| 1 | use std::borrow::Cow; |
| 2 | use std::io; |
| 3 | use std::sync::Arc; |
| 4 | use std::time::Duration; |
| 5 | #[cfg (not(target_arch = "wasm32" ))] |
| 6 | use std::time::Instant; |
| 7 | |
| 8 | use portable_atomic::{AtomicU64, AtomicU8, Ordering}; |
| 9 | #[cfg (target_arch = "wasm32" )] |
| 10 | use web_time::Instant; |
| 11 | |
| 12 | use crate::draw_target::ProgressDrawTarget; |
| 13 | use crate::style::ProgressStyle; |
| 14 | |
| 15 | pub(crate) struct BarState { |
| 16 | pub(crate) draw_target: ProgressDrawTarget, |
| 17 | pub(crate) on_finish: ProgressFinish, |
| 18 | pub(crate) style: ProgressStyle, |
| 19 | pub(crate) state: ProgressState, |
| 20 | pub(crate) tab_width: usize, |
| 21 | } |
| 22 | |
| 23 | impl BarState { |
| 24 | pub(crate) fn new( |
| 25 | len: Option<u64>, |
| 26 | draw_target: ProgressDrawTarget, |
| 27 | pos: Arc<AtomicPosition>, |
| 28 | ) -> Self { |
| 29 | Self { |
| 30 | draw_target, |
| 31 | on_finish: ProgressFinish::default(), |
| 32 | style: ProgressStyle::default_bar(), |
| 33 | state: ProgressState::new(len, pos), |
| 34 | tab_width: DEFAULT_TAB_WIDTH, |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | /// Finishes the progress bar using the [`ProgressFinish`] behavior stored |
| 39 | /// in the [`ProgressStyle`]. |
| 40 | pub(crate) fn finish_using_style(&mut self, now: Instant, finish: ProgressFinish) { |
| 41 | self.state.status = Status::DoneVisible; |
| 42 | match finish { |
| 43 | ProgressFinish::AndLeave => { |
| 44 | if let Some(len) = self.state.len { |
| 45 | self.state.pos.set(len); |
| 46 | } |
| 47 | } |
| 48 | ProgressFinish::WithMessage(msg) => { |
| 49 | if let Some(len) = self.state.len { |
| 50 | self.state.pos.set(len); |
| 51 | } |
| 52 | self.state.message = TabExpandedString::new(msg, self.tab_width); |
| 53 | } |
| 54 | ProgressFinish::AndClear => { |
| 55 | if let Some(len) = self.state.len { |
| 56 | self.state.pos.set(len); |
| 57 | } |
| 58 | self.state.status = Status::DoneHidden; |
| 59 | } |
| 60 | ProgressFinish::Abandon => {} |
| 61 | ProgressFinish::AbandonWithMessage(msg) => { |
| 62 | self.state.message = TabExpandedString::new(msg, self.tab_width); |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | // There's no need to update the estimate here; once the `status` is no longer |
| 67 | // `InProgress`, we will use the length and elapsed time to estimate. |
| 68 | let _ = self.draw(true, now); |
| 69 | } |
| 70 | |
| 71 | pub(crate) fn reset(&mut self, now: Instant, mode: Reset) { |
| 72 | // Always reset the estimator; this is the only reset that will occur if mode is |
| 73 | // `Reset::Eta`. |
| 74 | self.state.est.reset(now); |
| 75 | |
| 76 | if let Reset::Elapsed | Reset::All = mode { |
| 77 | self.state.started = now; |
| 78 | } |
| 79 | |
| 80 | if let Reset::All = mode { |
| 81 | self.state.pos.reset(now); |
| 82 | self.state.status = Status::InProgress; |
| 83 | |
| 84 | for tracker in self.style.format_map.values_mut() { |
| 85 | tracker.reset(&self.state, now); |
| 86 | } |
| 87 | |
| 88 | let _ = self.draw(false, now); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | pub(crate) fn update(&mut self, now: Instant, f: impl FnOnce(&mut ProgressState), tick: bool) { |
| 93 | f(&mut self.state); |
| 94 | if tick { |
| 95 | self.tick(now); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | pub(crate) fn unset_length(&mut self, now: Instant) { |
| 100 | self.state.len = None; |
| 101 | self.update_estimate_and_draw(now); |
| 102 | } |
| 103 | |
| 104 | pub(crate) fn set_length(&mut self, now: Instant, len: u64) { |
| 105 | self.state.len = Some(len); |
| 106 | self.update_estimate_and_draw(now); |
| 107 | } |
| 108 | |
| 109 | pub(crate) fn inc_length(&mut self, now: Instant, delta: u64) { |
| 110 | if let Some(len) = self.state.len { |
| 111 | self.state.len = Some(len.saturating_add(delta)); |
| 112 | } |
| 113 | self.update_estimate_and_draw(now); |
| 114 | } |
| 115 | |
| 116 | pub(crate) fn set_tab_width(&mut self, tab_width: usize) { |
| 117 | self.tab_width = tab_width; |
| 118 | self.state.message.set_tab_width(tab_width); |
| 119 | self.state.prefix.set_tab_width(tab_width); |
| 120 | self.style.set_tab_width(tab_width); |
| 121 | } |
| 122 | |
| 123 | pub(crate) fn set_style(&mut self, style: ProgressStyle) { |
| 124 | self.style = style; |
| 125 | self.style.set_tab_width(self.tab_width); |
| 126 | } |
| 127 | |
| 128 | pub(crate) fn tick(&mut self, now: Instant) { |
| 129 | self.state.tick = self.state.tick.saturating_add(1); |
| 130 | self.update_estimate_and_draw(now); |
| 131 | } |
| 132 | |
| 133 | pub(crate) fn update_estimate_and_draw(&mut self, now: Instant) { |
| 134 | let pos = self.state.pos.pos.load(Ordering::Relaxed); |
| 135 | self.state.est.record(pos, now); |
| 136 | |
| 137 | for tracker in self.style.format_map.values_mut() { |
| 138 | tracker.tick(&self.state, now); |
| 139 | } |
| 140 | |
| 141 | let _ = self.draw(false, now); |
| 142 | } |
| 143 | |
| 144 | pub(crate) fn println(&mut self, now: Instant, msg: &str) { |
| 145 | let width = self.draw_target.width(); |
| 146 | let mut drawable = match self.draw_target.drawable(true, now) { |
| 147 | Some(drawable) => drawable, |
| 148 | None => return, |
| 149 | }; |
| 150 | |
| 151 | let mut draw_state = drawable.state(); |
| 152 | let lines: Vec<String> = msg.lines().map(Into::into).collect(); |
| 153 | // Empty msg should trigger newline as we are in println |
| 154 | if lines.is_empty() { |
| 155 | draw_state.lines.push(String::new()); |
| 156 | } else { |
| 157 | draw_state.lines.extend(lines); |
| 158 | } |
| 159 | |
| 160 | draw_state.orphan_lines_count = draw_state.lines.len(); |
| 161 | if let Some(width) = width { |
| 162 | if !matches!(self.state.status, Status::DoneHidden) { |
| 163 | self.style |
| 164 | .format_state(&self.state, &mut draw_state.lines, width); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | drop(draw_state); |
| 169 | let _ = drawable.draw(); |
| 170 | } |
| 171 | |
| 172 | pub(crate) fn suspend<F: FnOnce() -> R, R>(&mut self, now: Instant, f: F) -> R { |
| 173 | if let Some((state, _)) = self.draw_target.remote() { |
| 174 | return state.write().unwrap().suspend(f, now); |
| 175 | } |
| 176 | |
| 177 | if let Some(drawable) = self.draw_target.drawable(true, now) { |
| 178 | let _ = drawable.clear(); |
| 179 | } |
| 180 | |
| 181 | let ret = f(); |
| 182 | let _ = self.draw(true, Instant::now()); |
| 183 | ret |
| 184 | } |
| 185 | |
| 186 | pub(crate) fn draw(&mut self, mut force_draw: bool, now: Instant) -> io::Result<()> { |
| 187 | let width = self.draw_target.width(); |
| 188 | |
| 189 | // `|= self.is_finished()` should not be needed here, but we used to always draw for |
| 190 | // finished progress bars, so it's kept as to not cause compatibility issues in weird cases. |
| 191 | force_draw |= self.state.is_finished(); |
| 192 | let mut drawable = match self.draw_target.drawable(force_draw, now) { |
| 193 | Some(drawable) => drawable, |
| 194 | None => return Ok(()), |
| 195 | }; |
| 196 | |
| 197 | let mut draw_state = drawable.state(); |
| 198 | |
| 199 | if let Some(width) = width { |
| 200 | if !matches!(self.state.status, Status::DoneHidden) { |
| 201 | self.style |
| 202 | .format_state(&self.state, &mut draw_state.lines, width); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | drop(draw_state); |
| 207 | drawable.draw() |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | impl Drop for BarState { |
| 212 | fn drop(&mut self) { |
| 213 | // Progress bar is already finished. Do not need to do anything other than notify |
| 214 | // the `MultiProgress` that we're now a zombie. |
| 215 | if self.state.is_finished() { |
| 216 | self.draw_target.mark_zombie(); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | self.finish_using_style(Instant::now(), self.on_finish.clone()); |
| 221 | |
| 222 | // Notify the `MultiProgress` that we're now a zombie. |
| 223 | self.draw_target.mark_zombie(); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | pub(crate) enum Reset { |
| 228 | Eta, |
| 229 | Elapsed, |
| 230 | All, |
| 231 | } |
| 232 | |
| 233 | /// The state of a progress bar at a moment in time. |
| 234 | #[non_exhaustive ] |
| 235 | pub struct ProgressState { |
| 236 | pos: Arc<AtomicPosition>, |
| 237 | len: Option<u64>, |
| 238 | pub(crate) tick: u64, |
| 239 | pub(crate) started: Instant, |
| 240 | status: Status, |
| 241 | est: Estimator, |
| 242 | pub(crate) message: TabExpandedString, |
| 243 | pub(crate) prefix: TabExpandedString, |
| 244 | } |
| 245 | |
| 246 | impl ProgressState { |
| 247 | pub(crate) fn new(len: Option<u64>, pos: Arc<AtomicPosition>) -> Self { |
| 248 | let now = Instant::now(); |
| 249 | Self { |
| 250 | pos, |
| 251 | len, |
| 252 | tick: 0, |
| 253 | status: Status::InProgress, |
| 254 | started: now, |
| 255 | est: Estimator::new(now), |
| 256 | message: TabExpandedString::NoTabs("" .into()), |
| 257 | prefix: TabExpandedString::NoTabs("" .into()), |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /// Indicates that the progress bar finished. |
| 262 | pub fn is_finished(&self) -> bool { |
| 263 | match self.status { |
| 264 | Status::InProgress => false, |
| 265 | Status::DoneVisible => true, |
| 266 | Status::DoneHidden => true, |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /// Returns the completion as a floating-point number between 0 and 1 |
| 271 | pub fn fraction(&self) -> f32 { |
| 272 | let pos = self.pos.pos.load(Ordering::Relaxed); |
| 273 | let pct = match (pos, self.len) { |
| 274 | (_, None) => 0.0, |
| 275 | (_, Some(0)) => 1.0, |
| 276 | (0, _) => 0.0, |
| 277 | (pos, Some(len)) => pos as f32 / len as f32, |
| 278 | }; |
| 279 | pct.clamp(0.0, 1.0) |
| 280 | } |
| 281 | |
| 282 | /// The expected ETA |
| 283 | pub fn eta(&self) -> Duration { |
| 284 | if self.is_finished() { |
| 285 | return Duration::new(0, 0); |
| 286 | } |
| 287 | |
| 288 | let len = match self.len { |
| 289 | Some(len) => len, |
| 290 | None => return Duration::new(0, 0), |
| 291 | }; |
| 292 | |
| 293 | let pos = self.pos.pos.load(Ordering::Relaxed); |
| 294 | |
| 295 | let sps = self.est.steps_per_second(Instant::now()); |
| 296 | |
| 297 | // Infinite duration should only ever happen at the beginning, so in this case it's okay to |
| 298 | // just show an ETA of 0 until progress starts to occur. |
| 299 | if sps == 0.0 { |
| 300 | return Duration::new(0, 0); |
| 301 | } |
| 302 | |
| 303 | secs_to_duration(len.saturating_sub(pos) as f64 / sps) |
| 304 | } |
| 305 | |
| 306 | /// The expected total duration (that is, elapsed time + expected ETA) |
| 307 | pub fn duration(&self) -> Duration { |
| 308 | if self.len.is_none() || self.is_finished() { |
| 309 | return Duration::new(0, 0); |
| 310 | } |
| 311 | self.started.elapsed().saturating_add(self.eta()) |
| 312 | } |
| 313 | |
| 314 | /// The number of steps per second |
| 315 | pub fn per_sec(&self) -> f64 { |
| 316 | if let Status::InProgress = self.status { |
| 317 | self.est.steps_per_second(Instant::now()) |
| 318 | } else { |
| 319 | self.pos() as f64 / self.started.elapsed().as_secs_f64() |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | pub fn elapsed(&self) -> Duration { |
| 324 | self.started.elapsed() |
| 325 | } |
| 326 | |
| 327 | pub fn pos(&self) -> u64 { |
| 328 | self.pos.pos.load(Ordering::Relaxed) |
| 329 | } |
| 330 | |
| 331 | pub fn set_pos(&mut self, pos: u64) { |
| 332 | self.pos.set(pos); |
| 333 | } |
| 334 | |
| 335 | #[allow (clippy::len_without_is_empty)] |
| 336 | pub fn len(&self) -> Option<u64> { |
| 337 | self.len |
| 338 | } |
| 339 | |
| 340 | pub fn set_len(&mut self, len: u64) { |
| 341 | self.len = Some(len); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | #[derive (Debug, PartialEq, Eq, Clone)] |
| 346 | pub(crate) enum TabExpandedString { |
| 347 | NoTabs(Cow<'static, str>), |
| 348 | WithTabs { |
| 349 | original: Cow<'static, str>, |
| 350 | expanded: String, |
| 351 | tab_width: usize, |
| 352 | }, |
| 353 | } |
| 354 | |
| 355 | impl TabExpandedString { |
| 356 | pub(crate) fn new(s: Cow<'static, str>, tab_width: usize) -> Self { |
| 357 | let expanded = s.replace(' \t' , &" " .repeat(tab_width)); |
| 358 | if s == expanded { |
| 359 | Self::NoTabs(s) |
| 360 | } else { |
| 361 | Self::WithTabs { |
| 362 | original: s, |
| 363 | expanded, |
| 364 | tab_width, |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | pub(crate) fn expanded(&self) -> &str { |
| 370 | match &self { |
| 371 | Self::NoTabs(s) => { |
| 372 | debug_assert!(!s.contains(' \t' )); |
| 373 | s |
| 374 | } |
| 375 | Self::WithTabs { expanded, .. } => expanded, |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | pub(crate) fn set_tab_width(&mut self, new_tab_width: usize) { |
| 380 | if let Self::WithTabs { |
| 381 | original, |
| 382 | expanded, |
| 383 | tab_width, |
| 384 | } = self |
| 385 | { |
| 386 | if *tab_width != new_tab_width { |
| 387 | *tab_width = new_tab_width; |
| 388 | *expanded = original.replace(' \t' , &" " .repeat(new_tab_width)); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | /// Double-smoothed exponentially weighted estimator |
| 395 | /// |
| 396 | /// This uses an exponentially weighted *time-based* estimator, meaning that it exponentially |
| 397 | /// downweights old data based on its age. The rate at which this occurs is currently a constant |
| 398 | /// value of 15 seconds for 90% weighting. This means that all data older than 15 seconds has a |
| 399 | /// collective weight of 0.1 in the estimate, and all data older than 30 seconds has a collective |
| 400 | /// weight of 0.01, and so on. |
| 401 | /// |
| 402 | /// The primary value exposed by `Estimator` is `steps_per_second`. This value is doubly-smoothed, |
| 403 | /// meaning that is the result of using an exponentially weighted estimator (as described above) to |
| 404 | /// estimate the value of another exponentially weighted estimator, which estimates the value of |
| 405 | /// the raw data. |
| 406 | /// |
| 407 | /// The purpose of this extra smoothing step is to reduce instantaneous fluctations in the estimate |
| 408 | /// when large updates are received. Without this, estimates might have a large spike followed by a |
| 409 | /// slow asymptotic approach to zero (until the next spike). |
| 410 | #[derive (Debug)] |
| 411 | pub(crate) struct Estimator { |
| 412 | smoothed_steps_per_sec: f64, |
| 413 | double_smoothed_steps_per_sec: f64, |
| 414 | prev_steps: u64, |
| 415 | prev_time: Instant, |
| 416 | start_time: Instant, |
| 417 | } |
| 418 | |
| 419 | impl Estimator { |
| 420 | fn new(now: Instant) -> Self { |
| 421 | Self { |
| 422 | smoothed_steps_per_sec: 0.0, |
| 423 | double_smoothed_steps_per_sec: 0.0, |
| 424 | prev_steps: 0, |
| 425 | prev_time: now, |
| 426 | start_time: now, |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | fn record(&mut self, new_steps: u64, now: Instant) { |
| 431 | // sanity check: don't record data if time or steps have not advanced |
| 432 | if new_steps <= self.prev_steps || now <= self.prev_time { |
| 433 | // Reset on backwards seek to prevent breakage from seeking to the end for length determination |
| 434 | // See https://github.com/console-rs/indicatif/issues/480 |
| 435 | if new_steps < self.prev_steps { |
| 436 | self.prev_steps = new_steps; |
| 437 | self.reset(now); |
| 438 | } |
| 439 | return; |
| 440 | } |
| 441 | |
| 442 | let delta_steps = new_steps - self.prev_steps; |
| 443 | let delta_t = duration_to_secs(now - self.prev_time); |
| 444 | |
| 445 | // the rate of steps we saw in this update |
| 446 | let new_steps_per_second = delta_steps as f64 / delta_t; |
| 447 | |
| 448 | // update the estimate: a weighted average of the old estimate and new data |
| 449 | let weight = estimator_weight(delta_t); |
| 450 | self.smoothed_steps_per_sec = |
| 451 | self.smoothed_steps_per_sec * weight + new_steps_per_second * (1.0 - weight); |
| 452 | |
| 453 | // An iterative estimate like `smoothed_steps_per_sec` is supposed to be an exponentially |
| 454 | // weighted average from t=0 back to t=-inf; Since we initialize it to 0, we neglect the |
| 455 | // (non-existent) samples in the weighted average prior to the first one, so the resulting |
| 456 | // average must be normalized. We normalize the single estimate here in order to use it as |
| 457 | // a source for the double smoothed estimate. See comment on normalization in |
| 458 | // `steps_per_second` for details. |
| 459 | let delta_t_start = duration_to_secs(now - self.start_time); |
| 460 | let total_weight = 1.0 - estimator_weight(delta_t_start); |
| 461 | let normalized_smoothed_steps_per_sec = self.smoothed_steps_per_sec / total_weight; |
| 462 | |
| 463 | // determine the double smoothed value (EWA smoothing of the single EWA) |
| 464 | self.double_smoothed_steps_per_sec = self.double_smoothed_steps_per_sec * weight |
| 465 | + normalized_smoothed_steps_per_sec * (1.0 - weight); |
| 466 | |
| 467 | self.prev_steps = new_steps; |
| 468 | self.prev_time = now; |
| 469 | } |
| 470 | |
| 471 | /// Reset the state of the estimator. Once reset, estimates will not depend on any data prior |
| 472 | /// to `now`. This does not reset the stored position of the progress bar. |
| 473 | pub(crate) fn reset(&mut self, now: Instant) { |
| 474 | self.smoothed_steps_per_sec = 0.0; |
| 475 | self.double_smoothed_steps_per_sec = 0.0; |
| 476 | |
| 477 | // only reset prev_time, not prev_steps |
| 478 | self.prev_time = now; |
| 479 | self.start_time = now; |
| 480 | } |
| 481 | |
| 482 | /// Average time per step in seconds, using double exponential smoothing |
| 483 | fn steps_per_second(&self, now: Instant) -> f64 { |
| 484 | // Because the value stored in the Estimator is only updated when the Estimator receives an |
| 485 | // update, this value will become stuck if progress stalls. To return an accurate estimate, |
| 486 | // we determine how much time has passed since the last update, and treat this as a |
| 487 | // pseudo-update with 0 steps. |
| 488 | let delta_t = duration_to_secs(now - self.prev_time); |
| 489 | let reweight = estimator_weight(delta_t); |
| 490 | |
| 491 | // Normalization of estimates: |
| 492 | // |
| 493 | // The raw estimate is a single value (smoothed_steps_per_second) that is iteratively |
| 494 | // updated. At each update, the previous value of the estimate is downweighted according to |
| 495 | // its age, receiving the iterative weight W(t) = 0.1 ^ (t/15). |
| 496 | // |
| 497 | // Since W(Sum(t_n)) = Prod(W(t_n)), the total weight of a sample after a series of |
| 498 | // iterative steps is simply W(t_e) - W(t_b), where t_e is the time since the end of the |
| 499 | // sample, and t_b is the time since the beginning. The resulting estimate is therefore a |
| 500 | // weighted average with sample weights W(t_e) - W(t_b). |
| 501 | // |
| 502 | // Notice that the weighting function generates sample weights that sum to 1 only when the |
| 503 | // sample times span from t=0 to t=inf; but this is not the case. We have a first sample |
| 504 | // with finite, positive t_b = t_f. In the raw estimate, we handle times prior to t_f by |
| 505 | // setting an initial value of 0, meaning that these (non-existent) samples have no weight. |
| 506 | // |
| 507 | // Therefore, the raw estimate must be normalized by dividing it by the sum of the weights |
| 508 | // in the weighted average. This sum is just W(0) - W(t_f), where t_f is the time since the |
| 509 | // first sample, and W(0) = 1. |
| 510 | let delta_t_start = duration_to_secs(now - self.start_time); |
| 511 | let total_weight = 1.0 - estimator_weight(delta_t_start); |
| 512 | |
| 513 | // Generate updated values for `smoothed_steps_per_sec` and `double_smoothed_steps_per_sec` |
| 514 | // (sps and dsps) without storing them. Note that we normalize sps when using it as a |
| 515 | // source to update dsps, and then normalize dsps itself before returning it. |
| 516 | let sps = self.smoothed_steps_per_sec * reweight / total_weight; |
| 517 | let dsps = self.double_smoothed_steps_per_sec * reweight + sps * (1.0 - reweight); |
| 518 | dsps / total_weight |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | pub(crate) struct AtomicPosition { |
| 523 | pub(crate) pos: AtomicU64, |
| 524 | capacity: AtomicU8, |
| 525 | prev: AtomicU64, |
| 526 | start: Instant, |
| 527 | } |
| 528 | |
| 529 | impl AtomicPosition { |
| 530 | pub(crate) fn new() -> Self { |
| 531 | Self { |
| 532 | pos: AtomicU64::new(0), |
| 533 | capacity: AtomicU8::new(MAX_BURST), |
| 534 | prev: AtomicU64::new(0), |
| 535 | start: Instant::now(), |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | pub(crate) fn allow(&self, now: Instant) -> bool { |
| 540 | if now < self.start { |
| 541 | return false; |
| 542 | } |
| 543 | |
| 544 | let mut capacity = self.capacity.load(Ordering::Acquire); |
| 545 | // `prev` is the number of ns after `self.started` we last returned `true` |
| 546 | let prev = self.prev.load(Ordering::Acquire); |
| 547 | // `elapsed` is the number of ns since `self.started` |
| 548 | let elapsed = (now - self.start).as_nanos() as u64; |
| 549 | // `diff` is the number of ns since we last returned `true` |
| 550 | let diff = elapsed.saturating_sub(prev); |
| 551 | |
| 552 | // If `capacity` is 0 and not enough time (1ms) has passed since `prev` |
| 553 | // to add new capacity, return `false`. The goal of this method is to |
| 554 | // make this decision as efficient as possible. |
| 555 | if capacity == 0 && diff < INTERVAL { |
| 556 | return false; |
| 557 | } |
| 558 | |
| 559 | // We now calculate `new`, the number of INTERVALs since we last returned `true`, |
| 560 | // and `remainder`, which represents a number of ns less than INTERVAL which we cannot |
| 561 | // convert into capacity now, so we're saving it for later. We do this by |
| 562 | // subtracting this from `elapsed` before storing it into `self.prev`. |
| 563 | let (new, remainder) = ((diff / INTERVAL), (diff % INTERVAL)); |
| 564 | // We add `new` to `capacity`, subtract one for returning `true` from here, |
| 565 | // then make sure it does not exceed a maximum of `MAX_BURST`. |
| 566 | capacity = Ord::min(MAX_BURST as u128, (capacity as u128) + (new as u128) - 1) as u8; |
| 567 | |
| 568 | // Then, we just store `capacity` and `prev` atomically for the next iteration |
| 569 | self.capacity.store(capacity, Ordering::Release); |
| 570 | self.prev.store(elapsed - remainder, Ordering::Release); |
| 571 | true |
| 572 | } |
| 573 | |
| 574 | fn reset(&self, now: Instant) { |
| 575 | self.set(0); |
| 576 | let elapsed = (now.saturating_duration_since(self.start)).as_nanos() as u64; |
| 577 | self.prev.store(elapsed, Ordering::Release); |
| 578 | } |
| 579 | |
| 580 | pub(crate) fn inc(&self, delta: u64) { |
| 581 | self.pos.fetch_add(delta, Ordering::SeqCst); |
| 582 | } |
| 583 | |
| 584 | pub(crate) fn set(&self, pos: u64) { |
| 585 | self.pos.store(pos, Ordering::Release); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | const INTERVAL: u64 = 1_000_000; |
| 590 | const MAX_BURST: u8 = 10; |
| 591 | |
| 592 | /// Behavior of a progress bar when it is finished |
| 593 | /// |
| 594 | /// This is invoked when a [`ProgressBar`] or [`ProgressBarIter`] completes and |
| 595 | /// [`ProgressBar::is_finished`] is false. |
| 596 | /// |
| 597 | /// [`ProgressBar`]: crate::ProgressBar |
| 598 | /// [`ProgressBarIter`]: crate::ProgressBarIter |
| 599 | /// [`ProgressBar::is_finished`]: crate::ProgressBar::is_finished |
| 600 | #[derive (Clone, Debug)] |
| 601 | pub enum ProgressFinish { |
| 602 | /// Finishes the progress bar and leaves the current message |
| 603 | /// |
| 604 | /// Same behavior as calling [`ProgressBar::finish()`](crate::ProgressBar::finish). |
| 605 | AndLeave, |
| 606 | /// Finishes the progress bar and sets a message |
| 607 | /// |
| 608 | /// Same behavior as calling [`ProgressBar::finish_with_message()`](crate::ProgressBar::finish_with_message). |
| 609 | WithMessage(Cow<'static, str>), |
| 610 | /// Finishes the progress bar and completely clears it (this is the default) |
| 611 | /// |
| 612 | /// Same behavior as calling [`ProgressBar::finish_and_clear()`](crate::ProgressBar::finish_and_clear). |
| 613 | AndClear, |
| 614 | /// Finishes the progress bar and leaves the current message and progress |
| 615 | /// |
| 616 | /// Same behavior as calling [`ProgressBar::abandon()`](crate::ProgressBar::abandon). |
| 617 | Abandon, |
| 618 | /// Finishes the progress bar and sets a message, and leaves the current progress |
| 619 | /// |
| 620 | /// Same behavior as calling [`ProgressBar::abandon_with_message()`](crate::ProgressBar::abandon_with_message). |
| 621 | AbandonWithMessage(Cow<'static, str>), |
| 622 | } |
| 623 | |
| 624 | impl Default for ProgressFinish { |
| 625 | fn default() -> Self { |
| 626 | Self::AndClear |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /// Get the appropriate dilution weight for Estimator data given the data's age (in seconds) |
| 631 | /// |
| 632 | /// Whenever an update occurs, we will create a new estimate using a weight `w_i` like so: |
| 633 | /// |
| 634 | /// ```math |
| 635 | /// <new estimate> = <previous estimate> * w_i + <new data> * (1 - w_i) |
| 636 | /// ``` |
| 637 | /// |
| 638 | /// In other words, the new estimate is a weighted average of the previous estimate and the new |
| 639 | /// data. We want to choose weights such that for any set of samples where `t_0, t_1, ...` are |
| 640 | /// the durations of the samples: |
| 641 | /// |
| 642 | /// ```math |
| 643 | /// Sum(t_i) = ews ==> Prod(w_i) = 0.1 |
| 644 | /// ``` |
| 645 | /// |
| 646 | /// With this constraint it is easy to show that |
| 647 | /// |
| 648 | /// ```math |
| 649 | /// w_i = 0.1 ^ (t_i / ews) |
| 650 | /// ``` |
| 651 | /// |
| 652 | /// Notice that the constraint implies that estimates are independent of the durations of the |
| 653 | /// samples, a very useful feature. |
| 654 | fn estimator_weight(age: f64) -> f64 { |
| 655 | const EXPONENTIAL_WEIGHTING_SECONDS: f64 = 15.0; |
| 656 | 0.1_f64.powf(age / EXPONENTIAL_WEIGHTING_SECONDS) |
| 657 | } |
| 658 | |
| 659 | fn duration_to_secs(d: Duration) -> f64 { |
| 660 | d.as_secs() as f64 + f64::from(d.subsec_nanos()) / 1_000_000_000f64 |
| 661 | } |
| 662 | |
| 663 | fn secs_to_duration(s: f64) -> Duration { |
| 664 | let secs: u64 = s.trunc() as u64; |
| 665 | let nanos: u32 = (s.fract() * 1_000_000_000f64) as u32; |
| 666 | Duration::new(secs, nanos) |
| 667 | } |
| 668 | |
| 669 | #[derive (Debug)] |
| 670 | pub(crate) enum Status { |
| 671 | InProgress, |
| 672 | DoneVisible, |
| 673 | DoneHidden, |
| 674 | } |
| 675 | |
| 676 | pub(crate) const DEFAULT_TAB_WIDTH: usize = 8; |
| 677 | |
| 678 | #[cfg (test)] |
| 679 | mod tests { |
| 680 | use super::*; |
| 681 | use crate::ProgressBar; |
| 682 | |
| 683 | // https://github.com/rust-lang/rust-clippy/issues/10281 |
| 684 | #[allow (clippy::uninlined_format_args)] |
| 685 | #[test ] |
| 686 | fn test_steps_per_second() { |
| 687 | let test_rate = |items_per_second| { |
| 688 | let mut now = Instant::now(); |
| 689 | let mut est = Estimator::new(now); |
| 690 | let mut pos = 0; |
| 691 | |
| 692 | for _ in 0..20 { |
| 693 | pos += items_per_second; |
| 694 | now += Duration::from_secs(1); |
| 695 | est.record(pos, now); |
| 696 | } |
| 697 | let avg_steps_per_second = est.steps_per_second(now); |
| 698 | |
| 699 | assert!(avg_steps_per_second > 0.0); |
| 700 | assert!(avg_steps_per_second.is_finite()); |
| 701 | |
| 702 | let absolute_error = (avg_steps_per_second - items_per_second as f64).abs(); |
| 703 | let relative_error = absolute_error / items_per_second as f64; |
| 704 | assert!( |
| 705 | relative_error < 1.0 / 1e9, |
| 706 | "Expected rate: {}, actual: {}, relative error: {}" , |
| 707 | items_per_second, |
| 708 | avg_steps_per_second, |
| 709 | relative_error |
| 710 | ); |
| 711 | }; |
| 712 | |
| 713 | test_rate(1); |
| 714 | test_rate(1_000); |
| 715 | test_rate(1_000_000); |
| 716 | test_rate(1_000_000_000); |
| 717 | test_rate(1_000_000_001); |
| 718 | test_rate(100_000_000_000); |
| 719 | test_rate(1_000_000_000_000); |
| 720 | test_rate(100_000_000_000_000); |
| 721 | test_rate(1_000_000_000_000_000); |
| 722 | } |
| 723 | |
| 724 | #[test ] |
| 725 | fn test_double_exponential_ave() { |
| 726 | let mut now = Instant::now(); |
| 727 | let mut est = Estimator::new(now); |
| 728 | let mut pos = 0; |
| 729 | |
| 730 | // note: this is the default weight set in the Estimator |
| 731 | let weight = 15; |
| 732 | |
| 733 | for _ in 0..weight { |
| 734 | pos += 1; |
| 735 | now += Duration::from_secs(1); |
| 736 | est.record(pos, now); |
| 737 | } |
| 738 | now += Duration::from_secs(weight); |
| 739 | |
| 740 | // The first level EWA: |
| 741 | // -> 90% weight @ 0 eps, 9% weight @ 1 eps, 1% weight @ 0 eps |
| 742 | // -> then normalized by deweighting the 1% weight (before -30 seconds) |
| 743 | let single_target = 0.09 / 0.99; |
| 744 | |
| 745 | // The second level EWA: |
| 746 | // -> same logic as above, but using the first level EWA as the source |
| 747 | let double_target = (0.9 * single_target + 0.09) / 0.99; |
| 748 | assert_eq!(est.steps_per_second(now), double_target); |
| 749 | } |
| 750 | |
| 751 | #[test ] |
| 752 | fn test_estimator_rewind_position() { |
| 753 | let mut now = Instant::now(); |
| 754 | let mut est = Estimator::new(now); |
| 755 | |
| 756 | now += Duration::from_secs(1); |
| 757 | est.record(1, now); |
| 758 | |
| 759 | // should not panic |
| 760 | now += Duration::from_secs(1); |
| 761 | est.record(0, now); |
| 762 | |
| 763 | // check that reset occurred (estimator at 1 event per sec) |
| 764 | now += Duration::from_secs(1); |
| 765 | est.record(1, now); |
| 766 | assert_eq!(est.steps_per_second(now), 1.0); |
| 767 | |
| 768 | // check that progress bar handles manual seeking |
| 769 | let pb = ProgressBar::hidden(); |
| 770 | pb.set_length(10); |
| 771 | pb.set_position(1); |
| 772 | pb.tick(); |
| 773 | // Should not panic. |
| 774 | pb.set_position(0); |
| 775 | } |
| 776 | |
| 777 | #[test ] |
| 778 | fn test_reset_eta() { |
| 779 | let mut now = Instant::now(); |
| 780 | let mut est = Estimator::new(now); |
| 781 | |
| 782 | // two per second, then reset |
| 783 | now += Duration::from_secs(1); |
| 784 | est.record(2, now); |
| 785 | est.reset(now); |
| 786 | |
| 787 | // now one per second, and verify |
| 788 | now += Duration::from_secs(1); |
| 789 | est.record(3, now); |
| 790 | assert_eq!(est.steps_per_second(now), 1.0); |
| 791 | } |
| 792 | |
| 793 | #[test ] |
| 794 | fn test_duration_stuff() { |
| 795 | let duration = Duration::new(42, 100_000_000); |
| 796 | let secs = duration_to_secs(duration); |
| 797 | assert_eq!(secs_to_duration(secs), duration); |
| 798 | } |
| 799 | |
| 800 | #[test ] |
| 801 | fn test_atomic_position_large_time_difference() { |
| 802 | let atomic_position = AtomicPosition::new(); |
| 803 | let later = atomic_position.start + Duration::from_nanos(INTERVAL * u64::from(u8::MAX)); |
| 804 | // Should not panic. |
| 805 | atomic_position.allow(later); |
| 806 | } |
| 807 | |
| 808 | #[test ] |
| 809 | fn test_atomic_position_reset() { |
| 810 | const ELAPSE_TIME: Duration = Duration::from_millis(20); |
| 811 | let mut pos = AtomicPosition::new(); |
| 812 | pos.reset(pos.start + ELAPSE_TIME); |
| 813 | |
| 814 | // prev should be exactly ELAPSE_TIME after reset |
| 815 | assert_eq!(*pos.pos.get_mut(), 0); |
| 816 | assert_eq!(*pos.prev.get_mut(), ELAPSE_TIME.as_nanos() as u64); |
| 817 | } |
| 818 | } |
| 819 | |