| 1 | // Copyright 2018 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | //! Sequence-related functionality |
| 10 | //! |
| 11 | //! This module provides: |
| 12 | //! |
| 13 | //! * [`SliceRandom`] slice sampling and mutation |
| 14 | //! * [`IteratorRandom`] iterator sampling |
| 15 | //! * [`index::sample`] low-level API to choose multiple indices from |
| 16 | //! `0..length` |
| 17 | //! |
| 18 | //! Also see: |
| 19 | //! |
| 20 | //! * [`crate::distributions::WeightedIndex`] distribution which provides |
| 21 | //! weighted index sampling. |
| 22 | //! |
| 23 | //! In order to make results reproducible across 32-64 bit architectures, all |
| 24 | //! `usize` indices are sampled as a `u32` where possible (also providing a |
| 25 | //! small performance boost in some cases). |
| 26 | |
| 27 | |
| 28 | #[cfg (feature = "alloc" )] |
| 29 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 30 | pub mod index; |
| 31 | |
| 32 | #[cfg (feature = "alloc" )] use core::ops::Index; |
| 33 | |
| 34 | #[cfg (feature = "alloc" )] use alloc::vec::Vec; |
| 35 | |
| 36 | #[cfg (feature = "alloc" )] |
| 37 | use crate::distributions::uniform::{SampleBorrow, SampleUniform}; |
| 38 | #[cfg (feature = "alloc" )] use crate::distributions::WeightedError; |
| 39 | use crate::Rng; |
| 40 | |
| 41 | /// Extension trait on slices, providing random mutation and sampling methods. |
| 42 | /// |
| 43 | /// This trait is implemented on all `[T]` slice types, providing several |
| 44 | /// methods for choosing and shuffling elements. You must `use` this trait: |
| 45 | /// |
| 46 | /// ``` |
| 47 | /// use rand::seq::SliceRandom; |
| 48 | /// |
| 49 | /// let mut rng = rand::thread_rng(); |
| 50 | /// let mut bytes = "Hello, random!" .to_string().into_bytes(); |
| 51 | /// bytes.shuffle(&mut rng); |
| 52 | /// let str = String::from_utf8(bytes).unwrap(); |
| 53 | /// println!("{}" , str); |
| 54 | /// ``` |
| 55 | /// Example output (non-deterministic): |
| 56 | /// ```none |
| 57 | /// l,nmroHado !le |
| 58 | /// ``` |
| 59 | pub trait SliceRandom { |
| 60 | /// The element type. |
| 61 | type Item; |
| 62 | |
| 63 | /// Returns a reference to one random element of the slice, or `None` if the |
| 64 | /// slice is empty. |
| 65 | /// |
| 66 | /// For slices, complexity is `O(1)`. |
| 67 | /// |
| 68 | /// # Example |
| 69 | /// |
| 70 | /// ``` |
| 71 | /// use rand::thread_rng; |
| 72 | /// use rand::seq::SliceRandom; |
| 73 | /// |
| 74 | /// let choices = [1, 2, 4, 8, 16, 32]; |
| 75 | /// let mut rng = thread_rng(); |
| 76 | /// println!("{:?}" , choices.choose(&mut rng)); |
| 77 | /// assert_eq!(choices[..0].choose(&mut rng), None); |
| 78 | /// ``` |
| 79 | fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> |
| 80 | where R: Rng + ?Sized; |
| 81 | |
| 82 | /// Returns a mutable reference to one random element of the slice, or |
| 83 | /// `None` if the slice is empty. |
| 84 | /// |
| 85 | /// For slices, complexity is `O(1)`. |
| 86 | fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> |
| 87 | where R: Rng + ?Sized; |
| 88 | |
| 89 | /// Chooses `amount` elements from the slice at random, without repetition, |
| 90 | /// and in random order. The returned iterator is appropriate both for |
| 91 | /// collection into a `Vec` and filling an existing buffer (see example). |
| 92 | /// |
| 93 | /// In case this API is not sufficiently flexible, use [`index::sample`]. |
| 94 | /// |
| 95 | /// For slices, complexity is the same as [`index::sample`]. |
| 96 | /// |
| 97 | /// # Example |
| 98 | /// ``` |
| 99 | /// use rand::seq::SliceRandom; |
| 100 | /// |
| 101 | /// let mut rng = &mut rand::thread_rng(); |
| 102 | /// let sample = "Hello, audience!" .as_bytes(); |
| 103 | /// |
| 104 | /// // collect the results into a vector: |
| 105 | /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); |
| 106 | /// |
| 107 | /// // store in a buffer: |
| 108 | /// let mut buf = [0u8; 5]; |
| 109 | /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { |
| 110 | /// *slot = *b; |
| 111 | /// } |
| 112 | /// ``` |
| 113 | #[cfg (feature = "alloc" )] |
| 114 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 115 | fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> |
| 116 | where R: Rng + ?Sized; |
| 117 | |
| 118 | /// Similar to [`choose`], but where the likelihood of each outcome may be |
| 119 | /// specified. |
| 120 | /// |
| 121 | /// The specified function `weight` maps each item `x` to a relative |
| 122 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 123 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 124 | /// |
| 125 | /// For slices of length `n`, complexity is `O(n)`. |
| 126 | /// See also [`choose_weighted_mut`], [`distributions::weighted`]. |
| 127 | /// |
| 128 | /// # Example |
| 129 | /// |
| 130 | /// ``` |
| 131 | /// use rand::prelude::*; |
| 132 | /// |
| 133 | /// let choices = [('a' , 2), ('b' , 1), ('c' , 1)]; |
| 134 | /// let mut rng = thread_rng(); |
| 135 | /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' |
| 136 | /// println!("{:?}" , choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); |
| 137 | /// ``` |
| 138 | /// [`choose`]: SliceRandom::choose |
| 139 | /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut |
| 140 | /// [`distributions::weighted`]: crate::distributions::weighted |
| 141 | #[cfg (feature = "alloc" )] |
| 142 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 143 | fn choose_weighted<R, F, B, X>( |
| 144 | &self, rng: &mut R, weight: F, |
| 145 | ) -> Result<&Self::Item, WeightedError> |
| 146 | where |
| 147 | R: Rng + ?Sized, |
| 148 | F: Fn(&Self::Item) -> B, |
| 149 | B: SampleBorrow<X>, |
| 150 | X: SampleUniform |
| 151 | + for<'a> ::core::ops::AddAssign<&'a X> |
| 152 | + ::core::cmp::PartialOrd<X> |
| 153 | + Clone |
| 154 | + Default; |
| 155 | |
| 156 | /// Similar to [`choose_mut`], but where the likelihood of each outcome may |
| 157 | /// be specified. |
| 158 | /// |
| 159 | /// The specified function `weight` maps each item `x` to a relative |
| 160 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 161 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 162 | /// |
| 163 | /// For slices of length `n`, complexity is `O(n)`. |
| 164 | /// See also [`choose_weighted`], [`distributions::weighted`]. |
| 165 | /// |
| 166 | /// [`choose_mut`]: SliceRandom::choose_mut |
| 167 | /// [`choose_weighted`]: SliceRandom::choose_weighted |
| 168 | /// [`distributions::weighted`]: crate::distributions::weighted |
| 169 | #[cfg (feature = "alloc" )] |
| 170 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 171 | fn choose_weighted_mut<R, F, B, X>( |
| 172 | &mut self, rng: &mut R, weight: F, |
| 173 | ) -> Result<&mut Self::Item, WeightedError> |
| 174 | where |
| 175 | R: Rng + ?Sized, |
| 176 | F: Fn(&Self::Item) -> B, |
| 177 | B: SampleBorrow<X>, |
| 178 | X: SampleUniform |
| 179 | + for<'a> ::core::ops::AddAssign<&'a X> |
| 180 | + ::core::cmp::PartialOrd<X> |
| 181 | + Clone |
| 182 | + Default; |
| 183 | |
| 184 | /// Similar to [`choose_multiple`], but where the likelihood of each element's |
| 185 | /// inclusion in the output may be specified. The elements are returned in an |
| 186 | /// arbitrary, unspecified order. |
| 187 | /// |
| 188 | /// The specified function `weight` maps each item `x` to a relative |
| 189 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 190 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 191 | /// |
| 192 | /// If all of the weights are equal, even if they are all zero, each element has |
| 193 | /// an equal likelihood of being selected. |
| 194 | /// |
| 195 | /// The complexity of this method depends on the feature `partition_at_index`. |
| 196 | /// If the feature is enabled, then for slices of length `n`, the complexity |
| 197 | /// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and |
| 198 | /// `O(n * log amount)` time. |
| 199 | /// |
| 200 | /// # Example |
| 201 | /// |
| 202 | /// ``` |
| 203 | /// use rand::prelude::*; |
| 204 | /// |
| 205 | /// let choices = [('a' , 2), ('b' , 1), ('c' , 1)]; |
| 206 | /// let mut rng = thread_rng(); |
| 207 | /// // First Draw * Second Draw = total odds |
| 208 | /// // ----------------------- |
| 209 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. |
| 210 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. |
| 211 | /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. |
| 212 | /// println!("{:?}" , choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>()); |
| 213 | /// ``` |
| 214 | /// [`choose_multiple`]: SliceRandom::choose_multiple |
| 215 | // |
| 216 | // Note: this is feature-gated on std due to usage of f64::powf. |
| 217 | // If necessary, we may use alloc+libm as an alternative (see PR #1089). |
| 218 | #[cfg (feature = "std" )] |
| 219 | #[cfg_attr (doc_cfg, doc(cfg(feature = "std" )))] |
| 220 | fn choose_multiple_weighted<R, F, X>( |
| 221 | &self, rng: &mut R, amount: usize, weight: F, |
| 222 | ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError> |
| 223 | where |
| 224 | R: Rng + ?Sized, |
| 225 | F: Fn(&Self::Item) -> X, |
| 226 | X: Into<f64>; |
| 227 | |
| 228 | /// Shuffle a mutable slice in place. |
| 229 | /// |
| 230 | /// For slices of length `n`, complexity is `O(n)`. |
| 231 | /// |
| 232 | /// # Example |
| 233 | /// |
| 234 | /// ``` |
| 235 | /// use rand::seq::SliceRandom; |
| 236 | /// use rand::thread_rng; |
| 237 | /// |
| 238 | /// let mut rng = thread_rng(); |
| 239 | /// let mut y = [1, 2, 3, 4, 5]; |
| 240 | /// println!("Unshuffled: {:?}" , y); |
| 241 | /// y.shuffle(&mut rng); |
| 242 | /// println!("Shuffled: {:?}" , y); |
| 243 | /// ``` |
| 244 | fn shuffle<R>(&mut self, rng: &mut R) |
| 245 | where R: Rng + ?Sized; |
| 246 | |
| 247 | /// Shuffle a slice in place, but exit early. |
| 248 | /// |
| 249 | /// Returns two mutable slices from the source slice. The first contains |
| 250 | /// `amount` elements randomly permuted. The second has the remaining |
| 251 | /// elements that are not fully shuffled. |
| 252 | /// |
| 253 | /// This is an efficient method to select `amount` elements at random from |
| 254 | /// the slice, provided the slice may be mutated. |
| 255 | /// |
| 256 | /// If you only need to choose elements randomly and `amount > self.len()/2` |
| 257 | /// then you may improve performance by taking |
| 258 | /// `amount = values.len() - amount` and using only the second slice. |
| 259 | /// |
| 260 | /// If `amount` is greater than the number of elements in the slice, this |
| 261 | /// will perform a full shuffle. |
| 262 | /// |
| 263 | /// For slices, complexity is `O(m)` where `m = amount`. |
| 264 | fn partial_shuffle<R>( |
| 265 | &mut self, rng: &mut R, amount: usize, |
| 266 | ) -> (&mut [Self::Item], &mut [Self::Item]) |
| 267 | where R: Rng + ?Sized; |
| 268 | } |
| 269 | |
| 270 | /// Extension trait on iterators, providing random sampling methods. |
| 271 | /// |
| 272 | /// This trait is implemented on all iterators `I` where `I: Iterator + Sized` |
| 273 | /// and provides methods for |
| 274 | /// choosing one or more elements. You must `use` this trait: |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// use rand::seq::IteratorRandom; |
| 278 | /// |
| 279 | /// let mut rng = rand::thread_rng(); |
| 280 | /// |
| 281 | /// let faces = "😀😎😐😕😠😢" ; |
| 282 | /// println!("I am {}!" , faces.chars().choose(&mut rng).unwrap()); |
| 283 | /// ``` |
| 284 | /// Example output (non-deterministic): |
| 285 | /// ```none |
| 286 | /// I am 😀! |
| 287 | /// ``` |
| 288 | pub trait IteratorRandom: Iterator + Sized { |
| 289 | /// Choose one element at random from the iterator. |
| 290 | /// |
| 291 | /// Returns `None` if and only if the iterator is empty. |
| 292 | /// |
| 293 | /// This method uses [`Iterator::size_hint`] for optimisation. With an |
| 294 | /// accurate hint and where [`Iterator::nth`] is a constant-time operation |
| 295 | /// this method can offer `O(1)` performance. Where no size hint is |
| 296 | /// available, complexity is `O(n)` where `n` is the iterator length. |
| 297 | /// Partial hints (where `lower > 0`) also improve performance. |
| 298 | /// |
| 299 | /// Note that the output values and the number of RNG samples used |
| 300 | /// depends on size hints. In particular, `Iterator` combinators that don't |
| 301 | /// change the values yielded but change the size hints may result in |
| 302 | /// `choose` returning different elements. If you want consistent results |
| 303 | /// and RNG usage consider using [`IteratorRandom::choose_stable`]. |
| 304 | fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item> |
| 305 | where R: Rng + ?Sized { |
| 306 | let (mut lower, mut upper) = self.size_hint(); |
| 307 | let mut consumed = 0; |
| 308 | let mut result = None; |
| 309 | |
| 310 | // Handling for this condition outside the loop allows the optimizer to eliminate the loop |
| 311 | // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g. |
| 312 | // seq_iter_choose_from_1000. |
| 313 | if upper == Some(lower) { |
| 314 | return if lower == 0 { |
| 315 | None |
| 316 | } else { |
| 317 | self.nth(gen_index(rng, lower)) |
| 318 | }; |
| 319 | } |
| 320 | |
| 321 | // Continue until the iterator is exhausted |
| 322 | loop { |
| 323 | if lower > 1 { |
| 324 | let ix = gen_index(rng, lower + consumed); |
| 325 | let skip = if ix < lower { |
| 326 | result = self.nth(ix); |
| 327 | lower - (ix + 1) |
| 328 | } else { |
| 329 | lower |
| 330 | }; |
| 331 | if upper == Some(lower) { |
| 332 | return result; |
| 333 | } |
| 334 | consumed += lower; |
| 335 | if skip > 0 { |
| 336 | self.nth(skip - 1); |
| 337 | } |
| 338 | } else { |
| 339 | let elem = self.next(); |
| 340 | if elem.is_none() { |
| 341 | return result; |
| 342 | } |
| 343 | consumed += 1; |
| 344 | if gen_index(rng, consumed) == 0 { |
| 345 | result = elem; |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | let hint = self.size_hint(); |
| 350 | lower = hint.0; |
| 351 | upper = hint.1; |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /// Choose one element at random from the iterator. |
| 356 | /// |
| 357 | /// Returns `None` if and only if the iterator is empty. |
| 358 | /// |
| 359 | /// This method is very similar to [`choose`] except that the result |
| 360 | /// only depends on the length of the iterator and the values produced by |
| 361 | /// `rng`. Notably for any iterator of a given length this will make the |
| 362 | /// same requests to `rng` and if the same sequence of values are produced |
| 363 | /// the same index will be selected from `self`. This may be useful if you |
| 364 | /// need consistent results no matter what type of iterator you are working |
| 365 | /// with. If you do not need this stability prefer [`choose`]. |
| 366 | /// |
| 367 | /// Note that this method still uses [`Iterator::size_hint`] to skip |
| 368 | /// constructing elements where possible, however the selection and `rng` |
| 369 | /// calls are the same in the face of this optimization. If you want to |
| 370 | /// force every element to be created regardless call `.inspect(|e| ())`. |
| 371 | /// |
| 372 | /// [`choose`]: IteratorRandom::choose |
| 373 | fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item> |
| 374 | where R: Rng + ?Sized { |
| 375 | let mut consumed = 0; |
| 376 | let mut result = None; |
| 377 | |
| 378 | loop { |
| 379 | // Currently the only way to skip elements is `nth()`. So we need to |
| 380 | // store what index to access next here. |
| 381 | // This should be replaced by `advance_by()` once it is stable: |
| 382 | // https://github.com/rust-lang/rust/issues/77404 |
| 383 | let mut next = 0; |
| 384 | |
| 385 | let (lower, _) = self.size_hint(); |
| 386 | if lower >= 2 { |
| 387 | let highest_selected = (0..lower) |
| 388 | .filter(|ix| gen_index(rng, consumed+ix+1) == 0) |
| 389 | .last(); |
| 390 | |
| 391 | consumed += lower; |
| 392 | next = lower; |
| 393 | |
| 394 | if let Some(ix) = highest_selected { |
| 395 | result = self.nth(ix); |
| 396 | next -= ix + 1; |
| 397 | debug_assert!(result.is_some(), "iterator shorter than size_hint().0" ); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | let elem = self.nth(next); |
| 402 | if elem.is_none() { |
| 403 | return result |
| 404 | } |
| 405 | |
| 406 | if gen_index(rng, consumed+1) == 0 { |
| 407 | result = elem; |
| 408 | } |
| 409 | consumed += 1; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | /// Collects values at random from the iterator into a supplied buffer |
| 414 | /// until that buffer is filled. |
| 415 | /// |
| 416 | /// Although the elements are selected randomly, the order of elements in |
| 417 | /// the buffer is neither stable nor fully random. If random ordering is |
| 418 | /// desired, shuffle the result. |
| 419 | /// |
| 420 | /// Returns the number of elements added to the buffer. This equals the length |
| 421 | /// of the buffer unless the iterator contains insufficient elements, in which |
| 422 | /// case this equals the number of elements available. |
| 423 | /// |
| 424 | /// Complexity is `O(n)` where `n` is the length of the iterator. |
| 425 | /// For slices, prefer [`SliceRandom::choose_multiple`]. |
| 426 | fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize |
| 427 | where R: Rng + ?Sized { |
| 428 | let amount = buf.len(); |
| 429 | let mut len = 0; |
| 430 | while len < amount { |
| 431 | if let Some(elem) = self.next() { |
| 432 | buf[len] = elem; |
| 433 | len += 1; |
| 434 | } else { |
| 435 | // Iterator exhausted; stop early |
| 436 | return len; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | // Continue, since the iterator was not exhausted |
| 441 | for (i, elem) in self.enumerate() { |
| 442 | let k = gen_index(rng, i + 1 + amount); |
| 443 | if let Some(slot) = buf.get_mut(k) { |
| 444 | *slot = elem; |
| 445 | } |
| 446 | } |
| 447 | len |
| 448 | } |
| 449 | |
| 450 | /// Collects `amount` values at random from the iterator into a vector. |
| 451 | /// |
| 452 | /// This is equivalent to `choose_multiple_fill` except for the result type. |
| 453 | /// |
| 454 | /// Although the elements are selected randomly, the order of elements in |
| 455 | /// the buffer is neither stable nor fully random. If random ordering is |
| 456 | /// desired, shuffle the result. |
| 457 | /// |
| 458 | /// The length of the returned vector equals `amount` unless the iterator |
| 459 | /// contains insufficient elements, in which case it equals the number of |
| 460 | /// elements available. |
| 461 | /// |
| 462 | /// Complexity is `O(n)` where `n` is the length of the iterator. |
| 463 | /// For slices, prefer [`SliceRandom::choose_multiple`]. |
| 464 | #[cfg (feature = "alloc" )] |
| 465 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 466 | fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item> |
| 467 | where R: Rng + ?Sized { |
| 468 | let mut reservoir = Vec::with_capacity(amount); |
| 469 | reservoir.extend(self.by_ref().take(amount)); |
| 470 | |
| 471 | // Continue unless the iterator was exhausted |
| 472 | // |
| 473 | // note: this prevents iterators that "restart" from causing problems. |
| 474 | // If the iterator stops once, then so do we. |
| 475 | if reservoir.len() == amount { |
| 476 | for (i, elem) in self.enumerate() { |
| 477 | let k = gen_index(rng, i + 1 + amount); |
| 478 | if let Some(slot) = reservoir.get_mut(k) { |
| 479 | *slot = elem; |
| 480 | } |
| 481 | } |
| 482 | } else { |
| 483 | // Don't hang onto extra memory. There is a corner case where |
| 484 | // `amount` was much less than `self.len()`. |
| 485 | reservoir.shrink_to_fit(); |
| 486 | } |
| 487 | reservoir |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | |
| 492 | impl<T> SliceRandom for [T] { |
| 493 | type Item = T; |
| 494 | |
| 495 | fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item> |
| 496 | where R: Rng + ?Sized { |
| 497 | if self.is_empty() { |
| 498 | None |
| 499 | } else { |
| 500 | Some(&self[gen_index(rng, self.len())]) |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item> |
| 505 | where R: Rng + ?Sized { |
| 506 | if self.is_empty() { |
| 507 | None |
| 508 | } else { |
| 509 | let len = self.len(); |
| 510 | Some(&mut self[gen_index(rng, len)]) |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | #[cfg (feature = "alloc" )] |
| 515 | fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item> |
| 516 | where R: Rng + ?Sized { |
| 517 | let amount = ::core::cmp::min(amount, self.len()); |
| 518 | SliceChooseIter { |
| 519 | slice: self, |
| 520 | _phantom: Default::default(), |
| 521 | indices: index::sample(rng, self.len(), amount).into_iter(), |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | #[cfg (feature = "alloc" )] |
| 526 | fn choose_weighted<R, F, B, X>( |
| 527 | &self, rng: &mut R, weight: F, |
| 528 | ) -> Result<&Self::Item, WeightedError> |
| 529 | where |
| 530 | R: Rng + ?Sized, |
| 531 | F: Fn(&Self::Item) -> B, |
| 532 | B: SampleBorrow<X>, |
| 533 | X: SampleUniform |
| 534 | + for<'a> ::core::ops::AddAssign<&'a X> |
| 535 | + ::core::cmp::PartialOrd<X> |
| 536 | + Clone |
| 537 | + Default, |
| 538 | { |
| 539 | use crate::distributions::{Distribution, WeightedIndex}; |
| 540 | let distr = WeightedIndex::new(self.iter().map(weight))?; |
| 541 | Ok(&self[distr.sample(rng)]) |
| 542 | } |
| 543 | |
| 544 | #[cfg (feature = "alloc" )] |
| 545 | fn choose_weighted_mut<R, F, B, X>( |
| 546 | &mut self, rng: &mut R, weight: F, |
| 547 | ) -> Result<&mut Self::Item, WeightedError> |
| 548 | where |
| 549 | R: Rng + ?Sized, |
| 550 | F: Fn(&Self::Item) -> B, |
| 551 | B: SampleBorrow<X>, |
| 552 | X: SampleUniform |
| 553 | + for<'a> ::core::ops::AddAssign<&'a X> |
| 554 | + ::core::cmp::PartialOrd<X> |
| 555 | + Clone |
| 556 | + Default, |
| 557 | { |
| 558 | use crate::distributions::{Distribution, WeightedIndex}; |
| 559 | let distr = WeightedIndex::new(self.iter().map(weight))?; |
| 560 | Ok(&mut self[distr.sample(rng)]) |
| 561 | } |
| 562 | |
| 563 | #[cfg (feature = "std" )] |
| 564 | fn choose_multiple_weighted<R, F, X>( |
| 565 | &self, rng: &mut R, amount: usize, weight: F, |
| 566 | ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError> |
| 567 | where |
| 568 | R: Rng + ?Sized, |
| 569 | F: Fn(&Self::Item) -> X, |
| 570 | X: Into<f64>, |
| 571 | { |
| 572 | let amount = ::core::cmp::min(amount, self.len()); |
| 573 | Ok(SliceChooseIter { |
| 574 | slice: self, |
| 575 | _phantom: Default::default(), |
| 576 | indices: index::sample_weighted( |
| 577 | rng, |
| 578 | self.len(), |
| 579 | |idx| weight(&self[idx]).into(), |
| 580 | amount, |
| 581 | )? |
| 582 | .into_iter(), |
| 583 | }) |
| 584 | } |
| 585 | |
| 586 | fn shuffle<R>(&mut self, rng: &mut R) |
| 587 | where R: Rng + ?Sized { |
| 588 | for i in (1..self.len()).rev() { |
| 589 | // invariant: elements with index > i have been locked in place. |
| 590 | self.swap(i, gen_index(rng, i + 1)); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | fn partial_shuffle<R>( |
| 595 | &mut self, rng: &mut R, amount: usize, |
| 596 | ) -> (&mut [Self::Item], &mut [Self::Item]) |
| 597 | where R: Rng + ?Sized { |
| 598 | // This applies Durstenfeld's algorithm for the |
| 599 | // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) |
| 600 | // for an unbiased permutation, but exits early after choosing `amount` |
| 601 | // elements. |
| 602 | |
| 603 | let len = self.len(); |
| 604 | let end = if amount >= len { 0 } else { len - amount }; |
| 605 | |
| 606 | for i in (end..len).rev() { |
| 607 | // invariant: elements with index > i have been locked in place. |
| 608 | self.swap(i, gen_index(rng, i + 1)); |
| 609 | } |
| 610 | let r = self.split_at_mut(end); |
| 611 | (r.1, r.0) |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | impl<I> IteratorRandom for I where I: Iterator + Sized {} |
| 616 | |
| 617 | |
| 618 | /// An iterator over multiple slice elements. |
| 619 | /// |
| 620 | /// This struct is created by |
| 621 | /// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple). |
| 622 | #[cfg (feature = "alloc" )] |
| 623 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
| 624 | #[derive (Debug)] |
| 625 | pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { |
| 626 | slice: &'a S, |
| 627 | _phantom: ::core::marker::PhantomData<T>, |
| 628 | indices: index::IndexVecIntoIter, |
| 629 | } |
| 630 | |
| 631 | #[cfg (feature = "alloc" )] |
| 632 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { |
| 633 | type Item = &'a T; |
| 634 | |
| 635 | fn next(&mut self) -> Option<Self::Item> { |
| 636 | // TODO: investigate using SliceIndex::get_unchecked when stable |
| 637 | self.indices.next().map(|i: usize| &self.slice[i as usize]) |
| 638 | } |
| 639 | |
| 640 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 641 | (self.indices.len(), Some(self.indices.len())) |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | #[cfg (feature = "alloc" )] |
| 646 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator |
| 647 | for SliceChooseIter<'a, S, T> |
| 648 | { |
| 649 | fn len(&self) -> usize { |
| 650 | self.indices.len() |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | |
| 655 | // Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where |
| 656 | // possible, primarily in order to produce the same output on 32-bit and 64-bit |
| 657 | // platforms. |
| 658 | #[inline ] |
| 659 | fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize { |
| 660 | if ubound <= (core::u32::MAX as usize) { |
| 661 | rng.gen_range(0..ubound as u32) as usize |
| 662 | } else { |
| 663 | rng.gen_range(0..ubound) |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | |
| 668 | #[cfg (test)] |
| 669 | mod test { |
| 670 | use super::*; |
| 671 | #[cfg (feature = "alloc" )] use crate::Rng; |
| 672 | #[cfg (all(feature = "alloc" , not(feature = "std" )))] use alloc::vec::Vec; |
| 673 | |
| 674 | #[test ] |
| 675 | fn test_slice_choose() { |
| 676 | let mut r = crate::test::rng(107); |
| 677 | let chars = [ |
| 678 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
| 679 | ]; |
| 680 | let mut chosen = [0i32; 14]; |
| 681 | // The below all use a binomial distribution with n=1000, p=1/14. |
| 682 | // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 |
| 683 | for _ in 0..1000 { |
| 684 | let picked = *chars.choose(&mut r).unwrap(); |
| 685 | chosen[(picked as usize) - ('a' as usize)] += 1; |
| 686 | } |
| 687 | for count in chosen.iter() { |
| 688 | assert!(40 < *count && *count < 106); |
| 689 | } |
| 690 | |
| 691 | chosen.iter_mut().for_each(|x| *x = 0); |
| 692 | for _ in 0..1000 { |
| 693 | *chosen.choose_mut(&mut r).unwrap() += 1; |
| 694 | } |
| 695 | for count in chosen.iter() { |
| 696 | assert!(40 < *count && *count < 106); |
| 697 | } |
| 698 | |
| 699 | let mut v: [isize; 0] = []; |
| 700 | assert_eq!(v.choose(&mut r), None); |
| 701 | assert_eq!(v.choose_mut(&mut r), None); |
| 702 | } |
| 703 | |
| 704 | #[test ] |
| 705 | fn value_stability_slice() { |
| 706 | let mut r = crate::test::rng(413); |
| 707 | let chars = [ |
| 708 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
| 709 | ]; |
| 710 | let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| 711 | |
| 712 | assert_eq!(chars.choose(&mut r), Some(&'l' )); |
| 713 | assert_eq!(nums.choose_mut(&mut r), Some(&mut 10)); |
| 714 | |
| 715 | #[cfg (feature = "alloc" )] |
| 716 | assert_eq!( |
| 717 | &chars |
| 718 | .choose_multiple(&mut r, 8) |
| 719 | .cloned() |
| 720 | .collect::<Vec<char>>(), |
| 721 | &['d' , 'm' , 'b' , 'n' , 'c' , 'k' , 'h' , 'e' ] |
| 722 | ); |
| 723 | |
| 724 | #[cfg (feature = "alloc" )] |
| 725 | assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f' )); |
| 726 | #[cfg (feature = "alloc" )] |
| 727 | assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5)); |
| 728 | |
| 729 | let mut r = crate::test::rng(414); |
| 730 | nums.shuffle(&mut r); |
| 731 | assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]); |
| 732 | nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| 733 | let res = nums.partial_shuffle(&mut r, 6); |
| 734 | assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]); |
| 735 | assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]); |
| 736 | } |
| 737 | |
| 738 | #[derive (Clone)] |
| 739 | struct UnhintedIterator<I: Iterator + Clone> { |
| 740 | iter: I, |
| 741 | } |
| 742 | impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> { |
| 743 | type Item = I::Item; |
| 744 | |
| 745 | fn next(&mut self) -> Option<Self::Item> { |
| 746 | self.iter.next() |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | #[derive (Clone)] |
| 751 | struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> { |
| 752 | iter: I, |
| 753 | chunk_remaining: usize, |
| 754 | chunk_size: usize, |
| 755 | hint_total_size: bool, |
| 756 | } |
| 757 | impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> { |
| 758 | type Item = I::Item; |
| 759 | |
| 760 | fn next(&mut self) -> Option<Self::Item> { |
| 761 | if self.chunk_remaining == 0 { |
| 762 | self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len()); |
| 763 | } |
| 764 | self.chunk_remaining = self.chunk_remaining.saturating_sub(1); |
| 765 | |
| 766 | self.iter.next() |
| 767 | } |
| 768 | |
| 769 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 770 | ( |
| 771 | self.chunk_remaining, |
| 772 | if self.hint_total_size { |
| 773 | Some(self.iter.len()) |
| 774 | } else { |
| 775 | None |
| 776 | }, |
| 777 | ) |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | #[derive (Clone)] |
| 782 | struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> { |
| 783 | iter: I, |
| 784 | window_size: usize, |
| 785 | hint_total_size: bool, |
| 786 | } |
| 787 | impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> { |
| 788 | type Item = I::Item; |
| 789 | |
| 790 | fn next(&mut self) -> Option<Self::Item> { |
| 791 | self.iter.next() |
| 792 | } |
| 793 | |
| 794 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 795 | ( |
| 796 | ::core::cmp::min(self.iter.len(), self.window_size), |
| 797 | if self.hint_total_size { |
| 798 | Some(self.iter.len()) |
| 799 | } else { |
| 800 | None |
| 801 | }, |
| 802 | ) |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | #[test ] |
| 807 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 808 | fn test_iterator_choose() { |
| 809 | let r = &mut crate::test::rng(109); |
| 810 | fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) { |
| 811 | let mut chosen = [0i32; 9]; |
| 812 | for _ in 0..1000 { |
| 813 | let picked = iter.clone().choose(r).unwrap(); |
| 814 | chosen[picked] += 1; |
| 815 | } |
| 816 | for count in chosen.iter() { |
| 817 | // Samples should follow Binomial(1000, 1/9) |
| 818 | // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x |
| 819 | // Note: have seen 153, which is unlikely but not impossible. |
| 820 | assert!( |
| 821 | 72 < *count && *count < 154, |
| 822 | "count not close to 1000/9: {}" , |
| 823 | count |
| 824 | ); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | test_iter(r, 0..9); |
| 829 | test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); |
| 830 | #[cfg (feature = "alloc" )] |
| 831 | test_iter(r, (0..9).collect::<Vec<_>>().into_iter()); |
| 832 | test_iter(r, UnhintedIterator { iter: 0..9 }); |
| 833 | test_iter(r, ChunkHintedIterator { |
| 834 | iter: 0..9, |
| 835 | chunk_size: 4, |
| 836 | chunk_remaining: 4, |
| 837 | hint_total_size: false, |
| 838 | }); |
| 839 | test_iter(r, ChunkHintedIterator { |
| 840 | iter: 0..9, |
| 841 | chunk_size: 4, |
| 842 | chunk_remaining: 4, |
| 843 | hint_total_size: true, |
| 844 | }); |
| 845 | test_iter(r, WindowHintedIterator { |
| 846 | iter: 0..9, |
| 847 | window_size: 2, |
| 848 | hint_total_size: false, |
| 849 | }); |
| 850 | test_iter(r, WindowHintedIterator { |
| 851 | iter: 0..9, |
| 852 | window_size: 2, |
| 853 | hint_total_size: true, |
| 854 | }); |
| 855 | |
| 856 | assert_eq!((0..0).choose(r), None); |
| 857 | assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None); |
| 858 | } |
| 859 | |
| 860 | #[test ] |
| 861 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 862 | fn test_iterator_choose_stable() { |
| 863 | let r = &mut crate::test::rng(109); |
| 864 | fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) { |
| 865 | let mut chosen = [0i32; 9]; |
| 866 | for _ in 0..1000 { |
| 867 | let picked = iter.clone().choose_stable(r).unwrap(); |
| 868 | chosen[picked] += 1; |
| 869 | } |
| 870 | for count in chosen.iter() { |
| 871 | // Samples should follow Binomial(1000, 1/9) |
| 872 | // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x |
| 873 | // Note: have seen 153, which is unlikely but not impossible. |
| 874 | assert!( |
| 875 | 72 < *count && *count < 154, |
| 876 | "count not close to 1000/9: {}" , |
| 877 | count |
| 878 | ); |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | test_iter(r, 0..9); |
| 883 | test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()); |
| 884 | #[cfg (feature = "alloc" )] |
| 885 | test_iter(r, (0..9).collect::<Vec<_>>().into_iter()); |
| 886 | test_iter(r, UnhintedIterator { iter: 0..9 }); |
| 887 | test_iter(r, ChunkHintedIterator { |
| 888 | iter: 0..9, |
| 889 | chunk_size: 4, |
| 890 | chunk_remaining: 4, |
| 891 | hint_total_size: false, |
| 892 | }); |
| 893 | test_iter(r, ChunkHintedIterator { |
| 894 | iter: 0..9, |
| 895 | chunk_size: 4, |
| 896 | chunk_remaining: 4, |
| 897 | hint_total_size: true, |
| 898 | }); |
| 899 | test_iter(r, WindowHintedIterator { |
| 900 | iter: 0..9, |
| 901 | window_size: 2, |
| 902 | hint_total_size: false, |
| 903 | }); |
| 904 | test_iter(r, WindowHintedIterator { |
| 905 | iter: 0..9, |
| 906 | window_size: 2, |
| 907 | hint_total_size: true, |
| 908 | }); |
| 909 | |
| 910 | assert_eq!((0..0).choose(r), None); |
| 911 | assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None); |
| 912 | } |
| 913 | |
| 914 | #[test ] |
| 915 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 916 | fn test_iterator_choose_stable_stability() { |
| 917 | fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] { |
| 918 | let r = &mut crate::test::rng(109); |
| 919 | let mut chosen = [0i32; 9]; |
| 920 | for _ in 0..1000 { |
| 921 | let picked = iter.clone().choose_stable(r).unwrap(); |
| 922 | chosen[picked] += 1; |
| 923 | } |
| 924 | chosen |
| 925 | } |
| 926 | |
| 927 | let reference = test_iter(0..9); |
| 928 | assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference); |
| 929 | |
| 930 | #[cfg (feature = "alloc" )] |
| 931 | assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference); |
| 932 | assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference); |
| 933 | assert_eq!(test_iter(ChunkHintedIterator { |
| 934 | iter: 0..9, |
| 935 | chunk_size: 4, |
| 936 | chunk_remaining: 4, |
| 937 | hint_total_size: false, |
| 938 | }), reference); |
| 939 | assert_eq!(test_iter(ChunkHintedIterator { |
| 940 | iter: 0..9, |
| 941 | chunk_size: 4, |
| 942 | chunk_remaining: 4, |
| 943 | hint_total_size: true, |
| 944 | }), reference); |
| 945 | assert_eq!(test_iter(WindowHintedIterator { |
| 946 | iter: 0..9, |
| 947 | window_size: 2, |
| 948 | hint_total_size: false, |
| 949 | }), reference); |
| 950 | assert_eq!(test_iter(WindowHintedIterator { |
| 951 | iter: 0..9, |
| 952 | window_size: 2, |
| 953 | hint_total_size: true, |
| 954 | }), reference); |
| 955 | } |
| 956 | |
| 957 | #[test ] |
| 958 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 959 | fn test_shuffle() { |
| 960 | let mut r = crate::test::rng(108); |
| 961 | let empty: &mut [isize] = &mut []; |
| 962 | empty.shuffle(&mut r); |
| 963 | let mut one = [1]; |
| 964 | one.shuffle(&mut r); |
| 965 | let b: &[_] = &[1]; |
| 966 | assert_eq!(one, b); |
| 967 | |
| 968 | let mut two = [1, 2]; |
| 969 | two.shuffle(&mut r); |
| 970 | assert!(two == [1, 2] || two == [2, 1]); |
| 971 | |
| 972 | fn move_last(slice: &mut [usize], pos: usize) { |
| 973 | // use slice[pos..].rotate_left(1); once we can use that |
| 974 | let last_val = slice[pos]; |
| 975 | for i in pos..slice.len() - 1 { |
| 976 | slice[i] = slice[i + 1]; |
| 977 | } |
| 978 | *slice.last_mut().unwrap() = last_val; |
| 979 | } |
| 980 | let mut counts = [0i32; 24]; |
| 981 | for _ in 0..10000 { |
| 982 | let mut arr: [usize; 4] = [0, 1, 2, 3]; |
| 983 | arr.shuffle(&mut r); |
| 984 | let mut permutation = 0usize; |
| 985 | let mut pos_value = counts.len(); |
| 986 | for i in 0..4 { |
| 987 | pos_value /= 4 - i; |
| 988 | let pos = arr.iter().position(|&x| x == i).unwrap(); |
| 989 | assert!(pos < (4 - i)); |
| 990 | permutation += pos * pos_value; |
| 991 | move_last(&mut arr, pos); |
| 992 | assert_eq!(arr[3], i); |
| 993 | } |
| 994 | for (i, &a) in arr.iter().enumerate() { |
| 995 | assert_eq!(a, i); |
| 996 | } |
| 997 | counts[permutation] += 1; |
| 998 | } |
| 999 | for count in counts.iter() { |
| 1000 | // Binomial(10000, 1/24) with average 416.667 |
| 1001 | // Octave: binocdf(n, 10000, 1/24) |
| 1002 | // 99.9% chance samples lie within this range: |
| 1003 | assert!(352 <= *count && *count <= 483, "count: {}" , count); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | #[test ] |
| 1008 | fn test_partial_shuffle() { |
| 1009 | let mut r = crate::test::rng(118); |
| 1010 | |
| 1011 | let mut empty: [u32; 0] = []; |
| 1012 | let res = empty.partial_shuffle(&mut r, 10); |
| 1013 | assert_eq!((res.0.len(), res.1.len()), (0, 0)); |
| 1014 | |
| 1015 | let mut v = [1, 2, 3, 4, 5]; |
| 1016 | let res = v.partial_shuffle(&mut r, 2); |
| 1017 | assert_eq!((res.0.len(), res.1.len()), (2, 3)); |
| 1018 | assert!(res.0[0] != res.0[1]); |
| 1019 | // First elements are only modified if selected, so at least one isn't modified: |
| 1020 | assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); |
| 1021 | } |
| 1022 | |
| 1023 | #[test ] |
| 1024 | #[cfg (feature = "alloc" )] |
| 1025 | fn test_sample_iter() { |
| 1026 | let min_val = 1; |
| 1027 | let max_val = 100; |
| 1028 | |
| 1029 | let mut r = crate::test::rng(401); |
| 1030 | let vals = (min_val..max_val).collect::<Vec<i32>>(); |
| 1031 | let small_sample = vals.iter().choose_multiple(&mut r, 5); |
| 1032 | let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5); |
| 1033 | |
| 1034 | assert_eq!(small_sample.len(), 5); |
| 1035 | assert_eq!(large_sample.len(), vals.len()); |
| 1036 | // no randomization happens when amount >= len |
| 1037 | assert_eq!(large_sample, vals.iter().collect::<Vec<_>>()); |
| 1038 | |
| 1039 | assert!(small_sample |
| 1040 | .iter() |
| 1041 | .all(|e| { **e >= min_val && **e <= max_val })); |
| 1042 | } |
| 1043 | |
| 1044 | #[test ] |
| 1045 | #[cfg (feature = "alloc" )] |
| 1046 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 1047 | fn test_weighted() { |
| 1048 | let mut r = crate::test::rng(406); |
| 1049 | const N_REPS: u32 = 3000; |
| 1050 | let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
| 1051 | let total_weight = weights.iter().sum::<u32>() as f32; |
| 1052 | |
| 1053 | let verify = |result: [i32; 14]| { |
| 1054 | for (i, count) in result.iter().enumerate() { |
| 1055 | let exp = (weights[i] * N_REPS) as f32 / total_weight; |
| 1056 | let mut err = (*count as f32 - exp).abs(); |
| 1057 | if err != 0.0 { |
| 1058 | err /= exp; |
| 1059 | } |
| 1060 | assert!(err <= 0.25); |
| 1061 | } |
| 1062 | }; |
| 1063 | |
| 1064 | // choose_weighted |
| 1065 | fn get_weight<T>(item: &(u32, T)) -> u32 { |
| 1066 | item.0 |
| 1067 | } |
| 1068 | let mut chosen = [0i32; 14]; |
| 1069 | let mut items = [(0u32, 0usize); 14]; // (weight, index) |
| 1070 | for (i, item) in items.iter_mut().enumerate() { |
| 1071 | *item = (weights[i], i); |
| 1072 | } |
| 1073 | for _ in 0..N_REPS { |
| 1074 | let item = items.choose_weighted(&mut r, get_weight).unwrap(); |
| 1075 | chosen[item.1] += 1; |
| 1076 | } |
| 1077 | verify(chosen); |
| 1078 | |
| 1079 | // choose_weighted_mut |
| 1080 | let mut items = [(0u32, 0i32); 14]; // (weight, count) |
| 1081 | for (i, item) in items.iter_mut().enumerate() { |
| 1082 | *item = (weights[i], 0); |
| 1083 | } |
| 1084 | for _ in 0..N_REPS { |
| 1085 | items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; |
| 1086 | } |
| 1087 | for (ch, item) in chosen.iter_mut().zip(items.iter()) { |
| 1088 | *ch = item.1; |
| 1089 | } |
| 1090 | verify(chosen); |
| 1091 | |
| 1092 | // Check error cases |
| 1093 | let empty_slice = &mut [10][0..0]; |
| 1094 | assert_eq!( |
| 1095 | empty_slice.choose_weighted(&mut r, |_| 1), |
| 1096 | Err(WeightedError::NoItem) |
| 1097 | ); |
| 1098 | assert_eq!( |
| 1099 | empty_slice.choose_weighted_mut(&mut r, |_| 1), |
| 1100 | Err(WeightedError::NoItem) |
| 1101 | ); |
| 1102 | assert_eq!( |
| 1103 | ['x' ].choose_weighted_mut(&mut r, |_| 0), |
| 1104 | Err(WeightedError::AllWeightsZero) |
| 1105 | ); |
| 1106 | assert_eq!( |
| 1107 | [0, -1].choose_weighted_mut(&mut r, |x| *x), |
| 1108 | Err(WeightedError::InvalidWeight) |
| 1109 | ); |
| 1110 | assert_eq!( |
| 1111 | [-1, 0].choose_weighted_mut(&mut r, |x| *x), |
| 1112 | Err(WeightedError::InvalidWeight) |
| 1113 | ); |
| 1114 | } |
| 1115 | |
| 1116 | #[test ] |
| 1117 | fn value_stability_choose() { |
| 1118 | fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> { |
| 1119 | let mut rng = crate::test::rng(411); |
| 1120 | iter.choose(&mut rng) |
| 1121 | } |
| 1122 | |
| 1123 | assert_eq!(choose([].iter().cloned()), None); |
| 1124 | assert_eq!(choose(0..100), Some(33)); |
| 1125 | assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40)); |
| 1126 | assert_eq!( |
| 1127 | choose(ChunkHintedIterator { |
| 1128 | iter: 0..100, |
| 1129 | chunk_size: 32, |
| 1130 | chunk_remaining: 32, |
| 1131 | hint_total_size: false, |
| 1132 | }), |
| 1133 | Some(39) |
| 1134 | ); |
| 1135 | assert_eq!( |
| 1136 | choose(ChunkHintedIterator { |
| 1137 | iter: 0..100, |
| 1138 | chunk_size: 32, |
| 1139 | chunk_remaining: 32, |
| 1140 | hint_total_size: true, |
| 1141 | }), |
| 1142 | Some(39) |
| 1143 | ); |
| 1144 | assert_eq!( |
| 1145 | choose(WindowHintedIterator { |
| 1146 | iter: 0..100, |
| 1147 | window_size: 32, |
| 1148 | hint_total_size: false, |
| 1149 | }), |
| 1150 | Some(90) |
| 1151 | ); |
| 1152 | assert_eq!( |
| 1153 | choose(WindowHintedIterator { |
| 1154 | iter: 0..100, |
| 1155 | window_size: 32, |
| 1156 | hint_total_size: true, |
| 1157 | }), |
| 1158 | Some(90) |
| 1159 | ); |
| 1160 | } |
| 1161 | |
| 1162 | #[test ] |
| 1163 | fn value_stability_choose_stable() { |
| 1164 | fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> { |
| 1165 | let mut rng = crate::test::rng(411); |
| 1166 | iter.choose_stable(&mut rng) |
| 1167 | } |
| 1168 | |
| 1169 | assert_eq!(choose([].iter().cloned()), None); |
| 1170 | assert_eq!(choose(0..100), Some(40)); |
| 1171 | assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40)); |
| 1172 | assert_eq!( |
| 1173 | choose(ChunkHintedIterator { |
| 1174 | iter: 0..100, |
| 1175 | chunk_size: 32, |
| 1176 | chunk_remaining: 32, |
| 1177 | hint_total_size: false, |
| 1178 | }), |
| 1179 | Some(40) |
| 1180 | ); |
| 1181 | assert_eq!( |
| 1182 | choose(ChunkHintedIterator { |
| 1183 | iter: 0..100, |
| 1184 | chunk_size: 32, |
| 1185 | chunk_remaining: 32, |
| 1186 | hint_total_size: true, |
| 1187 | }), |
| 1188 | Some(40) |
| 1189 | ); |
| 1190 | assert_eq!( |
| 1191 | choose(WindowHintedIterator { |
| 1192 | iter: 0..100, |
| 1193 | window_size: 32, |
| 1194 | hint_total_size: false, |
| 1195 | }), |
| 1196 | Some(40) |
| 1197 | ); |
| 1198 | assert_eq!( |
| 1199 | choose(WindowHintedIterator { |
| 1200 | iter: 0..100, |
| 1201 | window_size: 32, |
| 1202 | hint_total_size: true, |
| 1203 | }), |
| 1204 | Some(40) |
| 1205 | ); |
| 1206 | } |
| 1207 | |
| 1208 | #[test ] |
| 1209 | fn value_stability_choose_multiple() { |
| 1210 | fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) { |
| 1211 | let mut rng = crate::test::rng(412); |
| 1212 | let mut buf = [0u32; 8]; |
| 1213 | assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len()); |
| 1214 | assert_eq!(&buf[0..v.len()], v); |
| 1215 | } |
| 1216 | |
| 1217 | do_test(0..4, &[0, 1, 2, 3]); |
| 1218 | do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]); |
| 1219 | do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]); |
| 1220 | |
| 1221 | #[cfg (feature = "alloc" )] |
| 1222 | { |
| 1223 | fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) { |
| 1224 | let mut rng = crate::test::rng(412); |
| 1225 | assert_eq!(iter.choose_multiple(&mut rng, v.len()), v); |
| 1226 | } |
| 1227 | |
| 1228 | do_test(0..4, &[0, 1, 2, 3]); |
| 1229 | do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]); |
| 1230 | do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]); |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | #[test ] |
| 1235 | #[cfg (feature = "std" )] |
| 1236 | fn test_multiple_weighted_edge_cases() { |
| 1237 | use super::*; |
| 1238 | |
| 1239 | let mut rng = crate::test::rng(413); |
| 1240 | |
| 1241 | // Case 1: One of the weights is 0 |
| 1242 | let choices = [('a' , 2), ('b' , 1), ('c' , 0)]; |
| 1243 | for _ in 0..100 { |
| 1244 | let result = choices |
| 1245 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1246 | .unwrap() |
| 1247 | .collect::<Vec<_>>(); |
| 1248 | |
| 1249 | assert_eq!(result.len(), 2); |
| 1250 | assert!(!result.iter().any(|val| val.0 == 'c' )); |
| 1251 | } |
| 1252 | |
| 1253 | // Case 2: All of the weights are 0 |
| 1254 | let choices = [('a' , 0), ('b' , 0), ('c' , 0)]; |
| 1255 | |
| 1256 | assert_eq!(choices |
| 1257 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1258 | .unwrap().count(), 2); |
| 1259 | |
| 1260 | // Case 3: Negative weights |
| 1261 | let choices = [('a' , -1), ('b' , 1), ('c' , 1)]; |
| 1262 | assert_eq!( |
| 1263 | choices |
| 1264 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1265 | .unwrap_err(), |
| 1266 | WeightedError::InvalidWeight |
| 1267 | ); |
| 1268 | |
| 1269 | // Case 4: Empty list |
| 1270 | let choices = []; |
| 1271 | assert_eq!(choices |
| 1272 | .choose_multiple_weighted(&mut rng, 0, |_: &()| 0) |
| 1273 | .unwrap().count(), 0); |
| 1274 | |
| 1275 | // Case 5: NaN weights |
| 1276 | let choices = [('a' , core::f64::NAN), ('b' , 1.0), ('c' , 1.0)]; |
| 1277 | assert_eq!( |
| 1278 | choices |
| 1279 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1280 | .unwrap_err(), |
| 1281 | WeightedError::InvalidWeight |
| 1282 | ); |
| 1283 | |
| 1284 | // Case 6: +infinity weights |
| 1285 | let choices = [('a' , core::f64::INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
| 1286 | for _ in 0..100 { |
| 1287 | let result = choices |
| 1288 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1289 | .unwrap() |
| 1290 | .collect::<Vec<_>>(); |
| 1291 | assert_eq!(result.len(), 2); |
| 1292 | assert!(result.iter().any(|val| val.0 == 'a' )); |
| 1293 | } |
| 1294 | |
| 1295 | // Case 7: -infinity weights |
| 1296 | let choices = [('a' , core::f64::NEG_INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
| 1297 | assert_eq!( |
| 1298 | choices |
| 1299 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1300 | .unwrap_err(), |
| 1301 | WeightedError::InvalidWeight |
| 1302 | ); |
| 1303 | |
| 1304 | // Case 8: -0 weights |
| 1305 | let choices = [('a' , -0.0), ('b' , 1.0), ('c' , 1.0)]; |
| 1306 | assert!(choices |
| 1307 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1308 | .is_ok()); |
| 1309 | } |
| 1310 | |
| 1311 | #[test ] |
| 1312 | #[cfg (feature = "std" )] |
| 1313 | fn test_multiple_weighted_distributions() { |
| 1314 | use super::*; |
| 1315 | |
| 1316 | // The theoretical probabilities of the different outcomes are: |
| 1317 | // AB: 0.5 * 0.5 = 0.250 |
| 1318 | // AC: 0.5 * 0.5 = 0.250 |
| 1319 | // BA: 0.25 * 0.67 = 0.167 |
| 1320 | // BC: 0.25 * 0.33 = 0.082 |
| 1321 | // CA: 0.25 * 0.67 = 0.167 |
| 1322 | // CB: 0.25 * 0.33 = 0.082 |
| 1323 | let choices = [('a' , 2), ('b' , 1), ('c' , 1)]; |
| 1324 | let mut rng = crate::test::rng(414); |
| 1325 | |
| 1326 | let mut results = [0i32; 3]; |
| 1327 | let expected_results = [4167, 4167, 1666]; |
| 1328 | for _ in 0..10000 { |
| 1329 | let result = choices |
| 1330 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 1331 | .unwrap() |
| 1332 | .collect::<Vec<_>>(); |
| 1333 | |
| 1334 | assert_eq!(result.len(), 2); |
| 1335 | |
| 1336 | match (result[0].0, result[1].0) { |
| 1337 | ('a' , 'b' ) | ('b' , 'a' ) => { |
| 1338 | results[0] += 1; |
| 1339 | } |
| 1340 | ('a' , 'c' ) | ('c' , 'a' ) => { |
| 1341 | results[1] += 1; |
| 1342 | } |
| 1343 | ('b' , 'c' ) | ('c' , 'b' ) => { |
| 1344 | results[2] += 1; |
| 1345 | } |
| 1346 | (_, _) => panic!("unexpected result" ), |
| 1347 | } |
| 1348 | } |
| 1349 | |
| 1350 | let mut diffs = results |
| 1351 | .iter() |
| 1352 | .zip(&expected_results) |
| 1353 | .map(|(a, b)| (a - b).abs()); |
| 1354 | assert!(!diffs.any(|deviation| deviation > 100)); |
| 1355 | } |
| 1356 | } |
| 1357 | |