| 1 | use std::boxed::Box; |
| 2 | use std::cell::UnsafeCell; |
| 3 | use std::collections::HashMap; |
| 4 | use std::fmt; |
| 5 | use std::marker::PhantomData; |
| 6 | use std::mem; |
| 7 | use std::ops::{Deref, DerefMut}; |
| 8 | use std::panic::{RefUnwindSafe, UnwindSafe}; |
| 9 | use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult}; |
| 10 | use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard}; |
| 11 | use std::thread::{self, ThreadId}; |
| 12 | use std::vec::Vec; |
| 13 | |
| 14 | use crate::sync::once_lock::OnceLock; |
| 15 | use crate::CachePadded; |
| 16 | |
| 17 | /// The number of shards per sharded lock. Must be a power of two. |
| 18 | const NUM_SHARDS: usize = 8; |
| 19 | |
| 20 | /// A shard containing a single reader-writer lock. |
| 21 | struct Shard { |
| 22 | /// The inner reader-writer lock. |
| 23 | lock: RwLock<()>, |
| 24 | |
| 25 | /// The write-guard keeping this shard locked. |
| 26 | /// |
| 27 | /// Write operations will lock each shard and store the guard here. These guards get dropped at |
| 28 | /// the same time the big guard is dropped. |
| 29 | write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>, |
| 30 | } |
| 31 | |
| 32 | /// A sharded reader-writer lock. |
| 33 | /// |
| 34 | /// This lock is equivalent to [`RwLock`], except read operations are faster and write operations |
| 35 | /// are slower. |
| 36 | /// |
| 37 | /// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a |
| 38 | /// single cache line. Read operations will pick one of the shards depending on the current thread |
| 39 | /// and lock it. Write operations need to lock all shards in succession. |
| 40 | /// |
| 41 | /// By splitting the lock into shards, concurrent read operations will in most cases choose |
| 42 | /// different shards and thus update different cache lines, which is good for scalability. However, |
| 43 | /// write operations need to do more work and are therefore slower than usual. |
| 44 | /// |
| 45 | /// The priority policy of the lock is dependent on the underlying operating system's |
| 46 | /// implementation, and this type does not guarantee that any particular policy will be used. |
| 47 | /// |
| 48 | /// # Poisoning |
| 49 | /// |
| 50 | /// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be |
| 51 | /// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any |
| 52 | /// read operation, the lock will not be poisoned. |
| 53 | /// |
| 54 | /// # Examples |
| 55 | /// |
| 56 | /// ``` |
| 57 | /// use crossbeam_utils::sync::ShardedLock; |
| 58 | /// |
| 59 | /// let lock = ShardedLock::new(5); |
| 60 | /// |
| 61 | /// // Any number of read locks can be held at once. |
| 62 | /// { |
| 63 | /// let r1 = lock.read().unwrap(); |
| 64 | /// let r2 = lock.read().unwrap(); |
| 65 | /// assert_eq!(*r1, 5); |
| 66 | /// assert_eq!(*r2, 5); |
| 67 | /// } // Read locks are dropped at this point. |
| 68 | /// |
| 69 | /// // However, only one write lock may be held. |
| 70 | /// { |
| 71 | /// let mut w = lock.write().unwrap(); |
| 72 | /// *w += 1; |
| 73 | /// assert_eq!(*w, 6); |
| 74 | /// } // Write lock is dropped here. |
| 75 | /// ``` |
| 76 | /// |
| 77 | /// [`RwLock`]: std::sync::RwLock |
| 78 | pub struct ShardedLock<T: ?Sized> { |
| 79 | /// A list of locks protecting the internal data. |
| 80 | shards: Box<[CachePadded<Shard>]>, |
| 81 | |
| 82 | /// The internal data. |
| 83 | value: UnsafeCell<T>, |
| 84 | } |
| 85 | |
| 86 | unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {} |
| 87 | unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {} |
| 88 | |
| 89 | impl<T: ?Sized> UnwindSafe for ShardedLock<T> {} |
| 90 | impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {} |
| 91 | |
| 92 | impl<T> ShardedLock<T> { |
| 93 | /// Creates a new sharded reader-writer lock. |
| 94 | /// |
| 95 | /// # Examples |
| 96 | /// |
| 97 | /// ``` |
| 98 | /// use crossbeam_utils::sync::ShardedLock; |
| 99 | /// |
| 100 | /// let lock = ShardedLock::new(5); |
| 101 | /// ``` |
| 102 | pub fn new(value: T) -> ShardedLock<T> { |
| 103 | ShardedLock { |
| 104 | shards: (0..NUM_SHARDS) |
| 105 | .map(|_| { |
| 106 | CachePadded::new(Shard { |
| 107 | lock: RwLock::new(()), |
| 108 | write_guard: UnsafeCell::new(None), |
| 109 | }) |
| 110 | }) |
| 111 | .collect::<Box<[_]>>(), |
| 112 | value: UnsafeCell::new(value), |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | /// Consumes this lock, returning the underlying data. |
| 117 | /// |
| 118 | /// # Errors |
| 119 | /// |
| 120 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 121 | /// operation panics. |
| 122 | /// |
| 123 | /// # Examples |
| 124 | /// |
| 125 | /// ``` |
| 126 | /// use crossbeam_utils::sync::ShardedLock; |
| 127 | /// |
| 128 | /// let lock = ShardedLock::new(String::new()); |
| 129 | /// { |
| 130 | /// let mut s = lock.write().unwrap(); |
| 131 | /// *s = "modified" .to_owned(); |
| 132 | /// } |
| 133 | /// assert_eq!(lock.into_inner().unwrap(), "modified" ); |
| 134 | /// ``` |
| 135 | pub fn into_inner(self) -> LockResult<T> { |
| 136 | let is_poisoned = self.is_poisoned(); |
| 137 | let inner = self.value.into_inner(); |
| 138 | |
| 139 | if is_poisoned { |
| 140 | Err(PoisonError::new(inner)) |
| 141 | } else { |
| 142 | Ok(inner) |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | impl<T: ?Sized> ShardedLock<T> { |
| 148 | /// Returns `true` if the lock is poisoned. |
| 149 | /// |
| 150 | /// If another thread can still access the lock, it may become poisoned at any time. A `false` |
| 151 | /// result should not be trusted without additional synchronization. |
| 152 | /// |
| 153 | /// # Examples |
| 154 | /// |
| 155 | /// ``` |
| 156 | /// use crossbeam_utils::sync::ShardedLock; |
| 157 | /// use std::sync::Arc; |
| 158 | /// use std::thread; |
| 159 | /// |
| 160 | /// let lock = Arc::new(ShardedLock::new(0)); |
| 161 | /// let c_lock = lock.clone(); |
| 162 | /// |
| 163 | /// let _ = thread::spawn(move || { |
| 164 | /// let _lock = c_lock.write().unwrap(); |
| 165 | /// panic!(); // the lock gets poisoned |
| 166 | /// }).join(); |
| 167 | /// assert_eq!(lock.is_poisoned(), true); |
| 168 | /// ``` |
| 169 | pub fn is_poisoned(&self) -> bool { |
| 170 | self.shards[0].lock.is_poisoned() |
| 171 | } |
| 172 | |
| 173 | /// Returns a mutable reference to the underlying data. |
| 174 | /// |
| 175 | /// Since this call borrows the lock mutably, no actual locking needs to take place. |
| 176 | /// |
| 177 | /// # Errors |
| 178 | /// |
| 179 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 180 | /// operation panics. |
| 181 | /// |
| 182 | /// # Examples |
| 183 | /// |
| 184 | /// ``` |
| 185 | /// use crossbeam_utils::sync::ShardedLock; |
| 186 | /// |
| 187 | /// let mut lock = ShardedLock::new(0); |
| 188 | /// *lock.get_mut().unwrap() = 10; |
| 189 | /// assert_eq!(*lock.read().unwrap(), 10); |
| 190 | /// ``` |
| 191 | pub fn get_mut(&mut self) -> LockResult<&mut T> { |
| 192 | let is_poisoned = self.is_poisoned(); |
| 193 | let inner = unsafe { &mut *self.value.get() }; |
| 194 | |
| 195 | if is_poisoned { |
| 196 | Err(PoisonError::new(inner)) |
| 197 | } else { |
| 198 | Ok(inner) |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /// Attempts to acquire this lock with shared read access. |
| 203 | /// |
| 204 | /// If the access could not be granted at this time, an error is returned. Otherwise, a guard |
| 205 | /// is returned which will release the shared access when it is dropped. This method does not |
| 206 | /// provide any guarantees with respect to the ordering of whether contentious readers or |
| 207 | /// writers will acquire the lock first. |
| 208 | /// |
| 209 | /// # Errors |
| 210 | /// |
| 211 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 212 | /// operation panics. |
| 213 | /// |
| 214 | /// # Examples |
| 215 | /// |
| 216 | /// ``` |
| 217 | /// use crossbeam_utils::sync::ShardedLock; |
| 218 | /// |
| 219 | /// let lock = ShardedLock::new(1); |
| 220 | /// |
| 221 | /// match lock.try_read() { |
| 222 | /// Ok(n) => assert_eq!(*n, 1), |
| 223 | /// Err(_) => unreachable!(), |
| 224 | /// }; |
| 225 | /// ``` |
| 226 | pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<'_, T>> { |
| 227 | // Take the current thread index and map it to a shard index. Thread indices will tend to |
| 228 | // distribute shards among threads equally, thus reducing contention due to read-locking. |
| 229 | let current_index = current_index().unwrap_or(0); |
| 230 | let shard_index = current_index & (self.shards.len() - 1); |
| 231 | |
| 232 | match self.shards[shard_index].lock.try_read() { |
| 233 | Ok(guard) => Ok(ShardedLockReadGuard { |
| 234 | lock: self, |
| 235 | _guard: guard, |
| 236 | _marker: PhantomData, |
| 237 | }), |
| 238 | Err(TryLockError::Poisoned(err)) => { |
| 239 | let guard = ShardedLockReadGuard { |
| 240 | lock: self, |
| 241 | _guard: err.into_inner(), |
| 242 | _marker: PhantomData, |
| 243 | }; |
| 244 | Err(TryLockError::Poisoned(PoisonError::new(guard))) |
| 245 | } |
| 246 | Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock), |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /// Locks with shared read access, blocking the current thread until it can be acquired. |
| 251 | /// |
| 252 | /// The calling thread will be blocked until there are no more writers which hold the lock. |
| 253 | /// There may be other readers currently inside the lock when this method returns. This method |
| 254 | /// does not provide any guarantees with respect to the ordering of whether contentious readers |
| 255 | /// or writers will acquire the lock first. |
| 256 | /// |
| 257 | /// Returns a guard which will release the shared access when dropped. |
| 258 | /// |
| 259 | /// # Errors |
| 260 | /// |
| 261 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 262 | /// operation panics. |
| 263 | /// |
| 264 | /// # Panics |
| 265 | /// |
| 266 | /// This method might panic when called if the lock is already held by the current thread. |
| 267 | /// |
| 268 | /// # Examples |
| 269 | /// |
| 270 | /// ``` |
| 271 | /// use crossbeam_utils::sync::ShardedLock; |
| 272 | /// use std::sync::Arc; |
| 273 | /// use std::thread; |
| 274 | /// |
| 275 | /// let lock = Arc::new(ShardedLock::new(1)); |
| 276 | /// let c_lock = lock.clone(); |
| 277 | /// |
| 278 | /// let n = lock.read().unwrap(); |
| 279 | /// assert_eq!(*n, 1); |
| 280 | /// |
| 281 | /// thread::spawn(move || { |
| 282 | /// let r = c_lock.read(); |
| 283 | /// assert!(r.is_ok()); |
| 284 | /// }).join().unwrap(); |
| 285 | /// ``` |
| 286 | pub fn read(&self) -> LockResult<ShardedLockReadGuard<'_, T>> { |
| 287 | // Take the current thread index and map it to a shard index. Thread indices will tend to |
| 288 | // distribute shards among threads equally, thus reducing contention due to read-locking. |
| 289 | let current_index = current_index().unwrap_or(0); |
| 290 | let shard_index = current_index & (self.shards.len() - 1); |
| 291 | |
| 292 | match self.shards[shard_index].lock.read() { |
| 293 | Ok(guard) => Ok(ShardedLockReadGuard { |
| 294 | lock: self, |
| 295 | _guard: guard, |
| 296 | _marker: PhantomData, |
| 297 | }), |
| 298 | Err(err) => Err(PoisonError::new(ShardedLockReadGuard { |
| 299 | lock: self, |
| 300 | _guard: err.into_inner(), |
| 301 | _marker: PhantomData, |
| 302 | })), |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// Attempts to acquire this lock with exclusive write access. |
| 307 | /// |
| 308 | /// If the access could not be granted at this time, an error is returned. Otherwise, a guard |
| 309 | /// is returned which will release the exclusive access when it is dropped. This method does |
| 310 | /// not provide any guarantees with respect to the ordering of whether contentious readers or |
| 311 | /// writers will acquire the lock first. |
| 312 | /// |
| 313 | /// # Errors |
| 314 | /// |
| 315 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 316 | /// operation panics. |
| 317 | /// |
| 318 | /// # Examples |
| 319 | /// |
| 320 | /// ``` |
| 321 | /// use crossbeam_utils::sync::ShardedLock; |
| 322 | /// |
| 323 | /// let lock = ShardedLock::new(1); |
| 324 | /// |
| 325 | /// let n = lock.read().unwrap(); |
| 326 | /// assert_eq!(*n, 1); |
| 327 | /// |
| 328 | /// assert!(lock.try_write().is_err()); |
| 329 | /// ``` |
| 330 | pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<'_, T>> { |
| 331 | let mut poisoned = false; |
| 332 | let mut blocked = None; |
| 333 | |
| 334 | // Write-lock each shard in succession. |
| 335 | for (i, shard) in self.shards.iter().enumerate() { |
| 336 | let guard = match shard.lock.try_write() { |
| 337 | Ok(guard) => guard, |
| 338 | Err(TryLockError::Poisoned(err)) => { |
| 339 | poisoned = true; |
| 340 | err.into_inner() |
| 341 | } |
| 342 | Err(TryLockError::WouldBlock) => { |
| 343 | blocked = Some(i); |
| 344 | break; |
| 345 | } |
| 346 | }; |
| 347 | |
| 348 | // Store the guard into the shard. |
| 349 | unsafe { |
| 350 | let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); |
| 351 | let dest: *mut _ = shard.write_guard.get(); |
| 352 | *dest = Some(guard); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | if let Some(i) = blocked { |
| 357 | // Unlock the shards in reverse order of locking. |
| 358 | for shard in self.shards[0..i].iter().rev() { |
| 359 | unsafe { |
| 360 | let dest: *mut _ = shard.write_guard.get(); |
| 361 | let guard = (*dest).take(); |
| 362 | drop(guard); |
| 363 | } |
| 364 | } |
| 365 | Err(TryLockError::WouldBlock) |
| 366 | } else if poisoned { |
| 367 | let guard = ShardedLockWriteGuard { |
| 368 | lock: self, |
| 369 | _marker: PhantomData, |
| 370 | }; |
| 371 | Err(TryLockError::Poisoned(PoisonError::new(guard))) |
| 372 | } else { |
| 373 | Ok(ShardedLockWriteGuard { |
| 374 | lock: self, |
| 375 | _marker: PhantomData, |
| 376 | }) |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | /// Locks with exclusive write access, blocking the current thread until it can be acquired. |
| 381 | /// |
| 382 | /// The calling thread will be blocked until there are no more writers which hold the lock. |
| 383 | /// There may be other readers currently inside the lock when this method returns. This method |
| 384 | /// does not provide any guarantees with respect to the ordering of whether contentious readers |
| 385 | /// or writers will acquire the lock first. |
| 386 | /// |
| 387 | /// Returns a guard which will release the exclusive access when dropped. |
| 388 | /// |
| 389 | /// # Errors |
| 390 | /// |
| 391 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
| 392 | /// operation panics. |
| 393 | /// |
| 394 | /// # Panics |
| 395 | /// |
| 396 | /// This method might panic when called if the lock is already held by the current thread. |
| 397 | /// |
| 398 | /// # Examples |
| 399 | /// |
| 400 | /// ``` |
| 401 | /// use crossbeam_utils::sync::ShardedLock; |
| 402 | /// |
| 403 | /// let lock = ShardedLock::new(1); |
| 404 | /// |
| 405 | /// let mut n = lock.write().unwrap(); |
| 406 | /// *n = 2; |
| 407 | /// |
| 408 | /// assert!(lock.try_read().is_err()); |
| 409 | /// ``` |
| 410 | pub fn write(&self) -> LockResult<ShardedLockWriteGuard<'_, T>> { |
| 411 | let mut poisoned = false; |
| 412 | |
| 413 | // Write-lock each shard in succession. |
| 414 | for shard in self.shards.iter() { |
| 415 | let guard = match shard.lock.write() { |
| 416 | Ok(guard) => guard, |
| 417 | Err(err) => { |
| 418 | poisoned = true; |
| 419 | err.into_inner() |
| 420 | } |
| 421 | }; |
| 422 | |
| 423 | // Store the guard into the shard. |
| 424 | unsafe { |
| 425 | let guard: RwLockWriteGuard<'_, ()> = guard; |
| 426 | let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); |
| 427 | let dest: *mut _ = shard.write_guard.get(); |
| 428 | *dest = Some(guard); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | if poisoned { |
| 433 | Err(PoisonError::new(ShardedLockWriteGuard { |
| 434 | lock: self, |
| 435 | _marker: PhantomData, |
| 436 | })) |
| 437 | } else { |
| 438 | Ok(ShardedLockWriteGuard { |
| 439 | lock: self, |
| 440 | _marker: PhantomData, |
| 441 | }) |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> { |
| 447 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 448 | match self.try_read() { |
| 449 | Ok(guard) => f |
| 450 | .debug_struct("ShardedLock" ) |
| 451 | .field("data" , &&*guard) |
| 452 | .finish(), |
| 453 | Err(TryLockError::Poisoned(err)) => f |
| 454 | .debug_struct("ShardedLock" ) |
| 455 | .field("data" , &&**err.get_ref()) |
| 456 | .finish(), |
| 457 | Err(TryLockError::WouldBlock) => { |
| 458 | struct LockedPlaceholder; |
| 459 | impl fmt::Debug for LockedPlaceholder { |
| 460 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 461 | f.write_str("<locked>" ) |
| 462 | } |
| 463 | } |
| 464 | f.debug_struct("ShardedLock" ) |
| 465 | .field("data" , &LockedPlaceholder) |
| 466 | .finish() |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | impl<T: Default> Default for ShardedLock<T> { |
| 473 | fn default() -> ShardedLock<T> { |
| 474 | ShardedLock::new(Default::default()) |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | impl<T> From<T> for ShardedLock<T> { |
| 479 | fn from(t: T) -> Self { |
| 480 | ShardedLock::new(t) |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /// A guard used to release the shared read access of a [`ShardedLock`] when dropped. |
| 485 | #[clippy::has_significant_drop] |
| 486 | pub struct ShardedLockReadGuard<'a, T: ?Sized> { |
| 487 | lock: &'a ShardedLock<T>, |
| 488 | _guard: RwLockReadGuard<'a, ()>, |
| 489 | _marker: PhantomData<RwLockReadGuard<'a, T>>, |
| 490 | } |
| 491 | |
| 492 | unsafe impl<T: ?Sized + Sync> Sync for ShardedLockReadGuard<'_, T> {} |
| 493 | |
| 494 | impl<T: ?Sized> Deref for ShardedLockReadGuard<'_, T> { |
| 495 | type Target = T; |
| 496 | |
| 497 | fn deref(&self) -> &T { |
| 498 | unsafe { &*self.lock.value.get() } |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | impl<T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'_, T> { |
| 503 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 504 | f&mut DebugStruct<'_, '_>.debug_struct("ShardedLockReadGuard" ) |
| 505 | .field(name:"lock" , &self.lock) |
| 506 | .finish() |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'_, T> { |
| 511 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 512 | (**self).fmt(f) |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | /// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped. |
| 517 | #[clippy::has_significant_drop] |
| 518 | pub struct ShardedLockWriteGuard<'a, T: ?Sized> { |
| 519 | lock: &'a ShardedLock<T>, |
| 520 | _marker: PhantomData<RwLockWriteGuard<'a, T>>, |
| 521 | } |
| 522 | |
| 523 | unsafe impl<T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'_, T> {} |
| 524 | |
| 525 | impl<T: ?Sized> Drop for ShardedLockWriteGuard<'_, T> { |
| 526 | fn drop(&mut self) { |
| 527 | // Unlock the shards in reverse order of locking. |
| 528 | for shard: &CachePadded in self.lock.shards.iter().rev() { |
| 529 | unsafe { |
| 530 | let dest: *mut _ = shard.write_guard.get(); |
| 531 | let guard: Option> = (*dest).take(); |
| 532 | drop(guard); |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | impl<T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'_, T> { |
| 539 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 540 | f&mut DebugStruct<'_, '_>.debug_struct("ShardedLockWriteGuard" ) |
| 541 | .field(name:"lock" , &self.lock) |
| 542 | .finish() |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'_, T> { |
| 547 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 548 | (**self).fmt(f) |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | impl<T: ?Sized> Deref for ShardedLockWriteGuard<'_, T> { |
| 553 | type Target = T; |
| 554 | |
| 555 | fn deref(&self) -> &T { |
| 556 | unsafe { &*self.lock.value.get() } |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | impl<T: ?Sized> DerefMut for ShardedLockWriteGuard<'_, T> { |
| 561 | fn deref_mut(&mut self) -> &mut T { |
| 562 | unsafe { &mut *self.lock.value.get() } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /// Returns a `usize` that identifies the current thread. |
| 567 | /// |
| 568 | /// Each thread is associated with an 'index'. While there are no particular guarantees, indices |
| 569 | /// usually tend to be consecutive numbers between 0 and the number of running threads. |
| 570 | /// |
| 571 | /// Since this function accesses TLS, `None` might be returned if the current thread's TLS is |
| 572 | /// tearing down. |
| 573 | #[inline ] |
| 574 | fn current_index() -> Option<usize> { |
| 575 | REGISTRATION.try_with(|reg: &Registration| reg.index).ok() |
| 576 | } |
| 577 | |
| 578 | /// The global registry keeping track of registered threads and indices. |
| 579 | struct ThreadIndices { |
| 580 | /// Mapping from `ThreadId` to thread index. |
| 581 | mapping: HashMap<ThreadId, usize>, |
| 582 | |
| 583 | /// A list of free indices. |
| 584 | free_list: Vec<usize>, |
| 585 | |
| 586 | /// The next index to allocate if the free list is empty. |
| 587 | next_index: usize, |
| 588 | } |
| 589 | |
| 590 | fn thread_indices() -> &'static Mutex<ThreadIndices> { |
| 591 | static THREAD_INDICES: OnceLock<Mutex<ThreadIndices>> = OnceLock::new(); |
| 592 | fn init() -> Mutex<ThreadIndices> { |
| 593 | Mutex::new(ThreadIndices { |
| 594 | mapping: HashMap::new(), |
| 595 | free_list: Vec::new(), |
| 596 | next_index: 0, |
| 597 | }) |
| 598 | } |
| 599 | THREAD_INDICES.get_or_init(init) |
| 600 | } |
| 601 | |
| 602 | /// A registration of a thread with an index. |
| 603 | /// |
| 604 | /// When dropped, unregisters the thread and frees the reserved index. |
| 605 | struct Registration { |
| 606 | index: usize, |
| 607 | thread_id: ThreadId, |
| 608 | } |
| 609 | |
| 610 | impl Drop for Registration { |
| 611 | fn drop(&mut self) { |
| 612 | let mut indices: MutexGuard<'_, ThreadIndices> = thread_indices().lock().unwrap(); |
| 613 | indices.mapping.remove(&self.thread_id); |
| 614 | indices.free_list.push(self.index); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | std::thread_local! { |
| 619 | static REGISTRATION: Registration = { |
| 620 | let thread_id = thread::current().id(); |
| 621 | let mut indices = thread_indices().lock().unwrap(); |
| 622 | |
| 623 | let index = match indices.free_list.pop() { |
| 624 | Some(i) => i, |
| 625 | None => { |
| 626 | let i = indices.next_index; |
| 627 | indices.next_index += 1; |
| 628 | i |
| 629 | } |
| 630 | }; |
| 631 | indices.mapping.insert(thread_id, index); |
| 632 | |
| 633 | Registration { |
| 634 | index, |
| 635 | thread_id, |
| 636 | } |
| 637 | }; |
| 638 | } |
| 639 | |