1 | /*! |
2 | Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes. |
3 | |
4 | This is sub-module is useful for constructing byte based automatons that need |
5 | to embed UTF-8 decoding. The most common use of this module is in conjunction |
6 | with the [`hir::ClassUnicodeRange`](crate::hir::ClassUnicodeRange) type. |
7 | |
8 | See the documentation on the `Utf8Sequences` iterator for more details and |
9 | an example. |
10 | |
11 | # Wait, what is this? |
12 | |
13 | This is simplest to explain with an example. Let's say you wanted to test |
14 | whether a particular byte sequence was a Cyrillic character. One possible |
15 | scalar value range is `[0400-04FF]`. The set of allowed bytes for this |
16 | range can be expressed as a sequence of byte ranges: |
17 | |
18 | ```text |
19 | [D0-D3][80-BF] |
20 | ``` |
21 | |
22 | This is simple enough: simply encode the boundaries, `0400` encodes to |
23 | `D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each |
24 | corresponding pair of bytes: `D0` to `D3` and `80` to `BF`. |
25 | |
26 | However, what if you wanted to add the Cyrillic Supplementary characters to |
27 | your range? Your range might then become `[0400-052F]`. The same procedure |
28 | as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges |
29 | you'd get from the previous transformation would be `[D0-D4][80-AF]`. However, |
30 | this isn't quite correct because this range doesn't capture many characters, |
31 | for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`). |
32 | |
33 | Instead, you need multiple sequences of byte ranges: |
34 | |
35 | ```text |
36 | [D0-D3][80-BF] # matches codepoints 0400-04FF |
37 | [D4][80-AF] # matches codepoints 0500-052F |
38 | ``` |
39 | |
40 | This gets even more complicated if you want bigger ranges, particularly if |
41 | they naively contain surrogate codepoints. For example, the sequence of byte |
42 | ranges for the basic multilingual plane (`[0000-FFFF]`) look like this: |
43 | |
44 | ```text |
45 | [0-7F] |
46 | [C2-DF][80-BF] |
47 | [E0][A0-BF][80-BF] |
48 | [E1-EC][80-BF][80-BF] |
49 | [ED][80-9F][80-BF] |
50 | [EE-EF][80-BF][80-BF] |
51 | ``` |
52 | |
53 | Note that the byte ranges above will *not* match any erroneous encoding of |
54 | UTF-8, including encodings of surrogate codepoints. |
55 | |
56 | And, of course, for all of Unicode (`[000000-10FFFF]`): |
57 | |
58 | ```text |
59 | [0-7F] |
60 | [C2-DF][80-BF] |
61 | [E0][A0-BF][80-BF] |
62 | [E1-EC][80-BF][80-BF] |
63 | [ED][80-9F][80-BF] |
64 | [EE-EF][80-BF][80-BF] |
65 | [F0][90-BF][80-BF][80-BF] |
66 | [F1-F3][80-BF][80-BF][80-BF] |
67 | [F4][80-8F][80-BF][80-BF] |
68 | ``` |
69 | |
70 | This module automates the process of creating these byte ranges from ranges of |
71 | Unicode scalar values. |
72 | |
73 | # Lineage |
74 | |
75 | I got the idea and general implementation strategy from Russ Cox in his |
76 | [article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2. |
77 | Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?). |
78 | I also got the idea from |
79 | [Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java), |
80 | which uses it for executing automata on their term index. |
81 | */ |
82 | |
83 | use core::{char, fmt, iter::FusedIterator, slice}; |
84 | |
85 | use alloc::{vec, vec::Vec}; |
86 | |
87 | const MAX_UTF8_BYTES: usize = 4; |
88 | |
89 | /// Utf8Sequence represents a sequence of byte ranges. |
90 | /// |
91 | /// To match a Utf8Sequence, a candidate byte sequence must match each |
92 | /// successive range. |
93 | /// |
94 | /// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte |
95 | /// sequence `\xDD\x61` would not match because `0x61 < 0x80`. |
96 | #[derive (Copy, Clone, Eq, PartialEq, PartialOrd, Ord)] |
97 | pub enum Utf8Sequence { |
98 | /// One byte range. |
99 | One(Utf8Range), |
100 | /// Two successive byte ranges. |
101 | Two([Utf8Range; 2]), |
102 | /// Three successive byte ranges. |
103 | Three([Utf8Range; 3]), |
104 | /// Four successive byte ranges. |
105 | Four([Utf8Range; 4]), |
106 | } |
107 | |
108 | impl Utf8Sequence { |
109 | /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value |
110 | /// range. |
111 | /// |
112 | /// This assumes that `start` and `end` have the same length. |
113 | fn from_encoded_range(start: &[u8], end: &[u8]) -> Self { |
114 | assert_eq!(start.len(), end.len()); |
115 | match start.len() { |
116 | 2 => Utf8Sequence::Two([ |
117 | Utf8Range::new(start[0], end[0]), |
118 | Utf8Range::new(start[1], end[1]), |
119 | ]), |
120 | 3 => Utf8Sequence::Three([ |
121 | Utf8Range::new(start[0], end[0]), |
122 | Utf8Range::new(start[1], end[1]), |
123 | Utf8Range::new(start[2], end[2]), |
124 | ]), |
125 | 4 => Utf8Sequence::Four([ |
126 | Utf8Range::new(start[0], end[0]), |
127 | Utf8Range::new(start[1], end[1]), |
128 | Utf8Range::new(start[2], end[2]), |
129 | Utf8Range::new(start[3], end[3]), |
130 | ]), |
131 | n => unreachable!("invalid encoded length: {}" , n), |
132 | } |
133 | } |
134 | |
135 | /// Returns the underlying sequence of byte ranges as a slice. |
136 | pub fn as_slice(&self) -> &[Utf8Range] { |
137 | use self::Utf8Sequence::*; |
138 | match *self { |
139 | One(ref r) => slice::from_ref(r), |
140 | Two(ref r) => &r[..], |
141 | Three(ref r) => &r[..], |
142 | Four(ref r) => &r[..], |
143 | } |
144 | } |
145 | |
146 | /// Returns the number of byte ranges in this sequence. |
147 | /// |
148 | /// The length is guaranteed to be in the closed interval `[1, 4]`. |
149 | pub fn len(&self) -> usize { |
150 | self.as_slice().len() |
151 | } |
152 | |
153 | /// Reverses the ranges in this sequence. |
154 | /// |
155 | /// For example, if this corresponds to the following sequence: |
156 | /// |
157 | /// ```text |
158 | /// [D0-D3][80-BF] |
159 | /// ``` |
160 | /// |
161 | /// Then after reversal, it will be |
162 | /// |
163 | /// ```text |
164 | /// [80-BF][D0-D3] |
165 | /// ``` |
166 | /// |
167 | /// This is useful when one is constructing a UTF-8 automaton to match |
168 | /// character classes in reverse. |
169 | pub fn reverse(&mut self) { |
170 | match *self { |
171 | Utf8Sequence::One(_) => {} |
172 | Utf8Sequence::Two(ref mut x) => x.reverse(), |
173 | Utf8Sequence::Three(ref mut x) => x.reverse(), |
174 | Utf8Sequence::Four(ref mut x) => x.reverse(), |
175 | } |
176 | } |
177 | |
178 | /// Returns true if and only if a prefix of `bytes` matches this sequence |
179 | /// of byte ranges. |
180 | pub fn matches(&self, bytes: &[u8]) -> bool { |
181 | if bytes.len() < self.len() { |
182 | return false; |
183 | } |
184 | for (&b, r) in bytes.iter().zip(self) { |
185 | if !r.matches(b) { |
186 | return false; |
187 | } |
188 | } |
189 | true |
190 | } |
191 | } |
192 | |
193 | impl<'a> IntoIterator for &'a Utf8Sequence { |
194 | type IntoIter = slice::Iter<'a, Utf8Range>; |
195 | type Item = &'a Utf8Range; |
196 | |
197 | fn into_iter(self) -> Self::IntoIter { |
198 | self.as_slice().iter() |
199 | } |
200 | } |
201 | |
202 | impl fmt::Debug for Utf8Sequence { |
203 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
204 | use self::Utf8Sequence::*; |
205 | match *self { |
206 | One(ref r: &Utf8Range) => write!(f, " {:?}" , r), |
207 | Two(ref r: &[Utf8Range; 2]) => write!(f, " {:?}{:?}" , r[0], r[1]), |
208 | Three(ref r: &[Utf8Range; 3]) => write!(f, " {:?}{:?}{:?}" , r[0], r[1], r[2]), |
209 | Four(ref r: &[Utf8Range; 4]) => { |
210 | write!(f, " {:?}{:?}{:?}{:?}" , r[0], r[1], r[2], r[3]) |
211 | } |
212 | } |
213 | } |
214 | } |
215 | |
216 | /// A single inclusive range of UTF-8 bytes. |
217 | #[derive (Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
218 | pub struct Utf8Range { |
219 | /// Start of byte range (inclusive). |
220 | pub start: u8, |
221 | /// End of byte range (inclusive). |
222 | pub end: u8, |
223 | } |
224 | |
225 | impl Utf8Range { |
226 | fn new(start: u8, end: u8) -> Self { |
227 | Utf8Range { start, end } |
228 | } |
229 | |
230 | /// Returns true if and only if the given byte is in this range. |
231 | pub fn matches(&self, b: u8) -> bool { |
232 | self.start <= b && b <= self.end |
233 | } |
234 | } |
235 | |
236 | impl fmt::Debug for Utf8Range { |
237 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
238 | if self.start == self.end { |
239 | write!(f, "[ {:X}]" , self.start) |
240 | } else { |
241 | write!(f, "[ {:X}- {:X}]" , self.start, self.end) |
242 | } |
243 | } |
244 | } |
245 | |
246 | /// An iterator over ranges of matching UTF-8 byte sequences. |
247 | /// |
248 | /// The iteration represents an alternation of comprehensive byte sequences |
249 | /// that match precisely the set of UTF-8 encoded scalar values. |
250 | /// |
251 | /// A byte sequence corresponds to one of the scalar values in the range given |
252 | /// if and only if it completely matches exactly one of the sequences of byte |
253 | /// ranges produced by this iterator. |
254 | /// |
255 | /// Each sequence of byte ranges matches a unique set of bytes. That is, no two |
256 | /// sequences will match the same bytes. |
257 | /// |
258 | /// # Example |
259 | /// |
260 | /// This shows how to match an arbitrary byte sequence against a range of |
261 | /// scalar values. |
262 | /// |
263 | /// ```rust |
264 | /// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence}; |
265 | /// |
266 | /// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool { |
267 | /// for range in seqs { |
268 | /// if range.matches(bytes) { |
269 | /// return true; |
270 | /// } |
271 | /// } |
272 | /// false |
273 | /// } |
274 | /// |
275 | /// // Test the basic multilingual plane. |
276 | /// let seqs: Vec<_> = Utf8Sequences::new(' \u{0}' , ' \u{FFFF}' ).collect(); |
277 | /// |
278 | /// // UTF-8 encoding of 'a'. |
279 | /// assert!(matches(&seqs, &[0x61])); |
280 | /// // UTF-8 encoding of '☃' (`\u{2603}`). |
281 | /// assert!(matches(&seqs, &[0xE2, 0x98, 0x83])); |
282 | /// // UTF-8 encoding of `\u{10348}` (outside the BMP). |
283 | /// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88])); |
284 | /// // Tries to match against a UTF-8 encoding of a surrogate codepoint, |
285 | /// // which is invalid UTF-8, and therefore fails, despite the fact that |
286 | /// // the corresponding codepoint (0xD800) falls in the range given. |
287 | /// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80])); |
288 | /// // And fails against plain old invalid UTF-8. |
289 | /// assert!(!matches(&seqs, &[0xFF, 0xFF])); |
290 | /// ``` |
291 | /// |
292 | /// If this example seems circuitous, that's because it is! It's meant to be |
293 | /// illustrative. In practice, you could just try to decode your byte sequence |
294 | /// and compare it with the scalar value range directly. However, this is not |
295 | /// always possible (for example, in a byte based automaton). |
296 | #[derive (Debug)] |
297 | pub struct Utf8Sequences { |
298 | range_stack: Vec<ScalarRange>, |
299 | } |
300 | |
301 | impl Utf8Sequences { |
302 | /// Create a new iterator over UTF-8 byte ranges for the scalar value range |
303 | /// given. |
304 | pub fn new(start: char, end: char) -> Self { |
305 | let mut it: Utf8Sequences = Utf8Sequences { range_stack: vec![] }; |
306 | it.push(start:u32::from(start), end:u32::from(end)); |
307 | it |
308 | } |
309 | |
310 | /// reset resets the scalar value range. |
311 | /// Any existing state is cleared, but resources may be reused. |
312 | /// |
313 | /// N.B. Benchmarks say that this method is dubious. |
314 | #[doc (hidden)] |
315 | pub fn reset(&mut self, start: char, end: char) { |
316 | self.range_stack.clear(); |
317 | self.push(start:u32::from(start), end:u32::from(end)); |
318 | } |
319 | |
320 | fn push(&mut self, start: u32, end: u32) { |
321 | self.range_stack.push(ScalarRange { start, end }); |
322 | } |
323 | } |
324 | |
325 | struct ScalarRange { |
326 | start: u32, |
327 | end: u32, |
328 | } |
329 | |
330 | impl fmt::Debug for ScalarRange { |
331 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
332 | write!(f, "ScalarRange( {:X}, {:X})" , self.start, self.end) |
333 | } |
334 | } |
335 | |
336 | impl Iterator for Utf8Sequences { |
337 | type Item = Utf8Sequence; |
338 | |
339 | fn next(&mut self) -> Option<Self::Item> { |
340 | 'TOP: while let Some(mut r) = self.range_stack.pop() { |
341 | 'INNER: loop { |
342 | if let Some((r1, r2)) = r.split() { |
343 | self.push(r2.start, r2.end); |
344 | r.start = r1.start; |
345 | r.end = r1.end; |
346 | continue 'INNER; |
347 | } |
348 | if !r.is_valid() { |
349 | continue 'TOP; |
350 | } |
351 | for i in 1..MAX_UTF8_BYTES { |
352 | let max = max_scalar_value(i); |
353 | if r.start <= max && max < r.end { |
354 | self.push(max + 1, r.end); |
355 | r.end = max; |
356 | continue 'INNER; |
357 | } |
358 | } |
359 | if let Some(ascii_range) = r.as_ascii() { |
360 | return Some(Utf8Sequence::One(ascii_range)); |
361 | } |
362 | for i in 1..MAX_UTF8_BYTES { |
363 | let m = (1 << (6 * i)) - 1; |
364 | if (r.start & !m) != (r.end & !m) { |
365 | if (r.start & m) != 0 { |
366 | self.push((r.start | m) + 1, r.end); |
367 | r.end = r.start | m; |
368 | continue 'INNER; |
369 | } |
370 | if (r.end & m) != m { |
371 | self.push(r.end & !m, r.end); |
372 | r.end = (r.end & !m) - 1; |
373 | continue 'INNER; |
374 | } |
375 | } |
376 | } |
377 | let mut start = [0; MAX_UTF8_BYTES]; |
378 | let mut end = [0; MAX_UTF8_BYTES]; |
379 | let n = r.encode(&mut start, &mut end); |
380 | return Some(Utf8Sequence::from_encoded_range( |
381 | &start[0..n], |
382 | &end[0..n], |
383 | )); |
384 | } |
385 | } |
386 | None |
387 | } |
388 | } |
389 | |
390 | impl FusedIterator for Utf8Sequences {} |
391 | |
392 | impl ScalarRange { |
393 | /// split splits this range if it overlaps with a surrogate codepoint. |
394 | /// |
395 | /// Either or both ranges may be invalid. |
396 | fn split(&self) -> Option<(ScalarRange, ScalarRange)> { |
397 | if self.start < 0xE000 && self.end > 0xD7FF { |
398 | Some(( |
399 | ScalarRange { start: self.start, end: 0xD7FF }, |
400 | ScalarRange { start: 0xE000, end: self.end }, |
401 | )) |
402 | } else { |
403 | None |
404 | } |
405 | } |
406 | |
407 | /// is_valid returns true if and only if start <= end. |
408 | fn is_valid(&self) -> bool { |
409 | self.start <= self.end |
410 | } |
411 | |
412 | /// as_ascii returns this range as a Utf8Range if and only if all scalar |
413 | /// values in this range can be encoded as a single byte. |
414 | fn as_ascii(&self) -> Option<Utf8Range> { |
415 | if self.is_ascii() { |
416 | let start = u8::try_from(self.start).unwrap(); |
417 | let end = u8::try_from(self.end).unwrap(); |
418 | Some(Utf8Range::new(start, end)) |
419 | } else { |
420 | None |
421 | } |
422 | } |
423 | |
424 | /// is_ascii returns true if the range is ASCII only (i.e., takes a single |
425 | /// byte to encode any scalar value). |
426 | fn is_ascii(&self) -> bool { |
427 | self.is_valid() && self.end <= 0x7f |
428 | } |
429 | |
430 | /// encode writes the UTF-8 encoding of the start and end of this range |
431 | /// to the corresponding destination slices, and returns the number of |
432 | /// bytes written. |
433 | /// |
434 | /// The slices should have room for at least `MAX_UTF8_BYTES`. |
435 | fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize { |
436 | let cs = char::from_u32(self.start).unwrap(); |
437 | let ce = char::from_u32(self.end).unwrap(); |
438 | let ss = cs.encode_utf8(start); |
439 | let se = ce.encode_utf8(end); |
440 | assert_eq!(ss.len(), se.len()); |
441 | ss.len() |
442 | } |
443 | } |
444 | |
445 | fn max_scalar_value(nbytes: usize) -> u32 { |
446 | match nbytes { |
447 | 1 => 0x007F, |
448 | 2 => 0x07FF, |
449 | 3 => 0xFFFF, |
450 | 4 => 0x0010_FFFF, |
451 | _ => unreachable!("invalid UTF-8 byte sequence size" ), |
452 | } |
453 | } |
454 | |
455 | #[cfg (test)] |
456 | mod tests { |
457 | use core::char; |
458 | |
459 | use alloc::{vec, vec::Vec}; |
460 | |
461 | use crate::utf8::{Utf8Range, Utf8Sequences}; |
462 | |
463 | fn rutf8(s: u8, e: u8) -> Utf8Range { |
464 | Utf8Range::new(s, e) |
465 | } |
466 | |
467 | fn never_accepts_surrogate_codepoints(start: char, end: char) { |
468 | for cp in 0xD800..0xE000 { |
469 | let buf = encode_surrogate(cp); |
470 | for r in Utf8Sequences::new(start, end) { |
471 | if r.matches(&buf) { |
472 | panic!( |
473 | "Sequence ( {:X}, {:X}) contains range {:?}, \ |
474 | which matches surrogate code point {:X} \ |
475 | with encoded bytes {:?}" , |
476 | u32::from(start), |
477 | u32::from(end), |
478 | r, |
479 | cp, |
480 | buf, |
481 | ); |
482 | } |
483 | } |
484 | } |
485 | } |
486 | |
487 | #[test ] |
488 | fn codepoints_no_surrogates() { |
489 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{FFFF}' ); |
490 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{10FFFF}' ); |
491 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{10FFFE}' ); |
492 | never_accepts_surrogate_codepoints(' \u{80}' , ' \u{10FFFF}' ); |
493 | never_accepts_surrogate_codepoints(' \u{D7FF}' , ' \u{E000}' ); |
494 | } |
495 | |
496 | #[test ] |
497 | fn single_codepoint_one_sequence() { |
498 | // Tests that every range of scalar values that contains a single |
499 | // scalar value is recognized by one sequence of byte ranges. |
500 | for i in 0x0..=0x0010_FFFF { |
501 | let c = match char::from_u32(i) { |
502 | None => continue, |
503 | Some(c) => c, |
504 | }; |
505 | let seqs: Vec<_> = Utf8Sequences::new(c, c).collect(); |
506 | assert_eq!(seqs.len(), 1); |
507 | } |
508 | } |
509 | |
510 | #[test ] |
511 | fn bmp() { |
512 | use crate::utf8::Utf8Sequence::*; |
513 | |
514 | let seqs = Utf8Sequences::new(' \u{0}' , ' \u{FFFF}' ).collect::<Vec<_>>(); |
515 | assert_eq!( |
516 | seqs, |
517 | vec![ |
518 | One(rutf8(0x0, 0x7F)), |
519 | Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]), |
520 | Three([ |
521 | rutf8(0xE0, 0xE0), |
522 | rutf8(0xA0, 0xBF), |
523 | rutf8(0x80, 0xBF) |
524 | ]), |
525 | Three([ |
526 | rutf8(0xE1, 0xEC), |
527 | rutf8(0x80, 0xBF), |
528 | rutf8(0x80, 0xBF) |
529 | ]), |
530 | Three([ |
531 | rutf8(0xED, 0xED), |
532 | rutf8(0x80, 0x9F), |
533 | rutf8(0x80, 0xBF) |
534 | ]), |
535 | Three([ |
536 | rutf8(0xEE, 0xEF), |
537 | rutf8(0x80, 0xBF), |
538 | rutf8(0x80, 0xBF) |
539 | ]), |
540 | ] |
541 | ); |
542 | } |
543 | |
544 | #[test ] |
545 | fn reverse() { |
546 | use crate::utf8::Utf8Sequence::*; |
547 | |
548 | let mut s = One(rutf8(0xA, 0xB)); |
549 | s.reverse(); |
550 | assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]); |
551 | |
552 | let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]); |
553 | s.reverse(); |
554 | assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]); |
555 | |
556 | let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]); |
557 | s.reverse(); |
558 | assert_eq!( |
559 | s.as_slice(), |
560 | &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)] |
561 | ); |
562 | |
563 | let mut s = Four([ |
564 | rutf8(0xA, 0xB), |
565 | rutf8(0xB, 0xC), |
566 | rutf8(0xC, 0xD), |
567 | rutf8(0xD, 0xE), |
568 | ]); |
569 | s.reverse(); |
570 | assert_eq!( |
571 | s.as_slice(), |
572 | &[ |
573 | rutf8(0xD, 0xE), |
574 | rutf8(0xC, 0xD), |
575 | rutf8(0xB, 0xC), |
576 | rutf8(0xA, 0xB) |
577 | ] |
578 | ); |
579 | } |
580 | |
581 | fn encode_surrogate(cp: u32) -> [u8; 3] { |
582 | const TAG_CONT: u8 = 0b1000_0000; |
583 | const TAG_THREE_B: u8 = 0b1110_0000; |
584 | |
585 | assert!(0xD800 <= cp && cp < 0xE000); |
586 | let mut dst = [0; 3]; |
587 | dst[0] = u8::try_from(cp >> 12 & 0x0F).unwrap() | TAG_THREE_B; |
588 | dst[1] = u8::try_from(cp >> 6 & 0x3F).unwrap() | TAG_CONT; |
589 | dst[2] = u8::try_from(cp & 0x3F).unwrap() | TAG_CONT; |
590 | dst |
591 | } |
592 | } |
593 | |