1 | use std::boxed::Box; |
2 | use std::cell::UnsafeCell; |
3 | use std::collections::HashMap; |
4 | use std::fmt; |
5 | use std::marker::PhantomData; |
6 | use std::mem; |
7 | use std::ops::{Deref, DerefMut}; |
8 | use std::panic::{RefUnwindSafe, UnwindSafe}; |
9 | use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult}; |
10 | use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard}; |
11 | use std::thread::{self, ThreadId}; |
12 | use std::vec::Vec; |
13 | |
14 | use crate::sync::once_lock::OnceLock; |
15 | use crate::CachePadded; |
16 | |
17 | /// The number of shards per sharded lock. Must be a power of two. |
18 | const NUM_SHARDS: usize = 8; |
19 | |
20 | /// A shard containing a single reader-writer lock. |
21 | struct Shard { |
22 | /// The inner reader-writer lock. |
23 | lock: RwLock<()>, |
24 | |
25 | /// The write-guard keeping this shard locked. |
26 | /// |
27 | /// Write operations will lock each shard and store the guard here. These guards get dropped at |
28 | /// the same time the big guard is dropped. |
29 | write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>, |
30 | } |
31 | |
32 | /// A sharded reader-writer lock. |
33 | /// |
34 | /// This lock is equivalent to [`RwLock`], except read operations are faster and write operations |
35 | /// are slower. |
36 | /// |
37 | /// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a |
38 | /// single cache line. Read operations will pick one of the shards depending on the current thread |
39 | /// and lock it. Write operations need to lock all shards in succession. |
40 | /// |
41 | /// By splitting the lock into shards, concurrent read operations will in most cases choose |
42 | /// different shards and thus update different cache lines, which is good for scalability. However, |
43 | /// write operations need to do more work and are therefore slower than usual. |
44 | /// |
45 | /// The priority policy of the lock is dependent on the underlying operating system's |
46 | /// implementation, and this type does not guarantee that any particular policy will be used. |
47 | /// |
48 | /// # Poisoning |
49 | /// |
50 | /// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be |
51 | /// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any |
52 | /// read operation, the lock will not be poisoned. |
53 | /// |
54 | /// # Examples |
55 | /// |
56 | /// ``` |
57 | /// use crossbeam_utils::sync::ShardedLock; |
58 | /// |
59 | /// let lock = ShardedLock::new(5); |
60 | /// |
61 | /// // Any number of read locks can be held at once. |
62 | /// { |
63 | /// let r1 = lock.read().unwrap(); |
64 | /// let r2 = lock.read().unwrap(); |
65 | /// assert_eq!(*r1, 5); |
66 | /// assert_eq!(*r2, 5); |
67 | /// } // Read locks are dropped at this point. |
68 | /// |
69 | /// // However, only one write lock may be held. |
70 | /// { |
71 | /// let mut w = lock.write().unwrap(); |
72 | /// *w += 1; |
73 | /// assert_eq!(*w, 6); |
74 | /// } // Write lock is dropped here. |
75 | /// ``` |
76 | /// |
77 | /// [`RwLock`]: std::sync::RwLock |
78 | pub struct ShardedLock<T: ?Sized> { |
79 | /// A list of locks protecting the internal data. |
80 | shards: Box<[CachePadded<Shard>]>, |
81 | |
82 | /// The internal data. |
83 | value: UnsafeCell<T>, |
84 | } |
85 | |
86 | unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {} |
87 | unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {} |
88 | |
89 | impl<T: ?Sized> UnwindSafe for ShardedLock<T> {} |
90 | impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {} |
91 | |
92 | impl<T> ShardedLock<T> { |
93 | /// Creates a new sharded reader-writer lock. |
94 | /// |
95 | /// # Examples |
96 | /// |
97 | /// ``` |
98 | /// use crossbeam_utils::sync::ShardedLock; |
99 | /// |
100 | /// let lock = ShardedLock::new(5); |
101 | /// ``` |
102 | pub fn new(value: T) -> ShardedLock<T> { |
103 | ShardedLock { |
104 | shards: (0..NUM_SHARDS) |
105 | .map(|_| { |
106 | CachePadded::new(Shard { |
107 | lock: RwLock::new(()), |
108 | write_guard: UnsafeCell::new(None), |
109 | }) |
110 | }) |
111 | .collect::<Box<[_]>>(), |
112 | value: UnsafeCell::new(value), |
113 | } |
114 | } |
115 | |
116 | /// Consumes this lock, returning the underlying data. |
117 | /// |
118 | /// # Errors |
119 | /// |
120 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
121 | /// operation panics. |
122 | /// |
123 | /// # Examples |
124 | /// |
125 | /// ``` |
126 | /// use crossbeam_utils::sync::ShardedLock; |
127 | /// |
128 | /// let lock = ShardedLock::new(String::new()); |
129 | /// { |
130 | /// let mut s = lock.write().unwrap(); |
131 | /// *s = "modified" .to_owned(); |
132 | /// } |
133 | /// assert_eq!(lock.into_inner().unwrap(), "modified" ); |
134 | /// ``` |
135 | pub fn into_inner(self) -> LockResult<T> { |
136 | let is_poisoned = self.is_poisoned(); |
137 | let inner = self.value.into_inner(); |
138 | |
139 | if is_poisoned { |
140 | Err(PoisonError::new(inner)) |
141 | } else { |
142 | Ok(inner) |
143 | } |
144 | } |
145 | } |
146 | |
147 | impl<T: ?Sized> ShardedLock<T> { |
148 | /// Returns `true` if the lock is poisoned. |
149 | /// |
150 | /// If another thread can still access the lock, it may become poisoned at any time. A `false` |
151 | /// result should not be trusted without additional synchronization. |
152 | /// |
153 | /// # Examples |
154 | /// |
155 | /// ``` |
156 | /// use crossbeam_utils::sync::ShardedLock; |
157 | /// use std::sync::Arc; |
158 | /// use std::thread; |
159 | /// |
160 | /// let lock = Arc::new(ShardedLock::new(0)); |
161 | /// let c_lock = lock.clone(); |
162 | /// |
163 | /// let _ = thread::spawn(move || { |
164 | /// let _lock = c_lock.write().unwrap(); |
165 | /// panic!(); // the lock gets poisoned |
166 | /// }).join(); |
167 | /// assert_eq!(lock.is_poisoned(), true); |
168 | /// ``` |
169 | pub fn is_poisoned(&self) -> bool { |
170 | self.shards[0].lock.is_poisoned() |
171 | } |
172 | |
173 | /// Returns a mutable reference to the underlying data. |
174 | /// |
175 | /// Since this call borrows the lock mutably, no actual locking needs to take place. |
176 | /// |
177 | /// # Errors |
178 | /// |
179 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
180 | /// operation panics. |
181 | /// |
182 | /// # Examples |
183 | /// |
184 | /// ``` |
185 | /// use crossbeam_utils::sync::ShardedLock; |
186 | /// |
187 | /// let mut lock = ShardedLock::new(0); |
188 | /// *lock.get_mut().unwrap() = 10; |
189 | /// assert_eq!(*lock.read().unwrap(), 10); |
190 | /// ``` |
191 | pub fn get_mut(&mut self) -> LockResult<&mut T> { |
192 | let is_poisoned = self.is_poisoned(); |
193 | let inner = unsafe { &mut *self.value.get() }; |
194 | |
195 | if is_poisoned { |
196 | Err(PoisonError::new(inner)) |
197 | } else { |
198 | Ok(inner) |
199 | } |
200 | } |
201 | |
202 | /// Attempts to acquire this lock with shared read access. |
203 | /// |
204 | /// If the access could not be granted at this time, an error is returned. Otherwise, a guard |
205 | /// is returned which will release the shared access when it is dropped. This method does not |
206 | /// provide any guarantees with respect to the ordering of whether contentious readers or |
207 | /// writers will acquire the lock first. |
208 | /// |
209 | /// # Errors |
210 | /// |
211 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
212 | /// operation panics. |
213 | /// |
214 | /// # Examples |
215 | /// |
216 | /// ``` |
217 | /// use crossbeam_utils::sync::ShardedLock; |
218 | /// |
219 | /// let lock = ShardedLock::new(1); |
220 | /// |
221 | /// match lock.try_read() { |
222 | /// Ok(n) => assert_eq!(*n, 1), |
223 | /// Err(_) => unreachable!(), |
224 | /// }; |
225 | /// ``` |
226 | pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<'_, T>> { |
227 | // Take the current thread index and map it to a shard index. Thread indices will tend to |
228 | // distribute shards among threads equally, thus reducing contention due to read-locking. |
229 | let current_index = current_index().unwrap_or(0); |
230 | let shard_index = current_index & (self.shards.len() - 1); |
231 | |
232 | match self.shards[shard_index].lock.try_read() { |
233 | Ok(guard) => Ok(ShardedLockReadGuard { |
234 | lock: self, |
235 | _guard: guard, |
236 | _marker: PhantomData, |
237 | }), |
238 | Err(TryLockError::Poisoned(err)) => { |
239 | let guard = ShardedLockReadGuard { |
240 | lock: self, |
241 | _guard: err.into_inner(), |
242 | _marker: PhantomData, |
243 | }; |
244 | Err(TryLockError::Poisoned(PoisonError::new(guard))) |
245 | } |
246 | Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock), |
247 | } |
248 | } |
249 | |
250 | /// Locks with shared read access, blocking the current thread until it can be acquired. |
251 | /// |
252 | /// The calling thread will be blocked until there are no more writers which hold the lock. |
253 | /// There may be other readers currently inside the lock when this method returns. This method |
254 | /// does not provide any guarantees with respect to the ordering of whether contentious readers |
255 | /// or writers will acquire the lock first. |
256 | /// |
257 | /// Returns a guard which will release the shared access when dropped. |
258 | /// |
259 | /// # Errors |
260 | /// |
261 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
262 | /// operation panics. |
263 | /// |
264 | /// # Panics |
265 | /// |
266 | /// This method might panic when called if the lock is already held by the current thread. |
267 | /// |
268 | /// # Examples |
269 | /// |
270 | /// ``` |
271 | /// use crossbeam_utils::sync::ShardedLock; |
272 | /// use std::sync::Arc; |
273 | /// use std::thread; |
274 | /// |
275 | /// let lock = Arc::new(ShardedLock::new(1)); |
276 | /// let c_lock = lock.clone(); |
277 | /// |
278 | /// let n = lock.read().unwrap(); |
279 | /// assert_eq!(*n, 1); |
280 | /// |
281 | /// thread::spawn(move || { |
282 | /// let r = c_lock.read(); |
283 | /// assert!(r.is_ok()); |
284 | /// }).join().unwrap(); |
285 | /// ``` |
286 | pub fn read(&self) -> LockResult<ShardedLockReadGuard<'_, T>> { |
287 | // Take the current thread index and map it to a shard index. Thread indices will tend to |
288 | // distribute shards among threads equally, thus reducing contention due to read-locking. |
289 | let current_index = current_index().unwrap_or(0); |
290 | let shard_index = current_index & (self.shards.len() - 1); |
291 | |
292 | match self.shards[shard_index].lock.read() { |
293 | Ok(guard) => Ok(ShardedLockReadGuard { |
294 | lock: self, |
295 | _guard: guard, |
296 | _marker: PhantomData, |
297 | }), |
298 | Err(err) => Err(PoisonError::new(ShardedLockReadGuard { |
299 | lock: self, |
300 | _guard: err.into_inner(), |
301 | _marker: PhantomData, |
302 | })), |
303 | } |
304 | } |
305 | |
306 | /// Attempts to acquire this lock with exclusive write access. |
307 | /// |
308 | /// If the access could not be granted at this time, an error is returned. Otherwise, a guard |
309 | /// is returned which will release the exclusive access when it is dropped. This method does |
310 | /// not provide any guarantees with respect to the ordering of whether contentious readers or |
311 | /// writers will acquire the lock first. |
312 | /// |
313 | /// # Errors |
314 | /// |
315 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
316 | /// operation panics. |
317 | /// |
318 | /// # Examples |
319 | /// |
320 | /// ``` |
321 | /// use crossbeam_utils::sync::ShardedLock; |
322 | /// |
323 | /// let lock = ShardedLock::new(1); |
324 | /// |
325 | /// let n = lock.read().unwrap(); |
326 | /// assert_eq!(*n, 1); |
327 | /// |
328 | /// assert!(lock.try_write().is_err()); |
329 | /// ``` |
330 | pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<'_, T>> { |
331 | let mut poisoned = false; |
332 | let mut blocked = None; |
333 | |
334 | // Write-lock each shard in succession. |
335 | for (i, shard) in self.shards.iter().enumerate() { |
336 | let guard = match shard.lock.try_write() { |
337 | Ok(guard) => guard, |
338 | Err(TryLockError::Poisoned(err)) => { |
339 | poisoned = true; |
340 | err.into_inner() |
341 | } |
342 | Err(TryLockError::WouldBlock) => { |
343 | blocked = Some(i); |
344 | break; |
345 | } |
346 | }; |
347 | |
348 | // Store the guard into the shard. |
349 | unsafe { |
350 | let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); |
351 | let dest: *mut _ = shard.write_guard.get(); |
352 | *dest = Some(guard); |
353 | } |
354 | } |
355 | |
356 | if let Some(i) = blocked { |
357 | // Unlock the shards in reverse order of locking. |
358 | for shard in self.shards[0..i].iter().rev() { |
359 | unsafe { |
360 | let dest: *mut _ = shard.write_guard.get(); |
361 | let guard = (*dest).take(); |
362 | drop(guard); |
363 | } |
364 | } |
365 | Err(TryLockError::WouldBlock) |
366 | } else if poisoned { |
367 | let guard = ShardedLockWriteGuard { |
368 | lock: self, |
369 | _marker: PhantomData, |
370 | }; |
371 | Err(TryLockError::Poisoned(PoisonError::new(guard))) |
372 | } else { |
373 | Ok(ShardedLockWriteGuard { |
374 | lock: self, |
375 | _marker: PhantomData, |
376 | }) |
377 | } |
378 | } |
379 | |
380 | /// Locks with exclusive write access, blocking the current thread until it can be acquired. |
381 | /// |
382 | /// The calling thread will be blocked until there are no more writers which hold the lock. |
383 | /// There may be other readers currently inside the lock when this method returns. This method |
384 | /// does not provide any guarantees with respect to the ordering of whether contentious readers |
385 | /// or writers will acquire the lock first. |
386 | /// |
387 | /// Returns a guard which will release the exclusive access when dropped. |
388 | /// |
389 | /// # Errors |
390 | /// |
391 | /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write |
392 | /// operation panics. |
393 | /// |
394 | /// # Panics |
395 | /// |
396 | /// This method might panic when called if the lock is already held by the current thread. |
397 | /// |
398 | /// # Examples |
399 | /// |
400 | /// ``` |
401 | /// use crossbeam_utils::sync::ShardedLock; |
402 | /// |
403 | /// let lock = ShardedLock::new(1); |
404 | /// |
405 | /// let mut n = lock.write().unwrap(); |
406 | /// *n = 2; |
407 | /// |
408 | /// assert!(lock.try_read().is_err()); |
409 | /// ``` |
410 | pub fn write(&self) -> LockResult<ShardedLockWriteGuard<'_, T>> { |
411 | let mut poisoned = false; |
412 | |
413 | // Write-lock each shard in succession. |
414 | for shard in self.shards.iter() { |
415 | let guard = match shard.lock.write() { |
416 | Ok(guard) => guard, |
417 | Err(err) => { |
418 | poisoned = true; |
419 | err.into_inner() |
420 | } |
421 | }; |
422 | |
423 | // Store the guard into the shard. |
424 | unsafe { |
425 | let guard: RwLockWriteGuard<'_, ()> = guard; |
426 | let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); |
427 | let dest: *mut _ = shard.write_guard.get(); |
428 | *dest = Some(guard); |
429 | } |
430 | } |
431 | |
432 | if poisoned { |
433 | Err(PoisonError::new(ShardedLockWriteGuard { |
434 | lock: self, |
435 | _marker: PhantomData, |
436 | })) |
437 | } else { |
438 | Ok(ShardedLockWriteGuard { |
439 | lock: self, |
440 | _marker: PhantomData, |
441 | }) |
442 | } |
443 | } |
444 | } |
445 | |
446 | impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> { |
447 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
448 | match self.try_read() { |
449 | Ok(guard) => f |
450 | .debug_struct("ShardedLock" ) |
451 | .field("data" , &&*guard) |
452 | .finish(), |
453 | Err(TryLockError::Poisoned(err)) => f |
454 | .debug_struct("ShardedLock" ) |
455 | .field("data" , &&**err.get_ref()) |
456 | .finish(), |
457 | Err(TryLockError::WouldBlock) => { |
458 | struct LockedPlaceholder; |
459 | impl fmt::Debug for LockedPlaceholder { |
460 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
461 | f.write_str("<locked>" ) |
462 | } |
463 | } |
464 | f.debug_struct("ShardedLock" ) |
465 | .field("data" , &LockedPlaceholder) |
466 | .finish() |
467 | } |
468 | } |
469 | } |
470 | } |
471 | |
472 | impl<T: Default> Default for ShardedLock<T> { |
473 | fn default() -> ShardedLock<T> { |
474 | ShardedLock::new(Default::default()) |
475 | } |
476 | } |
477 | |
478 | impl<T> From<T> for ShardedLock<T> { |
479 | fn from(t: T) -> Self { |
480 | ShardedLock::new(t) |
481 | } |
482 | } |
483 | |
484 | /// A guard used to release the shared read access of a [`ShardedLock`] when dropped. |
485 | #[clippy::has_significant_drop] |
486 | pub struct ShardedLockReadGuard<'a, T: ?Sized> { |
487 | lock: &'a ShardedLock<T>, |
488 | _guard: RwLockReadGuard<'a, ()>, |
489 | _marker: PhantomData<RwLockReadGuard<'a, T>>, |
490 | } |
491 | |
492 | unsafe impl<T: ?Sized + Sync> Sync for ShardedLockReadGuard<'_, T> {} |
493 | |
494 | impl<T: ?Sized> Deref for ShardedLockReadGuard<'_, T> { |
495 | type Target = T; |
496 | |
497 | fn deref(&self) -> &T { |
498 | unsafe { &*self.lock.value.get() } |
499 | } |
500 | } |
501 | |
502 | impl<T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'_, T> { |
503 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
504 | f&mut DebugStruct<'_, '_>.debug_struct("ShardedLockReadGuard" ) |
505 | .field(name:"lock" , &self.lock) |
506 | .finish() |
507 | } |
508 | } |
509 | |
510 | impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'_, T> { |
511 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
512 | (**self).fmt(f) |
513 | } |
514 | } |
515 | |
516 | /// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped. |
517 | #[clippy::has_significant_drop] |
518 | pub struct ShardedLockWriteGuard<'a, T: ?Sized> { |
519 | lock: &'a ShardedLock<T>, |
520 | _marker: PhantomData<RwLockWriteGuard<'a, T>>, |
521 | } |
522 | |
523 | unsafe impl<T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'_, T> {} |
524 | |
525 | impl<T: ?Sized> Drop for ShardedLockWriteGuard<'_, T> { |
526 | fn drop(&mut self) { |
527 | // Unlock the shards in reverse order of locking. |
528 | for shard: &CachePadded in self.lock.shards.iter().rev() { |
529 | unsafe { |
530 | let dest: *mut _ = shard.write_guard.get(); |
531 | let guard: Option> = (*dest).take(); |
532 | drop(guard); |
533 | } |
534 | } |
535 | } |
536 | } |
537 | |
538 | impl<T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'_, T> { |
539 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
540 | f&mut DebugStruct<'_, '_>.debug_struct("ShardedLockWriteGuard" ) |
541 | .field(name:"lock" , &self.lock) |
542 | .finish() |
543 | } |
544 | } |
545 | |
546 | impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'_, T> { |
547 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
548 | (**self).fmt(f) |
549 | } |
550 | } |
551 | |
552 | impl<T: ?Sized> Deref for ShardedLockWriteGuard<'_, T> { |
553 | type Target = T; |
554 | |
555 | fn deref(&self) -> &T { |
556 | unsafe { &*self.lock.value.get() } |
557 | } |
558 | } |
559 | |
560 | impl<T: ?Sized> DerefMut for ShardedLockWriteGuard<'_, T> { |
561 | fn deref_mut(&mut self) -> &mut T { |
562 | unsafe { &mut *self.lock.value.get() } |
563 | } |
564 | } |
565 | |
566 | /// Returns a `usize` that identifies the current thread. |
567 | /// |
568 | /// Each thread is associated with an 'index'. While there are no particular guarantees, indices |
569 | /// usually tend to be consecutive numbers between 0 and the number of running threads. |
570 | /// |
571 | /// Since this function accesses TLS, `None` might be returned if the current thread's TLS is |
572 | /// tearing down. |
573 | #[inline ] |
574 | fn current_index() -> Option<usize> { |
575 | REGISTRATION.try_with(|reg: &Registration| reg.index).ok() |
576 | } |
577 | |
578 | /// The global registry keeping track of registered threads and indices. |
579 | struct ThreadIndices { |
580 | /// Mapping from `ThreadId` to thread index. |
581 | mapping: HashMap<ThreadId, usize>, |
582 | |
583 | /// A list of free indices. |
584 | free_list: Vec<usize>, |
585 | |
586 | /// The next index to allocate if the free list is empty. |
587 | next_index: usize, |
588 | } |
589 | |
590 | fn thread_indices() -> &'static Mutex<ThreadIndices> { |
591 | static THREAD_INDICES: OnceLock<Mutex<ThreadIndices>> = OnceLock::new(); |
592 | fn init() -> Mutex<ThreadIndices> { |
593 | Mutex::new(ThreadIndices { |
594 | mapping: HashMap::new(), |
595 | free_list: Vec::new(), |
596 | next_index: 0, |
597 | }) |
598 | } |
599 | THREAD_INDICES.get_or_init(init) |
600 | } |
601 | |
602 | /// A registration of a thread with an index. |
603 | /// |
604 | /// When dropped, unregisters the thread and frees the reserved index. |
605 | struct Registration { |
606 | index: usize, |
607 | thread_id: ThreadId, |
608 | } |
609 | |
610 | impl Drop for Registration { |
611 | fn drop(&mut self) { |
612 | let mut indices: MutexGuard<'_, ThreadIndices> = thread_indices().lock().unwrap(); |
613 | indices.mapping.remove(&self.thread_id); |
614 | indices.free_list.push(self.index); |
615 | } |
616 | } |
617 | |
618 | std::thread_local! { |
619 | static REGISTRATION: Registration = { |
620 | let thread_id = thread::current().id(); |
621 | let mut indices = thread_indices().lock().unwrap(); |
622 | |
623 | let index = match indices.free_list.pop() { |
624 | Some(i) => i, |
625 | None => { |
626 | let i = indices.next_index; |
627 | indices.next_index += 1; |
628 | i |
629 | } |
630 | }; |
631 | indices.mapping.insert(thread_id, index); |
632 | |
633 | Registration { |
634 | index, |
635 | thread_id, |
636 | } |
637 | }; |
638 | } |
639 | |