1 | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution and at |
3 | // http://rust-lang.org/COPYRIGHT. |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | // option. This file may not be copied, modified, or distributed |
9 | // except according to those terms. |
10 | |
11 | //! Rational numbers |
12 | //! |
13 | //! ## Compatibility |
14 | //! |
15 | //! The `num-rational` crate is tested for rustc 1.60 and greater. |
16 | |
17 | #![doc (html_root_url = "https://docs.rs/num-rational/0.4" )] |
18 | #![no_std ] |
19 | // Ratio ops often use other "suspicious" ops |
20 | #![allow (clippy::suspicious_arithmetic_impl)] |
21 | #![allow (clippy::suspicious_op_assign_impl)] |
22 | |
23 | #[cfg (feature = "std" )] |
24 | #[macro_use ] |
25 | extern crate std; |
26 | |
27 | use core::cmp; |
28 | use core::fmt; |
29 | use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; |
30 | use core::hash::{Hash, Hasher}; |
31 | use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; |
32 | use core::str::FromStr; |
33 | #[cfg (feature = "std" )] |
34 | use std::error::Error; |
35 | |
36 | #[cfg (feature = "num-bigint" )] |
37 | use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; |
38 | |
39 | use num_integer::Integer; |
40 | use num_traits::float::FloatCore; |
41 | use num_traits::{ |
42 | Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, ConstOne, ConstZero, FromPrimitive, |
43 | Inv, Num, NumCast, One, Pow, Signed, ToPrimitive, Unsigned, Zero, |
44 | }; |
45 | |
46 | mod pow; |
47 | |
48 | /// Represents the ratio between two numbers. |
49 | #[derive (Copy, Clone, Debug)] |
50 | #[allow (missing_docs)] |
51 | pub struct Ratio<T> { |
52 | /// Numerator. |
53 | numer: T, |
54 | /// Denominator. |
55 | denom: T, |
56 | } |
57 | |
58 | /// Alias for a `Ratio` of machine-sized integers. |
59 | #[deprecated ( |
60 | since = "0.4.0" , |
61 | note = "it's better to use a specific size, like `Rational32` or `Rational64`" |
62 | )] |
63 | pub type Rational = Ratio<isize>; |
64 | /// Alias for a `Ratio` of 32-bit-sized integers. |
65 | pub type Rational32 = Ratio<i32>; |
66 | /// Alias for a `Ratio` of 64-bit-sized integers. |
67 | pub type Rational64 = Ratio<i64>; |
68 | |
69 | #[cfg (feature = "num-bigint" )] |
70 | /// Alias for arbitrary precision rationals. |
71 | pub type BigRational = Ratio<BigInt>; |
72 | |
73 | /// These method are `const`. |
74 | impl<T> Ratio<T> { |
75 | /// Creates a `Ratio` without checking for `denom == 0` or reducing. |
76 | /// |
77 | /// **There are several methods that will panic if used on a `Ratio` with |
78 | /// `denom == 0`.** |
79 | #[inline ] |
80 | pub const fn new_raw(numer: T, denom: T) -> Ratio<T> { |
81 | Ratio { numer, denom } |
82 | } |
83 | |
84 | /// Deconstructs a `Ratio` into its numerator and denominator. |
85 | #[inline ] |
86 | pub fn into_raw(self) -> (T, T) { |
87 | (self.numer, self.denom) |
88 | } |
89 | |
90 | /// Gets an immutable reference to the numerator. |
91 | #[inline ] |
92 | pub const fn numer(&self) -> &T { |
93 | &self.numer |
94 | } |
95 | |
96 | /// Gets an immutable reference to the denominator. |
97 | #[inline ] |
98 | pub const fn denom(&self) -> &T { |
99 | &self.denom |
100 | } |
101 | } |
102 | |
103 | impl<T: Clone + Integer> Ratio<T> { |
104 | /// Creates a new `Ratio`. |
105 | /// |
106 | /// **Panics if `denom` is zero.** |
107 | #[inline ] |
108 | pub fn new(numer: T, denom: T) -> Ratio<T> { |
109 | let mut ret = Ratio::new_raw(numer, denom); |
110 | ret.reduce(); |
111 | ret |
112 | } |
113 | |
114 | /// Creates a `Ratio` representing the integer `t`. |
115 | #[inline ] |
116 | pub fn from_integer(t: T) -> Ratio<T> { |
117 | Ratio::new_raw(t, One::one()) |
118 | } |
119 | |
120 | /// Converts to an integer, rounding towards zero. |
121 | #[inline ] |
122 | pub fn to_integer(&self) -> T { |
123 | self.trunc().numer |
124 | } |
125 | |
126 | /// Returns true if the rational number is an integer (denominator is 1). |
127 | #[inline ] |
128 | pub fn is_integer(&self) -> bool { |
129 | self.denom.is_one() |
130 | } |
131 | |
132 | /// Puts self into lowest terms, with `denom` > 0. |
133 | /// |
134 | /// **Panics if `denom` is zero.** |
135 | fn reduce(&mut self) { |
136 | if self.denom.is_zero() { |
137 | panic!("denominator == 0" ); |
138 | } |
139 | if self.numer.is_zero() { |
140 | self.denom.set_one(); |
141 | return; |
142 | } |
143 | if self.numer == self.denom { |
144 | self.set_one(); |
145 | return; |
146 | } |
147 | let g: T = self.numer.gcd(&self.denom); |
148 | |
149 | // FIXME(#5992): assignment operator overloads |
150 | // T: Clone + Integer != T: Clone + NumAssign |
151 | |
152 | #[inline ] |
153 | fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) { |
154 | let y = core::mem::replace(x, T::zero()); |
155 | *x = f(y); |
156 | } |
157 | |
158 | // self.numer /= g; |
159 | replace_with(&mut self.numer, |x| x / g.clone()); |
160 | |
161 | // self.denom /= g; |
162 | replace_with(&mut self.denom, |x| x / g); |
163 | |
164 | // keep denom positive! |
165 | if self.denom < T::zero() { |
166 | replace_with(&mut self.numer, |x| T::zero() - x); |
167 | replace_with(&mut self.denom, |x| T::zero() - x); |
168 | } |
169 | } |
170 | |
171 | /// Returns a reduced copy of self. |
172 | /// |
173 | /// In general, it is not necessary to use this method, as the only |
174 | /// method of procuring a non-reduced fraction is through `new_raw`. |
175 | /// |
176 | /// **Panics if `denom` is zero.** |
177 | pub fn reduced(&self) -> Ratio<T> { |
178 | let mut ret = self.clone(); |
179 | ret.reduce(); |
180 | ret |
181 | } |
182 | |
183 | /// Returns the reciprocal. |
184 | /// |
185 | /// **Panics if the `Ratio` is zero.** |
186 | #[inline ] |
187 | pub fn recip(&self) -> Ratio<T> { |
188 | self.clone().into_recip() |
189 | } |
190 | |
191 | #[inline ] |
192 | fn into_recip(self) -> Ratio<T> { |
193 | match self.numer.cmp(&T::zero()) { |
194 | cmp::Ordering::Equal => panic!("division by zero" ), |
195 | cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), |
196 | cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), |
197 | } |
198 | } |
199 | |
200 | /// Rounds towards minus infinity. |
201 | #[inline ] |
202 | pub fn floor(&self) -> Ratio<T> { |
203 | if *self < Zero::zero() { |
204 | let one: T = One::one(); |
205 | Ratio::from_integer( |
206 | (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), |
207 | ) |
208 | } else { |
209 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
210 | } |
211 | } |
212 | |
213 | /// Rounds towards plus infinity. |
214 | #[inline ] |
215 | pub fn ceil(&self) -> Ratio<T> { |
216 | if *self < Zero::zero() { |
217 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
218 | } else { |
219 | let one: T = One::one(); |
220 | Ratio::from_integer( |
221 | (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), |
222 | ) |
223 | } |
224 | } |
225 | |
226 | /// Rounds to the nearest integer. Rounds half-way cases away from zero. |
227 | #[inline ] |
228 | pub fn round(&self) -> Ratio<T> { |
229 | let zero: Ratio<T> = Zero::zero(); |
230 | let one: T = One::one(); |
231 | let two: T = one.clone() + one.clone(); |
232 | |
233 | // Find unsigned fractional part of rational number |
234 | let mut fractional = self.fract(); |
235 | if fractional < zero { |
236 | fractional = zero - fractional |
237 | }; |
238 | |
239 | // The algorithm compares the unsigned fractional part with 1/2, that |
240 | // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use |
241 | // a >= (b/2)+1. This avoids overflow issues. |
242 | let half_or_larger = if fractional.denom.is_even() { |
243 | fractional.numer >= fractional.denom / two |
244 | } else { |
245 | fractional.numer >= (fractional.denom / two) + one |
246 | }; |
247 | |
248 | if half_or_larger { |
249 | let one: Ratio<T> = One::one(); |
250 | if *self >= Zero::zero() { |
251 | self.trunc() + one |
252 | } else { |
253 | self.trunc() - one |
254 | } |
255 | } else { |
256 | self.trunc() |
257 | } |
258 | } |
259 | |
260 | /// Rounds towards zero. |
261 | #[inline ] |
262 | pub fn trunc(&self) -> Ratio<T> { |
263 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
264 | } |
265 | |
266 | /// Returns the fractional part of a number, with division rounded towards zero. |
267 | /// |
268 | /// Satisfies `self == self.trunc() + self.fract()`. |
269 | #[inline ] |
270 | pub fn fract(&self) -> Ratio<T> { |
271 | Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) |
272 | } |
273 | |
274 | /// Raises the `Ratio` to the power of an exponent. |
275 | #[inline ] |
276 | pub fn pow(&self, expon: i32) -> Ratio<T> |
277 | where |
278 | for<'a> &'a T: Pow<u32, Output = T>, |
279 | { |
280 | Pow::pow(self, expon) |
281 | } |
282 | } |
283 | |
284 | #[cfg (feature = "num-bigint" )] |
285 | impl Ratio<BigInt> { |
286 | /// Converts a float into a rational number. |
287 | pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { |
288 | if !f.is_finite() { |
289 | return None; |
290 | } |
291 | let (mantissa: u64, exponent: i16, sign: i8) = f.integer_decode(); |
292 | let bigint_sign: Sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; |
293 | if exponent < 0 { |
294 | let one: BigInt = One::one(); |
295 | let denom: BigInt = one << ((-exponent) as usize); |
296 | let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
297 | Some(Ratio::new(numer:BigInt::from_biguint(bigint_sign, data:numer), denom)) |
298 | } else { |
299 | let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
300 | numer <<= exponent as usize; |
301 | Some(Ratio::from_integer(BigInt::from_biguint( |
302 | bigint_sign, |
303 | data:numer, |
304 | ))) |
305 | } |
306 | } |
307 | } |
308 | |
309 | impl<T: Clone + Integer> Default for Ratio<T> { |
310 | /// Returns zero |
311 | fn default() -> Self { |
312 | Ratio::zero() |
313 | } |
314 | } |
315 | |
316 | // From integer |
317 | impl<T> From<T> for Ratio<T> |
318 | where |
319 | T: Clone + Integer, |
320 | { |
321 | fn from(x: T) -> Ratio<T> { |
322 | Ratio::from_integer(x) |
323 | } |
324 | } |
325 | |
326 | // From pair (through the `new` constructor) |
327 | impl<T> From<(T, T)> for Ratio<T> |
328 | where |
329 | T: Clone + Integer, |
330 | { |
331 | fn from(pair: (T, T)) -> Ratio<T> { |
332 | Ratio::new(numer:pair.0, denom:pair.1) |
333 | } |
334 | } |
335 | |
336 | // Comparisons |
337 | |
338 | // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy |
339 | // for those multiplications to overflow fixed-size integers, so we need to take care. |
340 | |
341 | impl<T: Clone + Integer> Ord for Ratio<T> { |
342 | #[inline ] |
343 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
344 | // With equal denominators, the numerators can be directly compared |
345 | if self.denom == other.denom { |
346 | let ord = self.numer.cmp(&other.numer); |
347 | return if self.denom < T::zero() { |
348 | ord.reverse() |
349 | } else { |
350 | ord |
351 | }; |
352 | } |
353 | |
354 | // With equal numerators, the denominators can be inversely compared |
355 | if self.numer == other.numer { |
356 | if self.numer.is_zero() { |
357 | return cmp::Ordering::Equal; |
358 | } |
359 | let ord = self.denom.cmp(&other.denom); |
360 | return if self.numer < T::zero() { |
361 | ord |
362 | } else { |
363 | ord.reverse() |
364 | }; |
365 | } |
366 | |
367 | // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the |
368 | // division below, or even always avoid it for BigInt and BigUint. |
369 | // FIXME- future breaking change to add Checked* to Integer? |
370 | |
371 | // Compare as floored integers and remainders |
372 | let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); |
373 | let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); |
374 | match self_int.cmp(&other_int) { |
375 | cmp::Ordering::Greater => cmp::Ordering::Greater, |
376 | cmp::Ordering::Less => cmp::Ordering::Less, |
377 | cmp::Ordering::Equal => { |
378 | match (self_rem.is_zero(), other_rem.is_zero()) { |
379 | (true, true) => cmp::Ordering::Equal, |
380 | (true, false) => cmp::Ordering::Less, |
381 | (false, true) => cmp::Ordering::Greater, |
382 | (false, false) => { |
383 | // Compare the reciprocals of the remaining fractions in reverse |
384 | let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); |
385 | let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); |
386 | self_recip.cmp(&other_recip).reverse() |
387 | } |
388 | } |
389 | } |
390 | } |
391 | } |
392 | } |
393 | |
394 | impl<T: Clone + Integer> PartialOrd for Ratio<T> { |
395 | #[inline ] |
396 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
397 | Some(self.cmp(other)) |
398 | } |
399 | } |
400 | |
401 | impl<T: Clone + Integer> PartialEq for Ratio<T> { |
402 | #[inline ] |
403 | fn eq(&self, other: &Self) -> bool { |
404 | self.cmp(other) == cmp::Ordering::Equal |
405 | } |
406 | } |
407 | |
408 | impl<T: Clone + Integer> Eq for Ratio<T> {} |
409 | |
410 | // NB: We can't just `#[derive(Hash)]`, because it needs to agree |
411 | // with `Eq` even for non-reduced ratios. |
412 | impl<T: Clone + Integer + Hash> Hash for Ratio<T> { |
413 | fn hash<H: Hasher>(&self, state: &mut H) { |
414 | recurse(&self.numer, &self.denom, state); |
415 | |
416 | fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { |
417 | if !denom.is_zero() { |
418 | let (int: T, rem: T) = numer.div_mod_floor(denom); |
419 | int.hash(state); |
420 | recurse(numer:denom, &rem, state); |
421 | } else { |
422 | denom.hash(state); |
423 | } |
424 | } |
425 | } |
426 | } |
427 | |
428 | mod iter_sum_product { |
429 | use crate::Ratio; |
430 | use core::iter::{Product, Sum}; |
431 | use num_integer::Integer; |
432 | use num_traits::{One, Zero}; |
433 | |
434 | impl<T: Integer + Clone> Sum for Ratio<T> { |
435 | fn sum<I>(iter: I) -> Self |
436 | where |
437 | I: Iterator<Item = Ratio<T>>, |
438 | { |
439 | iter.fold(Self::zero(), |sum, num| sum + num) |
440 | } |
441 | } |
442 | |
443 | impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { |
444 | fn sum<I>(iter: I) -> Self |
445 | where |
446 | I: Iterator<Item = &'a Ratio<T>>, |
447 | { |
448 | iter.fold(Self::zero(), |sum, num| sum + num) |
449 | } |
450 | } |
451 | |
452 | impl<T: Integer + Clone> Product for Ratio<T> { |
453 | fn product<I>(iter: I) -> Self |
454 | where |
455 | I: Iterator<Item = Ratio<T>>, |
456 | { |
457 | iter.fold(Self::one(), |prod, num| prod * num) |
458 | } |
459 | } |
460 | |
461 | impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { |
462 | fn product<I>(iter: I) -> Self |
463 | where |
464 | I: Iterator<Item = &'a Ratio<T>>, |
465 | { |
466 | iter.fold(Self::one(), |prod, num| prod * num) |
467 | } |
468 | } |
469 | } |
470 | |
471 | mod opassign { |
472 | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
473 | |
474 | use crate::Ratio; |
475 | use num_integer::Integer; |
476 | use num_traits::NumAssign; |
477 | |
478 | impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { |
479 | fn add_assign(&mut self, other: Ratio<T>) { |
480 | if self.denom == other.denom { |
481 | self.numer += other.numer |
482 | } else { |
483 | let lcm = self.denom.lcm(&other.denom); |
484 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
485 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
486 | self.numer = lhs_numer + rhs_numer; |
487 | self.denom = lcm; |
488 | } |
489 | self.reduce(); |
490 | } |
491 | } |
492 | |
493 | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
494 | impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { |
495 | fn div_assign(&mut self, other: Ratio<T>) { |
496 | let gcd_ac = self.numer.gcd(&other.numer); |
497 | let gcd_bd = self.denom.gcd(&other.denom); |
498 | self.numer /= gcd_ac.clone(); |
499 | self.numer *= other.denom / gcd_bd.clone(); |
500 | self.denom /= gcd_bd; |
501 | self.denom *= other.numer / gcd_ac; |
502 | self.reduce(); // TODO: remove this line. see #8. |
503 | } |
504 | } |
505 | |
506 | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
507 | impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { |
508 | fn mul_assign(&mut self, other: Ratio<T>) { |
509 | let gcd_ad = self.numer.gcd(&other.denom); |
510 | let gcd_bc = self.denom.gcd(&other.numer); |
511 | self.numer /= gcd_ad.clone(); |
512 | self.numer *= other.numer / gcd_bc.clone(); |
513 | self.denom /= gcd_bc; |
514 | self.denom *= other.denom / gcd_ad; |
515 | self.reduce(); // TODO: remove this line. see #8. |
516 | } |
517 | } |
518 | |
519 | impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { |
520 | fn rem_assign(&mut self, other: Ratio<T>) { |
521 | if self.denom == other.denom { |
522 | self.numer %= other.numer |
523 | } else { |
524 | let lcm = self.denom.lcm(&other.denom); |
525 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
526 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
527 | self.numer = lhs_numer % rhs_numer; |
528 | self.denom = lcm; |
529 | } |
530 | self.reduce(); |
531 | } |
532 | } |
533 | |
534 | impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { |
535 | fn sub_assign(&mut self, other: Ratio<T>) { |
536 | if self.denom == other.denom { |
537 | self.numer -= other.numer |
538 | } else { |
539 | let lcm = self.denom.lcm(&other.denom); |
540 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
541 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
542 | self.numer = lhs_numer - rhs_numer; |
543 | self.denom = lcm; |
544 | } |
545 | self.reduce(); |
546 | } |
547 | } |
548 | |
549 | // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b |
550 | impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { |
551 | fn add_assign(&mut self, other: T) { |
552 | self.numer += self.denom.clone() * other; |
553 | self.reduce(); |
554 | } |
555 | } |
556 | |
557 | impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { |
558 | fn div_assign(&mut self, other: T) { |
559 | let gcd = self.numer.gcd(&other); |
560 | self.numer /= gcd.clone(); |
561 | self.denom *= other / gcd; |
562 | self.reduce(); // TODO: remove this line. see #8. |
563 | } |
564 | } |
565 | |
566 | impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { |
567 | fn mul_assign(&mut self, other: T) { |
568 | let gcd = self.denom.gcd(&other); |
569 | self.denom /= gcd.clone(); |
570 | self.numer *= other / gcd; |
571 | self.reduce(); // TODO: remove this line. see #8. |
572 | } |
573 | } |
574 | |
575 | // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b |
576 | impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { |
577 | fn rem_assign(&mut self, other: T) { |
578 | self.numer %= self.denom.clone() * other; |
579 | self.reduce(); |
580 | } |
581 | } |
582 | |
583 | // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b |
584 | impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { |
585 | fn sub_assign(&mut self, other: T) { |
586 | self.numer -= self.denom.clone() * other; |
587 | self.reduce(); |
588 | } |
589 | } |
590 | |
591 | macro_rules! forward_op_assign { |
592 | (impl $imp:ident, $method:ident) => { |
593 | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { |
594 | #[inline] |
595 | fn $method(&mut self, other: &Ratio<T>) { |
596 | self.$method(other.clone()) |
597 | } |
598 | } |
599 | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { |
600 | #[inline] |
601 | fn $method(&mut self, other: &T) { |
602 | self.$method(other.clone()) |
603 | } |
604 | } |
605 | }; |
606 | } |
607 | |
608 | forward_op_assign!(impl AddAssign, add_assign); |
609 | forward_op_assign!(impl DivAssign, div_assign); |
610 | forward_op_assign!(impl MulAssign, mul_assign); |
611 | forward_op_assign!(impl RemAssign, rem_assign); |
612 | forward_op_assign!(impl SubAssign, sub_assign); |
613 | } |
614 | |
615 | macro_rules! forward_ref_ref_binop { |
616 | (impl $imp:ident, $method:ident) => { |
617 | impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { |
618 | type Output = Ratio<T>; |
619 | |
620 | #[inline] |
621 | fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { |
622 | self.clone().$method(other.clone()) |
623 | } |
624 | } |
625 | impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { |
626 | type Output = Ratio<T>; |
627 | |
628 | #[inline] |
629 | fn $method(self, other: &'b T) -> Ratio<T> { |
630 | self.clone().$method(other.clone()) |
631 | } |
632 | } |
633 | }; |
634 | } |
635 | |
636 | macro_rules! forward_ref_val_binop { |
637 | (impl $imp:ident, $method:ident) => { |
638 | impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> |
639 | where |
640 | T: Clone + Integer, |
641 | { |
642 | type Output = Ratio<T>; |
643 | |
644 | #[inline] |
645 | fn $method(self, other: Ratio<T>) -> Ratio<T> { |
646 | self.clone().$method(other) |
647 | } |
648 | } |
649 | impl<'a, T> $imp<T> for &'a Ratio<T> |
650 | where |
651 | T: Clone + Integer, |
652 | { |
653 | type Output = Ratio<T>; |
654 | |
655 | #[inline] |
656 | fn $method(self, other: T) -> Ratio<T> { |
657 | self.clone().$method(other) |
658 | } |
659 | } |
660 | }; |
661 | } |
662 | |
663 | macro_rules! forward_val_ref_binop { |
664 | (impl $imp:ident, $method:ident) => { |
665 | impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> |
666 | where |
667 | T: Clone + Integer, |
668 | { |
669 | type Output = Ratio<T>; |
670 | |
671 | #[inline] |
672 | fn $method(self, other: &Ratio<T>) -> Ratio<T> { |
673 | self.$method(other.clone()) |
674 | } |
675 | } |
676 | impl<'a, T> $imp<&'a T> for Ratio<T> |
677 | where |
678 | T: Clone + Integer, |
679 | { |
680 | type Output = Ratio<T>; |
681 | |
682 | #[inline] |
683 | fn $method(self, other: &T) -> Ratio<T> { |
684 | self.$method(other.clone()) |
685 | } |
686 | } |
687 | }; |
688 | } |
689 | |
690 | macro_rules! forward_all_binop { |
691 | (impl $imp:ident, $method:ident) => { |
692 | forward_ref_ref_binop!(impl $imp, $method); |
693 | forward_ref_val_binop!(impl $imp, $method); |
694 | forward_val_ref_binop!(impl $imp, $method); |
695 | }; |
696 | } |
697 | |
698 | // Arithmetic |
699 | forward_all_binop!(impl Mul, mul); |
700 | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
701 | impl<T> Mul<Ratio<T>> for Ratio<T> |
702 | where |
703 | T: Clone + Integer, |
704 | { |
705 | type Output = Ratio<T>; |
706 | #[inline ] |
707 | fn mul(self, rhs: Ratio<T>) -> Ratio<T> { |
708 | let gcd_ad: T = self.numer.gcd(&rhs.denom); |
709 | let gcd_bc: T = self.denom.gcd(&rhs.numer); |
710 | Ratio::new( |
711 | self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), |
712 | self.denom / gcd_bc * (rhs.denom / gcd_ad), |
713 | ) |
714 | } |
715 | } |
716 | // a/b * c/1 = (a*c) / (b*1) = (a*c) / b |
717 | impl<T> Mul<T> for Ratio<T> |
718 | where |
719 | T: Clone + Integer, |
720 | { |
721 | type Output = Ratio<T>; |
722 | #[inline ] |
723 | fn mul(self, rhs: T) -> Ratio<T> { |
724 | let gcd: T = self.denom.gcd(&rhs); |
725 | Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) |
726 | } |
727 | } |
728 | |
729 | forward_all_binop!(impl Div, div); |
730 | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
731 | impl<T> Div<Ratio<T>> for Ratio<T> |
732 | where |
733 | T: Clone + Integer, |
734 | { |
735 | type Output = Ratio<T>; |
736 | |
737 | #[inline ] |
738 | fn div(self, rhs: Ratio<T>) -> Ratio<T> { |
739 | let gcd_ac: T = self.numer.gcd(&rhs.numer); |
740 | let gcd_bd: T = self.denom.gcd(&rhs.denom); |
741 | Ratio::new( |
742 | self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), |
743 | self.denom / gcd_bd * (rhs.numer / gcd_ac), |
744 | ) |
745 | } |
746 | } |
747 | // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) |
748 | impl<T> Div<T> for Ratio<T> |
749 | where |
750 | T: Clone + Integer, |
751 | { |
752 | type Output = Ratio<T>; |
753 | |
754 | #[inline ] |
755 | fn div(self, rhs: T) -> Ratio<T> { |
756 | let gcd: T = self.numer.gcd(&rhs); |
757 | Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) |
758 | } |
759 | } |
760 | |
761 | macro_rules! arith_impl { |
762 | (impl $imp:ident, $method:ident) => { |
763 | forward_all_binop!(impl $imp, $method); |
764 | // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) |
765 | impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { |
766 | type Output = Ratio<T>; |
767 | #[inline] |
768 | fn $method(self, rhs: Ratio<T>) -> Ratio<T> { |
769 | if self.denom == rhs.denom { |
770 | return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); |
771 | } |
772 | let lcm = self.denom.lcm(&rhs.denom); |
773 | let lhs_numer = self.numer * (lcm.clone() / self.denom); |
774 | let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); |
775 | Ratio::new(lhs_numer.$method(rhs_numer), lcm) |
776 | } |
777 | } |
778 | // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern |
779 | impl<T: Clone + Integer> $imp<T> for Ratio<T> { |
780 | type Output = Ratio<T>; |
781 | #[inline] |
782 | fn $method(self, rhs: T) -> Ratio<T> { |
783 | Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) |
784 | } |
785 | } |
786 | }; |
787 | } |
788 | |
789 | arith_impl!(impl Add, add); |
790 | arith_impl!(impl Sub, sub); |
791 | arith_impl!(impl Rem, rem); |
792 | |
793 | // a/b * c/d = (a*c)/(b*d) |
794 | impl<T> CheckedMul for Ratio<T> |
795 | where |
796 | T: Clone + Integer + CheckedMul, |
797 | { |
798 | #[inline ] |
799 | fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
800 | let gcd_ad: T = self.numer.gcd(&rhs.denom); |
801 | let gcd_bc: T = self.denom.gcd(&rhs.numer); |
802 | Some(Ratio::new( |
803 | (self.numer.clone() / gcd_ad.clone()) |
804 | .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, |
805 | (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, |
806 | )) |
807 | } |
808 | } |
809 | |
810 | // (a/b) / (c/d) = (a*d)/(b*c) |
811 | impl<T> CheckedDiv for Ratio<T> |
812 | where |
813 | T: Clone + Integer + CheckedMul, |
814 | { |
815 | #[inline ] |
816 | fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
817 | if rhs.is_zero() { |
818 | return None; |
819 | } |
820 | let (numer, denom) = if self.denom == rhs.denom { |
821 | (self.numer.clone(), rhs.numer.clone()) |
822 | } else if self.numer == rhs.numer { |
823 | (rhs.denom.clone(), self.denom.clone()) |
824 | } else { |
825 | let gcd_ac = self.numer.gcd(&rhs.numer); |
826 | let gcd_bd = self.denom.gcd(&rhs.denom); |
827 | ( |
828 | (self.numer.clone() / gcd_ac.clone()) |
829 | .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, |
830 | (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, |
831 | ) |
832 | }; |
833 | // Manual `reduce()`, avoiding sharp edges |
834 | if denom.is_zero() { |
835 | None |
836 | } else if numer.is_zero() { |
837 | Some(Self::zero()) |
838 | } else if numer == denom { |
839 | Some(Self::one()) |
840 | } else { |
841 | let g = numer.gcd(&denom); |
842 | let numer = numer / g.clone(); |
843 | let denom = denom / g; |
844 | let raw = if denom < T::zero() { |
845 | // We need to keep denom positive, but 2's-complement MIN may |
846 | // overflow negation -- instead we can check multiplying -1. |
847 | let n1 = T::zero() - T::one(); |
848 | Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) |
849 | } else { |
850 | Ratio::new_raw(numer, denom) |
851 | }; |
852 | Some(raw) |
853 | } |
854 | } |
855 | } |
856 | |
857 | // As arith_impl! but for Checked{Add,Sub} traits |
858 | macro_rules! checked_arith_impl { |
859 | (impl $imp:ident, $method:ident) => { |
860 | impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { |
861 | #[inline] |
862 | fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
863 | let gcd = self.denom.clone().gcd(&rhs.denom); |
864 | let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; |
865 | let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; |
866 | let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; |
867 | Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) |
868 | } |
869 | } |
870 | }; |
871 | } |
872 | |
873 | // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) |
874 | checked_arith_impl!(impl CheckedAdd, checked_add); |
875 | |
876 | // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) |
877 | checked_arith_impl!(impl CheckedSub, checked_sub); |
878 | |
879 | impl<T> Neg for Ratio<T> |
880 | where |
881 | T: Clone + Integer + Neg<Output = T>, |
882 | { |
883 | type Output = Ratio<T>; |
884 | |
885 | #[inline ] |
886 | fn neg(self) -> Ratio<T> { |
887 | Ratio::new_raw(-self.numer, self.denom) |
888 | } |
889 | } |
890 | |
891 | impl<'a, T> Neg for &'a Ratio<T> |
892 | where |
893 | T: Clone + Integer + Neg<Output = T>, |
894 | { |
895 | type Output = Ratio<T>; |
896 | |
897 | #[inline ] |
898 | fn neg(self) -> Ratio<T> { |
899 | -self.clone() |
900 | } |
901 | } |
902 | |
903 | impl<T> Inv for Ratio<T> |
904 | where |
905 | T: Clone + Integer, |
906 | { |
907 | type Output = Ratio<T>; |
908 | |
909 | #[inline ] |
910 | fn inv(self) -> Ratio<T> { |
911 | self.recip() |
912 | } |
913 | } |
914 | |
915 | impl<'a, T> Inv for &'a Ratio<T> |
916 | where |
917 | T: Clone + Integer, |
918 | { |
919 | type Output = Ratio<T>; |
920 | |
921 | #[inline ] |
922 | fn inv(self) -> Ratio<T> { |
923 | self.recip() |
924 | } |
925 | } |
926 | |
927 | // Constants |
928 | impl<T: ConstZero + ConstOne> Ratio<T> { |
929 | /// A constant `Ratio` 0/1. |
930 | pub const ZERO: Self = Self::new_raw(T::ZERO, T::ONE); |
931 | } |
932 | |
933 | impl<T: Clone + Integer + ConstZero + ConstOne> ConstZero for Ratio<T> { |
934 | const ZERO: Self = Self::ZERO; |
935 | } |
936 | |
937 | impl<T: Clone + Integer> Zero for Ratio<T> { |
938 | #[inline ] |
939 | fn zero() -> Ratio<T> { |
940 | Ratio::new_raw(numer:Zero::zero(), denom:One::one()) |
941 | } |
942 | |
943 | #[inline ] |
944 | fn is_zero(&self) -> bool { |
945 | self.numer.is_zero() |
946 | } |
947 | |
948 | #[inline ] |
949 | fn set_zero(&mut self) { |
950 | self.numer.set_zero(); |
951 | self.denom.set_one(); |
952 | } |
953 | } |
954 | |
955 | impl<T: ConstOne> Ratio<T> { |
956 | /// A constant `Ratio` 1/1. |
957 | pub const ONE: Self = Self::new_raw(T::ONE, T::ONE); |
958 | } |
959 | |
960 | impl<T: Clone + Integer + ConstOne> ConstOne for Ratio<T> { |
961 | const ONE: Self = Self::ONE; |
962 | } |
963 | |
964 | impl<T: Clone + Integer> One for Ratio<T> { |
965 | #[inline ] |
966 | fn one() -> Ratio<T> { |
967 | Ratio::new_raw(numer:One::one(), denom:One::one()) |
968 | } |
969 | |
970 | #[inline ] |
971 | fn is_one(&self) -> bool { |
972 | self.numer == self.denom |
973 | } |
974 | |
975 | #[inline ] |
976 | fn set_one(&mut self) { |
977 | self.numer.set_one(); |
978 | self.denom.set_one(); |
979 | } |
980 | } |
981 | |
982 | impl<T: Clone + Integer> Num for Ratio<T> { |
983 | type FromStrRadixErr = ParseRatioError; |
984 | |
985 | /// Parses `numer/denom` where the numbers are in base `radix`. |
986 | fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { |
987 | if s.splitn(2, '/' ).count() == 2 { |
988 | let mut parts = s.splitn(2, '/' ).map(|ss| { |
989 | T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { |
990 | kind: RatioErrorKind::ParseError, |
991 | }) |
992 | }); |
993 | let numer: T = parts.next().unwrap()?; |
994 | let denom: T = parts.next().unwrap()?; |
995 | if denom.is_zero() { |
996 | Err(ParseRatioError { |
997 | kind: RatioErrorKind::ZeroDenominator, |
998 | }) |
999 | } else { |
1000 | Ok(Ratio::new(numer, denom)) |
1001 | } |
1002 | } else { |
1003 | Err(ParseRatioError { |
1004 | kind: RatioErrorKind::ParseError, |
1005 | }) |
1006 | } |
1007 | } |
1008 | } |
1009 | |
1010 | impl<T: Clone + Integer + Signed> Signed for Ratio<T> { |
1011 | #[inline ] |
1012 | fn abs(&self) -> Ratio<T> { |
1013 | if self.is_negative() { |
1014 | -self.clone() |
1015 | } else { |
1016 | self.clone() |
1017 | } |
1018 | } |
1019 | |
1020 | #[inline ] |
1021 | fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { |
1022 | if *self <= *other { |
1023 | Zero::zero() |
1024 | } else { |
1025 | self - other |
1026 | } |
1027 | } |
1028 | |
1029 | #[inline ] |
1030 | fn signum(&self) -> Ratio<T> { |
1031 | if self.is_positive() { |
1032 | Self::one() |
1033 | } else if self.is_zero() { |
1034 | Self::zero() |
1035 | } else { |
1036 | -Self::one() |
1037 | } |
1038 | } |
1039 | |
1040 | #[inline ] |
1041 | fn is_positive(&self) -> bool { |
1042 | (self.numer.is_positive() && self.denom.is_positive()) |
1043 | || (self.numer.is_negative() && self.denom.is_negative()) |
1044 | } |
1045 | |
1046 | #[inline ] |
1047 | fn is_negative(&self) -> bool { |
1048 | (self.numer.is_negative() && self.denom.is_positive()) |
1049 | || (self.numer.is_positive() && self.denom.is_negative()) |
1050 | } |
1051 | } |
1052 | |
1053 | // String conversions |
1054 | macro_rules! impl_formatting { |
1055 | ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { |
1056 | impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> { |
1057 | #[cfg(feature = "std" )] |
1058 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
1059 | let pre_pad = if self.denom.is_one() { |
1060 | format!($fmt_str, self.numer) |
1061 | } else { |
1062 | if f.alternate() { |
1063 | format!(concat!($fmt_str, "/" , $fmt_alt), self.numer, self.denom) |
1064 | } else { |
1065 | format!(concat!($fmt_str, "/" , $fmt_str), self.numer, self.denom) |
1066 | } |
1067 | }; |
1068 | if let Some(pre_pad) = pre_pad.strip_prefix("-" ) { |
1069 | f.pad_integral(false, $prefix, pre_pad) |
1070 | } else { |
1071 | f.pad_integral(true, $prefix, &pre_pad) |
1072 | } |
1073 | } |
1074 | #[cfg(not(feature = "std" ))] |
1075 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
1076 | let plus = if f.sign_plus() && self.numer >= T::zero() { |
1077 | "+" |
1078 | } else { |
1079 | "" |
1080 | }; |
1081 | if self.denom.is_one() { |
1082 | if f.alternate() { |
1083 | write!(f, concat!("{}" , $fmt_alt), plus, self.numer) |
1084 | } else { |
1085 | write!(f, concat!("{}" , $fmt_str), plus, self.numer) |
1086 | } |
1087 | } else { |
1088 | if f.alternate() { |
1089 | write!( |
1090 | f, |
1091 | concat!("{}" , $fmt_alt, "/" , $fmt_alt), |
1092 | plus, self.numer, self.denom |
1093 | ) |
1094 | } else { |
1095 | write!( |
1096 | f, |
1097 | concat!("{}" , $fmt_str, "/" , $fmt_str), |
1098 | plus, self.numer, self.denom |
1099 | ) |
1100 | } |
1101 | } |
1102 | } |
1103 | } |
1104 | }; |
1105 | } |
1106 | |
1107 | impl_formatting!(Display, "" , "{}" , "{:#}" ); |
1108 | impl_formatting!(Octal, "0o" , "{:o}" , "{:#o}" ); |
1109 | impl_formatting!(Binary, "0b" , "{:b}" , "{:#b}" ); |
1110 | impl_formatting!(LowerHex, "0x" , "{:x}" , "{:#x}" ); |
1111 | impl_formatting!(UpperHex, "0x" , "{:X}" , "{:#X}" ); |
1112 | impl_formatting!(LowerExp, "" , "{:e}" , "{:#e}" ); |
1113 | impl_formatting!(UpperExp, "" , "{:E}" , "{:#E}" ); |
1114 | |
1115 | impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { |
1116 | type Err = ParseRatioError; |
1117 | |
1118 | /// Parses `numer/denom` or just `numer`. |
1119 | fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { |
1120 | let mut split = s.splitn(2, '/' ); |
1121 | |
1122 | let n = split.next().ok_or(ParseRatioError { |
1123 | kind: RatioErrorKind::ParseError, |
1124 | })?; |
1125 | let num = FromStr::from_str(n).map_err(|_| ParseRatioError { |
1126 | kind: RatioErrorKind::ParseError, |
1127 | })?; |
1128 | |
1129 | let d = split.next().unwrap_or("1" ); |
1130 | let den = FromStr::from_str(d).map_err(|_| ParseRatioError { |
1131 | kind: RatioErrorKind::ParseError, |
1132 | })?; |
1133 | |
1134 | if Zero::is_zero(&den) { |
1135 | Err(ParseRatioError { |
1136 | kind: RatioErrorKind::ZeroDenominator, |
1137 | }) |
1138 | } else { |
1139 | Ok(Ratio::new(num, den)) |
1140 | } |
1141 | } |
1142 | } |
1143 | |
1144 | impl<T> From<Ratio<T>> for (T, T) { |
1145 | fn from(val: Ratio<T>) -> Self { |
1146 | (val.numer, val.denom) |
1147 | } |
1148 | } |
1149 | |
1150 | #[cfg (feature = "serde" )] |
1151 | impl<T> serde::Serialize for Ratio<T> |
1152 | where |
1153 | T: serde::Serialize + Clone + Integer + PartialOrd, |
1154 | { |
1155 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1156 | where |
1157 | S: serde::Serializer, |
1158 | { |
1159 | (self.numer(), self.denom()).serialize(serializer) |
1160 | } |
1161 | } |
1162 | |
1163 | #[cfg (feature = "serde" )] |
1164 | impl<'de, T> serde::Deserialize<'de> for Ratio<T> |
1165 | where |
1166 | T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, |
1167 | { |
1168 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1169 | where |
1170 | D: serde::Deserializer<'de>, |
1171 | { |
1172 | use serde::de::Error; |
1173 | use serde::de::Unexpected; |
1174 | let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; |
1175 | if denom.is_zero() { |
1176 | Err(Error::invalid_value( |
1177 | Unexpected::Signed(0), |
1178 | &"a ratio with non-zero denominator" , |
1179 | )) |
1180 | } else { |
1181 | Ok(Ratio::new_raw(numer, denom)) |
1182 | } |
1183 | } |
1184 | } |
1185 | |
1186 | // FIXME: Bubble up specific errors |
1187 | #[derive (Copy, Clone, Debug, PartialEq)] |
1188 | pub struct ParseRatioError { |
1189 | kind: RatioErrorKind, |
1190 | } |
1191 | |
1192 | #[derive (Copy, Clone, Debug, PartialEq)] |
1193 | enum RatioErrorKind { |
1194 | ParseError, |
1195 | ZeroDenominator, |
1196 | } |
1197 | |
1198 | impl fmt::Display for ParseRatioError { |
1199 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1200 | self.kind.description().fmt(f) |
1201 | } |
1202 | } |
1203 | |
1204 | #[cfg (feature = "std" )] |
1205 | impl Error for ParseRatioError { |
1206 | #[allow (deprecated)] |
1207 | fn description(&self) -> &str { |
1208 | self.kind.description() |
1209 | } |
1210 | } |
1211 | |
1212 | impl RatioErrorKind { |
1213 | fn description(&self) -> &'static str { |
1214 | match *self { |
1215 | RatioErrorKind::ParseError => "failed to parse integer" , |
1216 | RatioErrorKind::ZeroDenominator => "zero value denominator" , |
1217 | } |
1218 | } |
1219 | } |
1220 | |
1221 | #[cfg (feature = "num-bigint" )] |
1222 | impl FromPrimitive for Ratio<BigInt> { |
1223 | fn from_i64(n: i64) -> Option<Self> { |
1224 | Some(Ratio::from_integer(n.into())) |
1225 | } |
1226 | |
1227 | fn from_i128(n: i128) -> Option<Self> { |
1228 | Some(Ratio::from_integer(n.into())) |
1229 | } |
1230 | |
1231 | fn from_u64(n: u64) -> Option<Self> { |
1232 | Some(Ratio::from_integer(n.into())) |
1233 | } |
1234 | |
1235 | fn from_u128(n: u128) -> Option<Self> { |
1236 | Some(Ratio::from_integer(n.into())) |
1237 | } |
1238 | |
1239 | fn from_f32(n: f32) -> Option<Self> { |
1240 | Ratio::from_float(n) |
1241 | } |
1242 | |
1243 | fn from_f64(n: f64) -> Option<Self> { |
1244 | Ratio::from_float(n) |
1245 | } |
1246 | } |
1247 | |
1248 | macro_rules! from_primitive_integer { |
1249 | ($typ:ty, $approx:ident) => { |
1250 | impl FromPrimitive for Ratio<$typ> { |
1251 | fn from_i64(n: i64) -> Option<Self> { |
1252 | <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) |
1253 | } |
1254 | |
1255 | fn from_i128(n: i128) -> Option<Self> { |
1256 | <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) |
1257 | } |
1258 | |
1259 | fn from_u64(n: u64) -> Option<Self> { |
1260 | <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) |
1261 | } |
1262 | |
1263 | fn from_u128(n: u128) -> Option<Self> { |
1264 | <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) |
1265 | } |
1266 | |
1267 | fn from_f32(n: f32) -> Option<Self> { |
1268 | $approx(n, 10e-20, 30) |
1269 | } |
1270 | |
1271 | fn from_f64(n: f64) -> Option<Self> { |
1272 | $approx(n, 10e-20, 30) |
1273 | } |
1274 | } |
1275 | }; |
1276 | } |
1277 | |
1278 | from_primitive_integer!(i8, approximate_float); |
1279 | from_primitive_integer!(i16, approximate_float); |
1280 | from_primitive_integer!(i32, approximate_float); |
1281 | from_primitive_integer!(i64, approximate_float); |
1282 | from_primitive_integer!(i128, approximate_float); |
1283 | from_primitive_integer!(isize, approximate_float); |
1284 | |
1285 | from_primitive_integer!(u8, approximate_float_unsigned); |
1286 | from_primitive_integer!(u16, approximate_float_unsigned); |
1287 | from_primitive_integer!(u32, approximate_float_unsigned); |
1288 | from_primitive_integer!(u64, approximate_float_unsigned); |
1289 | from_primitive_integer!(u128, approximate_float_unsigned); |
1290 | from_primitive_integer!(usize, approximate_float_unsigned); |
1291 | |
1292 | impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { |
1293 | pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
1294 | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
1295 | // to work well. Might want to choose something based on the types in the future, e.g. |
1296 | // T::max().recip() and T::bits() or something similar. |
1297 | let epsilon: F = <F as NumCast>::from(10e-20).expect(msg:"Can't convert 10e-20" ); |
1298 | approximate_float(val:f, max_error:epsilon, max_iterations:30) |
1299 | } |
1300 | } |
1301 | |
1302 | impl<T: Integer + Unsigned + Bounded + NumCast + Clone> Ratio<T> { |
1303 | pub fn approximate_float_unsigned<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
1304 | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
1305 | // to work well. Might want to choose something based on the types in the future, e.g. |
1306 | // T::max().recip() and T::bits() or something similar. |
1307 | let epsilon: F = <F as NumCast>::from(10e-20).expect(msg:"Can't convert 10e-20" ); |
1308 | approximate_float_unsigned(val:f, max_error:epsilon, max_iterations:30) |
1309 | } |
1310 | } |
1311 | |
1312 | fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1313 | where |
1314 | T: Integer + Signed + Bounded + NumCast + Clone, |
1315 | F: FloatCore + NumCast, |
1316 | { |
1317 | let negative: bool = val.is_sign_negative(); |
1318 | let abs_val: F = val.abs(); |
1319 | |
1320 | let r: Ratio = approximate_float_unsigned(abs_val, max_error, max_iterations)?; |
1321 | |
1322 | // Make negative again if needed |
1323 | Some(if negative { r.neg() } else { r }) |
1324 | } |
1325 | |
1326 | // No Unsigned constraint because this also works on positive integers and is called |
1327 | // like that, see above |
1328 | fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1329 | where |
1330 | T: Integer + Bounded + NumCast + Clone, |
1331 | F: FloatCore + NumCast, |
1332 | { |
1333 | // Continued fractions algorithm |
1334 | // https://web.archive.org/web/20200629111319/http://mathforum.org:80/dr.math/faq/faq.fractions.html#decfrac |
1335 | |
1336 | if val < F::zero() || val.is_nan() { |
1337 | return None; |
1338 | } |
1339 | |
1340 | let mut q = val; |
1341 | let mut n0 = T::zero(); |
1342 | let mut d0 = T::one(); |
1343 | let mut n1 = T::one(); |
1344 | let mut d1 = T::zero(); |
1345 | |
1346 | let t_max = T::max_value(); |
1347 | let t_max_f = <F as NumCast>::from(t_max.clone())?; |
1348 | |
1349 | // 1/epsilon > T::MAX |
1350 | let epsilon = t_max_f.recip(); |
1351 | |
1352 | // Overflow |
1353 | if q > t_max_f { |
1354 | return None; |
1355 | } |
1356 | |
1357 | for _ in 0..max_iterations { |
1358 | let a = match <T as NumCast>::from(q) { |
1359 | None => break, |
1360 | Some(a) => a, |
1361 | }; |
1362 | |
1363 | let a_f = match <F as NumCast>::from(a.clone()) { |
1364 | None => break, |
1365 | Some(a_f) => a_f, |
1366 | }; |
1367 | let f = q - a_f; |
1368 | |
1369 | // Prevent overflow |
1370 | if !a.is_zero() |
1371 | && (n1 > t_max.clone() / a.clone() |
1372 | || d1 > t_max.clone() / a.clone() |
1373 | || a.clone() * n1.clone() > t_max.clone() - n0.clone() |
1374 | || a.clone() * d1.clone() > t_max.clone() - d0.clone()) |
1375 | { |
1376 | break; |
1377 | } |
1378 | |
1379 | let n = a.clone() * n1.clone() + n0.clone(); |
1380 | let d = a.clone() * d1.clone() + d0.clone(); |
1381 | |
1382 | n0 = n1; |
1383 | d0 = d1; |
1384 | n1 = n.clone(); |
1385 | d1 = d.clone(); |
1386 | |
1387 | // Simplify fraction. Doing so here instead of at the end |
1388 | // allows us to get closer to the target value without overflows |
1389 | let g = Integer::gcd(&n1, &d1); |
1390 | if !g.is_zero() { |
1391 | n1 = n1 / g.clone(); |
1392 | d1 = d1 / g.clone(); |
1393 | } |
1394 | |
1395 | // Close enough? |
1396 | let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { |
1397 | (Some(n_f), Some(d_f)) => (n_f, d_f), |
1398 | _ => break, |
1399 | }; |
1400 | if (n_f / d_f - val).abs() < max_error { |
1401 | break; |
1402 | } |
1403 | |
1404 | // Prevent division by ~0 |
1405 | if f < epsilon { |
1406 | break; |
1407 | } |
1408 | q = f.recip(); |
1409 | } |
1410 | |
1411 | // Overflow |
1412 | if d1.is_zero() { |
1413 | return None; |
1414 | } |
1415 | |
1416 | Some(Ratio::new(n1, d1)) |
1417 | } |
1418 | |
1419 | #[cfg (not(feature = "num-bigint" ))] |
1420 | macro_rules! to_primitive_small { |
1421 | ($($type_name:ty)*) => ($( |
1422 | impl ToPrimitive for Ratio<$type_name> { |
1423 | fn to_i64(&self) -> Option<i64> { |
1424 | self.to_integer().to_i64() |
1425 | } |
1426 | |
1427 | fn to_i128(&self) -> Option<i128> { |
1428 | self.to_integer().to_i128() |
1429 | } |
1430 | |
1431 | fn to_u64(&self) -> Option<u64> { |
1432 | self.to_integer().to_u64() |
1433 | } |
1434 | |
1435 | fn to_u128(&self) -> Option<u128> { |
1436 | self.to_integer().to_u128() |
1437 | } |
1438 | |
1439 | fn to_f64(&self) -> Option<f64> { |
1440 | let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); |
1441 | if float.is_nan() { |
1442 | None |
1443 | } else { |
1444 | Some(float) |
1445 | } |
1446 | } |
1447 | } |
1448 | )*) |
1449 | } |
1450 | |
1451 | #[cfg (not(feature = "num-bigint" ))] |
1452 | to_primitive_small!(u8 i8 u16 i16 u32 i32); |
1453 | |
1454 | #[cfg (all(target_pointer_width = "32" , not(feature = "num-bigint" )))] |
1455 | to_primitive_small!(usize isize); |
1456 | |
1457 | #[cfg (not(feature = "num-bigint" ))] |
1458 | macro_rules! to_primitive_64 { |
1459 | ($($type_name:ty)*) => ($( |
1460 | impl ToPrimitive for Ratio<$type_name> { |
1461 | fn to_i64(&self) -> Option<i64> { |
1462 | self.to_integer().to_i64() |
1463 | } |
1464 | |
1465 | fn to_i128(&self) -> Option<i128> { |
1466 | self.to_integer().to_i128() |
1467 | } |
1468 | |
1469 | fn to_u64(&self) -> Option<u64> { |
1470 | self.to_integer().to_u64() |
1471 | } |
1472 | |
1473 | fn to_u128(&self) -> Option<u128> { |
1474 | self.to_integer().to_u128() |
1475 | } |
1476 | |
1477 | fn to_f64(&self) -> Option<f64> { |
1478 | let float = ratio_to_f64( |
1479 | self.numer as i128, |
1480 | self.denom as i128 |
1481 | ); |
1482 | if float.is_nan() { |
1483 | None |
1484 | } else { |
1485 | Some(float) |
1486 | } |
1487 | } |
1488 | } |
1489 | )*) |
1490 | } |
1491 | |
1492 | #[cfg (not(feature = "num-bigint" ))] |
1493 | to_primitive_64!(u64 i64); |
1494 | |
1495 | #[cfg (all(target_pointer_width = "64" , not(feature = "num-bigint" )))] |
1496 | to_primitive_64!(usize isize); |
1497 | |
1498 | #[cfg (feature = "num-bigint" )] |
1499 | impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> { |
1500 | fn to_i64(&self) -> Option<i64> { |
1501 | self.to_integer().to_i64() |
1502 | } |
1503 | |
1504 | fn to_i128(&self) -> Option<i128> { |
1505 | self.to_integer().to_i128() |
1506 | } |
1507 | |
1508 | fn to_u64(&self) -> Option<u64> { |
1509 | self.to_integer().to_u64() |
1510 | } |
1511 | |
1512 | fn to_u128(&self) -> Option<u128> { |
1513 | self.to_integer().to_u128() |
1514 | } |
1515 | |
1516 | fn to_f64(&self) -> Option<f64> { |
1517 | let float = match (self.numer.to_i64(), self.denom.to_i64()) { |
1518 | (Some(numer), Some(denom)) => ratio_to_f64( |
1519 | <i128 as From<_>>::from(numer), |
1520 | <i128 as From<_>>::from(denom), |
1521 | ), |
1522 | _ => { |
1523 | let numer: BigInt = self.numer.to_bigint()?; |
1524 | let denom: BigInt = self.denom.to_bigint()?; |
1525 | ratio_to_f64(numer, denom) |
1526 | } |
1527 | }; |
1528 | if float.is_nan() { |
1529 | None |
1530 | } else { |
1531 | Some(float) |
1532 | } |
1533 | } |
1534 | } |
1535 | |
1536 | trait Bits { |
1537 | fn bits(&self) -> u64; |
1538 | } |
1539 | |
1540 | #[cfg (feature = "num-bigint" )] |
1541 | impl Bits for BigInt { |
1542 | fn bits(&self) -> u64 { |
1543 | self.bits() |
1544 | } |
1545 | } |
1546 | |
1547 | impl Bits for i128 { |
1548 | fn bits(&self) -> u64 { |
1549 | (128 - self.wrapping_abs().leading_zeros()).into() |
1550 | } |
1551 | } |
1552 | |
1553 | /// Converts a ratio of `T` to an f64. |
1554 | /// |
1555 | /// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than |
1556 | /// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. |
1557 | fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>( |
1558 | numer: T, |
1559 | denom: T, |
1560 | ) -> f64 { |
1561 | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; |
1562 | |
1563 | assert_eq!( |
1564 | RADIX, 2, |
1565 | "only floating point implementations with radix 2 are supported" |
1566 | ); |
1567 | |
1568 | // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. |
1569 | const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; |
1570 | const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; |
1571 | |
1572 | let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); |
1573 | if !flo_sign.is_normal() { |
1574 | return flo_sign; |
1575 | } |
1576 | |
1577 | // Fast track: both sides can losslessly be converted to f64s. In this case, letting the |
1578 | // FPU do the job is faster and easier. In any other case, converting to f64s may lead |
1579 | // to an inexact result: https://stackoverflow.com/questions/56641441/. |
1580 | if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { |
1581 | let exact = MIN_EXACT_INT..=MAX_EXACT_INT; |
1582 | if exact.contains(&n) && exact.contains(&d) { |
1583 | return n.to_f64().unwrap() / d.to_f64().unwrap(); |
1584 | } |
1585 | } |
1586 | |
1587 | // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will |
1588 | // be used as the mantissa of the resulting float, and the remaining two are for rounding. |
1589 | // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or |
1590 | // 56 bits. |
1591 | let mut numer = numer.abs(); |
1592 | let mut denom = denom.abs(); |
1593 | let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { |
1594 | Some(diff) => (true, diff), |
1595 | None => (false, denom.bits() - numer.bits()), |
1596 | }; |
1597 | |
1598 | // Filter out overflows and underflows. After this step, the signed difference fits in an |
1599 | // isize. |
1600 | if is_diff_positive && absolute_diff > MAX_EXP as u64 { |
1601 | return INFINITY * flo_sign; |
1602 | } |
1603 | if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { |
1604 | return 0.0 * flo_sign; |
1605 | } |
1606 | let diff = if is_diff_positive { |
1607 | absolute_diff.to_isize().unwrap() |
1608 | } else { |
1609 | -absolute_diff.to_isize().unwrap() |
1610 | }; |
1611 | |
1612 | // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the |
1613 | // quotient is going to be subnormal, in which case it may have fewer bits. |
1614 | let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; |
1615 | if shift >= 0 { |
1616 | denom <<= shift as usize |
1617 | } else { |
1618 | numer <<= -shift as usize |
1619 | }; |
1620 | |
1621 | let (quotient, remainder) = numer.div_rem(&denom); |
1622 | |
1623 | // This is guaranteed to fit since we've set up quotient to be at most 56 bits. |
1624 | let mut quotient = quotient.to_u64().unwrap(); |
1625 | let n_rounding_bits = { |
1626 | let quotient_bits = 64 - quotient.leading_zeros() as isize; |
1627 | let subnormal_bits = MIN_EXP as isize - shift; |
1628 | quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize |
1629 | } as usize; |
1630 | debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); |
1631 | let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; |
1632 | |
1633 | // Round to 53 bits with round-to-even. For rounding, we need to take into account both |
1634 | // our rounding bits and the division's remainder. |
1635 | let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; |
1636 | let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; |
1637 | let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; |
1638 | if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { |
1639 | quotient += 1u64 << n_rounding_bits; |
1640 | } |
1641 | quotient &= !rounding_bit_mask; |
1642 | |
1643 | // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 |
1644 | // trailing zeros, so there is no risk of a rounding error here. |
1645 | let q_float = quotient as f64 * flo_sign; |
1646 | ldexp(q_float, shift as i32) |
1647 | } |
1648 | |
1649 | /// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not |
1650 | /// representable. |
1651 | fn ldexp(x: f64, exp: i32) -> f64 { |
1652 | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; |
1653 | |
1654 | assert_eq!( |
1655 | RADIX, 2, |
1656 | "only floating point implementations with radix 2 are supported" |
1657 | ); |
1658 | |
1659 | const EXPONENT_MASK: u64 = 0x7ff << 52; |
1660 | const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; |
1661 | const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; |
1662 | |
1663 | if x.is_zero() || x.is_infinite() || x.is_nan() { |
1664 | return x; |
1665 | } |
1666 | |
1667 | // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. |
1668 | if exp > 3 * MAX_EXP { |
1669 | return INFINITY * x.signum(); |
1670 | } else if exp < -3 * MAX_EXP { |
1671 | return 0.0 * x.signum(); |
1672 | } |
1673 | |
1674 | // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. |
1675 | let (bits, curr_exp) = if !x.is_normal() { |
1676 | // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of |
1677 | // precision or rounding. |
1678 | let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); |
1679 | let bits = normal_x.to_bits(); |
1680 | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
1681 | ( |
1682 | bits, |
1683 | ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, |
1684 | ) |
1685 | } else { |
1686 | let bits = x.to_bits(); |
1687 | let curr_exp = (bits & EXPONENT_MASK) >> 52; |
1688 | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
1689 | (bits, curr_exp as i32) |
1690 | }; |
1691 | |
1692 | // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between |
1693 | // -2*MAX_EXP and 2*MAX_EXP. |
1694 | let new_exp = curr_exp + exp; |
1695 | |
1696 | if new_exp > MAX_UNSIGNED_EXPONENT { |
1697 | INFINITY * x.signum() |
1698 | } else if new_exp > 0 { |
1699 | // Normal case: exponent is not too large nor subnormal. |
1700 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
1701 | f64::from_bits(new_bits) |
1702 | } else if new_exp >= -(MANTISSA_DIGITS as i32) { |
1703 | // Result is subnormal but may not be zero. |
1704 | // In this case, we increase the exponent by 54 to make it normal, then multiply the end |
1705 | // result by 2^-53. This results in a single multiplication with no prior rounding error, |
1706 | // so there is no risk of double rounding. |
1707 | let new_exp = new_exp + MIN_SUBNORMAL_POWER; |
1708 | debug_assert!(new_exp >= 0); |
1709 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
1710 | f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) |
1711 | } else { |
1712 | // Result is zero. |
1713 | return 0.0 * x.signum(); |
1714 | } |
1715 | } |
1716 | |
1717 | #[cfg (test)] |
1718 | #[cfg (feature = "std" )] |
1719 | fn hash<T: Hash>(x: &T) -> u64 { |
1720 | use std::collections::hash_map::RandomState; |
1721 | use std::hash::BuildHasher; |
1722 | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
1723 | x.hash(&mut hasher); |
1724 | hasher.finish() |
1725 | } |
1726 | |
1727 | #[cfg (test)] |
1728 | mod test { |
1729 | use super::ldexp; |
1730 | #[cfg (feature = "num-bigint" )] |
1731 | use super::{BigInt, BigRational}; |
1732 | use super::{Ratio, Rational64}; |
1733 | |
1734 | use core::f64; |
1735 | use core::i32; |
1736 | use core::i64; |
1737 | use core::str::FromStr; |
1738 | use num_integer::Integer; |
1739 | use num_traits::ToPrimitive; |
1740 | use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; |
1741 | |
1742 | pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; |
1743 | pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; |
1744 | pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; |
1745 | pub const _NEG2: Rational64 = Ratio { |
1746 | numer: -2, |
1747 | denom: 1, |
1748 | }; |
1749 | pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; |
1750 | pub const _15: Rational64 = Ratio { |
1751 | numer: 15, |
1752 | denom: 1, |
1753 | }; |
1754 | pub const _16: Rational64 = Ratio { |
1755 | numer: 16, |
1756 | denom: 1, |
1757 | }; |
1758 | |
1759 | pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; |
1760 | pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; |
1761 | pub const _1_15: Rational64 = Ratio { |
1762 | numer: 1, |
1763 | denom: 15, |
1764 | }; |
1765 | pub const _1_16: Rational64 = Ratio { |
1766 | numer: 1, |
1767 | denom: 16, |
1768 | }; |
1769 | pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; |
1770 | pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; |
1771 | pub const _NEG1_2: Rational64 = Ratio { |
1772 | numer: -1, |
1773 | denom: 2, |
1774 | }; |
1775 | pub const _1_NEG2: Rational64 = Ratio { |
1776 | numer: 1, |
1777 | denom: -2, |
1778 | }; |
1779 | pub const _NEG1_NEG2: Rational64 = Ratio { |
1780 | numer: -1, |
1781 | denom: -2, |
1782 | }; |
1783 | pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; |
1784 | pub const _NEG1_3: Rational64 = Ratio { |
1785 | numer: -1, |
1786 | denom: 3, |
1787 | }; |
1788 | pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; |
1789 | pub const _NEG2_3: Rational64 = Ratio { |
1790 | numer: -2, |
1791 | denom: 3, |
1792 | }; |
1793 | pub const _MIN: Rational64 = Ratio { |
1794 | numer: i64::MIN, |
1795 | denom: 1, |
1796 | }; |
1797 | pub const _MIN_P1: Rational64 = Ratio { |
1798 | numer: i64::MIN + 1, |
1799 | denom: 1, |
1800 | }; |
1801 | pub const _MAX: Rational64 = Ratio { |
1802 | numer: i64::MAX, |
1803 | denom: 1, |
1804 | }; |
1805 | pub const _MAX_M1: Rational64 = Ratio { |
1806 | numer: i64::MAX - 1, |
1807 | denom: 1, |
1808 | }; |
1809 | pub const _BILLION: Rational64 = Ratio { |
1810 | numer: 1_000_000_000, |
1811 | denom: 1, |
1812 | }; |
1813 | |
1814 | #[cfg (feature = "num-bigint" )] |
1815 | pub fn to_big(n: Rational64) -> BigRational { |
1816 | Ratio::new( |
1817 | FromPrimitive::from_i64(n.numer).unwrap(), |
1818 | FromPrimitive::from_i64(n.denom).unwrap(), |
1819 | ) |
1820 | } |
1821 | #[cfg (not(feature = "num-bigint" ))] |
1822 | pub fn to_big(n: Rational64) -> Rational64 { |
1823 | Ratio::new( |
1824 | FromPrimitive::from_i64(n.numer).unwrap(), |
1825 | FromPrimitive::from_i64(n.denom).unwrap(), |
1826 | ) |
1827 | } |
1828 | |
1829 | #[test ] |
1830 | fn test_test_constants() { |
1831 | // check our constants are what Ratio::new etc. would make. |
1832 | assert_eq!(_0, Zero::zero()); |
1833 | assert_eq!(_1, One::one()); |
1834 | assert_eq!(_2, Ratio::from_integer(2)); |
1835 | assert_eq!(_1_2, Ratio::new(1, 2)); |
1836 | assert_eq!(_3_2, Ratio::new(3, 2)); |
1837 | assert_eq!(_NEG1_2, Ratio::new(-1, 2)); |
1838 | assert_eq!(_2, From::from(2)); |
1839 | } |
1840 | |
1841 | #[test ] |
1842 | fn test_new_reduce() { |
1843 | assert_eq!(Ratio::new(2, 2), One::one()); |
1844 | assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); |
1845 | assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); |
1846 | } |
1847 | #[test ] |
1848 | #[should_panic ] |
1849 | fn test_new_zero() { |
1850 | let _a = Ratio::new(1, 0); |
1851 | } |
1852 | |
1853 | #[test ] |
1854 | fn test_approximate_float() { |
1855 | assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); |
1856 | assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); |
1857 | assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); |
1858 | assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); |
1859 | assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); |
1860 | assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); |
1861 | |
1862 | assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); |
1863 | assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); |
1864 | assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); |
1865 | assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); |
1866 | assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); |
1867 | assert_eq!( |
1868 | Ratio::<i8>::from_f32(-126.5f32), |
1869 | Some(Ratio::new(-126i8, 1)) |
1870 | ); |
1871 | assert_eq!( |
1872 | Ratio::<i8>::from_f32(-127.0f32), |
1873 | Some(Ratio::new(-127i8, 1)) |
1874 | ); |
1875 | assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); |
1876 | |
1877 | assert_eq!(Ratio::<u8>::from_f32(-127f32), None); |
1878 | assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); |
1879 | assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); |
1880 | assert_eq!(Ratio::<u8>::from_f32(256f32), None); |
1881 | |
1882 | assert_eq!(Ratio::<i64>::from_f64(-10e200), None); |
1883 | assert_eq!(Ratio::<i64>::from_f64(10e200), None); |
1884 | assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); |
1885 | assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); |
1886 | assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); |
1887 | assert_eq!( |
1888 | Ratio::<i64>::from_f64(f64::EPSILON), |
1889 | Some(Ratio::new(1, 4503599627370496)) |
1890 | ); |
1891 | assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); |
1892 | assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); |
1893 | } |
1894 | |
1895 | #[test ] |
1896 | #[allow (clippy::eq_op)] |
1897 | fn test_cmp() { |
1898 | assert!(_0 == _0 && _1 == _1); |
1899 | assert!(_0 != _1 && _1 != _0); |
1900 | assert!(_0 < _1 && !(_1 < _0)); |
1901 | assert!(_1 > _0 && !(_0 > _1)); |
1902 | |
1903 | assert!(_0 <= _0 && _1 <= _1); |
1904 | assert!(_0 <= _1 && !(_1 <= _0)); |
1905 | |
1906 | assert!(_0 >= _0 && _1 >= _1); |
1907 | assert!(_1 >= _0 && !(_0 >= _1)); |
1908 | |
1909 | let _0_2: Rational64 = Ratio::new_raw(0, 2); |
1910 | assert_eq!(_0, _0_2); |
1911 | } |
1912 | |
1913 | #[test ] |
1914 | fn test_cmp_overflow() { |
1915 | use core::cmp::Ordering; |
1916 | |
1917 | // issue #7 example: |
1918 | let big = Ratio::new(128u8, 1); |
1919 | let small = big.recip(); |
1920 | assert!(big > small); |
1921 | |
1922 | // try a few that are closer together |
1923 | // (some matching numer, some matching denom, some neither) |
1924 | let ratios = [ |
1925 | Ratio::new(125_i8, 127_i8), |
1926 | Ratio::new(63_i8, 64_i8), |
1927 | Ratio::new(124_i8, 125_i8), |
1928 | Ratio::new(125_i8, 126_i8), |
1929 | Ratio::new(126_i8, 127_i8), |
1930 | Ratio::new(127_i8, 126_i8), |
1931 | ]; |
1932 | |
1933 | fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { |
1934 | #[cfg (feature = "std" )] |
1935 | println!("comparing {} and {}" , a, b); |
1936 | assert_eq!(a.cmp(&b), ord); |
1937 | assert_eq!(b.cmp(&a), ord.reverse()); |
1938 | } |
1939 | |
1940 | for (i, &a) in ratios.iter().enumerate() { |
1941 | check_cmp(a, a, Ordering::Equal); |
1942 | check_cmp(-a, a, Ordering::Less); |
1943 | for &b in &ratios[i + 1..] { |
1944 | check_cmp(a, b, Ordering::Less); |
1945 | check_cmp(-a, -b, Ordering::Greater); |
1946 | check_cmp(a.recip(), b.recip(), Ordering::Greater); |
1947 | check_cmp(-a.recip(), -b.recip(), Ordering::Less); |
1948 | } |
1949 | } |
1950 | } |
1951 | |
1952 | #[test ] |
1953 | fn test_to_integer() { |
1954 | assert_eq!(_0.to_integer(), 0); |
1955 | assert_eq!(_1.to_integer(), 1); |
1956 | assert_eq!(_2.to_integer(), 2); |
1957 | assert_eq!(_1_2.to_integer(), 0); |
1958 | assert_eq!(_3_2.to_integer(), 1); |
1959 | assert_eq!(_NEG1_2.to_integer(), 0); |
1960 | } |
1961 | |
1962 | #[test ] |
1963 | fn test_numer() { |
1964 | assert_eq!(_0.numer(), &0); |
1965 | assert_eq!(_1.numer(), &1); |
1966 | assert_eq!(_2.numer(), &2); |
1967 | assert_eq!(_1_2.numer(), &1); |
1968 | assert_eq!(_3_2.numer(), &3); |
1969 | assert_eq!(_NEG1_2.numer(), &(-1)); |
1970 | } |
1971 | #[test ] |
1972 | fn test_denom() { |
1973 | assert_eq!(_0.denom(), &1); |
1974 | assert_eq!(_1.denom(), &1); |
1975 | assert_eq!(_2.denom(), &1); |
1976 | assert_eq!(_1_2.denom(), &2); |
1977 | assert_eq!(_3_2.denom(), &2); |
1978 | assert_eq!(_NEG1_2.denom(), &2); |
1979 | } |
1980 | |
1981 | #[test ] |
1982 | fn test_is_integer() { |
1983 | assert!(_0.is_integer()); |
1984 | assert!(_1.is_integer()); |
1985 | assert!(_2.is_integer()); |
1986 | assert!(!_1_2.is_integer()); |
1987 | assert!(!_3_2.is_integer()); |
1988 | assert!(!_NEG1_2.is_integer()); |
1989 | } |
1990 | |
1991 | #[cfg (not(feature = "std" ))] |
1992 | use core::fmt::{self, Write}; |
1993 | #[cfg (not(feature = "std" ))] |
1994 | #[derive (Debug)] |
1995 | struct NoStdTester { |
1996 | cursor: usize, |
1997 | buf: [u8; NoStdTester::BUF_SIZE], |
1998 | } |
1999 | |
2000 | #[cfg (not(feature = "std" ))] |
2001 | impl NoStdTester { |
2002 | fn new() -> NoStdTester { |
2003 | NoStdTester { |
2004 | buf: [0; Self::BUF_SIZE], |
2005 | cursor: 0, |
2006 | } |
2007 | } |
2008 | |
2009 | fn clear(&mut self) { |
2010 | self.buf = [0; Self::BUF_SIZE]; |
2011 | self.cursor = 0; |
2012 | } |
2013 | |
2014 | const WRITE_ERR: &'static str = "Formatted output too long" ; |
2015 | const BUF_SIZE: usize = 32; |
2016 | } |
2017 | |
2018 | #[cfg (not(feature = "std" ))] |
2019 | impl Write for NoStdTester { |
2020 | fn write_str(&mut self, s: &str) -> fmt::Result { |
2021 | for byte in s.bytes() { |
2022 | self.buf[self.cursor] = byte; |
2023 | self.cursor += 1; |
2024 | if self.cursor >= self.buf.len() { |
2025 | return Err(fmt::Error {}); |
2026 | } |
2027 | } |
2028 | Ok(()) |
2029 | } |
2030 | } |
2031 | |
2032 | #[cfg (not(feature = "std" ))] |
2033 | impl PartialEq<str> for NoStdTester { |
2034 | fn eq(&self, other: &str) -> bool { |
2035 | let other = other.as_bytes(); |
2036 | for index in 0..self.cursor { |
2037 | if self.buf.get(index) != other.get(index) { |
2038 | return false; |
2039 | } |
2040 | } |
2041 | true |
2042 | } |
2043 | } |
2044 | |
2045 | macro_rules! assert_fmt_eq { |
2046 | ($fmt_args:expr, $string:expr) => { |
2047 | #[cfg(not(feature = "std" ))] |
2048 | { |
2049 | let mut tester = NoStdTester::new(); |
2050 | write!(tester, "{}" , $fmt_args).expect(NoStdTester::WRITE_ERR); |
2051 | assert_eq!(tester, *$string); |
2052 | tester.clear(); |
2053 | } |
2054 | #[cfg(feature = "std" )] |
2055 | { |
2056 | assert_eq!(std::fmt::format($fmt_args), $string); |
2057 | } |
2058 | }; |
2059 | } |
2060 | |
2061 | #[test ] |
2062 | fn test_show() { |
2063 | // Test: |
2064 | // :b :o :x, :X, :? |
2065 | // alternate or not (#) |
2066 | // positive and negative |
2067 | // padding |
2068 | // does not test precision (i.e. truncation) |
2069 | assert_fmt_eq!(format_args!("{}" , _2), "2" ); |
2070 | assert_fmt_eq!(format_args!("{:+}" , _2), "+2" ); |
2071 | assert_fmt_eq!(format_args!("{:-}" , _2), "2" ); |
2072 | assert_fmt_eq!(format_args!("{}" , _1_2), "1/2" ); |
2073 | assert_fmt_eq!(format_args!("{}" , -_1_2), "-1/2" ); // test negatives |
2074 | assert_fmt_eq!(format_args!("{}" , _0), "0" ); |
2075 | assert_fmt_eq!(format_args!("{}" , -_2), "-2" ); |
2076 | assert_fmt_eq!(format_args!("{:+}" , -_2), "-2" ); |
2077 | assert_fmt_eq!(format_args!("{:b}" , _2), "10" ); |
2078 | assert_fmt_eq!(format_args!("{:#b}" , _2), "0b10" ); |
2079 | assert_fmt_eq!(format_args!("{:b}" , _1_2), "1/10" ); |
2080 | assert_fmt_eq!(format_args!("{:+b}" , _1_2), "+1/10" ); |
2081 | assert_fmt_eq!(format_args!("{:-b}" , _1_2), "1/10" ); |
2082 | assert_fmt_eq!(format_args!("{:b}" , _0), "0" ); |
2083 | assert_fmt_eq!(format_args!("{:#b}" , _1_2), "0b1/0b10" ); |
2084 | // no std does not support padding |
2085 | #[cfg (feature = "std" )] |
2086 | assert_eq!(&format!("{:010b}" , _1_2), "0000001/10" ); |
2087 | #[cfg (feature = "std" )] |
2088 | assert_eq!(&format!("{:#010b}" , _1_2), "0b001/0b10" ); |
2089 | let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8); |
2090 | assert_fmt_eq!(format_args!("{:b}" , -half_i8), "11111111/10" ); |
2091 | assert_fmt_eq!(format_args!("{:#b}" , -half_i8), "0b11111111/0b10" ); |
2092 | #[cfg (feature = "std" )] |
2093 | assert_eq!(&format!("{:05}" , Ratio::new(-1_i8, 1_i8)), "-0001" ); |
2094 | |
2095 | assert_fmt_eq!(format_args!("{:o}" , _8), "10" ); |
2096 | assert_fmt_eq!(format_args!("{:o}" , _1_8), "1/10" ); |
2097 | assert_fmt_eq!(format_args!("{:o}" , _0), "0" ); |
2098 | assert_fmt_eq!(format_args!("{:#o}" , _1_8), "0o1/0o10" ); |
2099 | #[cfg (feature = "std" )] |
2100 | assert_eq!(&format!("{:010o}" , _1_8), "0000001/10" ); |
2101 | #[cfg (feature = "std" )] |
2102 | assert_eq!(&format!("{:#010o}" , _1_8), "0o001/0o10" ); |
2103 | assert_fmt_eq!(format_args!("{:o}" , -half_i8), "377/2" ); |
2104 | assert_fmt_eq!(format_args!("{:#o}" , -half_i8), "0o377/0o2" ); |
2105 | |
2106 | assert_fmt_eq!(format_args!("{:x}" , _16), "10" ); |
2107 | assert_fmt_eq!(format_args!("{:x}" , _15), "f" ); |
2108 | assert_fmt_eq!(format_args!("{:x}" , _1_16), "1/10" ); |
2109 | assert_fmt_eq!(format_args!("{:x}" , _1_15), "1/f" ); |
2110 | assert_fmt_eq!(format_args!("{:x}" , _0), "0" ); |
2111 | assert_fmt_eq!(format_args!("{:#x}" , _1_16), "0x1/0x10" ); |
2112 | #[cfg (feature = "std" )] |
2113 | assert_eq!(&format!("{:010x}" , _1_16), "0000001/10" ); |
2114 | #[cfg (feature = "std" )] |
2115 | assert_eq!(&format!("{:#010x}" , _1_16), "0x001/0x10" ); |
2116 | assert_fmt_eq!(format_args!("{:x}" , -half_i8), "ff/2" ); |
2117 | assert_fmt_eq!(format_args!("{:#x}" , -half_i8), "0xff/0x2" ); |
2118 | |
2119 | assert_fmt_eq!(format_args!("{:X}" , _16), "10" ); |
2120 | assert_fmt_eq!(format_args!("{:X}" , _15), "F" ); |
2121 | assert_fmt_eq!(format_args!("{:X}" , _1_16), "1/10" ); |
2122 | assert_fmt_eq!(format_args!("{:X}" , _1_15), "1/F" ); |
2123 | assert_fmt_eq!(format_args!("{:X}" , _0), "0" ); |
2124 | assert_fmt_eq!(format_args!("{:#X}" , _1_16), "0x1/0x10" ); |
2125 | #[cfg (feature = "std" )] |
2126 | assert_eq!(format!("{:010X}" , _1_16), "0000001/10" ); |
2127 | #[cfg (feature = "std" )] |
2128 | assert_eq!(format!("{:#010X}" , _1_16), "0x001/0x10" ); |
2129 | assert_fmt_eq!(format_args!("{:X}" , -half_i8), "FF/2" ); |
2130 | assert_fmt_eq!(format_args!("{:#X}" , -half_i8), "0xFF/0x2" ); |
2131 | |
2132 | assert_fmt_eq!(format_args!("{:e}" , -_2), "-2e0" ); |
2133 | assert_fmt_eq!(format_args!("{:#e}" , -_2), "-2e0" ); |
2134 | assert_fmt_eq!(format_args!("{:+e}" , -_2), "-2e0" ); |
2135 | assert_fmt_eq!(format_args!("{:e}" , _BILLION), "1e9" ); |
2136 | assert_fmt_eq!(format_args!("{:+e}" , _BILLION), "+1e9" ); |
2137 | assert_fmt_eq!(format_args!("{:e}" , _BILLION.recip()), "1e0/1e9" ); |
2138 | assert_fmt_eq!(format_args!("{:+e}" , _BILLION.recip()), "+1e0/1e9" ); |
2139 | |
2140 | assert_fmt_eq!(format_args!("{:E}" , -_2), "-2E0" ); |
2141 | assert_fmt_eq!(format_args!("{:#E}" , -_2), "-2E0" ); |
2142 | assert_fmt_eq!(format_args!("{:+E}" , -_2), "-2E0" ); |
2143 | assert_fmt_eq!(format_args!("{:E}" , _BILLION), "1E9" ); |
2144 | assert_fmt_eq!(format_args!("{:+E}" , _BILLION), "+1E9" ); |
2145 | assert_fmt_eq!(format_args!("{:E}" , _BILLION.recip()), "1E0/1E9" ); |
2146 | assert_fmt_eq!(format_args!("{:+E}" , _BILLION.recip()), "+1E0/1E9" ); |
2147 | } |
2148 | |
2149 | mod arith { |
2150 | use super::super::{Ratio, Rational64}; |
2151 | use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; |
2152 | use core::fmt::Debug; |
2153 | use num_integer::Integer; |
2154 | use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; |
2155 | |
2156 | #[test ] |
2157 | fn test_add() { |
2158 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2159 | assert_eq!(a + b, c); |
2160 | assert_eq!( |
2161 | { |
2162 | let mut x = a; |
2163 | x += b; |
2164 | x |
2165 | }, |
2166 | c |
2167 | ); |
2168 | assert_eq!(to_big(a) + to_big(b), to_big(c)); |
2169 | assert_eq!(a.checked_add(&b), Some(c)); |
2170 | assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); |
2171 | } |
2172 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2173 | assert_eq!(a + b, c); |
2174 | assert_eq!( |
2175 | { |
2176 | let mut x = a; |
2177 | x += b; |
2178 | x |
2179 | }, |
2180 | c |
2181 | ); |
2182 | } |
2183 | |
2184 | test (_1, _1_2, _3_2); |
2185 | test (_1, _1, _2); |
2186 | test (_1_2, _3_2, _2); |
2187 | test (_1_2, _NEG1_2, _0); |
2188 | test_assign(_1_2, 1, _3_2); |
2189 | } |
2190 | |
2191 | #[test ] |
2192 | fn test_add_overflow() { |
2193 | // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) |
2194 | // to Ratio(1+1, T::max_value()) for each integer type. |
2195 | // Previously, this calculation would overflow. |
2196 | fn test_add_typed_overflow<T>() |
2197 | where |
2198 | T: Integer + Bounded + Clone + Debug + NumAssign, |
2199 | { |
2200 | let _1_max = Ratio::new(T::one(), T::max_value()); |
2201 | let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); |
2202 | assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); |
2203 | assert_eq!( |
2204 | { |
2205 | let mut tmp = _1_max.clone(); |
2206 | tmp += _1_max; |
2207 | tmp |
2208 | }, |
2209 | _2_max |
2210 | ); |
2211 | } |
2212 | test_add_typed_overflow::<u8>(); |
2213 | test_add_typed_overflow::<u16>(); |
2214 | test_add_typed_overflow::<u32>(); |
2215 | test_add_typed_overflow::<u64>(); |
2216 | test_add_typed_overflow::<usize>(); |
2217 | test_add_typed_overflow::<u128>(); |
2218 | |
2219 | test_add_typed_overflow::<i8>(); |
2220 | test_add_typed_overflow::<i16>(); |
2221 | test_add_typed_overflow::<i32>(); |
2222 | test_add_typed_overflow::<i64>(); |
2223 | test_add_typed_overflow::<isize>(); |
2224 | test_add_typed_overflow::<i128>(); |
2225 | } |
2226 | |
2227 | #[test ] |
2228 | fn test_sub() { |
2229 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2230 | assert_eq!(a - b, c); |
2231 | assert_eq!( |
2232 | { |
2233 | let mut x = a; |
2234 | x -= b; |
2235 | x |
2236 | }, |
2237 | c |
2238 | ); |
2239 | assert_eq!(to_big(a) - to_big(b), to_big(c)); |
2240 | assert_eq!(a.checked_sub(&b), Some(c)); |
2241 | assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); |
2242 | } |
2243 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2244 | assert_eq!(a - b, c); |
2245 | assert_eq!( |
2246 | { |
2247 | let mut x = a; |
2248 | x -= b; |
2249 | x |
2250 | }, |
2251 | c |
2252 | ); |
2253 | } |
2254 | |
2255 | test (_1, _1_2, _1_2); |
2256 | test (_3_2, _1_2, _1); |
2257 | test (_1, _NEG1_2, _3_2); |
2258 | test_assign(_1_2, 1, _NEG1_2); |
2259 | } |
2260 | |
2261 | #[test ] |
2262 | fn test_sub_overflow() { |
2263 | // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() |
2264 | // for each integer type. Previously, this calculation would overflow. |
2265 | fn test_sub_typed_overflow<T>() |
2266 | where |
2267 | T: Integer + Bounded + Clone + Debug + NumAssign, |
2268 | { |
2269 | let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value()); |
2270 | assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); |
2271 | { |
2272 | let mut tmp: Ratio<T> = _1_max.clone(); |
2273 | tmp -= _1_max; |
2274 | assert!(T::is_zero(&tmp.numer)); |
2275 | } |
2276 | } |
2277 | test_sub_typed_overflow::<u8>(); |
2278 | test_sub_typed_overflow::<u16>(); |
2279 | test_sub_typed_overflow::<u32>(); |
2280 | test_sub_typed_overflow::<u64>(); |
2281 | test_sub_typed_overflow::<usize>(); |
2282 | test_sub_typed_overflow::<u128>(); |
2283 | |
2284 | test_sub_typed_overflow::<i8>(); |
2285 | test_sub_typed_overflow::<i16>(); |
2286 | test_sub_typed_overflow::<i32>(); |
2287 | test_sub_typed_overflow::<i64>(); |
2288 | test_sub_typed_overflow::<isize>(); |
2289 | test_sub_typed_overflow::<i128>(); |
2290 | } |
2291 | |
2292 | #[test ] |
2293 | fn test_mul() { |
2294 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2295 | assert_eq!(a * b, c); |
2296 | assert_eq!( |
2297 | { |
2298 | let mut x = a; |
2299 | x *= b; |
2300 | x |
2301 | }, |
2302 | c |
2303 | ); |
2304 | assert_eq!(to_big(a) * to_big(b), to_big(c)); |
2305 | assert_eq!(a.checked_mul(&b), Some(c)); |
2306 | assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); |
2307 | } |
2308 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2309 | assert_eq!(a * b, c); |
2310 | assert_eq!( |
2311 | { |
2312 | let mut x = a; |
2313 | x *= b; |
2314 | x |
2315 | }, |
2316 | c |
2317 | ); |
2318 | } |
2319 | |
2320 | test (_1, _1_2, _1_2); |
2321 | test (_1_2, _3_2, Ratio::new(3, 4)); |
2322 | test (_1_2, _NEG1_2, Ratio::new(-1, 4)); |
2323 | test_assign(_1_2, 2, _1); |
2324 | } |
2325 | |
2326 | #[test ] |
2327 | fn test_mul_overflow() { |
2328 | fn test_mul_typed_overflow<T>() |
2329 | where |
2330 | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
2331 | { |
2332 | let two = T::one() + T::one(); |
2333 | let _3 = T::one() + T::one() + T::one(); |
2334 | |
2335 | // 1/big * 2/3 = 1/(max/4*3), where big is max/2 |
2336 | // make big = max/2, but also divisible by 2 |
2337 | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
2338 | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
2339 | let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone()); |
2340 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2341 | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
2342 | assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); |
2343 | assert_eq!( |
2344 | Some(expected.clone()), |
2345 | _1_big.clone().checked_mul(&_2_3.clone()) |
2346 | ); |
2347 | assert_eq!(expected, { |
2348 | let mut tmp = _1_big; |
2349 | tmp *= _2_3; |
2350 | tmp |
2351 | }); |
2352 | |
2353 | // big/3 * 3 = big/1 |
2354 | // make big = max/2, but make it indivisible by 3 |
2355 | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
2356 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2357 | let big_3 = Ratio::new(big.clone(), _3.clone()); |
2358 | let expected = Ratio::new(big, T::one()); |
2359 | assert_eq!(expected, big_3.clone() * _3.clone()); |
2360 | assert_eq!(expected, { |
2361 | let mut tmp = big_3; |
2362 | tmp *= _3; |
2363 | tmp |
2364 | }); |
2365 | } |
2366 | test_mul_typed_overflow::<u16>(); |
2367 | test_mul_typed_overflow::<u8>(); |
2368 | test_mul_typed_overflow::<u32>(); |
2369 | test_mul_typed_overflow::<u64>(); |
2370 | test_mul_typed_overflow::<usize>(); |
2371 | test_mul_typed_overflow::<u128>(); |
2372 | |
2373 | test_mul_typed_overflow::<i8>(); |
2374 | test_mul_typed_overflow::<i16>(); |
2375 | test_mul_typed_overflow::<i32>(); |
2376 | test_mul_typed_overflow::<i64>(); |
2377 | test_mul_typed_overflow::<isize>(); |
2378 | test_mul_typed_overflow::<i128>(); |
2379 | } |
2380 | |
2381 | #[test ] |
2382 | fn test_div() { |
2383 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2384 | assert_eq!(a / b, c); |
2385 | assert_eq!( |
2386 | { |
2387 | let mut x = a; |
2388 | x /= b; |
2389 | x |
2390 | }, |
2391 | c |
2392 | ); |
2393 | assert_eq!(to_big(a) / to_big(b), to_big(c)); |
2394 | assert_eq!(a.checked_div(&b), Some(c)); |
2395 | assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); |
2396 | } |
2397 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2398 | assert_eq!(a / b, c); |
2399 | assert_eq!( |
2400 | { |
2401 | let mut x = a; |
2402 | x /= b; |
2403 | x |
2404 | }, |
2405 | c |
2406 | ); |
2407 | } |
2408 | |
2409 | test (_1, _1_2, _2); |
2410 | test (_3_2, _1_2, _1 + _2); |
2411 | test (_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); |
2412 | test_assign(_1, 2, _1_2); |
2413 | } |
2414 | |
2415 | #[test ] |
2416 | fn test_div_overflow() { |
2417 | fn test_div_typed_overflow<T>() |
2418 | where |
2419 | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
2420 | { |
2421 | let two = T::one() + T::one(); |
2422 | let _3 = T::one() + T::one() + T::one(); |
2423 | |
2424 | // 1/big / 3/2 = 1/(max/4*3), where big is max/2 |
2425 | // big ~ max/2, and big is divisible by 2 |
2426 | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
2427 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2428 | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
2429 | let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone()); |
2430 | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
2431 | assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); |
2432 | assert_eq!( |
2433 | Some(expected.clone()), |
2434 | _1_big.clone().checked_div(&_3_two.clone()) |
2435 | ); |
2436 | assert_eq!(expected, { |
2437 | let mut tmp = _1_big; |
2438 | tmp /= _3_two; |
2439 | tmp |
2440 | }); |
2441 | |
2442 | // 3/big / 3 = 1/big where big is max/2 |
2443 | // big ~ max/2, and big is not divisible by 3 |
2444 | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
2445 | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2446 | let _3_big = Ratio::new(_3.clone(), big.clone()); |
2447 | let expected = Ratio::new(T::one(), big); |
2448 | assert_eq!(expected, _3_big.clone() / _3.clone()); |
2449 | assert_eq!(expected, { |
2450 | let mut tmp = _3_big; |
2451 | tmp /= _3; |
2452 | tmp |
2453 | }); |
2454 | } |
2455 | test_div_typed_overflow::<u8>(); |
2456 | test_div_typed_overflow::<u16>(); |
2457 | test_div_typed_overflow::<u32>(); |
2458 | test_div_typed_overflow::<u64>(); |
2459 | test_div_typed_overflow::<usize>(); |
2460 | test_div_typed_overflow::<u128>(); |
2461 | |
2462 | test_div_typed_overflow::<i8>(); |
2463 | test_div_typed_overflow::<i16>(); |
2464 | test_div_typed_overflow::<i32>(); |
2465 | test_div_typed_overflow::<i64>(); |
2466 | test_div_typed_overflow::<isize>(); |
2467 | test_div_typed_overflow::<i128>(); |
2468 | } |
2469 | |
2470 | #[test ] |
2471 | fn test_rem() { |
2472 | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2473 | assert_eq!(a % b, c); |
2474 | assert_eq!( |
2475 | { |
2476 | let mut x = a; |
2477 | x %= b; |
2478 | x |
2479 | }, |
2480 | c |
2481 | ); |
2482 | assert_eq!(to_big(a) % to_big(b), to_big(c)) |
2483 | } |
2484 | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2485 | assert_eq!(a % b, c); |
2486 | assert_eq!( |
2487 | { |
2488 | let mut x = a; |
2489 | x %= b; |
2490 | x |
2491 | }, |
2492 | c |
2493 | ); |
2494 | } |
2495 | |
2496 | test (_3_2, _1, _1_2); |
2497 | test (_3_2, _1_2, _0); |
2498 | test (_5_2, _3_2, _1); |
2499 | test (_2, _NEG1_2, _0); |
2500 | test (_1_2, _2, _1_2); |
2501 | test_assign(_3_2, 1, _1_2); |
2502 | } |
2503 | |
2504 | #[test ] |
2505 | fn test_rem_overflow() { |
2506 | // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 |
2507 | // for each integer type. Previously, this calculation would overflow. |
2508 | fn test_rem_typed_overflow<T>() |
2509 | where |
2510 | T: Integer + Bounded + Clone + Debug + NumAssign, |
2511 | { |
2512 | let two = T::one() + T::one(); |
2513 | // value near to maximum, but divisible by two |
2514 | let max_div2 = T::max_value() / two.clone() * two.clone(); |
2515 | let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2); |
2516 | let _1_two: Ratio<T> = Ratio::new(T::one(), two); |
2517 | assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); |
2518 | { |
2519 | let mut tmp: Ratio<T> = _1_two; |
2520 | tmp %= _1_max; |
2521 | assert!(T::is_zero(&tmp.numer)); |
2522 | } |
2523 | } |
2524 | test_rem_typed_overflow::<u8>(); |
2525 | test_rem_typed_overflow::<u16>(); |
2526 | test_rem_typed_overflow::<u32>(); |
2527 | test_rem_typed_overflow::<u64>(); |
2528 | test_rem_typed_overflow::<usize>(); |
2529 | test_rem_typed_overflow::<u128>(); |
2530 | |
2531 | test_rem_typed_overflow::<i8>(); |
2532 | test_rem_typed_overflow::<i16>(); |
2533 | test_rem_typed_overflow::<i32>(); |
2534 | test_rem_typed_overflow::<i64>(); |
2535 | test_rem_typed_overflow::<isize>(); |
2536 | test_rem_typed_overflow::<i128>(); |
2537 | } |
2538 | |
2539 | #[test ] |
2540 | fn test_neg() { |
2541 | fn test(a: Rational64, b: Rational64) { |
2542 | assert_eq!(-a, b); |
2543 | assert_eq!(-to_big(a), to_big(b)) |
2544 | } |
2545 | |
2546 | test (_0, _0); |
2547 | test (_1_2, _NEG1_2); |
2548 | test (-_1, _1); |
2549 | } |
2550 | #[test ] |
2551 | #[allow (clippy::eq_op)] |
2552 | fn test_zero() { |
2553 | assert_eq!(_0 + _0, _0); |
2554 | assert_eq!(_0 * _0, _0); |
2555 | assert_eq!(_0 * _1, _0); |
2556 | assert_eq!(_0 / _NEG1_2, _0); |
2557 | assert_eq!(_0 - _0, _0); |
2558 | } |
2559 | #[test ] |
2560 | #[should_panic ] |
2561 | fn test_div_0() { |
2562 | let _a = _1 / _0; |
2563 | } |
2564 | |
2565 | #[test ] |
2566 | fn test_checked_failures() { |
2567 | let big = Ratio::new(128u8, 1); |
2568 | let small = Ratio::new(1, 128u8); |
2569 | assert_eq!(big.checked_add(&big), None); |
2570 | assert_eq!(small.checked_sub(&big), None); |
2571 | assert_eq!(big.checked_mul(&big), None); |
2572 | assert_eq!(small.checked_div(&big), None); |
2573 | assert_eq!(_1.checked_div(&_0), None); |
2574 | } |
2575 | |
2576 | #[test ] |
2577 | fn test_checked_zeros() { |
2578 | assert_eq!(_0.checked_add(&_0), Some(_0)); |
2579 | assert_eq!(_0.checked_sub(&_0), Some(_0)); |
2580 | assert_eq!(_0.checked_mul(&_0), Some(_0)); |
2581 | assert_eq!(_0.checked_div(&_0), None); |
2582 | } |
2583 | |
2584 | #[test ] |
2585 | fn test_checked_min() { |
2586 | assert_eq!(_MIN.checked_add(&_MIN), None); |
2587 | assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); |
2588 | assert_eq!(_MIN.checked_mul(&_MIN), None); |
2589 | assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); |
2590 | assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); |
2591 | assert_eq!(_0.checked_sub(&_MIN), None); |
2592 | assert_eq!(_0.checked_mul(&_MIN), Some(_0)); |
2593 | assert_eq!(_0.checked_div(&_MIN), Some(_0)); |
2594 | assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); |
2595 | assert_eq!(_1.checked_sub(&_MIN), None); |
2596 | assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); |
2597 | assert_eq!(_1.checked_div(&_MIN), None); |
2598 | assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); |
2599 | assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); |
2600 | assert_eq!(_MIN.checked_mul(&_0), Some(_0)); |
2601 | assert_eq!(_MIN.checked_div(&_0), None); |
2602 | assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); |
2603 | assert_eq!(_MIN.checked_sub(&_1), None); |
2604 | assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); |
2605 | assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); |
2606 | } |
2607 | |
2608 | #[test ] |
2609 | fn test_checked_max() { |
2610 | assert_eq!(_MAX.checked_add(&_MAX), None); |
2611 | assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); |
2612 | assert_eq!(_MAX.checked_mul(&_MAX), None); |
2613 | assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); |
2614 | assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); |
2615 | assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); |
2616 | assert_eq!(_0.checked_mul(&_MAX), Some(_0)); |
2617 | assert_eq!(_0.checked_div(&_MAX), Some(_0)); |
2618 | assert_eq!(_1.checked_add(&_MAX), None); |
2619 | assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); |
2620 | assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); |
2621 | assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); |
2622 | assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); |
2623 | assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); |
2624 | assert_eq!(_MAX.checked_mul(&_0), Some(_0)); |
2625 | assert_eq!(_MAX.checked_div(&_0), None); |
2626 | assert_eq!(_MAX.checked_add(&_1), None); |
2627 | assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); |
2628 | assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); |
2629 | assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); |
2630 | } |
2631 | |
2632 | #[test ] |
2633 | fn test_checked_min_max() { |
2634 | assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); |
2635 | assert_eq!(_MIN.checked_sub(&_MAX), None); |
2636 | assert_eq!(_MIN.checked_mul(&_MAX), None); |
2637 | assert_eq!( |
2638 | _MIN.checked_div(&_MAX), |
2639 | Some(Ratio::new(_MIN.numer, _MAX.numer)) |
2640 | ); |
2641 | assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); |
2642 | assert_eq!(_MAX.checked_sub(&_MIN), None); |
2643 | assert_eq!(_MAX.checked_mul(&_MIN), None); |
2644 | assert_eq!(_MAX.checked_div(&_MIN), None); |
2645 | } |
2646 | } |
2647 | |
2648 | #[test ] |
2649 | fn test_round() { |
2650 | assert_eq!(_1_3.ceil(), _1); |
2651 | assert_eq!(_1_3.floor(), _0); |
2652 | assert_eq!(_1_3.round(), _0); |
2653 | assert_eq!(_1_3.trunc(), _0); |
2654 | |
2655 | assert_eq!(_NEG1_3.ceil(), _0); |
2656 | assert_eq!(_NEG1_3.floor(), -_1); |
2657 | assert_eq!(_NEG1_3.round(), _0); |
2658 | assert_eq!(_NEG1_3.trunc(), _0); |
2659 | |
2660 | assert_eq!(_2_3.ceil(), _1); |
2661 | assert_eq!(_2_3.floor(), _0); |
2662 | assert_eq!(_2_3.round(), _1); |
2663 | assert_eq!(_2_3.trunc(), _0); |
2664 | |
2665 | assert_eq!(_NEG2_3.ceil(), _0); |
2666 | assert_eq!(_NEG2_3.floor(), -_1); |
2667 | assert_eq!(_NEG2_3.round(), -_1); |
2668 | assert_eq!(_NEG2_3.trunc(), _0); |
2669 | |
2670 | assert_eq!(_1_2.ceil(), _1); |
2671 | assert_eq!(_1_2.floor(), _0); |
2672 | assert_eq!(_1_2.round(), _1); |
2673 | assert_eq!(_1_2.trunc(), _0); |
2674 | |
2675 | assert_eq!(_NEG1_2.ceil(), _0); |
2676 | assert_eq!(_NEG1_2.floor(), -_1); |
2677 | assert_eq!(_NEG1_2.round(), -_1); |
2678 | assert_eq!(_NEG1_2.trunc(), _0); |
2679 | |
2680 | assert_eq!(_1.ceil(), _1); |
2681 | assert_eq!(_1.floor(), _1); |
2682 | assert_eq!(_1.round(), _1); |
2683 | assert_eq!(_1.trunc(), _1); |
2684 | |
2685 | // Overflow checks |
2686 | |
2687 | let _neg1 = Ratio::from_integer(-1); |
2688 | let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); |
2689 | let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); |
2690 | let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); |
2691 | let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); |
2692 | let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); |
2693 | let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); |
2694 | let _large_rat7 = Ratio::new(1, i32::MIN + 1); |
2695 | let _large_rat8 = Ratio::new(1, i32::MAX); |
2696 | |
2697 | assert_eq!(_large_rat1.round(), One::one()); |
2698 | assert_eq!(_large_rat2.round(), One::one()); |
2699 | assert_eq!(_large_rat3.round(), One::one()); |
2700 | assert_eq!(_large_rat4.round(), One::one()); |
2701 | assert_eq!(_large_rat5.round(), _neg1); |
2702 | assert_eq!(_large_rat6.round(), _neg1); |
2703 | assert_eq!(_large_rat7.round(), Zero::zero()); |
2704 | assert_eq!(_large_rat8.round(), Zero::zero()); |
2705 | } |
2706 | |
2707 | #[test ] |
2708 | fn test_fract() { |
2709 | assert_eq!(_1.fract(), _0); |
2710 | assert_eq!(_NEG1_2.fract(), _NEG1_2); |
2711 | assert_eq!(_1_2.fract(), _1_2); |
2712 | assert_eq!(_3_2.fract(), _1_2); |
2713 | } |
2714 | |
2715 | #[test ] |
2716 | fn test_recip() { |
2717 | assert_eq!(_1 * _1.recip(), _1); |
2718 | assert_eq!(_2 * _2.recip(), _1); |
2719 | assert_eq!(_1_2 * _1_2.recip(), _1); |
2720 | assert_eq!(_3_2 * _3_2.recip(), _1); |
2721 | assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); |
2722 | |
2723 | assert_eq!(_3_2.recip(), _2_3); |
2724 | assert_eq!(_NEG1_2.recip(), _NEG2); |
2725 | assert_eq!(_NEG1_2.recip().denom(), &1); |
2726 | } |
2727 | |
2728 | #[test ] |
2729 | #[should_panic (expected = "division by zero" )] |
2730 | fn test_recip_fail() { |
2731 | let _a = Ratio::new(0, 1).recip(); |
2732 | } |
2733 | |
2734 | #[test ] |
2735 | fn test_pow() { |
2736 | fn test(r: Rational64, e: i32, expected: Rational64) { |
2737 | assert_eq!(r.pow(e), expected); |
2738 | assert_eq!(Pow::pow(r, e), expected); |
2739 | assert_eq!(Pow::pow(r, &e), expected); |
2740 | assert_eq!(Pow::pow(&r, e), expected); |
2741 | assert_eq!(Pow::pow(&r, &e), expected); |
2742 | #[cfg (feature = "num-bigint" )] |
2743 | test_big(r, e, expected); |
2744 | } |
2745 | |
2746 | #[cfg (feature = "num-bigint" )] |
2747 | fn test_big(r: Rational64, e: i32, expected: Rational64) { |
2748 | let r = BigRational::new_raw(r.numer.into(), r.denom.into()); |
2749 | let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); |
2750 | assert_eq!((&r).pow(e), expected); |
2751 | assert_eq!(Pow::pow(r.clone(), e), expected); |
2752 | assert_eq!(Pow::pow(r.clone(), &e), expected); |
2753 | assert_eq!(Pow::pow(&r, e), expected); |
2754 | assert_eq!(Pow::pow(&r, &e), expected); |
2755 | } |
2756 | |
2757 | test (_1_2, 2, Ratio::new(1, 4)); |
2758 | test (_1_2, -2, Ratio::new(4, 1)); |
2759 | test (_1, 1, _1); |
2760 | test (_1, i32::MAX, _1); |
2761 | test (_1, i32::MIN, _1); |
2762 | test (_NEG1_2, 2, _1_2.pow(2i32)); |
2763 | test (_NEG1_2, 3, -_1_2.pow(3i32)); |
2764 | test (_3_2, 0, _1); |
2765 | test (_3_2, -1, _3_2.recip()); |
2766 | test (_3_2, 3, Ratio::new(27, 8)); |
2767 | } |
2768 | |
2769 | #[test ] |
2770 | #[cfg (feature = "std" )] |
2771 | fn test_to_from_str() { |
2772 | use std::string::{String, ToString}; |
2773 | fn test(r: Rational64, s: String) { |
2774 | assert_eq!(FromStr::from_str(&s), Ok(r)); |
2775 | assert_eq!(r.to_string(), s); |
2776 | } |
2777 | test (_1, "1" .to_string()); |
2778 | test (_0, "0" .to_string()); |
2779 | test (_1_2, "1/2" .to_string()); |
2780 | test (_3_2, "3/2" .to_string()); |
2781 | test (_2, "2" .to_string()); |
2782 | test (_NEG1_2, "-1/2" .to_string()); |
2783 | } |
2784 | #[test ] |
2785 | fn test_from_str_fail() { |
2786 | fn test(s: &str) { |
2787 | let rational: Result<Rational64, _> = FromStr::from_str(s); |
2788 | assert!(rational.is_err()); |
2789 | } |
2790 | |
2791 | let xs = ["0 /1" , "abc" , "" , "1/" , "--1/2" , "3/2/1" , "1/0" ]; |
2792 | for &s in xs.iter() { |
2793 | test (s); |
2794 | } |
2795 | } |
2796 | |
2797 | #[cfg (feature = "num-bigint" )] |
2798 | #[test ] |
2799 | fn test_from_float() { |
2800 | use num_traits::float::FloatCore; |
2801 | fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { |
2802 | let ratio: BigRational = Ratio::from_float(given).unwrap(); |
2803 | assert_eq!( |
2804 | ratio, |
2805 | Ratio::new( |
2806 | FromStr::from_str(numer).unwrap(), |
2807 | FromStr::from_str(denom).unwrap() |
2808 | ) |
2809 | ); |
2810 | } |
2811 | |
2812 | // f32 |
2813 | test (core::f32::consts::PI, ("13176795" , "4194304" )); |
2814 | test (2f32.powf(100.), ("1267650600228229401496703205376" , "1" )); |
2815 | test ( |
2816 | -(2f32.powf(100.)), |
2817 | ("-1267650600228229401496703205376" , "1" ), |
2818 | ); |
2819 | test ( |
2820 | 1.0 / 2f32.powf(100.), |
2821 | ("1" , "1267650600228229401496703205376" ), |
2822 | ); |
2823 | test (684729.48391f32, ("1369459" , "2" )); |
2824 | test (-8573.5918555f32, ("-4389679" , "512" )); |
2825 | |
2826 | // f64 |
2827 | test ( |
2828 | core::f64::consts::PI, |
2829 | ("884279719003555" , "281474976710656" ), |
2830 | ); |
2831 | test (2f64.powf(100.), ("1267650600228229401496703205376" , "1" )); |
2832 | test ( |
2833 | -(2f64.powf(100.)), |
2834 | ("-1267650600228229401496703205376" , "1" ), |
2835 | ); |
2836 | test (684729.48391f64, ("367611342500051" , "536870912" )); |
2837 | test (-8573.5918555f64, ("-4713381968463931" , "549755813888" )); |
2838 | test ( |
2839 | 1.0 / 2f64.powf(100.), |
2840 | ("1" , "1267650600228229401496703205376" ), |
2841 | ); |
2842 | } |
2843 | |
2844 | #[cfg (feature = "num-bigint" )] |
2845 | #[test ] |
2846 | fn test_from_float_fail() { |
2847 | use core::{f32, f64}; |
2848 | |
2849 | assert_eq!(Ratio::from_float(f32::NAN), None); |
2850 | assert_eq!(Ratio::from_float(f32::INFINITY), None); |
2851 | assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); |
2852 | assert_eq!(Ratio::from_float(f64::NAN), None); |
2853 | assert_eq!(Ratio::from_float(f64::INFINITY), None); |
2854 | assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); |
2855 | } |
2856 | |
2857 | #[test ] |
2858 | fn test_signed() { |
2859 | assert_eq!(_NEG1_2.abs(), _1_2); |
2860 | assert_eq!(_3_2.abs_sub(&_1_2), _1); |
2861 | assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); |
2862 | assert_eq!(_1_2.signum(), One::one()); |
2863 | assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one()); |
2864 | assert_eq!(_0.signum(), Zero::zero()); |
2865 | assert!(_NEG1_2.is_negative()); |
2866 | assert!(_1_NEG2.is_negative()); |
2867 | assert!(!_NEG1_2.is_positive()); |
2868 | assert!(!_1_NEG2.is_positive()); |
2869 | assert!(_1_2.is_positive()); |
2870 | assert!(_NEG1_NEG2.is_positive()); |
2871 | assert!(!_1_2.is_negative()); |
2872 | assert!(!_NEG1_NEG2.is_negative()); |
2873 | assert!(!_0.is_positive()); |
2874 | assert!(!_0.is_negative()); |
2875 | } |
2876 | |
2877 | #[test ] |
2878 | #[cfg (feature = "std" )] |
2879 | fn test_hash() { |
2880 | assert!(crate::hash(&_0) != crate::hash(&_1)); |
2881 | assert!(crate::hash(&_0) != crate::hash(&_3_2)); |
2882 | |
2883 | // a == b -> hash(a) == hash(b) |
2884 | let a = Rational64::new_raw(4, 2); |
2885 | let b = Rational64::new_raw(6, 3); |
2886 | assert_eq!(a, b); |
2887 | assert_eq!(crate::hash(&a), crate::hash(&b)); |
2888 | |
2889 | let a = Rational64::new_raw(123456789, 1000); |
2890 | let b = Rational64::new_raw(123456789 * 5, 5000); |
2891 | assert_eq!(a, b); |
2892 | assert_eq!(crate::hash(&a), crate::hash(&b)); |
2893 | } |
2894 | |
2895 | #[test ] |
2896 | fn test_into_pair() { |
2897 | assert_eq!((0, 1), _0.into()); |
2898 | assert_eq!((-2, 1), _NEG2.into()); |
2899 | assert_eq!((1, -2), _1_NEG2.into()); |
2900 | } |
2901 | |
2902 | #[test ] |
2903 | fn test_from_pair() { |
2904 | assert_eq!(_0, Ratio::from((0, 1))); |
2905 | assert_eq!(_1, Ratio::from((1, 1))); |
2906 | assert_eq!(_NEG2, Ratio::from((-2, 1))); |
2907 | assert_eq!(_1_NEG2, Ratio::from((1, -2))); |
2908 | } |
2909 | |
2910 | #[test ] |
2911 | fn ratio_iter_sum() { |
2912 | // generic function to assure the iter method can be called |
2913 | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2914 | fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2915 | let mut manual_sum = Ratio::new(T::zero(), T::one()); |
2916 | for ratio in slice { |
2917 | manual_sum = manual_sum + ratio; |
2918 | } |
2919 | [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] |
2920 | } |
2921 | // collect into array so test works on no_std |
2922 | let mut nums = [Ratio::new(0, 1); 1000]; |
2923 | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2924 | nums[i] = r; |
2925 | } |
2926 | let sums = iter_sums(&nums[..]); |
2927 | assert_eq!(sums[0], sums[1]); |
2928 | assert_eq!(sums[0], sums[2]); |
2929 | } |
2930 | |
2931 | #[test ] |
2932 | fn ratio_iter_product() { |
2933 | // generic function to assure the iter method can be called |
2934 | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2935 | fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2936 | let mut manual_prod = Ratio::new(T::one(), T::one()); |
2937 | for ratio in slice { |
2938 | manual_prod = manual_prod * ratio; |
2939 | } |
2940 | [ |
2941 | manual_prod, |
2942 | slice.iter().product(), |
2943 | slice.iter().cloned().product(), |
2944 | ] |
2945 | } |
2946 | |
2947 | // collect into array so test works on no_std |
2948 | let mut nums = [Ratio::new(0, 1); 1000]; |
2949 | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2950 | nums[i] = r; |
2951 | } |
2952 | let products = iter_products(&nums[..]); |
2953 | assert_eq!(products[0], products[1]); |
2954 | assert_eq!(products[0], products[2]); |
2955 | } |
2956 | |
2957 | #[test ] |
2958 | fn test_num_zero() { |
2959 | let zero = Rational64::zero(); |
2960 | assert!(zero.is_zero()); |
2961 | |
2962 | let mut r = Rational64::new(123, 456); |
2963 | assert!(!r.is_zero()); |
2964 | assert_eq!(r + zero, r); |
2965 | |
2966 | r.set_zero(); |
2967 | assert!(r.is_zero()); |
2968 | } |
2969 | |
2970 | #[test ] |
2971 | fn test_num_one() { |
2972 | let one = Rational64::one(); |
2973 | assert!(one.is_one()); |
2974 | |
2975 | let mut r = Rational64::new(123, 456); |
2976 | assert!(!r.is_one()); |
2977 | assert_eq!(r * one, r); |
2978 | |
2979 | r.set_one(); |
2980 | assert!(r.is_one()); |
2981 | } |
2982 | |
2983 | #[test ] |
2984 | fn test_const() { |
2985 | const N: Ratio<i32> = Ratio::new_raw(123, 456); |
2986 | const N_NUMER: &i32 = N.numer(); |
2987 | const N_DENOM: &i32 = N.denom(); |
2988 | |
2989 | assert_eq!(N_NUMER, &123); |
2990 | assert_eq!(N_DENOM, &456); |
2991 | |
2992 | let r = N.reduced(); |
2993 | assert_eq!(r.numer(), &(123 / 3)); |
2994 | assert_eq!(r.denom(), &(456 / 3)); |
2995 | } |
2996 | |
2997 | #[test ] |
2998 | fn test_ratio_to_i64() { |
2999 | assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); |
3000 | assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); |
3001 | assert_eq!(None, Rational64::new(-31, 8).to_u64()); |
3002 | } |
3003 | |
3004 | #[test ] |
3005 | #[cfg (feature = "num-bigint" )] |
3006 | fn test_ratio_to_i128() { |
3007 | assert_eq!( |
3008 | 1i128 << 70, |
3009 | Ratio::<i128>::new(1i128 << 77, 1i128 << 7) |
3010 | .to_i128() |
3011 | .unwrap() |
3012 | ); |
3013 | } |
3014 | |
3015 | #[test ] |
3016 | #[cfg (feature = "num-bigint" )] |
3017 | fn test_big_ratio_to_f64() { |
3018 | assert_eq!( |
3019 | BigRational::new( |
3020 | "1234567890987654321234567890987654321234567890" |
3021 | .parse() |
3022 | .unwrap(), |
3023 | "3" .parse().unwrap() |
3024 | ) |
3025 | .to_f64(), |
3026 | Some(411522630329218100000000000000000000000000000f64) |
3027 | ); |
3028 | assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); |
3029 | assert_eq!( |
3030 | // subnormal |
3031 | BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), |
3032 | Some(2.0f64.powi(-50).powi(21)) |
3033 | ); |
3034 | assert_eq!( |
3035 | // definite underflow |
3036 | BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), |
3037 | Some(0.0) |
3038 | ); |
3039 | assert_eq!( |
3040 | BigRational::from(BigInt::one() << 1050).to_f64(), |
3041 | Some(core::f64::INFINITY) |
3042 | ); |
3043 | assert_eq!( |
3044 | BigRational::from((-BigInt::one()) << 1050).to_f64(), |
3045 | Some(core::f64::NEG_INFINITY) |
3046 | ); |
3047 | assert_eq!( |
3048 | BigRational::new( |
3049 | "1234567890987654321234567890" .parse().unwrap(), |
3050 | "987654321234567890987654321" .parse().unwrap() |
3051 | ) |
3052 | .to_f64(), |
3053 | Some(1.2499999893125f64) |
3054 | ); |
3055 | assert_eq!( |
3056 | BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), |
3057 | Some(core::f64::INFINITY) |
3058 | ); |
3059 | assert_eq!( |
3060 | BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), |
3061 | Some(core::f64::NEG_INFINITY) |
3062 | ); |
3063 | assert_eq!( |
3064 | BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), |
3065 | None |
3066 | ); |
3067 | } |
3068 | |
3069 | #[test ] |
3070 | fn test_ratio_to_f64() { |
3071 | assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64)); |
3072 | assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); |
3073 | assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); |
3074 | assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); |
3075 | assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); |
3076 | assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); |
3077 | assert_eq!( |
3078 | Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), |
3079 | Some(1.0000000000000002f64), |
3080 | ); |
3081 | assert_eq!( |
3082 | Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), |
3083 | Some(1.0000000000000002f64), |
3084 | ); |
3085 | assert_eq!( |
3086 | Ratio::<i32>::new_raw(1, 0).to_f64(), |
3087 | Some(core::f64::INFINITY) |
3088 | ); |
3089 | assert_eq!( |
3090 | Ratio::<i32>::new_raw(-1, 0).to_f64(), |
3091 | Some(core::f64::NEG_INFINITY) |
3092 | ); |
3093 | assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None); |
3094 | } |
3095 | |
3096 | #[test ] |
3097 | fn test_ldexp() { |
3098 | use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; |
3099 | assert_eq!(ldexp(1.0, 0), 1.0); |
3100 | assert_eq!(ldexp(1.0, 1), 2.0); |
3101 | assert_eq!(ldexp(0.0, 1), 0.0); |
3102 | assert_eq!(ldexp(-0.0, 1), -0.0); |
3103 | |
3104 | // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or |
3105 | // underflow. |
3106 | assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); |
3107 | assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); |
3108 | assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); |
3109 | |
3110 | // Case where initial value is subnormal |
3111 | assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); |
3112 | assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); |
3113 | |
3114 | // Near underflow (2^exp is too small to represent, but not x*2^exp) |
3115 | assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); |
3116 | |
3117 | // Near overflow |
3118 | assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); |
3119 | |
3120 | // Overflow and underflow cases |
3121 | assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); |
3122 | assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); |
3123 | assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); |
3124 | assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); |
3125 | |
3126 | // Special values |
3127 | assert_eq!(ldexp(INFINITY, 1), INFINITY); |
3128 | assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); |
3129 | assert!(ldexp(NAN, 1).is_nan()); |
3130 | } |
3131 | } |
3132 | |