1 | //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate) |
2 | //! |
3 | //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github |
4 | //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust |
5 | //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs |
6 | //! |
7 | //! <br> |
8 | //! |
9 | //! A wrapper around the procedural macro API of the compiler's [`proc_macro`] |
10 | //! crate. This library serves two purposes: |
11 | //! |
12 | //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/ |
13 | //! |
14 | //! - **Bring proc-macro-like functionality to other contexts like build.rs and |
15 | //! main.rs.** Types from `proc_macro` are entirely specific to procedural |
16 | //! macros and cannot ever exist in code outside of a procedural macro. |
17 | //! Meanwhile `proc_macro2` types may exist anywhere including non-macro code. |
18 | //! By developing foundational libraries like [syn] and [quote] against |
19 | //! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem |
20 | //! becomes easily applicable to many other use cases and we avoid |
21 | //! reimplementing non-macro equivalents of those libraries. |
22 | //! |
23 | //! - **Make procedural macros unit testable.** As a consequence of being |
24 | //! specific to procedural macros, nothing that uses `proc_macro` can be |
25 | //! executed from a unit test. In order for helper libraries or components of |
26 | //! a macro to be testable in isolation, they must be implemented using |
27 | //! `proc_macro2`. |
28 | //! |
29 | //! [syn]: https://github.com/dtolnay/syn |
30 | //! [quote]: https://github.com/dtolnay/quote |
31 | //! |
32 | //! # Usage |
33 | //! |
34 | //! The skeleton of a typical procedural macro typically looks like this: |
35 | //! |
36 | //! ``` |
37 | //! extern crate proc_macro; |
38 | //! |
39 | //! # const IGNORE: &str = stringify! { |
40 | //! #[proc_macro_derive(MyDerive)] |
41 | //! # }; |
42 | //! # #[cfg (wrap_proc_macro)] |
43 | //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream { |
44 | //! let input = proc_macro2::TokenStream::from(input); |
45 | //! |
46 | //! let output: proc_macro2::TokenStream = { |
47 | //! /* transform input */ |
48 | //! # input |
49 | //! }; |
50 | //! |
51 | //! proc_macro::TokenStream::from(output) |
52 | //! } |
53 | //! ``` |
54 | //! |
55 | //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to |
56 | //! propagate parse errors correctly back to the compiler when parsing fails. |
57 | //! |
58 | //! [`parse_macro_input!`]: https://docs.rs/syn/1.0/syn/macro.parse_macro_input.html |
59 | //! |
60 | //! # Unstable features |
61 | //! |
62 | //! The default feature set of proc-macro2 tracks the most recent stable |
63 | //! compiler API. Functionality in `proc_macro` that is not yet stable is not |
64 | //! exposed by proc-macro2 by default. |
65 | //! |
66 | //! To opt into the additional APIs available in the most recent nightly |
67 | //! compiler, the `procmacro2_semver_exempt` config flag must be passed to |
68 | //! rustc. We will polyfill those nightly-only APIs back to Rust 1.31.0. As |
69 | //! these are unstable APIs that track the nightly compiler, minor versions of |
70 | //! proc-macro2 may make breaking changes to them at any time. |
71 | //! |
72 | //! ```sh |
73 | //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build |
74 | //! ``` |
75 | //! |
76 | //! Note that this must not only be done for your crate, but for any crate that |
77 | //! depends on your crate. This infectious nature is intentional, as it serves |
78 | //! as a reminder that you are outside of the normal semver guarantees. |
79 | //! |
80 | //! Semver exempt methods are marked as such in the proc-macro2 documentation. |
81 | //! |
82 | //! # Thread-Safety |
83 | //! |
84 | //! Most types in this crate are `!Sync` because the underlying compiler |
85 | //! types make use of thread-local memory, meaning they cannot be accessed from |
86 | //! a different thread. |
87 | |
88 | // Proc-macro2 types in rustdoc of other crates get linked to here. |
89 | #![doc (html_root_url = "https://docs.rs/proc-macro2/1.0.63" )] |
90 | #![cfg_attr (any(proc_macro_span, super_unstable), feature(proc_macro_span))] |
91 | #![cfg_attr (super_unstable, feature(proc_macro_def_site))] |
92 | #![cfg_attr (doc_cfg, feature(doc_cfg))] |
93 | #![allow ( |
94 | clippy::cast_lossless, |
95 | clippy::cast_possible_truncation, |
96 | clippy::doc_markdown, |
97 | clippy::items_after_statements, |
98 | clippy::let_underscore_untyped, |
99 | clippy::manual_assert, |
100 | clippy::must_use_candidate, |
101 | clippy::needless_doctest_main, |
102 | clippy::new_without_default, |
103 | clippy::return_self_not_must_use, |
104 | clippy::shadow_unrelated, |
105 | clippy::trivially_copy_pass_by_ref, |
106 | clippy::unnecessary_wraps, |
107 | clippy::unused_self, |
108 | clippy::used_underscore_binding, |
109 | clippy::vec_init_then_push |
110 | )] |
111 | |
112 | #[cfg (all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))] |
113 | compile_error! {"\ |
114 | Something is not right. If you've tried to turn on \ |
115 | procmacro2_semver_exempt, you need to ensure that it \ |
116 | is turned on for the compilation of the proc-macro2 \ |
117 | build script as well. |
118 | " } |
119 | |
120 | #[cfg (feature = "proc-macro" )] |
121 | extern crate proc_macro; |
122 | |
123 | mod marker; |
124 | mod parse; |
125 | mod rcvec; |
126 | |
127 | #[cfg (wrap_proc_macro)] |
128 | mod detection; |
129 | |
130 | // Public for proc_macro2::fallback::force() and unforce(), but those are quite |
131 | // a niche use case so we omit it from rustdoc. |
132 | #[doc (hidden)] |
133 | pub mod fallback; |
134 | |
135 | pub mod extra; |
136 | |
137 | #[cfg (not(wrap_proc_macro))] |
138 | use crate::fallback as imp; |
139 | #[path = "wrapper.rs" ] |
140 | #[cfg (wrap_proc_macro)] |
141 | mod imp; |
142 | |
143 | #[cfg (span_locations)] |
144 | mod convert; |
145 | #[cfg (span_locations)] |
146 | mod location; |
147 | |
148 | use crate::extra::DelimSpan; |
149 | use crate::marker::Marker; |
150 | use core::cmp::Ordering; |
151 | use core::fmt::{self, Debug, Display}; |
152 | use core::hash::{Hash, Hasher}; |
153 | use core::iter::FromIterator; |
154 | use core::ops::RangeBounds; |
155 | use core::str::FromStr; |
156 | use std::error::Error; |
157 | #[cfg (procmacro2_semver_exempt)] |
158 | use std::path::PathBuf; |
159 | |
160 | #[cfg (span_locations)] |
161 | pub use crate::location::LineColumn; |
162 | |
163 | /// An abstract stream of tokens, or more concretely a sequence of token trees. |
164 | /// |
165 | /// This type provides interfaces for iterating over token trees and for |
166 | /// collecting token trees into one stream. |
167 | /// |
168 | /// Token stream is both the input and output of `#[proc_macro]`, |
169 | /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions. |
170 | #[derive (Clone)] |
171 | pub struct TokenStream { |
172 | inner: imp::TokenStream, |
173 | _marker: Marker, |
174 | } |
175 | |
176 | /// Error returned from `TokenStream::from_str`. |
177 | pub struct LexError { |
178 | inner: imp::LexError, |
179 | _marker: Marker, |
180 | } |
181 | |
182 | impl TokenStream { |
183 | fn _new(inner: imp::TokenStream) -> Self { |
184 | TokenStream { |
185 | inner, |
186 | _marker: Marker, |
187 | } |
188 | } |
189 | |
190 | fn _new_fallback(inner: fallback::TokenStream) -> Self { |
191 | TokenStream { |
192 | inner: inner.into(), |
193 | _marker: Marker, |
194 | } |
195 | } |
196 | |
197 | /// Returns an empty `TokenStream` containing no token trees. |
198 | pub fn new() -> Self { |
199 | TokenStream::_new(imp::TokenStream::new()) |
200 | } |
201 | |
202 | /// Checks if this `TokenStream` is empty. |
203 | pub fn is_empty(&self) -> bool { |
204 | self.inner.is_empty() |
205 | } |
206 | } |
207 | |
208 | /// `TokenStream::default()` returns an empty stream, |
209 | /// i.e. this is equivalent with `TokenStream::new()`. |
210 | impl Default for TokenStream { |
211 | fn default() -> Self { |
212 | TokenStream::new() |
213 | } |
214 | } |
215 | |
216 | /// Attempts to break the string into tokens and parse those tokens into a token |
217 | /// stream. |
218 | /// |
219 | /// May fail for a number of reasons, for example, if the string contains |
220 | /// unbalanced delimiters or characters not existing in the language. |
221 | /// |
222 | /// NOTE: Some errors may cause panics instead of returning `LexError`. We |
223 | /// reserve the right to change these errors into `LexError`s later. |
224 | impl FromStr for TokenStream { |
225 | type Err = LexError; |
226 | |
227 | fn from_str(src: &str) -> Result<TokenStream, LexError> { |
228 | let e: TokenStream = src.parse().map_err(|e: LexError| LexError { |
229 | inner: e, |
230 | _marker: Marker, |
231 | })?; |
232 | Ok(TokenStream::_new(inner:e)) |
233 | } |
234 | } |
235 | |
236 | #[cfg (feature = "proc-macro" )] |
237 | #[cfg_attr (doc_cfg, doc(cfg(feature = "proc-macro" )))] |
238 | impl From<proc_macro::TokenStream> for TokenStream { |
239 | fn from(inner: proc_macro::TokenStream) -> Self { |
240 | TokenStream::_new(inner:inner.into()) |
241 | } |
242 | } |
243 | |
244 | #[cfg (feature = "proc-macro" )] |
245 | #[cfg_attr (doc_cfg, doc(cfg(feature = "proc-macro" )))] |
246 | impl From<TokenStream> for proc_macro::TokenStream { |
247 | fn from(inner: TokenStream) -> Self { |
248 | inner.inner.into() |
249 | } |
250 | } |
251 | |
252 | impl From<TokenTree> for TokenStream { |
253 | fn from(token: TokenTree) -> Self { |
254 | TokenStream::_new(inner:imp::TokenStream::from(token)) |
255 | } |
256 | } |
257 | |
258 | impl Extend<TokenTree> for TokenStream { |
259 | fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) { |
260 | self.inner.extend(iter:streams); |
261 | } |
262 | } |
263 | |
264 | impl Extend<TokenStream> for TokenStream { |
265 | fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) { |
266 | self.inner |
267 | .extend(iter:streams.into_iter().map(|stream: TokenStream| stream.inner)); |
268 | } |
269 | } |
270 | |
271 | /// Collects a number of token trees into a single stream. |
272 | impl FromIterator<TokenTree> for TokenStream { |
273 | fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self { |
274 | TokenStream::_new(inner:streams.into_iter().collect()) |
275 | } |
276 | } |
277 | impl FromIterator<TokenStream> for TokenStream { |
278 | fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self { |
279 | TokenStream::_new(inner:streams.into_iter().map(|i: TokenStream| i.inner).collect()) |
280 | } |
281 | } |
282 | |
283 | /// Prints the token stream as a string that is supposed to be losslessly |
284 | /// convertible back into the same token stream (modulo spans), except for |
285 | /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative |
286 | /// numeric literals. |
287 | impl Display for TokenStream { |
288 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
289 | Display::fmt(&self.inner, f) |
290 | } |
291 | } |
292 | |
293 | /// Prints token in a form convenient for debugging. |
294 | impl Debug for TokenStream { |
295 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
296 | Debug::fmt(&self.inner, f) |
297 | } |
298 | } |
299 | |
300 | impl LexError { |
301 | pub fn span(&self) -> Span { |
302 | Span::_new(self.inner.span()) |
303 | } |
304 | } |
305 | |
306 | impl Debug for LexError { |
307 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
308 | Debug::fmt(&self.inner, f) |
309 | } |
310 | } |
311 | |
312 | impl Display for LexError { |
313 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
314 | Display::fmt(&self.inner, f) |
315 | } |
316 | } |
317 | |
318 | impl Error for LexError {} |
319 | |
320 | /// The source file of a given `Span`. |
321 | /// |
322 | /// This type is semver exempt and not exposed by default. |
323 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
324 | #[cfg_attr (doc_cfg, doc(cfg(procmacro2_semver_exempt)))] |
325 | #[derive (Clone, PartialEq, Eq)] |
326 | pub struct SourceFile { |
327 | inner: imp::SourceFile, |
328 | _marker: Marker, |
329 | } |
330 | |
331 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
332 | impl SourceFile { |
333 | fn _new(inner: imp::SourceFile) -> Self { |
334 | SourceFile { |
335 | inner, |
336 | _marker: Marker, |
337 | } |
338 | } |
339 | |
340 | /// Get the path to this source file. |
341 | /// |
342 | /// ### Note |
343 | /// |
344 | /// If the code span associated with this `SourceFile` was generated by an |
345 | /// external macro, this may not be an actual path on the filesystem. Use |
346 | /// [`is_real`] to check. |
347 | /// |
348 | /// Also note that even if `is_real` returns `true`, if |
349 | /// `--remap-path-prefix` was passed on the command line, the path as given |
350 | /// may not actually be valid. |
351 | /// |
352 | /// [`is_real`]: #method.is_real |
353 | pub fn path(&self) -> PathBuf { |
354 | self.inner.path() |
355 | } |
356 | |
357 | /// Returns `true` if this source file is a real source file, and not |
358 | /// generated by an external macro's expansion. |
359 | pub fn is_real(&self) -> bool { |
360 | self.inner.is_real() |
361 | } |
362 | } |
363 | |
364 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
365 | impl Debug for SourceFile { |
366 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
367 | Debug::fmt(&self.inner, f) |
368 | } |
369 | } |
370 | |
371 | /// A region of source code, along with macro expansion information. |
372 | #[derive (Copy, Clone)] |
373 | pub struct Span { |
374 | inner: imp::Span, |
375 | _marker: Marker, |
376 | } |
377 | |
378 | impl Span { |
379 | fn _new(inner: imp::Span) -> Self { |
380 | Span { |
381 | inner, |
382 | _marker: Marker, |
383 | } |
384 | } |
385 | |
386 | fn _new_fallback(inner: fallback::Span) -> Self { |
387 | Span { |
388 | inner: inner.into(), |
389 | _marker: Marker, |
390 | } |
391 | } |
392 | |
393 | /// The span of the invocation of the current procedural macro. |
394 | /// |
395 | /// Identifiers created with this span will be resolved as if they were |
396 | /// written directly at the macro call location (call-site hygiene) and |
397 | /// other code at the macro call site will be able to refer to them as well. |
398 | pub fn call_site() -> Self { |
399 | Span::_new(imp::Span::call_site()) |
400 | } |
401 | |
402 | /// The span located at the invocation of the procedural macro, but with |
403 | /// local variables, labels, and `$crate` resolved at the definition site |
404 | /// of the macro. This is the same hygiene behavior as `macro_rules`. |
405 | /// |
406 | /// This function requires Rust 1.45 or later. |
407 | #[cfg (not(no_hygiene))] |
408 | pub fn mixed_site() -> Self { |
409 | Span::_new(imp::Span::mixed_site()) |
410 | } |
411 | |
412 | /// A span that resolves at the macro definition site. |
413 | /// |
414 | /// This method is semver exempt and not exposed by default. |
415 | #[cfg (procmacro2_semver_exempt)] |
416 | #[cfg_attr (doc_cfg, doc(cfg(procmacro2_semver_exempt)))] |
417 | pub fn def_site() -> Self { |
418 | Span::_new(imp::Span::def_site()) |
419 | } |
420 | |
421 | /// Creates a new span with the same line/column information as `self` but |
422 | /// that resolves symbols as though it were at `other`. |
423 | pub fn resolved_at(&self, other: Span) -> Span { |
424 | Span::_new(self.inner.resolved_at(other.inner)) |
425 | } |
426 | |
427 | /// Creates a new span with the same name resolution behavior as `self` but |
428 | /// with the line/column information of `other`. |
429 | pub fn located_at(&self, other: Span) -> Span { |
430 | Span::_new(self.inner.located_at(other.inner)) |
431 | } |
432 | |
433 | /// Convert `proc_macro2::Span` to `proc_macro::Span`. |
434 | /// |
435 | /// This method is available when building with a nightly compiler, or when |
436 | /// building with rustc 1.29+ *without* semver exempt features. |
437 | /// |
438 | /// # Panics |
439 | /// |
440 | /// Panics if called from outside of a procedural macro. Unlike |
441 | /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within |
442 | /// the context of a procedural macro invocation. |
443 | #[cfg (wrap_proc_macro)] |
444 | pub fn unwrap(self) -> proc_macro::Span { |
445 | self.inner.unwrap() |
446 | } |
447 | |
448 | // Soft deprecated. Please use Span::unwrap. |
449 | #[cfg (wrap_proc_macro)] |
450 | #[doc (hidden)] |
451 | pub fn unstable(self) -> proc_macro::Span { |
452 | self.unwrap() |
453 | } |
454 | |
455 | /// The original source file into which this span points. |
456 | /// |
457 | /// This method is semver exempt and not exposed by default. |
458 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
459 | #[cfg_attr (doc_cfg, doc(cfg(procmacro2_semver_exempt)))] |
460 | pub fn source_file(&self) -> SourceFile { |
461 | SourceFile::_new(self.inner.source_file()) |
462 | } |
463 | |
464 | /// Get the starting line/column in the source file for this span. |
465 | /// |
466 | /// This method requires the `"span-locations"` feature to be enabled. |
467 | /// |
468 | /// When executing in a procedural macro context, the returned line/column |
469 | /// are only meaningful if compiled with a nightly toolchain. The stable |
470 | /// toolchain does not have this information available. When executing |
471 | /// outside of a procedural macro, such as main.rs or build.rs, the |
472 | /// line/column are always meaningful regardless of toolchain. |
473 | #[cfg (span_locations)] |
474 | #[cfg_attr (doc_cfg, doc(cfg(feature = "span-locations" )))] |
475 | pub fn start(&self) -> LineColumn { |
476 | self.inner.start() |
477 | } |
478 | |
479 | /// Get the ending line/column in the source file for this span. |
480 | /// |
481 | /// This method requires the `"span-locations"` feature to be enabled. |
482 | /// |
483 | /// When executing in a procedural macro context, the returned line/column |
484 | /// are only meaningful if compiled with a nightly toolchain. The stable |
485 | /// toolchain does not have this information available. When executing |
486 | /// outside of a procedural macro, such as main.rs or build.rs, the |
487 | /// line/column are always meaningful regardless of toolchain. |
488 | #[cfg (span_locations)] |
489 | #[cfg_attr (doc_cfg, doc(cfg(feature = "span-locations" )))] |
490 | pub fn end(&self) -> LineColumn { |
491 | self.inner.end() |
492 | } |
493 | |
494 | /// Create a new span encompassing `self` and `other`. |
495 | /// |
496 | /// Returns `None` if `self` and `other` are from different files. |
497 | /// |
498 | /// Warning: the underlying [`proc_macro::Span::join`] method is |
499 | /// nightly-only. When called from within a procedural macro not using a |
500 | /// nightly compiler, this method will always return `None`. |
501 | /// |
502 | /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join |
503 | pub fn join(&self, other: Span) -> Option<Span> { |
504 | self.inner.join(other.inner).map(Span::_new) |
505 | } |
506 | |
507 | /// Compares two spans to see if they're equal. |
508 | /// |
509 | /// This method is semver exempt and not exposed by default. |
510 | #[cfg (procmacro2_semver_exempt)] |
511 | #[cfg_attr (doc_cfg, doc(cfg(procmacro2_semver_exempt)))] |
512 | pub fn eq(&self, other: &Span) -> bool { |
513 | self.inner.eq(&other.inner) |
514 | } |
515 | |
516 | /// Returns the source text behind a span. This preserves the original |
517 | /// source code, including spaces and comments. It only returns a result if |
518 | /// the span corresponds to real source code. |
519 | /// |
520 | /// Note: The observable result of a macro should only rely on the tokens |
521 | /// and not on this source text. The result of this function is a best |
522 | /// effort to be used for diagnostics only. |
523 | pub fn source_text(&self) -> Option<String> { |
524 | self.inner.source_text() |
525 | } |
526 | } |
527 | |
528 | /// Prints a span in a form convenient for debugging. |
529 | impl Debug for Span { |
530 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
531 | Debug::fmt(&self.inner, f) |
532 | } |
533 | } |
534 | |
535 | /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`). |
536 | #[derive (Clone)] |
537 | pub enum TokenTree { |
538 | /// A token stream surrounded by bracket delimiters. |
539 | Group(Group), |
540 | /// An identifier. |
541 | Ident(Ident), |
542 | /// A single punctuation character (`+`, `,`, `$`, etc.). |
543 | Punct(Punct), |
544 | /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc. |
545 | Literal(Literal), |
546 | } |
547 | |
548 | impl TokenTree { |
549 | /// Returns the span of this tree, delegating to the `span` method of |
550 | /// the contained token or a delimited stream. |
551 | pub fn span(&self) -> Span { |
552 | match self { |
553 | TokenTree::Group(t) => t.span(), |
554 | TokenTree::Ident(t) => t.span(), |
555 | TokenTree::Punct(t) => t.span(), |
556 | TokenTree::Literal(t) => t.span(), |
557 | } |
558 | } |
559 | |
560 | /// Configures the span for *only this token*. |
561 | /// |
562 | /// Note that if this token is a `Group` then this method will not configure |
563 | /// the span of each of the internal tokens, this will simply delegate to |
564 | /// the `set_span` method of each variant. |
565 | pub fn set_span(&mut self, span: Span) { |
566 | match self { |
567 | TokenTree::Group(t) => t.set_span(span), |
568 | TokenTree::Ident(t) => t.set_span(span), |
569 | TokenTree::Punct(t) => t.set_span(span), |
570 | TokenTree::Literal(t) => t.set_span(span), |
571 | } |
572 | } |
573 | } |
574 | |
575 | impl From<Group> for TokenTree { |
576 | fn from(g: Group) -> Self { |
577 | TokenTree::Group(g) |
578 | } |
579 | } |
580 | |
581 | impl From<Ident> for TokenTree { |
582 | fn from(g: Ident) -> Self { |
583 | TokenTree::Ident(g) |
584 | } |
585 | } |
586 | |
587 | impl From<Punct> for TokenTree { |
588 | fn from(g: Punct) -> Self { |
589 | TokenTree::Punct(g) |
590 | } |
591 | } |
592 | |
593 | impl From<Literal> for TokenTree { |
594 | fn from(g: Literal) -> Self { |
595 | TokenTree::Literal(g) |
596 | } |
597 | } |
598 | |
599 | /// Prints the token tree as a string that is supposed to be losslessly |
600 | /// convertible back into the same token tree (modulo spans), except for |
601 | /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative |
602 | /// numeric literals. |
603 | impl Display for TokenTree { |
604 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
605 | match self { |
606 | TokenTree::Group(t: &Group) => Display::fmt(self:t, f), |
607 | TokenTree::Ident(t: &Ident) => Display::fmt(self:t, f), |
608 | TokenTree::Punct(t: &Punct) => Display::fmt(self:t, f), |
609 | TokenTree::Literal(t: &Literal) => Display::fmt(self:t, f), |
610 | } |
611 | } |
612 | } |
613 | |
614 | /// Prints token tree in a form convenient for debugging. |
615 | impl Debug for TokenTree { |
616 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
617 | // Each of these has the name in the struct type in the derived debug, |
618 | // so don't bother with an extra layer of indirection |
619 | match self { |
620 | TokenTree::Group(t: &Group) => Debug::fmt(self:t, f), |
621 | TokenTree::Ident(t: &Ident) => { |
622 | let mut debug: DebugStruct<'_, '_> = f.debug_struct(name:"Ident" ); |
623 | debug.field(name:"sym" , &format_args!(" {}" , t)); |
624 | imp::debug_span_field_if_nontrivial(&mut debug, span:t.span().inner); |
625 | debug.finish() |
626 | } |
627 | TokenTree::Punct(t: &Punct) => Debug::fmt(self:t, f), |
628 | TokenTree::Literal(t: &Literal) => Debug::fmt(self:t, f), |
629 | } |
630 | } |
631 | } |
632 | |
633 | /// A delimited token stream. |
634 | /// |
635 | /// A `Group` internally contains a `TokenStream` which is surrounded by |
636 | /// `Delimiter`s. |
637 | #[derive (Clone)] |
638 | pub struct Group { |
639 | inner: imp::Group, |
640 | } |
641 | |
642 | /// Describes how a sequence of token trees is delimited. |
643 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
644 | pub enum Delimiter { |
645 | /// `( ... )` |
646 | Parenthesis, |
647 | /// `{ ... }` |
648 | Brace, |
649 | /// `[ ... ]` |
650 | Bracket, |
651 | /// `Ø ... Ø` |
652 | /// |
653 | /// An implicit delimiter, that may, for example, appear around tokens |
654 | /// coming from a "macro variable" `$var`. It is important to preserve |
655 | /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`. |
656 | /// Implicit delimiters may not survive roundtrip of a token stream through |
657 | /// a string. |
658 | None, |
659 | } |
660 | |
661 | impl Group { |
662 | fn _new(inner: imp::Group) -> Self { |
663 | Group { inner } |
664 | } |
665 | |
666 | fn _new_fallback(inner: fallback::Group) -> Self { |
667 | Group { |
668 | inner: inner.into(), |
669 | } |
670 | } |
671 | |
672 | /// Creates a new `Group` with the given delimiter and token stream. |
673 | /// |
674 | /// This constructor will set the span for this group to |
675 | /// `Span::call_site()`. To change the span you can use the `set_span` |
676 | /// method below. |
677 | pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self { |
678 | Group { |
679 | inner: imp::Group::new(delimiter, stream.inner), |
680 | } |
681 | } |
682 | |
683 | /// Returns the punctuation used as the delimiter for this group: a set of |
684 | /// parentheses, square brackets, or curly braces. |
685 | pub fn delimiter(&self) -> Delimiter { |
686 | self.inner.delimiter() |
687 | } |
688 | |
689 | /// Returns the `TokenStream` of tokens that are delimited in this `Group`. |
690 | /// |
691 | /// Note that the returned token stream does not include the delimiter |
692 | /// returned above. |
693 | pub fn stream(&self) -> TokenStream { |
694 | TokenStream::_new(self.inner.stream()) |
695 | } |
696 | |
697 | /// Returns the span for the delimiters of this token stream, spanning the |
698 | /// entire `Group`. |
699 | /// |
700 | /// ```text |
701 | /// pub fn span(&self) -> Span { |
702 | /// ^^^^^^^ |
703 | /// ``` |
704 | pub fn span(&self) -> Span { |
705 | Span::_new(self.inner.span()) |
706 | } |
707 | |
708 | /// Returns the span pointing to the opening delimiter of this group. |
709 | /// |
710 | /// ```text |
711 | /// pub fn span_open(&self) -> Span { |
712 | /// ^ |
713 | /// ``` |
714 | pub fn span_open(&self) -> Span { |
715 | Span::_new(self.inner.span_open()) |
716 | } |
717 | |
718 | /// Returns the span pointing to the closing delimiter of this group. |
719 | /// |
720 | /// ```text |
721 | /// pub fn span_close(&self) -> Span { |
722 | /// ^ |
723 | /// ``` |
724 | pub fn span_close(&self) -> Span { |
725 | Span::_new(self.inner.span_close()) |
726 | } |
727 | |
728 | /// Returns an object that holds this group's `span_open()` and |
729 | /// `span_close()` together (in a more compact representation than holding |
730 | /// those 2 spans individually). |
731 | pub fn delim_span(&self) -> DelimSpan { |
732 | DelimSpan::new(&self.inner) |
733 | } |
734 | |
735 | /// Configures the span for this `Group`'s delimiters, but not its internal |
736 | /// tokens. |
737 | /// |
738 | /// This method will **not** set the span of all the internal tokens spanned |
739 | /// by this group, but rather it will only set the span of the delimiter |
740 | /// tokens at the level of the `Group`. |
741 | pub fn set_span(&mut self, span: Span) { |
742 | self.inner.set_span(span.inner); |
743 | } |
744 | } |
745 | |
746 | /// Prints the group as a string that should be losslessly convertible back |
747 | /// into the same group (modulo spans), except for possibly `TokenTree::Group`s |
748 | /// with `Delimiter::None` delimiters. |
749 | impl Display for Group { |
750 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
751 | Display::fmt(&self.inner, f:formatter) |
752 | } |
753 | } |
754 | |
755 | impl Debug for Group { |
756 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
757 | Debug::fmt(&self.inner, f:formatter) |
758 | } |
759 | } |
760 | |
761 | /// A `Punct` is a single punctuation character like `+`, `-` or `#`. |
762 | /// |
763 | /// Multicharacter operators like `+=` are represented as two instances of |
764 | /// `Punct` with different forms of `Spacing` returned. |
765 | #[derive (Clone)] |
766 | pub struct Punct { |
767 | ch: char, |
768 | spacing: Spacing, |
769 | span: Span, |
770 | } |
771 | |
772 | /// Whether a `Punct` is followed immediately by another `Punct` or followed by |
773 | /// another token or whitespace. |
774 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
775 | pub enum Spacing { |
776 | /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`. |
777 | Alone, |
778 | /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`. |
779 | /// |
780 | /// Additionally, single quote `'` can join with identifiers to form |
781 | /// lifetimes `'ident`. |
782 | Joint, |
783 | } |
784 | |
785 | impl Punct { |
786 | /// Creates a new `Punct` from the given character and spacing. |
787 | /// |
788 | /// The `ch` argument must be a valid punctuation character permitted by the |
789 | /// language, otherwise the function will panic. |
790 | /// |
791 | /// The returned `Punct` will have the default span of `Span::call_site()` |
792 | /// which can be further configured with the `set_span` method below. |
793 | pub fn new(ch: char, spacing: Spacing) -> Self { |
794 | Punct { |
795 | ch, |
796 | spacing, |
797 | span: Span::call_site(), |
798 | } |
799 | } |
800 | |
801 | /// Returns the value of this punctuation character as `char`. |
802 | pub fn as_char(&self) -> char { |
803 | self.ch |
804 | } |
805 | |
806 | /// Returns the spacing of this punctuation character, indicating whether |
807 | /// it's immediately followed by another `Punct` in the token stream, so |
808 | /// they can potentially be combined into a multicharacter operator |
809 | /// (`Joint`), or it's followed by some other token or whitespace (`Alone`) |
810 | /// so the operator has certainly ended. |
811 | pub fn spacing(&self) -> Spacing { |
812 | self.spacing |
813 | } |
814 | |
815 | /// Returns the span for this punctuation character. |
816 | pub fn span(&self) -> Span { |
817 | self.span |
818 | } |
819 | |
820 | /// Configure the span for this punctuation character. |
821 | pub fn set_span(&mut self, span: Span) { |
822 | self.span = span; |
823 | } |
824 | } |
825 | |
826 | /// Prints the punctuation character as a string that should be losslessly |
827 | /// convertible back into the same character. |
828 | impl Display for Punct { |
829 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
830 | Display::fmt(&self.ch, f) |
831 | } |
832 | } |
833 | |
834 | impl Debug for Punct { |
835 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
836 | let mut debug: DebugStruct<'_, '_> = fmt.debug_struct(name:"Punct" ); |
837 | debug.field(name:"char" , &self.ch); |
838 | debug.field(name:"spacing" , &self.spacing); |
839 | imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner); |
840 | debug.finish() |
841 | } |
842 | } |
843 | |
844 | /// A word of Rust code, which may be a keyword or legal variable name. |
845 | /// |
846 | /// An identifier consists of at least one Unicode code point, the first of |
847 | /// which has the XID_Start property and the rest of which have the XID_Continue |
848 | /// property. |
849 | /// |
850 | /// - The empty string is not an identifier. Use `Option<Ident>`. |
851 | /// - A lifetime is not an identifier. Use `syn::Lifetime` instead. |
852 | /// |
853 | /// An identifier constructed with `Ident::new` is permitted to be a Rust |
854 | /// keyword, though parsing one through its [`Parse`] implementation rejects |
855 | /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the |
856 | /// behaviour of `Ident::new`. |
857 | /// |
858 | /// [`Parse`]: https://docs.rs/syn/1.0/syn/parse/trait.Parse.html |
859 | /// |
860 | /// # Examples |
861 | /// |
862 | /// A new ident can be created from a string using the `Ident::new` function. |
863 | /// A span must be provided explicitly which governs the name resolution |
864 | /// behavior of the resulting identifier. |
865 | /// |
866 | /// ``` |
867 | /// use proc_macro2::{Ident, Span}; |
868 | /// |
869 | /// fn main() { |
870 | /// let call_ident = Ident::new("calligraphy" , Span::call_site()); |
871 | /// |
872 | /// println!("{}" , call_ident); |
873 | /// } |
874 | /// ``` |
875 | /// |
876 | /// An ident can be interpolated into a token stream using the `quote!` macro. |
877 | /// |
878 | /// ``` |
879 | /// use proc_macro2::{Ident, Span}; |
880 | /// use quote::quote; |
881 | /// |
882 | /// fn main() { |
883 | /// let ident = Ident::new("demo" , Span::call_site()); |
884 | /// |
885 | /// // Create a variable binding whose name is this ident. |
886 | /// let expanded = quote! { let #ident = 10; }; |
887 | /// |
888 | /// // Create a variable binding with a slightly different name. |
889 | /// let temp_ident = Ident::new(&format!("new_{}" , ident), Span::call_site()); |
890 | /// let expanded = quote! { let #temp_ident = 10; }; |
891 | /// } |
892 | /// ``` |
893 | /// |
894 | /// A string representation of the ident is available through the `to_string()` |
895 | /// method. |
896 | /// |
897 | /// ``` |
898 | /// # use proc_macro2::{Ident, Span}; |
899 | /// # |
900 | /// # let ident = Ident::new("another_identifier" , Span::call_site()); |
901 | /// # |
902 | /// // Examine the ident as a string. |
903 | /// let ident_string = ident.to_string(); |
904 | /// if ident_string.len() > 60 { |
905 | /// println!("Very long identifier: {}" , ident_string) |
906 | /// } |
907 | /// ``` |
908 | #[derive (Clone)] |
909 | pub struct Ident { |
910 | inner: imp::Ident, |
911 | _marker: Marker, |
912 | } |
913 | |
914 | impl Ident { |
915 | fn _new(inner: imp::Ident) -> Self { |
916 | Ident { |
917 | inner, |
918 | _marker: Marker, |
919 | } |
920 | } |
921 | |
922 | /// Creates a new `Ident` with the given `string` as well as the specified |
923 | /// `span`. |
924 | /// |
925 | /// The `string` argument must be a valid identifier permitted by the |
926 | /// language, otherwise the function will panic. |
927 | /// |
928 | /// Note that `span`, currently in rustc, configures the hygiene information |
929 | /// for this identifier. |
930 | /// |
931 | /// As of this time `Span::call_site()` explicitly opts-in to "call-site" |
932 | /// hygiene meaning that identifiers created with this span will be resolved |
933 | /// as if they were written directly at the location of the macro call, and |
934 | /// other code at the macro call site will be able to refer to them as well. |
935 | /// |
936 | /// Later spans like `Span::def_site()` will allow to opt-in to |
937 | /// "definition-site" hygiene meaning that identifiers created with this |
938 | /// span will be resolved at the location of the macro definition and other |
939 | /// code at the macro call site will not be able to refer to them. |
940 | /// |
941 | /// Due to the current importance of hygiene this constructor, unlike other |
942 | /// tokens, requires a `Span` to be specified at construction. |
943 | /// |
944 | /// # Panics |
945 | /// |
946 | /// Panics if the input string is neither a keyword nor a legal variable |
947 | /// name. If you are not sure whether the string contains an identifier and |
948 | /// need to handle an error case, use |
949 | /// <a href="https://docs.rs/syn/1.0/syn/fn.parse_str.html"><code |
950 | /// style="padding-right:0;">syn::parse_str</code></a><code |
951 | /// style="padding-left:0;">::<Ident></code> |
952 | /// rather than `Ident::new`. |
953 | pub fn new(string: &str, span: Span) -> Self { |
954 | Ident::_new(imp::Ident::new(string, span.inner)) |
955 | } |
956 | |
957 | /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The |
958 | /// `string` argument must be a valid identifier permitted by the language |
959 | /// (including keywords, e.g. `fn`). Keywords which are usable in path |
960 | /// segments (e.g. `self`, `super`) are not supported, and will cause a |
961 | /// panic. |
962 | pub fn new_raw(string: &str, span: Span) -> Self { |
963 | Ident::_new_raw(string, span) |
964 | } |
965 | |
966 | fn _new_raw(string: &str, span: Span) -> Self { |
967 | Ident::_new(imp::Ident::new_raw(string, span.inner)) |
968 | } |
969 | |
970 | /// Returns the span of this `Ident`. |
971 | pub fn span(&self) -> Span { |
972 | Span::_new(self.inner.span()) |
973 | } |
974 | |
975 | /// Configures the span of this `Ident`, possibly changing its hygiene |
976 | /// context. |
977 | pub fn set_span(&mut self, span: Span) { |
978 | self.inner.set_span(span.inner); |
979 | } |
980 | } |
981 | |
982 | impl PartialEq for Ident { |
983 | fn eq(&self, other: &Ident) -> bool { |
984 | self.inner == other.inner |
985 | } |
986 | } |
987 | |
988 | impl<T> PartialEq<T> for Ident |
989 | where |
990 | T: ?Sized + AsRef<str>, |
991 | { |
992 | fn eq(&self, other: &T) -> bool { |
993 | self.inner == other |
994 | } |
995 | } |
996 | |
997 | impl Eq for Ident {} |
998 | |
999 | impl PartialOrd for Ident { |
1000 | fn partial_cmp(&self, other: &Ident) -> Option<Ordering> { |
1001 | Some(self.cmp(other)) |
1002 | } |
1003 | } |
1004 | |
1005 | impl Ord for Ident { |
1006 | fn cmp(&self, other: &Ident) -> Ordering { |
1007 | self.to_string().cmp(&other.to_string()) |
1008 | } |
1009 | } |
1010 | |
1011 | impl Hash for Ident { |
1012 | fn hash<H: Hasher>(&self, hasher: &mut H) { |
1013 | self.to_string().hash(state:hasher); |
1014 | } |
1015 | } |
1016 | |
1017 | /// Prints the identifier as a string that should be losslessly convertible back |
1018 | /// into the same identifier. |
1019 | impl Display for Ident { |
1020 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1021 | Display::fmt(&self.inner, f) |
1022 | } |
1023 | } |
1024 | |
1025 | impl Debug for Ident { |
1026 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1027 | Debug::fmt(&self.inner, f) |
1028 | } |
1029 | } |
1030 | |
1031 | /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`), |
1032 | /// byte character (`b'a'`), an integer or floating point number with or without |
1033 | /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`). |
1034 | /// |
1035 | /// Boolean literals like `true` and `false` do not belong here, they are |
1036 | /// `Ident`s. |
1037 | #[derive (Clone)] |
1038 | pub struct Literal { |
1039 | inner: imp::Literal, |
1040 | _marker: Marker, |
1041 | } |
1042 | |
1043 | macro_rules! suffixed_int_literals { |
1044 | ($($name:ident => $kind:ident,)*) => ($( |
1045 | /// Creates a new suffixed integer literal with the specified value. |
1046 | /// |
1047 | /// This function will create an integer like `1u32` where the integer |
1048 | /// value specified is the first part of the token and the integral is |
1049 | /// also suffixed at the end. Literals created from negative numbers may |
1050 | /// not survive roundtrips through `TokenStream` or strings and may be |
1051 | /// broken into two tokens (`-` and positive literal). |
1052 | /// |
1053 | /// Literals created through this method have the `Span::call_site()` |
1054 | /// span by default, which can be configured with the `set_span` method |
1055 | /// below. |
1056 | pub fn $name(n: $kind) -> Literal { |
1057 | Literal::_new(imp::Literal::$name(n)) |
1058 | } |
1059 | )*) |
1060 | } |
1061 | |
1062 | macro_rules! unsuffixed_int_literals { |
1063 | ($($name:ident => $kind:ident,)*) => ($( |
1064 | /// Creates a new unsuffixed integer literal with the specified value. |
1065 | /// |
1066 | /// This function will create an integer like `1` where the integer |
1067 | /// value specified is the first part of the token. No suffix is |
1068 | /// specified on this token, meaning that invocations like |
1069 | /// `Literal::i8_unsuffixed(1)` are equivalent to |
1070 | /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers |
1071 | /// may not survive roundtrips through `TokenStream` or strings and may |
1072 | /// be broken into two tokens (`-` and positive literal). |
1073 | /// |
1074 | /// Literals created through this method have the `Span::call_site()` |
1075 | /// span by default, which can be configured with the `set_span` method |
1076 | /// below. |
1077 | pub fn $name(n: $kind) -> Literal { |
1078 | Literal::_new(imp::Literal::$name(n)) |
1079 | } |
1080 | )*) |
1081 | } |
1082 | |
1083 | impl Literal { |
1084 | fn _new(inner: imp::Literal) -> Self { |
1085 | Literal { |
1086 | inner, |
1087 | _marker: Marker, |
1088 | } |
1089 | } |
1090 | |
1091 | fn _new_fallback(inner: fallback::Literal) -> Self { |
1092 | Literal { |
1093 | inner: inner.into(), |
1094 | _marker: Marker, |
1095 | } |
1096 | } |
1097 | |
1098 | suffixed_int_literals! { |
1099 | u8_suffixed => u8, |
1100 | u16_suffixed => u16, |
1101 | u32_suffixed => u32, |
1102 | u64_suffixed => u64, |
1103 | u128_suffixed => u128, |
1104 | usize_suffixed => usize, |
1105 | i8_suffixed => i8, |
1106 | i16_suffixed => i16, |
1107 | i32_suffixed => i32, |
1108 | i64_suffixed => i64, |
1109 | i128_suffixed => i128, |
1110 | isize_suffixed => isize, |
1111 | } |
1112 | |
1113 | unsuffixed_int_literals! { |
1114 | u8_unsuffixed => u8, |
1115 | u16_unsuffixed => u16, |
1116 | u32_unsuffixed => u32, |
1117 | u64_unsuffixed => u64, |
1118 | u128_unsuffixed => u128, |
1119 | usize_unsuffixed => usize, |
1120 | i8_unsuffixed => i8, |
1121 | i16_unsuffixed => i16, |
1122 | i32_unsuffixed => i32, |
1123 | i64_unsuffixed => i64, |
1124 | i128_unsuffixed => i128, |
1125 | isize_unsuffixed => isize, |
1126 | } |
1127 | |
1128 | /// Creates a new unsuffixed floating-point literal. |
1129 | /// |
1130 | /// This constructor is similar to those like `Literal::i8_unsuffixed` where |
1131 | /// the float's value is emitted directly into the token but no suffix is |
1132 | /// used, so it may be inferred to be a `f64` later in the compiler. |
1133 | /// Literals created from negative numbers may not survive round-trips |
1134 | /// through `TokenStream` or strings and may be broken into two tokens (`-` |
1135 | /// and positive literal). |
1136 | /// |
1137 | /// # Panics |
1138 | /// |
1139 | /// This function requires that the specified float is finite, for example |
1140 | /// if it is infinity or NaN this function will panic. |
1141 | pub fn f64_unsuffixed(f: f64) -> Literal { |
1142 | assert!(f.is_finite()); |
1143 | Literal::_new(imp::Literal::f64_unsuffixed(f)) |
1144 | } |
1145 | |
1146 | /// Creates a new suffixed floating-point literal. |
1147 | /// |
1148 | /// This constructor will create a literal like `1.0f64` where the value |
1149 | /// specified is the preceding part of the token and `f64` is the suffix of |
1150 | /// the token. This token will always be inferred to be an `f64` in the |
1151 | /// compiler. Literals created from negative numbers may not survive |
1152 | /// round-trips through `TokenStream` or strings and may be broken into two |
1153 | /// tokens (`-` and positive literal). |
1154 | /// |
1155 | /// # Panics |
1156 | /// |
1157 | /// This function requires that the specified float is finite, for example |
1158 | /// if it is infinity or NaN this function will panic. |
1159 | pub fn f64_suffixed(f: f64) -> Literal { |
1160 | assert!(f.is_finite()); |
1161 | Literal::_new(imp::Literal::f64_suffixed(f)) |
1162 | } |
1163 | |
1164 | /// Creates a new unsuffixed floating-point literal. |
1165 | /// |
1166 | /// This constructor is similar to those like `Literal::i8_unsuffixed` where |
1167 | /// the float's value is emitted directly into the token but no suffix is |
1168 | /// used, so it may be inferred to be a `f64` later in the compiler. |
1169 | /// Literals created from negative numbers may not survive round-trips |
1170 | /// through `TokenStream` or strings and may be broken into two tokens (`-` |
1171 | /// and positive literal). |
1172 | /// |
1173 | /// # Panics |
1174 | /// |
1175 | /// This function requires that the specified float is finite, for example |
1176 | /// if it is infinity or NaN this function will panic. |
1177 | pub fn f32_unsuffixed(f: f32) -> Literal { |
1178 | assert!(f.is_finite()); |
1179 | Literal::_new(imp::Literal::f32_unsuffixed(f)) |
1180 | } |
1181 | |
1182 | /// Creates a new suffixed floating-point literal. |
1183 | /// |
1184 | /// This constructor will create a literal like `1.0f32` where the value |
1185 | /// specified is the preceding part of the token and `f32` is the suffix of |
1186 | /// the token. This token will always be inferred to be an `f32` in the |
1187 | /// compiler. Literals created from negative numbers may not survive |
1188 | /// round-trips through `TokenStream` or strings and may be broken into two |
1189 | /// tokens (`-` and positive literal). |
1190 | /// |
1191 | /// # Panics |
1192 | /// |
1193 | /// This function requires that the specified float is finite, for example |
1194 | /// if it is infinity or NaN this function will panic. |
1195 | pub fn f32_suffixed(f: f32) -> Literal { |
1196 | assert!(f.is_finite()); |
1197 | Literal::_new(imp::Literal::f32_suffixed(f)) |
1198 | } |
1199 | |
1200 | /// String literal. |
1201 | pub fn string(string: &str) -> Literal { |
1202 | Literal::_new(imp::Literal::string(string)) |
1203 | } |
1204 | |
1205 | /// Character literal. |
1206 | pub fn character(ch: char) -> Literal { |
1207 | Literal::_new(imp::Literal::character(ch)) |
1208 | } |
1209 | |
1210 | /// Byte string literal. |
1211 | pub fn byte_string(s: &[u8]) -> Literal { |
1212 | Literal::_new(imp::Literal::byte_string(s)) |
1213 | } |
1214 | |
1215 | /// Returns the span encompassing this literal. |
1216 | pub fn span(&self) -> Span { |
1217 | Span::_new(self.inner.span()) |
1218 | } |
1219 | |
1220 | /// Configures the span associated for this literal. |
1221 | pub fn set_span(&mut self, span: Span) { |
1222 | self.inner.set_span(span.inner); |
1223 | } |
1224 | |
1225 | /// Returns a `Span` that is a subset of `self.span()` containing only |
1226 | /// the source bytes in range `range`. Returns `None` if the would-be |
1227 | /// trimmed span is outside the bounds of `self`. |
1228 | /// |
1229 | /// Warning: the underlying [`proc_macro::Literal::subspan`] method is |
1230 | /// nightly-only. When called from within a procedural macro not using a |
1231 | /// nightly compiler, this method will always return `None`. |
1232 | /// |
1233 | /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan |
1234 | pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> { |
1235 | self.inner.subspan(range).map(Span::_new) |
1236 | } |
1237 | |
1238 | // Intended for the `quote!` macro to use when constructing a proc-macro2 |
1239 | // token out of a macro_rules $:literal token, which is already known to be |
1240 | // a valid literal. This avoids reparsing/validating the literal's string |
1241 | // representation. This is not public API other than for quote. |
1242 | #[doc (hidden)] |
1243 | pub unsafe fn from_str_unchecked(repr: &str) -> Self { |
1244 | Literal::_new(imp::Literal::from_str_unchecked(repr)) |
1245 | } |
1246 | } |
1247 | |
1248 | impl FromStr for Literal { |
1249 | type Err = LexError; |
1250 | |
1251 | fn from_str(repr: &str) -> Result<Self, LexError> { |
1252 | repr.parse().map(Literal::_new).map_err(|inner: LexError| LexError { |
1253 | inner, |
1254 | _marker: Marker, |
1255 | }) |
1256 | } |
1257 | } |
1258 | |
1259 | impl Debug for Literal { |
1260 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1261 | Debug::fmt(&self.inner, f) |
1262 | } |
1263 | } |
1264 | |
1265 | impl Display for Literal { |
1266 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1267 | Display::fmt(&self.inner, f) |
1268 | } |
1269 | } |
1270 | |
1271 | /// Public implementation details for the `TokenStream` type, such as iterators. |
1272 | pub mod token_stream { |
1273 | use crate::marker::Marker; |
1274 | use crate::{imp, TokenTree}; |
1275 | use core::fmt::{self, Debug}; |
1276 | |
1277 | pub use crate::TokenStream; |
1278 | |
1279 | /// An iterator over `TokenStream`'s `TokenTree`s. |
1280 | /// |
1281 | /// The iteration is "shallow", e.g. the iterator doesn't recurse into |
1282 | /// delimited groups, and returns whole groups as token trees. |
1283 | #[derive (Clone)] |
1284 | pub struct IntoIter { |
1285 | inner: imp::TokenTreeIter, |
1286 | _marker: Marker, |
1287 | } |
1288 | |
1289 | impl Iterator for IntoIter { |
1290 | type Item = TokenTree; |
1291 | |
1292 | fn next(&mut self) -> Option<TokenTree> { |
1293 | self.inner.next() |
1294 | } |
1295 | |
1296 | fn size_hint(&self) -> (usize, Option<usize>) { |
1297 | self.inner.size_hint() |
1298 | } |
1299 | } |
1300 | |
1301 | impl Debug for IntoIter { |
1302 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1303 | f.write_str("TokenStream " )?; |
1304 | f.debug_list().entries(self.clone()).finish() |
1305 | } |
1306 | } |
1307 | |
1308 | impl IntoIterator for TokenStream { |
1309 | type Item = TokenTree; |
1310 | type IntoIter = IntoIter; |
1311 | |
1312 | fn into_iter(self) -> IntoIter { |
1313 | IntoIter { |
1314 | inner: self.inner.into_iter(), |
1315 | _marker: Marker, |
1316 | } |
1317 | } |
1318 | } |
1319 | } |
1320 | |