1 | //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate) |
2 | //! |
3 | //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github |
4 | //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust |
5 | //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs |
6 | //! |
7 | //! <br> |
8 | //! |
9 | //! A wrapper around the procedural macro API of the compiler's [`proc_macro`] |
10 | //! crate. This library serves two purposes: |
11 | //! |
12 | //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/ |
13 | //! |
14 | //! - **Bring proc-macro-like functionality to other contexts like build.rs and |
15 | //! main.rs.** Types from `proc_macro` are entirely specific to procedural |
16 | //! macros and cannot ever exist in code outside of a procedural macro. |
17 | //! Meanwhile `proc_macro2` types may exist anywhere including non-macro code. |
18 | //! By developing foundational libraries like [syn] and [quote] against |
19 | //! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem |
20 | //! becomes easily applicable to many other use cases and we avoid |
21 | //! reimplementing non-macro equivalents of those libraries. |
22 | //! |
23 | //! - **Make procedural macros unit testable.** As a consequence of being |
24 | //! specific to procedural macros, nothing that uses `proc_macro` can be |
25 | //! executed from a unit test. In order for helper libraries or components of |
26 | //! a macro to be testable in isolation, they must be implemented using |
27 | //! `proc_macro2`. |
28 | //! |
29 | //! [syn]: https://github.com/dtolnay/syn |
30 | //! [quote]: https://github.com/dtolnay/quote |
31 | //! |
32 | //! # Usage |
33 | //! |
34 | //! The skeleton of a typical procedural macro typically looks like this: |
35 | //! |
36 | //! ``` |
37 | //! extern crate proc_macro; |
38 | //! |
39 | //! # const IGNORE: &str = stringify! { |
40 | //! #[proc_macro_derive(MyDerive)] |
41 | //! # }; |
42 | //! # #[cfg (wrap_proc_macro)] |
43 | //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream { |
44 | //! let input = proc_macro2::TokenStream::from(input); |
45 | //! |
46 | //! let output: proc_macro2::TokenStream = { |
47 | //! /* transform input */ |
48 | //! # input |
49 | //! }; |
50 | //! |
51 | //! proc_macro::TokenStream::from(output) |
52 | //! } |
53 | //! ``` |
54 | //! |
55 | //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to |
56 | //! propagate parse errors correctly back to the compiler when parsing fails. |
57 | //! |
58 | //! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html |
59 | //! |
60 | //! # Unstable features |
61 | //! |
62 | //! The default feature set of proc-macro2 tracks the most recent stable |
63 | //! compiler API. Functionality in `proc_macro` that is not yet stable is not |
64 | //! exposed by proc-macro2 by default. |
65 | //! |
66 | //! To opt into the additional APIs available in the most recent nightly |
67 | //! compiler, the `procmacro2_semver_exempt` config flag must be passed to |
68 | //! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As |
69 | //! these are unstable APIs that track the nightly compiler, minor versions of |
70 | //! proc-macro2 may make breaking changes to them at any time. |
71 | //! |
72 | //! ```sh |
73 | //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build |
74 | //! ``` |
75 | //! |
76 | //! Note that this must not only be done for your crate, but for any crate that |
77 | //! depends on your crate. This infectious nature is intentional, as it serves |
78 | //! as a reminder that you are outside of the normal semver guarantees. |
79 | //! |
80 | //! Semver exempt methods are marked as such in the proc-macro2 documentation. |
81 | //! |
82 | //! # Thread-Safety |
83 | //! |
84 | //! Most types in this crate are `!Sync` because the underlying compiler |
85 | //! types make use of thread-local memory, meaning they cannot be accessed from |
86 | //! a different thread. |
87 | |
88 | // Proc-macro2 types in rustdoc of other crates get linked to here. |
89 | #![doc (html_root_url = "https://docs.rs/proc-macro2/1.0.93" )] |
90 | #![cfg_attr (any(proc_macro_span, super_unstable), feature(proc_macro_span))] |
91 | #![cfg_attr (super_unstable, feature(proc_macro_def_site))] |
92 | #![cfg_attr (docsrs, feature(doc_cfg))] |
93 | #![deny (unsafe_op_in_unsafe_fn)] |
94 | #![allow ( |
95 | clippy::cast_lossless, |
96 | clippy::cast_possible_truncation, |
97 | clippy::checked_conversions, |
98 | clippy::doc_markdown, |
99 | clippy::incompatible_msrv, |
100 | clippy::items_after_statements, |
101 | clippy::iter_without_into_iter, |
102 | clippy::let_underscore_untyped, |
103 | clippy::manual_assert, |
104 | clippy::manual_range_contains, |
105 | clippy::missing_panics_doc, |
106 | clippy::missing_safety_doc, |
107 | clippy::must_use_candidate, |
108 | clippy::needless_doctest_main, |
109 | clippy::needless_lifetimes, |
110 | clippy::new_without_default, |
111 | clippy::return_self_not_must_use, |
112 | clippy::shadow_unrelated, |
113 | clippy::trivially_copy_pass_by_ref, |
114 | clippy::unnecessary_wraps, |
115 | clippy::unused_self, |
116 | clippy::used_underscore_binding, |
117 | clippy::vec_init_then_push |
118 | )] |
119 | |
120 | #[cfg (all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))] |
121 | compile_error! {"\ |
122 | Something is not right. If you've tried to turn on \ |
123 | procmacro2_semver_exempt, you need to ensure that it \ |
124 | is turned on for the compilation of the proc-macro2 \ |
125 | build script as well. |
126 | " } |
127 | |
128 | #[cfg (all( |
129 | procmacro2_nightly_testing, |
130 | feature = "proc-macro" , |
131 | not(proc_macro_span) |
132 | ))] |
133 | compile_error! {"\ |
134 | Build script probe failed to compile. |
135 | " } |
136 | |
137 | extern crate alloc; |
138 | |
139 | #[cfg (feature = "proc-macro" )] |
140 | extern crate proc_macro; |
141 | |
142 | mod marker; |
143 | mod parse; |
144 | mod rcvec; |
145 | |
146 | #[cfg (wrap_proc_macro)] |
147 | mod detection; |
148 | |
149 | // Public for proc_macro2::fallback::force() and unforce(), but those are quite |
150 | // a niche use case so we omit it from rustdoc. |
151 | #[doc (hidden)] |
152 | pub mod fallback; |
153 | |
154 | pub mod extra; |
155 | |
156 | #[cfg (not(wrap_proc_macro))] |
157 | use crate::fallback as imp; |
158 | #[path = "wrapper.rs" ] |
159 | #[cfg (wrap_proc_macro)] |
160 | mod imp; |
161 | |
162 | #[cfg (span_locations)] |
163 | mod location; |
164 | |
165 | use crate::extra::DelimSpan; |
166 | use crate::marker::{ProcMacroAutoTraits, MARKER}; |
167 | use core::cmp::Ordering; |
168 | use core::fmt::{self, Debug, Display}; |
169 | use core::hash::{Hash, Hasher}; |
170 | #[cfg (span_locations)] |
171 | use core::ops::Range; |
172 | use core::ops::RangeBounds; |
173 | use core::str::FromStr; |
174 | use std::error::Error; |
175 | use std::ffi::CStr; |
176 | #[cfg (procmacro2_semver_exempt)] |
177 | use std::path::PathBuf; |
178 | |
179 | #[cfg (span_locations)] |
180 | #[cfg_attr (docsrs, doc(cfg(feature = "span-locations" )))] |
181 | pub use crate::location::LineColumn; |
182 | |
183 | /// An abstract stream of tokens, or more concretely a sequence of token trees. |
184 | /// |
185 | /// This type provides interfaces for iterating over token trees and for |
186 | /// collecting token trees into one stream. |
187 | /// |
188 | /// Token stream is both the input and output of `#[proc_macro]`, |
189 | /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions. |
190 | #[derive (Clone)] |
191 | pub struct TokenStream { |
192 | inner: imp::TokenStream, |
193 | _marker: ProcMacroAutoTraits, |
194 | } |
195 | |
196 | /// Error returned from `TokenStream::from_str`. |
197 | pub struct LexError { |
198 | inner: imp::LexError, |
199 | _marker: ProcMacroAutoTraits, |
200 | } |
201 | |
202 | impl TokenStream { |
203 | fn _new(inner: imp::TokenStream) -> Self { |
204 | TokenStream { |
205 | inner, |
206 | _marker: MARKER, |
207 | } |
208 | } |
209 | |
210 | fn _new_fallback(inner: fallback::TokenStream) -> Self { |
211 | TokenStream { |
212 | inner: imp::TokenStream::from(inner), |
213 | _marker: MARKER, |
214 | } |
215 | } |
216 | |
217 | /// Returns an empty `TokenStream` containing no token trees. |
218 | pub fn new() -> Self { |
219 | TokenStream::_new(imp::TokenStream::new()) |
220 | } |
221 | |
222 | /// Checks if this `TokenStream` is empty. |
223 | pub fn is_empty(&self) -> bool { |
224 | self.inner.is_empty() |
225 | } |
226 | } |
227 | |
228 | /// `TokenStream::default()` returns an empty stream, |
229 | /// i.e. this is equivalent with `TokenStream::new()`. |
230 | impl Default for TokenStream { |
231 | fn default() -> Self { |
232 | TokenStream::new() |
233 | } |
234 | } |
235 | |
236 | /// Attempts to break the string into tokens and parse those tokens into a token |
237 | /// stream. |
238 | /// |
239 | /// May fail for a number of reasons, for example, if the string contains |
240 | /// unbalanced delimiters or characters not existing in the language. |
241 | /// |
242 | /// NOTE: Some errors may cause panics instead of returning `LexError`. We |
243 | /// reserve the right to change these errors into `LexError`s later. |
244 | impl FromStr for TokenStream { |
245 | type Err = LexError; |
246 | |
247 | fn from_str(src: &str) -> Result<TokenStream, LexError> { |
248 | match imp::TokenStream::from_str_checked(src) { |
249 | Ok(tokens: TokenStream) => Ok(TokenStream::_new(inner:tokens)), |
250 | Err(lex: LexError) => Err(LexError { |
251 | inner: lex, |
252 | _marker: MARKER, |
253 | }), |
254 | } |
255 | } |
256 | } |
257 | |
258 | #[cfg (feature = "proc-macro" )] |
259 | #[cfg_attr (docsrs, doc(cfg(feature = "proc-macro" )))] |
260 | impl From<proc_macro::TokenStream> for TokenStream { |
261 | fn from(inner: proc_macro::TokenStream) -> Self { |
262 | TokenStream::_new(inner:imp::TokenStream::from(inner)) |
263 | } |
264 | } |
265 | |
266 | #[cfg (feature = "proc-macro" )] |
267 | #[cfg_attr (docsrs, doc(cfg(feature = "proc-macro" )))] |
268 | impl From<TokenStream> for proc_macro::TokenStream { |
269 | fn from(inner: TokenStream) -> Self { |
270 | proc_macro::TokenStream::from(inner.inner) |
271 | } |
272 | } |
273 | |
274 | impl From<TokenTree> for TokenStream { |
275 | fn from(token: TokenTree) -> Self { |
276 | TokenStream::_new(inner:imp::TokenStream::from(token)) |
277 | } |
278 | } |
279 | |
280 | impl Extend<TokenTree> for TokenStream { |
281 | fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) { |
282 | self.inner.extend(iter:streams); |
283 | } |
284 | } |
285 | |
286 | impl Extend<TokenStream> for TokenStream { |
287 | fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) { |
288 | self.inner |
289 | .extend(iter:streams.into_iter().map(|stream: TokenStream| stream.inner)); |
290 | } |
291 | } |
292 | |
293 | /// Collects a number of token trees into a single stream. |
294 | impl FromIterator<TokenTree> for TokenStream { |
295 | fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self { |
296 | TokenStream::_new(inner:streams.into_iter().collect()) |
297 | } |
298 | } |
299 | impl FromIterator<TokenStream> for TokenStream { |
300 | fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self { |
301 | TokenStream::_new(inner:streams.into_iter().map(|i: TokenStream| i.inner).collect()) |
302 | } |
303 | } |
304 | |
305 | /// Prints the token stream as a string that is supposed to be losslessly |
306 | /// convertible back into the same token stream (modulo spans), except for |
307 | /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative |
308 | /// numeric literals. |
309 | impl Display for TokenStream { |
310 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
311 | Display::fmt(&self.inner, f) |
312 | } |
313 | } |
314 | |
315 | /// Prints token in a form convenient for debugging. |
316 | impl Debug for TokenStream { |
317 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
318 | Debug::fmt(&self.inner, f) |
319 | } |
320 | } |
321 | |
322 | impl LexError { |
323 | pub fn span(&self) -> Span { |
324 | Span::_new(self.inner.span()) |
325 | } |
326 | } |
327 | |
328 | impl Debug for LexError { |
329 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
330 | Debug::fmt(&self.inner, f) |
331 | } |
332 | } |
333 | |
334 | impl Display for LexError { |
335 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
336 | Display::fmt(&self.inner, f) |
337 | } |
338 | } |
339 | |
340 | impl Error for LexError {} |
341 | |
342 | /// The source file of a given `Span`. |
343 | /// |
344 | /// This type is semver exempt and not exposed by default. |
345 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
346 | #[cfg_attr (docsrs, doc(cfg(procmacro2_semver_exempt)))] |
347 | #[derive (Clone, PartialEq, Eq)] |
348 | pub struct SourceFile { |
349 | inner: imp::SourceFile, |
350 | _marker: ProcMacroAutoTraits, |
351 | } |
352 | |
353 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
354 | impl SourceFile { |
355 | fn _new(inner: imp::SourceFile) -> Self { |
356 | SourceFile { |
357 | inner, |
358 | _marker: MARKER, |
359 | } |
360 | } |
361 | |
362 | /// Get the path to this source file. |
363 | /// |
364 | /// ### Note |
365 | /// |
366 | /// If the code span associated with this `SourceFile` was generated by an |
367 | /// external macro, this may not be an actual path on the filesystem. Use |
368 | /// [`is_real`] to check. |
369 | /// |
370 | /// Also note that even if `is_real` returns `true`, if |
371 | /// `--remap-path-prefix` was passed on the command line, the path as given |
372 | /// may not actually be valid. |
373 | /// |
374 | /// [`is_real`]: #method.is_real |
375 | pub fn path(&self) -> PathBuf { |
376 | self.inner.path() |
377 | } |
378 | |
379 | /// Returns `true` if this source file is a real source file, and not |
380 | /// generated by an external macro's expansion. |
381 | pub fn is_real(&self) -> bool { |
382 | self.inner.is_real() |
383 | } |
384 | } |
385 | |
386 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
387 | impl Debug for SourceFile { |
388 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
389 | Debug::fmt(&self.inner, f) |
390 | } |
391 | } |
392 | |
393 | /// A region of source code, along with macro expansion information. |
394 | #[derive (Copy, Clone)] |
395 | pub struct Span { |
396 | inner: imp::Span, |
397 | _marker: ProcMacroAutoTraits, |
398 | } |
399 | |
400 | impl Span { |
401 | fn _new(inner: imp::Span) -> Self { |
402 | Span { |
403 | inner, |
404 | _marker: MARKER, |
405 | } |
406 | } |
407 | |
408 | fn _new_fallback(inner: fallback::Span) -> Self { |
409 | Span { |
410 | inner: imp::Span::from(inner), |
411 | _marker: MARKER, |
412 | } |
413 | } |
414 | |
415 | /// The span of the invocation of the current procedural macro. |
416 | /// |
417 | /// Identifiers created with this span will be resolved as if they were |
418 | /// written directly at the macro call location (call-site hygiene) and |
419 | /// other code at the macro call site will be able to refer to them as well. |
420 | pub fn call_site() -> Self { |
421 | Span::_new(imp::Span::call_site()) |
422 | } |
423 | |
424 | /// The span located at the invocation of the procedural macro, but with |
425 | /// local variables, labels, and `$crate` resolved at the definition site |
426 | /// of the macro. This is the same hygiene behavior as `macro_rules`. |
427 | pub fn mixed_site() -> Self { |
428 | Span::_new(imp::Span::mixed_site()) |
429 | } |
430 | |
431 | /// A span that resolves at the macro definition site. |
432 | /// |
433 | /// This method is semver exempt and not exposed by default. |
434 | #[cfg (procmacro2_semver_exempt)] |
435 | #[cfg_attr (docsrs, doc(cfg(procmacro2_semver_exempt)))] |
436 | pub fn def_site() -> Self { |
437 | Span::_new(imp::Span::def_site()) |
438 | } |
439 | |
440 | /// Creates a new span with the same line/column information as `self` but |
441 | /// that resolves symbols as though it were at `other`. |
442 | pub fn resolved_at(&self, other: Span) -> Span { |
443 | Span::_new(self.inner.resolved_at(other.inner)) |
444 | } |
445 | |
446 | /// Creates a new span with the same name resolution behavior as `self` but |
447 | /// with the line/column information of `other`. |
448 | pub fn located_at(&self, other: Span) -> Span { |
449 | Span::_new(self.inner.located_at(other.inner)) |
450 | } |
451 | |
452 | /// Convert `proc_macro2::Span` to `proc_macro::Span`. |
453 | /// |
454 | /// This method is available when building with a nightly compiler, or when |
455 | /// building with rustc 1.29+ *without* semver exempt features. |
456 | /// |
457 | /// # Panics |
458 | /// |
459 | /// Panics if called from outside of a procedural macro. Unlike |
460 | /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within |
461 | /// the context of a procedural macro invocation. |
462 | #[cfg (wrap_proc_macro)] |
463 | pub fn unwrap(self) -> proc_macro::Span { |
464 | self.inner.unwrap() |
465 | } |
466 | |
467 | // Soft deprecated. Please use Span::unwrap. |
468 | #[cfg (wrap_proc_macro)] |
469 | #[doc (hidden)] |
470 | pub fn unstable(self) -> proc_macro::Span { |
471 | self.unwrap() |
472 | } |
473 | |
474 | /// The original source file into which this span points. |
475 | /// |
476 | /// This method is semver exempt and not exposed by default. |
477 | #[cfg (all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] |
478 | #[cfg_attr (docsrs, doc(cfg(procmacro2_semver_exempt)))] |
479 | pub fn source_file(&self) -> SourceFile { |
480 | SourceFile::_new(self.inner.source_file()) |
481 | } |
482 | |
483 | /// Returns the span's byte position range in the source file. |
484 | /// |
485 | /// This method requires the `"span-locations"` feature to be enabled. |
486 | /// |
487 | /// When executing in a procedural macro context, the returned range is only |
488 | /// accurate if compiled with a nightly toolchain. The stable toolchain does |
489 | /// not have this information available. When executing outside of a |
490 | /// procedural macro, such as main.rs or build.rs, the byte range is always |
491 | /// accurate regardless of toolchain. |
492 | #[cfg (span_locations)] |
493 | #[cfg_attr (docsrs, doc(cfg(feature = "span-locations" )))] |
494 | pub fn byte_range(&self) -> Range<usize> { |
495 | self.inner.byte_range() |
496 | } |
497 | |
498 | /// Get the starting line/column in the source file for this span. |
499 | /// |
500 | /// This method requires the `"span-locations"` feature to be enabled. |
501 | /// |
502 | /// When executing in a procedural macro context, the returned line/column |
503 | /// are only meaningful if compiled with a nightly toolchain. The stable |
504 | /// toolchain does not have this information available. When executing |
505 | /// outside of a procedural macro, such as main.rs or build.rs, the |
506 | /// line/column are always meaningful regardless of toolchain. |
507 | #[cfg (span_locations)] |
508 | #[cfg_attr (docsrs, doc(cfg(feature = "span-locations" )))] |
509 | pub fn start(&self) -> LineColumn { |
510 | self.inner.start() |
511 | } |
512 | |
513 | /// Get the ending line/column in the source file for this span. |
514 | /// |
515 | /// This method requires the `"span-locations"` feature to be enabled. |
516 | /// |
517 | /// When executing in a procedural macro context, the returned line/column |
518 | /// are only meaningful if compiled with a nightly toolchain. The stable |
519 | /// toolchain does not have this information available. When executing |
520 | /// outside of a procedural macro, such as main.rs or build.rs, the |
521 | /// line/column are always meaningful regardless of toolchain. |
522 | #[cfg (span_locations)] |
523 | #[cfg_attr (docsrs, doc(cfg(feature = "span-locations" )))] |
524 | pub fn end(&self) -> LineColumn { |
525 | self.inner.end() |
526 | } |
527 | |
528 | /// Create a new span encompassing `self` and `other`. |
529 | /// |
530 | /// Returns `None` if `self` and `other` are from different files. |
531 | /// |
532 | /// Warning: the underlying [`proc_macro::Span::join`] method is |
533 | /// nightly-only. When called from within a procedural macro not using a |
534 | /// nightly compiler, this method will always return `None`. |
535 | /// |
536 | /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join |
537 | pub fn join(&self, other: Span) -> Option<Span> { |
538 | self.inner.join(other.inner).map(Span::_new) |
539 | } |
540 | |
541 | /// Compares two spans to see if they're equal. |
542 | /// |
543 | /// This method is semver exempt and not exposed by default. |
544 | #[cfg (procmacro2_semver_exempt)] |
545 | #[cfg_attr (docsrs, doc(cfg(procmacro2_semver_exempt)))] |
546 | pub fn eq(&self, other: &Span) -> bool { |
547 | self.inner.eq(&other.inner) |
548 | } |
549 | |
550 | /// Returns the source text behind a span. This preserves the original |
551 | /// source code, including spaces and comments. It only returns a result if |
552 | /// the span corresponds to real source code. |
553 | /// |
554 | /// Note: The observable result of a macro should only rely on the tokens |
555 | /// and not on this source text. The result of this function is a best |
556 | /// effort to be used for diagnostics only. |
557 | pub fn source_text(&self) -> Option<String> { |
558 | self.inner.source_text() |
559 | } |
560 | } |
561 | |
562 | /// Prints a span in a form convenient for debugging. |
563 | impl Debug for Span { |
564 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
565 | Debug::fmt(&self.inner, f) |
566 | } |
567 | } |
568 | |
569 | /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`). |
570 | #[derive (Clone)] |
571 | pub enum TokenTree { |
572 | /// A token stream surrounded by bracket delimiters. |
573 | Group(Group), |
574 | /// An identifier. |
575 | Ident(Ident), |
576 | /// A single punctuation character (`+`, `,`, `$`, etc.). |
577 | Punct(Punct), |
578 | /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc. |
579 | Literal(Literal), |
580 | } |
581 | |
582 | impl TokenTree { |
583 | /// Returns the span of this tree, delegating to the `span` method of |
584 | /// the contained token or a delimited stream. |
585 | pub fn span(&self) -> Span { |
586 | match self { |
587 | TokenTree::Group(t) => t.span(), |
588 | TokenTree::Ident(t) => t.span(), |
589 | TokenTree::Punct(t) => t.span(), |
590 | TokenTree::Literal(t) => t.span(), |
591 | } |
592 | } |
593 | |
594 | /// Configures the span for *only this token*. |
595 | /// |
596 | /// Note that if this token is a `Group` then this method will not configure |
597 | /// the span of each of the internal tokens, this will simply delegate to |
598 | /// the `set_span` method of each variant. |
599 | pub fn set_span(&mut self, span: Span) { |
600 | match self { |
601 | TokenTree::Group(t) => t.set_span(span), |
602 | TokenTree::Ident(t) => t.set_span(span), |
603 | TokenTree::Punct(t) => t.set_span(span), |
604 | TokenTree::Literal(t) => t.set_span(span), |
605 | } |
606 | } |
607 | } |
608 | |
609 | impl From<Group> for TokenTree { |
610 | fn from(g: Group) -> Self { |
611 | TokenTree::Group(g) |
612 | } |
613 | } |
614 | |
615 | impl From<Ident> for TokenTree { |
616 | fn from(g: Ident) -> Self { |
617 | TokenTree::Ident(g) |
618 | } |
619 | } |
620 | |
621 | impl From<Punct> for TokenTree { |
622 | fn from(g: Punct) -> Self { |
623 | TokenTree::Punct(g) |
624 | } |
625 | } |
626 | |
627 | impl From<Literal> for TokenTree { |
628 | fn from(g: Literal) -> Self { |
629 | TokenTree::Literal(g) |
630 | } |
631 | } |
632 | |
633 | /// Prints the token tree as a string that is supposed to be losslessly |
634 | /// convertible back into the same token tree (modulo spans), except for |
635 | /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative |
636 | /// numeric literals. |
637 | impl Display for TokenTree { |
638 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
639 | match self { |
640 | TokenTree::Group(t: &Group) => Display::fmt(self:t, f), |
641 | TokenTree::Ident(t: &Ident) => Display::fmt(self:t, f), |
642 | TokenTree::Punct(t: &Punct) => Display::fmt(self:t, f), |
643 | TokenTree::Literal(t: &Literal) => Display::fmt(self:t, f), |
644 | } |
645 | } |
646 | } |
647 | |
648 | /// Prints token tree in a form convenient for debugging. |
649 | impl Debug for TokenTree { |
650 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
651 | // Each of these has the name in the struct type in the derived debug, |
652 | // so don't bother with an extra layer of indirection |
653 | match self { |
654 | TokenTree::Group(t: &Group) => Debug::fmt(self:t, f), |
655 | TokenTree::Ident(t: &Ident) => { |
656 | let mut debug: DebugStruct<'_, '_> = f.debug_struct(name:"Ident" ); |
657 | debug.field(name:"sym" , &format_args!(" {}" , t)); |
658 | imp::debug_span_field_if_nontrivial(&mut debug, span:t.span().inner); |
659 | debug.finish() |
660 | } |
661 | TokenTree::Punct(t: &Punct) => Debug::fmt(self:t, f), |
662 | TokenTree::Literal(t: &Literal) => Debug::fmt(self:t, f), |
663 | } |
664 | } |
665 | } |
666 | |
667 | /// A delimited token stream. |
668 | /// |
669 | /// A `Group` internally contains a `TokenStream` which is surrounded by |
670 | /// `Delimiter`s. |
671 | #[derive (Clone)] |
672 | pub struct Group { |
673 | inner: imp::Group, |
674 | } |
675 | |
676 | /// Describes how a sequence of token trees is delimited. |
677 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
678 | pub enum Delimiter { |
679 | /// `( ... )` |
680 | Parenthesis, |
681 | /// `{ ... }` |
682 | Brace, |
683 | /// `[ ... ]` |
684 | Bracket, |
685 | /// `∅ ... ∅` |
686 | /// |
687 | /// An invisible delimiter, that may, for example, appear around tokens |
688 | /// coming from a "macro variable" `$var`. It is important to preserve |
689 | /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`. |
690 | /// Invisible delimiters may not survive roundtrip of a token stream through |
691 | /// a string. |
692 | /// |
693 | /// <div class="warning"> |
694 | /// |
695 | /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output |
696 | /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input |
697 | /// of a proc_macro macro are preserved, and only in very specific circumstances. |
698 | /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve |
699 | /// operator priorities as indicated above. The other `Delimiter` variants should be used |
700 | /// instead in this context. This is a rustc bug. For details, see |
701 | /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062). |
702 | /// |
703 | /// </div> |
704 | None, |
705 | } |
706 | |
707 | impl Group { |
708 | fn _new(inner: imp::Group) -> Self { |
709 | Group { inner } |
710 | } |
711 | |
712 | fn _new_fallback(inner: fallback::Group) -> Self { |
713 | Group { |
714 | inner: imp::Group::from(inner), |
715 | } |
716 | } |
717 | |
718 | /// Creates a new `Group` with the given delimiter and token stream. |
719 | /// |
720 | /// This constructor will set the span for this group to |
721 | /// `Span::call_site()`. To change the span you can use the `set_span` |
722 | /// method below. |
723 | pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self { |
724 | Group { |
725 | inner: imp::Group::new(delimiter, stream.inner), |
726 | } |
727 | } |
728 | |
729 | /// Returns the punctuation used as the delimiter for this group: a set of |
730 | /// parentheses, square brackets, or curly braces. |
731 | pub fn delimiter(&self) -> Delimiter { |
732 | self.inner.delimiter() |
733 | } |
734 | |
735 | /// Returns the `TokenStream` of tokens that are delimited in this `Group`. |
736 | /// |
737 | /// Note that the returned token stream does not include the delimiter |
738 | /// returned above. |
739 | pub fn stream(&self) -> TokenStream { |
740 | TokenStream::_new(self.inner.stream()) |
741 | } |
742 | |
743 | /// Returns the span for the delimiters of this token stream, spanning the |
744 | /// entire `Group`. |
745 | /// |
746 | /// ```text |
747 | /// pub fn span(&self) -> Span { |
748 | /// ^^^^^^^ |
749 | /// ``` |
750 | pub fn span(&self) -> Span { |
751 | Span::_new(self.inner.span()) |
752 | } |
753 | |
754 | /// Returns the span pointing to the opening delimiter of this group. |
755 | /// |
756 | /// ```text |
757 | /// pub fn span_open(&self) -> Span { |
758 | /// ^ |
759 | /// ``` |
760 | pub fn span_open(&self) -> Span { |
761 | Span::_new(self.inner.span_open()) |
762 | } |
763 | |
764 | /// Returns the span pointing to the closing delimiter of this group. |
765 | /// |
766 | /// ```text |
767 | /// pub fn span_close(&self) -> Span { |
768 | /// ^ |
769 | /// ``` |
770 | pub fn span_close(&self) -> Span { |
771 | Span::_new(self.inner.span_close()) |
772 | } |
773 | |
774 | /// Returns an object that holds this group's `span_open()` and |
775 | /// `span_close()` together (in a more compact representation than holding |
776 | /// those 2 spans individually). |
777 | pub fn delim_span(&self) -> DelimSpan { |
778 | DelimSpan::new(&self.inner) |
779 | } |
780 | |
781 | /// Configures the span for this `Group`'s delimiters, but not its internal |
782 | /// tokens. |
783 | /// |
784 | /// This method will **not** set the span of all the internal tokens spanned |
785 | /// by this group, but rather it will only set the span of the delimiter |
786 | /// tokens at the level of the `Group`. |
787 | pub fn set_span(&mut self, span: Span) { |
788 | self.inner.set_span(span.inner); |
789 | } |
790 | } |
791 | |
792 | /// Prints the group as a string that should be losslessly convertible back |
793 | /// into the same group (modulo spans), except for possibly `TokenTree::Group`s |
794 | /// with `Delimiter::None` delimiters. |
795 | impl Display for Group { |
796 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
797 | Display::fmt(&self.inner, f:formatter) |
798 | } |
799 | } |
800 | |
801 | impl Debug for Group { |
802 | fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
803 | Debug::fmt(&self.inner, f:formatter) |
804 | } |
805 | } |
806 | |
807 | /// A `Punct` is a single punctuation character like `+`, `-` or `#`. |
808 | /// |
809 | /// Multicharacter operators like `+=` are represented as two instances of |
810 | /// `Punct` with different forms of `Spacing` returned. |
811 | #[derive (Clone)] |
812 | pub struct Punct { |
813 | ch: char, |
814 | spacing: Spacing, |
815 | span: Span, |
816 | } |
817 | |
818 | /// Whether a `Punct` is followed immediately by another `Punct` or followed by |
819 | /// another token or whitespace. |
820 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
821 | pub enum Spacing { |
822 | /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`. |
823 | Alone, |
824 | /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`. |
825 | /// |
826 | /// Additionally, single quote `'` can join with identifiers to form |
827 | /// lifetimes `'ident`. |
828 | Joint, |
829 | } |
830 | |
831 | impl Punct { |
832 | /// Creates a new `Punct` from the given character and spacing. |
833 | /// |
834 | /// The `ch` argument must be a valid punctuation character permitted by the |
835 | /// language, otherwise the function will panic. |
836 | /// |
837 | /// The returned `Punct` will have the default span of `Span::call_site()` |
838 | /// which can be further configured with the `set_span` method below. |
839 | pub fn new(ch: char, spacing: Spacing) -> Self { |
840 | if let '!' | '#' | '$' | '%' | '&' | ' \'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';' |
841 | | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch |
842 | { |
843 | Punct { |
844 | ch, |
845 | spacing, |
846 | span: Span::call_site(), |
847 | } |
848 | } else { |
849 | panic!("unsupported proc macro punctuation character {:?}" , ch); |
850 | } |
851 | } |
852 | |
853 | /// Returns the value of this punctuation character as `char`. |
854 | pub fn as_char(&self) -> char { |
855 | self.ch |
856 | } |
857 | |
858 | /// Returns the spacing of this punctuation character, indicating whether |
859 | /// it's immediately followed by another `Punct` in the token stream, so |
860 | /// they can potentially be combined into a multicharacter operator |
861 | /// (`Joint`), or it's followed by some other token or whitespace (`Alone`) |
862 | /// so the operator has certainly ended. |
863 | pub fn spacing(&self) -> Spacing { |
864 | self.spacing |
865 | } |
866 | |
867 | /// Returns the span for this punctuation character. |
868 | pub fn span(&self) -> Span { |
869 | self.span |
870 | } |
871 | |
872 | /// Configure the span for this punctuation character. |
873 | pub fn set_span(&mut self, span: Span) { |
874 | self.span = span; |
875 | } |
876 | } |
877 | |
878 | /// Prints the punctuation character as a string that should be losslessly |
879 | /// convertible back into the same character. |
880 | impl Display for Punct { |
881 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
882 | Display::fmt(&self.ch, f) |
883 | } |
884 | } |
885 | |
886 | impl Debug for Punct { |
887 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
888 | let mut debug: DebugStruct<'_, '_> = fmt.debug_struct(name:"Punct" ); |
889 | debug.field(name:"char" , &self.ch); |
890 | debug.field(name:"spacing" , &self.spacing); |
891 | imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner); |
892 | debug.finish() |
893 | } |
894 | } |
895 | |
896 | /// A word of Rust code, which may be a keyword or legal variable name. |
897 | /// |
898 | /// An identifier consists of at least one Unicode code point, the first of |
899 | /// which has the XID_Start property and the rest of which have the XID_Continue |
900 | /// property. |
901 | /// |
902 | /// - The empty string is not an identifier. Use `Option<Ident>`. |
903 | /// - A lifetime is not an identifier. Use `syn::Lifetime` instead. |
904 | /// |
905 | /// An identifier constructed with `Ident::new` is permitted to be a Rust |
906 | /// keyword, though parsing one through its [`Parse`] implementation rejects |
907 | /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the |
908 | /// behaviour of `Ident::new`. |
909 | /// |
910 | /// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html |
911 | /// |
912 | /// # Examples |
913 | /// |
914 | /// A new ident can be created from a string using the `Ident::new` function. |
915 | /// A span must be provided explicitly which governs the name resolution |
916 | /// behavior of the resulting identifier. |
917 | /// |
918 | /// ``` |
919 | /// use proc_macro2::{Ident, Span}; |
920 | /// |
921 | /// fn main() { |
922 | /// let call_ident = Ident::new("calligraphy" , Span::call_site()); |
923 | /// |
924 | /// println!("{}" , call_ident); |
925 | /// } |
926 | /// ``` |
927 | /// |
928 | /// An ident can be interpolated into a token stream using the `quote!` macro. |
929 | /// |
930 | /// ``` |
931 | /// use proc_macro2::{Ident, Span}; |
932 | /// use quote::quote; |
933 | /// |
934 | /// fn main() { |
935 | /// let ident = Ident::new("demo" , Span::call_site()); |
936 | /// |
937 | /// // Create a variable binding whose name is this ident. |
938 | /// let expanded = quote! { let #ident = 10; }; |
939 | /// |
940 | /// // Create a variable binding with a slightly different name. |
941 | /// let temp_ident = Ident::new(&format!("new_{}" , ident), Span::call_site()); |
942 | /// let expanded = quote! { let #temp_ident = 10; }; |
943 | /// } |
944 | /// ``` |
945 | /// |
946 | /// A string representation of the ident is available through the `to_string()` |
947 | /// method. |
948 | /// |
949 | /// ``` |
950 | /// # use proc_macro2::{Ident, Span}; |
951 | /// # |
952 | /// # let ident = Ident::new("another_identifier" , Span::call_site()); |
953 | /// # |
954 | /// // Examine the ident as a string. |
955 | /// let ident_string = ident.to_string(); |
956 | /// if ident_string.len() > 60 { |
957 | /// println!("Very long identifier: {}" , ident_string) |
958 | /// } |
959 | /// ``` |
960 | #[derive (Clone)] |
961 | pub struct Ident { |
962 | inner: imp::Ident, |
963 | _marker: ProcMacroAutoTraits, |
964 | } |
965 | |
966 | impl Ident { |
967 | fn _new(inner: imp::Ident) -> Self { |
968 | Ident { |
969 | inner, |
970 | _marker: MARKER, |
971 | } |
972 | } |
973 | |
974 | fn _new_fallback(inner: fallback::Ident) -> Self { |
975 | Ident { |
976 | inner: imp::Ident::from(inner), |
977 | _marker: MARKER, |
978 | } |
979 | } |
980 | |
981 | /// Creates a new `Ident` with the given `string` as well as the specified |
982 | /// `span`. |
983 | /// |
984 | /// The `string` argument must be a valid identifier permitted by the |
985 | /// language, otherwise the function will panic. |
986 | /// |
987 | /// Note that `span`, currently in rustc, configures the hygiene information |
988 | /// for this identifier. |
989 | /// |
990 | /// As of this time `Span::call_site()` explicitly opts-in to "call-site" |
991 | /// hygiene meaning that identifiers created with this span will be resolved |
992 | /// as if they were written directly at the location of the macro call, and |
993 | /// other code at the macro call site will be able to refer to them as well. |
994 | /// |
995 | /// Later spans like `Span::def_site()` will allow to opt-in to |
996 | /// "definition-site" hygiene meaning that identifiers created with this |
997 | /// span will be resolved at the location of the macro definition and other |
998 | /// code at the macro call site will not be able to refer to them. |
999 | /// |
1000 | /// Due to the current importance of hygiene this constructor, unlike other |
1001 | /// tokens, requires a `Span` to be specified at construction. |
1002 | /// |
1003 | /// # Panics |
1004 | /// |
1005 | /// Panics if the input string is neither a keyword nor a legal variable |
1006 | /// name. If you are not sure whether the string contains an identifier and |
1007 | /// need to handle an error case, use |
1008 | /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code |
1009 | /// style="padding-right:0;">syn::parse_str</code></a><code |
1010 | /// style="padding-left:0;">::<Ident></code> |
1011 | /// rather than `Ident::new`. |
1012 | #[track_caller ] |
1013 | pub fn new(string: &str, span: Span) -> Self { |
1014 | Ident::_new(imp::Ident::new_checked(string, span.inner)) |
1015 | } |
1016 | |
1017 | /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The |
1018 | /// `string` argument must be a valid identifier permitted by the language |
1019 | /// (including keywords, e.g. `fn`). Keywords which are usable in path |
1020 | /// segments (e.g. `self`, `super`) are not supported, and will cause a |
1021 | /// panic. |
1022 | #[track_caller ] |
1023 | pub fn new_raw(string: &str, span: Span) -> Self { |
1024 | Ident::_new(imp::Ident::new_raw_checked(string, span.inner)) |
1025 | } |
1026 | |
1027 | /// Returns the span of this `Ident`. |
1028 | pub fn span(&self) -> Span { |
1029 | Span::_new(self.inner.span()) |
1030 | } |
1031 | |
1032 | /// Configures the span of this `Ident`, possibly changing its hygiene |
1033 | /// context. |
1034 | pub fn set_span(&mut self, span: Span) { |
1035 | self.inner.set_span(span.inner); |
1036 | } |
1037 | } |
1038 | |
1039 | impl PartialEq for Ident { |
1040 | fn eq(&self, other: &Ident) -> bool { |
1041 | self.inner == other.inner |
1042 | } |
1043 | } |
1044 | |
1045 | impl<T> PartialEq<T> for Ident |
1046 | where |
1047 | T: ?Sized + AsRef<str>, |
1048 | { |
1049 | fn eq(&self, other: &T) -> bool { |
1050 | self.inner == other |
1051 | } |
1052 | } |
1053 | |
1054 | impl Eq for Ident {} |
1055 | |
1056 | impl PartialOrd for Ident { |
1057 | fn partial_cmp(&self, other: &Ident) -> Option<Ordering> { |
1058 | Some(self.cmp(other)) |
1059 | } |
1060 | } |
1061 | |
1062 | impl Ord for Ident { |
1063 | fn cmp(&self, other: &Ident) -> Ordering { |
1064 | self.to_string().cmp(&other.to_string()) |
1065 | } |
1066 | } |
1067 | |
1068 | impl Hash for Ident { |
1069 | fn hash<H: Hasher>(&self, hasher: &mut H) { |
1070 | self.to_string().hash(state:hasher); |
1071 | } |
1072 | } |
1073 | |
1074 | /// Prints the identifier as a string that should be losslessly convertible back |
1075 | /// into the same identifier. |
1076 | impl Display for Ident { |
1077 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1078 | Display::fmt(&self.inner, f) |
1079 | } |
1080 | } |
1081 | |
1082 | impl Debug for Ident { |
1083 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1084 | Debug::fmt(&self.inner, f) |
1085 | } |
1086 | } |
1087 | |
1088 | /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`), |
1089 | /// byte character (`b'a'`), an integer or floating point number with or without |
1090 | /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`). |
1091 | /// |
1092 | /// Boolean literals like `true` and `false` do not belong here, they are |
1093 | /// `Ident`s. |
1094 | #[derive (Clone)] |
1095 | pub struct Literal { |
1096 | inner: imp::Literal, |
1097 | _marker: ProcMacroAutoTraits, |
1098 | } |
1099 | |
1100 | macro_rules! suffixed_int_literals { |
1101 | ($($name:ident => $kind:ident,)*) => ($( |
1102 | /// Creates a new suffixed integer literal with the specified value. |
1103 | /// |
1104 | /// This function will create an integer like `1u32` where the integer |
1105 | /// value specified is the first part of the token and the integral is |
1106 | /// also suffixed at the end. Literals created from negative numbers may |
1107 | /// not survive roundtrips through `TokenStream` or strings and may be |
1108 | /// broken into two tokens (`-` and positive literal). |
1109 | /// |
1110 | /// Literals created through this method have the `Span::call_site()` |
1111 | /// span by default, which can be configured with the `set_span` method |
1112 | /// below. |
1113 | pub fn $name(n: $kind) -> Literal { |
1114 | Literal::_new(imp::Literal::$name(n)) |
1115 | } |
1116 | )*) |
1117 | } |
1118 | |
1119 | macro_rules! unsuffixed_int_literals { |
1120 | ($($name:ident => $kind:ident,)*) => ($( |
1121 | /// Creates a new unsuffixed integer literal with the specified value. |
1122 | /// |
1123 | /// This function will create an integer like `1` where the integer |
1124 | /// value specified is the first part of the token. No suffix is |
1125 | /// specified on this token, meaning that invocations like |
1126 | /// `Literal::i8_unsuffixed(1)` are equivalent to |
1127 | /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers |
1128 | /// may not survive roundtrips through `TokenStream` or strings and may |
1129 | /// be broken into two tokens (`-` and positive literal). |
1130 | /// |
1131 | /// Literals created through this method have the `Span::call_site()` |
1132 | /// span by default, which can be configured with the `set_span` method |
1133 | /// below. |
1134 | pub fn $name(n: $kind) -> Literal { |
1135 | Literal::_new(imp::Literal::$name(n)) |
1136 | } |
1137 | )*) |
1138 | } |
1139 | |
1140 | impl Literal { |
1141 | fn _new(inner: imp::Literal) -> Self { |
1142 | Literal { |
1143 | inner, |
1144 | _marker: MARKER, |
1145 | } |
1146 | } |
1147 | |
1148 | fn _new_fallback(inner: fallback::Literal) -> Self { |
1149 | Literal { |
1150 | inner: imp::Literal::from(inner), |
1151 | _marker: MARKER, |
1152 | } |
1153 | } |
1154 | |
1155 | suffixed_int_literals! { |
1156 | u8_suffixed => u8, |
1157 | u16_suffixed => u16, |
1158 | u32_suffixed => u32, |
1159 | u64_suffixed => u64, |
1160 | u128_suffixed => u128, |
1161 | usize_suffixed => usize, |
1162 | i8_suffixed => i8, |
1163 | i16_suffixed => i16, |
1164 | i32_suffixed => i32, |
1165 | i64_suffixed => i64, |
1166 | i128_suffixed => i128, |
1167 | isize_suffixed => isize, |
1168 | } |
1169 | |
1170 | unsuffixed_int_literals! { |
1171 | u8_unsuffixed => u8, |
1172 | u16_unsuffixed => u16, |
1173 | u32_unsuffixed => u32, |
1174 | u64_unsuffixed => u64, |
1175 | u128_unsuffixed => u128, |
1176 | usize_unsuffixed => usize, |
1177 | i8_unsuffixed => i8, |
1178 | i16_unsuffixed => i16, |
1179 | i32_unsuffixed => i32, |
1180 | i64_unsuffixed => i64, |
1181 | i128_unsuffixed => i128, |
1182 | isize_unsuffixed => isize, |
1183 | } |
1184 | |
1185 | /// Creates a new unsuffixed floating-point literal. |
1186 | /// |
1187 | /// This constructor is similar to those like `Literal::i8_unsuffixed` where |
1188 | /// the float's value is emitted directly into the token but no suffix is |
1189 | /// used, so it may be inferred to be a `f64` later in the compiler. |
1190 | /// Literals created from negative numbers may not survive round-trips |
1191 | /// through `TokenStream` or strings and may be broken into two tokens (`-` |
1192 | /// and positive literal). |
1193 | /// |
1194 | /// # Panics |
1195 | /// |
1196 | /// This function requires that the specified float is finite, for example |
1197 | /// if it is infinity or NaN this function will panic. |
1198 | pub fn f64_unsuffixed(f: f64) -> Literal { |
1199 | assert!(f.is_finite()); |
1200 | Literal::_new(imp::Literal::f64_unsuffixed(f)) |
1201 | } |
1202 | |
1203 | /// Creates a new suffixed floating-point literal. |
1204 | /// |
1205 | /// This constructor will create a literal like `1.0f64` where the value |
1206 | /// specified is the preceding part of the token and `f64` is the suffix of |
1207 | /// the token. This token will always be inferred to be an `f64` in the |
1208 | /// compiler. Literals created from negative numbers may not survive |
1209 | /// round-trips through `TokenStream` or strings and may be broken into two |
1210 | /// tokens (`-` and positive literal). |
1211 | /// |
1212 | /// # Panics |
1213 | /// |
1214 | /// This function requires that the specified float is finite, for example |
1215 | /// if it is infinity or NaN this function will panic. |
1216 | pub fn f64_suffixed(f: f64) -> Literal { |
1217 | assert!(f.is_finite()); |
1218 | Literal::_new(imp::Literal::f64_suffixed(f)) |
1219 | } |
1220 | |
1221 | /// Creates a new unsuffixed floating-point literal. |
1222 | /// |
1223 | /// This constructor is similar to those like `Literal::i8_unsuffixed` where |
1224 | /// the float's value is emitted directly into the token but no suffix is |
1225 | /// used, so it may be inferred to be a `f64` later in the compiler. |
1226 | /// Literals created from negative numbers may not survive round-trips |
1227 | /// through `TokenStream` or strings and may be broken into two tokens (`-` |
1228 | /// and positive literal). |
1229 | /// |
1230 | /// # Panics |
1231 | /// |
1232 | /// This function requires that the specified float is finite, for example |
1233 | /// if it is infinity or NaN this function will panic. |
1234 | pub fn f32_unsuffixed(f: f32) -> Literal { |
1235 | assert!(f.is_finite()); |
1236 | Literal::_new(imp::Literal::f32_unsuffixed(f)) |
1237 | } |
1238 | |
1239 | /// Creates a new suffixed floating-point literal. |
1240 | /// |
1241 | /// This constructor will create a literal like `1.0f32` where the value |
1242 | /// specified is the preceding part of the token and `f32` is the suffix of |
1243 | /// the token. This token will always be inferred to be an `f32` in the |
1244 | /// compiler. Literals created from negative numbers may not survive |
1245 | /// round-trips through `TokenStream` or strings and may be broken into two |
1246 | /// tokens (`-` and positive literal). |
1247 | /// |
1248 | /// # Panics |
1249 | /// |
1250 | /// This function requires that the specified float is finite, for example |
1251 | /// if it is infinity or NaN this function will panic. |
1252 | pub fn f32_suffixed(f: f32) -> Literal { |
1253 | assert!(f.is_finite()); |
1254 | Literal::_new(imp::Literal::f32_suffixed(f)) |
1255 | } |
1256 | |
1257 | /// String literal. |
1258 | pub fn string(string: &str) -> Literal { |
1259 | Literal::_new(imp::Literal::string(string)) |
1260 | } |
1261 | |
1262 | /// Character literal. |
1263 | pub fn character(ch: char) -> Literal { |
1264 | Literal::_new(imp::Literal::character(ch)) |
1265 | } |
1266 | |
1267 | /// Byte character literal. |
1268 | pub fn byte_character(byte: u8) -> Literal { |
1269 | Literal::_new(imp::Literal::byte_character(byte)) |
1270 | } |
1271 | |
1272 | /// Byte string literal. |
1273 | pub fn byte_string(bytes: &[u8]) -> Literal { |
1274 | Literal::_new(imp::Literal::byte_string(bytes)) |
1275 | } |
1276 | |
1277 | /// C string literal. |
1278 | pub fn c_string(string: &CStr) -> Literal { |
1279 | Literal::_new(imp::Literal::c_string(string)) |
1280 | } |
1281 | |
1282 | /// Returns the span encompassing this literal. |
1283 | pub fn span(&self) -> Span { |
1284 | Span::_new(self.inner.span()) |
1285 | } |
1286 | |
1287 | /// Configures the span associated for this literal. |
1288 | pub fn set_span(&mut self, span: Span) { |
1289 | self.inner.set_span(span.inner); |
1290 | } |
1291 | |
1292 | /// Returns a `Span` that is a subset of `self.span()` containing only |
1293 | /// the source bytes in range `range`. Returns `None` if the would-be |
1294 | /// trimmed span is outside the bounds of `self`. |
1295 | /// |
1296 | /// Warning: the underlying [`proc_macro::Literal::subspan`] method is |
1297 | /// nightly-only. When called from within a procedural macro not using a |
1298 | /// nightly compiler, this method will always return `None`. |
1299 | /// |
1300 | /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan |
1301 | pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> { |
1302 | self.inner.subspan(range).map(Span::_new) |
1303 | } |
1304 | |
1305 | // Intended for the `quote!` macro to use when constructing a proc-macro2 |
1306 | // token out of a macro_rules $:literal token, which is already known to be |
1307 | // a valid literal. This avoids reparsing/validating the literal's string |
1308 | // representation. This is not public API other than for quote. |
1309 | #[doc (hidden)] |
1310 | pub unsafe fn from_str_unchecked(repr: &str) -> Self { |
1311 | Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) }) |
1312 | } |
1313 | } |
1314 | |
1315 | impl FromStr for Literal { |
1316 | type Err = LexError; |
1317 | |
1318 | fn from_str(repr: &str) -> Result<Self, LexError> { |
1319 | match imp::Literal::from_str_checked(repr) { |
1320 | Ok(lit: Literal) => Ok(Literal::_new(inner:lit)), |
1321 | Err(lex: LexError) => Err(LexError { |
1322 | inner: lex, |
1323 | _marker: MARKER, |
1324 | }), |
1325 | } |
1326 | } |
1327 | } |
1328 | |
1329 | impl Debug for Literal { |
1330 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1331 | Debug::fmt(&self.inner, f) |
1332 | } |
1333 | } |
1334 | |
1335 | impl Display for Literal { |
1336 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1337 | Display::fmt(&self.inner, f) |
1338 | } |
1339 | } |
1340 | |
1341 | /// Public implementation details for the `TokenStream` type, such as iterators. |
1342 | pub mod token_stream { |
1343 | use crate::marker::{ProcMacroAutoTraits, MARKER}; |
1344 | use crate::{imp, TokenTree}; |
1345 | use core::fmt::{self, Debug}; |
1346 | |
1347 | pub use crate::TokenStream; |
1348 | |
1349 | /// An iterator over `TokenStream`'s `TokenTree`s. |
1350 | /// |
1351 | /// The iteration is "shallow", e.g. the iterator doesn't recurse into |
1352 | /// delimited groups, and returns whole groups as token trees. |
1353 | #[derive (Clone)] |
1354 | pub struct IntoIter { |
1355 | inner: imp::TokenTreeIter, |
1356 | _marker: ProcMacroAutoTraits, |
1357 | } |
1358 | |
1359 | impl Iterator for IntoIter { |
1360 | type Item = TokenTree; |
1361 | |
1362 | fn next(&mut self) -> Option<TokenTree> { |
1363 | self.inner.next() |
1364 | } |
1365 | |
1366 | fn size_hint(&self) -> (usize, Option<usize>) { |
1367 | self.inner.size_hint() |
1368 | } |
1369 | } |
1370 | |
1371 | impl Debug for IntoIter { |
1372 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1373 | f.write_str("TokenStream " )?; |
1374 | f.debug_list().entries(self.clone()).finish() |
1375 | } |
1376 | } |
1377 | |
1378 | impl IntoIterator for TokenStream { |
1379 | type Item = TokenTree; |
1380 | type IntoIter = IntoIter; |
1381 | |
1382 | fn into_iter(self) -> IntoIter { |
1383 | IntoIter { |
1384 | inner: self.inner.into_iter(), |
1385 | _marker: MARKER, |
1386 | } |
1387 | } |
1388 | } |
1389 | } |
1390 | |