| 1 | use std::char; | 
| 2 | use std::cmp; | 
|---|
| 3 | use std::fmt::Debug; | 
|---|
| 4 | use std::slice; | 
|---|
| 5 | use std::u8; | 
|---|
| 6 |  | 
|---|
| 7 | use crate::unicode; | 
|---|
| 8 |  | 
|---|
| 9 | // This module contains an *internal* implementation of interval sets. | 
|---|
| 10 | // | 
|---|
| 11 | // The primary invariant that interval sets guards is canonical ordering. That | 
|---|
| 12 | // is, every interval set contains an ordered sequence of intervals where | 
|---|
| 13 | // no two intervals are overlapping or adjacent. While this invariant is | 
|---|
| 14 | // occasionally broken within the implementation, it should be impossible for | 
|---|
| 15 | // callers to observe it. | 
|---|
| 16 | // | 
|---|
| 17 | // Since case folding (as implemented below) breaks that invariant, we roll | 
|---|
| 18 | // that into this API even though it is a little out of place in an otherwise | 
|---|
| 19 | // generic interval set. (Hence the reason why the `unicode` module is imported | 
|---|
| 20 | // here.) | 
|---|
| 21 | // | 
|---|
| 22 | // Some of the implementation complexity here is a result of me wanting to | 
|---|
| 23 | // preserve the sequential representation without using additional memory. | 
|---|
| 24 | // In many cases, we do use linear extra memory, but it is at most 2x and it | 
|---|
| 25 | // is amortized. If we relaxed the memory requirements, this implementation | 
|---|
| 26 | // could become much simpler. The extra memory is honestly probably OK, but | 
|---|
| 27 | // character classes (especially of the Unicode variety) can become quite | 
|---|
| 28 | // large, and it would be nice to keep regex compilation snappy even in debug | 
|---|
| 29 | // builds. (In the past, I have been careless with this area of code and it has | 
|---|
| 30 | // caused slow regex compilations in debug mode, so this isn't entirely | 
|---|
| 31 | // unwarranted.) | 
|---|
| 32 | // | 
|---|
| 33 | // Tests on this are relegated to the public API of HIR in src/hir.rs. | 
|---|
| 34 |  | 
|---|
| 35 | #[ derive(Clone, Debug, Eq, PartialEq)] | 
|---|
| 36 | pub struct IntervalSet<I> { | 
|---|
| 37 | ranges: Vec<I>, | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | impl<I: Interval> IntervalSet<I> { | 
|---|
| 41 | /// Create a new set from a sequence of intervals. Each interval is | 
|---|
| 42 | /// specified as a pair of bounds, where both bounds are inclusive. | 
|---|
| 43 | /// | 
|---|
| 44 | /// The given ranges do not need to be in any specific order, and ranges | 
|---|
| 45 | /// may overlap. | 
|---|
| 46 | pub fn new<T: IntoIterator<Item = I>>(intervals: T) -> IntervalSet<I> { | 
|---|
| 47 | let mut set = IntervalSet { ranges: intervals.into_iter().collect() }; | 
|---|
| 48 | set.canonicalize(); | 
|---|
| 49 | set | 
|---|
| 50 | } | 
|---|
| 51 |  | 
|---|
| 52 | /// Add a new interval to this set. | 
|---|
| 53 | pub fn push(&mut self, interval: I) { | 
|---|
| 54 | // TODO: This could be faster. e.g., Push the interval such that | 
|---|
| 55 | // it preserves canonicalization. | 
|---|
| 56 | self.ranges.push(interval); | 
|---|
| 57 | self.canonicalize(); | 
|---|
| 58 | } | 
|---|
| 59 |  | 
|---|
| 60 | /// Return an iterator over all intervals in this set. | 
|---|
| 61 | /// | 
|---|
| 62 | /// The iterator yields intervals in ascending order. | 
|---|
| 63 | pub fn iter(&self) -> IntervalSetIter<'_, I> { | 
|---|
| 64 | IntervalSetIter(self.ranges.iter()) | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | /// Return an immutable slice of intervals in this set. | 
|---|
| 68 | /// | 
|---|
| 69 | /// The sequence returned is in canonical ordering. | 
|---|
| 70 | pub fn intervals(&self) -> &[I] { | 
|---|
| 71 | &self.ranges | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | /// Expand this interval set such that it contains all case folded | 
|---|
| 75 | /// characters. For example, if this class consists of the range `a-z`, | 
|---|
| 76 | /// then applying case folding will result in the class containing both the | 
|---|
| 77 | /// ranges `a-z` and `A-Z`. | 
|---|
| 78 | /// | 
|---|
| 79 | /// This returns an error if the necessary case mapping data is not | 
|---|
| 80 | /// available. | 
|---|
| 81 | pub fn case_fold_simple(&mut self) -> Result<(), unicode::CaseFoldError> { | 
|---|
| 82 | let len = self.ranges.len(); | 
|---|
| 83 | for i in 0..len { | 
|---|
| 84 | let range = self.ranges[i]; | 
|---|
| 85 | if let Err(err) = range.case_fold_simple(&mut self.ranges) { | 
|---|
| 86 | self.canonicalize(); | 
|---|
| 87 | return Err(err); | 
|---|
| 88 | } | 
|---|
| 89 | } | 
|---|
| 90 | self.canonicalize(); | 
|---|
| 91 | Ok(()) | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | /// Union this set with the given set, in place. | 
|---|
| 95 | pub fn union(&mut self, other: &IntervalSet<I>) { | 
|---|
| 96 | // This could almost certainly be done more efficiently. | 
|---|
| 97 | self.ranges.extend(&other.ranges); | 
|---|
| 98 | self.canonicalize(); | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | /// Intersect this set with the given set, in place. | 
|---|
| 102 | pub fn intersect(&mut self, other: &IntervalSet<I>) { | 
|---|
| 103 | if self.ranges.is_empty() { | 
|---|
| 104 | return; | 
|---|
| 105 | } | 
|---|
| 106 | if other.ranges.is_empty() { | 
|---|
| 107 | self.ranges.clear(); | 
|---|
| 108 | return; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | // There should be a way to do this in-place with constant memory, | 
|---|
| 112 | // but I couldn't figure out a simple way to do it. So just append | 
|---|
| 113 | // the intersection to the end of this range, and then drain it before | 
|---|
| 114 | // we're done. | 
|---|
| 115 | let drain_end = self.ranges.len(); | 
|---|
| 116 |  | 
|---|
| 117 | let mut ita = 0..drain_end; | 
|---|
| 118 | let mut itb = 0..other.ranges.len(); | 
|---|
| 119 | let mut a = ita.next().unwrap(); | 
|---|
| 120 | let mut b = itb.next().unwrap(); | 
|---|
| 121 | loop { | 
|---|
| 122 | if let Some(ab) = self.ranges[a].intersect(&other.ranges[b]) { | 
|---|
| 123 | self.ranges.push(ab); | 
|---|
| 124 | } | 
|---|
| 125 | let (it, aorb) = | 
|---|
| 126 | if self.ranges[a].upper() < other.ranges[b].upper() { | 
|---|
| 127 | (&mut ita, &mut a) | 
|---|
| 128 | } else { | 
|---|
| 129 | (&mut itb, &mut b) | 
|---|
| 130 | }; | 
|---|
| 131 | match it.next() { | 
|---|
| 132 | Some(v) => *aorb = v, | 
|---|
| 133 | None => break, | 
|---|
| 134 | } | 
|---|
| 135 | } | 
|---|
| 136 | self.ranges.drain(..drain_end); | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | /// Subtract the given set from this set, in place. | 
|---|
| 140 | pub fn difference(&mut self, other: &IntervalSet<I>) { | 
|---|
| 141 | if self.ranges.is_empty() || other.ranges.is_empty() { | 
|---|
| 142 | return; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | // This algorithm is (to me) surprisingly complex. A search of the | 
|---|
| 146 | // interwebs indicate that this is a potentially interesting problem. | 
|---|
| 147 | // Folks seem to suggest interval or segment trees, but I'd like to | 
|---|
| 148 | // avoid the overhead (both runtime and conceptual) of that. | 
|---|
| 149 | // | 
|---|
| 150 | // The following is basically my Shitty First Draft. Therefore, in | 
|---|
| 151 | // order to grok it, you probably need to read each line carefully. | 
|---|
| 152 | // Simplifications are most welcome! | 
|---|
| 153 | // | 
|---|
| 154 | // Remember, we can assume the canonical format invariant here, which | 
|---|
| 155 | // says that all ranges are sorted, not overlapping and not adjacent in | 
|---|
| 156 | // each class. | 
|---|
| 157 | let drain_end = self.ranges.len(); | 
|---|
| 158 | let (mut a, mut b) = (0, 0); | 
|---|
| 159 | 'LOOP: while a < drain_end && b < other.ranges.len() { | 
|---|
| 160 | // Basically, the easy cases are when neither range overlaps with | 
|---|
| 161 | // each other. If the `b` range is less than our current `a` | 
|---|
| 162 | // range, then we can skip it and move on. | 
|---|
| 163 | if other.ranges[b].upper() < self.ranges[a].lower() { | 
|---|
| 164 | b += 1; | 
|---|
| 165 | continue; | 
|---|
| 166 | } | 
|---|
| 167 | // ... similarly for the `a` range. If it's less than the smallest | 
|---|
| 168 | // `b` range, then we can add it as-is. | 
|---|
| 169 | if self.ranges[a].upper() < other.ranges[b].lower() { | 
|---|
| 170 | let range = self.ranges[a]; | 
|---|
| 171 | self.ranges.push(range); | 
|---|
| 172 | a += 1; | 
|---|
| 173 | continue; | 
|---|
| 174 | } | 
|---|
| 175 | // Otherwise, we have overlapping ranges. | 
|---|
| 176 | assert!(!self.ranges[a].is_intersection_empty(&other.ranges[b])); | 
|---|
| 177 |  | 
|---|
| 178 | // This part is tricky and was non-obvious to me without looking | 
|---|
| 179 | // at explicit examples (see the tests). The trickiness stems from | 
|---|
| 180 | // two things: 1) subtracting a range from another range could | 
|---|
| 181 | // yield two ranges and 2) after subtracting a range, it's possible | 
|---|
| 182 | // that future ranges can have an impact. The loop below advances | 
|---|
| 183 | // the `b` ranges until they can't possible impact the current | 
|---|
| 184 | // range. | 
|---|
| 185 | // | 
|---|
| 186 | // For example, if our `a` range is `a-t` and our next three `b` | 
|---|
| 187 | // ranges are `a-c`, `g-i`, `r-t` and `x-z`, then we need to apply | 
|---|
| 188 | // subtraction three times before moving on to the next `a` range. | 
|---|
| 189 | let mut range = self.ranges[a]; | 
|---|
| 190 | while b < other.ranges.len() | 
|---|
| 191 | && !range.is_intersection_empty(&other.ranges[b]) | 
|---|
| 192 | { | 
|---|
| 193 | let old_range = range; | 
|---|
| 194 | range = match range.difference(&other.ranges[b]) { | 
|---|
| 195 | (None, None) => { | 
|---|
| 196 | // We lost the entire range, so move on to the next | 
|---|
| 197 | // without adding this one. | 
|---|
| 198 | a += 1; | 
|---|
| 199 | continue 'LOOP; | 
|---|
| 200 | } | 
|---|
| 201 | (Some(range1), None) | (None, Some(range1)) => range1, | 
|---|
| 202 | (Some(range1), Some(range2)) => { | 
|---|
| 203 | self.ranges.push(range1); | 
|---|
| 204 | range2 | 
|---|
| 205 | } | 
|---|
| 206 | }; | 
|---|
| 207 | // It's possible that the `b` range has more to contribute | 
|---|
| 208 | // here. In particular, if it is greater than the original | 
|---|
| 209 | // range, then it might impact the next `a` range *and* it | 
|---|
| 210 | // has impacted the current `a` range as much as possible, | 
|---|
| 211 | // so we can quit. We don't bump `b` so that the next `a` | 
|---|
| 212 | // range can apply it. | 
|---|
| 213 | if other.ranges[b].upper() > old_range.upper() { | 
|---|
| 214 | break; | 
|---|
| 215 | } | 
|---|
| 216 | // Otherwise, the next `b` range might apply to the current | 
|---|
| 217 | // `a` range. | 
|---|
| 218 | b += 1; | 
|---|
| 219 | } | 
|---|
| 220 | self.ranges.push(range); | 
|---|
| 221 | a += 1; | 
|---|
| 222 | } | 
|---|
| 223 | while a < drain_end { | 
|---|
| 224 | let range = self.ranges[a]; | 
|---|
| 225 | self.ranges.push(range); | 
|---|
| 226 | a += 1; | 
|---|
| 227 | } | 
|---|
| 228 | self.ranges.drain(..drain_end); | 
|---|
| 229 | } | 
|---|
| 230 |  | 
|---|
| 231 | /// Compute the symmetric difference of the two sets, in place. | 
|---|
| 232 | /// | 
|---|
| 233 | /// This computes the symmetric difference of two interval sets. This | 
|---|
| 234 | /// removes all elements in this set that are also in the given set, | 
|---|
| 235 | /// but also adds all elements from the given set that aren't in this | 
|---|
| 236 | /// set. That is, the set will contain all elements in either set, | 
|---|
| 237 | /// but will not contain any elements that are in both sets. | 
|---|
| 238 | pub fn symmetric_difference(&mut self, other: &IntervalSet<I>) { | 
|---|
| 239 | // TODO(burntsushi): Fix this so that it amortizes allocation. | 
|---|
| 240 | let mut intersection = self.clone(); | 
|---|
| 241 | intersection.intersect(other); | 
|---|
| 242 | self.union(other); | 
|---|
| 243 | self.difference(&intersection); | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | /// Negate this interval set. | 
|---|
| 247 | /// | 
|---|
| 248 | /// For all `x` where `x` is any element, if `x` was in this set, then it | 
|---|
| 249 | /// will not be in this set after negation. | 
|---|
| 250 | pub fn negate(&mut self) { | 
|---|
| 251 | if self.ranges.is_empty() { | 
|---|
| 252 | let (min, max) = (I::Bound::min_value(), I::Bound::max_value()); | 
|---|
| 253 | self.ranges.push(I::create(min, max)); | 
|---|
| 254 | return; | 
|---|
| 255 | } | 
|---|
| 256 |  | 
|---|
| 257 | // There should be a way to do this in-place with constant memory, | 
|---|
| 258 | // but I couldn't figure out a simple way to do it. So just append | 
|---|
| 259 | // the negation to the end of this range, and then drain it before | 
|---|
| 260 | // we're done. | 
|---|
| 261 | let drain_end = self.ranges.len(); | 
|---|
| 262 |  | 
|---|
| 263 | // We do checked arithmetic below because of the canonical ordering | 
|---|
| 264 | // invariant. | 
|---|
| 265 | if self.ranges[0].lower() > I::Bound::min_value() { | 
|---|
| 266 | let upper = self.ranges[0].lower().decrement(); | 
|---|
| 267 | self.ranges.push(I::create(I::Bound::min_value(), upper)); | 
|---|
| 268 | } | 
|---|
| 269 | for i in 1..drain_end { | 
|---|
| 270 | let lower = self.ranges[i - 1].upper().increment(); | 
|---|
| 271 | let upper = self.ranges[i].lower().decrement(); | 
|---|
| 272 | self.ranges.push(I::create(lower, upper)); | 
|---|
| 273 | } | 
|---|
| 274 | if self.ranges[drain_end - 1].upper() < I::Bound::max_value() { | 
|---|
| 275 | let lower = self.ranges[drain_end - 1].upper().increment(); | 
|---|
| 276 | self.ranges.push(I::create(lower, I::Bound::max_value())); | 
|---|
| 277 | } | 
|---|
| 278 | self.ranges.drain(..drain_end); | 
|---|
| 279 | } | 
|---|
| 280 |  | 
|---|
| 281 | /// Converts this set into a canonical ordering. | 
|---|
| 282 | fn canonicalize(&mut self) { | 
|---|
| 283 | if self.is_canonical() { | 
|---|
| 284 | return; | 
|---|
| 285 | } | 
|---|
| 286 | self.ranges.sort(); | 
|---|
| 287 | assert!(!self.ranges.is_empty()); | 
|---|
| 288 |  | 
|---|
| 289 | // Is there a way to do this in-place with constant memory? I couldn't | 
|---|
| 290 | // figure out a way to do it. So just append the canonicalization to | 
|---|
| 291 | // the end of this range, and then drain it before we're done. | 
|---|
| 292 | let drain_end = self.ranges.len(); | 
|---|
| 293 | for oldi in 0..drain_end { | 
|---|
| 294 | // If we've added at least one new range, then check if we can | 
|---|
| 295 | // merge this range in the previously added range. | 
|---|
| 296 | if self.ranges.len() > drain_end { | 
|---|
| 297 | let (last, rest) = self.ranges.split_last_mut().unwrap(); | 
|---|
| 298 | if let Some(union) = last.union(&rest[oldi]) { | 
|---|
| 299 | *last = union; | 
|---|
| 300 | continue; | 
|---|
| 301 | } | 
|---|
| 302 | } | 
|---|
| 303 | let range = self.ranges[oldi]; | 
|---|
| 304 | self.ranges.push(range); | 
|---|
| 305 | } | 
|---|
| 306 | self.ranges.drain(..drain_end); | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | /// Returns true if and only if this class is in a canonical ordering. | 
|---|
| 310 | fn is_canonical(&self) -> bool { | 
|---|
| 311 | for pair in self.ranges.windows(2) { | 
|---|
| 312 | if pair[0] >= pair[1] { | 
|---|
| 313 | return false; | 
|---|
| 314 | } | 
|---|
| 315 | if pair[0].is_contiguous(&pair[1]) { | 
|---|
| 316 | return false; | 
|---|
| 317 | } | 
|---|
| 318 | } | 
|---|
| 319 | true | 
|---|
| 320 | } | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | /// An iterator over intervals. | 
|---|
| 324 | #[ derive(Debug)] | 
|---|
| 325 | pub struct IntervalSetIter<'a, I>(slice::Iter<'a, I>); | 
|---|
| 326 |  | 
|---|
| 327 | impl<'a, I> Iterator for IntervalSetIter<'a, I> { | 
|---|
| 328 | type Item = &'a I; | 
|---|
| 329 |  | 
|---|
| 330 | fn next(&mut self) -> Option<&'a I> { | 
|---|
| 331 | self.0.next() | 
|---|
| 332 | } | 
|---|
| 333 | } | 
|---|
| 334 |  | 
|---|
| 335 | pub trait Interval: | 
|---|
| 336 | Clone + Copy + Debug + Default + Eq + PartialEq + PartialOrd + Ord | 
|---|
| 337 | { | 
|---|
| 338 | type Bound: Bound; | 
|---|
| 339 |  | 
|---|
| 340 | fn lower(&self) -> Self::Bound; | 
|---|
| 341 | fn upper(&self) -> Self::Bound; | 
|---|
| 342 | fn set_lower(&mut self, bound: Self::Bound); | 
|---|
| 343 | fn set_upper(&mut self, bound: Self::Bound); | 
|---|
| 344 | fn case_fold_simple( | 
|---|
| 345 | &self, | 
|---|
| 346 | intervals: &mut Vec<Self>, | 
|---|
| 347 | ) -> Result<(), unicode::CaseFoldError>; | 
|---|
| 348 |  | 
|---|
| 349 | /// Create a new interval. | 
|---|
| 350 | fn create(lower: Self::Bound, upper: Self::Bound) -> Self { | 
|---|
| 351 | let mut int = Self::default(); | 
|---|
| 352 | if lower <= upper { | 
|---|
| 353 | int.set_lower(lower); | 
|---|
| 354 | int.set_upper(upper); | 
|---|
| 355 | } else { | 
|---|
| 356 | int.set_lower(upper); | 
|---|
| 357 | int.set_upper(lower); | 
|---|
| 358 | } | 
|---|
| 359 | int | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|
| 362 | /// Union the given overlapping range into this range. | 
|---|
| 363 | /// | 
|---|
| 364 | /// If the two ranges aren't contiguous, then this returns `None`. | 
|---|
| 365 | fn union(&self, other: &Self) -> Option<Self> { | 
|---|
| 366 | if !self.is_contiguous(other) { | 
|---|
| 367 | return None; | 
|---|
| 368 | } | 
|---|
| 369 | let lower = cmp::min(self.lower(), other.lower()); | 
|---|
| 370 | let upper = cmp::max(self.upper(), other.upper()); | 
|---|
| 371 | Some(Self::create(lower, upper)) | 
|---|
| 372 | } | 
|---|
| 373 |  | 
|---|
| 374 | /// Intersect this range with the given range and return the result. | 
|---|
| 375 | /// | 
|---|
| 376 | /// If the intersection is empty, then this returns `None`. | 
|---|
| 377 | fn intersect(&self, other: &Self) -> Option<Self> { | 
|---|
| 378 | let lower = cmp::max(self.lower(), other.lower()); | 
|---|
| 379 | let upper = cmp::min(self.upper(), other.upper()); | 
|---|
| 380 | if lower <= upper { | 
|---|
| 381 | Some(Self::create(lower, upper)) | 
|---|
| 382 | } else { | 
|---|
| 383 | None | 
|---|
| 384 | } | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | /// Subtract the given range from this range and return the resulting | 
|---|
| 388 | /// ranges. | 
|---|
| 389 | /// | 
|---|
| 390 | /// If subtraction would result in an empty range, then no ranges are | 
|---|
| 391 | /// returned. | 
|---|
| 392 | fn difference(&self, other: &Self) -> (Option<Self>, Option<Self>) { | 
|---|
| 393 | if self.is_subset(other) { | 
|---|
| 394 | return (None, None); | 
|---|
| 395 | } | 
|---|
| 396 | if self.is_intersection_empty(other) { | 
|---|
| 397 | return (Some(self.clone()), None); | 
|---|
| 398 | } | 
|---|
| 399 | let add_lower = other.lower() > self.lower(); | 
|---|
| 400 | let add_upper = other.upper() < self.upper(); | 
|---|
| 401 | // We know this because !self.is_subset(other) and the ranges have | 
|---|
| 402 | // a non-empty intersection. | 
|---|
| 403 | assert!(add_lower || add_upper); | 
|---|
| 404 | let mut ret = (None, None); | 
|---|
| 405 | if add_lower { | 
|---|
| 406 | let upper = other.lower().decrement(); | 
|---|
| 407 | ret.0 = Some(Self::create(self.lower(), upper)); | 
|---|
| 408 | } | 
|---|
| 409 | if add_upper { | 
|---|
| 410 | let lower = other.upper().increment(); | 
|---|
| 411 | let range = Self::create(lower, self.upper()); | 
|---|
| 412 | if ret.0.is_none() { | 
|---|
| 413 | ret.0 = Some(range); | 
|---|
| 414 | } else { | 
|---|
| 415 | ret.1 = Some(range); | 
|---|
| 416 | } | 
|---|
| 417 | } | 
|---|
| 418 | ret | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | /// Compute the symmetric difference the given range from this range. This | 
|---|
| 422 | /// returns the union of the two ranges minus its intersection. | 
|---|
| 423 | fn symmetric_difference( | 
|---|
| 424 | &self, | 
|---|
| 425 | other: &Self, | 
|---|
| 426 | ) -> (Option<Self>, Option<Self>) { | 
|---|
| 427 | let union = match self.union(other) { | 
|---|
| 428 | None => return (Some(self.clone()), Some(other.clone())), | 
|---|
| 429 | Some(union) => union, | 
|---|
| 430 | }; | 
|---|
| 431 | let intersection = match self.intersect(other) { | 
|---|
| 432 | None => return (Some(self.clone()), Some(other.clone())), | 
|---|
| 433 | Some(intersection) => intersection, | 
|---|
| 434 | }; | 
|---|
| 435 | union.difference(&intersection) | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | /// Returns true if and only if the two ranges are contiguous. Two ranges | 
|---|
| 439 | /// are contiguous if and only if the ranges are either overlapping or | 
|---|
| 440 | /// adjacent. | 
|---|
| 441 | fn is_contiguous(&self, other: &Self) -> bool { | 
|---|
| 442 | let lower1 = self.lower().as_u32(); | 
|---|
| 443 | let upper1 = self.upper().as_u32(); | 
|---|
| 444 | let lower2 = other.lower().as_u32(); | 
|---|
| 445 | let upper2 = other.upper().as_u32(); | 
|---|
| 446 | cmp::max(lower1, lower2) <= cmp::min(upper1, upper2).saturating_add(1) | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | /// Returns true if and only if the intersection of this range and the | 
|---|
| 450 | /// other range is empty. | 
|---|
| 451 | fn is_intersection_empty(&self, other: &Self) -> bool { | 
|---|
| 452 | let (lower1, upper1) = (self.lower(), self.upper()); | 
|---|
| 453 | let (lower2, upper2) = (other.lower(), other.upper()); | 
|---|
| 454 | cmp::max(lower1, lower2) > cmp::min(upper1, upper2) | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | /// Returns true if and only if this range is a subset of the other range. | 
|---|
| 458 | fn is_subset(&self, other: &Self) -> bool { | 
|---|
| 459 | let (lower1, upper1) = (self.lower(), self.upper()); | 
|---|
| 460 | let (lower2, upper2) = (other.lower(), other.upper()); | 
|---|
| 461 | (lower2 <= lower1 && lower1 <= upper2) | 
|---|
| 462 | && (lower2 <= upper1 && upper1 <= upper2) | 
|---|
| 463 | } | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | pub trait Bound: | 
|---|
| 467 | Copy + Clone + Debug + Eq + PartialEq + PartialOrd + Ord | 
|---|
| 468 | { | 
|---|
| 469 | fn min_value() -> Self; | 
|---|
| 470 | fn max_value() -> Self; | 
|---|
| 471 | fn as_u32(self) -> u32; | 
|---|
| 472 | fn increment(self) -> Self; | 
|---|
| 473 | fn decrement(self) -> Self; | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | impl Bound for u8 { | 
|---|
| 477 | fn min_value() -> Self { | 
|---|
| 478 | u8::MIN | 
|---|
| 479 | } | 
|---|
| 480 | fn max_value() -> Self { | 
|---|
| 481 | u8::MAX | 
|---|
| 482 | } | 
|---|
| 483 | fn as_u32(self) -> u32 { | 
|---|
| 484 | self as u32 | 
|---|
| 485 | } | 
|---|
| 486 | fn increment(self) -> Self { | 
|---|
| 487 | self.checked_add(1).unwrap() | 
|---|
| 488 | } | 
|---|
| 489 | fn decrement(self) -> Self { | 
|---|
| 490 | self.checked_sub(1).unwrap() | 
|---|
| 491 | } | 
|---|
| 492 | } | 
|---|
| 493 |  | 
|---|
| 494 | impl Bound for char { | 
|---|
| 495 | fn min_value() -> Self { | 
|---|
| 496 | '\x00 ' | 
|---|
| 497 | } | 
|---|
| 498 | fn max_value() -> Self { | 
|---|
| 499 | '\u{10FFFF} ' | 
|---|
| 500 | } | 
|---|
| 501 | fn as_u32(self) -> u32 { | 
|---|
| 502 | self as u32 | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | fn increment(self) -> Self { | 
|---|
| 506 | match self { | 
|---|
| 507 | '\u{D7FF} '=> '\u{E000} ', | 
|---|
| 508 | c => char::from_u32((c as u32).checked_add(1).unwrap()).unwrap(), | 
|---|
| 509 | } | 
|---|
| 510 | } | 
|---|
| 511 |  | 
|---|
| 512 | fn decrement(self) -> Self { | 
|---|
| 513 | match self { | 
|---|
| 514 | '\u{E000} '=> '\u{D7FF} ', | 
|---|
| 515 | c => char::from_u32((c as u32).checked_sub(1).unwrap()).unwrap(), | 
|---|
| 516 | } | 
|---|
| 517 | } | 
|---|
| 518 | } | 
|---|
| 519 |  | 
|---|
| 520 | // Tests for interval sets are written in src/hir.rs against the public API. | 
|---|
| 521 |  | 
|---|