| 1 | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution and at |
| 3 | // http://rust-lang.org/COPYRIGHT. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | // option. This file may not be copied, modified, or distributed |
| 9 | // except according to those terms. |
| 10 | |
| 11 | //! Rational numbers |
| 12 | //! |
| 13 | //! ## Compatibility |
| 14 | //! |
| 15 | //! The `num-rational` crate is tested for rustc 1.60 and greater. |
| 16 | |
| 17 | #![doc (html_root_url = "https://docs.rs/num-rational/0.4" )] |
| 18 | #![no_std ] |
| 19 | // Ratio ops often use other "suspicious" ops |
| 20 | #![allow (clippy::suspicious_arithmetic_impl)] |
| 21 | #![allow (clippy::suspicious_op_assign_impl)] |
| 22 | |
| 23 | #[cfg (feature = "std" )] |
| 24 | #[macro_use ] |
| 25 | extern crate std; |
| 26 | |
| 27 | use core::cmp; |
| 28 | use core::fmt; |
| 29 | use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; |
| 30 | use core::hash::{Hash, Hasher}; |
| 31 | use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; |
| 32 | use core::str::FromStr; |
| 33 | #[cfg (feature = "std" )] |
| 34 | use std::error::Error; |
| 35 | |
| 36 | #[cfg (feature = "num-bigint" )] |
| 37 | use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; |
| 38 | |
| 39 | use num_integer::Integer; |
| 40 | use num_traits::float::FloatCore; |
| 41 | use num_traits::{ |
| 42 | Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, ConstOne, ConstZero, FromPrimitive, |
| 43 | Inv, Num, NumCast, One, Pow, Signed, ToPrimitive, Unsigned, Zero, |
| 44 | }; |
| 45 | |
| 46 | mod pow; |
| 47 | |
| 48 | /// Represents the ratio between two numbers. |
| 49 | #[derive (Copy, Clone, Debug)] |
| 50 | #[allow (missing_docs)] |
| 51 | pub struct Ratio<T> { |
| 52 | /// Numerator. |
| 53 | numer: T, |
| 54 | /// Denominator. |
| 55 | denom: T, |
| 56 | } |
| 57 | |
| 58 | /// Alias for a `Ratio` of machine-sized integers. |
| 59 | #[deprecated ( |
| 60 | since = "0.4.0" , |
| 61 | note = "it's better to use a specific size, like `Rational32` or `Rational64`" |
| 62 | )] |
| 63 | pub type Rational = Ratio<isize>; |
| 64 | /// Alias for a `Ratio` of 32-bit-sized integers. |
| 65 | pub type Rational32 = Ratio<i32>; |
| 66 | /// Alias for a `Ratio` of 64-bit-sized integers. |
| 67 | pub type Rational64 = Ratio<i64>; |
| 68 | |
| 69 | #[cfg (feature = "num-bigint" )] |
| 70 | /// Alias for arbitrary precision rationals. |
| 71 | pub type BigRational = Ratio<BigInt>; |
| 72 | |
| 73 | /// These method are `const`. |
| 74 | impl<T> Ratio<T> { |
| 75 | /// Creates a `Ratio` without checking for `denom == 0` or reducing. |
| 76 | /// |
| 77 | /// **There are several methods that will panic if used on a `Ratio` with |
| 78 | /// `denom == 0`.** |
| 79 | #[inline ] |
| 80 | pub const fn new_raw(numer: T, denom: T) -> Ratio<T> { |
| 81 | Ratio { numer, denom } |
| 82 | } |
| 83 | |
| 84 | /// Deconstructs a `Ratio` into its numerator and denominator. |
| 85 | #[inline ] |
| 86 | pub fn into_raw(self) -> (T, T) { |
| 87 | (self.numer, self.denom) |
| 88 | } |
| 89 | |
| 90 | /// Gets an immutable reference to the numerator. |
| 91 | #[inline ] |
| 92 | pub const fn numer(&self) -> &T { |
| 93 | &self.numer |
| 94 | } |
| 95 | |
| 96 | /// Gets an immutable reference to the denominator. |
| 97 | #[inline ] |
| 98 | pub const fn denom(&self) -> &T { |
| 99 | &self.denom |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | impl<T: Clone + Integer> Ratio<T> { |
| 104 | /// Creates a new `Ratio`. |
| 105 | /// |
| 106 | /// **Panics if `denom` is zero.** |
| 107 | #[inline ] |
| 108 | pub fn new(numer: T, denom: T) -> Ratio<T> { |
| 109 | let mut ret = Ratio::new_raw(numer, denom); |
| 110 | ret.reduce(); |
| 111 | ret |
| 112 | } |
| 113 | |
| 114 | /// Creates a `Ratio` representing the integer `t`. |
| 115 | #[inline ] |
| 116 | pub fn from_integer(t: T) -> Ratio<T> { |
| 117 | Ratio::new_raw(t, One::one()) |
| 118 | } |
| 119 | |
| 120 | /// Converts to an integer, rounding towards zero. |
| 121 | #[inline ] |
| 122 | pub fn to_integer(&self) -> T { |
| 123 | self.trunc().numer |
| 124 | } |
| 125 | |
| 126 | /// Returns true if the rational number is an integer (denominator is 1). |
| 127 | #[inline ] |
| 128 | pub fn is_integer(&self) -> bool { |
| 129 | self.denom.is_one() |
| 130 | } |
| 131 | |
| 132 | /// Puts self into lowest terms, with `denom` > 0. |
| 133 | /// |
| 134 | /// **Panics if `denom` is zero.** |
| 135 | fn reduce(&mut self) { |
| 136 | if self.denom.is_zero() { |
| 137 | panic!("denominator == 0" ); |
| 138 | } |
| 139 | if self.numer.is_zero() { |
| 140 | self.denom.set_one(); |
| 141 | return; |
| 142 | } |
| 143 | if self.numer == self.denom { |
| 144 | self.set_one(); |
| 145 | return; |
| 146 | } |
| 147 | let g: T = self.numer.gcd(&self.denom); |
| 148 | |
| 149 | // FIXME(#5992): assignment operator overloads |
| 150 | // T: Clone + Integer != T: Clone + NumAssign |
| 151 | |
| 152 | #[inline ] |
| 153 | fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) { |
| 154 | let y = core::mem::replace(x, T::zero()); |
| 155 | *x = f(y); |
| 156 | } |
| 157 | |
| 158 | // self.numer /= g; |
| 159 | replace_with(&mut self.numer, |x| x / g.clone()); |
| 160 | |
| 161 | // self.denom /= g; |
| 162 | replace_with(&mut self.denom, |x| x / g); |
| 163 | |
| 164 | // keep denom positive! |
| 165 | if self.denom < T::zero() { |
| 166 | replace_with(&mut self.numer, |x| T::zero() - x); |
| 167 | replace_with(&mut self.denom, |x| T::zero() - x); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | /// Returns a reduced copy of self. |
| 172 | /// |
| 173 | /// In general, it is not necessary to use this method, as the only |
| 174 | /// method of procuring a non-reduced fraction is through `new_raw`. |
| 175 | /// |
| 176 | /// **Panics if `denom` is zero.** |
| 177 | pub fn reduced(&self) -> Ratio<T> { |
| 178 | let mut ret = self.clone(); |
| 179 | ret.reduce(); |
| 180 | ret |
| 181 | } |
| 182 | |
| 183 | /// Returns the reciprocal. |
| 184 | /// |
| 185 | /// **Panics if the `Ratio` is zero.** |
| 186 | #[inline ] |
| 187 | pub fn recip(&self) -> Ratio<T> { |
| 188 | self.clone().into_recip() |
| 189 | } |
| 190 | |
| 191 | #[inline ] |
| 192 | fn into_recip(self) -> Ratio<T> { |
| 193 | match self.numer.cmp(&T::zero()) { |
| 194 | cmp::Ordering::Equal => panic!("division by zero" ), |
| 195 | cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), |
| 196 | cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | /// Rounds towards minus infinity. |
| 201 | #[inline ] |
| 202 | pub fn floor(&self) -> Ratio<T> { |
| 203 | if *self < Zero::zero() { |
| 204 | let one: T = One::one(); |
| 205 | Ratio::from_integer( |
| 206 | (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), |
| 207 | ) |
| 208 | } else { |
| 209 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | /// Rounds towards plus infinity. |
| 214 | #[inline ] |
| 215 | pub fn ceil(&self) -> Ratio<T> { |
| 216 | if *self < Zero::zero() { |
| 217 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| 218 | } else { |
| 219 | let one: T = One::one(); |
| 220 | Ratio::from_integer( |
| 221 | (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), |
| 222 | ) |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /// Rounds to the nearest integer. Rounds half-way cases away from zero. |
| 227 | #[inline ] |
| 228 | pub fn round(&self) -> Ratio<T> { |
| 229 | let zero: Ratio<T> = Zero::zero(); |
| 230 | let one: T = One::one(); |
| 231 | let two: T = one.clone() + one.clone(); |
| 232 | |
| 233 | // Find unsigned fractional part of rational number |
| 234 | let mut fractional = self.fract(); |
| 235 | if fractional < zero { |
| 236 | fractional = zero - fractional |
| 237 | }; |
| 238 | |
| 239 | // The algorithm compares the unsigned fractional part with 1/2, that |
| 240 | // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use |
| 241 | // a >= (b/2)+1. This avoids overflow issues. |
| 242 | let half_or_larger = if fractional.denom.is_even() { |
| 243 | fractional.numer >= fractional.denom / two |
| 244 | } else { |
| 245 | fractional.numer >= (fractional.denom / two) + one |
| 246 | }; |
| 247 | |
| 248 | if half_or_larger { |
| 249 | let one: Ratio<T> = One::one(); |
| 250 | if *self >= Zero::zero() { |
| 251 | self.trunc() + one |
| 252 | } else { |
| 253 | self.trunc() - one |
| 254 | } |
| 255 | } else { |
| 256 | self.trunc() |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | /// Rounds towards zero. |
| 261 | #[inline ] |
| 262 | pub fn trunc(&self) -> Ratio<T> { |
| 263 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| 264 | } |
| 265 | |
| 266 | /// Returns the fractional part of a number, with division rounded towards zero. |
| 267 | /// |
| 268 | /// Satisfies `self == self.trunc() + self.fract()`. |
| 269 | #[inline ] |
| 270 | pub fn fract(&self) -> Ratio<T> { |
| 271 | Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) |
| 272 | } |
| 273 | |
| 274 | /// Raises the `Ratio` to the power of an exponent. |
| 275 | #[inline ] |
| 276 | pub fn pow(&self, expon: i32) -> Ratio<T> |
| 277 | where |
| 278 | for<'a> &'a T: Pow<u32, Output = T>, |
| 279 | { |
| 280 | Pow::pow(self, expon) |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | #[cfg (feature = "num-bigint" )] |
| 285 | impl Ratio<BigInt> { |
| 286 | /// Converts a float into a rational number. |
| 287 | pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { |
| 288 | if !f.is_finite() { |
| 289 | return None; |
| 290 | } |
| 291 | let (mantissa: u64, exponent: i16, sign: i8) = f.integer_decode(); |
| 292 | let bigint_sign: Sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; |
| 293 | if exponent < 0 { |
| 294 | let one: BigInt = One::one(); |
| 295 | let denom: BigInt = one << ((-exponent) as usize); |
| 296 | let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
| 297 | Some(Ratio::new(numer:BigInt::from_biguint(bigint_sign, data:numer), denom)) |
| 298 | } else { |
| 299 | let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
| 300 | numer <<= exponent as usize; |
| 301 | Some(Ratio::from_integer(BigInt::from_biguint( |
| 302 | bigint_sign, |
| 303 | data:numer, |
| 304 | ))) |
| 305 | } |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | impl<T: Clone + Integer> Default for Ratio<T> { |
| 310 | /// Returns zero |
| 311 | fn default() -> Self { |
| 312 | Ratio::zero() |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | // From integer |
| 317 | impl<T> From<T> for Ratio<T> |
| 318 | where |
| 319 | T: Clone + Integer, |
| 320 | { |
| 321 | fn from(x: T) -> Ratio<T> { |
| 322 | Ratio::from_integer(x) |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | // From pair (through the `new` constructor) |
| 327 | impl<T> From<(T, T)> for Ratio<T> |
| 328 | where |
| 329 | T: Clone + Integer, |
| 330 | { |
| 331 | fn from(pair: (T, T)) -> Ratio<T> { |
| 332 | Ratio::new(numer:pair.0, denom:pair.1) |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Comparisons |
| 337 | |
| 338 | // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy |
| 339 | // for those multiplications to overflow fixed-size integers, so we need to take care. |
| 340 | |
| 341 | impl<T: Clone + Integer> Ord for Ratio<T> { |
| 342 | #[inline ] |
| 343 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
| 344 | // With equal denominators, the numerators can be directly compared |
| 345 | if self.denom == other.denom { |
| 346 | let ord = self.numer.cmp(&other.numer); |
| 347 | return if self.denom < T::zero() { |
| 348 | ord.reverse() |
| 349 | } else { |
| 350 | ord |
| 351 | }; |
| 352 | } |
| 353 | |
| 354 | // With equal numerators, the denominators can be inversely compared |
| 355 | if self.numer == other.numer { |
| 356 | if self.numer.is_zero() { |
| 357 | return cmp::Ordering::Equal; |
| 358 | } |
| 359 | let ord = self.denom.cmp(&other.denom); |
| 360 | return if self.numer < T::zero() { |
| 361 | ord |
| 362 | } else { |
| 363 | ord.reverse() |
| 364 | }; |
| 365 | } |
| 366 | |
| 367 | // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the |
| 368 | // division below, or even always avoid it for BigInt and BigUint. |
| 369 | // FIXME- future breaking change to add Checked* to Integer? |
| 370 | |
| 371 | // Compare as floored integers and remainders |
| 372 | let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); |
| 373 | let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); |
| 374 | match self_int.cmp(&other_int) { |
| 375 | cmp::Ordering::Greater => cmp::Ordering::Greater, |
| 376 | cmp::Ordering::Less => cmp::Ordering::Less, |
| 377 | cmp::Ordering::Equal => { |
| 378 | match (self_rem.is_zero(), other_rem.is_zero()) { |
| 379 | (true, true) => cmp::Ordering::Equal, |
| 380 | (true, false) => cmp::Ordering::Less, |
| 381 | (false, true) => cmp::Ordering::Greater, |
| 382 | (false, false) => { |
| 383 | // Compare the reciprocals of the remaining fractions in reverse |
| 384 | let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); |
| 385 | let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); |
| 386 | self_recip.cmp(&other_recip).reverse() |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | impl<T: Clone + Integer> PartialOrd for Ratio<T> { |
| 395 | #[inline ] |
| 396 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
| 397 | Some(self.cmp(other)) |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | impl<T: Clone + Integer> PartialEq for Ratio<T> { |
| 402 | #[inline ] |
| 403 | fn eq(&self, other: &Self) -> bool { |
| 404 | self.cmp(other) == cmp::Ordering::Equal |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | impl<T: Clone + Integer> Eq for Ratio<T> {} |
| 409 | |
| 410 | // NB: We can't just `#[derive(Hash)]`, because it needs to agree |
| 411 | // with `Eq` even for non-reduced ratios. |
| 412 | impl<T: Clone + Integer + Hash> Hash for Ratio<T> { |
| 413 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 414 | recurse(&self.numer, &self.denom, state); |
| 415 | |
| 416 | fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { |
| 417 | if !denom.is_zero() { |
| 418 | let (int: T, rem: T) = numer.div_mod_floor(denom); |
| 419 | int.hash(state); |
| 420 | recurse(numer:denom, &rem, state); |
| 421 | } else { |
| 422 | denom.hash(state); |
| 423 | } |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | mod iter_sum_product { |
| 429 | use crate::Ratio; |
| 430 | use core::iter::{Product, Sum}; |
| 431 | use num_integer::Integer; |
| 432 | use num_traits::{One, Zero}; |
| 433 | |
| 434 | impl<T: Integer + Clone> Sum for Ratio<T> { |
| 435 | fn sum<I>(iter: I) -> Self |
| 436 | where |
| 437 | I: Iterator<Item = Ratio<T>>, |
| 438 | { |
| 439 | iter.fold(Self::zero(), |sum, num| sum + num) |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { |
| 444 | fn sum<I>(iter: I) -> Self |
| 445 | where |
| 446 | I: Iterator<Item = &'a Ratio<T>>, |
| 447 | { |
| 448 | iter.fold(Self::zero(), |sum, num| sum + num) |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | impl<T: Integer + Clone> Product for Ratio<T> { |
| 453 | fn product<I>(iter: I) -> Self |
| 454 | where |
| 455 | I: Iterator<Item = Ratio<T>>, |
| 456 | { |
| 457 | iter.fold(Self::one(), |prod, num| prod * num) |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { |
| 462 | fn product<I>(iter: I) -> Self |
| 463 | where |
| 464 | I: Iterator<Item = &'a Ratio<T>>, |
| 465 | { |
| 466 | iter.fold(Self::one(), |prod, num| prod * num) |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | mod opassign { |
| 472 | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
| 473 | |
| 474 | use crate::Ratio; |
| 475 | use num_integer::Integer; |
| 476 | use num_traits::NumAssign; |
| 477 | |
| 478 | impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { |
| 479 | fn add_assign(&mut self, other: Ratio<T>) { |
| 480 | if self.denom == other.denom { |
| 481 | self.numer += other.numer |
| 482 | } else { |
| 483 | let lcm = self.denom.lcm(&other.denom); |
| 484 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| 485 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| 486 | self.numer = lhs_numer + rhs_numer; |
| 487 | self.denom = lcm; |
| 488 | } |
| 489 | self.reduce(); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
| 494 | impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { |
| 495 | fn div_assign(&mut self, other: Ratio<T>) { |
| 496 | let gcd_ac = self.numer.gcd(&other.numer); |
| 497 | let gcd_bd = self.denom.gcd(&other.denom); |
| 498 | self.numer /= gcd_ac.clone(); |
| 499 | self.numer *= other.denom / gcd_bd.clone(); |
| 500 | self.denom /= gcd_bd; |
| 501 | self.denom *= other.numer / gcd_ac; |
| 502 | self.reduce(); // TODO: remove this line. see #8. |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
| 507 | impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { |
| 508 | fn mul_assign(&mut self, other: Ratio<T>) { |
| 509 | let gcd_ad = self.numer.gcd(&other.denom); |
| 510 | let gcd_bc = self.denom.gcd(&other.numer); |
| 511 | self.numer /= gcd_ad.clone(); |
| 512 | self.numer *= other.numer / gcd_bc.clone(); |
| 513 | self.denom /= gcd_bc; |
| 514 | self.denom *= other.denom / gcd_ad; |
| 515 | self.reduce(); // TODO: remove this line. see #8. |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { |
| 520 | fn rem_assign(&mut self, other: Ratio<T>) { |
| 521 | if self.denom == other.denom { |
| 522 | self.numer %= other.numer |
| 523 | } else { |
| 524 | let lcm = self.denom.lcm(&other.denom); |
| 525 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| 526 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| 527 | self.numer = lhs_numer % rhs_numer; |
| 528 | self.denom = lcm; |
| 529 | } |
| 530 | self.reduce(); |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { |
| 535 | fn sub_assign(&mut self, other: Ratio<T>) { |
| 536 | if self.denom == other.denom { |
| 537 | self.numer -= other.numer |
| 538 | } else { |
| 539 | let lcm = self.denom.lcm(&other.denom); |
| 540 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| 541 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| 542 | self.numer = lhs_numer - rhs_numer; |
| 543 | self.denom = lcm; |
| 544 | } |
| 545 | self.reduce(); |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b |
| 550 | impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { |
| 551 | fn add_assign(&mut self, other: T) { |
| 552 | self.numer += self.denom.clone() * other; |
| 553 | self.reduce(); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { |
| 558 | fn div_assign(&mut self, other: T) { |
| 559 | let gcd = self.numer.gcd(&other); |
| 560 | self.numer /= gcd.clone(); |
| 561 | self.denom *= other / gcd; |
| 562 | self.reduce(); // TODO: remove this line. see #8. |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { |
| 567 | fn mul_assign(&mut self, other: T) { |
| 568 | let gcd = self.denom.gcd(&other); |
| 569 | self.denom /= gcd.clone(); |
| 570 | self.numer *= other / gcd; |
| 571 | self.reduce(); // TODO: remove this line. see #8. |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b |
| 576 | impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { |
| 577 | fn rem_assign(&mut self, other: T) { |
| 578 | self.numer %= self.denom.clone() * other; |
| 579 | self.reduce(); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b |
| 584 | impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { |
| 585 | fn sub_assign(&mut self, other: T) { |
| 586 | self.numer -= self.denom.clone() * other; |
| 587 | self.reduce(); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | macro_rules! forward_op_assign { |
| 592 | (impl $imp:ident, $method:ident) => { |
| 593 | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { |
| 594 | #[inline] |
| 595 | fn $method(&mut self, other: &Ratio<T>) { |
| 596 | self.$method(other.clone()) |
| 597 | } |
| 598 | } |
| 599 | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { |
| 600 | #[inline] |
| 601 | fn $method(&mut self, other: &T) { |
| 602 | self.$method(other.clone()) |
| 603 | } |
| 604 | } |
| 605 | }; |
| 606 | } |
| 607 | |
| 608 | forward_op_assign!(impl AddAssign, add_assign); |
| 609 | forward_op_assign!(impl DivAssign, div_assign); |
| 610 | forward_op_assign!(impl MulAssign, mul_assign); |
| 611 | forward_op_assign!(impl RemAssign, rem_assign); |
| 612 | forward_op_assign!(impl SubAssign, sub_assign); |
| 613 | } |
| 614 | |
| 615 | macro_rules! forward_ref_ref_binop { |
| 616 | (impl $imp:ident, $method:ident) => { |
| 617 | impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { |
| 618 | type Output = Ratio<T>; |
| 619 | |
| 620 | #[inline] |
| 621 | fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { |
| 622 | self.clone().$method(other.clone()) |
| 623 | } |
| 624 | } |
| 625 | impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { |
| 626 | type Output = Ratio<T>; |
| 627 | |
| 628 | #[inline] |
| 629 | fn $method(self, other: &'b T) -> Ratio<T> { |
| 630 | self.clone().$method(other.clone()) |
| 631 | } |
| 632 | } |
| 633 | }; |
| 634 | } |
| 635 | |
| 636 | macro_rules! forward_ref_val_binop { |
| 637 | (impl $imp:ident, $method:ident) => { |
| 638 | impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> |
| 639 | where |
| 640 | T: Clone + Integer, |
| 641 | { |
| 642 | type Output = Ratio<T>; |
| 643 | |
| 644 | #[inline] |
| 645 | fn $method(self, other: Ratio<T>) -> Ratio<T> { |
| 646 | self.clone().$method(other) |
| 647 | } |
| 648 | } |
| 649 | impl<'a, T> $imp<T> for &'a Ratio<T> |
| 650 | where |
| 651 | T: Clone + Integer, |
| 652 | { |
| 653 | type Output = Ratio<T>; |
| 654 | |
| 655 | #[inline] |
| 656 | fn $method(self, other: T) -> Ratio<T> { |
| 657 | self.clone().$method(other) |
| 658 | } |
| 659 | } |
| 660 | }; |
| 661 | } |
| 662 | |
| 663 | macro_rules! forward_val_ref_binop { |
| 664 | (impl $imp:ident, $method:ident) => { |
| 665 | impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> |
| 666 | where |
| 667 | T: Clone + Integer, |
| 668 | { |
| 669 | type Output = Ratio<T>; |
| 670 | |
| 671 | #[inline] |
| 672 | fn $method(self, other: &Ratio<T>) -> Ratio<T> { |
| 673 | self.$method(other.clone()) |
| 674 | } |
| 675 | } |
| 676 | impl<'a, T> $imp<&'a T> for Ratio<T> |
| 677 | where |
| 678 | T: Clone + Integer, |
| 679 | { |
| 680 | type Output = Ratio<T>; |
| 681 | |
| 682 | #[inline] |
| 683 | fn $method(self, other: &T) -> Ratio<T> { |
| 684 | self.$method(other.clone()) |
| 685 | } |
| 686 | } |
| 687 | }; |
| 688 | } |
| 689 | |
| 690 | macro_rules! forward_all_binop { |
| 691 | (impl $imp:ident, $method:ident) => { |
| 692 | forward_ref_ref_binop!(impl $imp, $method); |
| 693 | forward_ref_val_binop!(impl $imp, $method); |
| 694 | forward_val_ref_binop!(impl $imp, $method); |
| 695 | }; |
| 696 | } |
| 697 | |
| 698 | // Arithmetic |
| 699 | forward_all_binop!(impl Mul, mul); |
| 700 | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
| 701 | impl<T> Mul<Ratio<T>> for Ratio<T> |
| 702 | where |
| 703 | T: Clone + Integer, |
| 704 | { |
| 705 | type Output = Ratio<T>; |
| 706 | #[inline ] |
| 707 | fn mul(self, rhs: Ratio<T>) -> Ratio<T> { |
| 708 | let gcd_ad: T = self.numer.gcd(&rhs.denom); |
| 709 | let gcd_bc: T = self.denom.gcd(&rhs.numer); |
| 710 | Ratio::new( |
| 711 | self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), |
| 712 | self.denom / gcd_bc * (rhs.denom / gcd_ad), |
| 713 | ) |
| 714 | } |
| 715 | } |
| 716 | // a/b * c/1 = (a*c) / (b*1) = (a*c) / b |
| 717 | impl<T> Mul<T> for Ratio<T> |
| 718 | where |
| 719 | T: Clone + Integer, |
| 720 | { |
| 721 | type Output = Ratio<T>; |
| 722 | #[inline ] |
| 723 | fn mul(self, rhs: T) -> Ratio<T> { |
| 724 | let gcd: T = self.denom.gcd(&rhs); |
| 725 | Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | forward_all_binop!(impl Div, div); |
| 730 | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
| 731 | impl<T> Div<Ratio<T>> for Ratio<T> |
| 732 | where |
| 733 | T: Clone + Integer, |
| 734 | { |
| 735 | type Output = Ratio<T>; |
| 736 | |
| 737 | #[inline ] |
| 738 | fn div(self, rhs: Ratio<T>) -> Ratio<T> { |
| 739 | let gcd_ac: T = self.numer.gcd(&rhs.numer); |
| 740 | let gcd_bd: T = self.denom.gcd(&rhs.denom); |
| 741 | Ratio::new( |
| 742 | self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), |
| 743 | self.denom / gcd_bd * (rhs.numer / gcd_ac), |
| 744 | ) |
| 745 | } |
| 746 | } |
| 747 | // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) |
| 748 | impl<T> Div<T> for Ratio<T> |
| 749 | where |
| 750 | T: Clone + Integer, |
| 751 | { |
| 752 | type Output = Ratio<T>; |
| 753 | |
| 754 | #[inline ] |
| 755 | fn div(self, rhs: T) -> Ratio<T> { |
| 756 | let gcd: T = self.numer.gcd(&rhs); |
| 757 | Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | macro_rules! arith_impl { |
| 762 | (impl $imp:ident, $method:ident) => { |
| 763 | forward_all_binop!(impl $imp, $method); |
| 764 | // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) |
| 765 | impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { |
| 766 | type Output = Ratio<T>; |
| 767 | #[inline] |
| 768 | fn $method(self, rhs: Ratio<T>) -> Ratio<T> { |
| 769 | if self.denom == rhs.denom { |
| 770 | return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); |
| 771 | } |
| 772 | let lcm = self.denom.lcm(&rhs.denom); |
| 773 | let lhs_numer = self.numer * (lcm.clone() / self.denom); |
| 774 | let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); |
| 775 | Ratio::new(lhs_numer.$method(rhs_numer), lcm) |
| 776 | } |
| 777 | } |
| 778 | // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern |
| 779 | impl<T: Clone + Integer> $imp<T> for Ratio<T> { |
| 780 | type Output = Ratio<T>; |
| 781 | #[inline] |
| 782 | fn $method(self, rhs: T) -> Ratio<T> { |
| 783 | Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) |
| 784 | } |
| 785 | } |
| 786 | }; |
| 787 | } |
| 788 | |
| 789 | arith_impl!(impl Add, add); |
| 790 | arith_impl!(impl Sub, sub); |
| 791 | arith_impl!(impl Rem, rem); |
| 792 | |
| 793 | // a/b * c/d = (a*c)/(b*d) |
| 794 | impl<T> CheckedMul for Ratio<T> |
| 795 | where |
| 796 | T: Clone + Integer + CheckedMul, |
| 797 | { |
| 798 | #[inline ] |
| 799 | fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| 800 | let gcd_ad: T = self.numer.gcd(&rhs.denom); |
| 801 | let gcd_bc: T = self.denom.gcd(&rhs.numer); |
| 802 | Some(Ratio::new( |
| 803 | (self.numer.clone() / gcd_ad.clone()) |
| 804 | .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, |
| 805 | (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, |
| 806 | )) |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | // (a/b) / (c/d) = (a*d)/(b*c) |
| 811 | impl<T> CheckedDiv for Ratio<T> |
| 812 | where |
| 813 | T: Clone + Integer + CheckedMul, |
| 814 | { |
| 815 | #[inline ] |
| 816 | fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| 817 | if rhs.is_zero() { |
| 818 | return None; |
| 819 | } |
| 820 | let (numer, denom) = if self.denom == rhs.denom { |
| 821 | (self.numer.clone(), rhs.numer.clone()) |
| 822 | } else if self.numer == rhs.numer { |
| 823 | (rhs.denom.clone(), self.denom.clone()) |
| 824 | } else { |
| 825 | let gcd_ac = self.numer.gcd(&rhs.numer); |
| 826 | let gcd_bd = self.denom.gcd(&rhs.denom); |
| 827 | ( |
| 828 | (self.numer.clone() / gcd_ac.clone()) |
| 829 | .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, |
| 830 | (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, |
| 831 | ) |
| 832 | }; |
| 833 | // Manual `reduce()`, avoiding sharp edges |
| 834 | if denom.is_zero() { |
| 835 | None |
| 836 | } else if numer.is_zero() { |
| 837 | Some(Self::zero()) |
| 838 | } else if numer == denom { |
| 839 | Some(Self::one()) |
| 840 | } else { |
| 841 | let g = numer.gcd(&denom); |
| 842 | let numer = numer / g.clone(); |
| 843 | let denom = denom / g; |
| 844 | let raw = if denom < T::zero() { |
| 845 | // We need to keep denom positive, but 2's-complement MIN may |
| 846 | // overflow negation -- instead we can check multiplying -1. |
| 847 | let n1 = T::zero() - T::one(); |
| 848 | Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) |
| 849 | } else { |
| 850 | Ratio::new_raw(numer, denom) |
| 851 | }; |
| 852 | Some(raw) |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | // As arith_impl! but for Checked{Add,Sub} traits |
| 858 | macro_rules! checked_arith_impl { |
| 859 | (impl $imp:ident, $method:ident) => { |
| 860 | impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { |
| 861 | #[inline] |
| 862 | fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| 863 | let gcd = self.denom.clone().gcd(&rhs.denom); |
| 864 | let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; |
| 865 | let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; |
| 866 | let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; |
| 867 | Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) |
| 868 | } |
| 869 | } |
| 870 | }; |
| 871 | } |
| 872 | |
| 873 | // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) |
| 874 | checked_arith_impl!(impl CheckedAdd, checked_add); |
| 875 | |
| 876 | // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) |
| 877 | checked_arith_impl!(impl CheckedSub, checked_sub); |
| 878 | |
| 879 | impl<T> Neg for Ratio<T> |
| 880 | where |
| 881 | T: Clone + Integer + Neg<Output = T>, |
| 882 | { |
| 883 | type Output = Ratio<T>; |
| 884 | |
| 885 | #[inline ] |
| 886 | fn neg(self) -> Ratio<T> { |
| 887 | Ratio::new_raw(-self.numer, self.denom) |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | impl<'a, T> Neg for &'a Ratio<T> |
| 892 | where |
| 893 | T: Clone + Integer + Neg<Output = T>, |
| 894 | { |
| 895 | type Output = Ratio<T>; |
| 896 | |
| 897 | #[inline ] |
| 898 | fn neg(self) -> Ratio<T> { |
| 899 | -self.clone() |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | impl<T> Inv for Ratio<T> |
| 904 | where |
| 905 | T: Clone + Integer, |
| 906 | { |
| 907 | type Output = Ratio<T>; |
| 908 | |
| 909 | #[inline ] |
| 910 | fn inv(self) -> Ratio<T> { |
| 911 | self.recip() |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | impl<'a, T> Inv for &'a Ratio<T> |
| 916 | where |
| 917 | T: Clone + Integer, |
| 918 | { |
| 919 | type Output = Ratio<T>; |
| 920 | |
| 921 | #[inline ] |
| 922 | fn inv(self) -> Ratio<T> { |
| 923 | self.recip() |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | // Constants |
| 928 | impl<T: ConstZero + ConstOne> Ratio<T> { |
| 929 | /// A constant `Ratio` 0/1. |
| 930 | pub const ZERO: Self = Self::new_raw(T::ZERO, T::ONE); |
| 931 | } |
| 932 | |
| 933 | impl<T: Clone + Integer + ConstZero + ConstOne> ConstZero for Ratio<T> { |
| 934 | const ZERO: Self = Self::ZERO; |
| 935 | } |
| 936 | |
| 937 | impl<T: Clone + Integer> Zero for Ratio<T> { |
| 938 | #[inline ] |
| 939 | fn zero() -> Ratio<T> { |
| 940 | Ratio::new_raw(numer:Zero::zero(), denom:One::one()) |
| 941 | } |
| 942 | |
| 943 | #[inline ] |
| 944 | fn is_zero(&self) -> bool { |
| 945 | self.numer.is_zero() |
| 946 | } |
| 947 | |
| 948 | #[inline ] |
| 949 | fn set_zero(&mut self) { |
| 950 | self.numer.set_zero(); |
| 951 | self.denom.set_one(); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | impl<T: ConstOne> Ratio<T> { |
| 956 | /// A constant `Ratio` 1/1. |
| 957 | pub const ONE: Self = Self::new_raw(T::ONE, T::ONE); |
| 958 | } |
| 959 | |
| 960 | impl<T: Clone + Integer + ConstOne> ConstOne for Ratio<T> { |
| 961 | const ONE: Self = Self::ONE; |
| 962 | } |
| 963 | |
| 964 | impl<T: Clone + Integer> One for Ratio<T> { |
| 965 | #[inline ] |
| 966 | fn one() -> Ratio<T> { |
| 967 | Ratio::new_raw(numer:One::one(), denom:One::one()) |
| 968 | } |
| 969 | |
| 970 | #[inline ] |
| 971 | fn is_one(&self) -> bool { |
| 972 | self.numer == self.denom |
| 973 | } |
| 974 | |
| 975 | #[inline ] |
| 976 | fn set_one(&mut self) { |
| 977 | self.numer.set_one(); |
| 978 | self.denom.set_one(); |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | impl<T: Clone + Integer> Num for Ratio<T> { |
| 983 | type FromStrRadixErr = ParseRatioError; |
| 984 | |
| 985 | /// Parses `numer/denom` where the numbers are in base `radix`. |
| 986 | fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { |
| 987 | if s.splitn(2, '/' ).count() == 2 { |
| 988 | let mut parts = s.splitn(2, '/' ).map(|ss| { |
| 989 | T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { |
| 990 | kind: RatioErrorKind::ParseError, |
| 991 | }) |
| 992 | }); |
| 993 | let numer: T = parts.next().unwrap()?; |
| 994 | let denom: T = parts.next().unwrap()?; |
| 995 | if denom.is_zero() { |
| 996 | Err(ParseRatioError { |
| 997 | kind: RatioErrorKind::ZeroDenominator, |
| 998 | }) |
| 999 | } else { |
| 1000 | Ok(Ratio::new(numer, denom)) |
| 1001 | } |
| 1002 | } else { |
| 1003 | Err(ParseRatioError { |
| 1004 | kind: RatioErrorKind::ParseError, |
| 1005 | }) |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | impl<T: Clone + Integer + Signed> Signed for Ratio<T> { |
| 1011 | #[inline ] |
| 1012 | fn abs(&self) -> Ratio<T> { |
| 1013 | if self.is_negative() { |
| 1014 | -self.clone() |
| 1015 | } else { |
| 1016 | self.clone() |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | #[inline ] |
| 1021 | fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { |
| 1022 | if *self <= *other { |
| 1023 | Zero::zero() |
| 1024 | } else { |
| 1025 | self - other |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | #[inline ] |
| 1030 | fn signum(&self) -> Ratio<T> { |
| 1031 | if self.is_positive() { |
| 1032 | Self::one() |
| 1033 | } else if self.is_zero() { |
| 1034 | Self::zero() |
| 1035 | } else { |
| 1036 | -Self::one() |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | #[inline ] |
| 1041 | fn is_positive(&self) -> bool { |
| 1042 | (self.numer.is_positive() && self.denom.is_positive()) |
| 1043 | || (self.numer.is_negative() && self.denom.is_negative()) |
| 1044 | } |
| 1045 | |
| 1046 | #[inline ] |
| 1047 | fn is_negative(&self) -> bool { |
| 1048 | (self.numer.is_negative() && self.denom.is_positive()) |
| 1049 | || (self.numer.is_positive() && self.denom.is_negative()) |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | // String conversions |
| 1054 | macro_rules! impl_formatting { |
| 1055 | ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { |
| 1056 | impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> { |
| 1057 | #[cfg(feature = "std" )] |
| 1058 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 1059 | let pre_pad = if self.denom.is_one() { |
| 1060 | format!($fmt_str, self.numer) |
| 1061 | } else { |
| 1062 | if f.alternate() { |
| 1063 | format!(concat!($fmt_str, "/" , $fmt_alt), self.numer, self.denom) |
| 1064 | } else { |
| 1065 | format!(concat!($fmt_str, "/" , $fmt_str), self.numer, self.denom) |
| 1066 | } |
| 1067 | }; |
| 1068 | if let Some(pre_pad) = pre_pad.strip_prefix("-" ) { |
| 1069 | f.pad_integral(false, $prefix, pre_pad) |
| 1070 | } else { |
| 1071 | f.pad_integral(true, $prefix, &pre_pad) |
| 1072 | } |
| 1073 | } |
| 1074 | #[cfg(not(feature = "std" ))] |
| 1075 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| 1076 | let plus = if f.sign_plus() && self.numer >= T::zero() { |
| 1077 | "+" |
| 1078 | } else { |
| 1079 | "" |
| 1080 | }; |
| 1081 | if self.denom.is_one() { |
| 1082 | if f.alternate() { |
| 1083 | write!(f, concat!("{}" , $fmt_alt), plus, self.numer) |
| 1084 | } else { |
| 1085 | write!(f, concat!("{}" , $fmt_str), plus, self.numer) |
| 1086 | } |
| 1087 | } else { |
| 1088 | if f.alternate() { |
| 1089 | write!( |
| 1090 | f, |
| 1091 | concat!("{}" , $fmt_alt, "/" , $fmt_alt), |
| 1092 | plus, self.numer, self.denom |
| 1093 | ) |
| 1094 | } else { |
| 1095 | write!( |
| 1096 | f, |
| 1097 | concat!("{}" , $fmt_str, "/" , $fmt_str), |
| 1098 | plus, self.numer, self.denom |
| 1099 | ) |
| 1100 | } |
| 1101 | } |
| 1102 | } |
| 1103 | } |
| 1104 | }; |
| 1105 | } |
| 1106 | |
| 1107 | impl_formatting!(Display, "" , "{}" , "{:#}" ); |
| 1108 | impl_formatting!(Octal, "0o" , "{:o}" , "{:#o}" ); |
| 1109 | impl_formatting!(Binary, "0b" , "{:b}" , "{:#b}" ); |
| 1110 | impl_formatting!(LowerHex, "0x" , "{:x}" , "{:#x}" ); |
| 1111 | impl_formatting!(UpperHex, "0x" , "{:X}" , "{:#X}" ); |
| 1112 | impl_formatting!(LowerExp, "" , "{:e}" , "{:#e}" ); |
| 1113 | impl_formatting!(UpperExp, "" , "{:E}" , "{:#E}" ); |
| 1114 | |
| 1115 | impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { |
| 1116 | type Err = ParseRatioError; |
| 1117 | |
| 1118 | /// Parses `numer/denom` or just `numer`. |
| 1119 | fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { |
| 1120 | let mut split = s.splitn(2, '/' ); |
| 1121 | |
| 1122 | let n = split.next().ok_or(ParseRatioError { |
| 1123 | kind: RatioErrorKind::ParseError, |
| 1124 | })?; |
| 1125 | let num = FromStr::from_str(n).map_err(|_| ParseRatioError { |
| 1126 | kind: RatioErrorKind::ParseError, |
| 1127 | })?; |
| 1128 | |
| 1129 | let d = split.next().unwrap_or("1" ); |
| 1130 | let den = FromStr::from_str(d).map_err(|_| ParseRatioError { |
| 1131 | kind: RatioErrorKind::ParseError, |
| 1132 | })?; |
| 1133 | |
| 1134 | if Zero::is_zero(&den) { |
| 1135 | Err(ParseRatioError { |
| 1136 | kind: RatioErrorKind::ZeroDenominator, |
| 1137 | }) |
| 1138 | } else { |
| 1139 | Ok(Ratio::new(num, den)) |
| 1140 | } |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | impl<T> From<Ratio<T>> for (T, T) { |
| 1145 | fn from(val: Ratio<T>) -> Self { |
| 1146 | (val.numer, val.denom) |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | #[cfg (feature = "serde" )] |
| 1151 | impl<T> serde::Serialize for Ratio<T> |
| 1152 | where |
| 1153 | T: serde::Serialize + Clone + Integer + PartialOrd, |
| 1154 | { |
| 1155 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| 1156 | where |
| 1157 | S: serde::Serializer, |
| 1158 | { |
| 1159 | (self.numer(), self.denom()).serialize(serializer) |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | #[cfg (feature = "serde" )] |
| 1164 | impl<'de, T> serde::Deserialize<'de> for Ratio<T> |
| 1165 | where |
| 1166 | T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, |
| 1167 | { |
| 1168 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| 1169 | where |
| 1170 | D: serde::Deserializer<'de>, |
| 1171 | { |
| 1172 | use serde::de::Error; |
| 1173 | use serde::de::Unexpected; |
| 1174 | let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; |
| 1175 | if denom.is_zero() { |
| 1176 | Err(Error::invalid_value( |
| 1177 | Unexpected::Signed(0), |
| 1178 | &"a ratio with non-zero denominator" , |
| 1179 | )) |
| 1180 | } else { |
| 1181 | Ok(Ratio::new_raw(numer, denom)) |
| 1182 | } |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | // FIXME: Bubble up specific errors |
| 1187 | #[derive (Copy, Clone, Debug, PartialEq)] |
| 1188 | pub struct ParseRatioError { |
| 1189 | kind: RatioErrorKind, |
| 1190 | } |
| 1191 | |
| 1192 | #[derive (Copy, Clone, Debug, PartialEq)] |
| 1193 | enum RatioErrorKind { |
| 1194 | ParseError, |
| 1195 | ZeroDenominator, |
| 1196 | } |
| 1197 | |
| 1198 | impl fmt::Display for ParseRatioError { |
| 1199 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1200 | self.kind.description().fmt(f) |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | #[cfg (feature = "std" )] |
| 1205 | impl Error for ParseRatioError { |
| 1206 | #[allow (deprecated)] |
| 1207 | fn description(&self) -> &str { |
| 1208 | self.kind.description() |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | impl RatioErrorKind { |
| 1213 | fn description(&self) -> &'static str { |
| 1214 | match *self { |
| 1215 | RatioErrorKind::ParseError => "failed to parse integer" , |
| 1216 | RatioErrorKind::ZeroDenominator => "zero value denominator" , |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | #[cfg (feature = "num-bigint" )] |
| 1222 | impl FromPrimitive for Ratio<BigInt> { |
| 1223 | fn from_i64(n: i64) -> Option<Self> { |
| 1224 | Some(Ratio::from_integer(n.into())) |
| 1225 | } |
| 1226 | |
| 1227 | fn from_i128(n: i128) -> Option<Self> { |
| 1228 | Some(Ratio::from_integer(n.into())) |
| 1229 | } |
| 1230 | |
| 1231 | fn from_u64(n: u64) -> Option<Self> { |
| 1232 | Some(Ratio::from_integer(n.into())) |
| 1233 | } |
| 1234 | |
| 1235 | fn from_u128(n: u128) -> Option<Self> { |
| 1236 | Some(Ratio::from_integer(n.into())) |
| 1237 | } |
| 1238 | |
| 1239 | fn from_f32(n: f32) -> Option<Self> { |
| 1240 | Ratio::from_float(n) |
| 1241 | } |
| 1242 | |
| 1243 | fn from_f64(n: f64) -> Option<Self> { |
| 1244 | Ratio::from_float(n) |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | macro_rules! from_primitive_integer { |
| 1249 | ($typ:ty, $approx:ident) => { |
| 1250 | impl FromPrimitive for Ratio<$typ> { |
| 1251 | fn from_i64(n: i64) -> Option<Self> { |
| 1252 | <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) |
| 1253 | } |
| 1254 | |
| 1255 | fn from_i128(n: i128) -> Option<Self> { |
| 1256 | <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) |
| 1257 | } |
| 1258 | |
| 1259 | fn from_u64(n: u64) -> Option<Self> { |
| 1260 | <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) |
| 1261 | } |
| 1262 | |
| 1263 | fn from_u128(n: u128) -> Option<Self> { |
| 1264 | <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) |
| 1265 | } |
| 1266 | |
| 1267 | fn from_f32(n: f32) -> Option<Self> { |
| 1268 | $approx(n, 10e-20, 30) |
| 1269 | } |
| 1270 | |
| 1271 | fn from_f64(n: f64) -> Option<Self> { |
| 1272 | $approx(n, 10e-20, 30) |
| 1273 | } |
| 1274 | } |
| 1275 | }; |
| 1276 | } |
| 1277 | |
| 1278 | from_primitive_integer!(i8, approximate_float); |
| 1279 | from_primitive_integer!(i16, approximate_float); |
| 1280 | from_primitive_integer!(i32, approximate_float); |
| 1281 | from_primitive_integer!(i64, approximate_float); |
| 1282 | from_primitive_integer!(i128, approximate_float); |
| 1283 | from_primitive_integer!(isize, approximate_float); |
| 1284 | |
| 1285 | from_primitive_integer!(u8, approximate_float_unsigned); |
| 1286 | from_primitive_integer!(u16, approximate_float_unsigned); |
| 1287 | from_primitive_integer!(u32, approximate_float_unsigned); |
| 1288 | from_primitive_integer!(u64, approximate_float_unsigned); |
| 1289 | from_primitive_integer!(u128, approximate_float_unsigned); |
| 1290 | from_primitive_integer!(usize, approximate_float_unsigned); |
| 1291 | |
| 1292 | impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { |
| 1293 | pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
| 1294 | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
| 1295 | // to work well. Might want to choose something based on the types in the future, e.g. |
| 1296 | // T::max().recip() and T::bits() or something similar. |
| 1297 | let epsilon: F = <F as NumCast>::from(10e-20).expect(msg:"Can't convert 10e-20" ); |
| 1298 | approximate_float(val:f, max_error:epsilon, max_iterations:30) |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | impl<T: Integer + Unsigned + Bounded + NumCast + Clone> Ratio<T> { |
| 1303 | pub fn approximate_float_unsigned<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
| 1304 | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
| 1305 | // to work well. Might want to choose something based on the types in the future, e.g. |
| 1306 | // T::max().recip() and T::bits() or something similar. |
| 1307 | let epsilon: F = <F as NumCast>::from(10e-20).expect(msg:"Can't convert 10e-20" ); |
| 1308 | approximate_float_unsigned(val:f, max_error:epsilon, max_iterations:30) |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
| 1313 | where |
| 1314 | T: Integer + Signed + Bounded + NumCast + Clone, |
| 1315 | F: FloatCore + NumCast, |
| 1316 | { |
| 1317 | let negative: bool = val.is_sign_negative(); |
| 1318 | let abs_val: F = val.abs(); |
| 1319 | |
| 1320 | let r: Ratio = approximate_float_unsigned(abs_val, max_error, max_iterations)?; |
| 1321 | |
| 1322 | // Make negative again if needed |
| 1323 | Some(if negative { r.neg() } else { r }) |
| 1324 | } |
| 1325 | |
| 1326 | // No Unsigned constraint because this also works on positive integers and is called |
| 1327 | // like that, see above |
| 1328 | fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
| 1329 | where |
| 1330 | T: Integer + Bounded + NumCast + Clone, |
| 1331 | F: FloatCore + NumCast, |
| 1332 | { |
| 1333 | // Continued fractions algorithm |
| 1334 | // https://web.archive.org/web/20200629111319/http://mathforum.org:80/dr.math/faq/faq.fractions.html#decfrac |
| 1335 | |
| 1336 | if val < F::zero() || val.is_nan() { |
| 1337 | return None; |
| 1338 | } |
| 1339 | |
| 1340 | let mut q = val; |
| 1341 | let mut n0 = T::zero(); |
| 1342 | let mut d0 = T::one(); |
| 1343 | let mut n1 = T::one(); |
| 1344 | let mut d1 = T::zero(); |
| 1345 | |
| 1346 | let t_max = T::max_value(); |
| 1347 | let t_max_f = <F as NumCast>::from(t_max.clone())?; |
| 1348 | |
| 1349 | // 1/epsilon > T::MAX |
| 1350 | let epsilon = t_max_f.recip(); |
| 1351 | |
| 1352 | // Overflow |
| 1353 | if q > t_max_f { |
| 1354 | return None; |
| 1355 | } |
| 1356 | |
| 1357 | for _ in 0..max_iterations { |
| 1358 | let a = match <T as NumCast>::from(q) { |
| 1359 | None => break, |
| 1360 | Some(a) => a, |
| 1361 | }; |
| 1362 | |
| 1363 | let a_f = match <F as NumCast>::from(a.clone()) { |
| 1364 | None => break, |
| 1365 | Some(a_f) => a_f, |
| 1366 | }; |
| 1367 | let f = q - a_f; |
| 1368 | |
| 1369 | // Prevent overflow |
| 1370 | if !a.is_zero() |
| 1371 | && (n1 > t_max.clone() / a.clone() |
| 1372 | || d1 > t_max.clone() / a.clone() |
| 1373 | || a.clone() * n1.clone() > t_max.clone() - n0.clone() |
| 1374 | || a.clone() * d1.clone() > t_max.clone() - d0.clone()) |
| 1375 | { |
| 1376 | break; |
| 1377 | } |
| 1378 | |
| 1379 | let n = a.clone() * n1.clone() + n0.clone(); |
| 1380 | let d = a.clone() * d1.clone() + d0.clone(); |
| 1381 | |
| 1382 | n0 = n1; |
| 1383 | d0 = d1; |
| 1384 | n1 = n.clone(); |
| 1385 | d1 = d.clone(); |
| 1386 | |
| 1387 | // Simplify fraction. Doing so here instead of at the end |
| 1388 | // allows us to get closer to the target value without overflows |
| 1389 | let g = Integer::gcd(&n1, &d1); |
| 1390 | if !g.is_zero() { |
| 1391 | n1 = n1 / g.clone(); |
| 1392 | d1 = d1 / g.clone(); |
| 1393 | } |
| 1394 | |
| 1395 | // Close enough? |
| 1396 | let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { |
| 1397 | (Some(n_f), Some(d_f)) => (n_f, d_f), |
| 1398 | _ => break, |
| 1399 | }; |
| 1400 | if (n_f / d_f - val).abs() < max_error { |
| 1401 | break; |
| 1402 | } |
| 1403 | |
| 1404 | // Prevent division by ~0 |
| 1405 | if f < epsilon { |
| 1406 | break; |
| 1407 | } |
| 1408 | q = f.recip(); |
| 1409 | } |
| 1410 | |
| 1411 | // Overflow |
| 1412 | if d1.is_zero() { |
| 1413 | return None; |
| 1414 | } |
| 1415 | |
| 1416 | Some(Ratio::new(n1, d1)) |
| 1417 | } |
| 1418 | |
| 1419 | #[cfg (not(feature = "num-bigint" ))] |
| 1420 | macro_rules! to_primitive_small { |
| 1421 | ($($type_name:ty)*) => ($( |
| 1422 | impl ToPrimitive for Ratio<$type_name> { |
| 1423 | fn to_i64(&self) -> Option<i64> { |
| 1424 | self.to_integer().to_i64() |
| 1425 | } |
| 1426 | |
| 1427 | fn to_i128(&self) -> Option<i128> { |
| 1428 | self.to_integer().to_i128() |
| 1429 | } |
| 1430 | |
| 1431 | fn to_u64(&self) -> Option<u64> { |
| 1432 | self.to_integer().to_u64() |
| 1433 | } |
| 1434 | |
| 1435 | fn to_u128(&self) -> Option<u128> { |
| 1436 | self.to_integer().to_u128() |
| 1437 | } |
| 1438 | |
| 1439 | fn to_f64(&self) -> Option<f64> { |
| 1440 | let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); |
| 1441 | if float.is_nan() { |
| 1442 | None |
| 1443 | } else { |
| 1444 | Some(float) |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | )*) |
| 1449 | } |
| 1450 | |
| 1451 | #[cfg (not(feature = "num-bigint" ))] |
| 1452 | to_primitive_small!(u8 i8 u16 i16 u32 i32); |
| 1453 | |
| 1454 | #[cfg (all(target_pointer_width = "32" , not(feature = "num-bigint" )))] |
| 1455 | to_primitive_small!(usize isize); |
| 1456 | |
| 1457 | #[cfg (not(feature = "num-bigint" ))] |
| 1458 | macro_rules! to_primitive_64 { |
| 1459 | ($($type_name:ty)*) => ($( |
| 1460 | impl ToPrimitive for Ratio<$type_name> { |
| 1461 | fn to_i64(&self) -> Option<i64> { |
| 1462 | self.to_integer().to_i64() |
| 1463 | } |
| 1464 | |
| 1465 | fn to_i128(&self) -> Option<i128> { |
| 1466 | self.to_integer().to_i128() |
| 1467 | } |
| 1468 | |
| 1469 | fn to_u64(&self) -> Option<u64> { |
| 1470 | self.to_integer().to_u64() |
| 1471 | } |
| 1472 | |
| 1473 | fn to_u128(&self) -> Option<u128> { |
| 1474 | self.to_integer().to_u128() |
| 1475 | } |
| 1476 | |
| 1477 | fn to_f64(&self) -> Option<f64> { |
| 1478 | let float = ratio_to_f64( |
| 1479 | self.numer as i128, |
| 1480 | self.denom as i128 |
| 1481 | ); |
| 1482 | if float.is_nan() { |
| 1483 | None |
| 1484 | } else { |
| 1485 | Some(float) |
| 1486 | } |
| 1487 | } |
| 1488 | } |
| 1489 | )*) |
| 1490 | } |
| 1491 | |
| 1492 | #[cfg (not(feature = "num-bigint" ))] |
| 1493 | to_primitive_64!(u64 i64); |
| 1494 | |
| 1495 | #[cfg (all(target_pointer_width = "64" , not(feature = "num-bigint" )))] |
| 1496 | to_primitive_64!(usize isize); |
| 1497 | |
| 1498 | #[cfg (feature = "num-bigint" )] |
| 1499 | impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> { |
| 1500 | fn to_i64(&self) -> Option<i64> { |
| 1501 | self.to_integer().to_i64() |
| 1502 | } |
| 1503 | |
| 1504 | fn to_i128(&self) -> Option<i128> { |
| 1505 | self.to_integer().to_i128() |
| 1506 | } |
| 1507 | |
| 1508 | fn to_u64(&self) -> Option<u64> { |
| 1509 | self.to_integer().to_u64() |
| 1510 | } |
| 1511 | |
| 1512 | fn to_u128(&self) -> Option<u128> { |
| 1513 | self.to_integer().to_u128() |
| 1514 | } |
| 1515 | |
| 1516 | fn to_f64(&self) -> Option<f64> { |
| 1517 | let float = match (self.numer.to_i64(), self.denom.to_i64()) { |
| 1518 | (Some(numer), Some(denom)) => ratio_to_f64( |
| 1519 | <i128 as From<_>>::from(numer), |
| 1520 | <i128 as From<_>>::from(denom), |
| 1521 | ), |
| 1522 | _ => { |
| 1523 | let numer: BigInt = self.numer.to_bigint()?; |
| 1524 | let denom: BigInt = self.denom.to_bigint()?; |
| 1525 | ratio_to_f64(numer, denom) |
| 1526 | } |
| 1527 | }; |
| 1528 | if float.is_nan() { |
| 1529 | None |
| 1530 | } else { |
| 1531 | Some(float) |
| 1532 | } |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | trait Bits { |
| 1537 | fn bits(&self) -> u64; |
| 1538 | } |
| 1539 | |
| 1540 | #[cfg (feature = "num-bigint" )] |
| 1541 | impl Bits for BigInt { |
| 1542 | fn bits(&self) -> u64 { |
| 1543 | self.bits() |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | impl Bits for i128 { |
| 1548 | fn bits(&self) -> u64 { |
| 1549 | (128 - self.wrapping_abs().leading_zeros()).into() |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | /// Converts a ratio of `T` to an f64. |
| 1554 | /// |
| 1555 | /// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than |
| 1556 | /// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. |
| 1557 | fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>( |
| 1558 | numer: T, |
| 1559 | denom: T, |
| 1560 | ) -> f64 { |
| 1561 | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; |
| 1562 | |
| 1563 | assert_eq!( |
| 1564 | RADIX, 2, |
| 1565 | "only floating point implementations with radix 2 are supported" |
| 1566 | ); |
| 1567 | |
| 1568 | // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. |
| 1569 | const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; |
| 1570 | const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; |
| 1571 | |
| 1572 | let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); |
| 1573 | if !flo_sign.is_normal() { |
| 1574 | return flo_sign; |
| 1575 | } |
| 1576 | |
| 1577 | // Fast track: both sides can losslessly be converted to f64s. In this case, letting the |
| 1578 | // FPU do the job is faster and easier. In any other case, converting to f64s may lead |
| 1579 | // to an inexact result: https://stackoverflow.com/questions/56641441/. |
| 1580 | if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { |
| 1581 | let exact = MIN_EXACT_INT..=MAX_EXACT_INT; |
| 1582 | if exact.contains(&n) && exact.contains(&d) { |
| 1583 | return n.to_f64().unwrap() / d.to_f64().unwrap(); |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will |
| 1588 | // be used as the mantissa of the resulting float, and the remaining two are for rounding. |
| 1589 | // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or |
| 1590 | // 56 bits. |
| 1591 | let mut numer = numer.abs(); |
| 1592 | let mut denom = denom.abs(); |
| 1593 | let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { |
| 1594 | Some(diff) => (true, diff), |
| 1595 | None => (false, denom.bits() - numer.bits()), |
| 1596 | }; |
| 1597 | |
| 1598 | // Filter out overflows and underflows. After this step, the signed difference fits in an |
| 1599 | // isize. |
| 1600 | if is_diff_positive && absolute_diff > MAX_EXP as u64 { |
| 1601 | return INFINITY * flo_sign; |
| 1602 | } |
| 1603 | if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { |
| 1604 | return 0.0 * flo_sign; |
| 1605 | } |
| 1606 | let diff = if is_diff_positive { |
| 1607 | absolute_diff.to_isize().unwrap() |
| 1608 | } else { |
| 1609 | -absolute_diff.to_isize().unwrap() |
| 1610 | }; |
| 1611 | |
| 1612 | // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the |
| 1613 | // quotient is going to be subnormal, in which case it may have fewer bits. |
| 1614 | let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; |
| 1615 | if shift >= 0 { |
| 1616 | denom <<= shift as usize |
| 1617 | } else { |
| 1618 | numer <<= -shift as usize |
| 1619 | }; |
| 1620 | |
| 1621 | let (quotient, remainder) = numer.div_rem(&denom); |
| 1622 | |
| 1623 | // This is guaranteed to fit since we've set up quotient to be at most 56 bits. |
| 1624 | let mut quotient = quotient.to_u64().unwrap(); |
| 1625 | let n_rounding_bits = { |
| 1626 | let quotient_bits = 64 - quotient.leading_zeros() as isize; |
| 1627 | let subnormal_bits = MIN_EXP as isize - shift; |
| 1628 | quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize |
| 1629 | } as usize; |
| 1630 | debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); |
| 1631 | let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; |
| 1632 | |
| 1633 | // Round to 53 bits with round-to-even. For rounding, we need to take into account both |
| 1634 | // our rounding bits and the division's remainder. |
| 1635 | let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; |
| 1636 | let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; |
| 1637 | let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; |
| 1638 | if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { |
| 1639 | quotient += 1u64 << n_rounding_bits; |
| 1640 | } |
| 1641 | quotient &= !rounding_bit_mask; |
| 1642 | |
| 1643 | // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 |
| 1644 | // trailing zeros, so there is no risk of a rounding error here. |
| 1645 | let q_float = quotient as f64 * flo_sign; |
| 1646 | ldexp(q_float, shift as i32) |
| 1647 | } |
| 1648 | |
| 1649 | /// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not |
| 1650 | /// representable. |
| 1651 | fn ldexp(x: f64, exp: i32) -> f64 { |
| 1652 | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; |
| 1653 | |
| 1654 | assert_eq!( |
| 1655 | RADIX, 2, |
| 1656 | "only floating point implementations with radix 2 are supported" |
| 1657 | ); |
| 1658 | |
| 1659 | const EXPONENT_MASK: u64 = 0x7ff << 52; |
| 1660 | const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; |
| 1661 | const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; |
| 1662 | |
| 1663 | if x.is_zero() || x.is_infinite() || x.is_nan() { |
| 1664 | return x; |
| 1665 | } |
| 1666 | |
| 1667 | // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. |
| 1668 | if exp > 3 * MAX_EXP { |
| 1669 | return INFINITY * x.signum(); |
| 1670 | } else if exp < -3 * MAX_EXP { |
| 1671 | return 0.0 * x.signum(); |
| 1672 | } |
| 1673 | |
| 1674 | // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. |
| 1675 | let (bits, curr_exp) = if !x.is_normal() { |
| 1676 | // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of |
| 1677 | // precision or rounding. |
| 1678 | let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); |
| 1679 | let bits = normal_x.to_bits(); |
| 1680 | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
| 1681 | ( |
| 1682 | bits, |
| 1683 | ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, |
| 1684 | ) |
| 1685 | } else { |
| 1686 | let bits = x.to_bits(); |
| 1687 | let curr_exp = (bits & EXPONENT_MASK) >> 52; |
| 1688 | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
| 1689 | (bits, curr_exp as i32) |
| 1690 | }; |
| 1691 | |
| 1692 | // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between |
| 1693 | // -2*MAX_EXP and 2*MAX_EXP. |
| 1694 | let new_exp = curr_exp + exp; |
| 1695 | |
| 1696 | if new_exp > MAX_UNSIGNED_EXPONENT { |
| 1697 | INFINITY * x.signum() |
| 1698 | } else if new_exp > 0 { |
| 1699 | // Normal case: exponent is not too large nor subnormal. |
| 1700 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
| 1701 | f64::from_bits(new_bits) |
| 1702 | } else if new_exp >= -(MANTISSA_DIGITS as i32) { |
| 1703 | // Result is subnormal but may not be zero. |
| 1704 | // In this case, we increase the exponent by 54 to make it normal, then multiply the end |
| 1705 | // result by 2^-53. This results in a single multiplication with no prior rounding error, |
| 1706 | // so there is no risk of double rounding. |
| 1707 | let new_exp = new_exp + MIN_SUBNORMAL_POWER; |
| 1708 | debug_assert!(new_exp >= 0); |
| 1709 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
| 1710 | f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) |
| 1711 | } else { |
| 1712 | // Result is zero. |
| 1713 | return 0.0 * x.signum(); |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | #[cfg (test)] |
| 1718 | #[cfg (feature = "std" )] |
| 1719 | fn hash<T: Hash>(x: &T) -> u64 { |
| 1720 | use std::collections::hash_map::RandomState; |
| 1721 | use std::hash::BuildHasher; |
| 1722 | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
| 1723 | x.hash(&mut hasher); |
| 1724 | hasher.finish() |
| 1725 | } |
| 1726 | |
| 1727 | #[cfg (test)] |
| 1728 | mod test { |
| 1729 | use super::ldexp; |
| 1730 | #[cfg (feature = "num-bigint" )] |
| 1731 | use super::{BigInt, BigRational}; |
| 1732 | use super::{Ratio, Rational64}; |
| 1733 | |
| 1734 | use core::f64; |
| 1735 | use core::i32; |
| 1736 | use core::i64; |
| 1737 | use core::str::FromStr; |
| 1738 | use num_integer::Integer; |
| 1739 | use num_traits::ToPrimitive; |
| 1740 | use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; |
| 1741 | |
| 1742 | pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; |
| 1743 | pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; |
| 1744 | pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; |
| 1745 | pub const _NEG2: Rational64 = Ratio { |
| 1746 | numer: -2, |
| 1747 | denom: 1, |
| 1748 | }; |
| 1749 | pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; |
| 1750 | pub const _15: Rational64 = Ratio { |
| 1751 | numer: 15, |
| 1752 | denom: 1, |
| 1753 | }; |
| 1754 | pub const _16: Rational64 = Ratio { |
| 1755 | numer: 16, |
| 1756 | denom: 1, |
| 1757 | }; |
| 1758 | |
| 1759 | pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; |
| 1760 | pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; |
| 1761 | pub const _1_15: Rational64 = Ratio { |
| 1762 | numer: 1, |
| 1763 | denom: 15, |
| 1764 | }; |
| 1765 | pub const _1_16: Rational64 = Ratio { |
| 1766 | numer: 1, |
| 1767 | denom: 16, |
| 1768 | }; |
| 1769 | pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; |
| 1770 | pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; |
| 1771 | pub const _NEG1_2: Rational64 = Ratio { |
| 1772 | numer: -1, |
| 1773 | denom: 2, |
| 1774 | }; |
| 1775 | pub const _1_NEG2: Rational64 = Ratio { |
| 1776 | numer: 1, |
| 1777 | denom: -2, |
| 1778 | }; |
| 1779 | pub const _NEG1_NEG2: Rational64 = Ratio { |
| 1780 | numer: -1, |
| 1781 | denom: -2, |
| 1782 | }; |
| 1783 | pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; |
| 1784 | pub const _NEG1_3: Rational64 = Ratio { |
| 1785 | numer: -1, |
| 1786 | denom: 3, |
| 1787 | }; |
| 1788 | pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; |
| 1789 | pub const _NEG2_3: Rational64 = Ratio { |
| 1790 | numer: -2, |
| 1791 | denom: 3, |
| 1792 | }; |
| 1793 | pub const _MIN: Rational64 = Ratio { |
| 1794 | numer: i64::MIN, |
| 1795 | denom: 1, |
| 1796 | }; |
| 1797 | pub const _MIN_P1: Rational64 = Ratio { |
| 1798 | numer: i64::MIN + 1, |
| 1799 | denom: 1, |
| 1800 | }; |
| 1801 | pub const _MAX: Rational64 = Ratio { |
| 1802 | numer: i64::MAX, |
| 1803 | denom: 1, |
| 1804 | }; |
| 1805 | pub const _MAX_M1: Rational64 = Ratio { |
| 1806 | numer: i64::MAX - 1, |
| 1807 | denom: 1, |
| 1808 | }; |
| 1809 | pub const _BILLION: Rational64 = Ratio { |
| 1810 | numer: 1_000_000_000, |
| 1811 | denom: 1, |
| 1812 | }; |
| 1813 | |
| 1814 | #[cfg (feature = "num-bigint" )] |
| 1815 | pub fn to_big(n: Rational64) -> BigRational { |
| 1816 | Ratio::new( |
| 1817 | FromPrimitive::from_i64(n.numer).unwrap(), |
| 1818 | FromPrimitive::from_i64(n.denom).unwrap(), |
| 1819 | ) |
| 1820 | } |
| 1821 | #[cfg (not(feature = "num-bigint" ))] |
| 1822 | pub fn to_big(n: Rational64) -> Rational64 { |
| 1823 | Ratio::new( |
| 1824 | FromPrimitive::from_i64(n.numer).unwrap(), |
| 1825 | FromPrimitive::from_i64(n.denom).unwrap(), |
| 1826 | ) |
| 1827 | } |
| 1828 | |
| 1829 | #[test ] |
| 1830 | fn test_test_constants() { |
| 1831 | // check our constants are what Ratio::new etc. would make. |
| 1832 | assert_eq!(_0, Zero::zero()); |
| 1833 | assert_eq!(_1, One::one()); |
| 1834 | assert_eq!(_2, Ratio::from_integer(2)); |
| 1835 | assert_eq!(_1_2, Ratio::new(1, 2)); |
| 1836 | assert_eq!(_3_2, Ratio::new(3, 2)); |
| 1837 | assert_eq!(_NEG1_2, Ratio::new(-1, 2)); |
| 1838 | assert_eq!(_2, From::from(2)); |
| 1839 | } |
| 1840 | |
| 1841 | #[test ] |
| 1842 | fn test_new_reduce() { |
| 1843 | assert_eq!(Ratio::new(2, 2), One::one()); |
| 1844 | assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); |
| 1845 | assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); |
| 1846 | } |
| 1847 | #[test ] |
| 1848 | #[should_panic ] |
| 1849 | fn test_new_zero() { |
| 1850 | let _a = Ratio::new(1, 0); |
| 1851 | } |
| 1852 | |
| 1853 | #[test ] |
| 1854 | fn test_approximate_float() { |
| 1855 | assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); |
| 1856 | assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); |
| 1857 | assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); |
| 1858 | assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); |
| 1859 | assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); |
| 1860 | assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); |
| 1861 | |
| 1862 | assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); |
| 1863 | assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); |
| 1864 | assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); |
| 1865 | assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); |
| 1866 | assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); |
| 1867 | assert_eq!( |
| 1868 | Ratio::<i8>::from_f32(-126.5f32), |
| 1869 | Some(Ratio::new(-126i8, 1)) |
| 1870 | ); |
| 1871 | assert_eq!( |
| 1872 | Ratio::<i8>::from_f32(-127.0f32), |
| 1873 | Some(Ratio::new(-127i8, 1)) |
| 1874 | ); |
| 1875 | assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); |
| 1876 | |
| 1877 | assert_eq!(Ratio::<u8>::from_f32(-127f32), None); |
| 1878 | assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); |
| 1879 | assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); |
| 1880 | assert_eq!(Ratio::<u8>::from_f32(256f32), None); |
| 1881 | |
| 1882 | assert_eq!(Ratio::<i64>::from_f64(-10e200), None); |
| 1883 | assert_eq!(Ratio::<i64>::from_f64(10e200), None); |
| 1884 | assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); |
| 1885 | assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); |
| 1886 | assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); |
| 1887 | assert_eq!( |
| 1888 | Ratio::<i64>::from_f64(f64::EPSILON), |
| 1889 | Some(Ratio::new(1, 4503599627370496)) |
| 1890 | ); |
| 1891 | assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); |
| 1892 | assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); |
| 1893 | } |
| 1894 | |
| 1895 | #[test ] |
| 1896 | #[allow (clippy::eq_op)] |
| 1897 | fn test_cmp() { |
| 1898 | assert!(_0 == _0 && _1 == _1); |
| 1899 | assert!(_0 != _1 && _1 != _0); |
| 1900 | assert!(_0 < _1 && !(_1 < _0)); |
| 1901 | assert!(_1 > _0 && !(_0 > _1)); |
| 1902 | |
| 1903 | assert!(_0 <= _0 && _1 <= _1); |
| 1904 | assert!(_0 <= _1 && !(_1 <= _0)); |
| 1905 | |
| 1906 | assert!(_0 >= _0 && _1 >= _1); |
| 1907 | assert!(_1 >= _0 && !(_0 >= _1)); |
| 1908 | |
| 1909 | let _0_2: Rational64 = Ratio::new_raw(0, 2); |
| 1910 | assert_eq!(_0, _0_2); |
| 1911 | } |
| 1912 | |
| 1913 | #[test ] |
| 1914 | fn test_cmp_overflow() { |
| 1915 | use core::cmp::Ordering; |
| 1916 | |
| 1917 | // issue #7 example: |
| 1918 | let big = Ratio::new(128u8, 1); |
| 1919 | let small = big.recip(); |
| 1920 | assert!(big > small); |
| 1921 | |
| 1922 | // try a few that are closer together |
| 1923 | // (some matching numer, some matching denom, some neither) |
| 1924 | let ratios = [ |
| 1925 | Ratio::new(125_i8, 127_i8), |
| 1926 | Ratio::new(63_i8, 64_i8), |
| 1927 | Ratio::new(124_i8, 125_i8), |
| 1928 | Ratio::new(125_i8, 126_i8), |
| 1929 | Ratio::new(126_i8, 127_i8), |
| 1930 | Ratio::new(127_i8, 126_i8), |
| 1931 | ]; |
| 1932 | |
| 1933 | fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { |
| 1934 | #[cfg (feature = "std" )] |
| 1935 | println!("comparing {} and {}" , a, b); |
| 1936 | assert_eq!(a.cmp(&b), ord); |
| 1937 | assert_eq!(b.cmp(&a), ord.reverse()); |
| 1938 | } |
| 1939 | |
| 1940 | for (i, &a) in ratios.iter().enumerate() { |
| 1941 | check_cmp(a, a, Ordering::Equal); |
| 1942 | check_cmp(-a, a, Ordering::Less); |
| 1943 | for &b in &ratios[i + 1..] { |
| 1944 | check_cmp(a, b, Ordering::Less); |
| 1945 | check_cmp(-a, -b, Ordering::Greater); |
| 1946 | check_cmp(a.recip(), b.recip(), Ordering::Greater); |
| 1947 | check_cmp(-a.recip(), -b.recip(), Ordering::Less); |
| 1948 | } |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | #[test ] |
| 1953 | fn test_to_integer() { |
| 1954 | assert_eq!(_0.to_integer(), 0); |
| 1955 | assert_eq!(_1.to_integer(), 1); |
| 1956 | assert_eq!(_2.to_integer(), 2); |
| 1957 | assert_eq!(_1_2.to_integer(), 0); |
| 1958 | assert_eq!(_3_2.to_integer(), 1); |
| 1959 | assert_eq!(_NEG1_2.to_integer(), 0); |
| 1960 | } |
| 1961 | |
| 1962 | #[test ] |
| 1963 | fn test_numer() { |
| 1964 | assert_eq!(_0.numer(), &0); |
| 1965 | assert_eq!(_1.numer(), &1); |
| 1966 | assert_eq!(_2.numer(), &2); |
| 1967 | assert_eq!(_1_2.numer(), &1); |
| 1968 | assert_eq!(_3_2.numer(), &3); |
| 1969 | assert_eq!(_NEG1_2.numer(), &(-1)); |
| 1970 | } |
| 1971 | #[test ] |
| 1972 | fn test_denom() { |
| 1973 | assert_eq!(_0.denom(), &1); |
| 1974 | assert_eq!(_1.denom(), &1); |
| 1975 | assert_eq!(_2.denom(), &1); |
| 1976 | assert_eq!(_1_2.denom(), &2); |
| 1977 | assert_eq!(_3_2.denom(), &2); |
| 1978 | assert_eq!(_NEG1_2.denom(), &2); |
| 1979 | } |
| 1980 | |
| 1981 | #[test ] |
| 1982 | fn test_is_integer() { |
| 1983 | assert!(_0.is_integer()); |
| 1984 | assert!(_1.is_integer()); |
| 1985 | assert!(_2.is_integer()); |
| 1986 | assert!(!_1_2.is_integer()); |
| 1987 | assert!(!_3_2.is_integer()); |
| 1988 | assert!(!_NEG1_2.is_integer()); |
| 1989 | } |
| 1990 | |
| 1991 | #[cfg (not(feature = "std" ))] |
| 1992 | use core::fmt::{self, Write}; |
| 1993 | #[cfg (not(feature = "std" ))] |
| 1994 | #[derive (Debug)] |
| 1995 | struct NoStdTester { |
| 1996 | cursor: usize, |
| 1997 | buf: [u8; NoStdTester::BUF_SIZE], |
| 1998 | } |
| 1999 | |
| 2000 | #[cfg (not(feature = "std" ))] |
| 2001 | impl NoStdTester { |
| 2002 | fn new() -> NoStdTester { |
| 2003 | NoStdTester { |
| 2004 | buf: [0; Self::BUF_SIZE], |
| 2005 | cursor: 0, |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | fn clear(&mut self) { |
| 2010 | self.buf = [0; Self::BUF_SIZE]; |
| 2011 | self.cursor = 0; |
| 2012 | } |
| 2013 | |
| 2014 | const WRITE_ERR: &'static str = "Formatted output too long" ; |
| 2015 | const BUF_SIZE: usize = 32; |
| 2016 | } |
| 2017 | |
| 2018 | #[cfg (not(feature = "std" ))] |
| 2019 | impl Write for NoStdTester { |
| 2020 | fn write_str(&mut self, s: &str) -> fmt::Result { |
| 2021 | for byte in s.bytes() { |
| 2022 | self.buf[self.cursor] = byte; |
| 2023 | self.cursor += 1; |
| 2024 | if self.cursor >= self.buf.len() { |
| 2025 | return Err(fmt::Error {}); |
| 2026 | } |
| 2027 | } |
| 2028 | Ok(()) |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | #[cfg (not(feature = "std" ))] |
| 2033 | impl PartialEq<str> for NoStdTester { |
| 2034 | fn eq(&self, other: &str) -> bool { |
| 2035 | let other = other.as_bytes(); |
| 2036 | for index in 0..self.cursor { |
| 2037 | if self.buf.get(index) != other.get(index) { |
| 2038 | return false; |
| 2039 | } |
| 2040 | } |
| 2041 | true |
| 2042 | } |
| 2043 | } |
| 2044 | |
| 2045 | macro_rules! assert_fmt_eq { |
| 2046 | ($fmt_args:expr, $string:expr) => { |
| 2047 | #[cfg(not(feature = "std" ))] |
| 2048 | { |
| 2049 | let mut tester = NoStdTester::new(); |
| 2050 | write!(tester, "{}" , $fmt_args).expect(NoStdTester::WRITE_ERR); |
| 2051 | assert_eq!(tester, *$string); |
| 2052 | tester.clear(); |
| 2053 | } |
| 2054 | #[cfg(feature = "std" )] |
| 2055 | { |
| 2056 | assert_eq!(std::fmt::format($fmt_args), $string); |
| 2057 | } |
| 2058 | }; |
| 2059 | } |
| 2060 | |
| 2061 | #[test ] |
| 2062 | fn test_show() { |
| 2063 | // Test: |
| 2064 | // :b :o :x, :X, :? |
| 2065 | // alternate or not (#) |
| 2066 | // positive and negative |
| 2067 | // padding |
| 2068 | // does not test precision (i.e. truncation) |
| 2069 | assert_fmt_eq!(format_args!("{}" , _2), "2" ); |
| 2070 | assert_fmt_eq!(format_args!("{:+}" , _2), "+2" ); |
| 2071 | assert_fmt_eq!(format_args!("{:-}" , _2), "2" ); |
| 2072 | assert_fmt_eq!(format_args!("{}" , _1_2), "1/2" ); |
| 2073 | assert_fmt_eq!(format_args!("{}" , -_1_2), "-1/2" ); // test negatives |
| 2074 | assert_fmt_eq!(format_args!("{}" , _0), "0" ); |
| 2075 | assert_fmt_eq!(format_args!("{}" , -_2), "-2" ); |
| 2076 | assert_fmt_eq!(format_args!("{:+}" , -_2), "-2" ); |
| 2077 | assert_fmt_eq!(format_args!("{:b}" , _2), "10" ); |
| 2078 | assert_fmt_eq!(format_args!("{:#b}" , _2), "0b10" ); |
| 2079 | assert_fmt_eq!(format_args!("{:b}" , _1_2), "1/10" ); |
| 2080 | assert_fmt_eq!(format_args!("{:+b}" , _1_2), "+1/10" ); |
| 2081 | assert_fmt_eq!(format_args!("{:-b}" , _1_2), "1/10" ); |
| 2082 | assert_fmt_eq!(format_args!("{:b}" , _0), "0" ); |
| 2083 | assert_fmt_eq!(format_args!("{:#b}" , _1_2), "0b1/0b10" ); |
| 2084 | // no std does not support padding |
| 2085 | #[cfg (feature = "std" )] |
| 2086 | assert_eq!(&format!("{:010b}" , _1_2), "0000001/10" ); |
| 2087 | #[cfg (feature = "std" )] |
| 2088 | assert_eq!(&format!("{:#010b}" , _1_2), "0b001/0b10" ); |
| 2089 | let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8); |
| 2090 | assert_fmt_eq!(format_args!("{:b}" , -half_i8), "11111111/10" ); |
| 2091 | assert_fmt_eq!(format_args!("{:#b}" , -half_i8), "0b11111111/0b10" ); |
| 2092 | #[cfg (feature = "std" )] |
| 2093 | assert_eq!(&format!("{:05}" , Ratio::new(-1_i8, 1_i8)), "-0001" ); |
| 2094 | |
| 2095 | assert_fmt_eq!(format_args!("{:o}" , _8), "10" ); |
| 2096 | assert_fmt_eq!(format_args!("{:o}" , _1_8), "1/10" ); |
| 2097 | assert_fmt_eq!(format_args!("{:o}" , _0), "0" ); |
| 2098 | assert_fmt_eq!(format_args!("{:#o}" , _1_8), "0o1/0o10" ); |
| 2099 | #[cfg (feature = "std" )] |
| 2100 | assert_eq!(&format!("{:010o}" , _1_8), "0000001/10" ); |
| 2101 | #[cfg (feature = "std" )] |
| 2102 | assert_eq!(&format!("{:#010o}" , _1_8), "0o001/0o10" ); |
| 2103 | assert_fmt_eq!(format_args!("{:o}" , -half_i8), "377/2" ); |
| 2104 | assert_fmt_eq!(format_args!("{:#o}" , -half_i8), "0o377/0o2" ); |
| 2105 | |
| 2106 | assert_fmt_eq!(format_args!("{:x}" , _16), "10" ); |
| 2107 | assert_fmt_eq!(format_args!("{:x}" , _15), "f" ); |
| 2108 | assert_fmt_eq!(format_args!("{:x}" , _1_16), "1/10" ); |
| 2109 | assert_fmt_eq!(format_args!("{:x}" , _1_15), "1/f" ); |
| 2110 | assert_fmt_eq!(format_args!("{:x}" , _0), "0" ); |
| 2111 | assert_fmt_eq!(format_args!("{:#x}" , _1_16), "0x1/0x10" ); |
| 2112 | #[cfg (feature = "std" )] |
| 2113 | assert_eq!(&format!("{:010x}" , _1_16), "0000001/10" ); |
| 2114 | #[cfg (feature = "std" )] |
| 2115 | assert_eq!(&format!("{:#010x}" , _1_16), "0x001/0x10" ); |
| 2116 | assert_fmt_eq!(format_args!("{:x}" , -half_i8), "ff/2" ); |
| 2117 | assert_fmt_eq!(format_args!("{:#x}" , -half_i8), "0xff/0x2" ); |
| 2118 | |
| 2119 | assert_fmt_eq!(format_args!("{:X}" , _16), "10" ); |
| 2120 | assert_fmt_eq!(format_args!("{:X}" , _15), "F" ); |
| 2121 | assert_fmt_eq!(format_args!("{:X}" , _1_16), "1/10" ); |
| 2122 | assert_fmt_eq!(format_args!("{:X}" , _1_15), "1/F" ); |
| 2123 | assert_fmt_eq!(format_args!("{:X}" , _0), "0" ); |
| 2124 | assert_fmt_eq!(format_args!("{:#X}" , _1_16), "0x1/0x10" ); |
| 2125 | #[cfg (feature = "std" )] |
| 2126 | assert_eq!(format!("{:010X}" , _1_16), "0000001/10" ); |
| 2127 | #[cfg (feature = "std" )] |
| 2128 | assert_eq!(format!("{:#010X}" , _1_16), "0x001/0x10" ); |
| 2129 | assert_fmt_eq!(format_args!("{:X}" , -half_i8), "FF/2" ); |
| 2130 | assert_fmt_eq!(format_args!("{:#X}" , -half_i8), "0xFF/0x2" ); |
| 2131 | |
| 2132 | assert_fmt_eq!(format_args!("{:e}" , -_2), "-2e0" ); |
| 2133 | assert_fmt_eq!(format_args!("{:#e}" , -_2), "-2e0" ); |
| 2134 | assert_fmt_eq!(format_args!("{:+e}" , -_2), "-2e0" ); |
| 2135 | assert_fmt_eq!(format_args!("{:e}" , _BILLION), "1e9" ); |
| 2136 | assert_fmt_eq!(format_args!("{:+e}" , _BILLION), "+1e9" ); |
| 2137 | assert_fmt_eq!(format_args!("{:e}" , _BILLION.recip()), "1e0/1e9" ); |
| 2138 | assert_fmt_eq!(format_args!("{:+e}" , _BILLION.recip()), "+1e0/1e9" ); |
| 2139 | |
| 2140 | assert_fmt_eq!(format_args!("{:E}" , -_2), "-2E0" ); |
| 2141 | assert_fmt_eq!(format_args!("{:#E}" , -_2), "-2E0" ); |
| 2142 | assert_fmt_eq!(format_args!("{:+E}" , -_2), "-2E0" ); |
| 2143 | assert_fmt_eq!(format_args!("{:E}" , _BILLION), "1E9" ); |
| 2144 | assert_fmt_eq!(format_args!("{:+E}" , _BILLION), "+1E9" ); |
| 2145 | assert_fmt_eq!(format_args!("{:E}" , _BILLION.recip()), "1E0/1E9" ); |
| 2146 | assert_fmt_eq!(format_args!("{:+E}" , _BILLION.recip()), "+1E0/1E9" ); |
| 2147 | } |
| 2148 | |
| 2149 | mod arith { |
| 2150 | use super::super::{Ratio, Rational64}; |
| 2151 | use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; |
| 2152 | use core::fmt::Debug; |
| 2153 | use num_integer::Integer; |
| 2154 | use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; |
| 2155 | |
| 2156 | #[test ] |
| 2157 | fn test_add() { |
| 2158 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
| 2159 | assert_eq!(a + b, c); |
| 2160 | assert_eq!( |
| 2161 | { |
| 2162 | let mut x = a; |
| 2163 | x += b; |
| 2164 | x |
| 2165 | }, |
| 2166 | c |
| 2167 | ); |
| 2168 | assert_eq!(to_big(a) + to_big(b), to_big(c)); |
| 2169 | assert_eq!(a.checked_add(&b), Some(c)); |
| 2170 | assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); |
| 2171 | } |
| 2172 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| 2173 | assert_eq!(a + b, c); |
| 2174 | assert_eq!( |
| 2175 | { |
| 2176 | let mut x = a; |
| 2177 | x += b; |
| 2178 | x |
| 2179 | }, |
| 2180 | c |
| 2181 | ); |
| 2182 | } |
| 2183 | |
| 2184 | test (_1, _1_2, _3_2); |
| 2185 | test (_1, _1, _2); |
| 2186 | test (_1_2, _3_2, _2); |
| 2187 | test (_1_2, _NEG1_2, _0); |
| 2188 | test_assign(_1_2, 1, _3_2); |
| 2189 | } |
| 2190 | |
| 2191 | #[test ] |
| 2192 | fn test_add_overflow() { |
| 2193 | // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) |
| 2194 | // to Ratio(1+1, T::max_value()) for each integer type. |
| 2195 | // Previously, this calculation would overflow. |
| 2196 | fn test_add_typed_overflow<T>() |
| 2197 | where |
| 2198 | T: Integer + Bounded + Clone + Debug + NumAssign, |
| 2199 | { |
| 2200 | let _1_max = Ratio::new(T::one(), T::max_value()); |
| 2201 | let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); |
| 2202 | assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); |
| 2203 | assert_eq!( |
| 2204 | { |
| 2205 | let mut tmp = _1_max.clone(); |
| 2206 | tmp += _1_max; |
| 2207 | tmp |
| 2208 | }, |
| 2209 | _2_max |
| 2210 | ); |
| 2211 | } |
| 2212 | test_add_typed_overflow::<u8>(); |
| 2213 | test_add_typed_overflow::<u16>(); |
| 2214 | test_add_typed_overflow::<u32>(); |
| 2215 | test_add_typed_overflow::<u64>(); |
| 2216 | test_add_typed_overflow::<usize>(); |
| 2217 | test_add_typed_overflow::<u128>(); |
| 2218 | |
| 2219 | test_add_typed_overflow::<i8>(); |
| 2220 | test_add_typed_overflow::<i16>(); |
| 2221 | test_add_typed_overflow::<i32>(); |
| 2222 | test_add_typed_overflow::<i64>(); |
| 2223 | test_add_typed_overflow::<isize>(); |
| 2224 | test_add_typed_overflow::<i128>(); |
| 2225 | } |
| 2226 | |
| 2227 | #[test ] |
| 2228 | fn test_sub() { |
| 2229 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
| 2230 | assert_eq!(a - b, c); |
| 2231 | assert_eq!( |
| 2232 | { |
| 2233 | let mut x = a; |
| 2234 | x -= b; |
| 2235 | x |
| 2236 | }, |
| 2237 | c |
| 2238 | ); |
| 2239 | assert_eq!(to_big(a) - to_big(b), to_big(c)); |
| 2240 | assert_eq!(a.checked_sub(&b), Some(c)); |
| 2241 | assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); |
| 2242 | } |
| 2243 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| 2244 | assert_eq!(a - b, c); |
| 2245 | assert_eq!( |
| 2246 | { |
| 2247 | let mut x = a; |
| 2248 | x -= b; |
| 2249 | x |
| 2250 | }, |
| 2251 | c |
| 2252 | ); |
| 2253 | } |
| 2254 | |
| 2255 | test (_1, _1_2, _1_2); |
| 2256 | test (_3_2, _1_2, _1); |
| 2257 | test (_1, _NEG1_2, _3_2); |
| 2258 | test_assign(_1_2, 1, _NEG1_2); |
| 2259 | } |
| 2260 | |
| 2261 | #[test ] |
| 2262 | fn test_sub_overflow() { |
| 2263 | // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() |
| 2264 | // for each integer type. Previously, this calculation would overflow. |
| 2265 | fn test_sub_typed_overflow<T>() |
| 2266 | where |
| 2267 | T: Integer + Bounded + Clone + Debug + NumAssign, |
| 2268 | { |
| 2269 | let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value()); |
| 2270 | assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); |
| 2271 | { |
| 2272 | let mut tmp: Ratio<T> = _1_max.clone(); |
| 2273 | tmp -= _1_max; |
| 2274 | assert!(T::is_zero(&tmp.numer)); |
| 2275 | } |
| 2276 | } |
| 2277 | test_sub_typed_overflow::<u8>(); |
| 2278 | test_sub_typed_overflow::<u16>(); |
| 2279 | test_sub_typed_overflow::<u32>(); |
| 2280 | test_sub_typed_overflow::<u64>(); |
| 2281 | test_sub_typed_overflow::<usize>(); |
| 2282 | test_sub_typed_overflow::<u128>(); |
| 2283 | |
| 2284 | test_sub_typed_overflow::<i8>(); |
| 2285 | test_sub_typed_overflow::<i16>(); |
| 2286 | test_sub_typed_overflow::<i32>(); |
| 2287 | test_sub_typed_overflow::<i64>(); |
| 2288 | test_sub_typed_overflow::<isize>(); |
| 2289 | test_sub_typed_overflow::<i128>(); |
| 2290 | } |
| 2291 | |
| 2292 | #[test ] |
| 2293 | fn test_mul() { |
| 2294 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
| 2295 | assert_eq!(a * b, c); |
| 2296 | assert_eq!( |
| 2297 | { |
| 2298 | let mut x = a; |
| 2299 | x *= b; |
| 2300 | x |
| 2301 | }, |
| 2302 | c |
| 2303 | ); |
| 2304 | assert_eq!(to_big(a) * to_big(b), to_big(c)); |
| 2305 | assert_eq!(a.checked_mul(&b), Some(c)); |
| 2306 | assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); |
| 2307 | } |
| 2308 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| 2309 | assert_eq!(a * b, c); |
| 2310 | assert_eq!( |
| 2311 | { |
| 2312 | let mut x = a; |
| 2313 | x *= b; |
| 2314 | x |
| 2315 | }, |
| 2316 | c |
| 2317 | ); |
| 2318 | } |
| 2319 | |
| 2320 | test (_1, _1_2, _1_2); |
| 2321 | test (_1_2, _3_2, Ratio::new(3, 4)); |
| 2322 | test (_1_2, _NEG1_2, Ratio::new(-1, 4)); |
| 2323 | test_assign(_1_2, 2, _1); |
| 2324 | } |
| 2325 | |
| 2326 | #[test ] |
| 2327 | fn test_mul_overflow() { |
| 2328 | fn test_mul_typed_overflow<T>() |
| 2329 | where |
| 2330 | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
| 2331 | { |
| 2332 | let two = T::one() + T::one(); |
| 2333 | let _3 = T::one() + T::one() + T::one(); |
| 2334 | |
| 2335 | // 1/big * 2/3 = 1/(max/4*3), where big is max/2 |
| 2336 | // make big = max/2, but also divisible by 2 |
| 2337 | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
| 2338 | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
| 2339 | let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone()); |
| 2340 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| 2341 | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
| 2342 | assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); |
| 2343 | assert_eq!( |
| 2344 | Some(expected.clone()), |
| 2345 | _1_big.clone().checked_mul(&_2_3.clone()) |
| 2346 | ); |
| 2347 | assert_eq!(expected, { |
| 2348 | let mut tmp = _1_big; |
| 2349 | tmp *= _2_3; |
| 2350 | tmp |
| 2351 | }); |
| 2352 | |
| 2353 | // big/3 * 3 = big/1 |
| 2354 | // make big = max/2, but make it indivisible by 3 |
| 2355 | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
| 2356 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| 2357 | let big_3 = Ratio::new(big.clone(), _3.clone()); |
| 2358 | let expected = Ratio::new(big, T::one()); |
| 2359 | assert_eq!(expected, big_3.clone() * _3.clone()); |
| 2360 | assert_eq!(expected, { |
| 2361 | let mut tmp = big_3; |
| 2362 | tmp *= _3; |
| 2363 | tmp |
| 2364 | }); |
| 2365 | } |
| 2366 | test_mul_typed_overflow::<u16>(); |
| 2367 | test_mul_typed_overflow::<u8>(); |
| 2368 | test_mul_typed_overflow::<u32>(); |
| 2369 | test_mul_typed_overflow::<u64>(); |
| 2370 | test_mul_typed_overflow::<usize>(); |
| 2371 | test_mul_typed_overflow::<u128>(); |
| 2372 | |
| 2373 | test_mul_typed_overflow::<i8>(); |
| 2374 | test_mul_typed_overflow::<i16>(); |
| 2375 | test_mul_typed_overflow::<i32>(); |
| 2376 | test_mul_typed_overflow::<i64>(); |
| 2377 | test_mul_typed_overflow::<isize>(); |
| 2378 | test_mul_typed_overflow::<i128>(); |
| 2379 | } |
| 2380 | |
| 2381 | #[test ] |
| 2382 | fn test_div() { |
| 2383 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
| 2384 | assert_eq!(a / b, c); |
| 2385 | assert_eq!( |
| 2386 | { |
| 2387 | let mut x = a; |
| 2388 | x /= b; |
| 2389 | x |
| 2390 | }, |
| 2391 | c |
| 2392 | ); |
| 2393 | assert_eq!(to_big(a) / to_big(b), to_big(c)); |
| 2394 | assert_eq!(a.checked_div(&b), Some(c)); |
| 2395 | assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); |
| 2396 | } |
| 2397 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| 2398 | assert_eq!(a / b, c); |
| 2399 | assert_eq!( |
| 2400 | { |
| 2401 | let mut x = a; |
| 2402 | x /= b; |
| 2403 | x |
| 2404 | }, |
| 2405 | c |
| 2406 | ); |
| 2407 | } |
| 2408 | |
| 2409 | test (_1, _1_2, _2); |
| 2410 | test (_3_2, _1_2, _1 + _2); |
| 2411 | test (_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); |
| 2412 | test_assign(_1, 2, _1_2); |
| 2413 | } |
| 2414 | |
| 2415 | #[test ] |
| 2416 | fn test_div_overflow() { |
| 2417 | fn test_div_typed_overflow<T>() |
| 2418 | where |
| 2419 | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
| 2420 | { |
| 2421 | let two = T::one() + T::one(); |
| 2422 | let _3 = T::one() + T::one() + T::one(); |
| 2423 | |
| 2424 | // 1/big / 3/2 = 1/(max/4*3), where big is max/2 |
| 2425 | // big ~ max/2, and big is divisible by 2 |
| 2426 | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
| 2427 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| 2428 | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
| 2429 | let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone()); |
| 2430 | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
| 2431 | assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); |
| 2432 | assert_eq!( |
| 2433 | Some(expected.clone()), |
| 2434 | _1_big.clone().checked_div(&_3_two.clone()) |
| 2435 | ); |
| 2436 | assert_eq!(expected, { |
| 2437 | let mut tmp = _1_big; |
| 2438 | tmp /= _3_two; |
| 2439 | tmp |
| 2440 | }); |
| 2441 | |
| 2442 | // 3/big / 3 = 1/big where big is max/2 |
| 2443 | // big ~ max/2, and big is not divisible by 3 |
| 2444 | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
| 2445 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| 2446 | let _3_big = Ratio::new(_3.clone(), big.clone()); |
| 2447 | let expected = Ratio::new(T::one(), big); |
| 2448 | assert_eq!(expected, _3_big.clone() / _3.clone()); |
| 2449 | assert_eq!(expected, { |
| 2450 | let mut tmp = _3_big; |
| 2451 | tmp /= _3; |
| 2452 | tmp |
| 2453 | }); |
| 2454 | } |
| 2455 | test_div_typed_overflow::<u8>(); |
| 2456 | test_div_typed_overflow::<u16>(); |
| 2457 | test_div_typed_overflow::<u32>(); |
| 2458 | test_div_typed_overflow::<u64>(); |
| 2459 | test_div_typed_overflow::<usize>(); |
| 2460 | test_div_typed_overflow::<u128>(); |
| 2461 | |
| 2462 | test_div_typed_overflow::<i8>(); |
| 2463 | test_div_typed_overflow::<i16>(); |
| 2464 | test_div_typed_overflow::<i32>(); |
| 2465 | test_div_typed_overflow::<i64>(); |
| 2466 | test_div_typed_overflow::<isize>(); |
| 2467 | test_div_typed_overflow::<i128>(); |
| 2468 | } |
| 2469 | |
| 2470 | #[test ] |
| 2471 | fn test_rem() { |
| 2472 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
| 2473 | assert_eq!(a % b, c); |
| 2474 | assert_eq!( |
| 2475 | { |
| 2476 | let mut x = a; |
| 2477 | x %= b; |
| 2478 | x |
| 2479 | }, |
| 2480 | c |
| 2481 | ); |
| 2482 | assert_eq!(to_big(a) % to_big(b), to_big(c)) |
| 2483 | } |
| 2484 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| 2485 | assert_eq!(a % b, c); |
| 2486 | assert_eq!( |
| 2487 | { |
| 2488 | let mut x = a; |
| 2489 | x %= b; |
| 2490 | x |
| 2491 | }, |
| 2492 | c |
| 2493 | ); |
| 2494 | } |
| 2495 | |
| 2496 | test (_3_2, _1, _1_2); |
| 2497 | test (_3_2, _1_2, _0); |
| 2498 | test (_5_2, _3_2, _1); |
| 2499 | test (_2, _NEG1_2, _0); |
| 2500 | test (_1_2, _2, _1_2); |
| 2501 | test_assign(_3_2, 1, _1_2); |
| 2502 | } |
| 2503 | |
| 2504 | #[test ] |
| 2505 | fn test_rem_overflow() { |
| 2506 | // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 |
| 2507 | // for each integer type. Previously, this calculation would overflow. |
| 2508 | fn test_rem_typed_overflow<T>() |
| 2509 | where |
| 2510 | T: Integer + Bounded + Clone + Debug + NumAssign, |
| 2511 | { |
| 2512 | let two = T::one() + T::one(); |
| 2513 | // value near to maximum, but divisible by two |
| 2514 | let max_div2 = T::max_value() / two.clone() * two.clone(); |
| 2515 | let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2); |
| 2516 | let _1_two: Ratio<T> = Ratio::new(T::one(), two); |
| 2517 | assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); |
| 2518 | { |
| 2519 | let mut tmp: Ratio<T> = _1_two; |
| 2520 | tmp %= _1_max; |
| 2521 | assert!(T::is_zero(&tmp.numer)); |
| 2522 | } |
| 2523 | } |
| 2524 | test_rem_typed_overflow::<u8>(); |
| 2525 | test_rem_typed_overflow::<u16>(); |
| 2526 | test_rem_typed_overflow::<u32>(); |
| 2527 | test_rem_typed_overflow::<u64>(); |
| 2528 | test_rem_typed_overflow::<usize>(); |
| 2529 | test_rem_typed_overflow::<u128>(); |
| 2530 | |
| 2531 | test_rem_typed_overflow::<i8>(); |
| 2532 | test_rem_typed_overflow::<i16>(); |
| 2533 | test_rem_typed_overflow::<i32>(); |
| 2534 | test_rem_typed_overflow::<i64>(); |
| 2535 | test_rem_typed_overflow::<isize>(); |
| 2536 | test_rem_typed_overflow::<i128>(); |
| 2537 | } |
| 2538 | |
| 2539 | #[test ] |
| 2540 | fn test_neg() { |
| 2541 | fn test(a: Rational64, b: Rational64) { |
| 2542 | assert_eq!(-a, b); |
| 2543 | assert_eq!(-to_big(a), to_big(b)) |
| 2544 | } |
| 2545 | |
| 2546 | test (_0, _0); |
| 2547 | test (_1_2, _NEG1_2); |
| 2548 | test (-_1, _1); |
| 2549 | } |
| 2550 | #[test ] |
| 2551 | #[allow (clippy::eq_op)] |
| 2552 | fn test_zero() { |
| 2553 | assert_eq!(_0 + _0, _0); |
| 2554 | assert_eq!(_0 * _0, _0); |
| 2555 | assert_eq!(_0 * _1, _0); |
| 2556 | assert_eq!(_0 / _NEG1_2, _0); |
| 2557 | assert_eq!(_0 - _0, _0); |
| 2558 | } |
| 2559 | #[test ] |
| 2560 | #[should_panic ] |
| 2561 | fn test_div_0() { |
| 2562 | let _a = _1 / _0; |
| 2563 | } |
| 2564 | |
| 2565 | #[test ] |
| 2566 | fn test_checked_failures() { |
| 2567 | let big = Ratio::new(128u8, 1); |
| 2568 | let small = Ratio::new(1, 128u8); |
| 2569 | assert_eq!(big.checked_add(&big), None); |
| 2570 | assert_eq!(small.checked_sub(&big), None); |
| 2571 | assert_eq!(big.checked_mul(&big), None); |
| 2572 | assert_eq!(small.checked_div(&big), None); |
| 2573 | assert_eq!(_1.checked_div(&_0), None); |
| 2574 | } |
| 2575 | |
| 2576 | #[test ] |
| 2577 | fn test_checked_zeros() { |
| 2578 | assert_eq!(_0.checked_add(&_0), Some(_0)); |
| 2579 | assert_eq!(_0.checked_sub(&_0), Some(_0)); |
| 2580 | assert_eq!(_0.checked_mul(&_0), Some(_0)); |
| 2581 | assert_eq!(_0.checked_div(&_0), None); |
| 2582 | } |
| 2583 | |
| 2584 | #[test ] |
| 2585 | fn test_checked_min() { |
| 2586 | assert_eq!(_MIN.checked_add(&_MIN), None); |
| 2587 | assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); |
| 2588 | assert_eq!(_MIN.checked_mul(&_MIN), None); |
| 2589 | assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); |
| 2590 | assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); |
| 2591 | assert_eq!(_0.checked_sub(&_MIN), None); |
| 2592 | assert_eq!(_0.checked_mul(&_MIN), Some(_0)); |
| 2593 | assert_eq!(_0.checked_div(&_MIN), Some(_0)); |
| 2594 | assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); |
| 2595 | assert_eq!(_1.checked_sub(&_MIN), None); |
| 2596 | assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); |
| 2597 | assert_eq!(_1.checked_div(&_MIN), None); |
| 2598 | assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); |
| 2599 | assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); |
| 2600 | assert_eq!(_MIN.checked_mul(&_0), Some(_0)); |
| 2601 | assert_eq!(_MIN.checked_div(&_0), None); |
| 2602 | assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); |
| 2603 | assert_eq!(_MIN.checked_sub(&_1), None); |
| 2604 | assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); |
| 2605 | assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); |
| 2606 | } |
| 2607 | |
| 2608 | #[test ] |
| 2609 | fn test_checked_max() { |
| 2610 | assert_eq!(_MAX.checked_add(&_MAX), None); |
| 2611 | assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); |
| 2612 | assert_eq!(_MAX.checked_mul(&_MAX), None); |
| 2613 | assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); |
| 2614 | assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); |
| 2615 | assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); |
| 2616 | assert_eq!(_0.checked_mul(&_MAX), Some(_0)); |
| 2617 | assert_eq!(_0.checked_div(&_MAX), Some(_0)); |
| 2618 | assert_eq!(_1.checked_add(&_MAX), None); |
| 2619 | assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); |
| 2620 | assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); |
| 2621 | assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); |
| 2622 | assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); |
| 2623 | assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); |
| 2624 | assert_eq!(_MAX.checked_mul(&_0), Some(_0)); |
| 2625 | assert_eq!(_MAX.checked_div(&_0), None); |
| 2626 | assert_eq!(_MAX.checked_add(&_1), None); |
| 2627 | assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); |
| 2628 | assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); |
| 2629 | assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); |
| 2630 | } |
| 2631 | |
| 2632 | #[test ] |
| 2633 | fn test_checked_min_max() { |
| 2634 | assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); |
| 2635 | assert_eq!(_MIN.checked_sub(&_MAX), None); |
| 2636 | assert_eq!(_MIN.checked_mul(&_MAX), None); |
| 2637 | assert_eq!( |
| 2638 | _MIN.checked_div(&_MAX), |
| 2639 | Some(Ratio::new(_MIN.numer, _MAX.numer)) |
| 2640 | ); |
| 2641 | assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); |
| 2642 | assert_eq!(_MAX.checked_sub(&_MIN), None); |
| 2643 | assert_eq!(_MAX.checked_mul(&_MIN), None); |
| 2644 | assert_eq!(_MAX.checked_div(&_MIN), None); |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | #[test ] |
| 2649 | fn test_round() { |
| 2650 | assert_eq!(_1_3.ceil(), _1); |
| 2651 | assert_eq!(_1_3.floor(), _0); |
| 2652 | assert_eq!(_1_3.round(), _0); |
| 2653 | assert_eq!(_1_3.trunc(), _0); |
| 2654 | |
| 2655 | assert_eq!(_NEG1_3.ceil(), _0); |
| 2656 | assert_eq!(_NEG1_3.floor(), -_1); |
| 2657 | assert_eq!(_NEG1_3.round(), _0); |
| 2658 | assert_eq!(_NEG1_3.trunc(), _0); |
| 2659 | |
| 2660 | assert_eq!(_2_3.ceil(), _1); |
| 2661 | assert_eq!(_2_3.floor(), _0); |
| 2662 | assert_eq!(_2_3.round(), _1); |
| 2663 | assert_eq!(_2_3.trunc(), _0); |
| 2664 | |
| 2665 | assert_eq!(_NEG2_3.ceil(), _0); |
| 2666 | assert_eq!(_NEG2_3.floor(), -_1); |
| 2667 | assert_eq!(_NEG2_3.round(), -_1); |
| 2668 | assert_eq!(_NEG2_3.trunc(), _0); |
| 2669 | |
| 2670 | assert_eq!(_1_2.ceil(), _1); |
| 2671 | assert_eq!(_1_2.floor(), _0); |
| 2672 | assert_eq!(_1_2.round(), _1); |
| 2673 | assert_eq!(_1_2.trunc(), _0); |
| 2674 | |
| 2675 | assert_eq!(_NEG1_2.ceil(), _0); |
| 2676 | assert_eq!(_NEG1_2.floor(), -_1); |
| 2677 | assert_eq!(_NEG1_2.round(), -_1); |
| 2678 | assert_eq!(_NEG1_2.trunc(), _0); |
| 2679 | |
| 2680 | assert_eq!(_1.ceil(), _1); |
| 2681 | assert_eq!(_1.floor(), _1); |
| 2682 | assert_eq!(_1.round(), _1); |
| 2683 | assert_eq!(_1.trunc(), _1); |
| 2684 | |
| 2685 | // Overflow checks |
| 2686 | |
| 2687 | let _neg1 = Ratio::from_integer(-1); |
| 2688 | let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); |
| 2689 | let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); |
| 2690 | let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); |
| 2691 | let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); |
| 2692 | let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); |
| 2693 | let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); |
| 2694 | let _large_rat7 = Ratio::new(1, i32::MIN + 1); |
| 2695 | let _large_rat8 = Ratio::new(1, i32::MAX); |
| 2696 | |
| 2697 | assert_eq!(_large_rat1.round(), One::one()); |
| 2698 | assert_eq!(_large_rat2.round(), One::one()); |
| 2699 | assert_eq!(_large_rat3.round(), One::one()); |
| 2700 | assert_eq!(_large_rat4.round(), One::one()); |
| 2701 | assert_eq!(_large_rat5.round(), _neg1); |
| 2702 | assert_eq!(_large_rat6.round(), _neg1); |
| 2703 | assert_eq!(_large_rat7.round(), Zero::zero()); |
| 2704 | assert_eq!(_large_rat8.round(), Zero::zero()); |
| 2705 | } |
| 2706 | |
| 2707 | #[test ] |
| 2708 | fn test_fract() { |
| 2709 | assert_eq!(_1.fract(), _0); |
| 2710 | assert_eq!(_NEG1_2.fract(), _NEG1_2); |
| 2711 | assert_eq!(_1_2.fract(), _1_2); |
| 2712 | assert_eq!(_3_2.fract(), _1_2); |
| 2713 | } |
| 2714 | |
| 2715 | #[test ] |
| 2716 | fn test_recip() { |
| 2717 | assert_eq!(_1 * _1.recip(), _1); |
| 2718 | assert_eq!(_2 * _2.recip(), _1); |
| 2719 | assert_eq!(_1_2 * _1_2.recip(), _1); |
| 2720 | assert_eq!(_3_2 * _3_2.recip(), _1); |
| 2721 | assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); |
| 2722 | |
| 2723 | assert_eq!(_3_2.recip(), _2_3); |
| 2724 | assert_eq!(_NEG1_2.recip(), _NEG2); |
| 2725 | assert_eq!(_NEG1_2.recip().denom(), &1); |
| 2726 | } |
| 2727 | |
| 2728 | #[test ] |
| 2729 | #[should_panic (expected = "division by zero" )] |
| 2730 | fn test_recip_fail() { |
| 2731 | let _a = Ratio::new(0, 1).recip(); |
| 2732 | } |
| 2733 | |
| 2734 | #[test ] |
| 2735 | fn test_pow() { |
| 2736 | fn test(r: Rational64, e: i32, expected: Rational64) { |
| 2737 | assert_eq!(r.pow(e), expected); |
| 2738 | assert_eq!(Pow::pow(r, e), expected); |
| 2739 | assert_eq!(Pow::pow(r, &e), expected); |
| 2740 | assert_eq!(Pow::pow(&r, e), expected); |
| 2741 | assert_eq!(Pow::pow(&r, &e), expected); |
| 2742 | #[cfg (feature = "num-bigint" )] |
| 2743 | test_big(r, e, expected); |
| 2744 | } |
| 2745 | |
| 2746 | #[cfg (feature = "num-bigint" )] |
| 2747 | fn test_big(r: Rational64, e: i32, expected: Rational64) { |
| 2748 | let r = BigRational::new_raw(r.numer.into(), r.denom.into()); |
| 2749 | let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); |
| 2750 | assert_eq!((&r).pow(e), expected); |
| 2751 | assert_eq!(Pow::pow(r.clone(), e), expected); |
| 2752 | assert_eq!(Pow::pow(r.clone(), &e), expected); |
| 2753 | assert_eq!(Pow::pow(&r, e), expected); |
| 2754 | assert_eq!(Pow::pow(&r, &e), expected); |
| 2755 | } |
| 2756 | |
| 2757 | test (_1_2, 2, Ratio::new(1, 4)); |
| 2758 | test (_1_2, -2, Ratio::new(4, 1)); |
| 2759 | test (_1, 1, _1); |
| 2760 | test (_1, i32::MAX, _1); |
| 2761 | test (_1, i32::MIN, _1); |
| 2762 | test (_NEG1_2, 2, _1_2.pow(2i32)); |
| 2763 | test (_NEG1_2, 3, -_1_2.pow(3i32)); |
| 2764 | test (_3_2, 0, _1); |
| 2765 | test (_3_2, -1, _3_2.recip()); |
| 2766 | test (_3_2, 3, Ratio::new(27, 8)); |
| 2767 | } |
| 2768 | |
| 2769 | #[test ] |
| 2770 | #[cfg (feature = "std" )] |
| 2771 | fn test_to_from_str() { |
| 2772 | use std::string::{String, ToString}; |
| 2773 | fn test(r: Rational64, s: String) { |
| 2774 | assert_eq!(FromStr::from_str(&s), Ok(r)); |
| 2775 | assert_eq!(r.to_string(), s); |
| 2776 | } |
| 2777 | test (_1, "1" .to_string()); |
| 2778 | test (_0, "0" .to_string()); |
| 2779 | test (_1_2, "1/2" .to_string()); |
| 2780 | test (_3_2, "3/2" .to_string()); |
| 2781 | test (_2, "2" .to_string()); |
| 2782 | test (_NEG1_2, "-1/2" .to_string()); |
| 2783 | } |
| 2784 | #[test ] |
| 2785 | fn test_from_str_fail() { |
| 2786 | fn test(s: &str) { |
| 2787 | let rational: Result<Rational64, _> = FromStr::from_str(s); |
| 2788 | assert!(rational.is_err()); |
| 2789 | } |
| 2790 | |
| 2791 | let xs = ["0 /1" , "abc" , "" , "1/" , "--1/2" , "3/2/1" , "1/0" ]; |
| 2792 | for &s in xs.iter() { |
| 2793 | test (s); |
| 2794 | } |
| 2795 | } |
| 2796 | |
| 2797 | #[cfg (feature = "num-bigint" )] |
| 2798 | #[test ] |
| 2799 | fn test_from_float() { |
| 2800 | use num_traits::float::FloatCore; |
| 2801 | fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { |
| 2802 | let ratio: BigRational = Ratio::from_float(given).unwrap(); |
| 2803 | assert_eq!( |
| 2804 | ratio, |
| 2805 | Ratio::new( |
| 2806 | FromStr::from_str(numer).unwrap(), |
| 2807 | FromStr::from_str(denom).unwrap() |
| 2808 | ) |
| 2809 | ); |
| 2810 | } |
| 2811 | |
| 2812 | // f32 |
| 2813 | test (core::f32::consts::PI, ("13176795" , "4194304" )); |
| 2814 | test (2f32.powf(100.), ("1267650600228229401496703205376" , "1" )); |
| 2815 | test ( |
| 2816 | -(2f32.powf(100.)), |
| 2817 | ("-1267650600228229401496703205376" , "1" ), |
| 2818 | ); |
| 2819 | test ( |
| 2820 | 1.0 / 2f32.powf(100.), |
| 2821 | ("1" , "1267650600228229401496703205376" ), |
| 2822 | ); |
| 2823 | test (684729.48391f32, ("1369459" , "2" )); |
| 2824 | test (-8573.5918555f32, ("-4389679" , "512" )); |
| 2825 | |
| 2826 | // f64 |
| 2827 | test ( |
| 2828 | core::f64::consts::PI, |
| 2829 | ("884279719003555" , "281474976710656" ), |
| 2830 | ); |
| 2831 | test (2f64.powf(100.), ("1267650600228229401496703205376" , "1" )); |
| 2832 | test ( |
| 2833 | -(2f64.powf(100.)), |
| 2834 | ("-1267650600228229401496703205376" , "1" ), |
| 2835 | ); |
| 2836 | test (684729.48391f64, ("367611342500051" , "536870912" )); |
| 2837 | test (-8573.5918555f64, ("-4713381968463931" , "549755813888" )); |
| 2838 | test ( |
| 2839 | 1.0 / 2f64.powf(100.), |
| 2840 | ("1" , "1267650600228229401496703205376" ), |
| 2841 | ); |
| 2842 | } |
| 2843 | |
| 2844 | #[cfg (feature = "num-bigint" )] |
| 2845 | #[test ] |
| 2846 | fn test_from_float_fail() { |
| 2847 | use core::{f32, f64}; |
| 2848 | |
| 2849 | assert_eq!(Ratio::from_float(f32::NAN), None); |
| 2850 | assert_eq!(Ratio::from_float(f32::INFINITY), None); |
| 2851 | assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); |
| 2852 | assert_eq!(Ratio::from_float(f64::NAN), None); |
| 2853 | assert_eq!(Ratio::from_float(f64::INFINITY), None); |
| 2854 | assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); |
| 2855 | } |
| 2856 | |
| 2857 | #[test ] |
| 2858 | fn test_signed() { |
| 2859 | assert_eq!(_NEG1_2.abs(), _1_2); |
| 2860 | assert_eq!(_3_2.abs_sub(&_1_2), _1); |
| 2861 | assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); |
| 2862 | assert_eq!(_1_2.signum(), One::one()); |
| 2863 | assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one()); |
| 2864 | assert_eq!(_0.signum(), Zero::zero()); |
| 2865 | assert!(_NEG1_2.is_negative()); |
| 2866 | assert!(_1_NEG2.is_negative()); |
| 2867 | assert!(!_NEG1_2.is_positive()); |
| 2868 | assert!(!_1_NEG2.is_positive()); |
| 2869 | assert!(_1_2.is_positive()); |
| 2870 | assert!(_NEG1_NEG2.is_positive()); |
| 2871 | assert!(!_1_2.is_negative()); |
| 2872 | assert!(!_NEG1_NEG2.is_negative()); |
| 2873 | assert!(!_0.is_positive()); |
| 2874 | assert!(!_0.is_negative()); |
| 2875 | } |
| 2876 | |
| 2877 | #[test ] |
| 2878 | #[cfg (feature = "std" )] |
| 2879 | fn test_hash() { |
| 2880 | assert!(crate::hash(&_0) != crate::hash(&_1)); |
| 2881 | assert!(crate::hash(&_0) != crate::hash(&_3_2)); |
| 2882 | |
| 2883 | // a == b -> hash(a) == hash(b) |
| 2884 | let a = Rational64::new_raw(4, 2); |
| 2885 | let b = Rational64::new_raw(6, 3); |
| 2886 | assert_eq!(a, b); |
| 2887 | assert_eq!(crate::hash(&a), crate::hash(&b)); |
| 2888 | |
| 2889 | let a = Rational64::new_raw(123456789, 1000); |
| 2890 | let b = Rational64::new_raw(123456789 * 5, 5000); |
| 2891 | assert_eq!(a, b); |
| 2892 | assert_eq!(crate::hash(&a), crate::hash(&b)); |
| 2893 | } |
| 2894 | |
| 2895 | #[test ] |
| 2896 | fn test_into_pair() { |
| 2897 | assert_eq!((0, 1), _0.into()); |
| 2898 | assert_eq!((-2, 1), _NEG2.into()); |
| 2899 | assert_eq!((1, -2), _1_NEG2.into()); |
| 2900 | } |
| 2901 | |
| 2902 | #[test ] |
| 2903 | fn test_from_pair() { |
| 2904 | assert_eq!(_0, Ratio::from((0, 1))); |
| 2905 | assert_eq!(_1, Ratio::from((1, 1))); |
| 2906 | assert_eq!(_NEG2, Ratio::from((-2, 1))); |
| 2907 | assert_eq!(_1_NEG2, Ratio::from((1, -2))); |
| 2908 | } |
| 2909 | |
| 2910 | #[test ] |
| 2911 | fn ratio_iter_sum() { |
| 2912 | // generic function to assure the iter method can be called |
| 2913 | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
| 2914 | fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
| 2915 | let mut manual_sum = Ratio::new(T::zero(), T::one()); |
| 2916 | for ratio in slice { |
| 2917 | manual_sum = manual_sum + ratio; |
| 2918 | } |
| 2919 | [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] |
| 2920 | } |
| 2921 | // collect into array so test works on no_std |
| 2922 | let mut nums = [Ratio::new(0, 1); 1000]; |
| 2923 | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
| 2924 | nums[i] = r; |
| 2925 | } |
| 2926 | let sums = iter_sums(&nums[..]); |
| 2927 | assert_eq!(sums[0], sums[1]); |
| 2928 | assert_eq!(sums[0], sums[2]); |
| 2929 | } |
| 2930 | |
| 2931 | #[test ] |
| 2932 | fn ratio_iter_product() { |
| 2933 | // generic function to assure the iter method can be called |
| 2934 | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
| 2935 | fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
| 2936 | let mut manual_prod = Ratio::new(T::one(), T::one()); |
| 2937 | for ratio in slice { |
| 2938 | manual_prod = manual_prod * ratio; |
| 2939 | } |
| 2940 | [ |
| 2941 | manual_prod, |
| 2942 | slice.iter().product(), |
| 2943 | slice.iter().cloned().product(), |
| 2944 | ] |
| 2945 | } |
| 2946 | |
| 2947 | // collect into array so test works on no_std |
| 2948 | let mut nums = [Ratio::new(0, 1); 1000]; |
| 2949 | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
| 2950 | nums[i] = r; |
| 2951 | } |
| 2952 | let products = iter_products(&nums[..]); |
| 2953 | assert_eq!(products[0], products[1]); |
| 2954 | assert_eq!(products[0], products[2]); |
| 2955 | } |
| 2956 | |
| 2957 | #[test ] |
| 2958 | fn test_num_zero() { |
| 2959 | let zero = Rational64::zero(); |
| 2960 | assert!(zero.is_zero()); |
| 2961 | |
| 2962 | let mut r = Rational64::new(123, 456); |
| 2963 | assert!(!r.is_zero()); |
| 2964 | assert_eq!(r + zero, r); |
| 2965 | |
| 2966 | r.set_zero(); |
| 2967 | assert!(r.is_zero()); |
| 2968 | } |
| 2969 | |
| 2970 | #[test ] |
| 2971 | fn test_num_one() { |
| 2972 | let one = Rational64::one(); |
| 2973 | assert!(one.is_one()); |
| 2974 | |
| 2975 | let mut r = Rational64::new(123, 456); |
| 2976 | assert!(!r.is_one()); |
| 2977 | assert_eq!(r * one, r); |
| 2978 | |
| 2979 | r.set_one(); |
| 2980 | assert!(r.is_one()); |
| 2981 | } |
| 2982 | |
| 2983 | #[test ] |
| 2984 | fn test_const() { |
| 2985 | const N: Ratio<i32> = Ratio::new_raw(123, 456); |
| 2986 | const N_NUMER: &i32 = N.numer(); |
| 2987 | const N_DENOM: &i32 = N.denom(); |
| 2988 | |
| 2989 | assert_eq!(N_NUMER, &123); |
| 2990 | assert_eq!(N_DENOM, &456); |
| 2991 | |
| 2992 | let r = N.reduced(); |
| 2993 | assert_eq!(r.numer(), &(123 / 3)); |
| 2994 | assert_eq!(r.denom(), &(456 / 3)); |
| 2995 | } |
| 2996 | |
| 2997 | #[test ] |
| 2998 | fn test_ratio_to_i64() { |
| 2999 | assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); |
| 3000 | assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); |
| 3001 | assert_eq!(None, Rational64::new(-31, 8).to_u64()); |
| 3002 | } |
| 3003 | |
| 3004 | #[test ] |
| 3005 | #[cfg (feature = "num-bigint" )] |
| 3006 | fn test_ratio_to_i128() { |
| 3007 | assert_eq!( |
| 3008 | 1i128 << 70, |
| 3009 | Ratio::<i128>::new(1i128 << 77, 1i128 << 7) |
| 3010 | .to_i128() |
| 3011 | .unwrap() |
| 3012 | ); |
| 3013 | } |
| 3014 | |
| 3015 | #[test ] |
| 3016 | #[cfg (feature = "num-bigint" )] |
| 3017 | fn test_big_ratio_to_f64() { |
| 3018 | assert_eq!( |
| 3019 | BigRational::new( |
| 3020 | "1234567890987654321234567890987654321234567890" |
| 3021 | .parse() |
| 3022 | .unwrap(), |
| 3023 | "3" .parse().unwrap() |
| 3024 | ) |
| 3025 | .to_f64(), |
| 3026 | Some(411522630329218100000000000000000000000000000f64) |
| 3027 | ); |
| 3028 | assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); |
| 3029 | assert_eq!( |
| 3030 | // subnormal |
| 3031 | BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), |
| 3032 | Some(2.0f64.powi(-50).powi(21)) |
| 3033 | ); |
| 3034 | assert_eq!( |
| 3035 | // definite underflow |
| 3036 | BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), |
| 3037 | Some(0.0) |
| 3038 | ); |
| 3039 | assert_eq!( |
| 3040 | BigRational::from(BigInt::one() << 1050).to_f64(), |
| 3041 | Some(core::f64::INFINITY) |
| 3042 | ); |
| 3043 | assert_eq!( |
| 3044 | BigRational::from((-BigInt::one()) << 1050).to_f64(), |
| 3045 | Some(core::f64::NEG_INFINITY) |
| 3046 | ); |
| 3047 | assert_eq!( |
| 3048 | BigRational::new( |
| 3049 | "1234567890987654321234567890" .parse().unwrap(), |
| 3050 | "987654321234567890987654321" .parse().unwrap() |
| 3051 | ) |
| 3052 | .to_f64(), |
| 3053 | Some(1.2499999893125f64) |
| 3054 | ); |
| 3055 | assert_eq!( |
| 3056 | BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), |
| 3057 | Some(core::f64::INFINITY) |
| 3058 | ); |
| 3059 | assert_eq!( |
| 3060 | BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), |
| 3061 | Some(core::f64::NEG_INFINITY) |
| 3062 | ); |
| 3063 | assert_eq!( |
| 3064 | BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), |
| 3065 | None |
| 3066 | ); |
| 3067 | } |
| 3068 | |
| 3069 | #[test ] |
| 3070 | fn test_ratio_to_f64() { |
| 3071 | assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64)); |
| 3072 | assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); |
| 3073 | assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); |
| 3074 | assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); |
| 3075 | assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); |
| 3076 | assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); |
| 3077 | assert_eq!( |
| 3078 | Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), |
| 3079 | Some(1.0000000000000002f64), |
| 3080 | ); |
| 3081 | assert_eq!( |
| 3082 | Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), |
| 3083 | Some(1.0000000000000002f64), |
| 3084 | ); |
| 3085 | assert_eq!( |
| 3086 | Ratio::<i32>::new_raw(1, 0).to_f64(), |
| 3087 | Some(core::f64::INFINITY) |
| 3088 | ); |
| 3089 | assert_eq!( |
| 3090 | Ratio::<i32>::new_raw(-1, 0).to_f64(), |
| 3091 | Some(core::f64::NEG_INFINITY) |
| 3092 | ); |
| 3093 | assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None); |
| 3094 | } |
| 3095 | |
| 3096 | #[test ] |
| 3097 | fn test_ldexp() { |
| 3098 | use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; |
| 3099 | assert_eq!(ldexp(1.0, 0), 1.0); |
| 3100 | assert_eq!(ldexp(1.0, 1), 2.0); |
| 3101 | assert_eq!(ldexp(0.0, 1), 0.0); |
| 3102 | assert_eq!(ldexp(-0.0, 1), -0.0); |
| 3103 | |
| 3104 | // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or |
| 3105 | // underflow. |
| 3106 | assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); |
| 3107 | assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); |
| 3108 | assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); |
| 3109 | |
| 3110 | // Case where initial value is subnormal |
| 3111 | assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); |
| 3112 | assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); |
| 3113 | |
| 3114 | // Near underflow (2^exp is too small to represent, but not x*2^exp) |
| 3115 | assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); |
| 3116 | |
| 3117 | // Near overflow |
| 3118 | assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); |
| 3119 | |
| 3120 | // Overflow and underflow cases |
| 3121 | assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); |
| 3122 | assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); |
| 3123 | assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); |
| 3124 | assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); |
| 3125 | |
| 3126 | // Special values |
| 3127 | assert_eq!(ldexp(INFINITY, 1), INFINITY); |
| 3128 | assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); |
| 3129 | assert!(ldexp(NAN, 1).is_nan()); |
| 3130 | } |
| 3131 | } |
| 3132 | |