_mask_fmadd_pch() { |
| 19837 | let a = _mm_set1_pch(0.0, 1.0); |
| 19838 | let b = _mm_set1_pch(0.0, 2.0); |
| 19839 | let c = _mm_set1_pch(0.0, 3.0); |
| 19840 | let r = _mm_mask_fmadd_pch(a, 0b0101, b, c); |
| 19841 | let e = _mm_setr_ph(-2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0); |
| 19842 | assert_eq_m128h(r, e); |
| 19843 | } |
| 19844 | |
| 19845 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19846 | fn test_mm_mask3_fmadd_pch() { |
| 19847 | let a = _mm_set1_pch(0.0, 1.0); |
| 19848 | let b = _mm_set1_pch(0.0, 2.0); |
| 19849 | let c = _mm_set1_pch(0.0, 3.0); |
| 19850 | let r = _mm_mask3_fmadd_pch(a, b, c, 0b0101); |
| 19851 | let e = _mm_setr_ph(-2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0); |
| 19852 | assert_eq_m128h(r, e); |
| 19853 | } |
| 19854 | |
| 19855 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19856 | fn test_mm_maskz_fmadd_pch() { |
| 19857 | let a = _mm_set1_pch(0.0, 1.0); |
| 19858 | let b = _mm_set1_pch(0.0, 2.0); |
| 19859 | let c = _mm_set1_pch(0.0, 3.0); |
| 19860 | let r = _mm_maskz_fmadd_pch(0b0101, a, b, c); |
| 19861 | let e = _mm_setr_ph(-2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0); |
| 19862 | assert_eq_m128h(r, e); |
| 19863 | } |
| 19864 | |
| 19865 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19866 | fn test_mm256_fmadd_pch() { |
| 19867 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19868 | let b = _mm256_set1_pch(0.0, 2.0); |
| 19869 | let c = _mm256_set1_pch(0.0, 3.0); |
| 19870 | let r = _mm256_fmadd_pch(a, b, c); |
| 19871 | let e = _mm256_set1_pch(-2.0, 3.0); |
| 19872 | assert_eq_m256h(r, e); |
| 19873 | } |
| 19874 | |
| 19875 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19876 | fn test_mm256_mask_fmadd_pch() { |
| 19877 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19878 | let b = _mm256_set1_pch(0.0, 2.0); |
| 19879 | let c = _mm256_set1_pch(0.0, 3.0); |
| 19880 | let r = _mm256_mask_fmadd_pch(a, 0b01010101, b, c); |
| 19881 | let e = _mm256_setr_ph( |
| 19882 | -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, |
| 19883 | ); |
| 19884 | assert_eq_m256h(r, e); |
| 19885 | } |
| 19886 | |
| 19887 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19888 | fn test_mm256_mask3_fmadd_pch() { |
| 19889 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19890 | let b = _mm256_set1_pch(0.0, 2.0); |
| 19891 | let c = _mm256_set1_pch(0.0, 3.0); |
| 19892 | let r = _mm256_mask3_fmadd_pch(a, b, c, 0b01010101); |
| 19893 | let e = _mm256_setr_ph( |
| 19894 | -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, |
| 19895 | ); |
| 19896 | assert_eq_m256h(r, e); |
| 19897 | } |
| 19898 | |
| 19899 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 19900 | fn test_mm256_maskz_fmadd_pch() { |
| 19901 | let a = _mm256_set1_pch(0.0, 1.0); |
| 19902 | let b = _mm256_set1_pch(0.0, 2.0); |
| 19903 | let c = _mm256_set1_pch(0.0, 3.0); |
| 19904 | let r = _mm256_maskz_fmadd_pch(0b01010101, a, b, c); |
| 19905 | let e = _mm256_setr_ph( |
| 19906 | -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, |
| 19907 | ); |
| 19908 | assert_eq_m256h(r, e); |
| 19909 | } |
| 19910 | |
| 19911 | #[simd_test(enable = "avx512fp16" )] |
| 19912 | fn test_mm512_fmadd_pch() { |
| 19913 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19914 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19915 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19916 | let r = _mm512_fmadd_pch(a, b, c); |
| 19917 | let e = _mm512_set1_pch(-2.0, 3.0); |
| 19918 | assert_eq_m512h(r, e); |
| 19919 | } |
| 19920 | |
| 19921 | #[simd_test(enable = "avx512fp16" )] |
| 19922 | fn test_mm512_mask_fmadd_pch() { |
| 19923 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19924 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19925 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19926 | let r = _mm512_mask_fmadd_pch(a, 0b0101010101010101, b, c); |
| 19927 | let e = _mm512_setr_ph( |
| 19928 | -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, |
| 19929 | -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, |
| 19930 | ); |
| 19931 | assert_eq_m512h(r, e); |
| 19932 | } |
| 19933 | |
| 19934 | #[simd_test(enable = "avx512fp16" )] |
| 19935 | fn test_mm512_mask3_fmadd_pch() { |
| 19936 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19937 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19938 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19939 | let r = _mm512_mask3_fmadd_pch(a, b, c, 0b0101010101010101); |
| 19940 | let e = _mm512_setr_ph( |
| 19941 | -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, |
| 19942 | -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, |
| 19943 | ); |
| 19944 | assert_eq_m512h(r, e); |
| 19945 | } |
| 19946 | |
| 19947 | #[simd_test(enable = "avx512fp16" )] |
| 19948 | fn test_mm512_maskz_fmadd_pch() { |
| 19949 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19950 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19951 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19952 | let r = _mm512_maskz_fmadd_pch(0b0101010101010101, a, b, c); |
| 19953 | let e = _mm512_setr_ph( |
| 19954 | -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, |
| 19955 | -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, |
| 19956 | ); |
| 19957 | assert_eq_m512h(r, e); |
| 19958 | } |
| 19959 | |
| 19960 | #[simd_test(enable = "avx512fp16" )] |
| 19961 | fn test_mm512_fmadd_round_pch() { |
| 19962 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19963 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19964 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19965 | let r = |
| 19966 | _mm512_fmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 19967 | let e = _mm512_set1_pch(-2.0, 3.0); |
| 19968 | assert_eq_m512h(r, e); |
| 19969 | } |
| 19970 | |
| 19971 | #[simd_test(enable = "avx512fp16" )] |
| 19972 | fn test_mm512_mask_fmadd_round_pch() { |
| 19973 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19974 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19975 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19976 | let r = _mm512_mask_fmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19977 | a, |
| 19978 | 0b0101010101010101, |
| 19979 | b, |
| 19980 | c, |
| 19981 | ); |
| 19982 | let e = _mm512_setr_ph( |
| 19983 | -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, |
| 19984 | -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, -2.0, 3.0, 0.0, 1.0, |
| 19985 | ); |
| 19986 | assert_eq_m512h(r, e); |
| 19987 | } |
| 19988 | |
| 19989 | #[simd_test(enable = "avx512fp16" )] |
| 19990 | fn test_mm512_mask3_fmadd_round_pch() { |
| 19991 | let a = _mm512_set1_pch(0.0, 1.0); |
| 19992 | let b = _mm512_set1_pch(0.0, 2.0); |
| 19993 | let c = _mm512_set1_pch(0.0, 3.0); |
| 19994 | let r = _mm512_mask3_fmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 19995 | a, |
| 19996 | b, |
| 19997 | c, |
| 19998 | 0b0101010101010101, |
| 19999 | ); |
| 20000 | let e = _mm512_setr_ph( |
| 20001 | -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, |
| 20002 | -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, -2.0, 3.0, 0.0, 3.0, |
| 20003 | ); |
| 20004 | assert_eq_m512h(r, e); |
| 20005 | } |
| 20006 | |
| 20007 | #[simd_test(enable = "avx512fp16" )] |
| 20008 | fn test_mm512_maskz_fmadd_round_pch() { |
| 20009 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20010 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20011 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20012 | let r = _mm512_maskz_fmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20013 | 0b0101010101010101, |
| 20014 | a, |
| 20015 | b, |
| 20016 | c, |
| 20017 | ); |
| 20018 | let e = _mm512_setr_ph( |
| 20019 | -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, |
| 20020 | -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, -2.0, 3.0, 0.0, 0.0, |
| 20021 | ); |
| 20022 | assert_eq_m512h(r, e); |
| 20023 | } |
| 20024 | |
| 20025 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20026 | fn test_mm_fmadd_sch() { |
| 20027 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20028 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20029 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20030 | let r = _mm_fmadd_sch(a, b, c); |
| 20031 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20032 | assert_eq_m128h(r, e); |
| 20033 | } |
| 20034 | |
| 20035 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20036 | fn test_mm_mask_fmadd_sch() { |
| 20037 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20038 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20039 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20040 | let r = _mm_mask_fmadd_sch(a, 0, b, c); |
| 20041 | let e = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20042 | assert_eq_m128h(r, e); |
| 20043 | let r = _mm_mask_fmadd_sch(a, 1, b, c); |
| 20044 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20045 | assert_eq_m128h(r, e); |
| 20046 | } |
| 20047 | |
| 20048 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20049 | fn test_mm_mask3_fmadd_sch() { |
| 20050 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20051 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20052 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20053 | let r = _mm_mask3_fmadd_sch(a, b, c, 0); |
| 20054 | let e = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20055 | assert_eq_m128h(r, e); |
| 20056 | let r = _mm_mask3_fmadd_sch(a, b, c, 1); |
| 20057 | let e = _mm_setr_ph(-2.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20058 | assert_eq_m128h(r, e); |
| 20059 | } |
| 20060 | |
| 20061 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20062 | fn test_mm_maskz_fmadd_sch() { |
| 20063 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20064 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20065 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20066 | let r = _mm_maskz_fmadd_sch(0, a, b, c); |
| 20067 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20068 | assert_eq_m128h(r, e); |
| 20069 | let r = _mm_maskz_fmadd_sch(1, a, b, c); |
| 20070 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20071 | assert_eq_m128h(r, e); |
| 20072 | } |
| 20073 | |
| 20074 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20075 | fn test_mm_fmadd_round_sch() { |
| 20076 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20077 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20078 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20079 | let r = _mm_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20080 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20081 | assert_eq_m128h(r, e); |
| 20082 | } |
| 20083 | |
| 20084 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20085 | fn test_mm_mask_fmadd_round_sch() { |
| 20086 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20087 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20088 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20089 | let r = _mm_mask_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20090 | a, 0, b, c, |
| 20091 | ); |
| 20092 | let e = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20093 | assert_eq_m128h(r, e); |
| 20094 | let r = _mm_mask_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20095 | a, 1, b, c, |
| 20096 | ); |
| 20097 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20098 | assert_eq_m128h(r, e); |
| 20099 | } |
| 20100 | |
| 20101 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20102 | fn test_mm_mask3_fmadd_round_sch() { |
| 20103 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20104 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20105 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20106 | let r = _mm_mask3_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20107 | a, b, c, 0, |
| 20108 | ); |
| 20109 | let e = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20110 | assert_eq_m128h(r, e); |
| 20111 | let r = _mm_mask3_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20112 | a, b, c, 1, |
| 20113 | ); |
| 20114 | let e = _mm_setr_ph(-2.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20115 | assert_eq_m128h(r, e); |
| 20116 | } |
| 20117 | |
| 20118 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20119 | fn test_mm_maskz_fmadd_round_sch() { |
| 20120 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20121 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20122 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20123 | let r = _mm_maskz_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20124 | 0, a, b, c, |
| 20125 | ); |
| 20126 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20127 | assert_eq_m128h(r, e); |
| 20128 | let r = _mm_maskz_fmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20129 | 1, a, b, c, |
| 20130 | ); |
| 20131 | let e = _mm_setr_ph(-2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20132 | assert_eq_m128h(r, e); |
| 20133 | } |
| 20134 | |
| 20135 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20136 | fn test_mm_fcmadd_pch() { |
| 20137 | let a = _mm_set1_pch(0.0, 1.0); |
| 20138 | let b = _mm_set1_pch(0.0, 2.0); |
| 20139 | let c = _mm_set1_pch(0.0, 3.0); |
| 20140 | let r = _mm_fcmadd_pch(a, b, c); |
| 20141 | let e = _mm_set1_pch(2.0, 3.0); |
| 20142 | assert_eq_m128h(r, e); |
| 20143 | } |
| 20144 | |
| 20145 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20146 | fn test_mm_mask_fcmadd_pch() { |
| 20147 | let a = _mm_set1_pch(0.0, 1.0); |
| 20148 | let b = _mm_set1_pch(0.0, 2.0); |
| 20149 | let c = _mm_set1_pch(0.0, 3.0); |
| 20150 | let r = _mm_mask_fcmadd_pch(a, 0b0101, b, c); |
| 20151 | let e = _mm_setr_ph(2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0); |
| 20152 | assert_eq_m128h(r, e); |
| 20153 | } |
| 20154 | |
| 20155 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20156 | fn test_mm_mask3_fcmadd_pch() { |
| 20157 | let a = _mm_set1_pch(0.0, 1.0); |
| 20158 | let b = _mm_set1_pch(0.0, 2.0); |
| 20159 | let c = _mm_set1_pch(0.0, 3.0); |
| 20160 | let r = _mm_mask3_fcmadd_pch(a, b, c, 0b0101); |
| 20161 | let e = _mm_setr_ph(2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0); |
| 20162 | assert_eq_m128h(r, e); |
| 20163 | } |
| 20164 | |
| 20165 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20166 | fn test_mm_maskz_fcmadd_pch() { |
| 20167 | let a = _mm_set1_pch(0.0, 1.0); |
| 20168 | let b = _mm_set1_pch(0.0, 2.0); |
| 20169 | let c = _mm_set1_pch(0.0, 3.0); |
| 20170 | let r = _mm_maskz_fcmadd_pch(0b0101, a, b, c); |
| 20171 | let e = _mm_setr_ph(2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0); |
| 20172 | assert_eq_m128h(r, e); |
| 20173 | } |
| 20174 | |
| 20175 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20176 | fn test_mm256_fcmadd_pch() { |
| 20177 | let a = _mm256_set1_pch(0.0, 1.0); |
| 20178 | let b = _mm256_set1_pch(0.0, 2.0); |
| 20179 | let c = _mm256_set1_pch(0.0, 3.0); |
| 20180 | let r = _mm256_fcmadd_pch(a, b, c); |
| 20181 | let e = _mm256_set1_pch(2.0, 3.0); |
| 20182 | assert_eq_m256h(r, e); |
| 20183 | } |
| 20184 | |
| 20185 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20186 | fn test_mm256_mask_fcmadd_pch() { |
| 20187 | let a = _mm256_set1_pch(0.0, 1.0); |
| 20188 | let b = _mm256_set1_pch(0.0, 2.0); |
| 20189 | let c = _mm256_set1_pch(0.0, 3.0); |
| 20190 | let r = _mm256_mask_fcmadd_pch(a, 0b01010101, b, c); |
| 20191 | let e = _mm256_setr_ph( |
| 20192 | 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, |
| 20193 | ); |
| 20194 | assert_eq_m256h(r, e); |
| 20195 | } |
| 20196 | |
| 20197 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20198 | fn test_mm256_mask3_fcmadd_pch() { |
| 20199 | let a = _mm256_set1_pch(0.0, 1.0); |
| 20200 | let b = _mm256_set1_pch(0.0, 2.0); |
| 20201 | let c = _mm256_set1_pch(0.0, 3.0); |
| 20202 | let r = _mm256_mask3_fcmadd_pch(a, b, c, 0b01010101); |
| 20203 | let e = _mm256_setr_ph( |
| 20204 | 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, |
| 20205 | ); |
| 20206 | assert_eq_m256h(r, e); |
| 20207 | } |
| 20208 | |
| 20209 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20210 | fn test_mm256_maskz_fcmadd_pch() { |
| 20211 | let a = _mm256_set1_pch(0.0, 1.0); |
| 20212 | let b = _mm256_set1_pch(0.0, 2.0); |
| 20213 | let c = _mm256_set1_pch(0.0, 3.0); |
| 20214 | let r = _mm256_maskz_fcmadd_pch(0b01010101, a, b, c); |
| 20215 | let e = _mm256_setr_ph( |
| 20216 | 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, |
| 20217 | ); |
| 20218 | assert_eq_m256h(r, e); |
| 20219 | } |
| 20220 | |
| 20221 | #[simd_test(enable = "avx512fp16" )] |
| 20222 | fn test_mm512_fcmadd_pch() { |
| 20223 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20224 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20225 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20226 | let r = _mm512_fcmadd_pch(a, b, c); |
| 20227 | let e = _mm512_set1_pch(2.0, 3.0); |
| 20228 | assert_eq_m512h(r, e); |
| 20229 | } |
| 20230 | |
| 20231 | #[simd_test(enable = "avx512fp16" )] |
| 20232 | fn test_mm512_mask_fcmadd_pch() { |
| 20233 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20234 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20235 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20236 | let r = _mm512_mask_fcmadd_pch(a, 0b0101010101010101, b, c); |
| 20237 | let e = _mm512_setr_ph( |
| 20238 | 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, |
| 20239 | 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, |
| 20240 | ); |
| 20241 | assert_eq_m512h(r, e); |
| 20242 | } |
| 20243 | |
| 20244 | #[simd_test(enable = "avx512fp16" )] |
| 20245 | fn test_mm512_mask3_fcmadd_pch() { |
| 20246 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20247 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20248 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20249 | let r = _mm512_mask3_fcmadd_pch(a, b, c, 0b0101010101010101); |
| 20250 | let e = _mm512_setr_ph( |
| 20251 | 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, |
| 20252 | 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, |
| 20253 | ); |
| 20254 | assert_eq_m512h(r, e); |
| 20255 | } |
| 20256 | |
| 20257 | #[simd_test(enable = "avx512fp16" )] |
| 20258 | fn test_mm512_maskz_fcmadd_pch() { |
| 20259 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20260 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20261 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20262 | let r = _mm512_maskz_fcmadd_pch(0b0101010101010101, a, b, c); |
| 20263 | let e = _mm512_setr_ph( |
| 20264 | 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, |
| 20265 | 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, |
| 20266 | ); |
| 20267 | assert_eq_m512h(r, e); |
| 20268 | } |
| 20269 | |
| 20270 | #[simd_test(enable = "avx512fp16" )] |
| 20271 | fn test_mm512_fcmadd_round_pch() { |
| 20272 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20273 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20274 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20275 | let r = |
| 20276 | _mm512_fcmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20277 | let e = _mm512_set1_pch(2.0, 3.0); |
| 20278 | assert_eq_m512h(r, e); |
| 20279 | } |
| 20280 | |
| 20281 | #[simd_test(enable = "avx512fp16" )] |
| 20282 | fn test_mm512_mask_fcmadd_round_pch() { |
| 20283 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20284 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20285 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20286 | let r = _mm512_mask_fcmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20287 | a, |
| 20288 | 0b0101010101010101, |
| 20289 | b, |
| 20290 | c, |
| 20291 | ); |
| 20292 | let e = _mm512_setr_ph( |
| 20293 | 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, |
| 20294 | 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0, 1.0, |
| 20295 | ); |
| 20296 | assert_eq_m512h(r, e); |
| 20297 | } |
| 20298 | |
| 20299 | #[simd_test(enable = "avx512fp16" )] |
| 20300 | fn test_mm512_mask3_fcmadd_round_pch() { |
| 20301 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20302 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20303 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20304 | let r = _mm512_mask3_fcmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20305 | a, |
| 20306 | b, |
| 20307 | c, |
| 20308 | 0b0101010101010101, |
| 20309 | ); |
| 20310 | let e = _mm512_setr_ph( |
| 20311 | 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, |
| 20312 | 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, 2.0, 3.0, 0.0, 3.0, |
| 20313 | ); |
| 20314 | assert_eq_m512h(r, e); |
| 20315 | } |
| 20316 | |
| 20317 | #[simd_test(enable = "avx512fp16" )] |
| 20318 | fn test_mm512_maskz_fcmadd_round_pch() { |
| 20319 | let a = _mm512_set1_pch(0.0, 1.0); |
| 20320 | let b = _mm512_set1_pch(0.0, 2.0); |
| 20321 | let c = _mm512_set1_pch(0.0, 3.0); |
| 20322 | let r = _mm512_maskz_fcmadd_round_pch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20323 | 0b0101010101010101, |
| 20324 | a, |
| 20325 | b, |
| 20326 | c, |
| 20327 | ); |
| 20328 | let e = _mm512_setr_ph( |
| 20329 | 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, |
| 20330 | 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, 2.0, 3.0, 0.0, 0.0, |
| 20331 | ); |
| 20332 | assert_eq_m512h(r, e); |
| 20333 | } |
| 20334 | |
| 20335 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20336 | fn test_mm_fcmadd_sch() { |
| 20337 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20338 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20339 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20340 | let r = _mm_fcmadd_sch(a, b, c); |
| 20341 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20342 | assert_eq_m128h(r, e); |
| 20343 | } |
| 20344 | |
| 20345 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20346 | fn test_mm_mask_fcmadd_sch() { |
| 20347 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20348 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20349 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20350 | let r = _mm_mask_fcmadd_sch(a, 0, b, c); |
| 20351 | let e = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20352 | assert_eq_m128h(r, e); |
| 20353 | let r = _mm_mask_fcmadd_sch(a, 1, b, c); |
| 20354 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20355 | assert_eq_m128h(r, e); |
| 20356 | } |
| 20357 | |
| 20358 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20359 | fn test_mm_mask3_fcmadd_sch() { |
| 20360 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20361 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20362 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20363 | let r = _mm_mask3_fcmadd_sch(a, b, c, 0); |
| 20364 | let e = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20365 | assert_eq_m128h(r, e); |
| 20366 | let r = _mm_mask3_fcmadd_sch(a, b, c, 1); |
| 20367 | let e = _mm_setr_ph(2.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20368 | assert_eq_m128h(r, e); |
| 20369 | } |
| 20370 | |
| 20371 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20372 | fn test_mm_maskz_fcmadd_sch() { |
| 20373 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20374 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20375 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20376 | let r = _mm_maskz_fcmadd_sch(0, a, b, c); |
| 20377 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20378 | assert_eq_m128h(r, e); |
| 20379 | let r = _mm_maskz_fcmadd_sch(1, a, b, c); |
| 20380 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20381 | assert_eq_m128h(r, e); |
| 20382 | } |
| 20383 | |
| 20384 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20385 | fn test_mm_fcmadd_round_sch() { |
| 20386 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20387 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20388 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20389 | let r = _mm_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20390 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20391 | assert_eq_m128h(r, e); |
| 20392 | } |
| 20393 | |
| 20394 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20395 | fn test_mm_mask_fcmadd_round_sch() { |
| 20396 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20397 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20398 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20399 | let r = _mm_mask_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20400 | a, 0, b, c, |
| 20401 | ); |
| 20402 | let e = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20403 | assert_eq_m128h(r, e); |
| 20404 | let r = _mm_mask_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20405 | a, 1, b, c, |
| 20406 | ); |
| 20407 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20408 | assert_eq_m128h(r, e); |
| 20409 | } |
| 20410 | |
| 20411 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20412 | fn test_mm_mask3_fcmadd_round_sch() { |
| 20413 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20414 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20415 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20416 | let r = _mm_mask3_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20417 | a, b, c, 0, |
| 20418 | ); |
| 20419 | let e = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20420 | assert_eq_m128h(r, e); |
| 20421 | let r = _mm_mask3_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20422 | a, b, c, 1, |
| 20423 | ); |
| 20424 | let e = _mm_setr_ph(2.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20425 | assert_eq_m128h(r, e); |
| 20426 | } |
| 20427 | |
| 20428 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20429 | fn test_mm_maskz_fcmadd_round_sch() { |
| 20430 | let a = _mm_setr_ph(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20431 | let b = _mm_setr_ph(0.0, 2.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); |
| 20432 | let c = _mm_setr_ph(0.0, 3.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0); |
| 20433 | let r = _mm_maskz_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20434 | 0, a, b, c, |
| 20435 | ); |
| 20436 | let e = _mm_setr_ph(0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20437 | assert_eq_m128h(r, e); |
| 20438 | let r = _mm_maskz_fcmadd_round_sch::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20439 | 1, a, b, c, |
| 20440 | ); |
| 20441 | let e = _mm_setr_ph(2.0, 3.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0); |
| 20442 | assert_eq_m128h(r, e); |
| 20443 | } |
| 20444 | |
| 20445 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20446 | const fn test_mm_fmadd_ph() { |
| 20447 | let a = _mm_set1_ph(1.0); |
| 20448 | let b = _mm_set1_ph(2.0); |
| 20449 | let c = _mm_set1_ph(3.0); |
| 20450 | let r = _mm_fmadd_ph(a, b, c); |
| 20451 | let e = _mm_set1_ph(5.0); |
| 20452 | assert_eq_m128h(r, e); |
| 20453 | } |
| 20454 | |
| 20455 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20456 | const fn test_mm_mask_fmadd_ph() { |
| 20457 | let a = _mm_set1_ph(1.0); |
| 20458 | let b = _mm_set1_ph(2.0); |
| 20459 | let c = _mm_set1_ph(3.0); |
| 20460 | let r = _mm_mask_fmadd_ph(a, 0b01010101, b, c); |
| 20461 | let e = _mm_set_ph(1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0); |
| 20462 | assert_eq_m128h(r, e); |
| 20463 | } |
| 20464 | |
| 20465 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20466 | const fn test_mm_mask3_fmadd_ph() { |
| 20467 | let a = _mm_set1_ph(1.0); |
| 20468 | let b = _mm_set1_ph(2.0); |
| 20469 | let c = _mm_set1_ph(3.0); |
| 20470 | let r = _mm_mask3_fmadd_ph(a, b, c, 0b01010101); |
| 20471 | let e = _mm_set_ph(3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0); |
| 20472 | assert_eq_m128h(r, e); |
| 20473 | } |
| 20474 | |
| 20475 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20476 | const fn test_mm_maskz_fmadd_ph() { |
| 20477 | let a = _mm_set1_ph(1.0); |
| 20478 | let b = _mm_set1_ph(2.0); |
| 20479 | let c = _mm_set1_ph(3.0); |
| 20480 | let r = _mm_maskz_fmadd_ph(0b01010101, a, b, c); |
| 20481 | let e = _mm_set_ph(0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0); |
| 20482 | assert_eq_m128h(r, e); |
| 20483 | } |
| 20484 | |
| 20485 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20486 | const fn test_mm256_fmadd_ph() { |
| 20487 | let a = _mm256_set1_ph(1.0); |
| 20488 | let b = _mm256_set1_ph(2.0); |
| 20489 | let c = _mm256_set1_ph(3.0); |
| 20490 | let r = _mm256_fmadd_ph(a, b, c); |
| 20491 | let e = _mm256_set1_ph(5.0); |
| 20492 | assert_eq_m256h(r, e); |
| 20493 | } |
| 20494 | |
| 20495 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20496 | const fn test_mm256_mask_fmadd_ph() { |
| 20497 | let a = _mm256_set1_ph(1.0); |
| 20498 | let b = _mm256_set1_ph(2.0); |
| 20499 | let c = _mm256_set1_ph(3.0); |
| 20500 | let r = _mm256_mask_fmadd_ph(a, 0b0101010101010101, b, c); |
| 20501 | let e = _mm256_set_ph( |
| 20502 | 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, |
| 20503 | ); |
| 20504 | assert_eq_m256h(r, e); |
| 20505 | } |
| 20506 | |
| 20507 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20508 | const fn test_mm256_mask3_fmadd_ph() { |
| 20509 | let a = _mm256_set1_ph(1.0); |
| 20510 | let b = _mm256_set1_ph(2.0); |
| 20511 | let c = _mm256_set1_ph(3.0); |
| 20512 | let r = _mm256_mask3_fmadd_ph(a, b, c, 0b0101010101010101); |
| 20513 | let e = _mm256_set_ph( |
| 20514 | 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, |
| 20515 | ); |
| 20516 | assert_eq_m256h(r, e); |
| 20517 | } |
| 20518 | |
| 20519 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20520 | const fn test_mm256_maskz_fmadd_ph() { |
| 20521 | let a = _mm256_set1_ph(1.0); |
| 20522 | let b = _mm256_set1_ph(2.0); |
| 20523 | let c = _mm256_set1_ph(3.0); |
| 20524 | let r = _mm256_maskz_fmadd_ph(0b0101010101010101, a, b, c); |
| 20525 | let e = _mm256_set_ph( |
| 20526 | 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, |
| 20527 | ); |
| 20528 | assert_eq_m256h(r, e); |
| 20529 | } |
| 20530 | |
| 20531 | #[simd_test(enable = "avx512fp16" )] |
| 20532 | const fn test_mm512_fmadd_ph() { |
| 20533 | let a = _mm512_set1_ph(1.0); |
| 20534 | let b = _mm512_set1_ph(2.0); |
| 20535 | let c = _mm512_set1_ph(3.0); |
| 20536 | let r = _mm512_fmadd_ph(a, b, c); |
| 20537 | let e = _mm512_set1_ph(5.0); |
| 20538 | assert_eq_m512h(r, e); |
| 20539 | } |
| 20540 | |
| 20541 | #[simd_test(enable = "avx512fp16" )] |
| 20542 | const fn test_mm512_mask_fmadd_ph() { |
| 20543 | let a = _mm512_set1_ph(1.0); |
| 20544 | let b = _mm512_set1_ph(2.0); |
| 20545 | let c = _mm512_set1_ph(3.0); |
| 20546 | let r = _mm512_mask_fmadd_ph(a, 0b01010101010101010101010101010101, b, c); |
| 20547 | let e = _mm512_set_ph( |
| 20548 | 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, |
| 20549 | 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, |
| 20550 | ); |
| 20551 | assert_eq_m512h(r, e); |
| 20552 | } |
| 20553 | |
| 20554 | #[simd_test(enable = "avx512fp16" )] |
| 20555 | const fn test_mm512_mask3_fmadd_ph() { |
| 20556 | let a = _mm512_set1_ph(1.0); |
| 20557 | let b = _mm512_set1_ph(2.0); |
| 20558 | let c = _mm512_set1_ph(3.0); |
| 20559 | let r = _mm512_mask3_fmadd_ph(a, b, c, 0b01010101010101010101010101010101); |
| 20560 | let e = _mm512_set_ph( |
| 20561 | 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, |
| 20562 | 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, |
| 20563 | ); |
| 20564 | assert_eq_m512h(r, e); |
| 20565 | } |
| 20566 | |
| 20567 | #[simd_test(enable = "avx512fp16" )] |
| 20568 | const fn test_mm512_maskz_fmadd_ph() { |
| 20569 | let a = _mm512_set1_ph(1.0); |
| 20570 | let b = _mm512_set1_ph(2.0); |
| 20571 | let c = _mm512_set1_ph(3.0); |
| 20572 | let r = _mm512_maskz_fmadd_ph(0b01010101010101010101010101010101, a, b, c); |
| 20573 | let e = _mm512_set_ph( |
| 20574 | 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, |
| 20575 | 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, |
| 20576 | ); |
| 20577 | assert_eq_m512h(r, e); |
| 20578 | } |
| 20579 | |
| 20580 | #[simd_test(enable = "avx512fp16" )] |
| 20581 | fn test_mm512_fmadd_round_ph() { |
| 20582 | let a = _mm512_set1_ph(1.0); |
| 20583 | let b = _mm512_set1_ph(2.0); |
| 20584 | let c = _mm512_set1_ph(3.0); |
| 20585 | let r = _mm512_fmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20586 | let e = _mm512_set1_ph(5.0); |
| 20587 | assert_eq_m512h(r, e); |
| 20588 | } |
| 20589 | |
| 20590 | #[simd_test(enable = "avx512fp16" )] |
| 20591 | fn test_mm512_mask_fmadd_round_ph() { |
| 20592 | let a = _mm512_set1_ph(1.0); |
| 20593 | let b = _mm512_set1_ph(2.0); |
| 20594 | let c = _mm512_set1_ph(3.0); |
| 20595 | let r = _mm512_mask_fmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20596 | a, |
| 20597 | 0b01010101010101010101010101010101, |
| 20598 | b, |
| 20599 | c, |
| 20600 | ); |
| 20601 | let e = _mm512_set_ph( |
| 20602 | 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, |
| 20603 | 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, 1.0, 5.0, |
| 20604 | ); |
| 20605 | assert_eq_m512h(r, e); |
| 20606 | } |
| 20607 | |
| 20608 | #[simd_test(enable = "avx512fp16" )] |
| 20609 | fn test_mm512_mask3_fmadd_round_ph() { |
| 20610 | let a = _mm512_set1_ph(1.0); |
| 20611 | let b = _mm512_set1_ph(2.0); |
| 20612 | let c = _mm512_set1_ph(3.0); |
| 20613 | let r = _mm512_mask3_fmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20614 | a, |
| 20615 | b, |
| 20616 | c, |
| 20617 | 0b01010101010101010101010101010101, |
| 20618 | ); |
| 20619 | let e = _mm512_set_ph( |
| 20620 | 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, |
| 20621 | 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, 3.0, 5.0, |
| 20622 | ); |
| 20623 | assert_eq_m512h(r, e); |
| 20624 | } |
| 20625 | |
| 20626 | #[simd_test(enable = "avx512fp16" )] |
| 20627 | fn test_mm512_maskz_fmadd_round_ph() { |
| 20628 | let a = _mm512_set1_ph(1.0); |
| 20629 | let b = _mm512_set1_ph(2.0); |
| 20630 | let c = _mm512_set1_ph(3.0); |
| 20631 | let r = _mm512_maskz_fmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20632 | 0b01010101010101010101010101010101, |
| 20633 | a, |
| 20634 | b, |
| 20635 | c, |
| 20636 | ); |
| 20637 | let e = _mm512_set_ph( |
| 20638 | 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, |
| 20639 | 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, 0.0, 5.0, |
| 20640 | ); |
| 20641 | assert_eq_m512h(r, e); |
| 20642 | } |
| 20643 | |
| 20644 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20645 | const fn test_mm_fmadd_sh() { |
| 20646 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20647 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20648 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20649 | let r = _mm_fmadd_sh(a, b, c); |
| 20650 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20651 | assert_eq_m128h(r, e); |
| 20652 | } |
| 20653 | |
| 20654 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20655 | const fn test_mm_mask_fmadd_sh() { |
| 20656 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20657 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20658 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20659 | let r = _mm_mask_fmadd_sh(a, 0, b, c); |
| 20660 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20661 | assert_eq_m128h(r, e); |
| 20662 | let r = _mm_mask_fmadd_sh(a, 1, b, c); |
| 20663 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20664 | assert_eq_m128h(r, e); |
| 20665 | } |
| 20666 | |
| 20667 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20668 | const fn test_mm_mask3_fmadd_sh() { |
| 20669 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20670 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20671 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20672 | let r = _mm_mask3_fmadd_sh(a, b, c, 0); |
| 20673 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20674 | assert_eq_m128h(r, e); |
| 20675 | let r = _mm_mask3_fmadd_sh(a, b, c, 1); |
| 20676 | let e = _mm_setr_ph(5.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20677 | assert_eq_m128h(r, e); |
| 20678 | } |
| 20679 | |
| 20680 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20681 | const fn test_mm_maskz_fmadd_sh() { |
| 20682 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20683 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20684 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20685 | let r = _mm_maskz_fmadd_sh(0, a, b, c); |
| 20686 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20687 | assert_eq_m128h(r, e); |
| 20688 | let r = _mm_maskz_fmadd_sh(1, a, b, c); |
| 20689 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20690 | assert_eq_m128h(r, e); |
| 20691 | } |
| 20692 | |
| 20693 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20694 | fn test_mm_fmadd_round_sh() { |
| 20695 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20696 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20697 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20698 | let r = _mm_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20699 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20700 | assert_eq_m128h(r, e); |
| 20701 | } |
| 20702 | |
| 20703 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20704 | fn test_mm_mask_fmadd_round_sh() { |
| 20705 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20706 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20707 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20708 | let r = _mm_mask_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20709 | a, 0, b, c, |
| 20710 | ); |
| 20711 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20712 | assert_eq_m128h(r, e); |
| 20713 | let r = _mm_mask_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20714 | a, 1, b, c, |
| 20715 | ); |
| 20716 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20717 | assert_eq_m128h(r, e); |
| 20718 | } |
| 20719 | |
| 20720 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20721 | fn test_mm_mask3_fmadd_round_sh() { |
| 20722 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20723 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20724 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20725 | let r = _mm_mask3_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20726 | a, b, c, 0, |
| 20727 | ); |
| 20728 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20729 | assert_eq_m128h(r, e); |
| 20730 | let r = _mm_mask3_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20731 | a, b, c, 1, |
| 20732 | ); |
| 20733 | let e = _mm_setr_ph(5.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20734 | assert_eq_m128h(r, e); |
| 20735 | } |
| 20736 | |
| 20737 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20738 | fn test_mm_maskz_fmadd_round_sh() { |
| 20739 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20740 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20741 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20742 | let r = _mm_maskz_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20743 | 0, a, b, c, |
| 20744 | ); |
| 20745 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20746 | assert_eq_m128h(r, e); |
| 20747 | let r = _mm_maskz_fmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20748 | 1, a, b, c, |
| 20749 | ); |
| 20750 | let e = _mm_setr_ph(5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20751 | assert_eq_m128h(r, e); |
| 20752 | } |
| 20753 | |
| 20754 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20755 | const fn test_mm_fmsub_ph() { |
| 20756 | let a = _mm_set1_ph(1.0); |
| 20757 | let b = _mm_set1_ph(2.0); |
| 20758 | let c = _mm_set1_ph(3.0); |
| 20759 | let r = _mm_fmsub_ph(a, b, c); |
| 20760 | let e = _mm_set1_ph(-1.0); |
| 20761 | assert_eq_m128h(r, e); |
| 20762 | } |
| 20763 | |
| 20764 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20765 | const fn test_mm_mask_fmsub_ph() { |
| 20766 | let a = _mm_set1_ph(1.0); |
| 20767 | let b = _mm_set1_ph(2.0); |
| 20768 | let c = _mm_set1_ph(3.0); |
| 20769 | let r = _mm_mask_fmsub_ph(a, 0b01010101, b, c); |
| 20770 | let e = _mm_set_ph(1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0); |
| 20771 | assert_eq_m128h(r, e); |
| 20772 | } |
| 20773 | |
| 20774 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20775 | const fn test_mm_mask3_fmsub_ph() { |
| 20776 | let a = _mm_set1_ph(1.0); |
| 20777 | let b = _mm_set1_ph(2.0); |
| 20778 | let c = _mm_set1_ph(3.0); |
| 20779 | let r = _mm_mask3_fmsub_ph(a, b, c, 0b01010101); |
| 20780 | let e = _mm_set_ph(3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0); |
| 20781 | assert_eq_m128h(r, e); |
| 20782 | } |
| 20783 | |
| 20784 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20785 | const fn test_mm_maskz_fmsub_ph() { |
| 20786 | let a = _mm_set1_ph(1.0); |
| 20787 | let b = _mm_set1_ph(2.0); |
| 20788 | let c = _mm_set1_ph(3.0); |
| 20789 | let r = _mm_maskz_fmsub_ph(0b01010101, a, b, c); |
| 20790 | let e = _mm_set_ph(0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0); |
| 20791 | assert_eq_m128h(r, e); |
| 20792 | } |
| 20793 | |
| 20794 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20795 | const fn test_mm256_fmsub_ph() { |
| 20796 | let a = _mm256_set1_ph(1.0); |
| 20797 | let b = _mm256_set1_ph(2.0); |
| 20798 | let c = _mm256_set1_ph(3.0); |
| 20799 | let r = _mm256_fmsub_ph(a, b, c); |
| 20800 | let e = _mm256_set1_ph(-1.0); |
| 20801 | assert_eq_m256h(r, e); |
| 20802 | } |
| 20803 | |
| 20804 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20805 | const fn test_mm256_mask_fmsub_ph() { |
| 20806 | let a = _mm256_set1_ph(1.0); |
| 20807 | let b = _mm256_set1_ph(2.0); |
| 20808 | let c = _mm256_set1_ph(3.0); |
| 20809 | let r = _mm256_mask_fmsub_ph(a, 0b0101010101010101, b, c); |
| 20810 | let e = _mm256_set_ph( |
| 20811 | 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, |
| 20812 | ); |
| 20813 | assert_eq_m256h(r, e); |
| 20814 | } |
| 20815 | |
| 20816 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20817 | const fn test_mm256_mask3_fmsub_ph() { |
| 20818 | let a = _mm256_set1_ph(1.0); |
| 20819 | let b = _mm256_set1_ph(2.0); |
| 20820 | let c = _mm256_set1_ph(3.0); |
| 20821 | let r = _mm256_mask3_fmsub_ph(a, b, c, 0b0101010101010101); |
| 20822 | let e = _mm256_set_ph( |
| 20823 | 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, |
| 20824 | ); |
| 20825 | assert_eq_m256h(r, e); |
| 20826 | } |
| 20827 | |
| 20828 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20829 | const fn test_mm256_maskz_fmsub_ph() { |
| 20830 | let a = _mm256_set1_ph(1.0); |
| 20831 | let b = _mm256_set1_ph(2.0); |
| 20832 | let c = _mm256_set1_ph(3.0); |
| 20833 | let r = _mm256_maskz_fmsub_ph(0b0101010101010101, a, b, c); |
| 20834 | let e = _mm256_set_ph( |
| 20835 | 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, |
| 20836 | ); |
| 20837 | assert_eq_m256h(r, e); |
| 20838 | } |
| 20839 | |
| 20840 | #[simd_test(enable = "avx512fp16" )] |
| 20841 | const fn test_mm512_fmsub_ph() { |
| 20842 | let a = _mm512_set1_ph(1.0); |
| 20843 | let b = _mm512_set1_ph(2.0); |
| 20844 | let c = _mm512_set1_ph(3.0); |
| 20845 | let r = _mm512_fmsub_ph(a, b, c); |
| 20846 | let e = _mm512_set1_ph(-1.0); |
| 20847 | assert_eq_m512h(r, e); |
| 20848 | } |
| 20849 | |
| 20850 | #[simd_test(enable = "avx512fp16" )] |
| 20851 | const fn test_mm512_mask_fmsub_ph() { |
| 20852 | let a = _mm512_set1_ph(1.0); |
| 20853 | let b = _mm512_set1_ph(2.0); |
| 20854 | let c = _mm512_set1_ph(3.0); |
| 20855 | let r = _mm512_mask_fmsub_ph(a, 0b01010101010101010101010101010101, b, c); |
| 20856 | let e = _mm512_set_ph( |
| 20857 | 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, |
| 20858 | 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, |
| 20859 | ); |
| 20860 | assert_eq_m512h(r, e); |
| 20861 | } |
| 20862 | |
| 20863 | #[simd_test(enable = "avx512fp16" )] |
| 20864 | const fn test_mm512_mask3_fmsub_ph() { |
| 20865 | let a = _mm512_set1_ph(1.0); |
| 20866 | let b = _mm512_set1_ph(2.0); |
| 20867 | let c = _mm512_set1_ph(3.0); |
| 20868 | let r = _mm512_mask3_fmsub_ph(a, b, c, 0b01010101010101010101010101010101); |
| 20869 | let e = _mm512_set_ph( |
| 20870 | 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, |
| 20871 | 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, |
| 20872 | ); |
| 20873 | assert_eq_m512h(r, e); |
| 20874 | } |
| 20875 | |
| 20876 | #[simd_test(enable = "avx512fp16" )] |
| 20877 | const fn test_mm512_maskz_fmsub_ph() { |
| 20878 | let a = _mm512_set1_ph(1.0); |
| 20879 | let b = _mm512_set1_ph(2.0); |
| 20880 | let c = _mm512_set1_ph(3.0); |
| 20881 | let r = _mm512_maskz_fmsub_ph(0b01010101010101010101010101010101, a, b, c); |
| 20882 | let e = _mm512_set_ph( |
| 20883 | 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, |
| 20884 | 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, |
| 20885 | ); |
| 20886 | assert_eq_m512h(r, e); |
| 20887 | } |
| 20888 | |
| 20889 | #[simd_test(enable = "avx512fp16" )] |
| 20890 | fn test_mm512_fmsub_round_ph() { |
| 20891 | let a = _mm512_set1_ph(1.0); |
| 20892 | let b = _mm512_set1_ph(2.0); |
| 20893 | let c = _mm512_set1_ph(3.0); |
| 20894 | let r = _mm512_fmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 20895 | let e = _mm512_set1_ph(-1.0); |
| 20896 | assert_eq_m512h(r, e); |
| 20897 | } |
| 20898 | |
| 20899 | #[simd_test(enable = "avx512fp16" )] |
| 20900 | fn test_mm512_mask_fmsub_round_ph() { |
| 20901 | let a = _mm512_set1_ph(1.0); |
| 20902 | let b = _mm512_set1_ph(2.0); |
| 20903 | let c = _mm512_set1_ph(3.0); |
| 20904 | let r = _mm512_mask_fmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20905 | a, |
| 20906 | 0b01010101010101010101010101010101, |
| 20907 | b, |
| 20908 | c, |
| 20909 | ); |
| 20910 | let e = _mm512_set_ph( |
| 20911 | 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, |
| 20912 | 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, |
| 20913 | ); |
| 20914 | assert_eq_m512h(r, e); |
| 20915 | } |
| 20916 | |
| 20917 | #[simd_test(enable = "avx512fp16" )] |
| 20918 | fn test_mm512_mask3_fmsub_round_ph() { |
| 20919 | let a = _mm512_set1_ph(1.0); |
| 20920 | let b = _mm512_set1_ph(2.0); |
| 20921 | let c = _mm512_set1_ph(3.0); |
| 20922 | let r = _mm512_mask3_fmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20923 | a, |
| 20924 | b, |
| 20925 | c, |
| 20926 | 0b01010101010101010101010101010101, |
| 20927 | ); |
| 20928 | let e = _mm512_set_ph( |
| 20929 | 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, |
| 20930 | 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, 3.0, -1.0, |
| 20931 | ); |
| 20932 | assert_eq_m512h(r, e); |
| 20933 | } |
| 20934 | |
| 20935 | #[simd_test(enable = "avx512fp16" )] |
| 20936 | fn test_mm512_maskz_fmsub_round_ph() { |
| 20937 | let a = _mm512_set1_ph(1.0); |
| 20938 | let b = _mm512_set1_ph(2.0); |
| 20939 | let c = _mm512_set1_ph(3.0); |
| 20940 | let r = _mm512_maskz_fmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 20941 | 0b01010101010101010101010101010101, |
| 20942 | a, |
| 20943 | b, |
| 20944 | c, |
| 20945 | ); |
| 20946 | let e = _mm512_set_ph( |
| 20947 | 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, |
| 20948 | 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, -1.0, |
| 20949 | ); |
| 20950 | assert_eq_m512h(r, e); |
| 20951 | } |
| 20952 | |
| 20953 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20954 | const fn test_mm_fmsub_sh() { |
| 20955 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20956 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20957 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20958 | let r = _mm_fmsub_sh(a, b, c); |
| 20959 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20960 | assert_eq_m128h(r, e); |
| 20961 | } |
| 20962 | |
| 20963 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20964 | const fn test_mm_mask_fmsub_sh() { |
| 20965 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20966 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20967 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20968 | let r = _mm_mask_fmsub_sh(a, 0, b, c); |
| 20969 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20970 | assert_eq_m128h(r, e); |
| 20971 | let r = _mm_mask_fmsub_sh(a, 1, b, c); |
| 20972 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20973 | assert_eq_m128h(r, e); |
| 20974 | } |
| 20975 | |
| 20976 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20977 | const fn test_mm_mask3_fmsub_sh() { |
| 20978 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20979 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20980 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20981 | let r = _mm_mask3_fmsub_sh(a, b, c, 0); |
| 20982 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20983 | assert_eq_m128h(r, e); |
| 20984 | let r = _mm_mask3_fmsub_sh(a, b, c, 1); |
| 20985 | let e = _mm_setr_ph(-1.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20986 | assert_eq_m128h(r, e); |
| 20987 | } |
| 20988 | |
| 20989 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 20990 | const fn test_mm_maskz_fmsub_sh() { |
| 20991 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20992 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 20993 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 20994 | let r = _mm_maskz_fmsub_sh(0, a, b, c); |
| 20995 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20996 | assert_eq_m128h(r, e); |
| 20997 | let r = _mm_maskz_fmsub_sh(1, a, b, c); |
| 20998 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 20999 | assert_eq_m128h(r, e); |
| 21000 | } |
| 21001 | |
| 21002 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21003 | fn test_mm_fmsub_round_sh() { |
| 21004 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21005 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21006 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21007 | let r = _mm_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21008 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21009 | assert_eq_m128h(r, e); |
| 21010 | } |
| 21011 | |
| 21012 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21013 | fn test_mm_mask_fmsub_round_sh() { |
| 21014 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21015 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21016 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21017 | let r = _mm_mask_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21018 | a, 0, b, c, |
| 21019 | ); |
| 21020 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21021 | assert_eq_m128h(r, e); |
| 21022 | let r = _mm_mask_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21023 | a, 1, b, c, |
| 21024 | ); |
| 21025 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21026 | assert_eq_m128h(r, e); |
| 21027 | } |
| 21028 | |
| 21029 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21030 | fn test_mm_mask3_fmsub_round_sh() { |
| 21031 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21032 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21033 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21034 | let r = _mm_mask3_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21035 | a, b, c, 0, |
| 21036 | ); |
| 21037 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21038 | assert_eq_m128h(r, e); |
| 21039 | let r = _mm_mask3_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21040 | a, b, c, 1, |
| 21041 | ); |
| 21042 | let e = _mm_setr_ph(-1.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21043 | assert_eq_m128h(r, e); |
| 21044 | } |
| 21045 | |
| 21046 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21047 | fn test_mm_maskz_fmsub_round_sh() { |
| 21048 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21049 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21050 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21051 | let r = _mm_maskz_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21052 | 0, a, b, c, |
| 21053 | ); |
| 21054 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21055 | assert_eq_m128h(r, e); |
| 21056 | let r = _mm_maskz_fmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21057 | 1, a, b, c, |
| 21058 | ); |
| 21059 | let e = _mm_setr_ph(-1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21060 | assert_eq_m128h(r, e); |
| 21061 | } |
| 21062 | |
| 21063 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21064 | const fn test_mm_fnmadd_ph() { |
| 21065 | let a = _mm_set1_ph(1.0); |
| 21066 | let b = _mm_set1_ph(2.0); |
| 21067 | let c = _mm_set1_ph(3.0); |
| 21068 | let r = _mm_fnmadd_ph(a, b, c); |
| 21069 | let e = _mm_set1_ph(1.0); |
| 21070 | assert_eq_m128h(r, e); |
| 21071 | } |
| 21072 | |
| 21073 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21074 | const fn test_mm_mask_fnmadd_ph() { |
| 21075 | let a = _mm_set1_ph(1.0); |
| 21076 | let b = _mm_set1_ph(2.0); |
| 21077 | let c = _mm_set1_ph(3.0); |
| 21078 | let r = _mm_mask_fnmadd_ph(a, 0b01010101, b, c); |
| 21079 | let e = _mm_set_ph(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0); |
| 21080 | assert_eq_m128h(r, e); |
| 21081 | } |
| 21082 | |
| 21083 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21084 | const fn test_mm_mask3_fnmadd_ph() { |
| 21085 | let a = _mm_set1_ph(1.0); |
| 21086 | let b = _mm_set1_ph(2.0); |
| 21087 | let c = _mm_set1_ph(3.0); |
| 21088 | let r = _mm_mask3_fnmadd_ph(a, b, c, 0b01010101); |
| 21089 | let e = _mm_set_ph(3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0); |
| 21090 | assert_eq_m128h(r, e); |
| 21091 | } |
| 21092 | |
| 21093 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21094 | const fn test_mm_maskz_fnmadd_ph() { |
| 21095 | let a = _mm_set1_ph(1.0); |
| 21096 | let b = _mm_set1_ph(2.0); |
| 21097 | let c = _mm_set1_ph(3.0); |
| 21098 | let r = _mm_maskz_fnmadd_ph(0b01010101, a, b, c); |
| 21099 | let e = _mm_set_ph(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0); |
| 21100 | assert_eq_m128h(r, e); |
| 21101 | } |
| 21102 | |
| 21103 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21104 | const fn test_mm256_fnmadd_ph() { |
| 21105 | let a = _mm256_set1_ph(1.0); |
| 21106 | let b = _mm256_set1_ph(2.0); |
| 21107 | let c = _mm256_set1_ph(3.0); |
| 21108 | let r = _mm256_fnmadd_ph(a, b, c); |
| 21109 | let e = _mm256_set1_ph(1.0); |
| 21110 | assert_eq_m256h(r, e); |
| 21111 | } |
| 21112 | |
| 21113 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21114 | const fn test_mm256_mask_fnmadd_ph() { |
| 21115 | let a = _mm256_set1_ph(1.0); |
| 21116 | let b = _mm256_set1_ph(2.0); |
| 21117 | let c = _mm256_set1_ph(3.0); |
| 21118 | let r = _mm256_mask_fnmadd_ph(a, 0b0101010101010101, b, c); |
| 21119 | let e = _mm256_set_ph( |
| 21120 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 21121 | ); |
| 21122 | assert_eq_m256h(r, e); |
| 21123 | } |
| 21124 | |
| 21125 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21126 | const fn test_mm256_mask3_fnmadd_ph() { |
| 21127 | let a = _mm256_set1_ph(1.0); |
| 21128 | let b = _mm256_set1_ph(2.0); |
| 21129 | let c = _mm256_set1_ph(3.0); |
| 21130 | let r = _mm256_mask3_fnmadd_ph(a, b, c, 0b0101010101010101); |
| 21131 | let e = _mm256_set_ph( |
| 21132 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 21133 | ); |
| 21134 | assert_eq_m256h(r, e); |
| 21135 | } |
| 21136 | |
| 21137 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21138 | const fn test_mm256_maskz_fnmadd_ph() { |
| 21139 | let a = _mm256_set1_ph(1.0); |
| 21140 | let b = _mm256_set1_ph(2.0); |
| 21141 | let c = _mm256_set1_ph(3.0); |
| 21142 | let r = _mm256_maskz_fnmadd_ph(0b0101010101010101, a, b, c); |
| 21143 | let e = _mm256_set_ph( |
| 21144 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 21145 | ); |
| 21146 | assert_eq_m256h(r, e); |
| 21147 | } |
| 21148 | |
| 21149 | #[simd_test(enable = "avx512fp16" )] |
| 21150 | const fn test_mm512_fnmadd_ph() { |
| 21151 | let a = _mm512_set1_ph(1.0); |
| 21152 | let b = _mm512_set1_ph(2.0); |
| 21153 | let c = _mm512_set1_ph(3.0); |
| 21154 | let r = _mm512_fnmadd_ph(a, b, c); |
| 21155 | let e = _mm512_set1_ph(1.0); |
| 21156 | assert_eq_m512h(r, e); |
| 21157 | } |
| 21158 | |
| 21159 | #[simd_test(enable = "avx512fp16" )] |
| 21160 | const fn test_mm512_mask_fnmadd_ph() { |
| 21161 | let a = _mm512_set1_ph(1.0); |
| 21162 | let b = _mm512_set1_ph(2.0); |
| 21163 | let c = _mm512_set1_ph(3.0); |
| 21164 | let r = _mm512_mask_fnmadd_ph(a, 0b01010101010101010101010101010101, b, c); |
| 21165 | let e = _mm512_set_ph( |
| 21166 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 21167 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 21168 | ); |
| 21169 | assert_eq_m512h(r, e); |
| 21170 | } |
| 21171 | |
| 21172 | #[simd_test(enable = "avx512fp16" )] |
| 21173 | const fn test_mm512_mask3_fnmadd_ph() { |
| 21174 | let a = _mm512_set1_ph(1.0); |
| 21175 | let b = _mm512_set1_ph(2.0); |
| 21176 | let c = _mm512_set1_ph(3.0); |
| 21177 | let r = _mm512_mask3_fnmadd_ph(a, b, c, 0b01010101010101010101010101010101); |
| 21178 | let e = _mm512_set_ph( |
| 21179 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, |
| 21180 | 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 21181 | ); |
| 21182 | assert_eq_m512h(r, e); |
| 21183 | } |
| 21184 | |
| 21185 | #[simd_test(enable = "avx512fp16" )] |
| 21186 | const fn test_mm512_maskz_fnmadd_ph() { |
| 21187 | let a = _mm512_set1_ph(1.0); |
| 21188 | let b = _mm512_set1_ph(2.0); |
| 21189 | let c = _mm512_set1_ph(3.0); |
| 21190 | let r = _mm512_maskz_fnmadd_ph(0b01010101010101010101010101010101, a, b, c); |
| 21191 | let e = _mm512_set_ph( |
| 21192 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 21193 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 21194 | ); |
| 21195 | assert_eq_m512h(r, e); |
| 21196 | } |
| 21197 | |
| 21198 | #[simd_test(enable = "avx512fp16" )] |
| 21199 | fn test_mm512_fnmadd_round_ph() { |
| 21200 | let a = _mm512_set1_ph(1.0); |
| 21201 | let b = _mm512_set1_ph(2.0); |
| 21202 | let c = _mm512_set1_ph(3.0); |
| 21203 | let r = |
| 21204 | _mm512_fnmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21205 | let e = _mm512_set1_ph(1.0); |
| 21206 | assert_eq_m512h(r, e); |
| 21207 | } |
| 21208 | |
| 21209 | #[simd_test(enable = "avx512fp16" )] |
| 21210 | fn test_mm512_mask_fnmadd_round_ph() { |
| 21211 | let a = _mm512_set1_ph(1.0); |
| 21212 | let b = _mm512_set1_ph(2.0); |
| 21213 | let c = _mm512_set1_ph(3.0); |
| 21214 | let r = _mm512_mask_fnmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21215 | a, |
| 21216 | 0b01010101010101010101010101010101, |
| 21217 | b, |
| 21218 | c, |
| 21219 | ); |
| 21220 | let e = _mm512_set_ph( |
| 21221 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 21222 | 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 21223 | ); |
| 21224 | assert_eq_m512h(r, e); |
| 21225 | } |
| 21226 | |
| 21227 | #[simd_test(enable = "avx512fp16" )] |
| 21228 | fn test_mm512_mask3_fnmadd_round_ph() { |
| 21229 | let a = _mm512_set1_ph(1.0); |
| 21230 | let b = _mm512_set1_ph(2.0); |
| 21231 | let c = _mm512_set1_ph(3.0); |
| 21232 | let r = _mm512_mask3_fnmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21233 | a, |
| 21234 | b, |
| 21235 | c, |
| 21236 | 0b01010101010101010101010101010101, |
| 21237 | ); |
| 21238 | let e = _mm512_set_ph( |
| 21239 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, |
| 21240 | 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 21241 | ); |
| 21242 | assert_eq_m512h(r, e); |
| 21243 | } |
| 21244 | |
| 21245 | #[simd_test(enable = "avx512fp16" )] |
| 21246 | fn test_mm512_maskz_fnmadd_round_ph() { |
| 21247 | let a = _mm512_set1_ph(1.0); |
| 21248 | let b = _mm512_set1_ph(2.0); |
| 21249 | let c = _mm512_set1_ph(3.0); |
| 21250 | let r = _mm512_maskz_fnmadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21251 | 0b01010101010101010101010101010101, |
| 21252 | a, |
| 21253 | b, |
| 21254 | c, |
| 21255 | ); |
| 21256 | let e = _mm512_set_ph( |
| 21257 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 21258 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 21259 | ); |
| 21260 | assert_eq_m512h(r, e); |
| 21261 | } |
| 21262 | |
| 21263 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21264 | const fn test_mm_fnmadd_sh() { |
| 21265 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21266 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21267 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21268 | let r = _mm_fnmadd_sh(a, b, c); |
| 21269 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21270 | assert_eq_m128h(r, e); |
| 21271 | } |
| 21272 | |
| 21273 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21274 | const fn test_mm_mask_fnmadd_sh() { |
| 21275 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21276 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21277 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21278 | let r = _mm_mask_fnmadd_sh(a, 0, b, c); |
| 21279 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21280 | assert_eq_m128h(r, e); |
| 21281 | let r = _mm_mask_fnmadd_sh(a, 1, b, c); |
| 21282 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21283 | assert_eq_m128h(r, e); |
| 21284 | } |
| 21285 | |
| 21286 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21287 | const fn test_mm_mask3_fnmadd_sh() { |
| 21288 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21289 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21290 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21291 | let r = _mm_mask3_fnmadd_sh(a, b, c, 0); |
| 21292 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21293 | assert_eq_m128h(r, e); |
| 21294 | let r = _mm_mask3_fnmadd_sh(a, b, c, 1); |
| 21295 | let e = _mm_setr_ph(1.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21296 | assert_eq_m128h(r, e); |
| 21297 | } |
| 21298 | |
| 21299 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21300 | const fn test_mm_maskz_fnmadd_sh() { |
| 21301 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21302 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21303 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21304 | let r = _mm_maskz_fnmadd_sh(0, a, b, c); |
| 21305 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21306 | assert_eq_m128h(r, e); |
| 21307 | let r = _mm_maskz_fnmadd_sh(1, a, b, c); |
| 21308 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21309 | assert_eq_m128h(r, e); |
| 21310 | } |
| 21311 | |
| 21312 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21313 | fn test_mm_fnmadd_round_sh() { |
| 21314 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21315 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21316 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21317 | let r = _mm_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21318 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21319 | assert_eq_m128h(r, e); |
| 21320 | } |
| 21321 | |
| 21322 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21323 | fn test_mm_mask_fnmadd_round_sh() { |
| 21324 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21325 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21326 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21327 | let r = _mm_mask_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21328 | a, 0, b, c, |
| 21329 | ); |
| 21330 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21331 | assert_eq_m128h(r, e); |
| 21332 | let r = _mm_mask_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21333 | a, 1, b, c, |
| 21334 | ); |
| 21335 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21336 | assert_eq_m128h(r, e); |
| 21337 | } |
| 21338 | |
| 21339 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21340 | fn test_mm_mask3_fnmadd_round_sh() { |
| 21341 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21342 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21343 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21344 | let r = _mm_mask3_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21345 | a, b, c, 0, |
| 21346 | ); |
| 21347 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21348 | assert_eq_m128h(r, e); |
| 21349 | let r = _mm_mask3_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21350 | a, b, c, 1, |
| 21351 | ); |
| 21352 | let e = _mm_setr_ph(1.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21353 | assert_eq_m128h(r, e); |
| 21354 | } |
| 21355 | |
| 21356 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21357 | fn test_mm_maskz_fnmadd_round_sh() { |
| 21358 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21359 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21360 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21361 | let r = _mm_maskz_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21362 | 0, a, b, c, |
| 21363 | ); |
| 21364 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21365 | assert_eq_m128h(r, e); |
| 21366 | let r = _mm_maskz_fnmadd_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21367 | 1, a, b, c, |
| 21368 | ); |
| 21369 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21370 | assert_eq_m128h(r, e); |
| 21371 | } |
| 21372 | |
| 21373 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21374 | const fn test_mm_fnmsub_ph() { |
| 21375 | let a = _mm_set1_ph(1.0); |
| 21376 | let b = _mm_set1_ph(2.0); |
| 21377 | let c = _mm_set1_ph(3.0); |
| 21378 | let r = _mm_fnmsub_ph(a, b, c); |
| 21379 | let e = _mm_set1_ph(-5.0); |
| 21380 | assert_eq_m128h(r, e); |
| 21381 | } |
| 21382 | |
| 21383 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21384 | const fn test_mm_mask_fnmsub_ph() { |
| 21385 | let a = _mm_set1_ph(1.0); |
| 21386 | let b = _mm_set1_ph(2.0); |
| 21387 | let c = _mm_set1_ph(3.0); |
| 21388 | let r = _mm_mask_fnmsub_ph(a, 0b01010101, b, c); |
| 21389 | let e = _mm_set_ph(1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0); |
| 21390 | assert_eq_m128h(r, e); |
| 21391 | } |
| 21392 | |
| 21393 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21394 | const fn test_mm_mask3_fnmsub_ph() { |
| 21395 | let a = _mm_set1_ph(1.0); |
| 21396 | let b = _mm_set1_ph(2.0); |
| 21397 | let c = _mm_set1_ph(3.0); |
| 21398 | let r = _mm_mask3_fnmsub_ph(a, b, c, 0b01010101); |
| 21399 | let e = _mm_set_ph(3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0); |
| 21400 | assert_eq_m128h(r, e); |
| 21401 | } |
| 21402 | |
| 21403 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21404 | const fn test_mm_maskz_fnmsub_ph() { |
| 21405 | let a = _mm_set1_ph(1.0); |
| 21406 | let b = _mm_set1_ph(2.0); |
| 21407 | let c = _mm_set1_ph(3.0); |
| 21408 | let r = _mm_maskz_fnmsub_ph(0b01010101, a, b, c); |
| 21409 | let e = _mm_set_ph(0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0); |
| 21410 | assert_eq_m128h(r, e); |
| 21411 | } |
| 21412 | |
| 21413 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21414 | const fn test_mm256_fnmsub_ph() { |
| 21415 | let a = _mm256_set1_ph(1.0); |
| 21416 | let b = _mm256_set1_ph(2.0); |
| 21417 | let c = _mm256_set1_ph(3.0); |
| 21418 | let r = _mm256_fnmsub_ph(a, b, c); |
| 21419 | let e = _mm256_set1_ph(-5.0); |
| 21420 | assert_eq_m256h(r, e); |
| 21421 | } |
| 21422 | |
| 21423 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21424 | const fn test_mm256_mask_fnmsub_ph() { |
| 21425 | let a = _mm256_set1_ph(1.0); |
| 21426 | let b = _mm256_set1_ph(2.0); |
| 21427 | let c = _mm256_set1_ph(3.0); |
| 21428 | let r = _mm256_mask_fnmsub_ph(a, 0b0101010101010101, b, c); |
| 21429 | let e = _mm256_set_ph( |
| 21430 | 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, |
| 21431 | ); |
| 21432 | assert_eq_m256h(r, e); |
| 21433 | } |
| 21434 | |
| 21435 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21436 | const fn test_mm256_mask3_fnmsub_ph() { |
| 21437 | let a = _mm256_set1_ph(1.0); |
| 21438 | let b = _mm256_set1_ph(2.0); |
| 21439 | let c = _mm256_set1_ph(3.0); |
| 21440 | let r = _mm256_mask3_fnmsub_ph(a, b, c, 0b0101010101010101); |
| 21441 | let e = _mm256_set_ph( |
| 21442 | 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, |
| 21443 | ); |
| 21444 | assert_eq_m256h(r, e); |
| 21445 | } |
| 21446 | |
| 21447 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21448 | const fn test_mm256_maskz_fnmsub_ph() { |
| 21449 | let a = _mm256_set1_ph(1.0); |
| 21450 | let b = _mm256_set1_ph(2.0); |
| 21451 | let c = _mm256_set1_ph(3.0); |
| 21452 | let r = _mm256_maskz_fnmsub_ph(0b0101010101010101, a, b, c); |
| 21453 | let e = _mm256_set_ph( |
| 21454 | 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, |
| 21455 | ); |
| 21456 | assert_eq_m256h(r, e); |
| 21457 | } |
| 21458 | |
| 21459 | #[simd_test(enable = "avx512fp16" )] |
| 21460 | const fn test_mm512_fnmsub_ph() { |
| 21461 | let a = _mm512_set1_ph(1.0); |
| 21462 | let b = _mm512_set1_ph(2.0); |
| 21463 | let c = _mm512_set1_ph(3.0); |
| 21464 | let r = _mm512_fnmsub_ph(a, b, c); |
| 21465 | let e = _mm512_set1_ph(-5.0); |
| 21466 | assert_eq_m512h(r, e); |
| 21467 | } |
| 21468 | |
| 21469 | #[simd_test(enable = "avx512fp16" )] |
| 21470 | const fn test_mm512_mask_fnmsub_ph() { |
| 21471 | let a = _mm512_set1_ph(1.0); |
| 21472 | let b = _mm512_set1_ph(2.0); |
| 21473 | let c = _mm512_set1_ph(3.0); |
| 21474 | let r = _mm512_mask_fnmsub_ph(a, 0b01010101010101010101010101010101, b, c); |
| 21475 | let e = _mm512_set_ph( |
| 21476 | 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, |
| 21477 | 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, |
| 21478 | ); |
| 21479 | assert_eq_m512h(r, e); |
| 21480 | } |
| 21481 | |
| 21482 | #[simd_test(enable = "avx512fp16" )] |
| 21483 | const fn test_mm512_mask3_fnmsub_ph() { |
| 21484 | let a = _mm512_set1_ph(1.0); |
| 21485 | let b = _mm512_set1_ph(2.0); |
| 21486 | let c = _mm512_set1_ph(3.0); |
| 21487 | let r = _mm512_mask3_fnmsub_ph(a, b, c, 0b01010101010101010101010101010101); |
| 21488 | let e = _mm512_set_ph( |
| 21489 | 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, |
| 21490 | 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, |
| 21491 | ); |
| 21492 | assert_eq_m512h(r, e); |
| 21493 | } |
| 21494 | |
| 21495 | #[simd_test(enable = "avx512fp16" )] |
| 21496 | const fn test_mm512_maskz_fnmsub_ph() { |
| 21497 | let a = _mm512_set1_ph(1.0); |
| 21498 | let b = _mm512_set1_ph(2.0); |
| 21499 | let c = _mm512_set1_ph(3.0); |
| 21500 | let r = _mm512_maskz_fnmsub_ph(0b01010101010101010101010101010101, a, b, c); |
| 21501 | let e = _mm512_set_ph( |
| 21502 | 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, |
| 21503 | 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, |
| 21504 | ); |
| 21505 | assert_eq_m512h(r, e); |
| 21506 | } |
| 21507 | |
| 21508 | #[simd_test(enable = "avx512fp16" )] |
| 21509 | fn test_mm512_fnmsub_round_ph() { |
| 21510 | let a = _mm512_set1_ph(1.0); |
| 21511 | let b = _mm512_set1_ph(2.0); |
| 21512 | let c = _mm512_set1_ph(3.0); |
| 21513 | let r = |
| 21514 | _mm512_fnmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21515 | let e = _mm512_set1_ph(-5.0); |
| 21516 | assert_eq_m512h(r, e); |
| 21517 | } |
| 21518 | |
| 21519 | #[simd_test(enable = "avx512fp16" )] |
| 21520 | fn test_mm512_mask_fnmsub_round_ph() { |
| 21521 | let a = _mm512_set1_ph(1.0); |
| 21522 | let b = _mm512_set1_ph(2.0); |
| 21523 | let c = _mm512_set1_ph(3.0); |
| 21524 | let r = _mm512_mask_fnmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21525 | a, |
| 21526 | 0b01010101010101010101010101010101, |
| 21527 | b, |
| 21528 | c, |
| 21529 | ); |
| 21530 | let e = _mm512_set_ph( |
| 21531 | 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, |
| 21532 | 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, 1.0, -5.0, |
| 21533 | ); |
| 21534 | assert_eq_m512h(r, e); |
| 21535 | } |
| 21536 | |
| 21537 | #[simd_test(enable = "avx512fp16" )] |
| 21538 | fn test_mm512_mask3_fnmsub_round_ph() { |
| 21539 | let a = _mm512_set1_ph(1.0); |
| 21540 | let b = _mm512_set1_ph(2.0); |
| 21541 | let c = _mm512_set1_ph(3.0); |
| 21542 | let r = _mm512_mask3_fnmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21543 | a, |
| 21544 | b, |
| 21545 | c, |
| 21546 | 0b01010101010101010101010101010101, |
| 21547 | ); |
| 21548 | let e = _mm512_set_ph( |
| 21549 | 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, |
| 21550 | 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, 3.0, -5.0, |
| 21551 | ); |
| 21552 | assert_eq_m512h(r, e); |
| 21553 | } |
| 21554 | |
| 21555 | #[simd_test(enable = "avx512fp16" )] |
| 21556 | fn test_mm512_maskz_fnmsub_round_ph() { |
| 21557 | let a = _mm512_set1_ph(1.0); |
| 21558 | let b = _mm512_set1_ph(2.0); |
| 21559 | let c = _mm512_set1_ph(3.0); |
| 21560 | let r = _mm512_maskz_fnmsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21561 | 0b01010101010101010101010101010101, |
| 21562 | a, |
| 21563 | b, |
| 21564 | c, |
| 21565 | ); |
| 21566 | let e = _mm512_set_ph( |
| 21567 | 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, |
| 21568 | 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, 0.0, -5.0, |
| 21569 | ); |
| 21570 | assert_eq_m512h(r, e); |
| 21571 | } |
| 21572 | |
| 21573 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21574 | const fn test_mm_fnmsub_sh() { |
| 21575 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21576 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21577 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21578 | let r = _mm_fnmsub_sh(a, b, c); |
| 21579 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21580 | assert_eq_m128h(r, e); |
| 21581 | } |
| 21582 | |
| 21583 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21584 | const fn test_mm_mask_fnmsub_sh() { |
| 21585 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21586 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21587 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21588 | let r = _mm_mask_fnmsub_sh(a, 0, b, c); |
| 21589 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21590 | assert_eq_m128h(r, e); |
| 21591 | let r = _mm_mask_fnmsub_sh(a, 1, b, c); |
| 21592 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21593 | assert_eq_m128h(r, e); |
| 21594 | } |
| 21595 | |
| 21596 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21597 | const fn test_mm_mask3_fnmsub_sh() { |
| 21598 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21599 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21600 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21601 | let r = _mm_mask3_fnmsub_sh(a, b, c, 0); |
| 21602 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21603 | assert_eq_m128h(r, e); |
| 21604 | let r = _mm_mask3_fnmsub_sh(a, b, c, 1); |
| 21605 | let e = _mm_setr_ph(-5.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21606 | assert_eq_m128h(r, e); |
| 21607 | } |
| 21608 | |
| 21609 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21610 | const fn test_mm_maskz_fnmsub_sh() { |
| 21611 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21612 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21613 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21614 | let r = _mm_maskz_fnmsub_sh(0, a, b, c); |
| 21615 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21616 | assert_eq_m128h(r, e); |
| 21617 | let r = _mm_maskz_fnmsub_sh(1, a, b, c); |
| 21618 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21619 | assert_eq_m128h(r, e); |
| 21620 | } |
| 21621 | |
| 21622 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21623 | fn test_mm_fnmsub_round_sh() { |
| 21624 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21625 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21626 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21627 | let r = _mm_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21628 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21629 | assert_eq_m128h(r, e); |
| 21630 | } |
| 21631 | |
| 21632 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21633 | fn test_mm_mask_fnmsub_round_sh() { |
| 21634 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21635 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21636 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21637 | let r = _mm_mask_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21638 | a, 0, b, c, |
| 21639 | ); |
| 21640 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21641 | assert_eq_m128h(r, e); |
| 21642 | let r = _mm_mask_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21643 | a, 1, b, c, |
| 21644 | ); |
| 21645 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21646 | assert_eq_m128h(r, e); |
| 21647 | } |
| 21648 | |
| 21649 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21650 | fn test_mm_mask3_fnmsub_round_sh() { |
| 21651 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21652 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21653 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21654 | let r = _mm_mask3_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21655 | a, b, c, 0, |
| 21656 | ); |
| 21657 | let e = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21658 | assert_eq_m128h(r, e); |
| 21659 | let r = _mm_mask3_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21660 | a, b, c, 1, |
| 21661 | ); |
| 21662 | let e = _mm_setr_ph(-5.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21663 | assert_eq_m128h(r, e); |
| 21664 | } |
| 21665 | |
| 21666 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21667 | fn test_mm_maskz_fnmsub_round_sh() { |
| 21668 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21669 | let b = _mm_setr_ph(2.0, 20., 21., 22., 23., 24., 25., 26.); |
| 21670 | let c = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 21671 | let r = _mm_maskz_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21672 | 0, a, b, c, |
| 21673 | ); |
| 21674 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21675 | assert_eq_m128h(r, e); |
| 21676 | let r = _mm_maskz_fnmsub_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21677 | 1, a, b, c, |
| 21678 | ); |
| 21679 | let e = _mm_setr_ph(-5.0, 10., 11., 12., 13., 14., 15., 16.); |
| 21680 | assert_eq_m128h(r, e); |
| 21681 | } |
| 21682 | |
| 21683 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21684 | const fn test_mm_fmaddsub_ph() { |
| 21685 | let a = _mm_set1_ph(1.0); |
| 21686 | let b = _mm_set1_ph(2.0); |
| 21687 | let c = _mm_set1_ph(3.0); |
| 21688 | let r = _mm_fmaddsub_ph(a, b, c); |
| 21689 | let e = _mm_set_ph(5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0); |
| 21690 | assert_eq_m128h(r, e); |
| 21691 | } |
| 21692 | |
| 21693 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21694 | const fn test_mm_mask_fmaddsub_ph() { |
| 21695 | let a = _mm_set1_ph(1.0); |
| 21696 | let b = _mm_set1_ph(2.0); |
| 21697 | let c = _mm_set1_ph(3.0); |
| 21698 | let r = _mm_mask_fmaddsub_ph(a, 0b00110011, b, c); |
| 21699 | let e = _mm_set_ph(1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0); |
| 21700 | assert_eq_m128h(r, e); |
| 21701 | } |
| 21702 | |
| 21703 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21704 | const fn test_mm_mask3_fmaddsub_ph() { |
| 21705 | let a = _mm_set1_ph(1.0); |
| 21706 | let b = _mm_set1_ph(2.0); |
| 21707 | let c = _mm_set1_ph(3.0); |
| 21708 | let r = _mm_mask3_fmaddsub_ph(a, b, c, 0b00110011); |
| 21709 | let e = _mm_set_ph(3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0); |
| 21710 | assert_eq_m128h(r, e); |
| 21711 | } |
| 21712 | |
| 21713 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21714 | const fn test_mm_maskz_fmaddsub_ph() { |
| 21715 | let a = _mm_set1_ph(1.0); |
| 21716 | let b = _mm_set1_ph(2.0); |
| 21717 | let c = _mm_set1_ph(3.0); |
| 21718 | let r = _mm_maskz_fmaddsub_ph(0b00110011, a, b, c); |
| 21719 | let e = _mm_set_ph(0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0); |
| 21720 | assert_eq_m128h(r, e); |
| 21721 | } |
| 21722 | |
| 21723 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21724 | const fn test_mm256_fmaddsub_ph() { |
| 21725 | let a = _mm256_set1_ph(1.0); |
| 21726 | let b = _mm256_set1_ph(2.0); |
| 21727 | let c = _mm256_set1_ph(3.0); |
| 21728 | let r = _mm256_fmaddsub_ph(a, b, c); |
| 21729 | let e = _mm256_set_ph( |
| 21730 | 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, |
| 21731 | ); |
| 21732 | assert_eq_m256h(r, e); |
| 21733 | } |
| 21734 | |
| 21735 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21736 | const fn test_mm256_mask_fmaddsub_ph() { |
| 21737 | let a = _mm256_set1_ph(1.0); |
| 21738 | let b = _mm256_set1_ph(2.0); |
| 21739 | let c = _mm256_set1_ph(3.0); |
| 21740 | let r = _mm256_mask_fmaddsub_ph(a, 0b0011001100110011, b, c); |
| 21741 | let e = _mm256_set_ph( |
| 21742 | 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, |
| 21743 | ); |
| 21744 | assert_eq_m256h(r, e); |
| 21745 | } |
| 21746 | |
| 21747 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21748 | const fn test_mm256_mask3_fmaddsub_ph() { |
| 21749 | let a = _mm256_set1_ph(1.0); |
| 21750 | let b = _mm256_set1_ph(2.0); |
| 21751 | let c = _mm256_set1_ph(3.0); |
| 21752 | let r = _mm256_mask3_fmaddsub_ph(a, b, c, 0b0011001100110011); |
| 21753 | let e = _mm256_set_ph( |
| 21754 | 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, |
| 21755 | ); |
| 21756 | assert_eq_m256h(r, e); |
| 21757 | } |
| 21758 | |
| 21759 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21760 | const fn test_mm256_maskz_fmaddsub_ph() { |
| 21761 | let a = _mm256_set1_ph(1.0); |
| 21762 | let b = _mm256_set1_ph(2.0); |
| 21763 | let c = _mm256_set1_ph(3.0); |
| 21764 | let r = _mm256_maskz_fmaddsub_ph(0b0011001100110011, a, b, c); |
| 21765 | let e = _mm256_set_ph( |
| 21766 | 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, |
| 21767 | ); |
| 21768 | assert_eq_m256h(r, e); |
| 21769 | } |
| 21770 | |
| 21771 | #[simd_test(enable = "avx512fp16" )] |
| 21772 | const fn test_mm512_fmaddsub_ph() { |
| 21773 | let a = _mm512_set1_ph(1.0); |
| 21774 | let b = _mm512_set1_ph(2.0); |
| 21775 | let c = _mm512_set1_ph(3.0); |
| 21776 | let r = _mm512_fmaddsub_ph(a, b, c); |
| 21777 | let e = _mm512_set_ph( |
| 21778 | 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, |
| 21779 | 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, |
| 21780 | ); |
| 21781 | assert_eq_m512h(r, e); |
| 21782 | } |
| 21783 | |
| 21784 | #[simd_test(enable = "avx512fp16" )] |
| 21785 | const fn test_mm512_mask_fmaddsub_ph() { |
| 21786 | let a = _mm512_set1_ph(1.0); |
| 21787 | let b = _mm512_set1_ph(2.0); |
| 21788 | let c = _mm512_set1_ph(3.0); |
| 21789 | let r = _mm512_mask_fmaddsub_ph(a, 0b00110011001100110011001100110011, b, c); |
| 21790 | let e = _mm512_set_ph( |
| 21791 | 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, |
| 21792 | 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, |
| 21793 | ); |
| 21794 | assert_eq_m512h(r, e); |
| 21795 | } |
| 21796 | |
| 21797 | #[simd_test(enable = "avx512fp16" )] |
| 21798 | const fn test_mm512_mask3_fmaddsub_ph() { |
| 21799 | let a = _mm512_set1_ph(1.0); |
| 21800 | let b = _mm512_set1_ph(2.0); |
| 21801 | let c = _mm512_set1_ph(3.0); |
| 21802 | let r = _mm512_mask3_fmaddsub_ph(a, b, c, 0b00110011001100110011001100110011); |
| 21803 | let e = _mm512_set_ph( |
| 21804 | 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, |
| 21805 | 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, |
| 21806 | ); |
| 21807 | assert_eq_m512h(r, e); |
| 21808 | } |
| 21809 | |
| 21810 | #[simd_test(enable = "avx512fp16" )] |
| 21811 | const fn test_mm512_maskz_fmaddsub_ph() { |
| 21812 | let a = _mm512_set1_ph(1.0); |
| 21813 | let b = _mm512_set1_ph(2.0); |
| 21814 | let c = _mm512_set1_ph(3.0); |
| 21815 | let r = _mm512_maskz_fmaddsub_ph(0b00110011001100110011001100110011, a, b, c); |
| 21816 | let e = _mm512_set_ph( |
| 21817 | 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, |
| 21818 | 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, |
| 21819 | ); |
| 21820 | assert_eq_m512h(r, e); |
| 21821 | } |
| 21822 | |
| 21823 | #[simd_test(enable = "avx512fp16" )] |
| 21824 | fn test_mm512_fmaddsub_round_ph() { |
| 21825 | let a = _mm512_set1_ph(1.0); |
| 21826 | let b = _mm512_set1_ph(2.0); |
| 21827 | let c = _mm512_set1_ph(3.0); |
| 21828 | let r = |
| 21829 | _mm512_fmaddsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 21830 | let e = _mm512_set_ph( |
| 21831 | 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, |
| 21832 | 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, |
| 21833 | ); |
| 21834 | assert_eq_m512h(r, e); |
| 21835 | } |
| 21836 | |
| 21837 | #[simd_test(enable = "avx512fp16" )] |
| 21838 | fn test_mm512_mask_fmaddsub_round_ph() { |
| 21839 | let a = _mm512_set1_ph(1.0); |
| 21840 | let b = _mm512_set1_ph(2.0); |
| 21841 | let c = _mm512_set1_ph(3.0); |
| 21842 | let r = _mm512_mask_fmaddsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21843 | a, |
| 21844 | 0b00110011001100110011001100110011, |
| 21845 | b, |
| 21846 | c, |
| 21847 | ); |
| 21848 | let e = _mm512_set_ph( |
| 21849 | 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, |
| 21850 | 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, 1.0, 1.0, 5.0, -1.0, |
| 21851 | ); |
| 21852 | assert_eq_m512h(r, e); |
| 21853 | } |
| 21854 | |
| 21855 | #[simd_test(enable = "avx512fp16" )] |
| 21856 | fn test_mm512_mask3_fmaddsub_round_ph() { |
| 21857 | let a = _mm512_set1_ph(1.0); |
| 21858 | let b = _mm512_set1_ph(2.0); |
| 21859 | let c = _mm512_set1_ph(3.0); |
| 21860 | let r = _mm512_mask3_fmaddsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21861 | a, |
| 21862 | b, |
| 21863 | c, |
| 21864 | 0b00110011001100110011001100110011, |
| 21865 | ); |
| 21866 | let e = _mm512_set_ph( |
| 21867 | 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, |
| 21868 | 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, 3.0, 3.0, 5.0, -1.0, |
| 21869 | ); |
| 21870 | assert_eq_m512h(r, e); |
| 21871 | } |
| 21872 | |
| 21873 | #[simd_test(enable = "avx512fp16" )] |
| 21874 | fn test_mm512_maskz_fmaddsub_round_ph() { |
| 21875 | let a = _mm512_set1_ph(1.0); |
| 21876 | let b = _mm512_set1_ph(2.0); |
| 21877 | let c = _mm512_set1_ph(3.0); |
| 21878 | let r = _mm512_maskz_fmaddsub_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 21879 | 0b00110011001100110011001100110011, |
| 21880 | a, |
| 21881 | b, |
| 21882 | c, |
| 21883 | ); |
| 21884 | let e = _mm512_set_ph( |
| 21885 | 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, |
| 21886 | 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, 0.0, 0.0, 5.0, -1.0, |
| 21887 | ); |
| 21888 | assert_eq_m512h(r, e); |
| 21889 | } |
| 21890 | |
| 21891 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21892 | const fn test_mm_fmsubadd_ph() { |
| 21893 | let a = _mm_set1_ph(1.0); |
| 21894 | let b = _mm_set1_ph(2.0); |
| 21895 | let c = _mm_set1_ph(3.0); |
| 21896 | let r = _mm_fmsubadd_ph(a, b, c); |
| 21897 | let e = _mm_set_ph(-1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0); |
| 21898 | assert_eq_m128h(r, e); |
| 21899 | } |
| 21900 | |
| 21901 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21902 | const fn test_mm_mask_fmsubadd_ph() { |
| 21903 | let a = _mm_set1_ph(1.0); |
| 21904 | let b = _mm_set1_ph(2.0); |
| 21905 | let c = _mm_set1_ph(3.0); |
| 21906 | let r = _mm_mask_fmsubadd_ph(a, 0b00110011, b, c); |
| 21907 | let e = _mm_set_ph(1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0); |
| 21908 | assert_eq_m128h(r, e); |
| 21909 | } |
| 21910 | |
| 21911 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21912 | const fn test_mm_mask3_fmsubadd_ph() { |
| 21913 | let a = _mm_set1_ph(1.0); |
| 21914 | let b = _mm_set1_ph(2.0); |
| 21915 | let c = _mm_set1_ph(3.0); |
| 21916 | let r = _mm_mask3_fmsubadd_ph(a, b, c, 0b00110011); |
| 21917 | let e = _mm_set_ph(3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0); |
| 21918 | assert_eq_m128h(r, e); |
| 21919 | } |
| 21920 | |
| 21921 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21922 | const fn test_mm_maskz_fmsubadd_ph() { |
| 21923 | let a = _mm_set1_ph(1.0); |
| 21924 | let b = _mm_set1_ph(2.0); |
| 21925 | let c = _mm_set1_ph(3.0); |
| 21926 | let r = _mm_maskz_fmsubadd_ph(0b00110011, a, b, c); |
| 21927 | let e = _mm_set_ph(0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0); |
| 21928 | assert_eq_m128h(r, e); |
| 21929 | } |
| 21930 | |
| 21931 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21932 | const fn test_mm256_fmsubadd_ph() { |
| 21933 | let a = _mm256_set1_ph(1.0); |
| 21934 | let b = _mm256_set1_ph(2.0); |
| 21935 | let c = _mm256_set1_ph(3.0); |
| 21936 | let r = _mm256_fmsubadd_ph(a, b, c); |
| 21937 | let e = _mm256_set_ph( |
| 21938 | -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, |
| 21939 | ); |
| 21940 | assert_eq_m256h(r, e); |
| 21941 | } |
| 21942 | |
| 21943 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21944 | const fn test_mm256_mask_fmsubadd_ph() { |
| 21945 | let a = _mm256_set1_ph(1.0); |
| 21946 | let b = _mm256_set1_ph(2.0); |
| 21947 | let c = _mm256_set1_ph(3.0); |
| 21948 | let r = _mm256_mask_fmsubadd_ph(a, 0b0011001100110011, b, c); |
| 21949 | let e = _mm256_set_ph( |
| 21950 | 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, |
| 21951 | ); |
| 21952 | assert_eq_m256h(r, e); |
| 21953 | } |
| 21954 | |
| 21955 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21956 | const fn test_mm256_mask3_fmsubadd_ph() { |
| 21957 | let a = _mm256_set1_ph(1.0); |
| 21958 | let b = _mm256_set1_ph(2.0); |
| 21959 | let c = _mm256_set1_ph(3.0); |
| 21960 | let r = _mm256_mask3_fmsubadd_ph(a, b, c, 0b0011001100110011); |
| 21961 | let e = _mm256_set_ph( |
| 21962 | 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, |
| 21963 | ); |
| 21964 | assert_eq_m256h(r, e); |
| 21965 | } |
| 21966 | |
| 21967 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 21968 | const fn test_mm256_maskz_fmsubadd_ph() { |
| 21969 | let a = _mm256_set1_ph(1.0); |
| 21970 | let b = _mm256_set1_ph(2.0); |
| 21971 | let c = _mm256_set1_ph(3.0); |
| 21972 | let r = _mm256_maskz_fmsubadd_ph(0b0011001100110011, a, b, c); |
| 21973 | let e = _mm256_set_ph( |
| 21974 | 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, |
| 21975 | ); |
| 21976 | assert_eq_m256h(r, e); |
| 21977 | } |
| 21978 | |
| 21979 | #[simd_test(enable = "avx512fp16" )] |
| 21980 | const fn test_mm512_fmsubadd_ph() { |
| 21981 | let a = _mm512_set1_ph(1.0); |
| 21982 | let b = _mm512_set1_ph(2.0); |
| 21983 | let c = _mm512_set1_ph(3.0); |
| 21984 | let r = _mm512_fmsubadd_ph(a, b, c); |
| 21985 | let e = _mm512_set_ph( |
| 21986 | -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, |
| 21987 | -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, |
| 21988 | ); |
| 21989 | assert_eq_m512h(r, e); |
| 21990 | } |
| 21991 | |
| 21992 | #[simd_test(enable = "avx512fp16" )] |
| 21993 | const fn test_mm512_mask_fmsubadd_ph() { |
| 21994 | let a = _mm512_set1_ph(1.0); |
| 21995 | let b = _mm512_set1_ph(2.0); |
| 21996 | let c = _mm512_set1_ph(3.0); |
| 21997 | let r = _mm512_mask_fmsubadd_ph(a, 0b00110011001100110011001100110011, b, c); |
| 21998 | let e = _mm512_set_ph( |
| 21999 | 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, |
| 22000 | 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, |
| 22001 | ); |
| 22002 | assert_eq_m512h(r, e); |
| 22003 | } |
| 22004 | |
| 22005 | #[simd_test(enable = "avx512fp16" )] |
| 22006 | const fn test_mm512_mask3_fmsubadd_ph() { |
| 22007 | let a = _mm512_set1_ph(1.0); |
| 22008 | let b = _mm512_set1_ph(2.0); |
| 22009 | let c = _mm512_set1_ph(3.0); |
| 22010 | let r = _mm512_mask3_fmsubadd_ph(a, b, c, 0b00110011001100110011001100110011); |
| 22011 | let e = _mm512_set_ph( |
| 22012 | 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, |
| 22013 | 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, |
| 22014 | ); |
| 22015 | assert_eq_m512h(r, e); |
| 22016 | } |
| 22017 | |
| 22018 | #[simd_test(enable = "avx512fp16" )] |
| 22019 | const fn test_mm512_maskz_fmsubadd_ph() { |
| 22020 | let a = _mm512_set1_ph(1.0); |
| 22021 | let b = _mm512_set1_ph(2.0); |
| 22022 | let c = _mm512_set1_ph(3.0); |
| 22023 | let r = _mm512_maskz_fmsubadd_ph(0b00110011001100110011001100110011, a, b, c); |
| 22024 | let e = _mm512_set_ph( |
| 22025 | 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, |
| 22026 | 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, |
| 22027 | ); |
| 22028 | assert_eq_m512h(r, e); |
| 22029 | } |
| 22030 | |
| 22031 | #[simd_test(enable = "avx512fp16" )] |
| 22032 | fn test_mm512_fmsubadd_round_ph() { |
| 22033 | let a = _mm512_set1_ph(1.0); |
| 22034 | let b = _mm512_set1_ph(2.0); |
| 22035 | let c = _mm512_set1_ph(3.0); |
| 22036 | let r = |
| 22037 | _mm512_fmsubadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b, c); |
| 22038 | let e = _mm512_set_ph( |
| 22039 | -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, |
| 22040 | -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, -1.0, 5.0, |
| 22041 | ); |
| 22042 | assert_eq_m512h(r, e); |
| 22043 | } |
| 22044 | |
| 22045 | #[simd_test(enable = "avx512fp16" )] |
| 22046 | fn test_mm512_mask_fmsubadd_round_ph() { |
| 22047 | let a = _mm512_set1_ph(1.0); |
| 22048 | let b = _mm512_set1_ph(2.0); |
| 22049 | let c = _mm512_set1_ph(3.0); |
| 22050 | let r = _mm512_mask_fmsubadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22051 | a, |
| 22052 | 0b00110011001100110011001100110011, |
| 22053 | b, |
| 22054 | c, |
| 22055 | ); |
| 22056 | let e = _mm512_set_ph( |
| 22057 | 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, |
| 22058 | 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, 1.0, 1.0, -1.0, 5.0, |
| 22059 | ); |
| 22060 | assert_eq_m512h(r, e); |
| 22061 | } |
| 22062 | |
| 22063 | #[simd_test(enable = "avx512fp16" )] |
| 22064 | fn test_mm512_mask3_fmsubadd_round_ph() { |
| 22065 | let a = _mm512_set1_ph(1.0); |
| 22066 | let b = _mm512_set1_ph(2.0); |
| 22067 | let c = _mm512_set1_ph(3.0); |
| 22068 | let r = _mm512_mask3_fmsubadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22069 | a, |
| 22070 | b, |
| 22071 | c, |
| 22072 | 0b00110011001100110011001100110011, |
| 22073 | ); |
| 22074 | let e = _mm512_set_ph( |
| 22075 | 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, |
| 22076 | 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, 3.0, 3.0, -1.0, 5.0, |
| 22077 | ); |
| 22078 | assert_eq_m512h(r, e); |
| 22079 | } |
| 22080 | |
| 22081 | #[simd_test(enable = "avx512fp16" )] |
| 22082 | fn test_mm512_maskz_fmsubadd_round_ph() { |
| 22083 | let a = _mm512_set1_ph(1.0); |
| 22084 | let b = _mm512_set1_ph(2.0); |
| 22085 | let c = _mm512_set1_ph(3.0); |
| 22086 | let r = _mm512_maskz_fmsubadd_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22087 | 0b00110011001100110011001100110011, |
| 22088 | a, |
| 22089 | b, |
| 22090 | c, |
| 22091 | ); |
| 22092 | let e = _mm512_set_ph( |
| 22093 | 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, |
| 22094 | 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, 0.0, 0.0, -1.0, 5.0, |
| 22095 | ); |
| 22096 | assert_eq_m512h(r, e); |
| 22097 | } |
| 22098 | |
| 22099 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22100 | fn test_mm_rcp_ph() { |
| 22101 | let a = _mm_set1_ph(2.0); |
| 22102 | let r = _mm_rcp_ph(a); |
| 22103 | let e = _mm_set1_ph(0.5); |
| 22104 | assert_eq_m128h(r, e); |
| 22105 | } |
| 22106 | |
| 22107 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22108 | fn test_mm_mask_rcp_ph() { |
| 22109 | let a = _mm_set1_ph(2.0); |
| 22110 | let src = _mm_set1_ph(1.0); |
| 22111 | let r = _mm_mask_rcp_ph(src, 0b01010101, a); |
| 22112 | let e = _mm_set_ph(1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5); |
| 22113 | assert_eq_m128h(r, e); |
| 22114 | } |
| 22115 | |
| 22116 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22117 | fn test_mm_maskz_rcp_ph() { |
| 22118 | let a = _mm_set1_ph(2.0); |
| 22119 | let r = _mm_maskz_rcp_ph(0b01010101, a); |
| 22120 | let e = _mm_set_ph(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5); |
| 22121 | assert_eq_m128h(r, e); |
| 22122 | } |
| 22123 | |
| 22124 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22125 | fn test_mm256_rcp_ph() { |
| 22126 | let a = _mm256_set1_ph(2.0); |
| 22127 | let r = _mm256_rcp_ph(a); |
| 22128 | let e = _mm256_set1_ph(0.5); |
| 22129 | assert_eq_m256h(r, e); |
| 22130 | } |
| 22131 | |
| 22132 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22133 | fn test_mm256_mask_rcp_ph() { |
| 22134 | let a = _mm256_set1_ph(2.0); |
| 22135 | let src = _mm256_set1_ph(1.0); |
| 22136 | let r = _mm256_mask_rcp_ph(src, 0b0101010101010101, a); |
| 22137 | let e = _mm256_set_ph( |
| 22138 | 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, |
| 22139 | ); |
| 22140 | assert_eq_m256h(r, e); |
| 22141 | } |
| 22142 | |
| 22143 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22144 | fn test_mm256_maskz_rcp_ph() { |
| 22145 | let a = _mm256_set1_ph(2.0); |
| 22146 | let r = _mm256_maskz_rcp_ph(0b0101010101010101, a); |
| 22147 | let e = _mm256_set_ph( |
| 22148 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 22149 | ); |
| 22150 | assert_eq_m256h(r, e); |
| 22151 | } |
| 22152 | |
| 22153 | #[simd_test(enable = "avx512fp16" )] |
| 22154 | fn test_mm512_rcp_ph() { |
| 22155 | let a = _mm512_set1_ph(2.0); |
| 22156 | let r = _mm512_rcp_ph(a); |
| 22157 | let e = _mm512_set1_ph(0.5); |
| 22158 | assert_eq_m512h(r, e); |
| 22159 | } |
| 22160 | |
| 22161 | #[simd_test(enable = "avx512fp16" )] |
| 22162 | fn test_mm512_mask_rcp_ph() { |
| 22163 | let a = _mm512_set1_ph(2.0); |
| 22164 | let src = _mm512_set1_ph(1.0); |
| 22165 | let r = _mm512_mask_rcp_ph(src, 0b01010101010101010101010101010101, a); |
| 22166 | let e = _mm512_set_ph( |
| 22167 | 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, |
| 22168 | 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, |
| 22169 | ); |
| 22170 | assert_eq_m512h(r, e); |
| 22171 | } |
| 22172 | |
| 22173 | #[simd_test(enable = "avx512fp16" )] |
| 22174 | fn test_mm512_maskz_rcp_ph() { |
| 22175 | let a = _mm512_set1_ph(2.0); |
| 22176 | let r = _mm512_maskz_rcp_ph(0b01010101010101010101010101010101, a); |
| 22177 | let e = _mm512_set_ph( |
| 22178 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, |
| 22179 | 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 22180 | ); |
| 22181 | assert_eq_m512h(r, e); |
| 22182 | } |
| 22183 | |
| 22184 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22185 | fn test_mm_rcp_sh() { |
| 22186 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22187 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22188 | let r = _mm_rcp_sh(a, b); |
| 22189 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22190 | assert_eq_m128h(r, e); |
| 22191 | } |
| 22192 | |
| 22193 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22194 | fn test_mm_mask_rcp_sh() { |
| 22195 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22196 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22197 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22198 | let r = _mm_mask_rcp_sh(src, 0, a, b); |
| 22199 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22200 | assert_eq_m128h(r, e); |
| 22201 | let r = _mm_mask_rcp_sh(src, 1, a, b); |
| 22202 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22203 | assert_eq_m128h(r, e); |
| 22204 | } |
| 22205 | |
| 22206 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22207 | fn test_mm_maskz_rcp_sh() { |
| 22208 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22209 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22210 | let r = _mm_maskz_rcp_sh(0, a, b); |
| 22211 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22212 | assert_eq_m128h(r, e); |
| 22213 | let r = _mm_maskz_rcp_sh(1, a, b); |
| 22214 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22215 | assert_eq_m128h(r, e); |
| 22216 | } |
| 22217 | |
| 22218 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22219 | fn test_mm_rsqrt_ph() { |
| 22220 | let a = _mm_set1_ph(4.0); |
| 22221 | let r = _mm_rsqrt_ph(a); |
| 22222 | let e = _mm_set1_ph(0.5); |
| 22223 | assert_eq_m128h(r, e); |
| 22224 | } |
| 22225 | |
| 22226 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22227 | fn test_mm_mask_rsqrt_ph() { |
| 22228 | let a = _mm_set1_ph(4.0); |
| 22229 | let src = _mm_set1_ph(1.0); |
| 22230 | let r = _mm_mask_rsqrt_ph(src, 0b01010101, a); |
| 22231 | let e = _mm_set_ph(1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5); |
| 22232 | assert_eq_m128h(r, e); |
| 22233 | } |
| 22234 | |
| 22235 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22236 | fn test_mm_maskz_rsqrt_ph() { |
| 22237 | let a = _mm_set1_ph(4.0); |
| 22238 | let r = _mm_maskz_rsqrt_ph(0b01010101, a); |
| 22239 | let e = _mm_set_ph(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5); |
| 22240 | assert_eq_m128h(r, e); |
| 22241 | } |
| 22242 | |
| 22243 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22244 | fn test_mm256_rsqrt_ph() { |
| 22245 | let a = _mm256_set1_ph(4.0); |
| 22246 | let r = _mm256_rsqrt_ph(a); |
| 22247 | let e = _mm256_set1_ph(0.5); |
| 22248 | assert_eq_m256h(r, e); |
| 22249 | } |
| 22250 | |
| 22251 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22252 | fn test_mm256_mask_rsqrt_ph() { |
| 22253 | let a = _mm256_set1_ph(4.0); |
| 22254 | let src = _mm256_set1_ph(1.0); |
| 22255 | let r = _mm256_mask_rsqrt_ph(src, 0b0101010101010101, a); |
| 22256 | let e = _mm256_set_ph( |
| 22257 | 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, |
| 22258 | ); |
| 22259 | assert_eq_m256h(r, e); |
| 22260 | } |
| 22261 | |
| 22262 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22263 | fn test_mm256_maskz_rsqrt_ph() { |
| 22264 | let a = _mm256_set1_ph(4.0); |
| 22265 | let r = _mm256_maskz_rsqrt_ph(0b0101010101010101, a); |
| 22266 | let e = _mm256_set_ph( |
| 22267 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 22268 | ); |
| 22269 | assert_eq_m256h(r, e); |
| 22270 | } |
| 22271 | |
| 22272 | #[simd_test(enable = "avx512fp16" )] |
| 22273 | fn test_mm512_rsqrt_ph() { |
| 22274 | let a = _mm512_set1_ph(4.0); |
| 22275 | let r = _mm512_rsqrt_ph(a); |
| 22276 | let e = _mm512_set1_ph(0.5); |
| 22277 | assert_eq_m512h(r, e); |
| 22278 | } |
| 22279 | |
| 22280 | #[simd_test(enable = "avx512fp16" )] |
| 22281 | fn test_mm512_mask_rsqrt_ph() { |
| 22282 | let a = _mm512_set1_ph(4.0); |
| 22283 | let src = _mm512_set1_ph(1.0); |
| 22284 | let r = _mm512_mask_rsqrt_ph(src, 0b01010101010101010101010101010101, a); |
| 22285 | let e = _mm512_set_ph( |
| 22286 | 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, |
| 22287 | 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, 1.0, 0.5, |
| 22288 | ); |
| 22289 | assert_eq_m512h(r, e); |
| 22290 | } |
| 22291 | |
| 22292 | #[simd_test(enable = "avx512fp16" )] |
| 22293 | fn test_mm512_maskz_rsqrt_ph() { |
| 22294 | let a = _mm512_set1_ph(4.0); |
| 22295 | let r = _mm512_maskz_rsqrt_ph(0b01010101010101010101010101010101, a); |
| 22296 | let e = _mm512_set_ph( |
| 22297 | 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, |
| 22298 | 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, |
| 22299 | ); |
| 22300 | assert_eq_m512h(r, e); |
| 22301 | } |
| 22302 | |
| 22303 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22304 | fn test_mm_rsqrt_sh() { |
| 22305 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22306 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22307 | let r = _mm_rsqrt_sh(a, b); |
| 22308 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22309 | assert_eq_m128h(r, e); |
| 22310 | } |
| 22311 | |
| 22312 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22313 | fn test_mm_mask_rsqrt_sh() { |
| 22314 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22315 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22316 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22317 | let r = _mm_mask_rsqrt_sh(src, 0, a, b); |
| 22318 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22319 | assert_eq_m128h(r, e); |
| 22320 | let r = _mm_mask_rsqrt_sh(src, 1, a, b); |
| 22321 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22322 | assert_eq_m128h(r, e); |
| 22323 | } |
| 22324 | |
| 22325 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22326 | fn test_mm_maskz_rsqrt_sh() { |
| 22327 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22328 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22329 | let r = _mm_maskz_rsqrt_sh(0, a, b); |
| 22330 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22331 | assert_eq_m128h(r, e); |
| 22332 | let r = _mm_maskz_rsqrt_sh(1, a, b); |
| 22333 | let e = _mm_setr_ph(0.5, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22334 | assert_eq_m128h(r, e); |
| 22335 | } |
| 22336 | |
| 22337 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22338 | fn test_mm_sqrt_ph() { |
| 22339 | let a = _mm_set1_ph(4.0); |
| 22340 | let r = _mm_sqrt_ph(a); |
| 22341 | let e = _mm_set1_ph(2.0); |
| 22342 | assert_eq_m128h(r, e); |
| 22343 | } |
| 22344 | |
| 22345 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22346 | fn test_mm_mask_sqrt_ph() { |
| 22347 | let a = _mm_set1_ph(4.0); |
| 22348 | let src = _mm_set1_ph(1.0); |
| 22349 | let r = _mm_mask_sqrt_ph(src, 0b01010101, a); |
| 22350 | let e = _mm_set_ph(1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0); |
| 22351 | assert_eq_m128h(r, e); |
| 22352 | } |
| 22353 | |
| 22354 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22355 | fn test_mm_maskz_sqrt_ph() { |
| 22356 | let a = _mm_set1_ph(4.0); |
| 22357 | let r = _mm_maskz_sqrt_ph(0b01010101, a); |
| 22358 | let e = _mm_set_ph(0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0); |
| 22359 | assert_eq_m128h(r, e); |
| 22360 | } |
| 22361 | |
| 22362 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22363 | fn test_mm256_sqrt_ph() { |
| 22364 | let a = _mm256_set1_ph(4.0); |
| 22365 | let r = _mm256_sqrt_ph(a); |
| 22366 | let e = _mm256_set1_ph(2.0); |
| 22367 | assert_eq_m256h(r, e); |
| 22368 | } |
| 22369 | |
| 22370 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22371 | fn test_mm256_mask_sqrt_ph() { |
| 22372 | let a = _mm256_set1_ph(4.0); |
| 22373 | let src = _mm256_set1_ph(1.0); |
| 22374 | let r = _mm256_mask_sqrt_ph(src, 0b0101010101010101, a); |
| 22375 | let e = _mm256_set_ph( |
| 22376 | 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, |
| 22377 | ); |
| 22378 | assert_eq_m256h(r, e); |
| 22379 | } |
| 22380 | |
| 22381 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22382 | fn test_mm256_maskz_sqrt_ph() { |
| 22383 | let a = _mm256_set1_ph(4.0); |
| 22384 | let r = _mm256_maskz_sqrt_ph(0b0101010101010101, a); |
| 22385 | let e = _mm256_set_ph( |
| 22386 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22387 | ); |
| 22388 | assert_eq_m256h(r, e); |
| 22389 | } |
| 22390 | |
| 22391 | #[simd_test(enable = "avx512fp16" )] |
| 22392 | fn test_mm512_sqrt_ph() { |
| 22393 | let a = _mm512_set1_ph(4.0); |
| 22394 | let r = _mm512_sqrt_ph(a); |
| 22395 | let e = _mm512_set1_ph(2.0); |
| 22396 | assert_eq_m512h(r, e); |
| 22397 | } |
| 22398 | |
| 22399 | #[simd_test(enable = "avx512fp16" )] |
| 22400 | fn test_mm512_mask_sqrt_ph() { |
| 22401 | let a = _mm512_set1_ph(4.0); |
| 22402 | let src = _mm512_set1_ph(1.0); |
| 22403 | let r = _mm512_mask_sqrt_ph(src, 0b01010101010101010101010101010101, a); |
| 22404 | let e = _mm512_set_ph( |
| 22405 | 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, |
| 22406 | 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, |
| 22407 | ); |
| 22408 | assert_eq_m512h(r, e); |
| 22409 | } |
| 22410 | |
| 22411 | #[simd_test(enable = "avx512fp16" )] |
| 22412 | fn test_mm512_maskz_sqrt_ph() { |
| 22413 | let a = _mm512_set1_ph(4.0); |
| 22414 | let r = _mm512_maskz_sqrt_ph(0b01010101010101010101010101010101, a); |
| 22415 | let e = _mm512_set_ph( |
| 22416 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, |
| 22417 | 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22418 | ); |
| 22419 | assert_eq_m512h(r, e); |
| 22420 | } |
| 22421 | |
| 22422 | #[simd_test(enable = "avx512fp16" )] |
| 22423 | fn test_mm512_sqrt_round_ph() { |
| 22424 | let a = _mm512_set1_ph(4.0); |
| 22425 | let r = _mm512_sqrt_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 22426 | let e = _mm512_set1_ph(2.0); |
| 22427 | assert_eq_m512h(r, e); |
| 22428 | } |
| 22429 | |
| 22430 | #[simd_test(enable = "avx512fp16" )] |
| 22431 | fn test_mm512_mask_sqrt_round_ph() { |
| 22432 | let a = _mm512_set1_ph(4.0); |
| 22433 | let src = _mm512_set1_ph(1.0); |
| 22434 | let r = _mm512_mask_sqrt_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22435 | src, |
| 22436 | 0b01010101010101010101010101010101, |
| 22437 | a, |
| 22438 | ); |
| 22439 | let e = _mm512_set_ph( |
| 22440 | 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, |
| 22441 | 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, |
| 22442 | ); |
| 22443 | assert_eq_m512h(r, e); |
| 22444 | } |
| 22445 | |
| 22446 | #[simd_test(enable = "avx512fp16" )] |
| 22447 | fn test_mm512_maskz_sqrt_round_ph() { |
| 22448 | let a = _mm512_set1_ph(4.0); |
| 22449 | let r = _mm512_maskz_sqrt_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22450 | 0b01010101010101010101010101010101, |
| 22451 | a, |
| 22452 | ); |
| 22453 | let e = _mm512_set_ph( |
| 22454 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, |
| 22455 | 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22456 | ); |
| 22457 | assert_eq_m512h(r, e); |
| 22458 | } |
| 22459 | |
| 22460 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22461 | fn test_mm_sqrt_sh() { |
| 22462 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22463 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22464 | let r = _mm_sqrt_sh(a, b); |
| 22465 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22466 | assert_eq_m128h(r, e); |
| 22467 | } |
| 22468 | |
| 22469 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22470 | fn test_mm_mask_sqrt_sh() { |
| 22471 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22472 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22473 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22474 | let r = _mm_mask_sqrt_sh(src, 0, a, b); |
| 22475 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22476 | assert_eq_m128h(r, e); |
| 22477 | let r = _mm_mask_sqrt_sh(src, 1, a, b); |
| 22478 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22479 | assert_eq_m128h(r, e); |
| 22480 | } |
| 22481 | |
| 22482 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22483 | fn test_mm_maskz_sqrt_sh() { |
| 22484 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22485 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22486 | let r = _mm_maskz_sqrt_sh(0, a, b); |
| 22487 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22488 | assert_eq_m128h(r, e); |
| 22489 | let r = _mm_maskz_sqrt_sh(1, a, b); |
| 22490 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22491 | assert_eq_m128h(r, e); |
| 22492 | } |
| 22493 | |
| 22494 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22495 | fn test_mm_sqrt_round_sh() { |
| 22496 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22497 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22498 | let r = _mm_sqrt_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 22499 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22500 | assert_eq_m128h(r, e); |
| 22501 | } |
| 22502 | |
| 22503 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22504 | fn test_mm_mask_sqrt_round_sh() { |
| 22505 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22506 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22507 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22508 | let r = _mm_mask_sqrt_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22509 | src, 0, a, b, |
| 22510 | ); |
| 22511 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22512 | assert_eq_m128h(r, e); |
| 22513 | let r = _mm_mask_sqrt_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22514 | src, 1, a, b, |
| 22515 | ); |
| 22516 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22517 | assert_eq_m128h(r, e); |
| 22518 | } |
| 22519 | |
| 22520 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22521 | fn test_mm_maskz_sqrt_round_sh() { |
| 22522 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22523 | let b = _mm_setr_ph(4.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0); |
| 22524 | let r = |
| 22525 | _mm_maskz_sqrt_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 22526 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22527 | assert_eq_m128h(r, e); |
| 22528 | let r = |
| 22529 | _mm_maskz_sqrt_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 22530 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22531 | assert_eq_m128h(r, e); |
| 22532 | } |
| 22533 | |
| 22534 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22535 | fn test_mm_max_ph() { |
| 22536 | let a = _mm_set1_ph(2.0); |
| 22537 | let b = _mm_set1_ph(1.0); |
| 22538 | let r = _mm_max_ph(a, b); |
| 22539 | let e = _mm_set1_ph(2.0); |
| 22540 | assert_eq_m128h(r, e); |
| 22541 | } |
| 22542 | |
| 22543 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22544 | fn test_mm_mask_max_ph() { |
| 22545 | let a = _mm_set1_ph(2.0); |
| 22546 | let b = _mm_set1_ph(1.0); |
| 22547 | let src = _mm_set1_ph(3.0); |
| 22548 | let r = _mm_mask_max_ph(src, 0b01010101, a, b); |
| 22549 | let e = _mm_set_ph(3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0); |
| 22550 | assert_eq_m128h(r, e); |
| 22551 | } |
| 22552 | |
| 22553 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22554 | fn test_mm_maskz_max_ph() { |
| 22555 | let a = _mm_set1_ph(2.0); |
| 22556 | let b = _mm_set1_ph(1.0); |
| 22557 | let r = _mm_maskz_max_ph(0b01010101, a, b); |
| 22558 | let e = _mm_set_ph(0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0); |
| 22559 | assert_eq_m128h(r, e); |
| 22560 | } |
| 22561 | |
| 22562 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22563 | fn test_mm256_max_ph() { |
| 22564 | let a = _mm256_set1_ph(2.0); |
| 22565 | let b = _mm256_set1_ph(1.0); |
| 22566 | let r = _mm256_max_ph(a, b); |
| 22567 | let e = _mm256_set1_ph(2.0); |
| 22568 | assert_eq_m256h(r, e); |
| 22569 | } |
| 22570 | |
| 22571 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22572 | fn test_mm256_mask_max_ph() { |
| 22573 | let a = _mm256_set1_ph(2.0); |
| 22574 | let b = _mm256_set1_ph(1.0); |
| 22575 | let src = _mm256_set1_ph(3.0); |
| 22576 | let r = _mm256_mask_max_ph(src, 0b0101010101010101, a, b); |
| 22577 | let e = _mm256_set_ph( |
| 22578 | 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, |
| 22579 | ); |
| 22580 | assert_eq_m256h(r, e); |
| 22581 | } |
| 22582 | |
| 22583 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22584 | fn test_mm256_maskz_max_ph() { |
| 22585 | let a = _mm256_set1_ph(2.0); |
| 22586 | let b = _mm256_set1_ph(1.0); |
| 22587 | let r = _mm256_maskz_max_ph(0b0101010101010101, a, b); |
| 22588 | let e = _mm256_set_ph( |
| 22589 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22590 | ); |
| 22591 | assert_eq_m256h(r, e); |
| 22592 | } |
| 22593 | |
| 22594 | #[simd_test(enable = "avx512fp16" )] |
| 22595 | fn test_mm512_max_ph() { |
| 22596 | let a = _mm512_set1_ph(2.0); |
| 22597 | let b = _mm512_set1_ph(1.0); |
| 22598 | let r = _mm512_max_ph(a, b); |
| 22599 | let e = _mm512_set1_ph(2.0); |
| 22600 | assert_eq_m512h(r, e); |
| 22601 | } |
| 22602 | |
| 22603 | #[simd_test(enable = "avx512fp16" )] |
| 22604 | fn test_mm512_mask_max_ph() { |
| 22605 | let a = _mm512_set1_ph(2.0); |
| 22606 | let b = _mm512_set1_ph(1.0); |
| 22607 | let src = _mm512_set1_ph(3.0); |
| 22608 | let r = _mm512_mask_max_ph(src, 0b01010101010101010101010101010101, a, b); |
| 22609 | let e = _mm512_set_ph( |
| 22610 | 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, |
| 22611 | 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, |
| 22612 | ); |
| 22613 | assert_eq_m512h(r, e); |
| 22614 | } |
| 22615 | |
| 22616 | #[simd_test(enable = "avx512fp16" )] |
| 22617 | fn test_mm512_maskz_max_ph() { |
| 22618 | let a = _mm512_set1_ph(2.0); |
| 22619 | let b = _mm512_set1_ph(1.0); |
| 22620 | let r = _mm512_maskz_max_ph(0b01010101010101010101010101010101, a, b); |
| 22621 | let e = _mm512_set_ph( |
| 22622 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, |
| 22623 | 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22624 | ); |
| 22625 | assert_eq_m512h(r, e); |
| 22626 | } |
| 22627 | |
| 22628 | #[simd_test(enable = "avx512fp16" )] |
| 22629 | fn test_mm512_max_round_ph() { |
| 22630 | let a = _mm512_set1_ph(2.0); |
| 22631 | let b = _mm512_set1_ph(1.0); |
| 22632 | let r = _mm512_max_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 22633 | let e = _mm512_set1_ph(2.0); |
| 22634 | assert_eq_m512h(r, e); |
| 22635 | } |
| 22636 | |
| 22637 | #[simd_test(enable = "avx512fp16" )] |
| 22638 | fn test_mm512_mask_max_round_ph() { |
| 22639 | let a = _mm512_set1_ph(2.0); |
| 22640 | let b = _mm512_set1_ph(1.0); |
| 22641 | let src = _mm512_set1_ph(3.0); |
| 22642 | let r = _mm512_mask_max_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22643 | src, |
| 22644 | 0b01010101010101010101010101010101, |
| 22645 | a, |
| 22646 | b, |
| 22647 | ); |
| 22648 | let e = _mm512_set_ph( |
| 22649 | 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, |
| 22650 | 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, |
| 22651 | ); |
| 22652 | assert_eq_m512h(r, e); |
| 22653 | } |
| 22654 | |
| 22655 | #[simd_test(enable = "avx512fp16" )] |
| 22656 | fn test_mm512_maskz_max_round_ph() { |
| 22657 | let a = _mm512_set1_ph(2.0); |
| 22658 | let b = _mm512_set1_ph(1.0); |
| 22659 | let r = _mm512_maskz_max_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22660 | 0b01010101010101010101010101010101, |
| 22661 | a, |
| 22662 | b, |
| 22663 | ); |
| 22664 | let e = _mm512_set_ph( |
| 22665 | 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, |
| 22666 | 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, |
| 22667 | ); |
| 22668 | assert_eq_m512h(r, e); |
| 22669 | } |
| 22670 | |
| 22671 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22672 | fn test_mm_max_sh() { |
| 22673 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22674 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22675 | let r = _mm_max_sh(a, b); |
| 22676 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22677 | assert_eq_m128h(r, e); |
| 22678 | } |
| 22679 | |
| 22680 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22681 | fn test_mm_mask_max_sh() { |
| 22682 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22683 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22684 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22685 | let r = _mm_mask_max_sh(src, 0, a, b); |
| 22686 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22687 | assert_eq_m128h(r, e); |
| 22688 | let r = _mm_mask_max_sh(src, 1, a, b); |
| 22689 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22690 | assert_eq_m128h(r, e); |
| 22691 | } |
| 22692 | |
| 22693 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22694 | fn test_mm_maskz_max_sh() { |
| 22695 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22696 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22697 | let r = _mm_maskz_max_sh(0, a, b); |
| 22698 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22699 | assert_eq_m128h(r, e); |
| 22700 | let r = _mm_maskz_max_sh(1, a, b); |
| 22701 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22702 | assert_eq_m128h(r, e); |
| 22703 | } |
| 22704 | |
| 22705 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22706 | fn test_mm_max_round_sh() { |
| 22707 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22708 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22709 | let r = _mm_max_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 22710 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22711 | assert_eq_m128h(r, e); |
| 22712 | } |
| 22713 | |
| 22714 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22715 | fn test_mm_mask_max_round_sh() { |
| 22716 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22717 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22718 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22719 | let r = _mm_mask_max_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22720 | src, 0, a, b, |
| 22721 | ); |
| 22722 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22723 | assert_eq_m128h(r, e); |
| 22724 | let r = _mm_mask_max_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22725 | src, 1, a, b, |
| 22726 | ); |
| 22727 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22728 | assert_eq_m128h(r, e); |
| 22729 | } |
| 22730 | |
| 22731 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22732 | fn test_mm_maskz_max_round_sh() { |
| 22733 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22734 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22735 | let r = |
| 22736 | _mm_maskz_max_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 22737 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22738 | assert_eq_m128h(r, e); |
| 22739 | let r = |
| 22740 | _mm_maskz_max_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 22741 | let e = _mm_setr_ph(2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22742 | assert_eq_m128h(r, e); |
| 22743 | } |
| 22744 | |
| 22745 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22746 | fn test_mm_min_ph() { |
| 22747 | let a = _mm_set1_ph(2.0); |
| 22748 | let b = _mm_set1_ph(1.0); |
| 22749 | let r = _mm_min_ph(a, b); |
| 22750 | let e = _mm_set1_ph(1.0); |
| 22751 | assert_eq_m128h(r, e); |
| 22752 | } |
| 22753 | |
| 22754 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22755 | fn test_mm_mask_min_ph() { |
| 22756 | let a = _mm_set1_ph(2.0); |
| 22757 | let b = _mm_set1_ph(1.0); |
| 22758 | let src = _mm_set1_ph(3.0); |
| 22759 | let r = _mm_mask_min_ph(src, 0b01010101, a, b); |
| 22760 | let e = _mm_set_ph(3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0); |
| 22761 | assert_eq_m128h(r, e); |
| 22762 | } |
| 22763 | |
| 22764 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22765 | fn test_mm_maskz_min_ph() { |
| 22766 | let a = _mm_set1_ph(2.0); |
| 22767 | let b = _mm_set1_ph(1.0); |
| 22768 | let r = _mm_maskz_min_ph(0b01010101, a, b); |
| 22769 | let e = _mm_set_ph(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0); |
| 22770 | assert_eq_m128h(r, e); |
| 22771 | } |
| 22772 | |
| 22773 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22774 | fn test_mm256_min_ph() { |
| 22775 | let a = _mm256_set1_ph(2.0); |
| 22776 | let b = _mm256_set1_ph(1.0); |
| 22777 | let r = _mm256_min_ph(a, b); |
| 22778 | let e = _mm256_set1_ph(1.0); |
| 22779 | assert_eq_m256h(r, e); |
| 22780 | } |
| 22781 | |
| 22782 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22783 | fn test_mm256_mask_min_ph() { |
| 22784 | let a = _mm256_set1_ph(2.0); |
| 22785 | let b = _mm256_set1_ph(1.0); |
| 22786 | let src = _mm256_set1_ph(3.0); |
| 22787 | let r = _mm256_mask_min_ph(src, 0b0101010101010101, a, b); |
| 22788 | let e = _mm256_set_ph( |
| 22789 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 22790 | ); |
| 22791 | assert_eq_m256h(r, e); |
| 22792 | } |
| 22793 | |
| 22794 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22795 | fn test_mm256_maskz_min_ph() { |
| 22796 | let a = _mm256_set1_ph(2.0); |
| 22797 | let b = _mm256_set1_ph(1.0); |
| 22798 | let r = _mm256_maskz_min_ph(0b0101010101010101, a, b); |
| 22799 | let e = _mm256_set_ph( |
| 22800 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 22801 | ); |
| 22802 | assert_eq_m256h(r, e); |
| 22803 | } |
| 22804 | |
| 22805 | #[simd_test(enable = "avx512fp16" )] |
| 22806 | fn test_mm512_min_ph() { |
| 22807 | let a = _mm512_set1_ph(2.0); |
| 22808 | let b = _mm512_set1_ph(1.0); |
| 22809 | let r = _mm512_min_ph(a, b); |
| 22810 | let e = _mm512_set1_ph(1.0); |
| 22811 | assert_eq_m512h(r, e); |
| 22812 | } |
| 22813 | |
| 22814 | #[simd_test(enable = "avx512fp16" )] |
| 22815 | fn test_mm512_mask_min_ph() { |
| 22816 | let a = _mm512_set1_ph(2.0); |
| 22817 | let b = _mm512_set1_ph(1.0); |
| 22818 | let src = _mm512_set1_ph(3.0); |
| 22819 | let r = _mm512_mask_min_ph(src, 0b01010101010101010101010101010101, a, b); |
| 22820 | let e = _mm512_set_ph( |
| 22821 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, |
| 22822 | 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 22823 | ); |
| 22824 | assert_eq_m512h(r, e); |
| 22825 | } |
| 22826 | |
| 22827 | #[simd_test(enable = "avx512fp16" )] |
| 22828 | fn test_mm512_maskz_min_ph() { |
| 22829 | let a = _mm512_set1_ph(2.0); |
| 22830 | let b = _mm512_set1_ph(1.0); |
| 22831 | let r = _mm512_maskz_min_ph(0b01010101010101010101010101010101, a, b); |
| 22832 | let e = _mm512_set_ph( |
| 22833 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 22834 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 22835 | ); |
| 22836 | assert_eq_m512h(r, e); |
| 22837 | } |
| 22838 | |
| 22839 | #[simd_test(enable = "avx512fp16" )] |
| 22840 | fn test_mm512_min_round_ph() { |
| 22841 | let a = _mm512_set1_ph(2.0); |
| 22842 | let b = _mm512_set1_ph(1.0); |
| 22843 | let r = _mm512_min_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 22844 | let e = _mm512_set1_ph(1.0); |
| 22845 | assert_eq_m512h(r, e); |
| 22846 | } |
| 22847 | |
| 22848 | #[simd_test(enable = "avx512fp16" )] |
| 22849 | fn test_mm512_mask_min_round_ph() { |
| 22850 | let a = _mm512_set1_ph(2.0); |
| 22851 | let b = _mm512_set1_ph(1.0); |
| 22852 | let src = _mm512_set1_ph(3.0); |
| 22853 | let r = _mm512_mask_min_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22854 | src, |
| 22855 | 0b01010101010101010101010101010101, |
| 22856 | a, |
| 22857 | b, |
| 22858 | ); |
| 22859 | let e = _mm512_set_ph( |
| 22860 | 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, |
| 22861 | 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, |
| 22862 | ); |
| 22863 | assert_eq_m512h(r, e); |
| 22864 | } |
| 22865 | |
| 22866 | #[simd_test(enable = "avx512fp16" )] |
| 22867 | fn test_mm512_maskz_min_round_ph() { |
| 22868 | let a = _mm512_set1_ph(2.0); |
| 22869 | let b = _mm512_set1_ph(1.0); |
| 22870 | let r = _mm512_maskz_min_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22871 | 0b01010101010101010101010101010101, |
| 22872 | a, |
| 22873 | b, |
| 22874 | ); |
| 22875 | let e = _mm512_set_ph( |
| 22876 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 22877 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 22878 | ); |
| 22879 | assert_eq_m512h(r, e); |
| 22880 | } |
| 22881 | |
| 22882 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22883 | fn test_mm_min_sh() { |
| 22884 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22885 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22886 | let r = _mm_min_sh(a, b); |
| 22887 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22888 | assert_eq_m128h(r, e); |
| 22889 | } |
| 22890 | |
| 22891 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22892 | fn test_mm_mask_min_sh() { |
| 22893 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22894 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22895 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22896 | let r = _mm_mask_min_sh(src, 0, a, b); |
| 22897 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22898 | assert_eq_m128h(r, e); |
| 22899 | let r = _mm_mask_min_sh(src, 1, a, b); |
| 22900 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22901 | assert_eq_m128h(r, e); |
| 22902 | } |
| 22903 | |
| 22904 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22905 | fn test_mm_maskz_min_sh() { |
| 22906 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22907 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22908 | let r = _mm_maskz_min_sh(0, a, b); |
| 22909 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22910 | assert_eq_m128h(r, e); |
| 22911 | let r = _mm_maskz_min_sh(1, a, b); |
| 22912 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22913 | assert_eq_m128h(r, e); |
| 22914 | } |
| 22915 | |
| 22916 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22917 | fn test_mm_min_round_sh() { |
| 22918 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22919 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22920 | let r = _mm_min_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 22921 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22922 | assert_eq_m128h(r, e); |
| 22923 | } |
| 22924 | |
| 22925 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22926 | fn test_mm_mask_min_round_sh() { |
| 22927 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22928 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22929 | let src = _mm_setr_ph(3.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0); |
| 22930 | let r = _mm_mask_min_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22931 | src, 0, a, b, |
| 22932 | ); |
| 22933 | let e = _mm_setr_ph(3.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22934 | assert_eq_m128h(r, e); |
| 22935 | let r = _mm_mask_min_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 22936 | src, 1, a, b, |
| 22937 | ); |
| 22938 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22939 | assert_eq_m128h(r, e); |
| 22940 | } |
| 22941 | |
| 22942 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22943 | fn test_mm_maskz_min_round_sh() { |
| 22944 | let a = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22945 | let b = _mm_setr_ph(2.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0); |
| 22946 | let r = |
| 22947 | _mm_maskz_min_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 22948 | let e = _mm_setr_ph(0.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22949 | assert_eq_m128h(r, e); |
| 22950 | let r = |
| 22951 | _mm_maskz_min_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 22952 | let e = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 22953 | assert_eq_m128h(r, e); |
| 22954 | } |
| 22955 | |
| 22956 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22957 | fn test_mm_getexp_ph() { |
| 22958 | let a = _mm_set1_ph(3.0); |
| 22959 | let r = _mm_getexp_ph(a); |
| 22960 | let e = _mm_set1_ph(1.0); |
| 22961 | assert_eq_m128h(r, e); |
| 22962 | } |
| 22963 | |
| 22964 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22965 | fn test_mm_mask_getexp_ph() { |
| 22966 | let a = _mm_set1_ph(3.0); |
| 22967 | let src = _mm_set1_ph(4.0); |
| 22968 | let r = _mm_mask_getexp_ph(src, 0b01010101, a); |
| 22969 | let e = _mm_set_ph(4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0); |
| 22970 | assert_eq_m128h(r, e); |
| 22971 | } |
| 22972 | |
| 22973 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22974 | fn test_mm_maskz_getexp_ph() { |
| 22975 | let a = _mm_set1_ph(3.0); |
| 22976 | let r = _mm_maskz_getexp_ph(0b01010101, a); |
| 22977 | let e = _mm_set_ph(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0); |
| 22978 | assert_eq_m128h(r, e); |
| 22979 | } |
| 22980 | |
| 22981 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22982 | fn test_mm256_getexp_ph() { |
| 22983 | let a = _mm256_set1_ph(3.0); |
| 22984 | let r = _mm256_getexp_ph(a); |
| 22985 | let e = _mm256_set1_ph(1.0); |
| 22986 | assert_eq_m256h(r, e); |
| 22987 | } |
| 22988 | |
| 22989 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 22990 | fn test_mm256_mask_getexp_ph() { |
| 22991 | let a = _mm256_set1_ph(3.0); |
| 22992 | let src = _mm256_set1_ph(4.0); |
| 22993 | let r = _mm256_mask_getexp_ph(src, 0b0101010101010101, a); |
| 22994 | let e = _mm256_set_ph( |
| 22995 | 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, |
| 22996 | ); |
| 22997 | assert_eq_m256h(r, e); |
| 22998 | } |
| 22999 | |
| 23000 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23001 | fn test_mm256_maskz_getexp_ph() { |
| 23002 | let a = _mm256_set1_ph(3.0); |
| 23003 | let r = _mm256_maskz_getexp_ph(0b0101010101010101, a); |
| 23004 | let e = _mm256_set_ph( |
| 23005 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23006 | ); |
| 23007 | assert_eq_m256h(r, e); |
| 23008 | } |
| 23009 | |
| 23010 | #[simd_test(enable = "avx512fp16" )] |
| 23011 | fn test_mm512_getexp_ph() { |
| 23012 | let a = _mm512_set1_ph(3.0); |
| 23013 | let r = _mm512_getexp_ph(a); |
| 23014 | let e = _mm512_set1_ph(1.0); |
| 23015 | assert_eq_m512h(r, e); |
| 23016 | } |
| 23017 | |
| 23018 | #[simd_test(enable = "avx512fp16" )] |
| 23019 | fn test_mm512_mask_getexp_ph() { |
| 23020 | let a = _mm512_set1_ph(3.0); |
| 23021 | let src = _mm512_set1_ph(4.0); |
| 23022 | let r = _mm512_mask_getexp_ph(src, 0b01010101010101010101010101010101, a); |
| 23023 | let e = _mm512_set_ph( |
| 23024 | 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, |
| 23025 | 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, |
| 23026 | ); |
| 23027 | assert_eq_m512h(r, e); |
| 23028 | } |
| 23029 | |
| 23030 | #[simd_test(enable = "avx512fp16" )] |
| 23031 | fn test_mm512_maskz_getexp_ph() { |
| 23032 | let a = _mm512_set1_ph(3.0); |
| 23033 | let r = _mm512_maskz_getexp_ph(0b01010101010101010101010101010101, a); |
| 23034 | let e = _mm512_set_ph( |
| 23035 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 23036 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23037 | ); |
| 23038 | assert_eq_m512h(r, e); |
| 23039 | } |
| 23040 | |
| 23041 | #[simd_test(enable = "avx512fp16" )] |
| 23042 | fn test_mm512_getexp_round_ph() { |
| 23043 | let a = _mm512_set1_ph(3.0); |
| 23044 | let r = _mm512_getexp_round_ph::<_MM_FROUND_NO_EXC>(a); |
| 23045 | let e = _mm512_set1_ph(1.0); |
| 23046 | assert_eq_m512h(r, e); |
| 23047 | } |
| 23048 | |
| 23049 | #[simd_test(enable = "avx512fp16" )] |
| 23050 | fn test_mm512_mask_getexp_round_ph() { |
| 23051 | let a = _mm512_set1_ph(3.0); |
| 23052 | let src = _mm512_set1_ph(4.0); |
| 23053 | let r = _mm512_mask_getexp_round_ph::<_MM_FROUND_NO_EXC>( |
| 23054 | src, |
| 23055 | 0b01010101010101010101010101010101, |
| 23056 | a, |
| 23057 | ); |
| 23058 | let e = _mm512_set_ph( |
| 23059 | 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, |
| 23060 | 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, 4.0, 1.0, |
| 23061 | ); |
| 23062 | assert_eq_m512h(r, e); |
| 23063 | } |
| 23064 | |
| 23065 | #[simd_test(enable = "avx512fp16" )] |
| 23066 | fn test_mm512_maskz_getexp_round_ph() { |
| 23067 | let a = _mm512_set1_ph(3.0); |
| 23068 | let r = _mm512_maskz_getexp_round_ph::<_MM_FROUND_NO_EXC>( |
| 23069 | 0b01010101010101010101010101010101, |
| 23070 | a, |
| 23071 | ); |
| 23072 | let e = _mm512_set_ph( |
| 23073 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 23074 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23075 | ); |
| 23076 | assert_eq_m512h(r, e); |
| 23077 | } |
| 23078 | |
| 23079 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23080 | fn test_mm_getexp_sh() { |
| 23081 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23082 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23083 | let r = _mm_getexp_sh(a, b); |
| 23084 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23085 | assert_eq_m128h(r, e); |
| 23086 | } |
| 23087 | |
| 23088 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23089 | fn test_mm_mask_getexp_sh() { |
| 23090 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23091 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23092 | let src = _mm_setr_ph(4.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23093 | let r = _mm_mask_getexp_sh(src, 0, a, b); |
| 23094 | let e = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23095 | assert_eq_m128h(r, e); |
| 23096 | let r = _mm_mask_getexp_sh(src, 1, a, b); |
| 23097 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23098 | assert_eq_m128h(r, e); |
| 23099 | } |
| 23100 | |
| 23101 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23102 | fn test_mm_maskz_getexp_sh() { |
| 23103 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23104 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23105 | let r = _mm_maskz_getexp_sh(0, a, b); |
| 23106 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23107 | assert_eq_m128h(r, e); |
| 23108 | let r = _mm_maskz_getexp_sh(1, a, b); |
| 23109 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23110 | assert_eq_m128h(r, e); |
| 23111 | } |
| 23112 | |
| 23113 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23114 | fn test_mm_getexp_round_sh() { |
| 23115 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23116 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23117 | let r = _mm_getexp_round_sh::<_MM_FROUND_NO_EXC>(a, b); |
| 23118 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23119 | assert_eq_m128h(r, e); |
| 23120 | } |
| 23121 | |
| 23122 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23123 | fn test_mm_mask_getexp_round_sh() { |
| 23124 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23125 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23126 | let src = _mm_setr_ph(4.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23127 | let r = _mm_mask_getexp_round_sh::<_MM_FROUND_NO_EXC>(src, 0, a, b); |
| 23128 | let e = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23129 | assert_eq_m128h(r, e); |
| 23130 | let r = _mm_mask_getexp_round_sh::<_MM_FROUND_NO_EXC>(src, 1, a, b); |
| 23131 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23132 | assert_eq_m128h(r, e); |
| 23133 | } |
| 23134 | |
| 23135 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23136 | fn test_mm_maskz_getexp_round_sh() { |
| 23137 | let a = _mm_setr_ph(4.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23138 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23139 | let r = _mm_maskz_getexp_round_sh::<_MM_FROUND_NO_EXC>(0, a, b); |
| 23140 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23141 | assert_eq_m128h(r, e); |
| 23142 | let r = _mm_maskz_getexp_round_sh::<_MM_FROUND_NO_EXC>(1, a, b); |
| 23143 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23144 | assert_eq_m128h(r, e); |
| 23145 | } |
| 23146 | |
| 23147 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23148 | fn test_mm_getmant_ph() { |
| 23149 | let a = _mm_set1_ph(10.0); |
| 23150 | let r = _mm_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(a); |
| 23151 | let e = _mm_set1_ph(1.25); |
| 23152 | assert_eq_m128h(r, e); |
| 23153 | } |
| 23154 | |
| 23155 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23156 | fn test_mm_mask_getmant_ph() { |
| 23157 | let a = _mm_set1_ph(10.0); |
| 23158 | let src = _mm_set1_ph(20.0); |
| 23159 | let r = _mm_mask_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(src, 0b01010101, a); |
| 23160 | let e = _mm_set_ph(20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25); |
| 23161 | assert_eq_m128h(r, e); |
| 23162 | } |
| 23163 | |
| 23164 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23165 | fn test_mm_maskz_getmant_ph() { |
| 23166 | let a = _mm_set1_ph(10.0); |
| 23167 | let r = _mm_maskz_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(0b01010101, a); |
| 23168 | let e = _mm_set_ph(0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25); |
| 23169 | assert_eq_m128h(r, e); |
| 23170 | } |
| 23171 | |
| 23172 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23173 | fn test_mm256_getmant_ph() { |
| 23174 | let a = _mm256_set1_ph(10.0); |
| 23175 | let r = _mm256_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(a); |
| 23176 | let e = _mm256_set1_ph(1.25); |
| 23177 | assert_eq_m256h(r, e); |
| 23178 | } |
| 23179 | |
| 23180 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23181 | fn test_mm256_mask_getmant_ph() { |
| 23182 | let a = _mm256_set1_ph(10.0); |
| 23183 | let src = _mm256_set1_ph(20.0); |
| 23184 | let r = _mm256_mask_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>( |
| 23185 | src, |
| 23186 | 0b0101010101010101, |
| 23187 | a, |
| 23188 | ); |
| 23189 | let e = _mm256_set_ph( |
| 23190 | 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, |
| 23191 | 20.0, 1.25, |
| 23192 | ); |
| 23193 | assert_eq_m256h(r, e); |
| 23194 | } |
| 23195 | |
| 23196 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23197 | fn test_mm256_maskz_getmant_ph() { |
| 23198 | let a = _mm256_set1_ph(10.0); |
| 23199 | let r = _mm256_maskz_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>( |
| 23200 | 0b0101010101010101, |
| 23201 | a, |
| 23202 | ); |
| 23203 | let e = _mm256_set_ph( |
| 23204 | 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, |
| 23205 | ); |
| 23206 | assert_eq_m256h(r, e); |
| 23207 | } |
| 23208 | |
| 23209 | #[simd_test(enable = "avx512fp16" )] |
| 23210 | fn test_mm512_getmant_ph() { |
| 23211 | let a = _mm512_set1_ph(10.0); |
| 23212 | let r = _mm512_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(a); |
| 23213 | let e = _mm512_set1_ph(1.25); |
| 23214 | assert_eq_m512h(r, e); |
| 23215 | } |
| 23216 | |
| 23217 | #[simd_test(enable = "avx512fp16" )] |
| 23218 | fn test_mm512_mask_getmant_ph() { |
| 23219 | let a = _mm512_set1_ph(10.0); |
| 23220 | let src = _mm512_set1_ph(20.0); |
| 23221 | let r = _mm512_mask_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>( |
| 23222 | src, |
| 23223 | 0b01010101010101010101010101010101, |
| 23224 | a, |
| 23225 | ); |
| 23226 | let e = _mm512_set_ph( |
| 23227 | 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, |
| 23228 | 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, |
| 23229 | 20.0, 1.25, 20.0, 1.25, |
| 23230 | ); |
| 23231 | assert_eq_m512h(r, e); |
| 23232 | } |
| 23233 | |
| 23234 | #[simd_test(enable = "avx512fp16" )] |
| 23235 | fn test_mm512_maskz_getmant_ph() { |
| 23236 | let a = _mm512_set1_ph(10.0); |
| 23237 | let r = _mm512_maskz_getmant_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>( |
| 23238 | 0b01010101010101010101010101010101, |
| 23239 | a, |
| 23240 | ); |
| 23241 | let e = _mm512_set_ph( |
| 23242 | 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, |
| 23243 | 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, |
| 23244 | ); |
| 23245 | assert_eq_m512h(r, e); |
| 23246 | } |
| 23247 | |
| 23248 | #[simd_test(enable = "avx512fp16" )] |
| 23249 | fn test_mm512_getmant_round_ph() { |
| 23250 | let a = _mm512_set1_ph(10.0); |
| 23251 | let r = |
| 23252 | _mm512_getmant_round_ph::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN, _MM_FROUND_NO_EXC>( |
| 23253 | a, |
| 23254 | ); |
| 23255 | let e = _mm512_set1_ph(1.25); |
| 23256 | assert_eq_m512h(r, e); |
| 23257 | } |
| 23258 | |
| 23259 | #[simd_test(enable = "avx512fp16" )] |
| 23260 | fn test_mm512_mask_getmant_round_ph() { |
| 23261 | let a = _mm512_set1_ph(10.0); |
| 23262 | let src = _mm512_set1_ph(20.0); |
| 23263 | let r = _mm512_mask_getmant_round_ph::< |
| 23264 | _MM_MANT_NORM_P75_1P5, |
| 23265 | _MM_MANT_SIGN_NAN, |
| 23266 | _MM_FROUND_NO_EXC, |
| 23267 | >(src, 0b01010101010101010101010101010101, a); |
| 23268 | let e = _mm512_set_ph( |
| 23269 | 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, |
| 23270 | 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, 20.0, 1.25, |
| 23271 | 20.0, 1.25, 20.0, 1.25, |
| 23272 | ); |
| 23273 | assert_eq_m512h(r, e); |
| 23274 | } |
| 23275 | |
| 23276 | #[simd_test(enable = "avx512fp16" )] |
| 23277 | fn test_mm512_maskz_getmant_round_ph() { |
| 23278 | let a = _mm512_set1_ph(10.0); |
| 23279 | let r = _mm512_maskz_getmant_round_ph::< |
| 23280 | _MM_MANT_NORM_P75_1P5, |
| 23281 | _MM_MANT_SIGN_NAN, |
| 23282 | _MM_FROUND_NO_EXC, |
| 23283 | >(0b01010101010101010101010101010101, a); |
| 23284 | let e = _mm512_set_ph( |
| 23285 | 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, |
| 23286 | 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, 0.0, 1.25, |
| 23287 | ); |
| 23288 | assert_eq_m512h(r, e); |
| 23289 | } |
| 23290 | |
| 23291 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23292 | fn test_mm_getmant_sh() { |
| 23293 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23294 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23295 | let r = _mm_getmant_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(a, b); |
| 23296 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23297 | assert_eq_m128h(r, e); |
| 23298 | } |
| 23299 | |
| 23300 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23301 | fn test_mm_mask_getmant_sh() { |
| 23302 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23303 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23304 | let src = _mm_setr_ph(20.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23305 | let r = _mm_mask_getmant_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(src, 0, a, b); |
| 23306 | let e = _mm_setr_ph(20.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23307 | assert_eq_m128h(r, e); |
| 23308 | let r = _mm_mask_getmant_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(src, 1, a, b); |
| 23309 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23310 | assert_eq_m128h(r, e); |
| 23311 | } |
| 23312 | |
| 23313 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23314 | fn test_mm_maskz_getmant_sh() { |
| 23315 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23316 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23317 | let r = _mm_maskz_getmant_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(0, a, b); |
| 23318 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23319 | assert_eq_m128h(r, e); |
| 23320 | let r = _mm_maskz_getmant_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN>(1, a, b); |
| 23321 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23322 | assert_eq_m128h(r, e); |
| 23323 | } |
| 23324 | |
| 23325 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23326 | fn test_mm_getmant_round_sh() { |
| 23327 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23328 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23329 | let r = _mm_getmant_round_sh::<_MM_MANT_NORM_P75_1P5, _MM_MANT_SIGN_NAN, _MM_FROUND_NO_EXC>( |
| 23330 | a, b, |
| 23331 | ); |
| 23332 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23333 | assert_eq_m128h(r, e); |
| 23334 | } |
| 23335 | |
| 23336 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23337 | fn test_mm_mask_getmant_round_sh() { |
| 23338 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23339 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23340 | let src = _mm_setr_ph(20.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23341 | let r = _mm_mask_getmant_round_sh::< |
| 23342 | _MM_MANT_NORM_P75_1P5, |
| 23343 | _MM_MANT_SIGN_NAN, |
| 23344 | _MM_FROUND_NO_EXC, |
| 23345 | >(src, 0, a, b); |
| 23346 | let e = _mm_setr_ph(20.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23347 | assert_eq_m128h(r, e); |
| 23348 | let r = _mm_mask_getmant_round_sh::< |
| 23349 | _MM_MANT_NORM_P75_1P5, |
| 23350 | _MM_MANT_SIGN_NAN, |
| 23351 | _MM_FROUND_NO_EXC, |
| 23352 | >(src, 1, a, b); |
| 23353 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23354 | assert_eq_m128h(r, e); |
| 23355 | } |
| 23356 | |
| 23357 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23358 | fn test_mm_maskz_getmant_round_sh() { |
| 23359 | let a = _mm_setr_ph(15.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23360 | let b = _mm_setr_ph(10.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23361 | let r = _mm_maskz_getmant_round_sh::< |
| 23362 | _MM_MANT_NORM_P75_1P5, |
| 23363 | _MM_MANT_SIGN_NAN, |
| 23364 | _MM_FROUND_NO_EXC, |
| 23365 | >(0, a, b); |
| 23366 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23367 | assert_eq_m128h(r, e); |
| 23368 | let r = _mm_maskz_getmant_round_sh::< |
| 23369 | _MM_MANT_NORM_P75_1P5, |
| 23370 | _MM_MANT_SIGN_NAN, |
| 23371 | _MM_FROUND_NO_EXC, |
| 23372 | >(1, a, b); |
| 23373 | let e = _mm_setr_ph(1.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23374 | assert_eq_m128h(r, e); |
| 23375 | } |
| 23376 | |
| 23377 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23378 | fn test_mm_roundscale_ph() { |
| 23379 | let a = _mm_set1_ph(1.1); |
| 23380 | let r = _mm_roundscale_ph::<0>(a); |
| 23381 | let e = _mm_set1_ph(1.0); |
| 23382 | assert_eq_m128h(r, e); |
| 23383 | } |
| 23384 | |
| 23385 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23386 | fn test_mm_mask_roundscale_ph() { |
| 23387 | let a = _mm_set1_ph(1.1); |
| 23388 | let src = _mm_set1_ph(2.0); |
| 23389 | let r = _mm_mask_roundscale_ph::<0>(src, 0b01010101, a); |
| 23390 | let e = _mm_set_ph(2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0); |
| 23391 | assert_eq_m128h(r, e); |
| 23392 | } |
| 23393 | |
| 23394 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23395 | fn test_mm_maskz_roundscale_ph() { |
| 23396 | let a = _mm_set1_ph(1.1); |
| 23397 | let r = _mm_maskz_roundscale_ph::<0>(0b01010101, a); |
| 23398 | let e = _mm_set_ph(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0); |
| 23399 | assert_eq_m128h(r, e); |
| 23400 | } |
| 23401 | |
| 23402 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23403 | fn test_mm256_roundscale_ph() { |
| 23404 | let a = _mm256_set1_ph(1.1); |
| 23405 | let r = _mm256_roundscale_ph::<0>(a); |
| 23406 | let e = _mm256_set1_ph(1.0); |
| 23407 | assert_eq_m256h(r, e); |
| 23408 | } |
| 23409 | |
| 23410 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23411 | fn test_mm256_mask_roundscale_ph() { |
| 23412 | let a = _mm256_set1_ph(1.1); |
| 23413 | let src = _mm256_set1_ph(2.0); |
| 23414 | let r = _mm256_mask_roundscale_ph::<0>(src, 0b0101010101010101, a); |
| 23415 | let e = _mm256_set_ph( |
| 23416 | 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, |
| 23417 | ); |
| 23418 | assert_eq_m256h(r, e); |
| 23419 | } |
| 23420 | |
| 23421 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23422 | fn test_mm256_maskz_roundscale_ph() { |
| 23423 | let a = _mm256_set1_ph(1.1); |
| 23424 | let r = _mm256_maskz_roundscale_ph::<0>(0b0101010101010101, a); |
| 23425 | let e = _mm256_set_ph( |
| 23426 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23427 | ); |
| 23428 | assert_eq_m256h(r, e); |
| 23429 | } |
| 23430 | |
| 23431 | #[simd_test(enable = "avx512fp16" )] |
| 23432 | fn test_mm512_roundscale_ph() { |
| 23433 | let a = _mm512_set1_ph(1.1); |
| 23434 | let r = _mm512_roundscale_ph::<0>(a); |
| 23435 | let e = _mm512_set1_ph(1.0); |
| 23436 | assert_eq_m512h(r, e); |
| 23437 | } |
| 23438 | |
| 23439 | #[simd_test(enable = "avx512fp16" )] |
| 23440 | fn test_mm512_mask_roundscale_ph() { |
| 23441 | let a = _mm512_set1_ph(1.1); |
| 23442 | let src = _mm512_set1_ph(2.0); |
| 23443 | let r = _mm512_mask_roundscale_ph::<0>(src, 0b01010101010101010101010101010101, a); |
| 23444 | let e = _mm512_set_ph( |
| 23445 | 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, |
| 23446 | 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, |
| 23447 | ); |
| 23448 | assert_eq_m512h(r, e); |
| 23449 | } |
| 23450 | |
| 23451 | #[simd_test(enable = "avx512fp16" )] |
| 23452 | fn test_mm512_maskz_roundscale_ph() { |
| 23453 | let a = _mm512_set1_ph(1.1); |
| 23454 | let r = _mm512_maskz_roundscale_ph::<0>(0b01010101010101010101010101010101, a); |
| 23455 | let e = _mm512_set_ph( |
| 23456 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 23457 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23458 | ); |
| 23459 | assert_eq_m512h(r, e); |
| 23460 | } |
| 23461 | |
| 23462 | #[simd_test(enable = "avx512fp16" )] |
| 23463 | fn test_mm512_roundscale_round_ph() { |
| 23464 | let a = _mm512_set1_ph(1.1); |
| 23465 | let r = _mm512_roundscale_round_ph::<0, _MM_FROUND_NO_EXC>(a); |
| 23466 | let e = _mm512_set1_ph(1.0); |
| 23467 | assert_eq_m512h(r, e); |
| 23468 | } |
| 23469 | |
| 23470 | #[simd_test(enable = "avx512fp16" )] |
| 23471 | fn test_mm512_mask_roundscale_round_ph() { |
| 23472 | let a = _mm512_set1_ph(1.1); |
| 23473 | let src = _mm512_set1_ph(2.0); |
| 23474 | let r = _mm512_mask_roundscale_round_ph::<0, _MM_FROUND_NO_EXC>( |
| 23475 | src, |
| 23476 | 0b01010101010101010101010101010101, |
| 23477 | a, |
| 23478 | ); |
| 23479 | let e = _mm512_set_ph( |
| 23480 | 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, |
| 23481 | 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, |
| 23482 | ); |
| 23483 | assert_eq_m512h(r, e); |
| 23484 | } |
| 23485 | |
| 23486 | #[simd_test(enable = "avx512fp16" )] |
| 23487 | fn test_mm512_maskz_roundscale_round_ph() { |
| 23488 | let a = _mm512_set1_ph(1.1); |
| 23489 | let r = _mm512_maskz_roundscale_round_ph::<0, _MM_FROUND_NO_EXC>( |
| 23490 | 0b01010101010101010101010101010101, |
| 23491 | a, |
| 23492 | ); |
| 23493 | let e = _mm512_set_ph( |
| 23494 | 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, |
| 23495 | 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, |
| 23496 | ); |
| 23497 | assert_eq_m512h(r, e); |
| 23498 | } |
| 23499 | |
| 23500 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23501 | fn test_mm_roundscale_sh() { |
| 23502 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23503 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23504 | let r = _mm_roundscale_sh::<0>(a, b); |
| 23505 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23506 | assert_eq_m128h(r, e); |
| 23507 | } |
| 23508 | |
| 23509 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23510 | fn test_mm_mask_roundscale_sh() { |
| 23511 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23512 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23513 | let src = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23514 | let r = _mm_mask_roundscale_sh::<0>(src, 0, a, b); |
| 23515 | let e = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23516 | assert_eq_m128h(r, e); |
| 23517 | let r = _mm_mask_roundscale_sh::<0>(src, 1, a, b); |
| 23518 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23519 | assert_eq_m128h(r, e); |
| 23520 | } |
| 23521 | |
| 23522 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23523 | fn test_mm_maskz_roundscale_sh() { |
| 23524 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23525 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23526 | let r = _mm_maskz_roundscale_sh::<0>(0, a, b); |
| 23527 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23528 | assert_eq_m128h(r, e); |
| 23529 | let r = _mm_maskz_roundscale_sh::<0>(1, a, b); |
| 23530 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23531 | assert_eq_m128h(r, e); |
| 23532 | } |
| 23533 | |
| 23534 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23535 | fn test_mm_roundscale_round_sh() { |
| 23536 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23537 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23538 | let r = _mm_roundscale_round_sh::<0, _MM_FROUND_NO_EXC>(a, b); |
| 23539 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23540 | assert_eq_m128h(r, e); |
| 23541 | } |
| 23542 | |
| 23543 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23544 | fn test_mm_mask_roundscale_round_sh() { |
| 23545 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23546 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23547 | let src = _mm_setr_ph(3.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23548 | let r = _mm_mask_roundscale_round_sh::<0, _MM_FROUND_NO_EXC>(src, 0, a, b); |
| 23549 | let e = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23550 | assert_eq_m128h(r, e); |
| 23551 | let r = _mm_mask_roundscale_round_sh::<0, _MM_FROUND_NO_EXC>(src, 1, a, b); |
| 23552 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23553 | assert_eq_m128h(r, e); |
| 23554 | } |
| 23555 | |
| 23556 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23557 | fn test_mm_maskz_roundscale_round_sh() { |
| 23558 | let a = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23559 | let b = _mm_setr_ph(1.1, 20., 21., 22., 23., 24., 25., 26.); |
| 23560 | let r = _mm_maskz_roundscale_round_sh::<0, _MM_FROUND_NO_EXC>(0, a, b); |
| 23561 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23562 | assert_eq_m128h(r, e); |
| 23563 | let r = _mm_maskz_roundscale_round_sh::<0, _MM_FROUND_NO_EXC>(1, a, b); |
| 23564 | let e = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23565 | assert_eq_m128h(r, e); |
| 23566 | } |
| 23567 | |
| 23568 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23569 | fn test_mm_scalef_ph() { |
| 23570 | let a = _mm_set1_ph(1.); |
| 23571 | let b = _mm_set1_ph(3.); |
| 23572 | let r = _mm_scalef_ph(a, b); |
| 23573 | let e = _mm_set1_ph(8.0); |
| 23574 | assert_eq_m128h(r, e); |
| 23575 | } |
| 23576 | |
| 23577 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23578 | fn test_mm_mask_scalef_ph() { |
| 23579 | let a = _mm_set1_ph(1.); |
| 23580 | let b = _mm_set1_ph(3.); |
| 23581 | let src = _mm_set1_ph(2.); |
| 23582 | let r = _mm_mask_scalef_ph(src, 0b01010101, a, b); |
| 23583 | let e = _mm_set_ph(2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0); |
| 23584 | assert_eq_m128h(r, e); |
| 23585 | } |
| 23586 | |
| 23587 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23588 | fn test_mm_maskz_scalef_ph() { |
| 23589 | let a = _mm_set1_ph(1.); |
| 23590 | let b = _mm_set1_ph(3.); |
| 23591 | let r = _mm_maskz_scalef_ph(0b01010101, a, b); |
| 23592 | let e = _mm_set_ph(0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0); |
| 23593 | assert_eq_m128h(r, e); |
| 23594 | } |
| 23595 | |
| 23596 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23597 | fn test_mm256_scalef_ph() { |
| 23598 | let a = _mm256_set1_ph(1.); |
| 23599 | let b = _mm256_set1_ph(3.); |
| 23600 | let r = _mm256_scalef_ph(a, b); |
| 23601 | let e = _mm256_set1_ph(8.0); |
| 23602 | assert_eq_m256h(r, e); |
| 23603 | } |
| 23604 | |
| 23605 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23606 | fn test_mm256_mask_scalef_ph() { |
| 23607 | let a = _mm256_set1_ph(1.); |
| 23608 | let b = _mm256_set1_ph(3.); |
| 23609 | let src = _mm256_set1_ph(2.); |
| 23610 | let r = _mm256_mask_scalef_ph(src, 0b0101010101010101, a, b); |
| 23611 | let e = _mm256_set_ph( |
| 23612 | 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, |
| 23613 | ); |
| 23614 | assert_eq_m256h(r, e); |
| 23615 | } |
| 23616 | |
| 23617 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23618 | fn test_mm256_maskz_scalef_ph() { |
| 23619 | let a = _mm256_set1_ph(1.); |
| 23620 | let b = _mm256_set1_ph(3.); |
| 23621 | let r = _mm256_maskz_scalef_ph(0b0101010101010101, a, b); |
| 23622 | let e = _mm256_set_ph( |
| 23623 | 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, |
| 23624 | ); |
| 23625 | assert_eq_m256h(r, e); |
| 23626 | } |
| 23627 | |
| 23628 | #[simd_test(enable = "avx512fp16" )] |
| 23629 | fn test_mm512_scalef_ph() { |
| 23630 | let a = _mm512_set1_ph(1.); |
| 23631 | let b = _mm512_set1_ph(3.); |
| 23632 | let r = _mm512_scalef_ph(a, b); |
| 23633 | let e = _mm512_set1_ph(8.0); |
| 23634 | assert_eq_m512h(r, e); |
| 23635 | } |
| 23636 | |
| 23637 | #[simd_test(enable = "avx512fp16" )] |
| 23638 | fn test_mm512_mask_scalef_ph() { |
| 23639 | let a = _mm512_set1_ph(1.); |
| 23640 | let b = _mm512_set1_ph(3.); |
| 23641 | let src = _mm512_set1_ph(2.); |
| 23642 | let r = _mm512_mask_scalef_ph(src, 0b01010101010101010101010101010101, a, b); |
| 23643 | let e = _mm512_set_ph( |
| 23644 | 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, |
| 23645 | 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, |
| 23646 | ); |
| 23647 | assert_eq_m512h(r, e); |
| 23648 | } |
| 23649 | |
| 23650 | #[simd_test(enable = "avx512fp16" )] |
| 23651 | fn test_mm512_maskz_scalef_ph() { |
| 23652 | let a = _mm512_set1_ph(1.); |
| 23653 | let b = _mm512_set1_ph(3.); |
| 23654 | let r = _mm512_maskz_scalef_ph(0b01010101010101010101010101010101, a, b); |
| 23655 | let e = _mm512_set_ph( |
| 23656 | 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, |
| 23657 | 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, |
| 23658 | ); |
| 23659 | assert_eq_m512h(r, e); |
| 23660 | } |
| 23661 | |
| 23662 | #[simd_test(enable = "avx512fp16" )] |
| 23663 | fn test_mm512_scalef_round_ph() { |
| 23664 | let a = _mm512_set1_ph(1.); |
| 23665 | let b = _mm512_set1_ph(3.); |
| 23666 | let r = _mm512_scalef_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 23667 | let e = _mm512_set1_ph(8.0); |
| 23668 | assert_eq_m512h(r, e); |
| 23669 | } |
| 23670 | |
| 23671 | #[simd_test(enable = "avx512fp16" )] |
| 23672 | fn test_mm512_mask_scalef_round_ph() { |
| 23673 | let a = _mm512_set1_ph(1.); |
| 23674 | let b = _mm512_set1_ph(3.); |
| 23675 | let src = _mm512_set1_ph(2.); |
| 23676 | let r = _mm512_mask_scalef_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 23677 | src, |
| 23678 | 0b01010101010101010101010101010101, |
| 23679 | a, |
| 23680 | b, |
| 23681 | ); |
| 23682 | let e = _mm512_set_ph( |
| 23683 | 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, |
| 23684 | 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, 2.0, 8.0, |
| 23685 | ); |
| 23686 | assert_eq_m512h(r, e); |
| 23687 | } |
| 23688 | |
| 23689 | #[simd_test(enable = "avx512fp16" )] |
| 23690 | fn test_mm512_maskz_scalef_round_ph() { |
| 23691 | let a = _mm512_set1_ph(1.); |
| 23692 | let b = _mm512_set1_ph(3.); |
| 23693 | let r = _mm512_maskz_scalef_round_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 23694 | 0b01010101010101010101010101010101, |
| 23695 | a, |
| 23696 | b, |
| 23697 | ); |
| 23698 | let e = _mm512_set_ph( |
| 23699 | 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, |
| 23700 | 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, 0.0, 8.0, |
| 23701 | ); |
| 23702 | assert_eq_m512h(r, e); |
| 23703 | } |
| 23704 | |
| 23705 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23706 | fn test_mm_scalef_sh() { |
| 23707 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23708 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23709 | let r = _mm_scalef_sh(a, b); |
| 23710 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23711 | assert_eq_m128h(r, e); |
| 23712 | } |
| 23713 | |
| 23714 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23715 | fn test_mm_mask_scalef_sh() { |
| 23716 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23717 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23718 | let src = _mm_setr_ph(2.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23719 | let r = _mm_mask_scalef_sh(src, 0, a, b); |
| 23720 | let e = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23721 | assert_eq_m128h(r, e); |
| 23722 | let r = _mm_mask_scalef_sh(src, 1, a, b); |
| 23723 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23724 | assert_eq_m128h(r, e); |
| 23725 | } |
| 23726 | |
| 23727 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23728 | fn test_mm_maskz_scalef_sh() { |
| 23729 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23730 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23731 | let r = _mm_maskz_scalef_sh(0, a, b); |
| 23732 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23733 | assert_eq_m128h(r, e); |
| 23734 | let r = _mm_maskz_scalef_sh(1, a, b); |
| 23735 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23736 | assert_eq_m128h(r, e); |
| 23737 | } |
| 23738 | |
| 23739 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23740 | fn test_mm_scalef_round_sh() { |
| 23741 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23742 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23743 | let r = _mm_scalef_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 23744 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23745 | assert_eq_m128h(r, e); |
| 23746 | } |
| 23747 | |
| 23748 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23749 | fn test_mm_mask_scalef_round_sh() { |
| 23750 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23751 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23752 | let src = _mm_setr_ph(2.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23753 | let r = _mm_mask_scalef_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 23754 | src, 0, a, b, |
| 23755 | ); |
| 23756 | let e = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23757 | assert_eq_m128h(r, e); |
| 23758 | let r = _mm_mask_scalef_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 23759 | src, 1, a, b, |
| 23760 | ); |
| 23761 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23762 | assert_eq_m128h(r, e); |
| 23763 | } |
| 23764 | |
| 23765 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23766 | fn test_mm_maskz_scalef_round_sh() { |
| 23767 | let a = _mm_setr_ph(1.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23768 | let b = _mm_setr_ph(3.0, 20., 21., 22., 23., 24., 25., 26.); |
| 23769 | let r = |
| 23770 | _mm_maskz_scalef_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 23771 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23772 | assert_eq_m128h(r, e); |
| 23773 | let r = |
| 23774 | _mm_maskz_scalef_round_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 23775 | let e = _mm_setr_ph(8.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23776 | assert_eq_m128h(r, e); |
| 23777 | } |
| 23778 | |
| 23779 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23780 | fn test_mm_reduce_ph() { |
| 23781 | let a = _mm_set1_ph(1.25); |
| 23782 | let r = _mm_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(a); |
| 23783 | let e = _mm_set1_ph(0.25); |
| 23784 | assert_eq_m128h(r, e); |
| 23785 | } |
| 23786 | |
| 23787 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23788 | fn test_mm_mask_reduce_ph() { |
| 23789 | let a = _mm_set1_ph(1.25); |
| 23790 | let src = _mm_set1_ph(2.0); |
| 23791 | let r = _mm_mask_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(src, 0b01010101, a); |
| 23792 | let e = _mm_set_ph(2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25); |
| 23793 | assert_eq_m128h(r, e); |
| 23794 | } |
| 23795 | |
| 23796 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23797 | fn test_mm_maskz_reduce_ph() { |
| 23798 | let a = _mm_set1_ph(1.25); |
| 23799 | let r = _mm_maskz_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(0b01010101, a); |
| 23800 | let e = _mm_set_ph(0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25); |
| 23801 | assert_eq_m128h(r, e); |
| 23802 | } |
| 23803 | |
| 23804 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23805 | fn test_mm256_reduce_ph() { |
| 23806 | let a = _mm256_set1_ph(1.25); |
| 23807 | let r = _mm256_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(a); |
| 23808 | let e = _mm256_set1_ph(0.25); |
| 23809 | assert_eq_m256h(r, e); |
| 23810 | } |
| 23811 | |
| 23812 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23813 | fn test_mm256_mask_reduce_ph() { |
| 23814 | let a = _mm256_set1_ph(1.25); |
| 23815 | let src = _mm256_set1_ph(2.0); |
| 23816 | let r = _mm256_mask_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(src, 0b0101010101010101, a); |
| 23817 | let e = _mm256_set_ph( |
| 23818 | 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, |
| 23819 | ); |
| 23820 | assert_eq_m256h(r, e); |
| 23821 | } |
| 23822 | |
| 23823 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23824 | fn test_mm256_maskz_reduce_ph() { |
| 23825 | let a = _mm256_set1_ph(1.25); |
| 23826 | let r = _mm256_maskz_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(0b0101010101010101, a); |
| 23827 | let e = _mm256_set_ph( |
| 23828 | 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, |
| 23829 | ); |
| 23830 | assert_eq_m256h(r, e); |
| 23831 | } |
| 23832 | |
| 23833 | #[simd_test(enable = "avx512fp16" )] |
| 23834 | fn test_mm512_reduce_ph() { |
| 23835 | let a = _mm512_set1_ph(1.25); |
| 23836 | let r = _mm512_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>(a); |
| 23837 | let e = _mm512_set1_ph(0.25); |
| 23838 | assert_eq_m512h(r, e); |
| 23839 | } |
| 23840 | |
| 23841 | #[simd_test(enable = "avx512fp16" )] |
| 23842 | fn test_mm512_mask_reduce_ph() { |
| 23843 | let a = _mm512_set1_ph(1.25); |
| 23844 | let src = _mm512_set1_ph(2.0); |
| 23845 | let r = _mm512_mask_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>( |
| 23846 | src, |
| 23847 | 0b01010101010101010101010101010101, |
| 23848 | a, |
| 23849 | ); |
| 23850 | let e = _mm512_set_ph( |
| 23851 | 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, |
| 23852 | 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, |
| 23853 | ); |
| 23854 | assert_eq_m512h(r, e); |
| 23855 | } |
| 23856 | |
| 23857 | #[simd_test(enable = "avx512fp16" )] |
| 23858 | fn test_mm512_maskz_reduce_ph() { |
| 23859 | let a = _mm512_set1_ph(1.25); |
| 23860 | let r = _mm512_maskz_reduce_ph::<{ 16 | _MM_FROUND_TO_ZERO }>( |
| 23861 | 0b01010101010101010101010101010101, |
| 23862 | a, |
| 23863 | ); |
| 23864 | let e = _mm512_set_ph( |
| 23865 | 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, |
| 23866 | 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, |
| 23867 | ); |
| 23868 | assert_eq_m512h(r, e); |
| 23869 | } |
| 23870 | |
| 23871 | #[simd_test(enable = "avx512fp16" )] |
| 23872 | fn test_mm512_reduce_round_ph() { |
| 23873 | let a = _mm512_set1_ph(1.25); |
| 23874 | let r = _mm512_reduce_round_ph::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>(a); |
| 23875 | let e = _mm512_set1_ph(0.25); |
| 23876 | assert_eq_m512h(r, e); |
| 23877 | } |
| 23878 | |
| 23879 | #[simd_test(enable = "avx512fp16" )] |
| 23880 | fn test_mm512_mask_reduce_round_ph() { |
| 23881 | let a = _mm512_set1_ph(1.25); |
| 23882 | let src = _mm512_set1_ph(2.0); |
| 23883 | let r = _mm512_mask_reduce_round_ph::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>( |
| 23884 | src, |
| 23885 | 0b01010101010101010101010101010101, |
| 23886 | a, |
| 23887 | ); |
| 23888 | let e = _mm512_set_ph( |
| 23889 | 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, |
| 23890 | 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, 2.0, 0.25, |
| 23891 | ); |
| 23892 | assert_eq_m512h(r, e); |
| 23893 | } |
| 23894 | |
| 23895 | #[simd_test(enable = "avx512fp16" )] |
| 23896 | fn test_mm512_maskz_reduce_round_ph() { |
| 23897 | let a = _mm512_set1_ph(1.25); |
| 23898 | let r = _mm512_maskz_reduce_round_ph::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>( |
| 23899 | 0b01010101010101010101010101010101, |
| 23900 | a, |
| 23901 | ); |
| 23902 | let e = _mm512_set_ph( |
| 23903 | 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, |
| 23904 | 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, 0.0, 0.25, |
| 23905 | ); |
| 23906 | assert_eq_m512h(r, e); |
| 23907 | } |
| 23908 | |
| 23909 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23910 | fn test_mm_reduce_sh() { |
| 23911 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23912 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23913 | let r = _mm_reduce_sh::<{ 16 | _MM_FROUND_TO_ZERO }>(a, b); |
| 23914 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23915 | assert_eq_m128h(r, e); |
| 23916 | } |
| 23917 | |
| 23918 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23919 | fn test_mm_mask_reduce_sh() { |
| 23920 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23921 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23922 | let src = _mm_setr_ph(2.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23923 | let r = _mm_mask_reduce_sh::<{ 16 | _MM_FROUND_TO_ZERO }>(src, 0, a, b); |
| 23924 | let e = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23925 | assert_eq_m128h(r, e); |
| 23926 | let r = _mm_mask_reduce_sh::<{ 16 | _MM_FROUND_TO_ZERO }>(src, 1, a, b); |
| 23927 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23928 | assert_eq_m128h(r, e); |
| 23929 | } |
| 23930 | |
| 23931 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23932 | fn test_mm_maskz_reduce_sh() { |
| 23933 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23934 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23935 | let r = _mm_maskz_reduce_sh::<{ 16 | _MM_FROUND_TO_ZERO }>(0, a, b); |
| 23936 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23937 | assert_eq_m128h(r, e); |
| 23938 | let r = _mm_maskz_reduce_sh::<{ 16 | _MM_FROUND_TO_ZERO }>(1, a, b); |
| 23939 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23940 | assert_eq_m128h(r, e); |
| 23941 | } |
| 23942 | |
| 23943 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23944 | fn test_mm_reduce_round_sh() { |
| 23945 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23946 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23947 | let r = _mm_reduce_round_sh::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>(a, b); |
| 23948 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23949 | assert_eq_m128h(r, e); |
| 23950 | } |
| 23951 | |
| 23952 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23953 | fn test_mm_mask_reduce_round_sh() { |
| 23954 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23955 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23956 | let src = _mm_setr_ph(2.0, 30., 31., 32., 33., 34., 35., 36.); |
| 23957 | let r = _mm_mask_reduce_round_sh::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>( |
| 23958 | src, 0, a, b, |
| 23959 | ); |
| 23960 | let e = _mm_setr_ph(2.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23961 | assert_eq_m128h(r, e); |
| 23962 | let r = _mm_mask_reduce_round_sh::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>( |
| 23963 | src, 1, a, b, |
| 23964 | ); |
| 23965 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23966 | assert_eq_m128h(r, e); |
| 23967 | } |
| 23968 | |
| 23969 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23970 | fn test_mm_maskz_reduce_round_sh() { |
| 23971 | let a = _mm_setr_ph(3.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23972 | let b = _mm_setr_ph(1.25, 20., 21., 22., 23., 24., 25., 26.); |
| 23973 | let r = |
| 23974 | _mm_maskz_reduce_round_sh::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>(0, a, b); |
| 23975 | let e = _mm_setr_ph(0.0, 10., 11., 12., 13., 14., 15., 16.); |
| 23976 | assert_eq_m128h(r, e); |
| 23977 | let r = |
| 23978 | _mm_maskz_reduce_round_sh::<{ 16 | _MM_FROUND_TO_ZERO }, _MM_FROUND_NO_EXC>(1, a, b); |
| 23979 | let e = _mm_setr_ph(0.25, 10., 11., 12., 13., 14., 15., 16.); |
| 23980 | assert_eq_m128h(r, e); |
| 23981 | } |
| 23982 | |
| 23983 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23984 | const fn test_mm_reduce_add_ph() { |
| 23985 | let a = _mm_set1_ph(2.0); |
| 23986 | let r = _mm_reduce_add_ph(a); |
| 23987 | assert_eq!(r, 16.0); |
| 23988 | } |
| 23989 | |
| 23990 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 23991 | const fn test_mm256_reduce_add_ph() { |
| 23992 | let a = _mm256_set1_ph(2.0); |
| 23993 | let r = _mm256_reduce_add_ph(a); |
| 23994 | assert_eq!(r, 32.0); |
| 23995 | } |
| 23996 | |
| 23997 | #[simd_test(enable = "avx512fp16" )] |
| 23998 | const fn test_mm512_reduce_add_ph() { |
| 23999 | let a = _mm512_set1_ph(2.0); |
| 24000 | let r = _mm512_reduce_add_ph(a); |
| 24001 | assert_eq!(r, 64.0); |
| 24002 | } |
| 24003 | |
| 24004 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24005 | const fn test_mm_reduce_mul_ph() { |
| 24006 | let a = _mm_set1_ph(2.0); |
| 24007 | let r = _mm_reduce_mul_ph(a); |
| 24008 | assert_eq!(r, 256.0); |
| 24009 | } |
| 24010 | |
| 24011 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24012 | const fn test_mm256_reduce_mul_ph() { |
| 24013 | let a = _mm256_set1_ph(1.2); |
| 24014 | let r = _mm256_reduce_mul_ph(a); |
| 24015 | assert_eq!(r, 18.5); |
| 24016 | } |
| 24017 | |
| 24018 | #[simd_test(enable = "avx512fp16" )] |
| 24019 | const fn test_mm512_reduce_mul_ph() { |
| 24020 | let a = _mm512_set1_ph(1.2); |
| 24021 | let r = _mm512_reduce_mul_ph(a); |
| 24022 | assert_eq!(r, 342.3); |
| 24023 | } |
| 24024 | |
| 24025 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24026 | fn test_mm_reduce_max_ph() { |
| 24027 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24028 | let r = _mm_reduce_max_ph(a); |
| 24029 | assert_eq!(r, 8.0); |
| 24030 | } |
| 24031 | |
| 24032 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24033 | fn test_mm256_reduce_max_ph() { |
| 24034 | let a = _mm256_set_ph( |
| 24035 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24036 | ); |
| 24037 | let r = _mm256_reduce_max_ph(a); |
| 24038 | assert_eq!(r, 16.0); |
| 24039 | } |
| 24040 | |
| 24041 | #[simd_test(enable = "avx512fp16" )] |
| 24042 | fn test_mm512_reduce_max_ph() { |
| 24043 | let a = _mm512_set_ph( |
| 24044 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24045 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24046 | 31.0, 32.0, |
| 24047 | ); |
| 24048 | let r = _mm512_reduce_max_ph(a); |
| 24049 | assert_eq!(r, 32.0); |
| 24050 | } |
| 24051 | |
| 24052 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24053 | fn test_mm_reduce_min_ph() { |
| 24054 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24055 | let r = _mm_reduce_min_ph(a); |
| 24056 | assert_eq!(r, 1.0); |
| 24057 | } |
| 24058 | |
| 24059 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24060 | fn test_mm256_reduce_min_ph() { |
| 24061 | let a = _mm256_set_ph( |
| 24062 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24063 | ); |
| 24064 | let r = _mm256_reduce_min_ph(a); |
| 24065 | assert_eq!(r, 1.0); |
| 24066 | } |
| 24067 | |
| 24068 | #[simd_test(enable = "avx512fp16" )] |
| 24069 | fn test_mm512_reduce_min_ph() { |
| 24070 | let a = _mm512_set_ph( |
| 24071 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24072 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24073 | 31.0, 32.0, |
| 24074 | ); |
| 24075 | let r = _mm512_reduce_min_ph(a); |
| 24076 | assert_eq!(r, 1.0); |
| 24077 | } |
| 24078 | |
| 24079 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24080 | fn test_mm_fpclass_ph_mask() { |
| 24081 | let a = _mm_set_ph( |
| 24082 | 1., |
| 24083 | f16::INFINITY, |
| 24084 | f16::NEG_INFINITY, |
| 24085 | 0.0, |
| 24086 | -0.0, |
| 24087 | -2.0, |
| 24088 | f16::NAN, |
| 24089 | 5.9e-8, // Denormal |
| 24090 | ); |
| 24091 | let r = _mm_fpclass_ph_mask::<0x18>(a); // infinities |
| 24092 | assert_eq!(r, 0b01100000); |
| 24093 | } |
| 24094 | |
| 24095 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24096 | fn test_mm_mask_fpclass_ph_mask() { |
| 24097 | let a = _mm_set_ph( |
| 24098 | 1., |
| 24099 | f16::INFINITY, |
| 24100 | f16::NEG_INFINITY, |
| 24101 | 0.0, |
| 24102 | -0.0, |
| 24103 | -2.0, |
| 24104 | f16::NAN, |
| 24105 | 5.9e-8, // Denormal |
| 24106 | ); |
| 24107 | let r = _mm_mask_fpclass_ph_mask::<0x18>(0b01010101, a); |
| 24108 | assert_eq!(r, 0b01000000); |
| 24109 | } |
| 24110 | |
| 24111 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24112 | fn test_mm256_fpclass_ph_mask() { |
| 24113 | let a = _mm256_set_ph( |
| 24114 | 1., |
| 24115 | f16::INFINITY, |
| 24116 | f16::NEG_INFINITY, |
| 24117 | 0.0, |
| 24118 | -0.0, |
| 24119 | -2.0, |
| 24120 | f16::NAN, |
| 24121 | 5.9e-8, // Denormal |
| 24122 | 1., |
| 24123 | f16::INFINITY, |
| 24124 | f16::NEG_INFINITY, |
| 24125 | 0.0, |
| 24126 | -0.0, |
| 24127 | -2.0, |
| 24128 | f16::NAN, |
| 24129 | 5.9e-8, // Denormal |
| 24130 | ); |
| 24131 | let r = _mm256_fpclass_ph_mask::<0x18>(a); // infinities |
| 24132 | assert_eq!(r, 0b0110000001100000); |
| 24133 | } |
| 24134 | |
| 24135 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24136 | fn test_mm256_mask_fpclass_ph_mask() { |
| 24137 | let a = _mm256_set_ph( |
| 24138 | 1., |
| 24139 | f16::INFINITY, |
| 24140 | f16::NEG_INFINITY, |
| 24141 | 0.0, |
| 24142 | -0.0, |
| 24143 | -2.0, |
| 24144 | f16::NAN, |
| 24145 | 5.9e-8, // Denormal |
| 24146 | 1., |
| 24147 | f16::INFINITY, |
| 24148 | f16::NEG_INFINITY, |
| 24149 | 0.0, |
| 24150 | -0.0, |
| 24151 | -2.0, |
| 24152 | f16::NAN, |
| 24153 | 5.9e-8, // Denormal |
| 24154 | ); |
| 24155 | let r = _mm256_mask_fpclass_ph_mask::<0x18>(0b0101010101010101, a); |
| 24156 | assert_eq!(r, 0b0100000001000000); |
| 24157 | } |
| 24158 | |
| 24159 | #[simd_test(enable = "avx512fp16" )] |
| 24160 | fn test_mm512_fpclass_ph_mask() { |
| 24161 | let a = _mm512_set_ph( |
| 24162 | 1., |
| 24163 | f16::INFINITY, |
| 24164 | f16::NEG_INFINITY, |
| 24165 | 0.0, |
| 24166 | -0.0, |
| 24167 | -2.0, |
| 24168 | f16::NAN, |
| 24169 | 5.9e-8, // Denormal |
| 24170 | 1., |
| 24171 | f16::INFINITY, |
| 24172 | f16::NEG_INFINITY, |
| 24173 | 0.0, |
| 24174 | -0.0, |
| 24175 | -2.0, |
| 24176 | f16::NAN, |
| 24177 | 5.9e-8, // Denormal |
| 24178 | 1., |
| 24179 | f16::INFINITY, |
| 24180 | f16::NEG_INFINITY, |
| 24181 | 0.0, |
| 24182 | -0.0, |
| 24183 | -2.0, |
| 24184 | f16::NAN, |
| 24185 | 5.9e-8, // Denormal |
| 24186 | 1., |
| 24187 | f16::INFINITY, |
| 24188 | f16::NEG_INFINITY, |
| 24189 | 0.0, |
| 24190 | -0.0, |
| 24191 | -2.0, |
| 24192 | f16::NAN, |
| 24193 | 5.9e-8, // Denormal |
| 24194 | ); |
| 24195 | let r = _mm512_fpclass_ph_mask::<0x18>(a); // infinities |
| 24196 | assert_eq!(r, 0b01100000011000000110000001100000); |
| 24197 | } |
| 24198 | |
| 24199 | #[simd_test(enable = "avx512fp16" )] |
| 24200 | fn test_mm512_mask_fpclass_ph_mask() { |
| 24201 | let a = _mm512_set_ph( |
| 24202 | 1., |
| 24203 | f16::INFINITY, |
| 24204 | f16::NEG_INFINITY, |
| 24205 | 0.0, |
| 24206 | -0.0, |
| 24207 | -2.0, |
| 24208 | f16::NAN, |
| 24209 | 5.9e-8, // Denormal |
| 24210 | 1., |
| 24211 | f16::INFINITY, |
| 24212 | f16::NEG_INFINITY, |
| 24213 | 0.0, |
| 24214 | -0.0, |
| 24215 | -2.0, |
| 24216 | f16::NAN, |
| 24217 | 5.9e-8, // Denormal |
| 24218 | 1., |
| 24219 | f16::INFINITY, |
| 24220 | f16::NEG_INFINITY, |
| 24221 | 0.0, |
| 24222 | -0.0, |
| 24223 | -2.0, |
| 24224 | f16::NAN, |
| 24225 | 5.9e-8, // Denormal |
| 24226 | 1., |
| 24227 | f16::INFINITY, |
| 24228 | f16::NEG_INFINITY, |
| 24229 | 0.0, |
| 24230 | -0.0, |
| 24231 | -2.0, |
| 24232 | f16::NAN, |
| 24233 | 5.9e-8, // Denormal |
| 24234 | ); |
| 24235 | let r = _mm512_mask_fpclass_ph_mask::<0x18>(0b01010101010101010101010101010101, a); |
| 24236 | assert_eq!(r, 0b01000000010000000100000001000000); |
| 24237 | } |
| 24238 | |
| 24239 | #[simd_test(enable = "avx512fp16" )] |
| 24240 | fn test_mm_fpclass_sh_mask() { |
| 24241 | let a = _mm_set_sh(f16::INFINITY); |
| 24242 | let r = _mm_fpclass_sh_mask::<0x18>(a); |
| 24243 | assert_eq!(r, 1); |
| 24244 | } |
| 24245 | |
| 24246 | #[simd_test(enable = "avx512fp16" )] |
| 24247 | fn test_mm_mask_fpclass_sh_mask() { |
| 24248 | let a = _mm_set_sh(f16::INFINITY); |
| 24249 | let r = _mm_mask_fpclass_sh_mask::<0x18>(0, a); |
| 24250 | assert_eq!(r, 0); |
| 24251 | let r = _mm_mask_fpclass_sh_mask::<0x18>(1, a); |
| 24252 | assert_eq!(r, 1); |
| 24253 | } |
| 24254 | |
| 24255 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24256 | const fn test_mm_mask_blend_ph() { |
| 24257 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24258 | let b = _mm_set_ph(-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0); |
| 24259 | let r = _mm_mask_blend_ph(0b01010101, a, b); |
| 24260 | let e = _mm_set_ph(1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0); |
| 24261 | assert_eq_m128h(r, e); |
| 24262 | } |
| 24263 | |
| 24264 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24265 | const fn test_mm256_mask_blend_ph() { |
| 24266 | let a = _mm256_set_ph( |
| 24267 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24268 | ); |
| 24269 | let b = _mm256_set_ph( |
| 24270 | -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, -10.0, -11.0, -12.0, -13.0, |
| 24271 | -14.0, -15.0, -16.0, |
| 24272 | ); |
| 24273 | let r = _mm256_mask_blend_ph(0b0101010101010101, a, b); |
| 24274 | let e = _mm256_set_ph( |
| 24275 | 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0, -14.0, 15.0, |
| 24276 | -16.0, |
| 24277 | ); |
| 24278 | assert_eq_m256h(r, e); |
| 24279 | } |
| 24280 | |
| 24281 | #[simd_test(enable = "avx512fp16" )] |
| 24282 | const fn test_mm512_mask_blend_ph() { |
| 24283 | let a = _mm512_set_ph( |
| 24284 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24285 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24286 | 31.0, 32.0, |
| 24287 | ); |
| 24288 | let b = _mm512_set_ph( |
| 24289 | -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, -10.0, -11.0, -12.0, -13.0, |
| 24290 | -14.0, -15.0, -16.0, -17.0, -18.0, -19.0, -20.0, -21.0, -22.0, -23.0, -24.0, -25.0, |
| 24291 | -26.0, -27.0, -28.0, -29.0, -30.0, -31.0, -32.0, |
| 24292 | ); |
| 24293 | let r = _mm512_mask_blend_ph(0b01010101010101010101010101010101, a, b); |
| 24294 | let e = _mm512_set_ph( |
| 24295 | 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0, 9.0, -10.0, 11.0, -12.0, 13.0, -14.0, 15.0, |
| 24296 | -16.0, 17.0, -18.0, 19.0, -20.0, 21.0, -22.0, 23.0, -24.0, 25.0, -26.0, 27.0, -28.0, |
| 24297 | 29.0, -30.0, 31.0, -32.0, |
| 24298 | ); |
| 24299 | assert_eq_m512h(r, e); |
| 24300 | } |
| 24301 | |
| 24302 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24303 | fn test_mm_permutex2var_ph() { |
| 24304 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24305 | let b = _mm_setr_ph(9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 24306 | let idx = _mm_setr_epi16(0, 2, 4, 6, 8, 10, 12, 14); |
| 24307 | let r = _mm_permutex2var_ph(a, idx, b); |
| 24308 | let e = _mm_setr_ph(1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0); |
| 24309 | assert_eq_m128h(r, e); |
| 24310 | } |
| 24311 | |
| 24312 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24313 | fn test_mm256_permutex2var_ph() { |
| 24314 | let a = _mm256_setr_ph( |
| 24315 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24316 | ); |
| 24317 | let b = _mm256_setr_ph( |
| 24318 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24319 | 31.0, 32.0, |
| 24320 | ); |
| 24321 | let idx = _mm256_setr_epi16(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30); |
| 24322 | let r = _mm256_permutex2var_ph(a, idx, b); |
| 24323 | let e = _mm256_setr_ph( |
| 24324 | 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0, 27.0, 29.0, |
| 24325 | 31.0, |
| 24326 | ); |
| 24327 | assert_eq_m256h(r, e); |
| 24328 | } |
| 24329 | |
| 24330 | #[simd_test(enable = "avx512fp16" )] |
| 24331 | fn test_mm512_permutex2var_ph() { |
| 24332 | let a = _mm512_setr_ph( |
| 24333 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24334 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24335 | 31.0, 32.0, |
| 24336 | ); |
| 24337 | let b = _mm512_setr_ph( |
| 24338 | 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, |
| 24339 | 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, |
| 24340 | 61.0, 62.0, 63.0, 64.0, |
| 24341 | ); |
| 24342 | let idx = _mm512_set_epi16( |
| 24343 | 62, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, |
| 24344 | 18, 16, 14, 12, 10, 8, 6, 4, 2, 0, |
| 24345 | ); |
| 24346 | let r = _mm512_permutex2var_ph(a, idx, b); |
| 24347 | let e = _mm512_setr_ph( |
| 24348 | 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0, 27.0, 29.0, |
| 24349 | 31.0, 33.0, 35.0, 37.0, 39.0, 41.0, 43.0, 45.0, 47.0, 49.0, 51.0, 53.0, 55.0, 57.0, |
| 24350 | 59.0, 61.0, 63.0, |
| 24351 | ); |
| 24352 | assert_eq_m512h(r, e); |
| 24353 | } |
| 24354 | |
| 24355 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24356 | fn test_mm_permutexvar_ph() { |
| 24357 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24358 | let idx = _mm_set_epi16(0, 2, 4, 6, 1, 3, 5, 7); |
| 24359 | let r = _mm_permutexvar_ph(idx, a); |
| 24360 | let e = _mm_setr_ph(1.0, 3.0, 5.0, 7.0, 2.0, 4.0, 6.0, 8.0); |
| 24361 | assert_eq_m128h(r, e); |
| 24362 | } |
| 24363 | |
| 24364 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24365 | fn test_mm256_permutexvar_ph() { |
| 24366 | let a = _mm256_set_ph( |
| 24367 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24368 | ); |
| 24369 | let idx = _mm256_set_epi16(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15); |
| 24370 | let r = _mm256_permutexvar_ph(idx, a); |
| 24371 | let e = _mm256_setr_ph( |
| 24372 | 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, |
| 24373 | ); |
| 24374 | assert_eq_m256h(r, e); |
| 24375 | } |
| 24376 | |
| 24377 | #[simd_test(enable = "avx512fp16" )] |
| 24378 | fn test_mm512_permutexvar_ph() { |
| 24379 | let a = _mm512_set_ph( |
| 24380 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24381 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24382 | 31.0, 32.0, |
| 24383 | ); |
| 24384 | let idx = _mm512_set_epi16( |
| 24385 | 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 1, 3, 5, 7, 9, 11, 13, 15, |
| 24386 | 17, 19, 21, 23, 25, 27, 29, 31, |
| 24387 | ); |
| 24388 | let r = _mm512_permutexvar_ph(idx, a); |
| 24389 | let e = _mm512_setr_ph( |
| 24390 | 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0, 27.0, 29.0, |
| 24391 | 31.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0, |
| 24392 | 30.0, 32.0, |
| 24393 | ); |
| 24394 | assert_eq_m512h(r, e); |
| 24395 | } |
| 24396 | |
| 24397 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24398 | fn test_mm_cvtepi16_ph() { |
| 24399 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24400 | let r = _mm_cvtepi16_ph(a); |
| 24401 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24402 | assert_eq_m128h(r, e); |
| 24403 | } |
| 24404 | |
| 24405 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24406 | fn test_mm_mask_cvtepi16_ph() { |
| 24407 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24408 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24409 | let r = _mm_mask_cvtepi16_ph(src, 0b01010101, a); |
| 24410 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 24411 | assert_eq_m128h(r, e); |
| 24412 | } |
| 24413 | |
| 24414 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24415 | fn test_mm_maskz_cvtepi16_ph() { |
| 24416 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24417 | let r = _mm_maskz_cvtepi16_ph(0b01010101, a); |
| 24418 | let e = _mm_set_ph(0., 2., 0., 4., 0., 6., 0., 8.); |
| 24419 | assert_eq_m128h(r, e); |
| 24420 | } |
| 24421 | |
| 24422 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24423 | fn test_mm256_cvtepi16_ph() { |
| 24424 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24425 | let r = _mm256_cvtepi16_ph(a); |
| 24426 | let e = _mm256_set_ph( |
| 24427 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24428 | ); |
| 24429 | assert_eq_m256h(r, e); |
| 24430 | } |
| 24431 | |
| 24432 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24433 | fn test_mm256_mask_cvtepi16_ph() { |
| 24434 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24435 | let src = _mm256_set_ph( |
| 24436 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24437 | ); |
| 24438 | let r = _mm256_mask_cvtepi16_ph(src, 0b0101010101010101, a); |
| 24439 | let e = _mm256_set_ph( |
| 24440 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., |
| 24441 | ); |
| 24442 | assert_eq_m256h(r, e); |
| 24443 | } |
| 24444 | |
| 24445 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24446 | fn test_mm256_maskz_cvtepi16_ph() { |
| 24447 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24448 | let r = _mm256_maskz_cvtepi16_ph(0b0101010101010101, a); |
| 24449 | let e = _mm256_set_ph( |
| 24450 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., |
| 24451 | ); |
| 24452 | assert_eq_m256h(r, e); |
| 24453 | } |
| 24454 | |
| 24455 | #[simd_test(enable = "avx512fp16" )] |
| 24456 | fn test_mm512_cvtepi16_ph() { |
| 24457 | let a = _mm512_set_epi16( |
| 24458 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24459 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24460 | ); |
| 24461 | let r = _mm512_cvtepi16_ph(a); |
| 24462 | let e = _mm512_set_ph( |
| 24463 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24464 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24465 | 31.0, 32.0, |
| 24466 | ); |
| 24467 | assert_eq_m512h(r, e); |
| 24468 | } |
| 24469 | |
| 24470 | #[simd_test(enable = "avx512fp16" )] |
| 24471 | fn test_mm512_mask_cvtepi16_ph() { |
| 24472 | let a = _mm512_set_epi16( |
| 24473 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24474 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24475 | ); |
| 24476 | let src = _mm512_set_ph( |
| 24477 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., |
| 24478 | 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., |
| 24479 | ); |
| 24480 | let r = _mm512_mask_cvtepi16_ph(src, 0b01010101010101010101010101010101, a); |
| 24481 | let e = _mm512_set_ph( |
| 24482 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., 26., 18., |
| 24483 | 28., 20., 30., 22., 32., 24., 34., 26., 36., 28., 38., 30., 40., 32., |
| 24484 | ); |
| 24485 | assert_eq_m512h(r, e); |
| 24486 | } |
| 24487 | |
| 24488 | #[simd_test(enable = "avx512fp16" )] |
| 24489 | fn test_mm512_maskz_cvtepi16_ph() { |
| 24490 | let a = _mm512_set_epi16( |
| 24491 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24492 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24493 | ); |
| 24494 | let r = _mm512_maskz_cvtepi16_ph(0b01010101010101010101010101010101, a); |
| 24495 | let e = _mm512_set_ph( |
| 24496 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., 0., 18., 0., 20., |
| 24497 | 0., 22., 0., 24., 0., 26., 0., 28., 0., 30., 0., 32., |
| 24498 | ); |
| 24499 | assert_eq_m512h(r, e); |
| 24500 | } |
| 24501 | |
| 24502 | #[simd_test(enable = "avx512fp16" )] |
| 24503 | fn test_mm512_cvt_roundepi16_ph() { |
| 24504 | let a = _mm512_set_epi16( |
| 24505 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24506 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24507 | ); |
| 24508 | let r = _mm512_cvt_roundepi16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 24509 | let e = _mm512_set_ph( |
| 24510 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24511 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24512 | 31.0, 32.0, |
| 24513 | ); |
| 24514 | assert_eq_m512h(r, e); |
| 24515 | } |
| 24516 | |
| 24517 | #[simd_test(enable = "avx512fp16" )] |
| 24518 | fn test_mm512_mask_cvt_roundepi16_ph() { |
| 24519 | let a = _mm512_set_epi16( |
| 24520 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24521 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24522 | ); |
| 24523 | let src = _mm512_set_ph( |
| 24524 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., |
| 24525 | 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., |
| 24526 | ); |
| 24527 | let r = _mm512_mask_cvt_roundepi16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24528 | src, |
| 24529 | 0b01010101010101010101010101010101, |
| 24530 | a, |
| 24531 | ); |
| 24532 | let e = _mm512_set_ph( |
| 24533 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., 26., 18., |
| 24534 | 28., 20., 30., 22., 32., 24., 34., 26., 36., 28., 38., 30., 40., 32., |
| 24535 | ); |
| 24536 | assert_eq_m512h(r, e); |
| 24537 | } |
| 24538 | |
| 24539 | #[simd_test(enable = "avx512fp16" )] |
| 24540 | fn test_mm512_maskz_cvt_roundepi16_ph() { |
| 24541 | let a = _mm512_set_epi16( |
| 24542 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24543 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24544 | ); |
| 24545 | let r = _mm512_maskz_cvt_roundepi16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24546 | 0b01010101010101010101010101010101, |
| 24547 | a, |
| 24548 | ); |
| 24549 | let e = _mm512_set_ph( |
| 24550 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., 0., 18., 0., 20., |
| 24551 | 0., 22., 0., 24., 0., 26., 0., 28., 0., 30., 0., 32., |
| 24552 | ); |
| 24553 | assert_eq_m512h(r, e); |
| 24554 | } |
| 24555 | |
| 24556 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24557 | fn test_mm_cvtepu16_ph() { |
| 24558 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24559 | let r = _mm_cvtepu16_ph(a); |
| 24560 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24561 | assert_eq_m128h(r, e); |
| 24562 | } |
| 24563 | |
| 24564 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24565 | fn test_mm_mask_cvtepu16_ph() { |
| 24566 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24567 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24568 | let r = _mm_mask_cvtepu16_ph(src, 0b01010101, a); |
| 24569 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 24570 | assert_eq_m128h(r, e); |
| 24571 | } |
| 24572 | |
| 24573 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24574 | fn test_mm_maskz_cvtepu16_ph() { |
| 24575 | let a = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 24576 | let r = _mm_maskz_cvtepu16_ph(0b01010101, a); |
| 24577 | let e = _mm_set_ph(0., 2., 0., 4., 0., 6., 0., 8.); |
| 24578 | assert_eq_m128h(r, e); |
| 24579 | } |
| 24580 | |
| 24581 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24582 | fn test_mm256_cvtepu16_ph() { |
| 24583 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24584 | let r = _mm256_cvtepu16_ph(a); |
| 24585 | let e = _mm256_set_ph( |
| 24586 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24587 | ); |
| 24588 | assert_eq_m256h(r, e); |
| 24589 | } |
| 24590 | |
| 24591 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24592 | fn test_mm256_mask_cvtepu16_ph() { |
| 24593 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24594 | let src = _mm256_set_ph( |
| 24595 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24596 | ); |
| 24597 | let r = _mm256_mask_cvtepu16_ph(src, 0b0101010101010101, a); |
| 24598 | let e = _mm256_set_ph( |
| 24599 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., |
| 24600 | ); |
| 24601 | assert_eq_m256h(r, e); |
| 24602 | } |
| 24603 | |
| 24604 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24605 | fn test_mm256_maskz_cvtepu16_ph() { |
| 24606 | let a = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24607 | let r = _mm256_maskz_cvtepu16_ph(0b0101010101010101, a); |
| 24608 | let e = _mm256_set_ph( |
| 24609 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., |
| 24610 | ); |
| 24611 | assert_eq_m256h(r, e); |
| 24612 | } |
| 24613 | |
| 24614 | #[simd_test(enable = "avx512fp16" )] |
| 24615 | fn test_mm512_cvtepu16_ph() { |
| 24616 | let a = _mm512_set_epi16( |
| 24617 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24618 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24619 | ); |
| 24620 | let r = _mm512_cvtepu16_ph(a); |
| 24621 | let e = _mm512_set_ph( |
| 24622 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24623 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24624 | 31.0, 32.0, |
| 24625 | ); |
| 24626 | assert_eq_m512h(r, e); |
| 24627 | } |
| 24628 | |
| 24629 | #[simd_test(enable = "avx512fp16" )] |
| 24630 | fn test_mm512_mask_cvtepu16_ph() { |
| 24631 | let a = _mm512_set_epi16( |
| 24632 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24633 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24634 | ); |
| 24635 | let src = _mm512_set_ph( |
| 24636 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., |
| 24637 | 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., |
| 24638 | ); |
| 24639 | let r = _mm512_mask_cvtepu16_ph(src, 0b01010101010101010101010101010101, a); |
| 24640 | let e = _mm512_set_ph( |
| 24641 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., 26., 18., |
| 24642 | 28., 20., 30., 22., 32., 24., 34., 26., 36., 28., 38., 30., 40., 32., |
| 24643 | ); |
| 24644 | assert_eq_m512h(r, e); |
| 24645 | } |
| 24646 | |
| 24647 | #[simd_test(enable = "avx512fp16" )] |
| 24648 | fn test_mm512_maskz_cvtepu16_ph() { |
| 24649 | let a = _mm512_set_epi16( |
| 24650 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24651 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24652 | ); |
| 24653 | let r = _mm512_maskz_cvtepu16_ph(0b01010101010101010101010101010101, a); |
| 24654 | let e = _mm512_set_ph( |
| 24655 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., 0., 18., 0., 20., |
| 24656 | 0., 22., 0., 24., 0., 26., 0., 28., 0., 30., 0., 32., |
| 24657 | ); |
| 24658 | assert_eq_m512h(r, e); |
| 24659 | } |
| 24660 | |
| 24661 | #[simd_test(enable = "avx512fp16" )] |
| 24662 | fn test_mm512_cvt_roundepu16_ph() { |
| 24663 | let a = _mm512_set_epi16( |
| 24664 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24665 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24666 | ); |
| 24667 | let r = _mm512_cvt_roundepu16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 24668 | let e = _mm512_set_ph( |
| 24669 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24670 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 24671 | 31.0, 32.0, |
| 24672 | ); |
| 24673 | assert_eq_m512h(r, e); |
| 24674 | } |
| 24675 | |
| 24676 | #[simd_test(enable = "avx512fp16" )] |
| 24677 | fn test_mm512_mask_cvt_roundepu16_ph() { |
| 24678 | let a = _mm512_set_epi16( |
| 24679 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24680 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24681 | ); |
| 24682 | let src = _mm512_set_ph( |
| 24683 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., |
| 24684 | 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., |
| 24685 | ); |
| 24686 | let r = _mm512_mask_cvt_roundepu16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24687 | src, |
| 24688 | 0b01010101010101010101010101010101, |
| 24689 | a, |
| 24690 | ); |
| 24691 | let e = _mm512_set_ph( |
| 24692 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., 26., 18., |
| 24693 | 28., 20., 30., 22., 32., 24., 34., 26., 36., 28., 38., 30., 40., 32., |
| 24694 | ); |
| 24695 | assert_eq_m512h(r, e); |
| 24696 | } |
| 24697 | |
| 24698 | #[simd_test(enable = "avx512fp16" )] |
| 24699 | fn test_mm512_maskz_cvt_roundepu16_ph() { |
| 24700 | let a = _mm512_set_epi16( |
| 24701 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 24702 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 24703 | ); |
| 24704 | let r = _mm512_maskz_cvt_roundepu16_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24705 | 0b01010101010101010101010101010101, |
| 24706 | a, |
| 24707 | ); |
| 24708 | let e = _mm512_set_ph( |
| 24709 | 0., 2., 0., 4., 0., 6., 0., 8., 0., 10., 0., 12., 0., 14., 0., 16., 0., 18., 0., 20., |
| 24710 | 0., 22., 0., 24., 0., 26., 0., 28., 0., 30., 0., 32., |
| 24711 | ); |
| 24712 | assert_eq_m512h(r, e); |
| 24713 | } |
| 24714 | |
| 24715 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24716 | fn test_mm_cvtepi32_ph() { |
| 24717 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24718 | let r = _mm_cvtepi32_ph(a); |
| 24719 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 24720 | assert_eq_m128h(r, e); |
| 24721 | } |
| 24722 | |
| 24723 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24724 | fn test_mm_mask_cvtepi32_ph() { |
| 24725 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24726 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24727 | let r = _mm_mask_cvtepi32_ph(src, 0b0101, a); |
| 24728 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2., 16., 4.); |
| 24729 | assert_eq_m128h(r, e); |
| 24730 | } |
| 24731 | |
| 24732 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24733 | fn test_mm_maskz_cvtepi32_ph() { |
| 24734 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24735 | let r = _mm_maskz_cvtepi32_ph(0b0101, a); |
| 24736 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2., 0.0, 4.); |
| 24737 | assert_eq_m128h(r, e); |
| 24738 | } |
| 24739 | |
| 24740 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24741 | fn test_mm256_cvtepi32_ph() { |
| 24742 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24743 | let r = _mm256_cvtepi32_ph(a); |
| 24744 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24745 | assert_eq_m128h(r, e); |
| 24746 | } |
| 24747 | |
| 24748 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24749 | fn test_mm256_mask_cvtepi32_ph() { |
| 24750 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24751 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24752 | let r = _mm256_mask_cvtepi32_ph(src, 0b01010101, a); |
| 24753 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 24754 | assert_eq_m128h(r, e); |
| 24755 | } |
| 24756 | |
| 24757 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24758 | fn test_mm256_maskz_cvtepi32_ph() { |
| 24759 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24760 | let r = _mm256_maskz_cvtepi32_ph(0b01010101, a); |
| 24761 | let e = _mm_set_ph(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 24762 | assert_eq_m128h(r, e); |
| 24763 | } |
| 24764 | |
| 24765 | #[simd_test(enable = "avx512fp16" )] |
| 24766 | fn test_mm512_cvtepi32_ph() { |
| 24767 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24768 | let r = _mm512_cvtepi32_ph(a); |
| 24769 | let e = _mm256_set_ph( |
| 24770 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24771 | ); |
| 24772 | assert_eq_m256h(r, e); |
| 24773 | } |
| 24774 | |
| 24775 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24776 | fn test_mm512_mask_cvtepi32_ph() { |
| 24777 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24778 | let src = _mm256_set_ph( |
| 24779 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24780 | ); |
| 24781 | let r = _mm512_mask_cvtepi32_ph(src, 0b0101010101010101, a); |
| 24782 | let e = _mm256_set_ph( |
| 24783 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., |
| 24784 | ); |
| 24785 | assert_eq_m256h(r, e); |
| 24786 | } |
| 24787 | |
| 24788 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24789 | fn test_mm512_maskz_cvtepi32_ph() { |
| 24790 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24791 | let r = _mm512_maskz_cvtepi32_ph(0b0101010101010101, a); |
| 24792 | let e = _mm256_set_ph( |
| 24793 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 24794 | ); |
| 24795 | assert_eq_m256h(r, e); |
| 24796 | } |
| 24797 | |
| 24798 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24799 | fn test_mm512_cvt_roundepi32_ph() { |
| 24800 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24801 | let r = _mm512_cvt_roundepi32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 24802 | let e = _mm256_set_ph( |
| 24803 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24804 | ); |
| 24805 | assert_eq_m256h(r, e); |
| 24806 | } |
| 24807 | |
| 24808 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24809 | fn test_mm512_mask_cvt_roundepi32_ph() { |
| 24810 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24811 | let src = _mm256_set_ph( |
| 24812 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24813 | ); |
| 24814 | let r = _mm512_mask_cvt_roundepi32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24815 | src, |
| 24816 | 0b0101010101010101, |
| 24817 | a, |
| 24818 | ); |
| 24819 | let e = _mm256_set_ph( |
| 24820 | 10., 2., 12., 4., 14., 6., 16., 8., 18., 10., 20., 12., 22., 14., 24., 16., |
| 24821 | ); |
| 24822 | assert_eq_m256h(r, e); |
| 24823 | } |
| 24824 | |
| 24825 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24826 | fn test_mm512_maskz_cvt_roundepi32_ph() { |
| 24827 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24828 | let r = _mm512_maskz_cvt_roundepi32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24829 | 0b0101010101010101, |
| 24830 | a, |
| 24831 | ); |
| 24832 | let e = _mm256_set_ph( |
| 24833 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 24834 | ); |
| 24835 | assert_eq_m256h(r, e); |
| 24836 | } |
| 24837 | |
| 24838 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24839 | fn test_mm_cvti32_sh() { |
| 24840 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24841 | let r = _mm_cvti32_sh(a, 10); |
| 24842 | let e = _mm_setr_ph(10.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24843 | assert_eq_m128h(r, e); |
| 24844 | } |
| 24845 | |
| 24846 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24847 | fn test_mm_cvt_roundi32_sh() { |
| 24848 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24849 | let r = _mm_cvt_roundi32_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, 10); |
| 24850 | let e = _mm_setr_ph(10.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24851 | assert_eq_m128h(r, e); |
| 24852 | } |
| 24853 | |
| 24854 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24855 | fn test_mm_cvtepu32_ph() { |
| 24856 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24857 | let r = _mm_cvtepu32_ph(a); |
| 24858 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 24859 | assert_eq_m128h(r, e); |
| 24860 | } |
| 24861 | |
| 24862 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24863 | fn test_mm_mask_cvtepu32_ph() { |
| 24864 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24865 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24866 | let r = _mm_mask_cvtepu32_ph(src, 0b0101, a); |
| 24867 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2., 16., 4.); |
| 24868 | assert_eq_m128h(r, e); |
| 24869 | } |
| 24870 | |
| 24871 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24872 | fn test_mm_maskz_cvtepu32_ph() { |
| 24873 | let a = _mm_set_epi32(1, 2, 3, 4); |
| 24874 | let r = _mm_maskz_cvtepu32_ph(0b0101, a); |
| 24875 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2., 0.0, 4.); |
| 24876 | assert_eq_m128h(r, e); |
| 24877 | } |
| 24878 | |
| 24879 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24880 | fn test_mm256_cvtepu32_ph() { |
| 24881 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24882 | let r = _mm256_cvtepu32_ph(a); |
| 24883 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24884 | assert_eq_m128h(r, e); |
| 24885 | } |
| 24886 | |
| 24887 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24888 | fn test_mm256_mask_cvtepu32_ph() { |
| 24889 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24890 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 24891 | let r = _mm256_mask_cvtepu32_ph(src, 0b01010101, a); |
| 24892 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 24893 | assert_eq_m128h(r, e); |
| 24894 | } |
| 24895 | |
| 24896 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24897 | fn test_mm256_maskz_cvtepu32_ph() { |
| 24898 | let a = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 24899 | let r = _mm256_maskz_cvtepu32_ph(0b01010101, a); |
| 24900 | let e = _mm_set_ph(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 24901 | assert_eq_m128h(r, e); |
| 24902 | } |
| 24903 | |
| 24904 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24905 | fn test_mm512_cvtepu32_ph() { |
| 24906 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24907 | let r = _mm512_cvtepu32_ph(a); |
| 24908 | let e = _mm256_set_ph( |
| 24909 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24910 | ); |
| 24911 | assert_eq_m256h(r, e); |
| 24912 | } |
| 24913 | |
| 24914 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24915 | fn test_mm512_mask_cvtepu32_ph() { |
| 24916 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24917 | let src = _mm256_set_ph( |
| 24918 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24919 | ); |
| 24920 | let r = _mm512_mask_cvtepu32_ph(src, 0b0101010101010101, a); |
| 24921 | let e = _mm256_set_ph( |
| 24922 | 10., 2.0, 12., 4.0, 14., 6.0, 16., 8.0, 18., 10.0, 20., 12.0, 22., 14.0, 24., 16.0, |
| 24923 | ); |
| 24924 | assert_eq_m256h(r, e); |
| 24925 | } |
| 24926 | |
| 24927 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24928 | fn test_mm512_maskz_cvtepu32_ph() { |
| 24929 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24930 | let r = _mm512_maskz_cvtepu32_ph(0b0101010101010101, a); |
| 24931 | let e = _mm256_set_ph( |
| 24932 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 24933 | ); |
| 24934 | assert_eq_m256h(r, e); |
| 24935 | } |
| 24936 | |
| 24937 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24938 | fn test_mm512_cvt_roundepu32_ph() { |
| 24939 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24940 | let r = _mm512_cvt_roundepu32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 24941 | let e = _mm256_set_ph( |
| 24942 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 24943 | ); |
| 24944 | assert_eq_m256h(r, e); |
| 24945 | } |
| 24946 | |
| 24947 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24948 | fn test_mm512_mask_cvt_roundepu32_ph() { |
| 24949 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24950 | let src = _mm256_set_ph( |
| 24951 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 24952 | ); |
| 24953 | let r = _mm512_mask_cvt_roundepu32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24954 | src, |
| 24955 | 0b0101010101010101, |
| 24956 | a, |
| 24957 | ); |
| 24958 | let e = _mm256_set_ph( |
| 24959 | 10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0, 18.0, 10.0, 20.0, 12.0, 22.0, 14.0, 24.0, |
| 24960 | 16.0, |
| 24961 | ); |
| 24962 | assert_eq_m256h(r, e); |
| 24963 | } |
| 24964 | |
| 24965 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24966 | fn test_mm512_maskz_cvt_roundepu32_ph() { |
| 24967 | let a = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 24968 | let r = _mm512_maskz_cvt_roundepu32_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 24969 | 0b0101010101010101, |
| 24970 | a, |
| 24971 | ); |
| 24972 | let e = _mm256_set_ph( |
| 24973 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 24974 | ); |
| 24975 | assert_eq_m256h(r, e); |
| 24976 | } |
| 24977 | |
| 24978 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24979 | fn test_mm_cvtu32_sh() { |
| 24980 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24981 | let r = _mm_cvtu32_sh(a, 10); |
| 24982 | let e = _mm_setr_ph(10.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24983 | assert_eq_m128h(r, e); |
| 24984 | } |
| 24985 | |
| 24986 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24987 | fn test_mm_cvt_roundu32_sh() { |
| 24988 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24989 | let r = _mm_cvt_roundu32_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, 10); |
| 24990 | let e = _mm_setr_ph(10.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 24991 | assert_eq_m128h(r, e); |
| 24992 | } |
| 24993 | |
| 24994 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 24995 | fn test_mm_cvtepi64_ph() { |
| 24996 | let a = _mm_set_epi64x(1, 2); |
| 24997 | let r = _mm_cvtepi64_ph(a); |
| 24998 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 24999 | assert_eq_m128h(r, e); |
| 25000 | } |
| 25001 | |
| 25002 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25003 | fn test_mm_mask_cvtepi64_ph() { |
| 25004 | let a = _mm_set_epi64x(1, 2); |
| 25005 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25006 | let r = _mm_mask_cvtepi64_ph(src, 0b01, a); |
| 25007 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 16., 2.); |
| 25008 | assert_eq_m128h(r, e); |
| 25009 | } |
| 25010 | |
| 25011 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25012 | fn test_mm_maskz_cvtepi64_ph() { |
| 25013 | let a = _mm_set_epi64x(1, 2); |
| 25014 | let r = _mm_maskz_cvtepi64_ph(0b01, a); |
| 25015 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.); |
| 25016 | assert_eq_m128h(r, e); |
| 25017 | } |
| 25018 | |
| 25019 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25020 | fn test_mm256_cvtepi64_ph() { |
| 25021 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25022 | let r = _mm256_cvtepi64_ph(a); |
| 25023 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 25024 | assert_eq_m128h(r, e); |
| 25025 | } |
| 25026 | |
| 25027 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25028 | fn test_mm256_mask_cvtepi64_ph() { |
| 25029 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25030 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25031 | let r = _mm256_mask_cvtepi64_ph(src, 0b0101, a); |
| 25032 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2.0, 16.0, 4.0); |
| 25033 | assert_eq_m128h(r, e); |
| 25034 | } |
| 25035 | |
| 25036 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25037 | fn test_mm256_maskz_cvtepi64_ph() { |
| 25038 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25039 | let r = _mm256_maskz_cvtepi64_ph(0b0101, a); |
| 25040 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 4.0); |
| 25041 | assert_eq_m128h(r, e); |
| 25042 | } |
| 25043 | |
| 25044 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25045 | fn test_mm512_cvtepi64_ph() { |
| 25046 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25047 | let r = _mm512_cvtepi64_ph(a); |
| 25048 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25049 | assert_eq_m128h(r, e); |
| 25050 | } |
| 25051 | |
| 25052 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25053 | fn test_mm512_mask_cvtepi64_ph() { |
| 25054 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25055 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25056 | let r = _mm512_mask_cvtepi64_ph(src, 0b01010101, a); |
| 25057 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25058 | assert_eq_m128h(r, e); |
| 25059 | } |
| 25060 | |
| 25061 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25062 | fn test_mm512_maskz_cvtepi64_ph() { |
| 25063 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25064 | let r = _mm512_maskz_cvtepi64_ph(0b01010101, a); |
| 25065 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25066 | assert_eq_m128h(r, e); |
| 25067 | } |
| 25068 | |
| 25069 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25070 | fn test_mm512_cvt_roundepi64_ph() { |
| 25071 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25072 | let r = _mm512_cvt_roundepi64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 25073 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25074 | assert_eq_m128h(r, e); |
| 25075 | } |
| 25076 | |
| 25077 | #[simd_test(enable = "avx512fp16" )] |
| 25078 | fn test_mm512_mask_cvt_roundepi64_ph() { |
| 25079 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25080 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25081 | let r = _mm512_mask_cvt_roundepi64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25082 | src, 0b01010101, a, |
| 25083 | ); |
| 25084 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25085 | assert_eq_m128h(r, e); |
| 25086 | } |
| 25087 | |
| 25088 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25089 | fn test_mm512_maskz_cvt_roundepi64_ph() { |
| 25090 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25091 | let r = _mm512_maskz_cvt_roundepi64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25092 | 0b01010101, a, |
| 25093 | ); |
| 25094 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25095 | assert_eq_m128h(r, e); |
| 25096 | } |
| 25097 | |
| 25098 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25099 | fn test_mm_cvtepu64_ph() { |
| 25100 | let a = _mm_set_epi64x(1, 2); |
| 25101 | let r = _mm_cvtepu64_ph(a); |
| 25102 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 25103 | assert_eq_m128h(r, e); |
| 25104 | } |
| 25105 | |
| 25106 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25107 | fn test_mm_mask_cvtepu64_ph() { |
| 25108 | let a = _mm_set_epi64x(1, 2); |
| 25109 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25110 | let r = _mm_mask_cvtepu64_ph(src, 0b01, a); |
| 25111 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 16., 2.); |
| 25112 | assert_eq_m128h(r, e); |
| 25113 | } |
| 25114 | |
| 25115 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25116 | fn test_mm_maskz_cvtepu64_ph() { |
| 25117 | let a = _mm_set_epi64x(1, 2); |
| 25118 | let r = _mm_maskz_cvtepu64_ph(0b01, a); |
| 25119 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0); |
| 25120 | assert_eq_m128h(r, e); |
| 25121 | } |
| 25122 | |
| 25123 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25124 | fn test_mm256_cvtepu64_ph() { |
| 25125 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25126 | let r = _mm256_cvtepu64_ph(a); |
| 25127 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 25128 | assert_eq_m128h(r, e); |
| 25129 | } |
| 25130 | |
| 25131 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25132 | fn test_mm256_mask_cvtepu64_ph() { |
| 25133 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25134 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25135 | let r = _mm256_mask_cvtepu64_ph(src, 0b0101, a); |
| 25136 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2.0, 16.0, 4.0); |
| 25137 | assert_eq_m128h(r, e); |
| 25138 | } |
| 25139 | |
| 25140 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25141 | fn test_mm256_maskz_cvtepu64_ph() { |
| 25142 | let a = _mm256_set_epi64x(1, 2, 3, 4); |
| 25143 | let r = _mm256_maskz_cvtepu64_ph(0b0101, a); |
| 25144 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 4.0); |
| 25145 | assert_eq_m128h(r, e); |
| 25146 | } |
| 25147 | |
| 25148 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25149 | fn test_mm512_cvtepu64_ph() { |
| 25150 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25151 | let r = _mm512_cvtepu64_ph(a); |
| 25152 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25153 | assert_eq_m128h(r, e); |
| 25154 | } |
| 25155 | |
| 25156 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25157 | fn test_mm512_mask_cvtepu64_ph() { |
| 25158 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25159 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25160 | let r = _mm512_mask_cvtepu64_ph(src, 0b01010101, a); |
| 25161 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25162 | assert_eq_m128h(r, e); |
| 25163 | } |
| 25164 | |
| 25165 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25166 | fn test_mm512_maskz_cvtepu64_ph() { |
| 25167 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25168 | let r = _mm512_maskz_cvtepu64_ph(0b01010101, a); |
| 25169 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25170 | assert_eq_m128h(r, e); |
| 25171 | } |
| 25172 | |
| 25173 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25174 | fn test_mm512_cvt_roundepu64_ph() { |
| 25175 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25176 | let r = _mm512_cvt_roundepu64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 25177 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25178 | assert_eq_m128h(r, e); |
| 25179 | } |
| 25180 | |
| 25181 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25182 | fn test_mm512_mask_cvt_roundepu64_ph() { |
| 25183 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25184 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25185 | let r = _mm512_mask_cvt_roundepu64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25186 | src, 0b01010101, a, |
| 25187 | ); |
| 25188 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25189 | assert_eq_m128h(r, e); |
| 25190 | } |
| 25191 | |
| 25192 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25193 | fn test_mm512_maskz_cvt_roundepu64_ph() { |
| 25194 | let a = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 25195 | let r = _mm512_maskz_cvt_roundepu64_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25196 | 0b01010101, a, |
| 25197 | ); |
| 25198 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25199 | assert_eq_m128h(r, e); |
| 25200 | } |
| 25201 | |
| 25202 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25203 | fn test_mm_cvtxps_ph() { |
| 25204 | let a = _mm_set_ps(1.0, 2.0, 3.0, 4.0); |
| 25205 | let r = _mm_cvtxps_ph(a); |
| 25206 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 25207 | assert_eq_m128h(r, e); |
| 25208 | } |
| 25209 | |
| 25210 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25211 | fn test_mm_mask_cvtxps_ph() { |
| 25212 | let a = _mm_set_ps(1.0, 2.0, 3.0, 4.0); |
| 25213 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25214 | let r = _mm_mask_cvtxps_ph(src, 0b0101, a); |
| 25215 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2.0, 16., 4.0); |
| 25216 | assert_eq_m128h(r, e); |
| 25217 | } |
| 25218 | |
| 25219 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25220 | fn test_mm_maskz_cvtxps_ph() { |
| 25221 | let a = _mm_set_ps(1.0, 2.0, 3.0, 4.0); |
| 25222 | let r = _mm_maskz_cvtxps_ph(0b0101, a); |
| 25223 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 4.0); |
| 25224 | assert_eq_m128h(r, e); |
| 25225 | } |
| 25226 | |
| 25227 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25228 | fn test_mm256_cvtxps_ph() { |
| 25229 | let a = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25230 | let r = _mm256_cvtxps_ph(a); |
| 25231 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25232 | assert_eq_m128h(r, e); |
| 25233 | } |
| 25234 | |
| 25235 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25236 | fn test_mm256_mask_cvtxps_ph() { |
| 25237 | let a = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25238 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25239 | let r = _mm256_mask_cvtxps_ph(src, 0b01010101, a); |
| 25240 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25241 | assert_eq_m128h(r, e); |
| 25242 | } |
| 25243 | |
| 25244 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25245 | fn test_mm256_maskz_cvtxps_ph() { |
| 25246 | let a = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25247 | let r = _mm256_maskz_cvtxps_ph(0b01010101, a); |
| 25248 | let e = _mm_set_ph(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 25249 | assert_eq_m128h(r, e); |
| 25250 | } |
| 25251 | |
| 25252 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25253 | fn test_mm512_cvtxps_ph() { |
| 25254 | let a = _mm512_set_ps( |
| 25255 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25256 | ); |
| 25257 | let r = _mm512_cvtxps_ph(a); |
| 25258 | let e = _mm256_set_ph( |
| 25259 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25260 | ); |
| 25261 | assert_eq_m256h(r, e); |
| 25262 | } |
| 25263 | |
| 25264 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25265 | fn test_mm512_mask_cvtxps_ph() { |
| 25266 | let a = _mm512_set_ps( |
| 25267 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25268 | ); |
| 25269 | let src = _mm256_set_ph( |
| 25270 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 25271 | ); |
| 25272 | let r = _mm512_mask_cvtxps_ph(src, 0b0101010101010101, a); |
| 25273 | let e = _mm256_set_ph( |
| 25274 | 10., 2.0, 12., 4.0, 14., 6.0, 16., 8.0, 18., 10.0, 20., 12.0, 22., 14.0, 24., 16.0, |
| 25275 | ); |
| 25276 | assert_eq_m256h(r, e); |
| 25277 | } |
| 25278 | |
| 25279 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25280 | fn test_mm512_maskz_cvtxps_ph() { |
| 25281 | let a = _mm512_set_ps( |
| 25282 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25283 | ); |
| 25284 | let r = _mm512_maskz_cvtxps_ph(0b0101010101010101, a); |
| 25285 | let e = _mm256_set_ph( |
| 25286 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 25287 | ); |
| 25288 | assert_eq_m256h(r, e); |
| 25289 | } |
| 25290 | |
| 25291 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25292 | fn test_mm512_cvtx_roundps_ph() { |
| 25293 | let a = _mm512_set_ps( |
| 25294 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25295 | ); |
| 25296 | let r = _mm512_cvtx_roundps_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 25297 | let e = _mm256_set_ph( |
| 25298 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25299 | ); |
| 25300 | assert_eq_m256h(r, e); |
| 25301 | } |
| 25302 | |
| 25303 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25304 | fn test_mm512_mask_cvtx_roundps_ph() { |
| 25305 | let a = _mm512_set_ps( |
| 25306 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25307 | ); |
| 25308 | let src = _mm256_set_ph( |
| 25309 | 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., |
| 25310 | ); |
| 25311 | let r = _mm512_mask_cvtx_roundps_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25312 | src, |
| 25313 | 0b0101010101010101, |
| 25314 | a, |
| 25315 | ); |
| 25316 | let e = _mm256_set_ph( |
| 25317 | 10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0, 18.0, 10.0, 20.0, 12.0, 22.0, 14.0, 24.0, |
| 25318 | 16.0, |
| 25319 | ); |
| 25320 | assert_eq_m256h(r, e); |
| 25321 | } |
| 25322 | |
| 25323 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25324 | fn test_mm512_maskz_cvtx_roundps_ph() { |
| 25325 | let a = _mm512_set_ps( |
| 25326 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25327 | ); |
| 25328 | let r = _mm512_maskz_cvtx_roundps_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25329 | 0b0101010101010101, |
| 25330 | a, |
| 25331 | ); |
| 25332 | let e = _mm256_set_ph( |
| 25333 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 25334 | ); |
| 25335 | assert_eq_m256h(r, e); |
| 25336 | } |
| 25337 | |
| 25338 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25339 | fn test_mm_cvtss_sh() { |
| 25340 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25341 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25342 | let r = _mm_cvtss_sh(a, b); |
| 25343 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25344 | assert_eq_m128h(r, e); |
| 25345 | } |
| 25346 | |
| 25347 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25348 | fn test_mm_mask_cvtss_sh() { |
| 25349 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25350 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25351 | let src = _mm_setr_ph(20., 21., 22., 23., 24., 25., 26., 27.); |
| 25352 | let r = _mm_mask_cvtss_sh(src, 0, a, b); |
| 25353 | let e = _mm_setr_ph(20., 11., 12., 13., 14., 15., 16., 17.); |
| 25354 | assert_eq_m128h(r, e); |
| 25355 | let r = _mm_mask_cvtss_sh(src, 1, a, b); |
| 25356 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25357 | assert_eq_m128h(r, e); |
| 25358 | } |
| 25359 | |
| 25360 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25361 | fn test_mm_maskz_cvtss_sh() { |
| 25362 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25363 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25364 | let r = _mm_maskz_cvtss_sh(0, a, b); |
| 25365 | let e = _mm_setr_ph(0.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25366 | assert_eq_m128h(r, e); |
| 25367 | let r = _mm_maskz_cvtss_sh(1, a, b); |
| 25368 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25369 | assert_eq_m128h(r, e); |
| 25370 | } |
| 25371 | |
| 25372 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25373 | fn test_mm_cvt_roundss_sh() { |
| 25374 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25375 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25376 | let r = _mm_cvt_roundss_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 25377 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25378 | assert_eq_m128h(r, e); |
| 25379 | } |
| 25380 | |
| 25381 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25382 | fn test_mm_mask_cvt_roundss_sh() { |
| 25383 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25384 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25385 | let src = _mm_setr_ph(20., 21., 22., 23., 24., 25., 26., 27.); |
| 25386 | let r = _mm_mask_cvt_roundss_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25387 | src, 0, a, b, |
| 25388 | ); |
| 25389 | let e = _mm_setr_ph(20., 11., 12., 13., 14., 15., 16., 17.); |
| 25390 | assert_eq_m128h(r, e); |
| 25391 | let r = _mm_mask_cvt_roundss_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25392 | src, 1, a, b, |
| 25393 | ); |
| 25394 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25395 | assert_eq_m128h(r, e); |
| 25396 | } |
| 25397 | |
| 25398 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25399 | fn test_mm_maskz_cvt_roundss_sh() { |
| 25400 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25401 | let b = _mm_setr_ps(1.0, 2.0, 3.0, 4.0); |
| 25402 | let r = |
| 25403 | _mm_maskz_cvt_roundss_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 25404 | let e = _mm_setr_ph(0.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25405 | assert_eq_m128h(r, e); |
| 25406 | let r = |
| 25407 | _mm_maskz_cvt_roundss_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 25408 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25409 | assert_eq_m128h(r, e); |
| 25410 | } |
| 25411 | |
| 25412 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25413 | fn test_mm_cvtpd_ph() { |
| 25414 | let a = _mm_set_pd(1.0, 2.0); |
| 25415 | let r = _mm_cvtpd_ph(a); |
| 25416 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 25417 | assert_eq_m128h(r, e); |
| 25418 | } |
| 25419 | |
| 25420 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25421 | fn test_mm_mask_cvtpd_ph() { |
| 25422 | let a = _mm_set_pd(1.0, 2.0); |
| 25423 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25424 | let r = _mm_mask_cvtpd_ph(src, 0b01, a); |
| 25425 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 16., 2.); |
| 25426 | assert_eq_m128h(r, e); |
| 25427 | } |
| 25428 | |
| 25429 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25430 | fn test_mm_maskz_cvtpd_ph() { |
| 25431 | let a = _mm_set_pd(1.0, 2.0); |
| 25432 | let r = _mm_maskz_cvtpd_ph(0b01, a); |
| 25433 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0); |
| 25434 | assert_eq_m128h(r, e); |
| 25435 | } |
| 25436 | |
| 25437 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25438 | fn test_mm256_cvtpd_ph() { |
| 25439 | let a = _mm256_set_pd(1.0, 2.0, 3.0, 4.0); |
| 25440 | let r = _mm256_cvtpd_ph(a); |
| 25441 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 25442 | assert_eq_m128h(r, e); |
| 25443 | } |
| 25444 | |
| 25445 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25446 | fn test_mm256_mask_cvtpd_ph() { |
| 25447 | let a = _mm256_set_pd(1.0, 2.0, 3.0, 4.0); |
| 25448 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25449 | let r = _mm256_mask_cvtpd_ph(src, 0b0101, a); |
| 25450 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 14., 2.0, 16.0, 4.0); |
| 25451 | assert_eq_m128h(r, e); |
| 25452 | } |
| 25453 | |
| 25454 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25455 | fn test_mm256_maskz_cvtpd_ph() { |
| 25456 | let a = _mm256_set_pd(1.0, 2.0, 3.0, 4.0); |
| 25457 | let r = _mm256_maskz_cvtpd_ph(0b0101, a); |
| 25458 | let e = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 4.0); |
| 25459 | assert_eq_m128h(r, e); |
| 25460 | } |
| 25461 | |
| 25462 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25463 | fn test_mm512_cvtpd_ph() { |
| 25464 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25465 | let r = _mm512_cvtpd_ph(a); |
| 25466 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25467 | assert_eq_m128h(r, e); |
| 25468 | } |
| 25469 | |
| 25470 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25471 | fn test_mm512_mask_cvtpd_ph() { |
| 25472 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25473 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25474 | let r = _mm512_mask_cvtpd_ph(src, 0b01010101, a); |
| 25475 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25476 | assert_eq_m128h(r, e); |
| 25477 | } |
| 25478 | |
| 25479 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25480 | fn test_mm512_maskz_cvtpd_ph() { |
| 25481 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25482 | let r = _mm512_maskz_cvtpd_ph(0b01010101, a); |
| 25483 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25484 | assert_eq_m128h(r, e); |
| 25485 | } |
| 25486 | |
| 25487 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25488 | fn test_mm512_cvt_roundpd_ph() { |
| 25489 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25490 | let r = _mm512_cvt_roundpd_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 25491 | let e = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25492 | assert_eq_m128h(r, e); |
| 25493 | } |
| 25494 | |
| 25495 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25496 | fn test_mm512_mask_cvt_roundpd_ph() { |
| 25497 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25498 | let src = _mm_set_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25499 | let r = _mm512_mask_cvt_roundpd_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25500 | src, 0b01010101, a, |
| 25501 | ); |
| 25502 | let e = _mm_set_ph(10., 2., 12., 4., 14., 6., 16., 8.); |
| 25503 | assert_eq_m128h(r, e); |
| 25504 | } |
| 25505 | |
| 25506 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25507 | fn test_mm512_maskz_cvt_roundpd_ph() { |
| 25508 | let a = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25509 | let r = _mm512_maskz_cvt_roundpd_ph::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25510 | 0b01010101, a, |
| 25511 | ); |
| 25512 | let e = _mm_set_ph(0.0, 2., 0.0, 4., 0.0, 6., 0.0, 8.); |
| 25513 | assert_eq_m128h(r, e); |
| 25514 | } |
| 25515 | |
| 25516 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25517 | fn test_mm_cvtsd_sh() { |
| 25518 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25519 | let b = _mm_setr_pd(1.0, 2.0); |
| 25520 | let r = _mm_cvtsd_sh(a, b); |
| 25521 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25522 | assert_eq_m128h(r, e); |
| 25523 | } |
| 25524 | |
| 25525 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25526 | fn test_mm_mask_cvtsd_sh() { |
| 25527 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25528 | let b = _mm_setr_pd(1.0, 2.0); |
| 25529 | let src = _mm_setr_ph(20., 21., 22., 23., 24., 25., 26., 27.); |
| 25530 | let r = _mm_mask_cvtsd_sh(src, 0, a, b); |
| 25531 | let e = _mm_setr_ph(20., 11., 12., 13., 14., 15., 16., 17.); |
| 25532 | assert_eq_m128h(r, e); |
| 25533 | let r = _mm_mask_cvtsd_sh(src, 1, a, b); |
| 25534 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25535 | assert_eq_m128h(r, e); |
| 25536 | } |
| 25537 | |
| 25538 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25539 | fn test_mm_maskz_cvtsd_sh() { |
| 25540 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25541 | let b = _mm_setr_pd(1.0, 2.0); |
| 25542 | let r = _mm_maskz_cvtsd_sh(0, a, b); |
| 25543 | let e = _mm_setr_ph(0.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25544 | assert_eq_m128h(r, e); |
| 25545 | let r = _mm_maskz_cvtsd_sh(1, a, b); |
| 25546 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25547 | assert_eq_m128h(r, e); |
| 25548 | } |
| 25549 | |
| 25550 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25551 | fn test_mm_cvt_roundsd_sh() { |
| 25552 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25553 | let b = _mm_setr_pd(1.0, 2.0); |
| 25554 | let r = _mm_cvt_roundsd_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a, b); |
| 25555 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25556 | assert_eq_m128h(r, e); |
| 25557 | } |
| 25558 | |
| 25559 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25560 | fn test_mm_mask_cvt_roundsd_sh() { |
| 25561 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25562 | let b = _mm_setr_pd(1.0, 2.0); |
| 25563 | let src = _mm_setr_ph(20., 21., 22., 23., 24., 25., 26., 27.); |
| 25564 | let r = _mm_mask_cvt_roundsd_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25565 | src, 0, a, b, |
| 25566 | ); |
| 25567 | let e = _mm_setr_ph(20., 11., 12., 13., 14., 15., 16., 17.); |
| 25568 | assert_eq_m128h(r, e); |
| 25569 | let r = _mm_mask_cvt_roundsd_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25570 | src, 1, a, b, |
| 25571 | ); |
| 25572 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25573 | assert_eq_m128h(r, e); |
| 25574 | } |
| 25575 | |
| 25576 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25577 | fn test_mm_maskz_cvt_roundsd_sh() { |
| 25578 | let a = _mm_setr_ph(10., 11., 12., 13., 14., 15., 16., 17.); |
| 25579 | let b = _mm_setr_pd(1.0, 2.0); |
| 25580 | let r = |
| 25581 | _mm_maskz_cvt_roundsd_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(0, a, b); |
| 25582 | let e = _mm_setr_ph(0.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25583 | assert_eq_m128h(r, e); |
| 25584 | let r = |
| 25585 | _mm_maskz_cvt_roundsd_sh::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(1, a, b); |
| 25586 | let e = _mm_setr_ph(1.0, 11., 12., 13., 14., 15., 16., 17.); |
| 25587 | assert_eq_m128h(r, e); |
| 25588 | } |
| 25589 | |
| 25590 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25591 | fn test_mm_cvtph_epi16() { |
| 25592 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25593 | let r = _mm_cvttph_epi16(a); |
| 25594 | let e = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 25595 | assert_eq_m128i(r, e); |
| 25596 | } |
| 25597 | |
| 25598 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25599 | fn test_mm_mask_cvtph_epi16() { |
| 25600 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25601 | let src = _mm_set_epi16(10, 11, 12, 13, 14, 15, 16, 17); |
| 25602 | let r = _mm_mask_cvttph_epi16(src, 0b01010101, a); |
| 25603 | let e = _mm_set_epi16(10, 2, 12, 4, 14, 6, 16, 8); |
| 25604 | assert_eq_m128i(r, e); |
| 25605 | } |
| 25606 | |
| 25607 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25608 | fn test_mm_maskz_cvtph_epi16() { |
| 25609 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25610 | let r = _mm_maskz_cvttph_epi16(0b01010101, a); |
| 25611 | let e = _mm_set_epi16(0, 2, 0, 4, 0, 6, 0, 8); |
| 25612 | assert_eq_m128i(r, e); |
| 25613 | } |
| 25614 | |
| 25615 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25616 | fn test_mm256_cvtph_epi16() { |
| 25617 | let a = _mm256_set_ph( |
| 25618 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25619 | ); |
| 25620 | let r = _mm256_cvttph_epi16(a); |
| 25621 | let e = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 25622 | assert_eq_m256i(r, e); |
| 25623 | } |
| 25624 | |
| 25625 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25626 | fn test_mm256_mask_cvtph_epi16() { |
| 25627 | let a = _mm256_set_ph( |
| 25628 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25629 | ); |
| 25630 | let src = _mm256_set_epi16( |
| 25631 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 25632 | ); |
| 25633 | let r = _mm256_mask_cvttph_epi16(src, 0b0101010101010101, a); |
| 25634 | let e = _mm256_set_epi16(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 25635 | assert_eq_m256i(r, e); |
| 25636 | } |
| 25637 | |
| 25638 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25639 | fn test_mm256_maskz_cvtph_epi16() { |
| 25640 | let a = _mm256_set_ph( |
| 25641 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25642 | ); |
| 25643 | let r = _mm256_maskz_cvttph_epi16(0b0101010101010101, a); |
| 25644 | let e = _mm256_set_epi16(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 25645 | assert_eq_m256i(r, e); |
| 25646 | } |
| 25647 | |
| 25648 | #[simd_test(enable = "avx512fp16" )] |
| 25649 | fn test_mm512_cvtph_epi16() { |
| 25650 | let a = _mm512_set_ph( |
| 25651 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25652 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25653 | 31.0, 32.0, |
| 25654 | ); |
| 25655 | let r = _mm512_cvttph_epi16(a); |
| 25656 | let e = _mm512_set_epi16( |
| 25657 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25658 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 25659 | ); |
| 25660 | assert_eq_m512i(r, e); |
| 25661 | } |
| 25662 | |
| 25663 | #[simd_test(enable = "avx512fp16" )] |
| 25664 | fn test_mm512_mask_cvtph_epi16() { |
| 25665 | let a = _mm512_set_ph( |
| 25666 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25667 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25668 | 31.0, 32.0, |
| 25669 | ); |
| 25670 | let src = _mm512_set_epi16( |
| 25671 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 25672 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 25673 | ); |
| 25674 | let r = _mm512_mask_cvttph_epi16(src, 0b01010101010101010101010101010101, a); |
| 25675 | let e = _mm512_set_epi16( |
| 25676 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 25677 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 25678 | ); |
| 25679 | assert_eq_m512i(r, e); |
| 25680 | } |
| 25681 | |
| 25682 | #[simd_test(enable = "avx512fp16" )] |
| 25683 | fn test_mm512_maskz_cvtph_epi16() { |
| 25684 | let a = _mm512_set_ph( |
| 25685 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25686 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25687 | 31.0, 32.0, |
| 25688 | ); |
| 25689 | let r = _mm512_maskz_cvttph_epi16(0b01010101010101010101010101010101, a); |
| 25690 | let e = _mm512_set_epi16( |
| 25691 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 25692 | 0, 28, 0, 30, 0, 32, |
| 25693 | ); |
| 25694 | assert_eq_m512i(r, e); |
| 25695 | } |
| 25696 | |
| 25697 | #[simd_test(enable = "avx512fp16" )] |
| 25698 | fn test_mm512_cvt_roundph_epi16() { |
| 25699 | let a = _mm512_set_ph( |
| 25700 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25701 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25702 | 31.0, 32.0, |
| 25703 | ); |
| 25704 | let r = _mm512_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>(a); |
| 25705 | let e = _mm512_set_epi16( |
| 25706 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25707 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 25708 | ); |
| 25709 | assert_eq_m512i(r, e); |
| 25710 | } |
| 25711 | |
| 25712 | #[simd_test(enable = "avx512fp16" )] |
| 25713 | fn test_mm512_mask_cvt_roundph_epi16() { |
| 25714 | let a = _mm512_set_ph( |
| 25715 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25716 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25717 | 31.0, 32.0, |
| 25718 | ); |
| 25719 | let src = _mm512_set_epi16( |
| 25720 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 25721 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 25722 | ); |
| 25723 | let r = _mm512_mask_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>( |
| 25724 | src, |
| 25725 | 0b01010101010101010101010101010101, |
| 25726 | a, |
| 25727 | ); |
| 25728 | let e = _mm512_set_epi16( |
| 25729 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 25730 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 25731 | ); |
| 25732 | assert_eq_m512i(r, e); |
| 25733 | } |
| 25734 | |
| 25735 | #[simd_test(enable = "avx512fp16" )] |
| 25736 | fn test_mm512_maskz_cvt_roundph_epi16() { |
| 25737 | let a = _mm512_set_ph( |
| 25738 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25739 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25740 | 31.0, 32.0, |
| 25741 | ); |
| 25742 | let r = _mm512_maskz_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>( |
| 25743 | 0b01010101010101010101010101010101, |
| 25744 | a, |
| 25745 | ); |
| 25746 | let e = _mm512_set_epi16( |
| 25747 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 25748 | 0, 28, 0, 30, 0, 32, |
| 25749 | ); |
| 25750 | assert_eq_m512i(r, e); |
| 25751 | } |
| 25752 | |
| 25753 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25754 | fn test_mm_cvtph_epu16() { |
| 25755 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25756 | let r = _mm_cvttph_epu16(a); |
| 25757 | let e = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 25758 | assert_eq_m128i(r, e); |
| 25759 | } |
| 25760 | |
| 25761 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25762 | fn test_mm_mask_cvtph_epu16() { |
| 25763 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25764 | let src = _mm_set_epi16(10, 11, 12, 13, 14, 15, 16, 17); |
| 25765 | let r = _mm_mask_cvttph_epu16(src, 0b01010101, a); |
| 25766 | let e = _mm_set_epi16(10, 2, 12, 4, 14, 6, 16, 8); |
| 25767 | assert_eq_m128i(r, e); |
| 25768 | } |
| 25769 | |
| 25770 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25771 | fn test_mm_maskz_cvtph_epu16() { |
| 25772 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25773 | let r = _mm_maskz_cvttph_epu16(0b01010101, a); |
| 25774 | let e = _mm_set_epi16(0, 2, 0, 4, 0, 6, 0, 8); |
| 25775 | assert_eq_m128i(r, e); |
| 25776 | } |
| 25777 | |
| 25778 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25779 | fn test_mm256_cvtph_epu16() { |
| 25780 | let a = _mm256_set_ph( |
| 25781 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25782 | ); |
| 25783 | let r = _mm256_cvttph_epu16(a); |
| 25784 | let e = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 25785 | assert_eq_m256i(r, e); |
| 25786 | } |
| 25787 | |
| 25788 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25789 | fn test_mm256_mask_cvtph_epu16() { |
| 25790 | let a = _mm256_set_ph( |
| 25791 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25792 | ); |
| 25793 | let src = _mm256_set_epi16( |
| 25794 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 25795 | ); |
| 25796 | let r = _mm256_mask_cvttph_epu16(src, 0b0101010101010101, a); |
| 25797 | let e = _mm256_set_epi16(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 25798 | assert_eq_m256i(r, e); |
| 25799 | } |
| 25800 | |
| 25801 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25802 | fn test_mm256_maskz_cvtph_epu16() { |
| 25803 | let a = _mm256_set_ph( |
| 25804 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25805 | ); |
| 25806 | let r = _mm256_maskz_cvttph_epu16(0b0101010101010101, a); |
| 25807 | let e = _mm256_set_epi16(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 25808 | assert_eq_m256i(r, e); |
| 25809 | } |
| 25810 | |
| 25811 | #[simd_test(enable = "avx512fp16" )] |
| 25812 | fn test_mm512_cvtph_epu16() { |
| 25813 | let a = _mm512_set_ph( |
| 25814 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25815 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25816 | 31.0, 32.0, |
| 25817 | ); |
| 25818 | let r = _mm512_cvttph_epu16(a); |
| 25819 | let e = _mm512_set_epi16( |
| 25820 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25821 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 25822 | ); |
| 25823 | assert_eq_m512i(r, e); |
| 25824 | } |
| 25825 | |
| 25826 | #[simd_test(enable = "avx512fp16" )] |
| 25827 | fn test_mm512_mask_cvtph_epu16() { |
| 25828 | let a = _mm512_set_ph( |
| 25829 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25830 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25831 | 31.0, 32.0, |
| 25832 | ); |
| 25833 | let src = _mm512_set_epi16( |
| 25834 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 25835 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 25836 | ); |
| 25837 | let r = _mm512_mask_cvttph_epu16(src, 0b01010101010101010101010101010101, a); |
| 25838 | let e = _mm512_set_epi16( |
| 25839 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 25840 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 25841 | ); |
| 25842 | assert_eq_m512i(r, e); |
| 25843 | } |
| 25844 | |
| 25845 | #[simd_test(enable = "avx512fp16" )] |
| 25846 | fn test_mm512_maskz_cvtph_epu16() { |
| 25847 | let a = _mm512_set_ph( |
| 25848 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25849 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25850 | 31.0, 32.0, |
| 25851 | ); |
| 25852 | let r = _mm512_maskz_cvttph_epu16(0b01010101010101010101010101010101, a); |
| 25853 | let e = _mm512_set_epi16( |
| 25854 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 25855 | 0, 28, 0, 30, 0, 32, |
| 25856 | ); |
| 25857 | assert_eq_m512i(r, e); |
| 25858 | } |
| 25859 | |
| 25860 | #[simd_test(enable = "avx512fp16" )] |
| 25861 | fn test_mm512_cvt_roundph_epu16() { |
| 25862 | let a = _mm512_set_ph( |
| 25863 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25864 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25865 | 31.0, 32.0, |
| 25866 | ); |
| 25867 | let r = _mm512_cvt_roundph_epu16::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 25868 | let e = _mm512_set_epi16( |
| 25869 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25870 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 25871 | ); |
| 25872 | assert_eq_m512i(r, e); |
| 25873 | } |
| 25874 | |
| 25875 | #[simd_test(enable = "avx512fp16" )] |
| 25876 | fn test_mm512_mask_cvt_roundph_epu16() { |
| 25877 | let a = _mm512_set_ph( |
| 25878 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25879 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25880 | 31.0, 32.0, |
| 25881 | ); |
| 25882 | let src = _mm512_set_epi16( |
| 25883 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 25884 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 25885 | ); |
| 25886 | let r = _mm512_mask_cvt_roundph_epu16::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25887 | src, |
| 25888 | 0b01010101010101010101010101010101, |
| 25889 | a, |
| 25890 | ); |
| 25891 | let e = _mm512_set_epi16( |
| 25892 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 25893 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 25894 | ); |
| 25895 | assert_eq_m512i(r, e); |
| 25896 | } |
| 25897 | |
| 25898 | #[simd_test(enable = "avx512fp16" )] |
| 25899 | fn test_mm512_maskz_cvt_roundph_epu16() { |
| 25900 | let a = _mm512_set_ph( |
| 25901 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25902 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25903 | 31.0, 32.0, |
| 25904 | ); |
| 25905 | let r = _mm512_maskz_cvt_roundph_epu16::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 25906 | 0b01010101010101010101010101010101, |
| 25907 | a, |
| 25908 | ); |
| 25909 | let e = _mm512_set_epi16( |
| 25910 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 25911 | 0, 28, 0, 30, 0, 32, |
| 25912 | ); |
| 25913 | assert_eq_m512i(r, e); |
| 25914 | } |
| 25915 | |
| 25916 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25917 | fn test_mm_cvttph_epi16() { |
| 25918 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25919 | let r = _mm_cvttph_epi16(a); |
| 25920 | let e = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 25921 | assert_eq_m128i(r, e); |
| 25922 | } |
| 25923 | |
| 25924 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25925 | fn test_mm_mask_cvttph_epi16() { |
| 25926 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25927 | let src = _mm_set_epi16(10, 11, 12, 13, 14, 15, 16, 17); |
| 25928 | let r = _mm_mask_cvttph_epi16(src, 0b01010101, a); |
| 25929 | let e = _mm_set_epi16(10, 2, 12, 4, 14, 6, 16, 8); |
| 25930 | assert_eq_m128i(r, e); |
| 25931 | } |
| 25932 | |
| 25933 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25934 | fn test_mm_maskz_cvttph_epi16() { |
| 25935 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 25936 | let r = _mm_maskz_cvttph_epi16(0b01010101, a); |
| 25937 | let e = _mm_set_epi16(0, 2, 0, 4, 0, 6, 0, 8); |
| 25938 | assert_eq_m128i(r, e); |
| 25939 | } |
| 25940 | |
| 25941 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25942 | fn test_mm256_cvttph_epi16() { |
| 25943 | let a = _mm256_set_ph( |
| 25944 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25945 | ); |
| 25946 | let r = _mm256_cvttph_epi16(a); |
| 25947 | let e = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 25948 | assert_eq_m256i(r, e); |
| 25949 | } |
| 25950 | |
| 25951 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25952 | fn test_mm256_mask_cvttph_epi16() { |
| 25953 | let a = _mm256_set_ph( |
| 25954 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25955 | ); |
| 25956 | let src = _mm256_set_epi16( |
| 25957 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 25958 | ); |
| 25959 | let r = _mm256_mask_cvttph_epi16(src, 0b0101010101010101, a); |
| 25960 | let e = _mm256_set_epi16(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 25961 | assert_eq_m256i(r, e); |
| 25962 | } |
| 25963 | |
| 25964 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 25965 | fn test_mm256_maskz_cvttph_epi16() { |
| 25966 | let a = _mm256_set_ph( |
| 25967 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25968 | ); |
| 25969 | let r = _mm256_maskz_cvttph_epi16(0b0101010101010101, a); |
| 25970 | let e = _mm256_set_epi16(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 25971 | assert_eq_m256i(r, e); |
| 25972 | } |
| 25973 | |
| 25974 | #[simd_test(enable = "avx512fp16" )] |
| 25975 | fn test_mm512_cvttph_epi16() { |
| 25976 | let a = _mm512_set_ph( |
| 25977 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25978 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25979 | 31.0, 32.0, |
| 25980 | ); |
| 25981 | let r = _mm512_cvttph_epi16(a); |
| 25982 | let e = _mm512_set_epi16( |
| 25983 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 25984 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 25985 | ); |
| 25986 | assert_eq_m512i(r, e); |
| 25987 | } |
| 25988 | |
| 25989 | #[simd_test(enable = "avx512fp16" )] |
| 25990 | fn test_mm512_mask_cvttph_epi16() { |
| 25991 | let a = _mm512_set_ph( |
| 25992 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 25993 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 25994 | 31.0, 32.0, |
| 25995 | ); |
| 25996 | let src = _mm512_set_epi16( |
| 25997 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 25998 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 25999 | ); |
| 26000 | let r = _mm512_mask_cvttph_epi16(src, 0b01010101010101010101010101010101, a); |
| 26001 | let e = _mm512_set_epi16( |
| 26002 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 26003 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 26004 | ); |
| 26005 | assert_eq_m512i(r, e); |
| 26006 | } |
| 26007 | |
| 26008 | #[simd_test(enable = "avx512fp16" )] |
| 26009 | fn test_mm512_maskz_cvttph_epi16() { |
| 26010 | let a = _mm512_set_ph( |
| 26011 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26012 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26013 | 31.0, 32.0, |
| 26014 | ); |
| 26015 | let r = _mm512_maskz_cvttph_epi16(0b01010101010101010101010101010101, a); |
| 26016 | let e = _mm512_set_epi16( |
| 26017 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 26018 | 0, 28, 0, 30, 0, 32, |
| 26019 | ); |
| 26020 | assert_eq_m512i(r, e); |
| 26021 | } |
| 26022 | |
| 26023 | #[simd_test(enable = "avx512fp16" )] |
| 26024 | fn test_mm512_cvtt_roundph_epi16() { |
| 26025 | let a = _mm512_set_ph( |
| 26026 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26027 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26028 | 31.0, 32.0, |
| 26029 | ); |
| 26030 | let r = _mm512_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>(a); |
| 26031 | let e = _mm512_set_epi16( |
| 26032 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 26033 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 26034 | ); |
| 26035 | assert_eq_m512i(r, e); |
| 26036 | } |
| 26037 | |
| 26038 | #[simd_test(enable = "avx512fp16" )] |
| 26039 | fn test_mm512_mask_cvtt_roundph_epi16() { |
| 26040 | let a = _mm512_set_ph( |
| 26041 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26042 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26043 | 31.0, 32.0, |
| 26044 | ); |
| 26045 | let src = _mm512_set_epi16( |
| 26046 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 26047 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 26048 | ); |
| 26049 | let r = _mm512_mask_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>( |
| 26050 | src, |
| 26051 | 0b01010101010101010101010101010101, |
| 26052 | a, |
| 26053 | ); |
| 26054 | let e = _mm512_set_epi16( |
| 26055 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 26056 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 26057 | ); |
| 26058 | assert_eq_m512i(r, e); |
| 26059 | } |
| 26060 | |
| 26061 | #[simd_test(enable = "avx512fp16" )] |
| 26062 | fn test_mm512_maskz_cvtt_roundph_epi16() { |
| 26063 | let a = _mm512_set_ph( |
| 26064 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26065 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26066 | 31.0, 32.0, |
| 26067 | ); |
| 26068 | let r = _mm512_maskz_cvtt_roundph_epi16::<_MM_FROUND_NO_EXC>( |
| 26069 | 0b01010101010101010101010101010101, |
| 26070 | a, |
| 26071 | ); |
| 26072 | let e = _mm512_set_epi16( |
| 26073 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 26074 | 0, 28, 0, 30, 0, 32, |
| 26075 | ); |
| 26076 | assert_eq_m512i(r, e); |
| 26077 | } |
| 26078 | |
| 26079 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26080 | fn test_mm_cvttph_epu16() { |
| 26081 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26082 | let r = _mm_cvttph_epu16(a); |
| 26083 | let e = _mm_set_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 26084 | assert_eq_m128i(r, e); |
| 26085 | } |
| 26086 | |
| 26087 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26088 | fn test_mm_mask_cvttph_epu16() { |
| 26089 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26090 | let src = _mm_set_epi16(10, 11, 12, 13, 14, 15, 16, 17); |
| 26091 | let r = _mm_mask_cvttph_epu16(src, 0b01010101, a); |
| 26092 | let e = _mm_set_epi16(10, 2, 12, 4, 14, 6, 16, 8); |
| 26093 | assert_eq_m128i(r, e); |
| 26094 | } |
| 26095 | |
| 26096 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26097 | fn test_mm_maskz_cvttph_epu16() { |
| 26098 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26099 | let r = _mm_maskz_cvttph_epu16(0b01010101, a); |
| 26100 | let e = _mm_set_epi16(0, 2, 0, 4, 0, 6, 0, 8); |
| 26101 | assert_eq_m128i(r, e); |
| 26102 | } |
| 26103 | |
| 26104 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26105 | fn test_mm256_cvttph_epu16() { |
| 26106 | let a = _mm256_set_ph( |
| 26107 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26108 | ); |
| 26109 | let r = _mm256_cvttph_epu16(a); |
| 26110 | let e = _mm256_set_epi16(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26111 | assert_eq_m256i(r, e); |
| 26112 | } |
| 26113 | |
| 26114 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26115 | fn test_mm256_mask_cvttph_epu16() { |
| 26116 | let a = _mm256_set_ph( |
| 26117 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26118 | ); |
| 26119 | let src = _mm256_set_epi16( |
| 26120 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26121 | ); |
| 26122 | let r = _mm256_mask_cvttph_epu16(src, 0b0101010101010101, a); |
| 26123 | let e = _mm256_set_epi16(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26124 | assert_eq_m256i(r, e); |
| 26125 | } |
| 26126 | |
| 26127 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26128 | fn test_mm256_maskz_cvttph_epu16() { |
| 26129 | let a = _mm256_set_ph( |
| 26130 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26131 | ); |
| 26132 | let r = _mm256_maskz_cvttph_epu16(0b0101010101010101, a); |
| 26133 | let e = _mm256_set_epi16(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26134 | assert_eq_m256i(r, e); |
| 26135 | } |
| 26136 | |
| 26137 | #[simd_test(enable = "avx512fp16" )] |
| 26138 | fn test_mm512_cvttph_epu16() { |
| 26139 | let a = _mm512_set_ph( |
| 26140 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26141 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26142 | 31.0, 32.0, |
| 26143 | ); |
| 26144 | let r = _mm512_cvttph_epu16(a); |
| 26145 | let e = _mm512_set_epi16( |
| 26146 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 26147 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 26148 | ); |
| 26149 | assert_eq_m512i(r, e); |
| 26150 | } |
| 26151 | |
| 26152 | #[simd_test(enable = "avx512fp16" )] |
| 26153 | fn test_mm512_mask_cvttph_epu16() { |
| 26154 | let a = _mm512_set_ph( |
| 26155 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26156 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26157 | 31.0, 32.0, |
| 26158 | ); |
| 26159 | let src = _mm512_set_epi16( |
| 26160 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 26161 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 26162 | ); |
| 26163 | let r = _mm512_mask_cvttph_epu16(src, 0b01010101010101010101010101010101, a); |
| 26164 | let e = _mm512_set_epi16( |
| 26165 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 26166 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 26167 | ); |
| 26168 | assert_eq_m512i(r, e); |
| 26169 | } |
| 26170 | |
| 26171 | #[simd_test(enable = "avx512fp16" )] |
| 26172 | fn test_mm512_maskz_cvttph_epu16() { |
| 26173 | let a = _mm512_set_ph( |
| 26174 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26175 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26176 | 31.0, 32.0, |
| 26177 | ); |
| 26178 | let r = _mm512_maskz_cvttph_epu16(0b01010101010101010101010101010101, a); |
| 26179 | let e = _mm512_set_epi16( |
| 26180 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 26181 | 0, 28, 0, 30, 0, 32, |
| 26182 | ); |
| 26183 | assert_eq_m512i(r, e); |
| 26184 | } |
| 26185 | |
| 26186 | #[simd_test(enable = "avx512fp16" )] |
| 26187 | fn test_mm512_cvtt_roundph_epu16() { |
| 26188 | let a = _mm512_set_ph( |
| 26189 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26190 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26191 | 31.0, 32.0, |
| 26192 | ); |
| 26193 | let r = _mm512_cvtt_roundph_epu16::<_MM_FROUND_NO_EXC>(a); |
| 26194 | let e = _mm512_set_epi16( |
| 26195 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
| 26196 | 25, 26, 27, 28, 29, 30, 31, 32, |
| 26197 | ); |
| 26198 | assert_eq_m512i(r, e); |
| 26199 | } |
| 26200 | |
| 26201 | #[simd_test(enable = "avx512fp16" )] |
| 26202 | fn test_mm512_mask_cvtt_roundph_epu16() { |
| 26203 | let a = _mm512_set_ph( |
| 26204 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26205 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26206 | 31.0, 32.0, |
| 26207 | ); |
| 26208 | let src = _mm512_set_epi16( |
| 26209 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 26210 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, |
| 26211 | ); |
| 26212 | let r = _mm512_mask_cvtt_roundph_epu16::<_MM_FROUND_NO_EXC>( |
| 26213 | src, |
| 26214 | 0b01010101010101010101010101010101, |
| 26215 | a, |
| 26216 | ); |
| 26217 | let e = _mm512_set_epi16( |
| 26218 | 10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16, 26, 18, 28, 20, 30, 22, 32, |
| 26219 | 24, 34, 26, 36, 28, 38, 30, 40, 32, |
| 26220 | ); |
| 26221 | assert_eq_m512i(r, e); |
| 26222 | } |
| 26223 | |
| 26224 | #[simd_test(enable = "avx512fp16" )] |
| 26225 | fn test_mm512_maskz_cvtt_roundph_epu16() { |
| 26226 | let a = _mm512_set_ph( |
| 26227 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26228 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 26229 | 31.0, 32.0, |
| 26230 | ); |
| 26231 | let r = _mm512_maskz_cvtt_roundph_epu16::<_MM_FROUND_NO_EXC>( |
| 26232 | 0b01010101010101010101010101010101, |
| 26233 | a, |
| 26234 | ); |
| 26235 | let e = _mm512_set_epi16( |
| 26236 | 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, |
| 26237 | 0, 28, 0, 30, 0, 32, |
| 26238 | ); |
| 26239 | assert_eq_m512i(r, e); |
| 26240 | } |
| 26241 | |
| 26242 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26243 | fn test_mm_cvtph_epi32() { |
| 26244 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26245 | let r = _mm_cvtph_epi32(a); |
| 26246 | let e = _mm_set_epi32(1, 2, 3, 4); |
| 26247 | assert_eq_m128i(r, e); |
| 26248 | } |
| 26249 | |
| 26250 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26251 | fn test_mm_mask_cvtph_epi32() { |
| 26252 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26253 | let src = _mm_set_epi32(10, 11, 12, 13); |
| 26254 | let r = _mm_mask_cvtph_epi32(src, 0b0101, a); |
| 26255 | let e = _mm_set_epi32(10, 2, 12, 4); |
| 26256 | assert_eq_m128i(r, e); |
| 26257 | } |
| 26258 | |
| 26259 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26260 | fn test_mm_maskz_cvtph_epi32() { |
| 26261 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26262 | let r = _mm_maskz_cvtph_epi32(0b0101, a); |
| 26263 | let e = _mm_set_epi32(0, 2, 0, 4); |
| 26264 | assert_eq_m128i(r, e); |
| 26265 | } |
| 26266 | |
| 26267 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26268 | fn test_mm256_cvtph_epi32() { |
| 26269 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26270 | let r = _mm256_cvtph_epi32(a); |
| 26271 | let e = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 26272 | assert_eq_m256i(r, e); |
| 26273 | } |
| 26274 | |
| 26275 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26276 | fn test_mm256_mask_cvtph_epi32() { |
| 26277 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26278 | let src = _mm256_set_epi32(10, 11, 12, 13, 14, 15, 16, 17); |
| 26279 | let r = _mm256_mask_cvtph_epi32(src, 0b01010101, a); |
| 26280 | let e = _mm256_set_epi32(10, 2, 12, 4, 14, 6, 16, 8); |
| 26281 | assert_eq_m256i(r, e); |
| 26282 | } |
| 26283 | |
| 26284 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26285 | fn test_mm256_maskz_cvtph_epi32() { |
| 26286 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26287 | let r = _mm256_maskz_cvtph_epi32(0b01010101, a); |
| 26288 | let e = _mm256_set_epi32(0, 2, 0, 4, 0, 6, 0, 8); |
| 26289 | assert_eq_m256i(r, e); |
| 26290 | } |
| 26291 | |
| 26292 | #[simd_test(enable = "avx512fp16" )] |
| 26293 | fn test_mm512_cvtph_epi32() { |
| 26294 | let a = _mm256_set_ph( |
| 26295 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26296 | ); |
| 26297 | let r = _mm512_cvtph_epi32(a); |
| 26298 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26299 | assert_eq_m512i(r, e); |
| 26300 | } |
| 26301 | |
| 26302 | #[simd_test(enable = "avx512fp16" )] |
| 26303 | fn test_mm512_mask_cvtph_epi32() { |
| 26304 | let a = _mm256_set_ph( |
| 26305 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26306 | ); |
| 26307 | let src = _mm512_set_epi32( |
| 26308 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26309 | ); |
| 26310 | let r = _mm512_mask_cvtph_epi32(src, 0b0101010101010101, a); |
| 26311 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26312 | assert_eq_m512i(r, e); |
| 26313 | } |
| 26314 | |
| 26315 | #[simd_test(enable = "avx512fp16" )] |
| 26316 | fn test_mm512_maskz_cvtph_epi32() { |
| 26317 | let a = _mm256_set_ph( |
| 26318 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26319 | ); |
| 26320 | let r = _mm512_maskz_cvtph_epi32(0b0101010101010101, a); |
| 26321 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26322 | assert_eq_m512i(r, e); |
| 26323 | } |
| 26324 | |
| 26325 | #[simd_test(enable = "avx512fp16" )] |
| 26326 | fn test_mm512_cvt_roundph_epi32() { |
| 26327 | let a = _mm256_set_ph( |
| 26328 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26329 | ); |
| 26330 | let r = _mm512_cvt_roundph_epi32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26331 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26332 | assert_eq_m512i(r, e); |
| 26333 | } |
| 26334 | |
| 26335 | #[simd_test(enable = "avx512fp16" )] |
| 26336 | fn test_mm512_mask_cvt_roundph_epi32() { |
| 26337 | let a = _mm256_set_ph( |
| 26338 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26339 | ); |
| 26340 | let src = _mm512_set_epi32( |
| 26341 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26342 | ); |
| 26343 | let r = _mm512_mask_cvt_roundph_epi32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26344 | src, |
| 26345 | 0b0101010101010101, |
| 26346 | a, |
| 26347 | ); |
| 26348 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26349 | assert_eq_m512i(r, e); |
| 26350 | } |
| 26351 | |
| 26352 | #[simd_test(enable = "avx512fp16" )] |
| 26353 | fn test_mm512_maskz_cvt_roundph_epi32() { |
| 26354 | let a = _mm256_set_ph( |
| 26355 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26356 | ); |
| 26357 | let r = _mm512_maskz_cvt_roundph_epi32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26358 | 0b0101010101010101, |
| 26359 | a, |
| 26360 | ); |
| 26361 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26362 | assert_eq_m512i(r, e); |
| 26363 | } |
| 26364 | |
| 26365 | #[simd_test(enable = "avx512fp16" )] |
| 26366 | fn test_mm_cvtsh_i32() { |
| 26367 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26368 | let r = _mm_cvtsh_i32(a); |
| 26369 | assert_eq!(r, 1); |
| 26370 | } |
| 26371 | |
| 26372 | #[simd_test(enable = "avx512fp16" )] |
| 26373 | fn test_mm_cvt_roundsh_i32() { |
| 26374 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26375 | let r = _mm_cvt_roundsh_i32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26376 | assert_eq!(r, 1); |
| 26377 | } |
| 26378 | |
| 26379 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26380 | fn test_mm_cvtph_epu32() { |
| 26381 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26382 | let r = _mm_cvtph_epu32(a); |
| 26383 | let e = _mm_set_epi32(1, 2, 3, 4); |
| 26384 | assert_eq_m128i(r, e); |
| 26385 | } |
| 26386 | |
| 26387 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26388 | fn test_mm_mask_cvtph_epu32() { |
| 26389 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26390 | let src = _mm_set_epi32(10, 11, 12, 13); |
| 26391 | let r = _mm_mask_cvtph_epu32(src, 0b0101, a); |
| 26392 | let e = _mm_set_epi32(10, 2, 12, 4); |
| 26393 | assert_eq_m128i(r, e); |
| 26394 | } |
| 26395 | |
| 26396 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26397 | fn test_mm_maskz_cvtph_epu32() { |
| 26398 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26399 | let r = _mm_maskz_cvtph_epu32(0b0101, a); |
| 26400 | let e = _mm_set_epi32(0, 2, 0, 4); |
| 26401 | assert_eq_m128i(r, e); |
| 26402 | } |
| 26403 | |
| 26404 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26405 | fn test_mm256_cvtph_epu32() { |
| 26406 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26407 | let r = _mm256_cvtph_epu32(a); |
| 26408 | let e = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 26409 | assert_eq_m256i(r, e); |
| 26410 | } |
| 26411 | |
| 26412 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26413 | fn test_mm256_mask_cvtph_epu32() { |
| 26414 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26415 | let src = _mm256_set_epi32(10, 11, 12, 13, 14, 15, 16, 17); |
| 26416 | let r = _mm256_mask_cvtph_epu32(src, 0b01010101, a); |
| 26417 | let e = _mm256_set_epi32(10, 2, 12, 4, 14, 6, 16, 8); |
| 26418 | assert_eq_m256i(r, e); |
| 26419 | } |
| 26420 | |
| 26421 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26422 | fn test_mm256_maskz_cvtph_epu32() { |
| 26423 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26424 | let r = _mm256_maskz_cvtph_epu32(0b01010101, a); |
| 26425 | let e = _mm256_set_epi32(0, 2, 0, 4, 0, 6, 0, 8); |
| 26426 | assert_eq_m256i(r, e); |
| 26427 | } |
| 26428 | |
| 26429 | #[simd_test(enable = "avx512fp16" )] |
| 26430 | fn test_mm512_cvtph_epu32() { |
| 26431 | let a = _mm256_set_ph( |
| 26432 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26433 | ); |
| 26434 | let r = _mm512_cvtph_epu32(a); |
| 26435 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26436 | assert_eq_m512i(r, e); |
| 26437 | } |
| 26438 | |
| 26439 | #[simd_test(enable = "avx512fp16" )] |
| 26440 | fn test_mm512_mask_cvtph_epu32() { |
| 26441 | let a = _mm256_set_ph( |
| 26442 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26443 | ); |
| 26444 | let src = _mm512_set_epi32( |
| 26445 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26446 | ); |
| 26447 | let r = _mm512_mask_cvtph_epu32(src, 0b0101010101010101, a); |
| 26448 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26449 | assert_eq_m512i(r, e); |
| 26450 | } |
| 26451 | |
| 26452 | #[simd_test(enable = "avx512fp16" )] |
| 26453 | fn test_mm512_maskz_cvtph_epu32() { |
| 26454 | let a = _mm256_set_ph( |
| 26455 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26456 | ); |
| 26457 | let r = _mm512_maskz_cvtph_epu32(0b0101010101010101, a); |
| 26458 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26459 | assert_eq_m512i(r, e); |
| 26460 | } |
| 26461 | |
| 26462 | #[simd_test(enable = "avx512fp16" )] |
| 26463 | fn test_mm512_cvt_roundph_epu32() { |
| 26464 | let a = _mm256_set_ph( |
| 26465 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26466 | ); |
| 26467 | let r = _mm512_cvt_roundph_epu32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26468 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26469 | assert_eq_m512i(r, e); |
| 26470 | } |
| 26471 | |
| 26472 | #[simd_test(enable = "avx512fp16" )] |
| 26473 | fn test_mm512_mask_cvt_roundph_epu32() { |
| 26474 | let a = _mm256_set_ph( |
| 26475 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26476 | ); |
| 26477 | let src = _mm512_set_epi32( |
| 26478 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26479 | ); |
| 26480 | let r = _mm512_mask_cvt_roundph_epu32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26481 | src, |
| 26482 | 0b0101010101010101, |
| 26483 | a, |
| 26484 | ); |
| 26485 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26486 | assert_eq_m512i(r, e); |
| 26487 | } |
| 26488 | |
| 26489 | #[simd_test(enable = "avx512fp16" )] |
| 26490 | fn test_mm512_maskz_cvt_roundph_epu32() { |
| 26491 | let a = _mm256_set_ph( |
| 26492 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26493 | ); |
| 26494 | let r = _mm512_maskz_cvt_roundph_epu32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26495 | 0b0101010101010101, |
| 26496 | a, |
| 26497 | ); |
| 26498 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26499 | assert_eq_m512i(r, e); |
| 26500 | } |
| 26501 | |
| 26502 | #[simd_test(enable = "avx512fp16" )] |
| 26503 | fn test_mm_cvtsh_u32() { |
| 26504 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26505 | let r = _mm_cvtsh_u32(a); |
| 26506 | assert_eq!(r, 1); |
| 26507 | } |
| 26508 | |
| 26509 | #[simd_test(enable = "avx512fp16" )] |
| 26510 | fn test_mm_cvt_roundsh_u32() { |
| 26511 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26512 | let r = _mm_cvt_roundsh_u32::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26513 | assert_eq!(r, 1); |
| 26514 | } |
| 26515 | |
| 26516 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26517 | fn test_mm_cvttph_epi32() { |
| 26518 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26519 | let r = _mm_cvttph_epi32(a); |
| 26520 | let e = _mm_set_epi32(1, 2, 3, 4); |
| 26521 | assert_eq_m128i(r, e); |
| 26522 | } |
| 26523 | |
| 26524 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26525 | fn test_mm_mask_cvttph_epi32() { |
| 26526 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26527 | let src = _mm_set_epi32(10, 11, 12, 13); |
| 26528 | let r = _mm_mask_cvttph_epi32(src, 0b0101, a); |
| 26529 | let e = _mm_set_epi32(10, 2, 12, 4); |
| 26530 | assert_eq_m128i(r, e); |
| 26531 | } |
| 26532 | |
| 26533 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26534 | fn test_mm_maskz_cvttph_epi32() { |
| 26535 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26536 | let r = _mm_maskz_cvttph_epi32(0b0101, a); |
| 26537 | let e = _mm_set_epi32(0, 2, 0, 4); |
| 26538 | assert_eq_m128i(r, e); |
| 26539 | } |
| 26540 | |
| 26541 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26542 | fn test_mm256_cvttph_epi32() { |
| 26543 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26544 | let r = _mm256_cvttph_epi32(a); |
| 26545 | let e = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 26546 | assert_eq_m256i(r, e); |
| 26547 | } |
| 26548 | |
| 26549 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26550 | fn test_mm256_mask_cvttph_epi32() { |
| 26551 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26552 | let src = _mm256_set_epi32(10, 11, 12, 13, 14, 15, 16, 17); |
| 26553 | let r = _mm256_mask_cvttph_epi32(src, 0b01010101, a); |
| 26554 | let e = _mm256_set_epi32(10, 2, 12, 4, 14, 6, 16, 8); |
| 26555 | assert_eq_m256i(r, e); |
| 26556 | } |
| 26557 | |
| 26558 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26559 | fn test_mm256_maskz_cvttph_epi32() { |
| 26560 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26561 | let r = _mm256_maskz_cvttph_epi32(0b01010101, a); |
| 26562 | let e = _mm256_set_epi32(0, 2, 0, 4, 0, 6, 0, 8); |
| 26563 | assert_eq_m256i(r, e); |
| 26564 | } |
| 26565 | |
| 26566 | #[simd_test(enable = "avx512fp16" )] |
| 26567 | fn test_mm512_cvttph_epi32() { |
| 26568 | let a = _mm256_set_ph( |
| 26569 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26570 | ); |
| 26571 | let r = _mm512_cvttph_epi32(a); |
| 26572 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26573 | assert_eq_m512i(r, e); |
| 26574 | } |
| 26575 | |
| 26576 | #[simd_test(enable = "avx512fp16" )] |
| 26577 | fn test_mm512_mask_cvttph_epi32() { |
| 26578 | let a = _mm256_set_ph( |
| 26579 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26580 | ); |
| 26581 | let src = _mm512_set_epi32( |
| 26582 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26583 | ); |
| 26584 | let r = _mm512_mask_cvttph_epi32(src, 0b0101010101010101, a); |
| 26585 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26586 | assert_eq_m512i(r, e); |
| 26587 | } |
| 26588 | |
| 26589 | #[simd_test(enable = "avx512fp16" )] |
| 26590 | fn test_mm512_maskz_cvttph_epi32() { |
| 26591 | let a = _mm256_set_ph( |
| 26592 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26593 | ); |
| 26594 | let r = _mm512_maskz_cvttph_epi32(0b0101010101010101, a); |
| 26595 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26596 | assert_eq_m512i(r, e); |
| 26597 | } |
| 26598 | |
| 26599 | #[simd_test(enable = "avx512fp16" )] |
| 26600 | fn test_mm512_cvtt_roundph_epi32() { |
| 26601 | let a = _mm256_set_ph( |
| 26602 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26603 | ); |
| 26604 | let r = _mm512_cvtt_roundph_epi32::<_MM_FROUND_NO_EXC>(a); |
| 26605 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26606 | assert_eq_m512i(r, e); |
| 26607 | } |
| 26608 | |
| 26609 | #[simd_test(enable = "avx512fp16" )] |
| 26610 | fn test_mm512_mask_cvtt_roundph_epi32() { |
| 26611 | let a = _mm256_set_ph( |
| 26612 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26613 | ); |
| 26614 | let src = _mm512_set_epi32( |
| 26615 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26616 | ); |
| 26617 | let r = _mm512_mask_cvtt_roundph_epi32::<_MM_FROUND_NO_EXC>(src, 0b0101010101010101, a); |
| 26618 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26619 | assert_eq_m512i(r, e); |
| 26620 | } |
| 26621 | |
| 26622 | #[simd_test(enable = "avx512fp16" )] |
| 26623 | fn test_mm512_maskz_cvtt_roundph_epi32() { |
| 26624 | let a = _mm256_set_ph( |
| 26625 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26626 | ); |
| 26627 | let r = _mm512_maskz_cvtt_roundph_epi32::<_MM_FROUND_NO_EXC>(0b0101010101010101, a); |
| 26628 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26629 | assert_eq_m512i(r, e); |
| 26630 | } |
| 26631 | |
| 26632 | #[simd_test(enable = "avx512fp16" )] |
| 26633 | fn test_mm_cvttsh_i32() { |
| 26634 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26635 | let r = _mm_cvttsh_i32(a); |
| 26636 | assert_eq!(r, 1); |
| 26637 | } |
| 26638 | |
| 26639 | #[simd_test(enable = "avx512fp16" )] |
| 26640 | fn test_mm_cvtt_roundsh_i32() { |
| 26641 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26642 | let r = _mm_cvtt_roundsh_i32::<_MM_FROUND_NO_EXC>(a); |
| 26643 | assert_eq!(r, 1); |
| 26644 | } |
| 26645 | |
| 26646 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26647 | fn test_mm_cvttph_epu32() { |
| 26648 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26649 | let r = _mm_cvttph_epu32(a); |
| 26650 | let e = _mm_set_epi32(1, 2, 3, 4); |
| 26651 | assert_eq_m128i(r, e); |
| 26652 | } |
| 26653 | |
| 26654 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26655 | fn test_mm_mask_cvttph_epu32() { |
| 26656 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26657 | let src = _mm_set_epi32(10, 11, 12, 13); |
| 26658 | let r = _mm_mask_cvttph_epu32(src, 0b0101, a); |
| 26659 | let e = _mm_set_epi32(10, 2, 12, 4); |
| 26660 | assert_eq_m128i(r, e); |
| 26661 | } |
| 26662 | |
| 26663 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26664 | fn test_mm_maskz_cvttph_epu32() { |
| 26665 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26666 | let r = _mm_maskz_cvttph_epu32(0b0101, a); |
| 26667 | let e = _mm_set_epi32(0, 2, 0, 4); |
| 26668 | assert_eq_m128i(r, e); |
| 26669 | } |
| 26670 | |
| 26671 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26672 | fn test_mm256_cvttph_epu32() { |
| 26673 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26674 | let r = _mm256_cvttph_epu32(a); |
| 26675 | let e = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| 26676 | assert_eq_m256i(r, e); |
| 26677 | } |
| 26678 | |
| 26679 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26680 | fn test_mm256_mask_cvttph_epu32() { |
| 26681 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26682 | let src = _mm256_set_epi32(10, 11, 12, 13, 14, 15, 16, 17); |
| 26683 | let r = _mm256_mask_cvttph_epu32(src, 0b01010101, a); |
| 26684 | let e = _mm256_set_epi32(10, 2, 12, 4, 14, 6, 16, 8); |
| 26685 | assert_eq_m256i(r, e); |
| 26686 | } |
| 26687 | |
| 26688 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26689 | fn test_mm256_maskz_cvttph_epu32() { |
| 26690 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26691 | let r = _mm256_maskz_cvttph_epu32(0b01010101, a); |
| 26692 | let e = _mm256_set_epi32(0, 2, 0, 4, 0, 6, 0, 8); |
| 26693 | assert_eq_m256i(r, e); |
| 26694 | } |
| 26695 | |
| 26696 | #[simd_test(enable = "avx512fp16" )] |
| 26697 | fn test_mm512_cvttph_epu32() { |
| 26698 | let a = _mm256_set_ph( |
| 26699 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26700 | ); |
| 26701 | let r = _mm512_cvttph_epu32(a); |
| 26702 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26703 | assert_eq_m512i(r, e); |
| 26704 | } |
| 26705 | |
| 26706 | #[simd_test(enable = "avx512fp16" )] |
| 26707 | fn test_mm512_mask_cvttph_epu32() { |
| 26708 | let a = _mm256_set_ph( |
| 26709 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26710 | ); |
| 26711 | let src = _mm512_set_epi32( |
| 26712 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26713 | ); |
| 26714 | let r = _mm512_mask_cvttph_epu32(src, 0b0101010101010101, a); |
| 26715 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26716 | assert_eq_m512i(r, e); |
| 26717 | } |
| 26718 | |
| 26719 | #[simd_test(enable = "avx512fp16" )] |
| 26720 | fn test_mm512_maskz_cvttph_epu32() { |
| 26721 | let a = _mm256_set_ph( |
| 26722 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26723 | ); |
| 26724 | let r = _mm512_maskz_cvttph_epu32(0b0101010101010101, a); |
| 26725 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26726 | assert_eq_m512i(r, e); |
| 26727 | } |
| 26728 | |
| 26729 | #[simd_test(enable = "avx512fp16" )] |
| 26730 | fn test_mm512_cvtt_roundph_epu32() { |
| 26731 | let a = _mm256_set_ph( |
| 26732 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26733 | ); |
| 26734 | let r = _mm512_cvtt_roundph_epu32::<_MM_FROUND_NO_EXC>(a); |
| 26735 | let e = _mm512_set_epi32(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
| 26736 | assert_eq_m512i(r, e); |
| 26737 | } |
| 26738 | |
| 26739 | #[simd_test(enable = "avx512fp16" )] |
| 26740 | fn test_mm512_mask_cvtt_roundph_epu32() { |
| 26741 | let a = _mm256_set_ph( |
| 26742 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26743 | ); |
| 26744 | let src = _mm512_set_epi32( |
| 26745 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, |
| 26746 | ); |
| 26747 | let r = _mm512_mask_cvtt_roundph_epu32::<_MM_FROUND_NO_EXC>(src, 0b0101010101010101, a); |
| 26748 | let e = _mm512_set_epi32(10, 2, 12, 4, 14, 6, 16, 8, 18, 10, 20, 12, 22, 14, 24, 16); |
| 26749 | assert_eq_m512i(r, e); |
| 26750 | } |
| 26751 | |
| 26752 | #[simd_test(enable = "avx512fp16" )] |
| 26753 | fn test_mm512_maskz_cvtt_roundph_epu32() { |
| 26754 | let a = _mm256_set_ph( |
| 26755 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 26756 | ); |
| 26757 | let r = _mm512_maskz_cvtt_roundph_epu32::<_MM_FROUND_NO_EXC>(0b0101010101010101, a); |
| 26758 | let e = _mm512_set_epi32(0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16); |
| 26759 | assert_eq_m512i(r, e); |
| 26760 | } |
| 26761 | |
| 26762 | #[simd_test(enable = "avx512fp16" )] |
| 26763 | fn test_mm_cvttsh_u32() { |
| 26764 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26765 | let r = _mm_cvttsh_u32(a); |
| 26766 | assert_eq!(r, 1); |
| 26767 | } |
| 26768 | |
| 26769 | #[simd_test(enable = "avx512fp16" )] |
| 26770 | fn test_mm_cvtt_roundsh_u32() { |
| 26771 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26772 | let r = _mm_cvtt_roundsh_u32::<_MM_FROUND_NO_EXC>(a); |
| 26773 | assert_eq!(r, 1); |
| 26774 | } |
| 26775 | |
| 26776 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26777 | fn test_mm_cvtph_epi64() { |
| 26778 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26779 | let r = _mm_cvtph_epi64(a); |
| 26780 | let e = _mm_set_epi64x(1, 2); |
| 26781 | assert_eq_m128i(r, e); |
| 26782 | } |
| 26783 | |
| 26784 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26785 | fn test_mm_mask_cvtph_epi64() { |
| 26786 | let src = _mm_set_epi64x(3, 4); |
| 26787 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26788 | let r = _mm_mask_cvtph_epi64(src, 0b01, a); |
| 26789 | let e = _mm_set_epi64x(3, 2); |
| 26790 | assert_eq_m128i(r, e); |
| 26791 | } |
| 26792 | |
| 26793 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26794 | fn test_mm_maskz_cvtph_epi64() { |
| 26795 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26796 | let r = _mm_maskz_cvtph_epi64(0b01, a); |
| 26797 | let e = _mm_set_epi64x(0, 2); |
| 26798 | assert_eq_m128i(r, e); |
| 26799 | } |
| 26800 | |
| 26801 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26802 | fn test_mm256_cvtph_epi64() { |
| 26803 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26804 | let r = _mm256_cvtph_epi64(a); |
| 26805 | let e = _mm256_set_epi64x(1, 2, 3, 4); |
| 26806 | assert_eq_m256i(r, e); |
| 26807 | } |
| 26808 | |
| 26809 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26810 | fn test_mm256_mask_cvtph_epi64() { |
| 26811 | let src = _mm256_set_epi64x(5, 6, 7, 8); |
| 26812 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26813 | let r = _mm256_mask_cvtph_epi64(src, 0b0101, a); |
| 26814 | let e = _mm256_set_epi64x(5, 2, 7, 4); |
| 26815 | assert_eq_m256i(r, e); |
| 26816 | } |
| 26817 | |
| 26818 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26819 | fn test_mm256_maskz_cvtph_epi64() { |
| 26820 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26821 | let r = _mm256_maskz_cvtph_epi64(0b0101, a); |
| 26822 | let e = _mm256_set_epi64x(0, 2, 0, 4); |
| 26823 | assert_eq_m256i(r, e); |
| 26824 | } |
| 26825 | |
| 26826 | #[simd_test(enable = "avx512fp16" )] |
| 26827 | fn test_mm512_cvtph_epi64() { |
| 26828 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26829 | let r = _mm512_cvtph_epi64(a); |
| 26830 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 26831 | assert_eq_m512i(r, e); |
| 26832 | } |
| 26833 | |
| 26834 | #[simd_test(enable = "avx512fp16" )] |
| 26835 | fn test_mm512_mask_cvtph_epi64() { |
| 26836 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 26837 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26838 | let r = _mm512_mask_cvtph_epi64(src, 0b01010101, a); |
| 26839 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 26840 | assert_eq_m512i(r, e); |
| 26841 | } |
| 26842 | |
| 26843 | #[simd_test(enable = "avx512fp16" )] |
| 26844 | fn test_mm512_maskz_cvtph_epi64() { |
| 26845 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26846 | let r = _mm512_maskz_cvtph_epi64(0b01010101, a); |
| 26847 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 26848 | assert_eq_m512i(r, e); |
| 26849 | } |
| 26850 | |
| 26851 | #[simd_test(enable = "avx512fp16" )] |
| 26852 | fn test_mm512_cvt_roundph_epi64() { |
| 26853 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26854 | let r = _mm512_cvt_roundph_epi64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26855 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 26856 | assert_eq_m512i(r, e); |
| 26857 | } |
| 26858 | |
| 26859 | #[simd_test(enable = "avx512fp16" )] |
| 26860 | fn test_mm512_mask_cvt_roundph_epi64() { |
| 26861 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 26862 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26863 | let r = _mm512_mask_cvt_roundph_epi64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26864 | src, 0b01010101, a, |
| 26865 | ); |
| 26866 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 26867 | assert_eq_m512i(r, e); |
| 26868 | } |
| 26869 | |
| 26870 | #[simd_test(enable = "avx512fp16" )] |
| 26871 | fn test_mm512_maskz_cvt_roundph_epi64() { |
| 26872 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26873 | let r = _mm512_maskz_cvt_roundph_epi64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26874 | 0b01010101, a, |
| 26875 | ); |
| 26876 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 26877 | assert_eq_m512i(r, e); |
| 26878 | } |
| 26879 | |
| 26880 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26881 | fn test_mm_cvtph_epu64() { |
| 26882 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26883 | let r = _mm_cvtph_epu64(a); |
| 26884 | let e = _mm_set_epi64x(1, 2); |
| 26885 | assert_eq_m128i(r, e); |
| 26886 | } |
| 26887 | |
| 26888 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26889 | fn test_mm_mask_cvtph_epu64() { |
| 26890 | let src = _mm_set_epi64x(3, 4); |
| 26891 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26892 | let r = _mm_mask_cvtph_epu64(src, 0b01, a); |
| 26893 | let e = _mm_set_epi64x(3, 2); |
| 26894 | assert_eq_m128i(r, e); |
| 26895 | } |
| 26896 | |
| 26897 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26898 | fn test_mm_maskz_cvtph_epu64() { |
| 26899 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26900 | let r = _mm_maskz_cvtph_epu64(0b01, a); |
| 26901 | let e = _mm_set_epi64x(0, 2); |
| 26902 | assert_eq_m128i(r, e); |
| 26903 | } |
| 26904 | |
| 26905 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26906 | fn test_mm256_cvtph_epu64() { |
| 26907 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26908 | let r = _mm256_cvtph_epu64(a); |
| 26909 | let e = _mm256_set_epi64x(1, 2, 3, 4); |
| 26910 | assert_eq_m256i(r, e); |
| 26911 | } |
| 26912 | |
| 26913 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26914 | fn test_mm256_mask_cvtph_epu64() { |
| 26915 | let src = _mm256_set_epi64x(5, 6, 7, 8); |
| 26916 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26917 | let r = _mm256_mask_cvtph_epu64(src, 0b0101, a); |
| 26918 | let e = _mm256_set_epi64x(5, 2, 7, 4); |
| 26919 | assert_eq_m256i(r, e); |
| 26920 | } |
| 26921 | |
| 26922 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26923 | fn test_mm256_maskz_cvtph_epu64() { |
| 26924 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 26925 | let r = _mm256_maskz_cvtph_epu64(0b0101, a); |
| 26926 | let e = _mm256_set_epi64x(0, 2, 0, 4); |
| 26927 | assert_eq_m256i(r, e); |
| 26928 | } |
| 26929 | |
| 26930 | #[simd_test(enable = "avx512fp16" )] |
| 26931 | fn test_mm512_cvtph_epu64() { |
| 26932 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26933 | let r = _mm512_cvtph_epu64(a); |
| 26934 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 26935 | assert_eq_m512i(r, e); |
| 26936 | } |
| 26937 | |
| 26938 | #[simd_test(enable = "avx512fp16" )] |
| 26939 | fn test_mm512_mask_cvtph_epu64() { |
| 26940 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 26941 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26942 | let r = _mm512_mask_cvtph_epu64(src, 0b01010101, a); |
| 26943 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 26944 | assert_eq_m512i(r, e); |
| 26945 | } |
| 26946 | |
| 26947 | #[simd_test(enable = "avx512fp16" )] |
| 26948 | fn test_mm512_maskz_cvtph_epu64() { |
| 26949 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26950 | let r = _mm512_maskz_cvtph_epu64(0b01010101, a); |
| 26951 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 26952 | assert_eq_m512i(r, e); |
| 26953 | } |
| 26954 | |
| 26955 | #[simd_test(enable = "avx512fp16" )] |
| 26956 | fn test_mm512_cvt_roundph_epu64() { |
| 26957 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26958 | let r = _mm512_cvt_roundph_epu64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>(a); |
| 26959 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 26960 | assert_eq_m512i(r, e); |
| 26961 | } |
| 26962 | |
| 26963 | #[simd_test(enable = "avx512fp16" )] |
| 26964 | fn test_mm512_mask_cvt_roundph_epu64() { |
| 26965 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 26966 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26967 | let r = _mm512_mask_cvt_roundph_epu64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26968 | src, 0b01010101, a, |
| 26969 | ); |
| 26970 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 26971 | assert_eq_m512i(r, e); |
| 26972 | } |
| 26973 | |
| 26974 | #[simd_test(enable = "avx512fp16" )] |
| 26975 | fn test_mm512_maskz_cvt_roundph_epu64() { |
| 26976 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 26977 | let r = _mm512_maskz_cvt_roundph_epu64::<{ _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC }>( |
| 26978 | 0b01010101, a, |
| 26979 | ); |
| 26980 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 26981 | assert_eq_m512i(r, e); |
| 26982 | } |
| 26983 | |
| 26984 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26985 | fn test_mm_cvttph_epi64() { |
| 26986 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26987 | let r = _mm_cvttph_epi64(a); |
| 26988 | let e = _mm_set_epi64x(1, 2); |
| 26989 | assert_eq_m128i(r, e); |
| 26990 | } |
| 26991 | |
| 26992 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 26993 | fn test_mm_mask_cvttph_epi64() { |
| 26994 | let src = _mm_set_epi64x(3, 4); |
| 26995 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 26996 | let r = _mm_mask_cvttph_epi64(src, 0b01, a); |
| 26997 | let e = _mm_set_epi64x(3, 2); |
| 26998 | assert_eq_m128i(r, e); |
| 26999 | } |
| 27000 | |
| 27001 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27002 | fn test_mm_maskz_cvttph_epi64() { |
| 27003 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27004 | let r = _mm_maskz_cvttph_epi64(0b01, a); |
| 27005 | let e = _mm_set_epi64x(0, 2); |
| 27006 | assert_eq_m128i(r, e); |
| 27007 | } |
| 27008 | |
| 27009 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27010 | fn test_mm256_cvttph_epi64() { |
| 27011 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27012 | let r = _mm256_cvttph_epi64(a); |
| 27013 | let e = _mm256_set_epi64x(1, 2, 3, 4); |
| 27014 | assert_eq_m256i(r, e); |
| 27015 | } |
| 27016 | |
| 27017 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27018 | fn test_mm256_mask_cvttph_epi64() { |
| 27019 | let src = _mm256_set_epi64x(5, 6, 7, 8); |
| 27020 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27021 | let r = _mm256_mask_cvttph_epi64(src, 0b0101, a); |
| 27022 | let e = _mm256_set_epi64x(5, 2, 7, 4); |
| 27023 | assert_eq_m256i(r, e); |
| 27024 | } |
| 27025 | |
| 27026 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27027 | fn test_mm256_maskz_cvttph_epi64() { |
| 27028 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27029 | let r = _mm256_maskz_cvttph_epi64(0b0101, a); |
| 27030 | let e = _mm256_set_epi64x(0, 2, 0, 4); |
| 27031 | assert_eq_m256i(r, e); |
| 27032 | } |
| 27033 | |
| 27034 | #[simd_test(enable = "avx512fp16" )] |
| 27035 | fn test_mm512_cvttph_epi64() { |
| 27036 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27037 | let r = _mm512_cvttph_epi64(a); |
| 27038 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 27039 | assert_eq_m512i(r, e); |
| 27040 | } |
| 27041 | |
| 27042 | #[simd_test(enable = "avx512fp16" )] |
| 27043 | fn test_mm512_mask_cvttph_epi64() { |
| 27044 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 27045 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27046 | let r = _mm512_mask_cvttph_epi64(src, 0b01010101, a); |
| 27047 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 27048 | assert_eq_m512i(r, e); |
| 27049 | } |
| 27050 | |
| 27051 | #[simd_test(enable = "avx512fp16" )] |
| 27052 | fn test_mm512_maskz_cvttph_epi64() { |
| 27053 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27054 | let r = _mm512_maskz_cvttph_epi64(0b01010101, a); |
| 27055 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 27056 | assert_eq_m512i(r, e); |
| 27057 | } |
| 27058 | |
| 27059 | #[simd_test(enable = "avx512fp16" )] |
| 27060 | fn test_mm512_cvtt_roundph_epi64() { |
| 27061 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27062 | let r = _mm512_cvtt_roundph_epi64::<_MM_FROUND_NO_EXC>(a); |
| 27063 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 27064 | assert_eq_m512i(r, e); |
| 27065 | } |
| 27066 | |
| 27067 | #[simd_test(enable = "avx512fp16" )] |
| 27068 | fn test_mm512_mask_cvtt_roundph_epi64() { |
| 27069 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 27070 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27071 | let r = _mm512_mask_cvtt_roundph_epi64::<_MM_FROUND_NO_EXC>(src, 0b01010101, a); |
| 27072 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 27073 | assert_eq_m512i(r, e); |
| 27074 | } |
| 27075 | |
| 27076 | #[simd_test(enable = "avx512fp16" )] |
| 27077 | fn test_mm512_maskz_cvtt_roundph_epi64() { |
| 27078 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27079 | let r = _mm512_maskz_cvtt_roundph_epi64::<_MM_FROUND_NO_EXC>(0b01010101, a); |
| 27080 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 27081 | assert_eq_m512i(r, e); |
| 27082 | } |
| 27083 | |
| 27084 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27085 | fn test_mm_cvttph_epu64() { |
| 27086 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27087 | let r = _mm_cvttph_epu64(a); |
| 27088 | let e = _mm_set_epi64x(1, 2); |
| 27089 | assert_eq_m128i(r, e); |
| 27090 | } |
| 27091 | |
| 27092 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27093 | fn test_mm_mask_cvttph_epu64() { |
| 27094 | let src = _mm_set_epi64x(3, 4); |
| 27095 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27096 | let r = _mm_mask_cvttph_epu64(src, 0b01, a); |
| 27097 | let e = _mm_set_epi64x(3, 2); |
| 27098 | assert_eq_m128i(r, e); |
| 27099 | } |
| 27100 | |
| 27101 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27102 | fn test_mm_maskz_cvttph_epu64() { |
| 27103 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27104 | let r = _mm_maskz_cvttph_epu64(0b01, a); |
| 27105 | let e = _mm_set_epi64x(0, 2); |
| 27106 | assert_eq_m128i(r, e); |
| 27107 | } |
| 27108 | |
| 27109 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27110 | fn test_mm256_cvttph_epu64() { |
| 27111 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27112 | let r = _mm256_cvttph_epu64(a); |
| 27113 | let e = _mm256_set_epi64x(1, 2, 3, 4); |
| 27114 | assert_eq_m256i(r, e); |
| 27115 | } |
| 27116 | |
| 27117 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27118 | fn test_mm256_mask_cvttph_epu64() { |
| 27119 | let src = _mm256_set_epi64x(5, 6, 7, 8); |
| 27120 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27121 | let r = _mm256_mask_cvttph_epu64(src, 0b0101, a); |
| 27122 | let e = _mm256_set_epi64x(5, 2, 7, 4); |
| 27123 | assert_eq_m256i(r, e); |
| 27124 | } |
| 27125 | |
| 27126 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27127 | fn test_mm256_maskz_cvttph_epu64() { |
| 27128 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27129 | let r = _mm256_maskz_cvttph_epu64(0b0101, a); |
| 27130 | let e = _mm256_set_epi64x(0, 2, 0, 4); |
| 27131 | assert_eq_m256i(r, e); |
| 27132 | } |
| 27133 | |
| 27134 | #[simd_test(enable = "avx512fp16" )] |
| 27135 | fn test_mm512_cvttph_epu64() { |
| 27136 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27137 | let r = _mm512_cvttph_epu64(a); |
| 27138 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 27139 | assert_eq_m512i(r, e); |
| 27140 | } |
| 27141 | |
| 27142 | #[simd_test(enable = "avx512fp16" )] |
| 27143 | fn test_mm512_mask_cvttph_epu64() { |
| 27144 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 27145 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27146 | let r = _mm512_mask_cvttph_epu64(src, 0b01010101, a); |
| 27147 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 27148 | assert_eq_m512i(r, e); |
| 27149 | } |
| 27150 | |
| 27151 | #[simd_test(enable = "avx512fp16" )] |
| 27152 | fn test_mm512_maskz_cvttph_epu64() { |
| 27153 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27154 | let r = _mm512_maskz_cvttph_epu64(0b01010101, a); |
| 27155 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 27156 | assert_eq_m512i(r, e); |
| 27157 | } |
| 27158 | |
| 27159 | #[simd_test(enable = "avx512fp16" )] |
| 27160 | fn test_mm512_cvtt_roundph_epu64() { |
| 27161 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27162 | let r = _mm512_cvtt_roundph_epu64::<_MM_FROUND_NO_EXC>(a); |
| 27163 | let e = _mm512_set_epi64(1, 2, 3, 4, 5, 6, 7, 8); |
| 27164 | assert_eq_m512i(r, e); |
| 27165 | } |
| 27166 | |
| 27167 | #[simd_test(enable = "avx512fp16" )] |
| 27168 | fn test_mm512_mask_cvtt_roundph_epu64() { |
| 27169 | let src = _mm512_set_epi64(9, 10, 11, 12, 13, 14, 15, 16); |
| 27170 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27171 | let r = _mm512_mask_cvtt_roundph_epu64::<_MM_FROUND_NO_EXC>(src, 0b01010101, a); |
| 27172 | let e = _mm512_set_epi64(9, 2, 11, 4, 13, 6, 15, 8); |
| 27173 | assert_eq_m512i(r, e); |
| 27174 | } |
| 27175 | |
| 27176 | #[simd_test(enable = "avx512fp16" )] |
| 27177 | fn test_mm512_maskz_cvtt_roundph_epu64() { |
| 27178 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27179 | let r = _mm512_maskz_cvtt_roundph_epu64::<_MM_FROUND_NO_EXC>(0b01010101, a); |
| 27180 | let e = _mm512_set_epi64(0, 2, 0, 4, 0, 6, 0, 8); |
| 27181 | assert_eq_m512i(r, e); |
| 27182 | } |
| 27183 | |
| 27184 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27185 | fn test_mm_cvtxph_ps() { |
| 27186 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27187 | let r = _mm_cvtxph_ps(a); |
| 27188 | let e = _mm_set_ps(1.0, 2.0, 3.0, 4.0); |
| 27189 | assert_eq_m128(r, e); |
| 27190 | } |
| 27191 | |
| 27192 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27193 | fn test_mm_mask_cvtxph_ps() { |
| 27194 | let src = _mm_set_ps(10.0, 11.0, 12.0, 13.0); |
| 27195 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27196 | let r = _mm_mask_cvtxph_ps(src, 0b0101, a); |
| 27197 | let e = _mm_set_ps(10.0, 2.0, 12.0, 4.0); |
| 27198 | assert_eq_m128(r, e); |
| 27199 | } |
| 27200 | |
| 27201 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27202 | fn test_mm_maskz_cvtxph_ps() { |
| 27203 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27204 | let r = _mm_maskz_cvtxph_ps(0b0101, a); |
| 27205 | let e = _mm_set_ps(0.0, 2.0, 0.0, 4.0); |
| 27206 | assert_eq_m128(r, e); |
| 27207 | } |
| 27208 | |
| 27209 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27210 | fn test_mm256_cvtxph_ps() { |
| 27211 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27212 | let r = _mm256_cvtxph_ps(a); |
| 27213 | let e = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27214 | assert_eq_m256(r, e); |
| 27215 | } |
| 27216 | |
| 27217 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27218 | fn test_mm256_mask_cvtxph_ps() { |
| 27219 | let src = _mm256_set_ps(10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0); |
| 27220 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27221 | let r = _mm256_mask_cvtxph_ps(src, 0b01010101, a); |
| 27222 | let e = _mm256_set_ps(10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0); |
| 27223 | assert_eq_m256(r, e); |
| 27224 | } |
| 27225 | |
| 27226 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27227 | fn test_mm256_maskz_cvtxph_ps() { |
| 27228 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27229 | let r = _mm256_maskz_cvtxph_ps(0b01010101, a); |
| 27230 | let e = _mm256_set_ps(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 27231 | assert_eq_m256(r, e); |
| 27232 | } |
| 27233 | |
| 27234 | #[simd_test(enable = "avx512fp16" )] |
| 27235 | fn test_mm512_cvtxph_ps() { |
| 27236 | let a = _mm256_set_ph( |
| 27237 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27238 | ); |
| 27239 | let r = _mm512_cvtxph_ps(a); |
| 27240 | let e = _mm512_set_ps( |
| 27241 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27242 | ); |
| 27243 | assert_eq_m512(r, e); |
| 27244 | } |
| 27245 | |
| 27246 | #[simd_test(enable = "avx512fp16" )] |
| 27247 | fn test_mm512_mask_cvtxph_ps() { |
| 27248 | let src = _mm512_set_ps( |
| 27249 | 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, |
| 27250 | 24.0, 25.0, |
| 27251 | ); |
| 27252 | let a = _mm256_set_ph( |
| 27253 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27254 | ); |
| 27255 | let r = _mm512_mask_cvtxph_ps(src, 0b0101010101010101, a); |
| 27256 | let e = _mm512_set_ps( |
| 27257 | 10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0, 18.0, 10.0, 20.0, 12.0, 22.0, 14.0, 24.0, |
| 27258 | 16.0, |
| 27259 | ); |
| 27260 | assert_eq_m512(r, e); |
| 27261 | } |
| 27262 | |
| 27263 | #[simd_test(enable = "avx512fp16" )] |
| 27264 | fn test_mm512_maskz_cvtxph_ps() { |
| 27265 | let a = _mm256_set_ph( |
| 27266 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27267 | ); |
| 27268 | let r = _mm512_maskz_cvtxph_ps(0b0101010101010101, a); |
| 27269 | let e = _mm512_set_ps( |
| 27270 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 27271 | ); |
| 27272 | assert_eq_m512(r, e); |
| 27273 | } |
| 27274 | |
| 27275 | #[simd_test(enable = "avx512fp16" )] |
| 27276 | fn test_mm512_cvtx_roundph_ps() { |
| 27277 | let a = _mm256_set_ph( |
| 27278 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27279 | ); |
| 27280 | let r = _mm512_cvtx_roundph_ps::<_MM_FROUND_NO_EXC>(a); |
| 27281 | let e = _mm512_set_ps( |
| 27282 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27283 | ); |
| 27284 | assert_eq_m512(r, e); |
| 27285 | } |
| 27286 | |
| 27287 | #[simd_test(enable = "avx512fp16" )] |
| 27288 | fn test_mm512_mask_cvtx_roundph_ps() { |
| 27289 | let src = _mm512_set_ps( |
| 27290 | 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, |
| 27291 | 24.0, 25.0, |
| 27292 | ); |
| 27293 | let a = _mm256_set_ph( |
| 27294 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27295 | ); |
| 27296 | let r = _mm512_mask_cvtx_roundph_ps::<_MM_FROUND_NO_EXC>(src, 0b0101010101010101, a); |
| 27297 | let e = _mm512_set_ps( |
| 27298 | 10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0, 18.0, 10.0, 20.0, 12.0, 22.0, 14.0, 24.0, |
| 27299 | 16.0, |
| 27300 | ); |
| 27301 | assert_eq_m512(r, e); |
| 27302 | } |
| 27303 | |
| 27304 | #[simd_test(enable = "avx512fp16" )] |
| 27305 | fn test_mm512_maskz_cvtx_roundph_ps() { |
| 27306 | let a = _mm256_set_ph( |
| 27307 | 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27308 | ); |
| 27309 | let r = _mm512_maskz_cvtx_roundph_ps::<_MM_FROUND_NO_EXC>(0b0101010101010101, a); |
| 27310 | let e = _mm512_set_ps( |
| 27311 | 0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0, 0.0, 10.0, 0.0, 12.0, 0.0, 14.0, 0.0, 16.0, |
| 27312 | ); |
| 27313 | assert_eq_m512(r, e); |
| 27314 | } |
| 27315 | |
| 27316 | #[simd_test(enable = "avx512fp16" )] |
| 27317 | fn test_mm_cvtsh_ss() { |
| 27318 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27319 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27320 | let r = _mm_cvtsh_ss(a, b); |
| 27321 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27322 | assert_eq_m128(r, e); |
| 27323 | } |
| 27324 | |
| 27325 | #[simd_test(enable = "avx512fp16" )] |
| 27326 | fn test_mm_mask_cvtsh_ss() { |
| 27327 | let src = _mm_setr_ps(3.0, 11.0, 12.0, 13.0); |
| 27328 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27329 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27330 | let r = _mm_mask_cvtsh_ss(src, 0, a, b); |
| 27331 | let e = _mm_setr_ps(3.0, 20.0, 21.0, 22.0); |
| 27332 | assert_eq_m128(r, e); |
| 27333 | let r = _mm_mask_cvtsh_ss(src, 1, a, b); |
| 27334 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27335 | assert_eq_m128(r, e); |
| 27336 | } |
| 27337 | |
| 27338 | #[simd_test(enable = "avx512fp16" )] |
| 27339 | fn test_mm_maskz_cvtsh_ss() { |
| 27340 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27341 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27342 | let r = _mm_maskz_cvtsh_ss(0, a, b); |
| 27343 | let e = _mm_setr_ps(0.0, 20.0, 21.0, 22.0); |
| 27344 | assert_eq_m128(r, e); |
| 27345 | let r = _mm_maskz_cvtsh_ss(1, a, b); |
| 27346 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27347 | assert_eq_m128(r, e); |
| 27348 | } |
| 27349 | |
| 27350 | #[simd_test(enable = "avx512fp16" )] |
| 27351 | fn test_mm_cvt_roundsh_ss() { |
| 27352 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27353 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27354 | let r = _mm_cvt_roundsh_ss::<_MM_FROUND_NO_EXC>(a, b); |
| 27355 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27356 | assert_eq_m128(r, e); |
| 27357 | } |
| 27358 | |
| 27359 | #[simd_test(enable = "avx512fp16" )] |
| 27360 | fn test_mm_mask_cvt_roundsh_ss() { |
| 27361 | let src = _mm_setr_ps(3.0, 11.0, 12.0, 13.0); |
| 27362 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27363 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27364 | let r = _mm_mask_cvt_roundsh_ss::<_MM_FROUND_NO_EXC>(src, 0, a, b); |
| 27365 | let e = _mm_setr_ps(3.0, 20.0, 21.0, 22.0); |
| 27366 | assert_eq_m128(r, e); |
| 27367 | let r = _mm_mask_cvt_roundsh_ss::<_MM_FROUND_NO_EXC>(src, 1, a, b); |
| 27368 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27369 | assert_eq_m128(r, e); |
| 27370 | } |
| 27371 | |
| 27372 | #[simd_test(enable = "avx512fp16" )] |
| 27373 | fn test_mm_maskz_cvt_roundsh_ss() { |
| 27374 | let a = _mm_setr_ps(2.0, 20.0, 21.0, 22.0); |
| 27375 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27376 | let r = _mm_maskz_cvt_roundsh_ss::<_MM_FROUND_NO_EXC>(0, a, b); |
| 27377 | let e = _mm_setr_ps(0.0, 20.0, 21.0, 22.0); |
| 27378 | assert_eq_m128(r, e); |
| 27379 | let r = _mm_maskz_cvt_roundsh_ss::<_MM_FROUND_NO_EXC>(1, a, b); |
| 27380 | let e = _mm_setr_ps(1.0, 20.0, 21.0, 22.0); |
| 27381 | assert_eq_m128(r, e); |
| 27382 | } |
| 27383 | |
| 27384 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27385 | fn test_mm_cvtph_pd() { |
| 27386 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27387 | let r = _mm_cvtph_pd(a); |
| 27388 | let e = _mm_set_pd(1.0, 2.0); |
| 27389 | assert_eq_m128d(r, e); |
| 27390 | } |
| 27391 | |
| 27392 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27393 | fn test_mm_mask_cvtph_pd() { |
| 27394 | let src = _mm_set_pd(10.0, 11.0); |
| 27395 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27396 | let r = _mm_mask_cvtph_pd(src, 0b01, a); |
| 27397 | let e = _mm_set_pd(10.0, 2.0); |
| 27398 | assert_eq_m128d(r, e); |
| 27399 | } |
| 27400 | |
| 27401 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27402 | fn test_mm_maskz_cvtph_pd() { |
| 27403 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0); |
| 27404 | let r = _mm_maskz_cvtph_pd(0b01, a); |
| 27405 | let e = _mm_set_pd(0.0, 2.0); |
| 27406 | assert_eq_m128d(r, e); |
| 27407 | } |
| 27408 | |
| 27409 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27410 | fn test_mm256_cvtph_pd() { |
| 27411 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27412 | let r = _mm256_cvtph_pd(a); |
| 27413 | let e = _mm256_set_pd(1.0, 2.0, 3.0, 4.0); |
| 27414 | assert_eq_m256d(r, e); |
| 27415 | } |
| 27416 | |
| 27417 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27418 | fn test_mm256_mask_cvtph_pd() { |
| 27419 | let src = _mm256_set_pd(10.0, 11.0, 12.0, 13.0); |
| 27420 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27421 | let r = _mm256_mask_cvtph_pd(src, 0b0101, a); |
| 27422 | let e = _mm256_set_pd(10.0, 2.0, 12.0, 4.0); |
| 27423 | assert_eq_m256d(r, e); |
| 27424 | } |
| 27425 | |
| 27426 | #[simd_test(enable = "avx512fp16,avx512vl" )] |
| 27427 | fn test_mm256_maskz_cvtph_pd() { |
| 27428 | let a = _mm_set_ph(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0); |
| 27429 | let r = _mm256_maskz_cvtph_pd(0b0101, a); |
| 27430 | let e = _mm256_set_pd(0.0, 2.0, 0.0, 4.0); |
| 27431 | assert_eq_m256d(r, e); |
| 27432 | } |
| 27433 | |
| 27434 | #[simd_test(enable = "avx512fp16" )] |
| 27435 | fn test_mm512_cvtph_pd() { |
| 27436 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27437 | let r = _mm512_cvtph_pd(a); |
| 27438 | let e = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27439 | assert_eq_m512d(r, e); |
| 27440 | } |
| 27441 | |
| 27442 | #[simd_test(enable = "avx512fp16" )] |
| 27443 | fn test_mm512_mask_cvtph_pd() { |
| 27444 | let src = _mm512_set_pd(10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0); |
| 27445 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27446 | let r = _mm512_mask_cvtph_pd(src, 0b01010101, a); |
| 27447 | let e = _mm512_set_pd(10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0); |
| 27448 | assert_eq_m512d(r, e); |
| 27449 | } |
| 27450 | |
| 27451 | #[simd_test(enable = "avx512fp16" )] |
| 27452 | fn test_mm512_maskz_cvtph_pd() { |
| 27453 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27454 | let r = _mm512_maskz_cvtph_pd(0b01010101, a); |
| 27455 | let e = _mm512_set_pd(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 27456 | assert_eq_m512d(r, e); |
| 27457 | } |
| 27458 | |
| 27459 | #[simd_test(enable = "avx512fp16" )] |
| 27460 | fn test_mm512_cvt_roundph_pd() { |
| 27461 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27462 | let r = _mm512_cvt_roundph_pd::<_MM_FROUND_NO_EXC>(a); |
| 27463 | let e = _mm512_set_pd(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27464 | assert_eq_m512d(r, e); |
| 27465 | } |
| 27466 | |
| 27467 | #[simd_test(enable = "avx512fp16" )] |
| 27468 | fn test_mm512_mask_cvt_roundph_pd() { |
| 27469 | let src = _mm512_set_pd(10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0); |
| 27470 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27471 | let r = _mm512_mask_cvt_roundph_pd::<_MM_FROUND_NO_EXC>(src, 0b01010101, a); |
| 27472 | let e = _mm512_set_pd(10.0, 2.0, 12.0, 4.0, 14.0, 6.0, 16.0, 8.0); |
| 27473 | assert_eq_m512d(r, e); |
| 27474 | } |
| 27475 | |
| 27476 | #[simd_test(enable = "avx512fp16" )] |
| 27477 | fn test_mm512_maskz_cvt_roundph_pd() { |
| 27478 | let a = _mm_set_ph(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); |
| 27479 | let r = _mm512_maskz_cvt_roundph_pd::<_MM_FROUND_NO_EXC>(0b01010101, a); |
| 27480 | let e = _mm512_set_pd(0.0, 2.0, 0.0, 4.0, 0.0, 6.0, 0.0, 8.0); |
| 27481 | assert_eq_m512d(r, e); |
| 27482 | } |
| 27483 | |
| 27484 | #[simd_test(enable = "avx512fp16" )] |
| 27485 | fn test_mm_cvtsh_sd() { |
| 27486 | let a = _mm_setr_pd(2.0, 20.0); |
| 27487 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27488 | let r = _mm_cvtsh_sd(a, b); |
| 27489 | let e = _mm_setr_pd(1.0, 20.0); |
| 27490 | assert_eq_m128d(r, e); |
| 27491 | } |
| 27492 | |
| 27493 | #[simd_test(enable = "avx512fp16" )] |
| 27494 | fn test_mm_mask_cvtsh_sd() { |
| 27495 | let src = _mm_setr_pd(3.0, 11.0); |
| 27496 | let a = _mm_setr_pd(2.0, 20.0); |
| 27497 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27498 | let r = _mm_mask_cvtsh_sd(src, 0, a, b); |
| 27499 | let e = _mm_setr_pd(3.0, 20.0); |
| 27500 | assert_eq_m128d(r, e); |
| 27501 | let r = _mm_mask_cvtsh_sd(src, 1, a, b); |
| 27502 | let e = _mm_setr_pd(1.0, 20.0); |
| 27503 | assert_eq_m128d(r, e); |
| 27504 | } |
| 27505 | |
| 27506 | #[simd_test(enable = "avx512fp16" )] |
| 27507 | fn test_mm_maskz_cvtsh_sd() { |
| 27508 | let a = _mm_setr_pd(2.0, 20.0); |
| 27509 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27510 | let r = _mm_maskz_cvtsh_sd(0, a, b); |
| 27511 | let e = _mm_setr_pd(0.0, 20.0); |
| 27512 | assert_eq_m128d(r, e); |
| 27513 | let r = _mm_maskz_cvtsh_sd(1, a, b); |
| 27514 | let e = _mm_setr_pd(1.0, 20.0); |
| 27515 | assert_eq_m128d(r, e); |
| 27516 | } |
| 27517 | |
| 27518 | #[simd_test(enable = "avx512fp16" )] |
| 27519 | fn test_mm_cvt_roundsh_sd() { |
| 27520 | let a = _mm_setr_pd(2.0, 20.0); |
| 27521 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27522 | let r = _mm_cvt_roundsh_sd::<_MM_FROUND_NO_EXC>(a, b); |
| 27523 | let e = _mm_setr_pd(1.0, 20.0); |
| 27524 | assert_eq_m128d(r, e); |
| 27525 | } |
| 27526 | |
| 27527 | #[simd_test(enable = "avx512fp16" )] |
| 27528 | fn test_mm_mask_cvt_roundsh_sd() { |
| 27529 | let src = _mm_setr_pd(3.0, 11.0); |
| 27530 | let a = _mm_setr_pd(2.0, 20.0); |
| 27531 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27532 | let r = _mm_mask_cvt_roundsh_sd::<_MM_FROUND_NO_EXC>(src, 0, a, b); |
| 27533 | let e = _mm_setr_pd(3.0, 20.0); |
| 27534 | assert_eq_m128d(r, e); |
| 27535 | let r = _mm_mask_cvt_roundsh_sd::<_MM_FROUND_NO_EXC>(src, 1, a, b); |
| 27536 | let e = _mm_setr_pd(1.0, 20.0); |
| 27537 | assert_eq_m128d(r, e); |
| 27538 | } |
| 27539 | |
| 27540 | #[simd_test(enable = "avx512fp16" )] |
| 27541 | fn test_mm_maskz_cvt_roundsh_sd() { |
| 27542 | let a = _mm_setr_pd(2.0, 20.0); |
| 27543 | let b = _mm_setr_ph(1.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); |
| 27544 | let r = _mm_maskz_cvt_roundsh_sd::<_MM_FROUND_NO_EXC>(0, a, b); |
| 27545 | let e = _mm_setr_pd(0.0, 20.0); |
| 27546 | assert_eq_m128d(r, e); |
| 27547 | let r = _mm_maskz_cvt_roundsh_sd::<_MM_FROUND_NO_EXC>(1, a, b); |
| 27548 | let e = _mm_setr_pd(1.0, 20.0); |
| 27549 | assert_eq_m128d(r, e); |
| 27550 | } |
| 27551 | |
| 27552 | #[simd_test(enable = "avx512fp16" )] |
| 27553 | const fn test_mm_cvtsh_h() { |
| 27554 | let a = _mm_setr_ph(1.0, 2.0, 3.0, 42.0, 5.0, 6.0, 7.0, 8.0); |
| 27555 | let r = _mm_cvtsh_h(a); |
| 27556 | assert_eq!(r, 1.0); |
| 27557 | } |
| 27558 | |
| 27559 | #[simd_test(enable = "avx512fp16" )] |
| 27560 | const fn test_mm256_cvtsh_h() { |
| 27561 | let a = _mm256_setr_ph( |
| 27562 | 1.0, 2.0, 3.0, 42.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27563 | ); |
| 27564 | let r = _mm256_cvtsh_h(a); |
| 27565 | assert_eq!(r, 1.0); |
| 27566 | } |
| 27567 | |
| 27568 | #[simd_test(enable = "avx512fp16" )] |
| 27569 | const fn test_mm512_cvtsh_h() { |
| 27570 | let a = _mm512_setr_ph( |
| 27571 | 1.0, 2.0, 3.0, 42.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, |
| 27572 | 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, |
| 27573 | 31.0, 32.0, |
| 27574 | ); |
| 27575 | let r = _mm512_cvtsh_h(a); |
| 27576 | assert_eq!(r, 1.0); |
| 27577 | } |
| 27578 | |
| 27579 | #[simd_test(enable = "avx512fp16" )] |
| 27580 | const fn test_mm_cvtsi128_si16() { |
| 27581 | let a = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| 27582 | let r = _mm_cvtsi128_si16(a); |
| 27583 | assert_eq!(r, 1); |
| 27584 | } |
| 27585 | |
| 27586 | #[simd_test(enable = "avx512fp16" )] |
| 27587 | const fn test_mm_cvtsi16_si128() { |
| 27588 | let a = 1; |
| 27589 | let r = _mm_cvtsi16_si128(a); |
| 27590 | let e = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); |
| 27591 | assert_eq_m128i(r, e); |
| 27592 | } |
| 27593 | } |
| 27594 | |