1 | /*! |
2 | Defines a high-level intermediate (HIR) representation for regular expressions. |
3 | |
4 | The HIR is represented by the [`Hir`] type, and it principally constructed via |
5 | [translation](translate) from an [`Ast`](crate::ast::Ast). Alternatively, users |
6 | may use the smart constructors defined on `Hir` to build their own by hand. The |
7 | smart constructors simultaneously simplify and "optimize" the HIR, and are also |
8 | the same routines used by translation. |
9 | |
10 | Most regex engines only have an HIR like this, and usually construct it |
11 | directly from the concrete syntax. This crate however first parses the |
12 | concrete syntax into an `Ast`, and only then creates the HIR from the `Ast`, |
13 | as mentioned above. It's done this way to facilitate better error reporting, |
14 | and to have a structured representation of a regex that faithfully represents |
15 | its concrete syntax. Namely, while an `Hir` value can be converted back to an |
16 | equivalent regex pattern string, it is unlikely to look like the original due |
17 | to its simplified structure. |
18 | */ |
19 | |
20 | use core::{char, cmp}; |
21 | |
22 | use alloc::{ |
23 | boxed::Box, |
24 | format, |
25 | string::{String, ToString}, |
26 | vec, |
27 | vec::Vec, |
28 | }; |
29 | |
30 | use crate::{ |
31 | ast::Span, |
32 | hir::interval::{Interval, IntervalSet, IntervalSetIter}, |
33 | unicode, |
34 | }; |
35 | |
36 | pub use crate::{ |
37 | hir::visitor::{visit, Visitor}, |
38 | unicode::CaseFoldError, |
39 | }; |
40 | |
41 | mod interval; |
42 | pub mod literal; |
43 | pub mod print; |
44 | pub mod translate; |
45 | mod visitor; |
46 | |
47 | /// An error that can occur while translating an `Ast` to a `Hir`. |
48 | #[derive (Clone, Debug, Eq, PartialEq)] |
49 | pub struct Error { |
50 | /// The kind of error. |
51 | kind: ErrorKind, |
52 | /// The original pattern that the translator's Ast was parsed from. Every |
53 | /// span in an error is a valid range into this string. |
54 | pattern: String, |
55 | /// The span of this error, derived from the Ast given to the translator. |
56 | span: Span, |
57 | } |
58 | |
59 | impl Error { |
60 | /// Return the type of this error. |
61 | pub fn kind(&self) -> &ErrorKind { |
62 | &self.kind |
63 | } |
64 | |
65 | /// The original pattern string in which this error occurred. |
66 | /// |
67 | /// Every span reported by this error is reported in terms of this string. |
68 | pub fn pattern(&self) -> &str { |
69 | &self.pattern |
70 | } |
71 | |
72 | /// Return the span at which this error occurred. |
73 | pub fn span(&self) -> &Span { |
74 | &self.span |
75 | } |
76 | } |
77 | |
78 | /// The type of an error that occurred while building an `Hir`. |
79 | /// |
80 | /// This error type is marked as `non_exhaustive`. This means that adding a |
81 | /// new variant is not considered a breaking change. |
82 | #[non_exhaustive ] |
83 | #[derive (Clone, Debug, Eq, PartialEq)] |
84 | pub enum ErrorKind { |
85 | /// This error occurs when a Unicode feature is used when Unicode |
86 | /// support is disabled. For example `(?-u:\pL)` would trigger this error. |
87 | UnicodeNotAllowed, |
88 | /// This error occurs when translating a pattern that could match a byte |
89 | /// sequence that isn't UTF-8 and `utf8` was enabled. |
90 | InvalidUtf8, |
91 | /// This error occurs when one uses a non-ASCII byte for a line terminator, |
92 | /// but where Unicode mode is enabled and UTF-8 mode is disabled. |
93 | InvalidLineTerminator, |
94 | /// This occurs when an unrecognized Unicode property name could not |
95 | /// be found. |
96 | UnicodePropertyNotFound, |
97 | /// This occurs when an unrecognized Unicode property value could not |
98 | /// be found. |
99 | UnicodePropertyValueNotFound, |
100 | /// This occurs when a Unicode-aware Perl character class (`\w`, `\s` or |
101 | /// `\d`) could not be found. This can occur when the `unicode-perl` |
102 | /// crate feature is not enabled. |
103 | UnicodePerlClassNotFound, |
104 | /// This occurs when the Unicode simple case mapping tables are not |
105 | /// available, and the regular expression required Unicode aware case |
106 | /// insensitivity. |
107 | UnicodeCaseUnavailable, |
108 | } |
109 | |
110 | #[cfg (feature = "std" )] |
111 | impl std::error::Error for Error {} |
112 | |
113 | impl core::fmt::Display for Error { |
114 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
115 | crate::error::Formatter::from(self).fmt(f) |
116 | } |
117 | } |
118 | |
119 | impl core::fmt::Display for ErrorKind { |
120 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
121 | use self::ErrorKind::*; |
122 | |
123 | let msg: &str = match *self { |
124 | UnicodeNotAllowed => "Unicode not allowed here" , |
125 | InvalidUtf8 => "pattern can match invalid UTF-8" , |
126 | InvalidLineTerminator => "invalid line terminator, must be ASCII" , |
127 | UnicodePropertyNotFound => "Unicode property not found" , |
128 | UnicodePropertyValueNotFound => "Unicode property value not found" , |
129 | UnicodePerlClassNotFound => { |
130 | "Unicode-aware Perl class not found \ |
131 | (make sure the unicode-perl feature is enabled)" |
132 | } |
133 | UnicodeCaseUnavailable => { |
134 | "Unicode-aware case insensitivity matching is not available \ |
135 | (make sure the unicode-case feature is enabled)" |
136 | } |
137 | }; |
138 | f.write_str(data:msg) |
139 | } |
140 | } |
141 | |
142 | /// A high-level intermediate representation (HIR) for a regular expression. |
143 | /// |
144 | /// An HIR value is a combination of a [`HirKind`] and a set of [`Properties`]. |
145 | /// An `HirKind` indicates what kind of regular expression it is (a literal, |
146 | /// a repetition, a look-around assertion, etc.), where as a `Properties` |
147 | /// describes various facts about the regular expression. For example, whether |
148 | /// it matches UTF-8 or if it matches the empty string. |
149 | /// |
150 | /// The HIR of a regular expression represents an intermediate step between |
151 | /// its abstract syntax (a structured description of the concrete syntax) and |
152 | /// an actual regex matcher. The purpose of HIR is to make regular expressions |
153 | /// easier to analyze. In particular, the AST is much more complex than the |
154 | /// HIR. For example, while an AST supports arbitrarily nested character |
155 | /// classes, the HIR will flatten all nested classes into a single set. The HIR |
156 | /// will also "compile away" every flag present in the concrete syntax. For |
157 | /// example, users of HIR expressions never need to worry about case folding; |
158 | /// it is handled automatically by the translator (e.g., by translating |
159 | /// `(?i:A)` to `[aA]`). |
160 | /// |
161 | /// The specific type of an HIR expression can be accessed via its `kind` |
162 | /// or `into_kind` methods. This extra level of indirection exists for two |
163 | /// reasons: |
164 | /// |
165 | /// 1. Construction of an HIR expression *must* use the constructor methods on |
166 | /// this `Hir` type instead of building the `HirKind` values directly. This |
167 | /// permits construction to enforce invariants like "concatenations always |
168 | /// consist of two or more sub-expressions." |
169 | /// 2. Every HIR expression contains attributes that are defined inductively, |
170 | /// and can be computed cheaply during the construction process. For example, |
171 | /// one such attribute is whether the expression must match at the beginning of |
172 | /// the haystack. |
173 | /// |
174 | /// In particular, if you have an `HirKind` value, then there is intentionally |
175 | /// no way to build an `Hir` value from it. You instead need to do case |
176 | /// analysis on the `HirKind` value and build the `Hir` value using its smart |
177 | /// constructors. |
178 | /// |
179 | /// # UTF-8 |
180 | /// |
181 | /// If the HIR was produced by a translator with |
182 | /// [`TranslatorBuilder::utf8`](translate::TranslatorBuilder::utf8) enabled, |
183 | /// then the HIR is guaranteed to match UTF-8 exclusively for all non-empty |
184 | /// matches. |
185 | /// |
186 | /// For empty matches, those can occur at any position. It is the |
187 | /// responsibility of the regex engine to determine whether empty matches are |
188 | /// permitted between the code units of a single codepoint. |
189 | /// |
190 | /// # Stack space |
191 | /// |
192 | /// This type defines its own destructor that uses constant stack space and |
193 | /// heap space proportional to the size of the HIR. |
194 | /// |
195 | /// Also, an `Hir`'s `fmt::Display` implementation prints an HIR as a regular |
196 | /// expression pattern string, and uses constant stack space and heap space |
197 | /// proportional to the size of the `Hir`. The regex it prints is guaranteed to |
198 | /// be _semantically_ equivalent to the original concrete syntax, but it may |
199 | /// look very different. (And potentially not practically readable by a human.) |
200 | /// |
201 | /// An `Hir`'s `fmt::Debug` implementation currently does not use constant |
202 | /// stack space. The implementation will also suppress some details (such as |
203 | /// the `Properties` inlined into every `Hir` value to make it less noisy). |
204 | #[derive (Clone, Eq, PartialEq)] |
205 | pub struct Hir { |
206 | /// The underlying HIR kind. |
207 | kind: HirKind, |
208 | /// Analysis info about this HIR, computed during construction. |
209 | props: Properties, |
210 | } |
211 | |
212 | /// Methods for accessing the underlying `HirKind` and `Properties`. |
213 | impl Hir { |
214 | /// Returns a reference to the underlying HIR kind. |
215 | pub fn kind(&self) -> &HirKind { |
216 | &self.kind |
217 | } |
218 | |
219 | /// Consumes ownership of this HIR expression and returns its underlying |
220 | /// `HirKind`. |
221 | pub fn into_kind(mut self) -> HirKind { |
222 | core::mem::replace(&mut self.kind, HirKind::Empty) |
223 | } |
224 | |
225 | /// Returns the properties computed for this `Hir`. |
226 | pub fn properties(&self) -> &Properties { |
227 | &self.props |
228 | } |
229 | |
230 | /// Splits this HIR into its constituent parts. |
231 | /// |
232 | /// This is useful because `let Hir { kind, props } = hir;` does not work |
233 | /// because of `Hir`'s custom `Drop` implementation. |
234 | fn into_parts(mut self) -> (HirKind, Properties) { |
235 | ( |
236 | core::mem::replace(&mut self.kind, HirKind::Empty), |
237 | core::mem::replace(&mut self.props, Properties::empty()), |
238 | ) |
239 | } |
240 | } |
241 | |
242 | /// Smart constructors for HIR values. |
243 | /// |
244 | /// These constructors are called "smart" because they do inductive work or |
245 | /// simplifications. For example, calling `Hir::repetition` with a repetition |
246 | /// like `a{0}` will actually return a `Hir` with a `HirKind::Empty` kind |
247 | /// since it is equivalent to an empty regex. Another example is calling |
248 | /// `Hir::concat(vec![expr])`. Instead of getting a `HirKind::Concat`, you'll |
249 | /// just get back the original `expr` since it's precisely equivalent. |
250 | /// |
251 | /// Smart constructors enable maintaining invariants about the HIR data type |
252 | /// while also simulanteously keeping the representation as simple as possible. |
253 | impl Hir { |
254 | /// Returns an empty HIR expression. |
255 | /// |
256 | /// An empty HIR expression always matches, including the empty string. |
257 | #[inline ] |
258 | pub fn empty() -> Hir { |
259 | let props = Properties::empty(); |
260 | Hir { kind: HirKind::Empty, props } |
261 | } |
262 | |
263 | /// Returns an HIR expression that can never match anything. That is, |
264 | /// the size of the set of strings in the language described by the HIR |
265 | /// returned is `0`. |
266 | /// |
267 | /// This is distinct from [`Hir::empty`] in that the empty string matches |
268 | /// the HIR returned by `Hir::empty`. That is, the set of strings in the |
269 | /// language describe described by `Hir::empty` is non-empty. |
270 | /// |
271 | /// Note that currently, the HIR returned uses an empty character class to |
272 | /// indicate that nothing can match. An equivalent expression that cannot |
273 | /// match is an empty alternation, but all such "fail" expressions are |
274 | /// normalized (via smart constructors) to empty character classes. This is |
275 | /// because empty character classes can be spelled in the concrete syntax |
276 | /// of a regex (e.g., `\P{any}` or `(?-u:[^\x00-\xFF])` or `[a&&b]`), but |
277 | /// empty alternations cannot. |
278 | #[inline ] |
279 | pub fn fail() -> Hir { |
280 | let class = Class::Bytes(ClassBytes::empty()); |
281 | let props = Properties::class(&class); |
282 | // We can't just call Hir::class here because it defers to Hir::fail |
283 | // in order to canonicalize the Hir value used to represent "cannot |
284 | // match." |
285 | Hir { kind: HirKind::Class(class), props } |
286 | } |
287 | |
288 | /// Creates a literal HIR expression. |
289 | /// |
290 | /// This accepts anything that can be converted into a `Box<[u8]>`. |
291 | /// |
292 | /// Note that there is no mechanism for storing a `char` or a `Box<str>` |
293 | /// in an HIR. Everything is "just bytes." Whether a `Literal` (or |
294 | /// any HIR node) matches valid UTF-8 exclusively can be queried via |
295 | /// [`Properties::is_utf8`]. |
296 | /// |
297 | /// # Example |
298 | /// |
299 | /// This example shows that concatenations of `Literal` HIR values will |
300 | /// automatically get flattened and combined together. So for example, even |
301 | /// if you concat multiple `Literal` values that are themselves not valid |
302 | /// UTF-8, they might add up to valid UTF-8. This also demonstrates just |
303 | /// how "smart" Hir's smart constructors are. |
304 | /// |
305 | /// ``` |
306 | /// use regex_syntax::hir::{Hir, HirKind, Literal}; |
307 | /// |
308 | /// let literals = vec![ |
309 | /// Hir::literal([0xE2]), |
310 | /// Hir::literal([0x98]), |
311 | /// Hir::literal([0x83]), |
312 | /// ]; |
313 | /// // Each literal, on its own, is invalid UTF-8. |
314 | /// assert!(literals.iter().all(|hir| !hir.properties().is_utf8())); |
315 | /// |
316 | /// let concat = Hir::concat(literals); |
317 | /// // But the concatenation is valid UTF-8! |
318 | /// assert!(concat.properties().is_utf8()); |
319 | /// |
320 | /// // And also notice that the literals have been concatenated into a |
321 | /// // single `Literal`, to the point where there is no explicit `Concat`! |
322 | /// let expected = HirKind::Literal(Literal(Box::from("☃" .as_bytes()))); |
323 | /// assert_eq!(&expected, concat.kind()); |
324 | /// ``` |
325 | #[inline ] |
326 | pub fn literal<B: Into<Box<[u8]>>>(lit: B) -> Hir { |
327 | let bytes = lit.into(); |
328 | if bytes.is_empty() { |
329 | return Hir::empty(); |
330 | } |
331 | |
332 | let lit = Literal(bytes); |
333 | let props = Properties::literal(&lit); |
334 | Hir { kind: HirKind::Literal(lit), props } |
335 | } |
336 | |
337 | /// Creates a class HIR expression. The class may either be defined over |
338 | /// ranges of Unicode codepoints or ranges of raw byte values. |
339 | /// |
340 | /// Note that an empty class is permitted. An empty class is equivalent to |
341 | /// `Hir::fail()`. |
342 | #[inline ] |
343 | pub fn class(class: Class) -> Hir { |
344 | if class.is_empty() { |
345 | return Hir::fail(); |
346 | } else if let Some(bytes) = class.literal() { |
347 | return Hir::literal(bytes); |
348 | } |
349 | let props = Properties::class(&class); |
350 | Hir { kind: HirKind::Class(class), props } |
351 | } |
352 | |
353 | /// Creates a look-around assertion HIR expression. |
354 | #[inline ] |
355 | pub fn look(look: Look) -> Hir { |
356 | let props = Properties::look(look); |
357 | Hir { kind: HirKind::Look(look), props } |
358 | } |
359 | |
360 | /// Creates a repetition HIR expression. |
361 | #[inline ] |
362 | pub fn repetition(mut rep: Repetition) -> Hir { |
363 | // If the sub-expression of a repetition can only match the empty |
364 | // string, then we force its maximum to be at most 1. |
365 | if rep.sub.properties().maximum_len() == Some(0) { |
366 | rep.min = cmp::min(rep.min, 1); |
367 | rep.max = rep.max.map(|n| cmp::min(n, 1)).or(Some(1)); |
368 | } |
369 | // The regex 'a{0}' is always equivalent to the empty regex. This is |
370 | // true even when 'a' is an expression that never matches anything |
371 | // (like '\P{any}'). |
372 | // |
373 | // Additionally, the regex 'a{1}' is always equivalent to 'a'. |
374 | if rep.min == 0 && rep.max == Some(0) { |
375 | return Hir::empty(); |
376 | } else if rep.min == 1 && rep.max == Some(1) { |
377 | return *rep.sub; |
378 | } |
379 | let props = Properties::repetition(&rep); |
380 | Hir { kind: HirKind::Repetition(rep), props } |
381 | } |
382 | |
383 | /// Creates a capture HIR expression. |
384 | /// |
385 | /// Note that there is no explicit HIR value for a non-capturing group. |
386 | /// Since a non-capturing group only exists to override precedence in the |
387 | /// concrete syntax and since an HIR already does its own grouping based on |
388 | /// what is parsed, there is no need to explicitly represent non-capturing |
389 | /// groups in the HIR. |
390 | #[inline ] |
391 | pub fn capture(capture: Capture) -> Hir { |
392 | let props = Properties::capture(&capture); |
393 | Hir { kind: HirKind::Capture(capture), props } |
394 | } |
395 | |
396 | /// Returns the concatenation of the given expressions. |
397 | /// |
398 | /// This attempts to flatten and simplify the concatenation as appropriate. |
399 | /// |
400 | /// # Example |
401 | /// |
402 | /// This shows a simple example of basic flattening of both concatenations |
403 | /// and literals. |
404 | /// |
405 | /// ``` |
406 | /// use regex_syntax::hir::Hir; |
407 | /// |
408 | /// let hir = Hir::concat(vec![ |
409 | /// Hir::concat(vec![ |
410 | /// Hir::literal([b'a' ]), |
411 | /// Hir::literal([b'b' ]), |
412 | /// Hir::literal([b'c' ]), |
413 | /// ]), |
414 | /// Hir::concat(vec![ |
415 | /// Hir::literal([b'x' ]), |
416 | /// Hir::literal([b'y' ]), |
417 | /// Hir::literal([b'z' ]), |
418 | /// ]), |
419 | /// ]); |
420 | /// let expected = Hir::literal("abcxyz" .as_bytes()); |
421 | /// assert_eq!(expected, hir); |
422 | /// ``` |
423 | pub fn concat(subs: Vec<Hir>) -> Hir { |
424 | // We rebuild the concatenation by simplifying it. Would be nice to do |
425 | // it in place, but that seems a little tricky? |
426 | let mut new = vec![]; |
427 | // This gobbles up any adjacent literals in a concatenation and smushes |
428 | // them together. Basically, when we see a literal, we add its bytes |
429 | // to 'prior_lit', and whenever we see anything else, we first take |
430 | // any bytes in 'prior_lit' and add it to the 'new' concatenation. |
431 | let mut prior_lit: Option<Vec<u8>> = None; |
432 | for sub in subs { |
433 | let (kind, props) = sub.into_parts(); |
434 | match kind { |
435 | HirKind::Literal(Literal(bytes)) => { |
436 | if let Some(ref mut prior_bytes) = prior_lit { |
437 | prior_bytes.extend_from_slice(&bytes); |
438 | } else { |
439 | prior_lit = Some(bytes.to_vec()); |
440 | } |
441 | } |
442 | // We also flatten concats that are direct children of another |
443 | // concat. We only need to do this one level deep since |
444 | // Hir::concat is the only way to build concatenations, and so |
445 | // flattening happens inductively. |
446 | HirKind::Concat(subs2) => { |
447 | for sub2 in subs2 { |
448 | let (kind2, props2) = sub2.into_parts(); |
449 | match kind2 { |
450 | HirKind::Literal(Literal(bytes)) => { |
451 | if let Some(ref mut prior_bytes) = prior_lit { |
452 | prior_bytes.extend_from_slice(&bytes); |
453 | } else { |
454 | prior_lit = Some(bytes.to_vec()); |
455 | } |
456 | } |
457 | kind2 => { |
458 | if let Some(prior_bytes) = prior_lit.take() { |
459 | new.push(Hir::literal(prior_bytes)); |
460 | } |
461 | new.push(Hir { kind: kind2, props: props2 }); |
462 | } |
463 | } |
464 | } |
465 | } |
466 | // We can just skip empty HIRs. |
467 | HirKind::Empty => {} |
468 | kind => { |
469 | if let Some(prior_bytes) = prior_lit.take() { |
470 | new.push(Hir::literal(prior_bytes)); |
471 | } |
472 | new.push(Hir { kind, props }); |
473 | } |
474 | } |
475 | } |
476 | if let Some(prior_bytes) = prior_lit.take() { |
477 | new.push(Hir::literal(prior_bytes)); |
478 | } |
479 | if new.is_empty() { |
480 | return Hir::empty(); |
481 | } else if new.len() == 1 { |
482 | return new.pop().unwrap(); |
483 | } |
484 | let props = Properties::concat(&new); |
485 | Hir { kind: HirKind::Concat(new), props } |
486 | } |
487 | |
488 | /// Returns the alternation of the given expressions. |
489 | /// |
490 | /// This flattens and simplifies the alternation as appropriate. This may |
491 | /// include factoring out common prefixes or even rewriting the alternation |
492 | /// as a character class. |
493 | /// |
494 | /// Note that an empty alternation is equivalent to `Hir::fail()`. (It |
495 | /// is not possible for one to write an empty alternation, or even an |
496 | /// alternation with a single sub-expression, in the concrete syntax of a |
497 | /// regex.) |
498 | /// |
499 | /// # Example |
500 | /// |
501 | /// This is a simple example showing how an alternation might get |
502 | /// simplified. |
503 | /// |
504 | /// ``` |
505 | /// use regex_syntax::hir::{Hir, Class, ClassUnicode, ClassUnicodeRange}; |
506 | /// |
507 | /// let hir = Hir::alternation(vec![ |
508 | /// Hir::literal([b'a' ]), |
509 | /// Hir::literal([b'b' ]), |
510 | /// Hir::literal([b'c' ]), |
511 | /// Hir::literal([b'd' ]), |
512 | /// Hir::literal([b'e' ]), |
513 | /// Hir::literal([b'f' ]), |
514 | /// ]); |
515 | /// let expected = Hir::class(Class::Unicode(ClassUnicode::new([ |
516 | /// ClassUnicodeRange::new('a' , 'f' ), |
517 | /// ]))); |
518 | /// assert_eq!(expected, hir); |
519 | /// ``` |
520 | /// |
521 | /// And another example showing how common prefixes might get factored |
522 | /// out. |
523 | /// |
524 | /// ``` |
525 | /// use regex_syntax::hir::{Hir, Class, ClassUnicode, ClassUnicodeRange}; |
526 | /// |
527 | /// let hir = Hir::alternation(vec![ |
528 | /// Hir::concat(vec![ |
529 | /// Hir::literal("abc" .as_bytes()), |
530 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
531 | /// ClassUnicodeRange::new('A' , 'Z' ), |
532 | /// ]))), |
533 | /// ]), |
534 | /// Hir::concat(vec![ |
535 | /// Hir::literal("abc" .as_bytes()), |
536 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
537 | /// ClassUnicodeRange::new('a' , 'z' ), |
538 | /// ]))), |
539 | /// ]), |
540 | /// ]); |
541 | /// let expected = Hir::concat(vec![ |
542 | /// Hir::literal("abc" .as_bytes()), |
543 | /// Hir::alternation(vec![ |
544 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
545 | /// ClassUnicodeRange::new('A' , 'Z' ), |
546 | /// ]))), |
547 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
548 | /// ClassUnicodeRange::new('a' , 'z' ), |
549 | /// ]))), |
550 | /// ]), |
551 | /// ]); |
552 | /// assert_eq!(expected, hir); |
553 | /// ``` |
554 | /// |
555 | /// Note that these sorts of simplifications are not guaranteed. |
556 | pub fn alternation(subs: Vec<Hir>) -> Hir { |
557 | // We rebuild the alternation by simplifying it. We proceed similarly |
558 | // as the concatenation case. But in this case, there's no literal |
559 | // simplification happening. We're just flattening alternations. |
560 | let mut new = Vec::with_capacity(subs.len()); |
561 | for sub in subs { |
562 | let (kind, props) = sub.into_parts(); |
563 | match kind { |
564 | HirKind::Alternation(subs2) => { |
565 | new.extend(subs2); |
566 | } |
567 | kind => { |
568 | new.push(Hir { kind, props }); |
569 | } |
570 | } |
571 | } |
572 | if new.is_empty() { |
573 | return Hir::fail(); |
574 | } else if new.len() == 1 { |
575 | return new.pop().unwrap(); |
576 | } |
577 | // Now that it's completely flattened, look for the special case of |
578 | // 'char1|char2|...|charN' and collapse that into a class. Note that |
579 | // we look for 'char' first and then bytes. The issue here is that if |
580 | // we find both non-ASCII codepoints and non-ASCII singleton bytes, |
581 | // then it isn't actually possible to smush them into a single class. |
582 | // (Because classes are either "all codepoints" or "all bytes." You |
583 | // can have a class that both matches non-ASCII but valid UTF-8 and |
584 | // invalid UTF-8.) So we look for all chars and then all bytes, and |
585 | // don't handle anything else. |
586 | if let Some(singletons) = singleton_chars(&new) { |
587 | let it = singletons |
588 | .into_iter() |
589 | .map(|ch| ClassUnicodeRange { start: ch, end: ch }); |
590 | return Hir::class(Class::Unicode(ClassUnicode::new(it))); |
591 | } |
592 | if let Some(singletons) = singleton_bytes(&new) { |
593 | let it = singletons |
594 | .into_iter() |
595 | .map(|b| ClassBytesRange { start: b, end: b }); |
596 | return Hir::class(Class::Bytes(ClassBytes::new(it))); |
597 | } |
598 | // Similar to singleton chars, we can also look for alternations of |
599 | // classes. Those can be smushed into a single class. |
600 | if let Some(cls) = class_chars(&new) { |
601 | return Hir::class(cls); |
602 | } |
603 | if let Some(cls) = class_bytes(&new) { |
604 | return Hir::class(cls); |
605 | } |
606 | // Factor out a common prefix if we can, which might potentially |
607 | // simplify the expression and unlock other optimizations downstream. |
608 | // It also might generally make NFA matching and DFA construction |
609 | // faster by reducing the scope of branching in the regex. |
610 | new = match lift_common_prefix(new) { |
611 | Ok(hir) => return hir, |
612 | Err(unchanged) => unchanged, |
613 | }; |
614 | let props = Properties::alternation(&new); |
615 | Hir { kind: HirKind::Alternation(new), props } |
616 | } |
617 | |
618 | /// Returns an HIR expression for `.`. |
619 | /// |
620 | /// * [`Dot::AnyChar`] maps to `(?su-R:.)`. |
621 | /// * [`Dot::AnyByte`] maps to `(?s-Ru:.)`. |
622 | /// * [`Dot::AnyCharExceptLF`] maps to `(?u-Rs:.)`. |
623 | /// * [`Dot::AnyCharExceptCRLF`] maps to `(?Ru-s:.)`. |
624 | /// * [`Dot::AnyByteExceptLF`] maps to `(?-Rsu:.)`. |
625 | /// * [`Dot::AnyByteExceptCRLF`] maps to `(?R-su:.)`. |
626 | /// |
627 | /// # Example |
628 | /// |
629 | /// Note that this is a convenience routine for constructing the correct |
630 | /// character class based on the value of `Dot`. There is no explicit "dot" |
631 | /// HIR value. It is just an abbreviation for a common character class. |
632 | /// |
633 | /// ``` |
634 | /// use regex_syntax::hir::{Hir, Dot, Class, ClassBytes, ClassBytesRange}; |
635 | /// |
636 | /// let hir = Hir::dot(Dot::AnyByte); |
637 | /// let expected = Hir::class(Class::Bytes(ClassBytes::new([ |
638 | /// ClassBytesRange::new(0x00, 0xFF), |
639 | /// ]))); |
640 | /// assert_eq!(expected, hir); |
641 | /// ``` |
642 | #[inline ] |
643 | pub fn dot(dot: Dot) -> Hir { |
644 | match dot { |
645 | Dot::AnyChar => { |
646 | let mut cls = ClassUnicode::empty(); |
647 | cls.push(ClassUnicodeRange::new(' \0' , ' \u{10FFFF}' )); |
648 | Hir::class(Class::Unicode(cls)) |
649 | } |
650 | Dot::AnyByte => { |
651 | let mut cls = ClassBytes::empty(); |
652 | cls.push(ClassBytesRange::new(b' \0' , b' \xFF' )); |
653 | Hir::class(Class::Bytes(cls)) |
654 | } |
655 | Dot::AnyCharExcept(ch) => { |
656 | let mut cls = |
657 | ClassUnicode::new([ClassUnicodeRange::new(ch, ch)]); |
658 | cls.negate(); |
659 | Hir::class(Class::Unicode(cls)) |
660 | } |
661 | Dot::AnyCharExceptLF => { |
662 | let mut cls = ClassUnicode::empty(); |
663 | cls.push(ClassUnicodeRange::new(' \0' , ' \x09' )); |
664 | cls.push(ClassUnicodeRange::new(' \x0B' , ' \u{10FFFF}' )); |
665 | Hir::class(Class::Unicode(cls)) |
666 | } |
667 | Dot::AnyCharExceptCRLF => { |
668 | let mut cls = ClassUnicode::empty(); |
669 | cls.push(ClassUnicodeRange::new(' \0' , ' \x09' )); |
670 | cls.push(ClassUnicodeRange::new(' \x0B' , ' \x0C' )); |
671 | cls.push(ClassUnicodeRange::new(' \x0E' , ' \u{10FFFF}' )); |
672 | Hir::class(Class::Unicode(cls)) |
673 | } |
674 | Dot::AnyByteExcept(byte) => { |
675 | let mut cls = |
676 | ClassBytes::new([ClassBytesRange::new(byte, byte)]); |
677 | cls.negate(); |
678 | Hir::class(Class::Bytes(cls)) |
679 | } |
680 | Dot::AnyByteExceptLF => { |
681 | let mut cls = ClassBytes::empty(); |
682 | cls.push(ClassBytesRange::new(b' \0' , b' \x09' )); |
683 | cls.push(ClassBytesRange::new(b' \x0B' , b' \xFF' )); |
684 | Hir::class(Class::Bytes(cls)) |
685 | } |
686 | Dot::AnyByteExceptCRLF => { |
687 | let mut cls = ClassBytes::empty(); |
688 | cls.push(ClassBytesRange::new(b' \0' , b' \x09' )); |
689 | cls.push(ClassBytesRange::new(b' \x0B' , b' \x0C' )); |
690 | cls.push(ClassBytesRange::new(b' \x0E' , b' \xFF' )); |
691 | Hir::class(Class::Bytes(cls)) |
692 | } |
693 | } |
694 | } |
695 | } |
696 | |
697 | /// The underlying kind of an arbitrary [`Hir`] expression. |
698 | /// |
699 | /// An `HirKind` is principally useful for doing case analysis on the type |
700 | /// of a regular expression. If you're looking to build new `Hir` values, |
701 | /// then you _must_ use the smart constructors defined on `Hir`, like |
702 | /// [`Hir::repetition`], to build new `Hir` values. The API intentionally does |
703 | /// not expose any way of building an `Hir` directly from an `HirKind`. |
704 | #[derive (Clone, Debug, Eq, PartialEq)] |
705 | pub enum HirKind { |
706 | /// The empty regular expression, which matches everything, including the |
707 | /// empty string. |
708 | Empty, |
709 | /// A literalstring that matches exactly these bytes. |
710 | Literal(Literal), |
711 | /// A single character class that matches any of the characters in the |
712 | /// class. A class can either consist of Unicode scalar values as |
713 | /// characters, or it can use bytes. |
714 | /// |
715 | /// A class may be empty. In which case, it matches nothing. |
716 | Class(Class), |
717 | /// A look-around assertion. A look-around match always has zero length. |
718 | Look(Look), |
719 | /// A repetition operation applied to a sub-expression. |
720 | Repetition(Repetition), |
721 | /// A capturing group, which contains a sub-expression. |
722 | Capture(Capture), |
723 | /// A concatenation of expressions. |
724 | /// |
725 | /// A concatenation matches only if each of its sub-expressions match one |
726 | /// after the other. |
727 | /// |
728 | /// Concatenations are guaranteed by `Hir`'s smart constructors to always |
729 | /// have at least two sub-expressions. |
730 | Concat(Vec<Hir>), |
731 | /// An alternation of expressions. |
732 | /// |
733 | /// An alternation matches only if at least one of its sub-expressions |
734 | /// match. If multiple sub-expressions match, then the leftmost is |
735 | /// preferred. |
736 | /// |
737 | /// Alternations are guaranteed by `Hir`'s smart constructors to always |
738 | /// have at least two sub-expressions. |
739 | Alternation(Vec<Hir>), |
740 | } |
741 | |
742 | impl HirKind { |
743 | /// Returns a slice of this kind's sub-expressions, if any. |
744 | pub fn subs(&self) -> &[Hir] { |
745 | use core::slice::from_ref; |
746 | |
747 | match *self { |
748 | HirKind::Empty |
749 | | HirKind::Literal(_) |
750 | | HirKind::Class(_) |
751 | | HirKind::Look(_) => &[], |
752 | HirKind::Repetition(Repetition { ref sub: &Box, .. }) => from_ref(sub), |
753 | HirKind::Capture(Capture { ref sub: &Box, .. }) => from_ref(sub), |
754 | HirKind::Concat(ref subs: &Vec) => subs, |
755 | HirKind::Alternation(ref subs: &Vec) => subs, |
756 | } |
757 | } |
758 | } |
759 | |
760 | impl core::fmt::Debug for Hir { |
761 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
762 | self.kind.fmt(f) |
763 | } |
764 | } |
765 | |
766 | /// Print a display representation of this Hir. |
767 | /// |
768 | /// The result of this is a valid regular expression pattern string. |
769 | /// |
770 | /// This implementation uses constant stack space and heap space proportional |
771 | /// to the size of the `Hir`. |
772 | impl core::fmt::Display for Hir { |
773 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
774 | crate::hir::print::Printer::new().print(self, wtr:f) |
775 | } |
776 | } |
777 | |
778 | /// The high-level intermediate representation of a literal. |
779 | /// |
780 | /// A literal corresponds to `0` or more bytes that should be matched |
781 | /// literally. The smart constructors defined on `Hir` will automatically |
782 | /// concatenate adjacent literals into one literal, and will even automatically |
783 | /// replace empty literals with `Hir::empty()`. |
784 | /// |
785 | /// Note that despite a literal being represented by a sequence of bytes, its |
786 | /// `Debug` implementation will attempt to print it as a normal string. (That |
787 | /// is, not a sequence of decimal numbers.) |
788 | #[derive (Clone, Eq, PartialEq)] |
789 | pub struct Literal(pub Box<[u8]>); |
790 | |
791 | impl core::fmt::Debug for Literal { |
792 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
793 | crate::debug::Bytes(&self.0).fmt(f) |
794 | } |
795 | } |
796 | |
797 | /// The high-level intermediate representation of a character class. |
798 | /// |
799 | /// A character class corresponds to a set of characters. A character is either |
800 | /// defined by a Unicode scalar value or a byte. |
801 | /// |
802 | /// A character class, regardless of its character type, is represented by a |
803 | /// sequence of non-overlapping non-adjacent ranges of characters. |
804 | /// |
805 | /// There are no guarantees about which class variant is used. Generally |
806 | /// speaking, the Unicode variat is used whenever a class needs to contain |
807 | /// non-ASCII Unicode scalar values. But the Unicode variant can be used even |
808 | /// when Unicode mode is disabled. For example, at the time of writing, the |
809 | /// regex `(?-u:a|\xc2\xa0)` will compile down to HIR for the Unicode class |
810 | /// `[a\u00A0]` due to optimizations. |
811 | /// |
812 | /// Note that `Bytes` variant may be produced even when it exclusively matches |
813 | /// valid UTF-8. This is because a `Bytes` variant represents an intention by |
814 | /// the author of the regular expression to disable Unicode mode, which in turn |
815 | /// impacts the semantics of case insensitive matching. For example, `(?i)k` |
816 | /// and `(?i-u)k` will not match the same set of strings. |
817 | #[derive (Clone, Eq, PartialEq)] |
818 | pub enum Class { |
819 | /// A set of characters represented by Unicode scalar values. |
820 | Unicode(ClassUnicode), |
821 | /// A set of characters represented by arbitrary bytes (one byte per |
822 | /// character). |
823 | Bytes(ClassBytes), |
824 | } |
825 | |
826 | impl Class { |
827 | /// Apply Unicode simple case folding to this character class, in place. |
828 | /// The character class will be expanded to include all simple case folded |
829 | /// character variants. |
830 | /// |
831 | /// If this is a byte oriented character class, then this will be limited |
832 | /// to the ASCII ranges `A-Z` and `a-z`. |
833 | /// |
834 | /// # Panics |
835 | /// |
836 | /// This routine panics when the case mapping data necessary for this |
837 | /// routine to complete is unavailable. This occurs when the `unicode-case` |
838 | /// feature is not enabled and the underlying class is Unicode oriented. |
839 | /// |
840 | /// Callers should prefer using `try_case_fold_simple` instead, which will |
841 | /// return an error instead of panicking. |
842 | pub fn case_fold_simple(&mut self) { |
843 | match *self { |
844 | Class::Unicode(ref mut x) => x.case_fold_simple(), |
845 | Class::Bytes(ref mut x) => x.case_fold_simple(), |
846 | } |
847 | } |
848 | |
849 | /// Apply Unicode simple case folding to this character class, in place. |
850 | /// The character class will be expanded to include all simple case folded |
851 | /// character variants. |
852 | /// |
853 | /// If this is a byte oriented character class, then this will be limited |
854 | /// to the ASCII ranges `A-Z` and `a-z`. |
855 | /// |
856 | /// # Error |
857 | /// |
858 | /// This routine returns an error when the case mapping data necessary |
859 | /// for this routine to complete is unavailable. This occurs when the |
860 | /// `unicode-case` feature is not enabled and the underlying class is |
861 | /// Unicode oriented. |
862 | pub fn try_case_fold_simple( |
863 | &mut self, |
864 | ) -> core::result::Result<(), CaseFoldError> { |
865 | match *self { |
866 | Class::Unicode(ref mut x) => x.try_case_fold_simple()?, |
867 | Class::Bytes(ref mut x) => x.case_fold_simple(), |
868 | } |
869 | Ok(()) |
870 | } |
871 | |
872 | /// Negate this character class in place. |
873 | /// |
874 | /// After completion, this character class will contain precisely the |
875 | /// characters that weren't previously in the class. |
876 | pub fn negate(&mut self) { |
877 | match *self { |
878 | Class::Unicode(ref mut x) => x.negate(), |
879 | Class::Bytes(ref mut x) => x.negate(), |
880 | } |
881 | } |
882 | |
883 | /// Returns true if and only if this character class will only ever match |
884 | /// valid UTF-8. |
885 | /// |
886 | /// A character class can match invalid UTF-8 only when the following |
887 | /// conditions are met: |
888 | /// |
889 | /// 1. The translator was configured to permit generating an expression |
890 | /// that can match invalid UTF-8. (By default, this is disabled.) |
891 | /// 2. Unicode mode (via the `u` flag) was disabled either in the concrete |
892 | /// syntax or in the parser builder. By default, Unicode mode is |
893 | /// enabled. |
894 | pub fn is_utf8(&self) -> bool { |
895 | match *self { |
896 | Class::Unicode(_) => true, |
897 | Class::Bytes(ref x) => x.is_ascii(), |
898 | } |
899 | } |
900 | |
901 | /// Returns the length, in bytes, of the smallest string matched by this |
902 | /// character class. |
903 | /// |
904 | /// For non-empty byte oriented classes, this always returns `1`. For |
905 | /// non-empty Unicode oriented classes, this can return `1`, `2`, `3` or |
906 | /// `4`. For empty classes, `None` is returned. It is impossible for `0` to |
907 | /// be returned. |
908 | /// |
909 | /// # Example |
910 | /// |
911 | /// This example shows some examples of regexes and their corresponding |
912 | /// minimum length, if any. |
913 | /// |
914 | /// ``` |
915 | /// use regex_syntax::{hir::Properties, parse}; |
916 | /// |
917 | /// // The empty string has a min length of 0. |
918 | /// let hir = parse(r"" )?; |
919 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
920 | /// // As do other types of regexes that only match the empty string. |
921 | /// let hir = parse(r"^$\b\B" )?; |
922 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
923 | /// // A regex that can match the empty string but match more is still 0. |
924 | /// let hir = parse(r"a*" )?; |
925 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
926 | /// // A regex that matches nothing has no minimum defined. |
927 | /// let hir = parse(r"[a&&b]" )?; |
928 | /// assert_eq!(None, hir.properties().minimum_len()); |
929 | /// // Character classes usually have a minimum length of 1. |
930 | /// let hir = parse(r"\w" )?; |
931 | /// assert_eq!(Some(1), hir.properties().minimum_len()); |
932 | /// // But sometimes Unicode classes might be bigger! |
933 | /// let hir = parse(r"\p{Cyrillic}" )?; |
934 | /// assert_eq!(Some(2), hir.properties().minimum_len()); |
935 | /// |
936 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
937 | /// ``` |
938 | pub fn minimum_len(&self) -> Option<usize> { |
939 | match *self { |
940 | Class::Unicode(ref x) => x.minimum_len(), |
941 | Class::Bytes(ref x) => x.minimum_len(), |
942 | } |
943 | } |
944 | |
945 | /// Returns the length, in bytes, of the longest string matched by this |
946 | /// character class. |
947 | /// |
948 | /// For non-empty byte oriented classes, this always returns `1`. For |
949 | /// non-empty Unicode oriented classes, this can return `1`, `2`, `3` or |
950 | /// `4`. For empty classes, `None` is returned. It is impossible for `0` to |
951 | /// be returned. |
952 | /// |
953 | /// # Example |
954 | /// |
955 | /// This example shows some examples of regexes and their corresponding |
956 | /// maximum length, if any. |
957 | /// |
958 | /// ``` |
959 | /// use regex_syntax::{hir::Properties, parse}; |
960 | /// |
961 | /// // The empty string has a max length of 0. |
962 | /// let hir = parse(r"" )?; |
963 | /// assert_eq!(Some(0), hir.properties().maximum_len()); |
964 | /// // As do other types of regexes that only match the empty string. |
965 | /// let hir = parse(r"^$\b\B" )?; |
966 | /// assert_eq!(Some(0), hir.properties().maximum_len()); |
967 | /// // A regex that matches nothing has no maximum defined. |
968 | /// let hir = parse(r"[a&&b]" )?; |
969 | /// assert_eq!(None, hir.properties().maximum_len()); |
970 | /// // Bounded repeats work as you expect. |
971 | /// let hir = parse(r"x{2,10}" )?; |
972 | /// assert_eq!(Some(10), hir.properties().maximum_len()); |
973 | /// // An unbounded repeat means there is no maximum. |
974 | /// let hir = parse(r"x{2,}" )?; |
975 | /// assert_eq!(None, hir.properties().maximum_len()); |
976 | /// // With Unicode enabled, \w can match up to 4 bytes! |
977 | /// let hir = parse(r"\w" )?; |
978 | /// assert_eq!(Some(4), hir.properties().maximum_len()); |
979 | /// // Without Unicode enabled, \w matches at most 1 byte. |
980 | /// let hir = parse(r"(?-u)\w" )?; |
981 | /// assert_eq!(Some(1), hir.properties().maximum_len()); |
982 | /// |
983 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
984 | /// ``` |
985 | pub fn maximum_len(&self) -> Option<usize> { |
986 | match *self { |
987 | Class::Unicode(ref x) => x.maximum_len(), |
988 | Class::Bytes(ref x) => x.maximum_len(), |
989 | } |
990 | } |
991 | |
992 | /// Returns true if and only if this character class is empty. That is, |
993 | /// it has no elements. |
994 | /// |
995 | /// An empty character can never match anything, including an empty string. |
996 | pub fn is_empty(&self) -> bool { |
997 | match *self { |
998 | Class::Unicode(ref x) => x.ranges().is_empty(), |
999 | Class::Bytes(ref x) => x.ranges().is_empty(), |
1000 | } |
1001 | } |
1002 | |
1003 | /// If this class consists of exactly one element (whether a codepoint or a |
1004 | /// byte), then return it as a literal byte string. |
1005 | /// |
1006 | /// If this class is empty or contains more than one element, then `None` |
1007 | /// is returned. |
1008 | pub fn literal(&self) -> Option<Vec<u8>> { |
1009 | match *self { |
1010 | Class::Unicode(ref x) => x.literal(), |
1011 | Class::Bytes(ref x) => x.literal(), |
1012 | } |
1013 | } |
1014 | } |
1015 | |
1016 | impl core::fmt::Debug for Class { |
1017 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1018 | use crate::debug::Byte; |
1019 | |
1020 | let mut fmter: DebugSet<'_, '_> = f.debug_set(); |
1021 | match *self { |
1022 | Class::Unicode(ref cls: &ClassUnicode) => { |
1023 | for r: &ClassUnicodeRange in cls.ranges().iter() { |
1024 | fmter.entry(&(r.start..=r.end)); |
1025 | } |
1026 | } |
1027 | Class::Bytes(ref cls: &ClassBytes) => { |
1028 | for r: &ClassBytesRange in cls.ranges().iter() { |
1029 | fmter.entry(&(Byte(r.start)..=Byte(r.end))); |
1030 | } |
1031 | } |
1032 | } |
1033 | fmter.finish() |
1034 | } |
1035 | } |
1036 | |
1037 | /// A set of characters represented by Unicode scalar values. |
1038 | #[derive (Clone, Debug, Eq, PartialEq)] |
1039 | pub struct ClassUnicode { |
1040 | set: IntervalSet<ClassUnicodeRange>, |
1041 | } |
1042 | |
1043 | impl ClassUnicode { |
1044 | /// Create a new class from a sequence of ranges. |
1045 | /// |
1046 | /// The given ranges do not need to be in any specific order, and ranges |
1047 | /// may overlap. Ranges will automatically be sorted into a canonical |
1048 | /// non-overlapping order. |
1049 | pub fn new<I>(ranges: I) -> ClassUnicode |
1050 | where |
1051 | I: IntoIterator<Item = ClassUnicodeRange>, |
1052 | { |
1053 | ClassUnicode { set: IntervalSet::new(ranges) } |
1054 | } |
1055 | |
1056 | /// Create a new class with no ranges. |
1057 | /// |
1058 | /// An empty class matches nothing. That is, it is equivalent to |
1059 | /// [`Hir::fail`]. |
1060 | pub fn empty() -> ClassUnicode { |
1061 | ClassUnicode::new(vec![]) |
1062 | } |
1063 | |
1064 | /// Add a new range to this set. |
1065 | pub fn push(&mut self, range: ClassUnicodeRange) { |
1066 | self.set.push(range); |
1067 | } |
1068 | |
1069 | /// Return an iterator over all ranges in this class. |
1070 | /// |
1071 | /// The iterator yields ranges in ascending order. |
1072 | pub fn iter(&self) -> ClassUnicodeIter<'_> { |
1073 | ClassUnicodeIter(self.set.iter()) |
1074 | } |
1075 | |
1076 | /// Return the underlying ranges as a slice. |
1077 | pub fn ranges(&self) -> &[ClassUnicodeRange] { |
1078 | self.set.intervals() |
1079 | } |
1080 | |
1081 | /// Expand this character class such that it contains all case folded |
1082 | /// characters, according to Unicode's "simple" mapping. For example, if |
1083 | /// this class consists of the range `a-z`, then applying case folding will |
1084 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
1085 | /// |
1086 | /// # Panics |
1087 | /// |
1088 | /// This routine panics when the case mapping data necessary for this |
1089 | /// routine to complete is unavailable. This occurs when the `unicode-case` |
1090 | /// feature is not enabled. |
1091 | /// |
1092 | /// Callers should prefer using `try_case_fold_simple` instead, which will |
1093 | /// return an error instead of panicking. |
1094 | pub fn case_fold_simple(&mut self) { |
1095 | self.set |
1096 | .case_fold_simple() |
1097 | .expect("unicode-case feature must be enabled" ); |
1098 | } |
1099 | |
1100 | /// Expand this character class such that it contains all case folded |
1101 | /// characters, according to Unicode's "simple" mapping. For example, if |
1102 | /// this class consists of the range `a-z`, then applying case folding will |
1103 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
1104 | /// |
1105 | /// # Error |
1106 | /// |
1107 | /// This routine returns an error when the case mapping data necessary |
1108 | /// for this routine to complete is unavailable. This occurs when the |
1109 | /// `unicode-case` feature is not enabled. |
1110 | pub fn try_case_fold_simple( |
1111 | &mut self, |
1112 | ) -> core::result::Result<(), CaseFoldError> { |
1113 | self.set.case_fold_simple() |
1114 | } |
1115 | |
1116 | /// Negate this character class. |
1117 | /// |
1118 | /// For all `c` where `c` is a Unicode scalar value, if `c` was in this |
1119 | /// set, then it will not be in this set after negation. |
1120 | pub fn negate(&mut self) { |
1121 | self.set.negate(); |
1122 | } |
1123 | |
1124 | /// Union this character class with the given character class, in place. |
1125 | pub fn union(&mut self, other: &ClassUnicode) { |
1126 | self.set.union(&other.set); |
1127 | } |
1128 | |
1129 | /// Intersect this character class with the given character class, in |
1130 | /// place. |
1131 | pub fn intersect(&mut self, other: &ClassUnicode) { |
1132 | self.set.intersect(&other.set); |
1133 | } |
1134 | |
1135 | /// Subtract the given character class from this character class, in place. |
1136 | pub fn difference(&mut self, other: &ClassUnicode) { |
1137 | self.set.difference(&other.set); |
1138 | } |
1139 | |
1140 | /// Compute the symmetric difference of the given character classes, in |
1141 | /// place. |
1142 | /// |
1143 | /// This computes the symmetric difference of two character classes. This |
1144 | /// removes all elements in this class that are also in the given class, |
1145 | /// but all adds all elements from the given class that aren't in this |
1146 | /// class. That is, the class will contain all elements in either class, |
1147 | /// but will not contain any elements that are in both classes. |
1148 | pub fn symmetric_difference(&mut self, other: &ClassUnicode) { |
1149 | self.set.symmetric_difference(&other.set); |
1150 | } |
1151 | |
1152 | /// Returns true if and only if this character class will either match |
1153 | /// nothing or only ASCII bytes. Stated differently, this returns false |
1154 | /// if and only if this class contains a non-ASCII codepoint. |
1155 | pub fn is_ascii(&self) -> bool { |
1156 | self.set.intervals().last().map_or(true, |r| r.end <= ' \x7F' ) |
1157 | } |
1158 | |
1159 | /// Returns the length, in bytes, of the smallest string matched by this |
1160 | /// character class. |
1161 | /// |
1162 | /// Returns `None` when the class is empty. |
1163 | pub fn minimum_len(&self) -> Option<usize> { |
1164 | let first = self.ranges().get(0)?; |
1165 | // Correct because c1 < c2 implies c1.len_utf8() < c2.len_utf8(). |
1166 | Some(first.start.len_utf8()) |
1167 | } |
1168 | |
1169 | /// Returns the length, in bytes, of the longest string matched by this |
1170 | /// character class. |
1171 | /// |
1172 | /// Returns `None` when the class is empty. |
1173 | pub fn maximum_len(&self) -> Option<usize> { |
1174 | let last = self.ranges().last()?; |
1175 | // Correct because c1 < c2 implies c1.len_utf8() < c2.len_utf8(). |
1176 | Some(last.end.len_utf8()) |
1177 | } |
1178 | |
1179 | /// If this class consists of exactly one codepoint, then return it as |
1180 | /// a literal byte string. |
1181 | /// |
1182 | /// If this class is empty or contains more than one codepoint, then `None` |
1183 | /// is returned. |
1184 | pub fn literal(&self) -> Option<Vec<u8>> { |
1185 | let rs = self.ranges(); |
1186 | if rs.len() == 1 && rs[0].start == rs[0].end { |
1187 | Some(rs[0].start.encode_utf8(&mut [0; 4]).to_string().into_bytes()) |
1188 | } else { |
1189 | None |
1190 | } |
1191 | } |
1192 | |
1193 | /// If this class consists of only ASCII ranges, then return its |
1194 | /// corresponding and equivalent byte class. |
1195 | pub fn to_byte_class(&self) -> Option<ClassBytes> { |
1196 | if !self.is_ascii() { |
1197 | return None; |
1198 | } |
1199 | Some(ClassBytes::new(self.ranges().iter().map(|r| { |
1200 | // Since we are guaranteed that our codepoint range is ASCII, the |
1201 | // 'u8::try_from' calls below are guaranteed to be correct. |
1202 | ClassBytesRange { |
1203 | start: u8::try_from(r.start).unwrap(), |
1204 | end: u8::try_from(r.end).unwrap(), |
1205 | } |
1206 | }))) |
1207 | } |
1208 | } |
1209 | |
1210 | /// An iterator over all ranges in a Unicode character class. |
1211 | /// |
1212 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
1213 | #[derive (Debug)] |
1214 | pub struct ClassUnicodeIter<'a>(IntervalSetIter<'a, ClassUnicodeRange>); |
1215 | |
1216 | impl<'a> Iterator for ClassUnicodeIter<'a> { |
1217 | type Item = &'a ClassUnicodeRange; |
1218 | |
1219 | fn next(&mut self) -> Option<&'a ClassUnicodeRange> { |
1220 | self.0.next() |
1221 | } |
1222 | } |
1223 | |
1224 | /// A single range of characters represented by Unicode scalar values. |
1225 | /// |
1226 | /// The range is closed. That is, the start and end of the range are included |
1227 | /// in the range. |
1228 | #[derive (Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
1229 | pub struct ClassUnicodeRange { |
1230 | start: char, |
1231 | end: char, |
1232 | } |
1233 | |
1234 | impl core::fmt::Debug for ClassUnicodeRange { |
1235 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1236 | let start: String = if !self.start.is_whitespace() && !self.start.is_control() |
1237 | { |
1238 | self.start.to_string() |
1239 | } else { |
1240 | format!("0x {:X}" , u32::from(self.start)) |
1241 | }; |
1242 | let end: String = if !self.end.is_whitespace() && !self.end.is_control() { |
1243 | self.end.to_string() |
1244 | } else { |
1245 | format!("0x {:X}" , u32::from(self.end)) |
1246 | }; |
1247 | f&mut DebugStruct<'_, '_>.debug_struct("ClassUnicodeRange" ) |
1248 | .field("start" , &start) |
1249 | .field(name:"end" , &end) |
1250 | .finish() |
1251 | } |
1252 | } |
1253 | |
1254 | impl Interval for ClassUnicodeRange { |
1255 | type Bound = char; |
1256 | |
1257 | #[inline ] |
1258 | fn lower(&self) -> char { |
1259 | self.start |
1260 | } |
1261 | #[inline ] |
1262 | fn upper(&self) -> char { |
1263 | self.end |
1264 | } |
1265 | #[inline ] |
1266 | fn set_lower(&mut self, bound: char) { |
1267 | self.start = bound; |
1268 | } |
1269 | #[inline ] |
1270 | fn set_upper(&mut self, bound: char) { |
1271 | self.end = bound; |
1272 | } |
1273 | |
1274 | /// Apply simple case folding to this Unicode scalar value range. |
1275 | /// |
1276 | /// Additional ranges are appended to the given vector. Canonical ordering |
1277 | /// is *not* maintained in the given vector. |
1278 | fn case_fold_simple( |
1279 | &self, |
1280 | ranges: &mut Vec<ClassUnicodeRange>, |
1281 | ) -> Result<(), unicode::CaseFoldError> { |
1282 | let mut folder = unicode::SimpleCaseFolder::new()?; |
1283 | if !folder.overlaps(self.start, self.end) { |
1284 | return Ok(()); |
1285 | } |
1286 | let (start, end) = (u32::from(self.start), u32::from(self.end)); |
1287 | for cp in (start..=end).filter_map(char::from_u32) { |
1288 | for &cp_folded in folder.mapping(cp) { |
1289 | ranges.push(ClassUnicodeRange::new(cp_folded, cp_folded)); |
1290 | } |
1291 | } |
1292 | Ok(()) |
1293 | } |
1294 | } |
1295 | |
1296 | impl ClassUnicodeRange { |
1297 | /// Create a new Unicode scalar value range for a character class. |
1298 | /// |
1299 | /// The returned range is always in a canonical form. That is, the range |
1300 | /// returned always satisfies the invariant that `start <= end`. |
1301 | pub fn new(start: char, end: char) -> ClassUnicodeRange { |
1302 | ClassUnicodeRange::create(start, end) |
1303 | } |
1304 | |
1305 | /// Return the start of this range. |
1306 | /// |
1307 | /// The start of a range is always less than or equal to the end of the |
1308 | /// range. |
1309 | pub fn start(&self) -> char { |
1310 | self.start |
1311 | } |
1312 | |
1313 | /// Return the end of this range. |
1314 | /// |
1315 | /// The end of a range is always greater than or equal to the start of the |
1316 | /// range. |
1317 | pub fn end(&self) -> char { |
1318 | self.end |
1319 | } |
1320 | |
1321 | /// Returns the number of codepoints in this range. |
1322 | pub fn len(&self) -> usize { |
1323 | let diff = 1 + u32::from(self.end) - u32::from(self.start); |
1324 | // This is likely to panic in 16-bit targets since a usize can only fit |
1325 | // 2^16. It's not clear what to do here, other than to return an error |
1326 | // when building a Unicode class that contains a range whose length |
1327 | // overflows usize. (Which, to be honest, is probably quite common on |
1328 | // 16-bit targets. For example, this would imply that '.' and '\p{any}' |
1329 | // would be impossible to build.) |
1330 | usize::try_from(diff).expect("char class len fits in usize" ) |
1331 | } |
1332 | } |
1333 | |
1334 | /// A set of characters represented by arbitrary bytes. |
1335 | /// |
1336 | /// Each byte corresponds to one character. |
1337 | #[derive (Clone, Debug, Eq, PartialEq)] |
1338 | pub struct ClassBytes { |
1339 | set: IntervalSet<ClassBytesRange>, |
1340 | } |
1341 | |
1342 | impl ClassBytes { |
1343 | /// Create a new class from a sequence of ranges. |
1344 | /// |
1345 | /// The given ranges do not need to be in any specific order, and ranges |
1346 | /// may overlap. Ranges will automatically be sorted into a canonical |
1347 | /// non-overlapping order. |
1348 | pub fn new<I>(ranges: I) -> ClassBytes |
1349 | where |
1350 | I: IntoIterator<Item = ClassBytesRange>, |
1351 | { |
1352 | ClassBytes { set: IntervalSet::new(ranges) } |
1353 | } |
1354 | |
1355 | /// Create a new class with no ranges. |
1356 | /// |
1357 | /// An empty class matches nothing. That is, it is equivalent to |
1358 | /// [`Hir::fail`]. |
1359 | pub fn empty() -> ClassBytes { |
1360 | ClassBytes::new(vec![]) |
1361 | } |
1362 | |
1363 | /// Add a new range to this set. |
1364 | pub fn push(&mut self, range: ClassBytesRange) { |
1365 | self.set.push(range); |
1366 | } |
1367 | |
1368 | /// Return an iterator over all ranges in this class. |
1369 | /// |
1370 | /// The iterator yields ranges in ascending order. |
1371 | pub fn iter(&self) -> ClassBytesIter<'_> { |
1372 | ClassBytesIter(self.set.iter()) |
1373 | } |
1374 | |
1375 | /// Return the underlying ranges as a slice. |
1376 | pub fn ranges(&self) -> &[ClassBytesRange] { |
1377 | self.set.intervals() |
1378 | } |
1379 | |
1380 | /// Expand this character class such that it contains all case folded |
1381 | /// characters. For example, if this class consists of the range `a-z`, |
1382 | /// then applying case folding will result in the class containing both the |
1383 | /// ranges `a-z` and `A-Z`. |
1384 | /// |
1385 | /// Note that this only applies ASCII case folding, which is limited to the |
1386 | /// characters `a-z` and `A-Z`. |
1387 | pub fn case_fold_simple(&mut self) { |
1388 | self.set.case_fold_simple().expect("ASCII case folding never fails" ); |
1389 | } |
1390 | |
1391 | /// Negate this byte class. |
1392 | /// |
1393 | /// For all `b` where `b` is a any byte, if `b` was in this set, then it |
1394 | /// will not be in this set after negation. |
1395 | pub fn negate(&mut self) { |
1396 | self.set.negate(); |
1397 | } |
1398 | |
1399 | /// Union this byte class with the given byte class, in place. |
1400 | pub fn union(&mut self, other: &ClassBytes) { |
1401 | self.set.union(&other.set); |
1402 | } |
1403 | |
1404 | /// Intersect this byte class with the given byte class, in place. |
1405 | pub fn intersect(&mut self, other: &ClassBytes) { |
1406 | self.set.intersect(&other.set); |
1407 | } |
1408 | |
1409 | /// Subtract the given byte class from this byte class, in place. |
1410 | pub fn difference(&mut self, other: &ClassBytes) { |
1411 | self.set.difference(&other.set); |
1412 | } |
1413 | |
1414 | /// Compute the symmetric difference of the given byte classes, in place. |
1415 | /// |
1416 | /// This computes the symmetric difference of two byte classes. This |
1417 | /// removes all elements in this class that are also in the given class, |
1418 | /// but all adds all elements from the given class that aren't in this |
1419 | /// class. That is, the class will contain all elements in either class, |
1420 | /// but will not contain any elements that are in both classes. |
1421 | pub fn symmetric_difference(&mut self, other: &ClassBytes) { |
1422 | self.set.symmetric_difference(&other.set); |
1423 | } |
1424 | |
1425 | /// Returns true if and only if this character class will either match |
1426 | /// nothing or only ASCII bytes. Stated differently, this returns false |
1427 | /// if and only if this class contains a non-ASCII byte. |
1428 | pub fn is_ascii(&self) -> bool { |
1429 | self.set.intervals().last().map_or(true, |r| r.end <= 0x7F) |
1430 | } |
1431 | |
1432 | /// Returns the length, in bytes, of the smallest string matched by this |
1433 | /// character class. |
1434 | /// |
1435 | /// Returns `None` when the class is empty. |
1436 | pub fn minimum_len(&self) -> Option<usize> { |
1437 | if self.ranges().is_empty() { |
1438 | None |
1439 | } else { |
1440 | Some(1) |
1441 | } |
1442 | } |
1443 | |
1444 | /// Returns the length, in bytes, of the longest string matched by this |
1445 | /// character class. |
1446 | /// |
1447 | /// Returns `None` when the class is empty. |
1448 | pub fn maximum_len(&self) -> Option<usize> { |
1449 | if self.ranges().is_empty() { |
1450 | None |
1451 | } else { |
1452 | Some(1) |
1453 | } |
1454 | } |
1455 | |
1456 | /// If this class consists of exactly one byte, then return it as |
1457 | /// a literal byte string. |
1458 | /// |
1459 | /// If this class is empty or contains more than one byte, then `None` |
1460 | /// is returned. |
1461 | pub fn literal(&self) -> Option<Vec<u8>> { |
1462 | let rs = self.ranges(); |
1463 | if rs.len() == 1 && rs[0].start == rs[0].end { |
1464 | Some(vec![rs[0].start]) |
1465 | } else { |
1466 | None |
1467 | } |
1468 | } |
1469 | |
1470 | /// If this class consists of only ASCII ranges, then return its |
1471 | /// corresponding and equivalent Unicode class. |
1472 | pub fn to_unicode_class(&self) -> Option<ClassUnicode> { |
1473 | if !self.is_ascii() { |
1474 | return None; |
1475 | } |
1476 | Some(ClassUnicode::new(self.ranges().iter().map(|r| { |
1477 | // Since we are guaranteed that our byte range is ASCII, the |
1478 | // 'char::from' calls below are correct and will not erroneously |
1479 | // convert a raw byte value into its corresponding codepoint. |
1480 | ClassUnicodeRange { |
1481 | start: char::from(r.start), |
1482 | end: char::from(r.end), |
1483 | } |
1484 | }))) |
1485 | } |
1486 | } |
1487 | |
1488 | /// An iterator over all ranges in a byte character class. |
1489 | /// |
1490 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
1491 | #[derive (Debug)] |
1492 | pub struct ClassBytesIter<'a>(IntervalSetIter<'a, ClassBytesRange>); |
1493 | |
1494 | impl<'a> Iterator for ClassBytesIter<'a> { |
1495 | type Item = &'a ClassBytesRange; |
1496 | |
1497 | fn next(&mut self) -> Option<&'a ClassBytesRange> { |
1498 | self.0.next() |
1499 | } |
1500 | } |
1501 | |
1502 | /// A single range of characters represented by arbitrary bytes. |
1503 | /// |
1504 | /// The range is closed. That is, the start and end of the range are included |
1505 | /// in the range. |
1506 | #[derive (Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
1507 | pub struct ClassBytesRange { |
1508 | start: u8, |
1509 | end: u8, |
1510 | } |
1511 | |
1512 | impl Interval for ClassBytesRange { |
1513 | type Bound = u8; |
1514 | |
1515 | #[inline ] |
1516 | fn lower(&self) -> u8 { |
1517 | self.start |
1518 | } |
1519 | #[inline ] |
1520 | fn upper(&self) -> u8 { |
1521 | self.end |
1522 | } |
1523 | #[inline ] |
1524 | fn set_lower(&mut self, bound: u8) { |
1525 | self.start = bound; |
1526 | } |
1527 | #[inline ] |
1528 | fn set_upper(&mut self, bound: u8) { |
1529 | self.end = bound; |
1530 | } |
1531 | |
1532 | /// Apply simple case folding to this byte range. Only ASCII case mappings |
1533 | /// (for a-z) are applied. |
1534 | /// |
1535 | /// Additional ranges are appended to the given vector. Canonical ordering |
1536 | /// is *not* maintained in the given vector. |
1537 | fn case_fold_simple( |
1538 | &self, |
1539 | ranges: &mut Vec<ClassBytesRange>, |
1540 | ) -> Result<(), unicode::CaseFoldError> { |
1541 | if !ClassBytesRange::new(b'a' , b'z' ).is_intersection_empty(self) { |
1542 | let lower = cmp::max(self.start, b'a' ); |
1543 | let upper = cmp::min(self.end, b'z' ); |
1544 | ranges.push(ClassBytesRange::new(lower - 32, upper - 32)); |
1545 | } |
1546 | if !ClassBytesRange::new(b'A' , b'Z' ).is_intersection_empty(self) { |
1547 | let lower = cmp::max(self.start, b'A' ); |
1548 | let upper = cmp::min(self.end, b'Z' ); |
1549 | ranges.push(ClassBytesRange::new(lower + 32, upper + 32)); |
1550 | } |
1551 | Ok(()) |
1552 | } |
1553 | } |
1554 | |
1555 | impl ClassBytesRange { |
1556 | /// Create a new byte range for a character class. |
1557 | /// |
1558 | /// The returned range is always in a canonical form. That is, the range |
1559 | /// returned always satisfies the invariant that `start <= end`. |
1560 | pub fn new(start: u8, end: u8) -> ClassBytesRange { |
1561 | ClassBytesRange::create(start, end) |
1562 | } |
1563 | |
1564 | /// Return the start of this range. |
1565 | /// |
1566 | /// The start of a range is always less than or equal to the end of the |
1567 | /// range. |
1568 | pub fn start(&self) -> u8 { |
1569 | self.start |
1570 | } |
1571 | |
1572 | /// Return the end of this range. |
1573 | /// |
1574 | /// The end of a range is always greater than or equal to the start of the |
1575 | /// range. |
1576 | pub fn end(&self) -> u8 { |
1577 | self.end |
1578 | } |
1579 | |
1580 | /// Returns the number of bytes in this range. |
1581 | pub fn len(&self) -> usize { |
1582 | usize::from(self.end.checked_sub(self.start).unwrap()) |
1583 | .checked_add(1) |
1584 | .unwrap() |
1585 | } |
1586 | } |
1587 | |
1588 | impl core::fmt::Debug for ClassBytesRange { |
1589 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1590 | f&mut DebugStruct<'_, '_>.debug_struct("ClassBytesRange" ) |
1591 | .field("start" , &crate::debug::Byte(self.start)) |
1592 | .field(name:"end" , &crate::debug::Byte(self.end)) |
1593 | .finish() |
1594 | } |
1595 | } |
1596 | |
1597 | /// The high-level intermediate representation for a look-around assertion. |
1598 | /// |
1599 | /// An assertion match is always zero-length. Also called an "empty match." |
1600 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1601 | pub enum Look { |
1602 | /// Match the beginning of text. Specifically, this matches at the starting |
1603 | /// position of the input. |
1604 | Start = 1 << 0, |
1605 | /// Match the end of text. Specifically, this matches at the ending |
1606 | /// position of the input. |
1607 | End = 1 << 1, |
1608 | /// Match the beginning of a line or the beginning of text. Specifically, |
1609 | /// this matches at the starting position of the input, or at the position |
1610 | /// immediately following a `\n` character. |
1611 | StartLF = 1 << 2, |
1612 | /// Match the end of a line or the end of text. Specifically, this matches |
1613 | /// at the end position of the input, or at the position immediately |
1614 | /// preceding a `\n` character. |
1615 | EndLF = 1 << 3, |
1616 | /// Match the beginning of a line or the beginning of text. Specifically, |
1617 | /// this matches at the starting position of the input, or at the position |
1618 | /// immediately following either a `\r` or `\n` character, but never after |
1619 | /// a `\r` when a `\n` follows. |
1620 | StartCRLF = 1 << 4, |
1621 | /// Match the end of a line or the end of text. Specifically, this matches |
1622 | /// at the end position of the input, or at the position immediately |
1623 | /// preceding a `\r` or `\n` character, but never before a `\n` when a `\r` |
1624 | /// precedes it. |
1625 | EndCRLF = 1 << 5, |
1626 | /// Match an ASCII-only word boundary. That is, this matches a position |
1627 | /// where the left adjacent character and right adjacent character |
1628 | /// correspond to a word and non-word or a non-word and word character. |
1629 | WordAscii = 1 << 6, |
1630 | /// Match an ASCII-only negation of a word boundary. |
1631 | WordAsciiNegate = 1 << 7, |
1632 | /// Match a Unicode-aware word boundary. That is, this matches a position |
1633 | /// where the left adjacent character and right adjacent character |
1634 | /// correspond to a word and non-word or a non-word and word character. |
1635 | WordUnicode = 1 << 8, |
1636 | /// Match a Unicode-aware negation of a word boundary. |
1637 | WordUnicodeNegate = 1 << 9, |
1638 | /// Match the start of an ASCII-only word boundary. That is, this matches a |
1639 | /// position at either the beginning of the haystack or where the previous |
1640 | /// character is not a word character and the following character is a word |
1641 | /// character. |
1642 | WordStartAscii = 1 << 10, |
1643 | /// Match the end of an ASCII-only word boundary. That is, this matches |
1644 | /// a position at either the end of the haystack or where the previous |
1645 | /// character is a word character and the following character is not a word |
1646 | /// character. |
1647 | WordEndAscii = 1 << 11, |
1648 | /// Match the start of a Unicode word boundary. That is, this matches a |
1649 | /// position at either the beginning of the haystack or where the previous |
1650 | /// character is not a word character and the following character is a word |
1651 | /// character. |
1652 | WordStartUnicode = 1 << 12, |
1653 | /// Match the end of a Unicode word boundary. That is, this matches a |
1654 | /// position at either the end of the haystack or where the previous |
1655 | /// character is a word character and the following character is not a word |
1656 | /// character. |
1657 | WordEndUnicode = 1 << 13, |
1658 | /// Match the start half of an ASCII-only word boundary. That is, this |
1659 | /// matches a position at either the beginning of the haystack or where the |
1660 | /// previous character is not a word character. |
1661 | WordStartHalfAscii = 1 << 14, |
1662 | /// Match the end half of an ASCII-only word boundary. That is, this |
1663 | /// matches a position at either the end of the haystack or where the |
1664 | /// following character is not a word character. |
1665 | WordEndHalfAscii = 1 << 15, |
1666 | /// Match the start half of a Unicode word boundary. That is, this matches |
1667 | /// a position at either the beginning of the haystack or where the |
1668 | /// previous character is not a word character. |
1669 | WordStartHalfUnicode = 1 << 16, |
1670 | /// Match the end half of a Unicode word boundary. That is, this matches |
1671 | /// a position at either the end of the haystack or where the following |
1672 | /// character is not a word character. |
1673 | WordEndHalfUnicode = 1 << 17, |
1674 | } |
1675 | |
1676 | impl Look { |
1677 | /// Flip the look-around assertion to its equivalent for reverse searches. |
1678 | /// For example, `StartLF` gets translated to `EndLF`. |
1679 | /// |
1680 | /// Some assertions, such as `WordUnicode`, remain the same since they |
1681 | /// match the same positions regardless of the direction of the search. |
1682 | #[inline ] |
1683 | pub const fn reversed(self) -> Look { |
1684 | match self { |
1685 | Look::Start => Look::End, |
1686 | Look::End => Look::Start, |
1687 | Look::StartLF => Look::EndLF, |
1688 | Look::EndLF => Look::StartLF, |
1689 | Look::StartCRLF => Look::EndCRLF, |
1690 | Look::EndCRLF => Look::StartCRLF, |
1691 | Look::WordAscii => Look::WordAscii, |
1692 | Look::WordAsciiNegate => Look::WordAsciiNegate, |
1693 | Look::WordUnicode => Look::WordUnicode, |
1694 | Look::WordUnicodeNegate => Look::WordUnicodeNegate, |
1695 | Look::WordStartAscii => Look::WordEndAscii, |
1696 | Look::WordEndAscii => Look::WordStartAscii, |
1697 | Look::WordStartUnicode => Look::WordEndUnicode, |
1698 | Look::WordEndUnicode => Look::WordStartUnicode, |
1699 | Look::WordStartHalfAscii => Look::WordEndHalfAscii, |
1700 | Look::WordEndHalfAscii => Look::WordStartHalfAscii, |
1701 | Look::WordStartHalfUnicode => Look::WordEndHalfUnicode, |
1702 | Look::WordEndHalfUnicode => Look::WordStartHalfUnicode, |
1703 | } |
1704 | } |
1705 | |
1706 | /// Return the underlying representation of this look-around enumeration |
1707 | /// as an integer. Giving the return value to the [`Look::from_repr`] |
1708 | /// constructor is guaranteed to return the same look-around variant that |
1709 | /// one started with within a semver compatible release of this crate. |
1710 | #[inline ] |
1711 | pub const fn as_repr(self) -> u32 { |
1712 | // AFAIK, 'as' is the only way to zero-cost convert an int enum to an |
1713 | // actual int. |
1714 | self as u32 |
1715 | } |
1716 | |
1717 | /// Given the underlying representation of a `Look` value, return the |
1718 | /// corresponding `Look` value if the representation is valid. Otherwise |
1719 | /// `None` is returned. |
1720 | #[inline ] |
1721 | pub const fn from_repr(repr: u32) -> Option<Look> { |
1722 | match repr { |
1723 | 0b00_0000_0000_0000_0001 => Some(Look::Start), |
1724 | 0b00_0000_0000_0000_0010 => Some(Look::End), |
1725 | 0b00_0000_0000_0000_0100 => Some(Look::StartLF), |
1726 | 0b00_0000_0000_0000_1000 => Some(Look::EndLF), |
1727 | 0b00_0000_0000_0001_0000 => Some(Look::StartCRLF), |
1728 | 0b00_0000_0000_0010_0000 => Some(Look::EndCRLF), |
1729 | 0b00_0000_0000_0100_0000 => Some(Look::WordAscii), |
1730 | 0b00_0000_0000_1000_0000 => Some(Look::WordAsciiNegate), |
1731 | 0b00_0000_0001_0000_0000 => Some(Look::WordUnicode), |
1732 | 0b00_0000_0010_0000_0000 => Some(Look::WordUnicodeNegate), |
1733 | 0b00_0000_0100_0000_0000 => Some(Look::WordStartAscii), |
1734 | 0b00_0000_1000_0000_0000 => Some(Look::WordEndAscii), |
1735 | 0b00_0001_0000_0000_0000 => Some(Look::WordStartUnicode), |
1736 | 0b00_0010_0000_0000_0000 => Some(Look::WordEndUnicode), |
1737 | 0b00_0100_0000_0000_0000 => Some(Look::WordStartHalfAscii), |
1738 | 0b00_1000_0000_0000_0000 => Some(Look::WordEndHalfAscii), |
1739 | 0b01_0000_0000_0000_0000 => Some(Look::WordStartHalfUnicode), |
1740 | 0b10_0000_0000_0000_0000 => Some(Look::WordEndHalfUnicode), |
1741 | _ => None, |
1742 | } |
1743 | } |
1744 | |
1745 | /// Returns a convenient single codepoint representation of this |
1746 | /// look-around assertion. Each assertion is guaranteed to be represented |
1747 | /// by a distinct character. |
1748 | /// |
1749 | /// This is useful for succinctly representing a look-around assertion in |
1750 | /// human friendly but succinct output intended for a programmer working on |
1751 | /// regex internals. |
1752 | #[inline ] |
1753 | pub const fn as_char(self) -> char { |
1754 | match self { |
1755 | Look::Start => 'A' , |
1756 | Look::End => 'z' , |
1757 | Look::StartLF => '^' , |
1758 | Look::EndLF => '$' , |
1759 | Look::StartCRLF => 'r' , |
1760 | Look::EndCRLF => 'R' , |
1761 | Look::WordAscii => 'b' , |
1762 | Look::WordAsciiNegate => 'B' , |
1763 | Look::WordUnicode => '𝛃' , |
1764 | Look::WordUnicodeNegate => '𝚩' , |
1765 | Look::WordStartAscii => '<' , |
1766 | Look::WordEndAscii => '>' , |
1767 | Look::WordStartUnicode => '〈' , |
1768 | Look::WordEndUnicode => '〉' , |
1769 | Look::WordStartHalfAscii => '◁' , |
1770 | Look::WordEndHalfAscii => '▷' , |
1771 | Look::WordStartHalfUnicode => '◀' , |
1772 | Look::WordEndHalfUnicode => '▶' , |
1773 | } |
1774 | } |
1775 | } |
1776 | |
1777 | /// The high-level intermediate representation for a capturing group. |
1778 | /// |
1779 | /// A capturing group always has an index and a child expression. It may |
1780 | /// also have a name associated with it (e.g., `(?P<foo>\w)`), but it's not |
1781 | /// necessary. |
1782 | /// |
1783 | /// Note that there is no explicit representation of a non-capturing group |
1784 | /// in a `Hir`. Instead, non-capturing grouping is handled automatically by |
1785 | /// the recursive structure of the `Hir` itself. |
1786 | #[derive (Clone, Debug, Eq, PartialEq)] |
1787 | pub struct Capture { |
1788 | /// The capture index of the capture. |
1789 | pub index: u32, |
1790 | /// The name of the capture, if it exists. |
1791 | pub name: Option<Box<str>>, |
1792 | /// The expression inside the capturing group, which may be empty. |
1793 | pub sub: Box<Hir>, |
1794 | } |
1795 | |
1796 | /// The high-level intermediate representation of a repetition operator. |
1797 | /// |
1798 | /// A repetition operator permits the repetition of an arbitrary |
1799 | /// sub-expression. |
1800 | #[derive (Clone, Debug, Eq, PartialEq)] |
1801 | pub struct Repetition { |
1802 | /// The minimum range of the repetition. |
1803 | /// |
1804 | /// Note that special cases like `?`, `+` and `*` all get translated into |
1805 | /// the ranges `{0,1}`, `{1,}` and `{0,}`, respectively. |
1806 | /// |
1807 | /// When `min` is zero, this expression can match the empty string |
1808 | /// regardless of what its sub-expression is. |
1809 | pub min: u32, |
1810 | /// The maximum range of the repetition. |
1811 | /// |
1812 | /// Note that when `max` is `None`, `min` acts as a lower bound but where |
1813 | /// there is no upper bound. For something like `x{5}` where the min and |
1814 | /// max are equivalent, `min` will be set to `5` and `max` will be set to |
1815 | /// `Some(5)`. |
1816 | pub max: Option<u32>, |
1817 | /// Whether this repetition operator is greedy or not. A greedy operator |
1818 | /// will match as much as it can. A non-greedy operator will match as |
1819 | /// little as it can. |
1820 | /// |
1821 | /// Typically, operators are greedy by default and are only non-greedy when |
1822 | /// a `?` suffix is used, e.g., `(expr)*` is greedy while `(expr)*?` is |
1823 | /// not. However, this can be inverted via the `U` "ungreedy" flag. |
1824 | pub greedy: bool, |
1825 | /// The expression being repeated. |
1826 | pub sub: Box<Hir>, |
1827 | } |
1828 | |
1829 | impl Repetition { |
1830 | /// Returns a new repetition with the same `min`, `max` and `greedy` |
1831 | /// values, but with its sub-expression replaced with the one given. |
1832 | pub fn with(&self, sub: Hir) -> Repetition { |
1833 | Repetition { |
1834 | min: self.min, |
1835 | max: self.max, |
1836 | greedy: self.greedy, |
1837 | sub: Box::new(sub), |
1838 | } |
1839 | } |
1840 | } |
1841 | |
1842 | /// A type describing the different flavors of `.`. |
1843 | /// |
1844 | /// This type is meant to be used with [`Hir::dot`], which is a convenience |
1845 | /// routine for building HIR values derived from the `.` regex. |
1846 | #[non_exhaustive ] |
1847 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1848 | pub enum Dot { |
1849 | /// Matches the UTF-8 encoding of any Unicode scalar value. |
1850 | /// |
1851 | /// This is equivalent to `(?su:.)` and also `\p{any}`. |
1852 | AnyChar, |
1853 | /// Matches any byte value. |
1854 | /// |
1855 | /// This is equivalent to `(?s-u:.)` and also `(?-u:[\x00-\xFF])`. |
1856 | AnyByte, |
1857 | /// Matches the UTF-8 encoding of any Unicode scalar value except for the |
1858 | /// `char` given. |
1859 | /// |
1860 | /// This is equivalent to using `(?u-s:.)` with the line terminator set |
1861 | /// to a particular ASCII byte. (Because of peculiarities in the regex |
1862 | /// engines, a line terminator must be a single byte. It follows that when |
1863 | /// UTF-8 mode is enabled, this single byte must also be a Unicode scalar |
1864 | /// value. That is, ti must be ASCII.) |
1865 | /// |
1866 | /// (This and `AnyCharExceptLF` both exist because of legacy reasons. |
1867 | /// `AnyCharExceptLF` will be dropped in the next breaking change release.) |
1868 | AnyCharExcept(char), |
1869 | /// Matches the UTF-8 encoding of any Unicode scalar value except for `\n`. |
1870 | /// |
1871 | /// This is equivalent to `(?u-s:.)` and also `[\p{any}--\n]`. |
1872 | AnyCharExceptLF, |
1873 | /// Matches the UTF-8 encoding of any Unicode scalar value except for `\r` |
1874 | /// and `\n`. |
1875 | /// |
1876 | /// This is equivalent to `(?uR-s:.)` and also `[\p{any}--\r\n]`. |
1877 | AnyCharExceptCRLF, |
1878 | /// Matches any byte value except for the `u8` given. |
1879 | /// |
1880 | /// This is equivalent to using `(?-us:.)` with the line terminator set |
1881 | /// to a particular ASCII byte. (Because of peculiarities in the regex |
1882 | /// engines, a line terminator must be a single byte. It follows that when |
1883 | /// UTF-8 mode is enabled, this single byte must also be a Unicode scalar |
1884 | /// value. That is, ti must be ASCII.) |
1885 | /// |
1886 | /// (This and `AnyByteExceptLF` both exist because of legacy reasons. |
1887 | /// `AnyByteExceptLF` will be dropped in the next breaking change release.) |
1888 | AnyByteExcept(u8), |
1889 | /// Matches any byte value except for `\n`. |
1890 | /// |
1891 | /// This is equivalent to `(?-su:.)` and also `(?-u:[[\x00-\xFF]--\n])`. |
1892 | AnyByteExceptLF, |
1893 | /// Matches any byte value except for `\r` and `\n`. |
1894 | /// |
1895 | /// This is equivalent to `(?R-su:.)` and also `(?-u:[[\x00-\xFF]--\r\n])`. |
1896 | AnyByteExceptCRLF, |
1897 | } |
1898 | |
1899 | /// A custom `Drop` impl is used for `HirKind` such that it uses constant stack |
1900 | /// space but heap space proportional to the depth of the total `Hir`. |
1901 | impl Drop for Hir { |
1902 | fn drop(&mut self) { |
1903 | use core::mem; |
1904 | |
1905 | match *self.kind() { |
1906 | HirKind::Empty |
1907 | | HirKind::Literal(_) |
1908 | | HirKind::Class(_) |
1909 | | HirKind::Look(_) => return, |
1910 | HirKind::Capture(ref x) if x.sub.kind.subs().is_empty() => return, |
1911 | HirKind::Repetition(ref x) if x.sub.kind.subs().is_empty() => { |
1912 | return |
1913 | } |
1914 | HirKind::Concat(ref x) if x.is_empty() => return, |
1915 | HirKind::Alternation(ref x) if x.is_empty() => return, |
1916 | _ => {} |
1917 | } |
1918 | |
1919 | let mut stack = vec![mem::replace(self, Hir::empty())]; |
1920 | while let Some(mut expr) = stack.pop() { |
1921 | match expr.kind { |
1922 | HirKind::Empty |
1923 | | HirKind::Literal(_) |
1924 | | HirKind::Class(_) |
1925 | | HirKind::Look(_) => {} |
1926 | HirKind::Capture(ref mut x) => { |
1927 | stack.push(mem::replace(&mut x.sub, Hir::empty())); |
1928 | } |
1929 | HirKind::Repetition(ref mut x) => { |
1930 | stack.push(mem::replace(&mut x.sub, Hir::empty())); |
1931 | } |
1932 | HirKind::Concat(ref mut x) => { |
1933 | stack.extend(x.drain(..)); |
1934 | } |
1935 | HirKind::Alternation(ref mut x) => { |
1936 | stack.extend(x.drain(..)); |
1937 | } |
1938 | } |
1939 | } |
1940 | } |
1941 | } |
1942 | |
1943 | /// A type that collects various properties of an HIR value. |
1944 | /// |
1945 | /// Properties are always scalar values and represent meta data that is |
1946 | /// computed inductively on an HIR value. Properties are defined for all |
1947 | /// HIR values. |
1948 | /// |
1949 | /// All methods on a `Properties` value take constant time and are meant to |
1950 | /// be cheap to call. |
1951 | #[derive (Clone, Debug, Eq, PartialEq)] |
1952 | pub struct Properties(Box<PropertiesI>); |
1953 | |
1954 | /// The property definition. It is split out so that we can box it, and |
1955 | /// there by make `Properties` use less stack size. This is kind-of important |
1956 | /// because every HIR value has a `Properties` attached to it. |
1957 | /// |
1958 | /// This does have the unfortunate consequence that creating any HIR value |
1959 | /// always leads to at least one alloc for properties, but this is generally |
1960 | /// true anyway (for pretty much all HirKinds except for look-arounds). |
1961 | #[derive (Clone, Debug, Eq, PartialEq)] |
1962 | struct PropertiesI { |
1963 | minimum_len: Option<usize>, |
1964 | maximum_len: Option<usize>, |
1965 | look_set: LookSet, |
1966 | look_set_prefix: LookSet, |
1967 | look_set_suffix: LookSet, |
1968 | look_set_prefix_any: LookSet, |
1969 | look_set_suffix_any: LookSet, |
1970 | utf8: bool, |
1971 | explicit_captures_len: usize, |
1972 | static_explicit_captures_len: Option<usize>, |
1973 | literal: bool, |
1974 | alternation_literal: bool, |
1975 | } |
1976 | |
1977 | impl Properties { |
1978 | /// Returns the length (in bytes) of the smallest string matched by this |
1979 | /// HIR. |
1980 | /// |
1981 | /// A return value of `0` is possible and occurs when the HIR can match an |
1982 | /// empty string. |
1983 | /// |
1984 | /// `None` is returned when there is no minimum length. This occurs in |
1985 | /// precisely the cases where the HIR matches nothing. i.e., The language |
1986 | /// the regex matches is empty. An example of such a regex is `\P{any}`. |
1987 | #[inline ] |
1988 | pub fn minimum_len(&self) -> Option<usize> { |
1989 | self.0.minimum_len |
1990 | } |
1991 | |
1992 | /// Returns the length (in bytes) of the longest string matched by this |
1993 | /// HIR. |
1994 | /// |
1995 | /// A return value of `0` is possible and occurs when nothing longer than |
1996 | /// the empty string is in the language described by this HIR. |
1997 | /// |
1998 | /// `None` is returned when there is no longest matching string. This |
1999 | /// occurs when the HIR matches nothing or when there is no upper bound on |
2000 | /// the length of matching strings. Example of such regexes are `\P{any}` |
2001 | /// (matches nothing) and `a+` (has no upper bound). |
2002 | #[inline ] |
2003 | pub fn maximum_len(&self) -> Option<usize> { |
2004 | self.0.maximum_len |
2005 | } |
2006 | |
2007 | /// Returns a set of all look-around assertions that appear at least once |
2008 | /// in this HIR value. |
2009 | #[inline ] |
2010 | pub fn look_set(&self) -> LookSet { |
2011 | self.0.look_set |
2012 | } |
2013 | |
2014 | /// Returns a set of all look-around assertions that appear as a prefix for |
2015 | /// this HIR value. That is, the set returned corresponds to the set of |
2016 | /// assertions that must be passed before matching any bytes in a haystack. |
2017 | /// |
2018 | /// For example, `hir.look_set_prefix().contains(Look::Start)` returns true |
2019 | /// if and only if the HIR is fully anchored at the start. |
2020 | #[inline ] |
2021 | pub fn look_set_prefix(&self) -> LookSet { |
2022 | self.0.look_set_prefix |
2023 | } |
2024 | |
2025 | /// Returns a set of all look-around assertions that appear as a _possible_ |
2026 | /// prefix for this HIR value. That is, the set returned corresponds to the |
2027 | /// set of assertions that _may_ be passed before matching any bytes in a |
2028 | /// haystack. |
2029 | /// |
2030 | /// For example, `hir.look_set_prefix_any().contains(Look::Start)` returns |
2031 | /// true if and only if it's possible for the regex to match through a |
2032 | /// anchored assertion before consuming any input. |
2033 | #[inline ] |
2034 | pub fn look_set_prefix_any(&self) -> LookSet { |
2035 | self.0.look_set_prefix_any |
2036 | } |
2037 | |
2038 | /// Returns a set of all look-around assertions that appear as a suffix for |
2039 | /// this HIR value. That is, the set returned corresponds to the set of |
2040 | /// assertions that must be passed in order to be considered a match after |
2041 | /// all other consuming HIR expressions. |
2042 | /// |
2043 | /// For example, `hir.look_set_suffix().contains(Look::End)` returns true |
2044 | /// if and only if the HIR is fully anchored at the end. |
2045 | #[inline ] |
2046 | pub fn look_set_suffix(&self) -> LookSet { |
2047 | self.0.look_set_suffix |
2048 | } |
2049 | |
2050 | /// Returns a set of all look-around assertions that appear as a _possible_ |
2051 | /// suffix for this HIR value. That is, the set returned corresponds to the |
2052 | /// set of assertions that _may_ be passed before matching any bytes in a |
2053 | /// haystack. |
2054 | /// |
2055 | /// For example, `hir.look_set_suffix_any().contains(Look::End)` returns |
2056 | /// true if and only if it's possible for the regex to match through a |
2057 | /// anchored assertion at the end of a match without consuming any input. |
2058 | #[inline ] |
2059 | pub fn look_set_suffix_any(&self) -> LookSet { |
2060 | self.0.look_set_suffix_any |
2061 | } |
2062 | |
2063 | /// Return true if and only if the corresponding HIR will always match |
2064 | /// valid UTF-8. |
2065 | /// |
2066 | /// When this returns false, then it is possible for this HIR expression to |
2067 | /// match invalid UTF-8, including by matching between the code units of |
2068 | /// a single UTF-8 encoded codepoint. |
2069 | /// |
2070 | /// Note that this returns true even when the corresponding HIR can match |
2071 | /// the empty string. Since an empty string can technically appear between |
2072 | /// UTF-8 code units, it is possible for a match to be reported that splits |
2073 | /// a codepoint which could in turn be considered matching invalid UTF-8. |
2074 | /// However, it is generally assumed that such empty matches are handled |
2075 | /// specially by the search routine if it is absolutely required that |
2076 | /// matches not split a codepoint. |
2077 | /// |
2078 | /// # Example |
2079 | /// |
2080 | /// This code example shows the UTF-8 property of a variety of patterns. |
2081 | /// |
2082 | /// ``` |
2083 | /// use regex_syntax::{ParserBuilder, parse}; |
2084 | /// |
2085 | /// // Examples of 'is_utf8() == true'. |
2086 | /// assert!(parse(r"a" )?.properties().is_utf8()); |
2087 | /// assert!(parse(r"[^a]" )?.properties().is_utf8()); |
2088 | /// assert!(parse(r"." )?.properties().is_utf8()); |
2089 | /// assert!(parse(r"\W" )?.properties().is_utf8()); |
2090 | /// assert!(parse(r"\b" )?.properties().is_utf8()); |
2091 | /// assert!(parse(r"\B" )?.properties().is_utf8()); |
2092 | /// assert!(parse(r"(?-u)\b" )?.properties().is_utf8()); |
2093 | /// assert!(parse(r"(?-u)\B" )?.properties().is_utf8()); |
2094 | /// // Unicode mode is enabled by default, and in |
2095 | /// // that mode, all \x hex escapes are treated as |
2096 | /// // codepoints. So this actually matches the UTF-8 |
2097 | /// // encoding of U+00FF. |
2098 | /// assert!(parse(r"\xFF" )?.properties().is_utf8()); |
2099 | /// |
2100 | /// // Now we show examples of 'is_utf8() == false'. |
2101 | /// // The only way to do this is to force the parser |
2102 | /// // to permit invalid UTF-8, otherwise all of these |
2103 | /// // would fail to parse! |
2104 | /// let parse = |pattern| { |
2105 | /// ParserBuilder::new().utf8(false).build().parse(pattern) |
2106 | /// }; |
2107 | /// assert!(!parse(r"(?-u)[^a]" )?.properties().is_utf8()); |
2108 | /// assert!(!parse(r"(?-u)." )?.properties().is_utf8()); |
2109 | /// assert!(!parse(r"(?-u)\W" )?.properties().is_utf8()); |
2110 | /// // Conversely to the equivalent example above, |
2111 | /// // when Unicode mode is disabled, \x hex escapes |
2112 | /// // are treated as their raw byte values. |
2113 | /// assert!(!parse(r"(?-u)\xFF" )?.properties().is_utf8()); |
2114 | /// // Note that just because we disabled UTF-8 in the |
2115 | /// // parser doesn't mean we still can't use Unicode. |
2116 | /// // It is enabled by default, so \xFF is still |
2117 | /// // equivalent to matching the UTF-8 encoding of |
2118 | /// // U+00FF by default. |
2119 | /// assert!(parse(r"\xFF" )?.properties().is_utf8()); |
2120 | /// // Even though we use raw bytes that individually |
2121 | /// // are not valid UTF-8, when combined together, the |
2122 | /// // overall expression *does* match valid UTF-8! |
2123 | /// assert!(parse(r"(?-u)\xE2\x98\x83" )?.properties().is_utf8()); |
2124 | /// |
2125 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2126 | /// ``` |
2127 | #[inline ] |
2128 | pub fn is_utf8(&self) -> bool { |
2129 | self.0.utf8 |
2130 | } |
2131 | |
2132 | /// Returns the total number of explicit capturing groups in the |
2133 | /// corresponding HIR. |
2134 | /// |
2135 | /// Note that this does not include the implicit capturing group |
2136 | /// corresponding to the entire match that is typically included by regex |
2137 | /// engines. |
2138 | /// |
2139 | /// # Example |
2140 | /// |
2141 | /// This method will return `0` for `a` and `1` for `(a)`: |
2142 | /// |
2143 | /// ``` |
2144 | /// use regex_syntax::parse; |
2145 | /// |
2146 | /// assert_eq!(0, parse("a" )?.properties().explicit_captures_len()); |
2147 | /// assert_eq!(1, parse("(a)" )?.properties().explicit_captures_len()); |
2148 | /// |
2149 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2150 | /// ``` |
2151 | #[inline ] |
2152 | pub fn explicit_captures_len(&self) -> usize { |
2153 | self.0.explicit_captures_len |
2154 | } |
2155 | |
2156 | /// Returns the total number of explicit capturing groups that appear in |
2157 | /// every possible match. |
2158 | /// |
2159 | /// If the number of capture groups can vary depending on the match, then |
2160 | /// this returns `None`. That is, a value is only returned when the number |
2161 | /// of matching groups is invariant or "static." |
2162 | /// |
2163 | /// Note that this does not include the implicit capturing group |
2164 | /// corresponding to the entire match. |
2165 | /// |
2166 | /// # Example |
2167 | /// |
2168 | /// This shows a few cases where a static number of capture groups is |
2169 | /// available and a few cases where it is not. |
2170 | /// |
2171 | /// ``` |
2172 | /// use regex_syntax::parse; |
2173 | /// |
2174 | /// let len = |pattern| { |
2175 | /// parse(pattern).map(|h| { |
2176 | /// h.properties().static_explicit_captures_len() |
2177 | /// }) |
2178 | /// }; |
2179 | /// |
2180 | /// assert_eq!(Some(0), len("a" )?); |
2181 | /// assert_eq!(Some(1), len("(a)" )?); |
2182 | /// assert_eq!(Some(1), len("(a)|(b)" )?); |
2183 | /// assert_eq!(Some(2), len("(a)(b)|(c)(d)" )?); |
2184 | /// assert_eq!(None, len("(a)|b" )?); |
2185 | /// assert_eq!(None, len("a|(b)" )?); |
2186 | /// assert_eq!(None, len("(b)*" )?); |
2187 | /// assert_eq!(Some(1), len("(b)+" )?); |
2188 | /// |
2189 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2190 | /// ``` |
2191 | #[inline ] |
2192 | pub fn static_explicit_captures_len(&self) -> Option<usize> { |
2193 | self.0.static_explicit_captures_len |
2194 | } |
2195 | |
2196 | /// Return true if and only if this HIR is a simple literal. This is |
2197 | /// only true when this HIR expression is either itself a `Literal` or a |
2198 | /// concatenation of only `Literal`s. |
2199 | /// |
2200 | /// For example, `f` and `foo` are literals, but `f+`, `(foo)`, `foo()` and |
2201 | /// the empty string are not (even though they contain sub-expressions that |
2202 | /// are literals). |
2203 | #[inline ] |
2204 | pub fn is_literal(&self) -> bool { |
2205 | self.0.literal |
2206 | } |
2207 | |
2208 | /// Return true if and only if this HIR is either a simple literal or an |
2209 | /// alternation of simple literals. This is only |
2210 | /// true when this HIR expression is either itself a `Literal` or a |
2211 | /// concatenation of only `Literal`s or an alternation of only `Literal`s. |
2212 | /// |
2213 | /// For example, `f`, `foo`, `a|b|c`, and `foo|bar|baz` are alternation |
2214 | /// literals, but `f+`, `(foo)`, `foo()`, and the empty pattern are not |
2215 | /// (even though that contain sub-expressions that are literals). |
2216 | #[inline ] |
2217 | pub fn is_alternation_literal(&self) -> bool { |
2218 | self.0.alternation_literal |
2219 | } |
2220 | |
2221 | /// Returns the total amount of heap memory usage, in bytes, used by this |
2222 | /// `Properties` value. |
2223 | #[inline ] |
2224 | pub fn memory_usage(&self) -> usize { |
2225 | core::mem::size_of::<PropertiesI>() |
2226 | } |
2227 | |
2228 | /// Returns a new set of properties that corresponds to the union of the |
2229 | /// iterator of properties given. |
2230 | /// |
2231 | /// This is useful when one has multiple `Hir` expressions and wants |
2232 | /// to combine them into a single alternation without constructing the |
2233 | /// corresponding `Hir`. This routine provides a way of combining the |
2234 | /// properties of each `Hir` expression into one set of properties |
2235 | /// representing the union of those expressions. |
2236 | /// |
2237 | /// # Example: union with HIRs that never match |
2238 | /// |
2239 | /// This example shows that unioning properties together with one that |
2240 | /// represents a regex that never matches will "poison" certain attributes, |
2241 | /// like the minimum and maximum lengths. |
2242 | /// |
2243 | /// ``` |
2244 | /// use regex_syntax::{hir::Properties, parse}; |
2245 | /// |
2246 | /// let hir1 = parse("ab?c?" )?; |
2247 | /// assert_eq!(Some(1), hir1.properties().minimum_len()); |
2248 | /// assert_eq!(Some(3), hir1.properties().maximum_len()); |
2249 | /// |
2250 | /// let hir2 = parse(r"[a&&b]" )?; |
2251 | /// assert_eq!(None, hir2.properties().minimum_len()); |
2252 | /// assert_eq!(None, hir2.properties().maximum_len()); |
2253 | /// |
2254 | /// let hir3 = parse(r"wxy?z?" )?; |
2255 | /// assert_eq!(Some(2), hir3.properties().minimum_len()); |
2256 | /// assert_eq!(Some(4), hir3.properties().maximum_len()); |
2257 | /// |
2258 | /// let unioned = Properties::union([ |
2259 | /// hir1.properties(), |
2260 | /// hir2.properties(), |
2261 | /// hir3.properties(), |
2262 | /// ]); |
2263 | /// assert_eq!(None, unioned.minimum_len()); |
2264 | /// assert_eq!(None, unioned.maximum_len()); |
2265 | /// |
2266 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2267 | /// ``` |
2268 | /// |
2269 | /// The maximum length can also be "poisoned" by a pattern that has no |
2270 | /// upper bound on the length of a match. The minimum length remains |
2271 | /// unaffected: |
2272 | /// |
2273 | /// ``` |
2274 | /// use regex_syntax::{hir::Properties, parse}; |
2275 | /// |
2276 | /// let hir1 = parse("ab?c?" )?; |
2277 | /// assert_eq!(Some(1), hir1.properties().minimum_len()); |
2278 | /// assert_eq!(Some(3), hir1.properties().maximum_len()); |
2279 | /// |
2280 | /// let hir2 = parse(r"a+" )?; |
2281 | /// assert_eq!(Some(1), hir2.properties().minimum_len()); |
2282 | /// assert_eq!(None, hir2.properties().maximum_len()); |
2283 | /// |
2284 | /// let hir3 = parse(r"wxy?z?" )?; |
2285 | /// assert_eq!(Some(2), hir3.properties().minimum_len()); |
2286 | /// assert_eq!(Some(4), hir3.properties().maximum_len()); |
2287 | /// |
2288 | /// let unioned = Properties::union([ |
2289 | /// hir1.properties(), |
2290 | /// hir2.properties(), |
2291 | /// hir3.properties(), |
2292 | /// ]); |
2293 | /// assert_eq!(Some(1), unioned.minimum_len()); |
2294 | /// assert_eq!(None, unioned.maximum_len()); |
2295 | /// |
2296 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2297 | /// ``` |
2298 | pub fn union<I, P>(props: I) -> Properties |
2299 | where |
2300 | I: IntoIterator<Item = P>, |
2301 | P: core::borrow::Borrow<Properties>, |
2302 | { |
2303 | let mut it = props.into_iter().peekable(); |
2304 | // While empty alternations aren't possible, we still behave as if they |
2305 | // are. When we have an empty alternate, then clearly the look-around |
2306 | // prefix and suffix is empty. Otherwise, it is the intersection of all |
2307 | // prefixes and suffixes (respectively) of the branches. |
2308 | let fix = if it.peek().is_none() { |
2309 | LookSet::empty() |
2310 | } else { |
2311 | LookSet::full() |
2312 | }; |
2313 | // And also, an empty alternate means we have 0 static capture groups, |
2314 | // but we otherwise start with the number corresponding to the first |
2315 | // alternate. If any subsequent alternate has a different number of |
2316 | // static capture groups, then we overall have a variation and not a |
2317 | // static number of groups. |
2318 | let static_explicit_captures_len = |
2319 | it.peek().and_then(|p| p.borrow().static_explicit_captures_len()); |
2320 | // The base case is an empty alternation, which matches nothing. |
2321 | // Note though that empty alternations aren't possible, because the |
2322 | // Hir::alternation smart constructor rewrites those as empty character |
2323 | // classes. |
2324 | let mut props = PropertiesI { |
2325 | minimum_len: None, |
2326 | maximum_len: None, |
2327 | look_set: LookSet::empty(), |
2328 | look_set_prefix: fix, |
2329 | look_set_suffix: fix, |
2330 | look_set_prefix_any: LookSet::empty(), |
2331 | look_set_suffix_any: LookSet::empty(), |
2332 | utf8: true, |
2333 | explicit_captures_len: 0, |
2334 | static_explicit_captures_len, |
2335 | literal: false, |
2336 | alternation_literal: true, |
2337 | }; |
2338 | let (mut min_poisoned, mut max_poisoned) = (false, false); |
2339 | // Handle properties that need to visit every child hir. |
2340 | for prop in it { |
2341 | let p = prop.borrow(); |
2342 | props.look_set.set_union(p.look_set()); |
2343 | props.look_set_prefix.set_intersect(p.look_set_prefix()); |
2344 | props.look_set_suffix.set_intersect(p.look_set_suffix()); |
2345 | props.look_set_prefix_any.set_union(p.look_set_prefix_any()); |
2346 | props.look_set_suffix_any.set_union(p.look_set_suffix_any()); |
2347 | props.utf8 = props.utf8 && p.is_utf8(); |
2348 | props.explicit_captures_len = props |
2349 | .explicit_captures_len |
2350 | .saturating_add(p.explicit_captures_len()); |
2351 | if props.static_explicit_captures_len |
2352 | != p.static_explicit_captures_len() |
2353 | { |
2354 | props.static_explicit_captures_len = None; |
2355 | } |
2356 | props.alternation_literal = |
2357 | props.alternation_literal && p.is_literal(); |
2358 | if !min_poisoned { |
2359 | if let Some(xmin) = p.minimum_len() { |
2360 | if props.minimum_len.map_or(true, |pmin| xmin < pmin) { |
2361 | props.minimum_len = Some(xmin); |
2362 | } |
2363 | } else { |
2364 | props.minimum_len = None; |
2365 | min_poisoned = true; |
2366 | } |
2367 | } |
2368 | if !max_poisoned { |
2369 | if let Some(xmax) = p.maximum_len() { |
2370 | if props.maximum_len.map_or(true, |pmax| xmax > pmax) { |
2371 | props.maximum_len = Some(xmax); |
2372 | } |
2373 | } else { |
2374 | props.maximum_len = None; |
2375 | max_poisoned = true; |
2376 | } |
2377 | } |
2378 | } |
2379 | Properties(Box::new(props)) |
2380 | } |
2381 | } |
2382 | |
2383 | impl Properties { |
2384 | /// Create a new set of HIR properties for an empty regex. |
2385 | fn empty() -> Properties { |
2386 | let inner = PropertiesI { |
2387 | minimum_len: Some(0), |
2388 | maximum_len: Some(0), |
2389 | look_set: LookSet::empty(), |
2390 | look_set_prefix: LookSet::empty(), |
2391 | look_set_suffix: LookSet::empty(), |
2392 | look_set_prefix_any: LookSet::empty(), |
2393 | look_set_suffix_any: LookSet::empty(), |
2394 | // It is debatable whether an empty regex always matches at valid |
2395 | // UTF-8 boundaries. Strictly speaking, at a byte oriented view, |
2396 | // it is clearly false. There are, for example, many empty strings |
2397 | // between the bytes encoding a '☃'. |
2398 | // |
2399 | // However, when Unicode mode is enabled, the fundamental atom |
2400 | // of matching is really a codepoint. And in that scenario, an |
2401 | // empty regex is defined to only match at valid UTF-8 boundaries |
2402 | // and to never split a codepoint. It just so happens that this |
2403 | // enforcement is somewhat tricky to do for regexes that match |
2404 | // the empty string inside regex engines themselves. It usually |
2405 | // requires some layer above the regex engine to filter out such |
2406 | // matches. |
2407 | // |
2408 | // In any case, 'true' is really the only coherent option. If it |
2409 | // were false, for example, then 'a*' would also need to be false |
2410 | // since it too can match the empty string. |
2411 | utf8: true, |
2412 | explicit_captures_len: 0, |
2413 | static_explicit_captures_len: Some(0), |
2414 | literal: false, |
2415 | alternation_literal: false, |
2416 | }; |
2417 | Properties(Box::new(inner)) |
2418 | } |
2419 | |
2420 | /// Create a new set of HIR properties for a literal regex. |
2421 | fn literal(lit: &Literal) -> Properties { |
2422 | let inner = PropertiesI { |
2423 | minimum_len: Some(lit.0.len()), |
2424 | maximum_len: Some(lit.0.len()), |
2425 | look_set: LookSet::empty(), |
2426 | look_set_prefix: LookSet::empty(), |
2427 | look_set_suffix: LookSet::empty(), |
2428 | look_set_prefix_any: LookSet::empty(), |
2429 | look_set_suffix_any: LookSet::empty(), |
2430 | utf8: core::str::from_utf8(&lit.0).is_ok(), |
2431 | explicit_captures_len: 0, |
2432 | static_explicit_captures_len: Some(0), |
2433 | literal: true, |
2434 | alternation_literal: true, |
2435 | }; |
2436 | Properties(Box::new(inner)) |
2437 | } |
2438 | |
2439 | /// Create a new set of HIR properties for a character class. |
2440 | fn class(class: &Class) -> Properties { |
2441 | let inner = PropertiesI { |
2442 | minimum_len: class.minimum_len(), |
2443 | maximum_len: class.maximum_len(), |
2444 | look_set: LookSet::empty(), |
2445 | look_set_prefix: LookSet::empty(), |
2446 | look_set_suffix: LookSet::empty(), |
2447 | look_set_prefix_any: LookSet::empty(), |
2448 | look_set_suffix_any: LookSet::empty(), |
2449 | utf8: class.is_utf8(), |
2450 | explicit_captures_len: 0, |
2451 | static_explicit_captures_len: Some(0), |
2452 | literal: false, |
2453 | alternation_literal: false, |
2454 | }; |
2455 | Properties(Box::new(inner)) |
2456 | } |
2457 | |
2458 | /// Create a new set of HIR properties for a look-around assertion. |
2459 | fn look(look: Look) -> Properties { |
2460 | let inner = PropertiesI { |
2461 | minimum_len: Some(0), |
2462 | maximum_len: Some(0), |
2463 | look_set: LookSet::singleton(look), |
2464 | look_set_prefix: LookSet::singleton(look), |
2465 | look_set_suffix: LookSet::singleton(look), |
2466 | look_set_prefix_any: LookSet::singleton(look), |
2467 | look_set_suffix_any: LookSet::singleton(look), |
2468 | // This requires a little explanation. Basically, we don't consider |
2469 | // matching an empty string to be equivalent to matching invalid |
2470 | // UTF-8, even though technically matching every empty string will |
2471 | // split the UTF-8 encoding of a single codepoint when treating a |
2472 | // UTF-8 encoded string as a sequence of bytes. Our defense here is |
2473 | // that in such a case, a codepoint should logically be treated as |
2474 | // the fundamental atom for matching, and thus the only valid match |
2475 | // points are between codepoints and not bytes. |
2476 | // |
2477 | // More practically, this is true here because it's also true |
2478 | // for 'Hir::empty()', otherwise something like 'a*' would be |
2479 | // considered to match invalid UTF-8. That in turn makes this |
2480 | // property borderline useless. |
2481 | utf8: true, |
2482 | explicit_captures_len: 0, |
2483 | static_explicit_captures_len: Some(0), |
2484 | literal: false, |
2485 | alternation_literal: false, |
2486 | }; |
2487 | Properties(Box::new(inner)) |
2488 | } |
2489 | |
2490 | /// Create a new set of HIR properties for a repetition. |
2491 | fn repetition(rep: &Repetition) -> Properties { |
2492 | let p = rep.sub.properties(); |
2493 | let minimum_len = p.minimum_len().map(|child_min| { |
2494 | let rep_min = usize::try_from(rep.min).unwrap_or(usize::MAX); |
2495 | child_min.saturating_mul(rep_min) |
2496 | }); |
2497 | let maximum_len = rep.max.and_then(|rep_max| { |
2498 | let rep_max = usize::try_from(rep_max).ok()?; |
2499 | let child_max = p.maximum_len()?; |
2500 | child_max.checked_mul(rep_max) |
2501 | }); |
2502 | |
2503 | let mut inner = PropertiesI { |
2504 | minimum_len, |
2505 | maximum_len, |
2506 | look_set: p.look_set(), |
2507 | look_set_prefix: LookSet::empty(), |
2508 | look_set_suffix: LookSet::empty(), |
2509 | look_set_prefix_any: p.look_set_prefix_any(), |
2510 | look_set_suffix_any: p.look_set_suffix_any(), |
2511 | utf8: p.is_utf8(), |
2512 | explicit_captures_len: p.explicit_captures_len(), |
2513 | static_explicit_captures_len: p.static_explicit_captures_len(), |
2514 | literal: false, |
2515 | alternation_literal: false, |
2516 | }; |
2517 | // If the repetition operator can match the empty string, then its |
2518 | // lookset prefix and suffixes themselves remain empty since they are |
2519 | // no longer required to match. |
2520 | if rep.min > 0 { |
2521 | inner.look_set_prefix = p.look_set_prefix(); |
2522 | inner.look_set_suffix = p.look_set_suffix(); |
2523 | } |
2524 | // If the static captures len of the sub-expression is not known or |
2525 | // is greater than zero, then it automatically propagates to the |
2526 | // repetition, regardless of the repetition. Otherwise, it might |
2527 | // change, but only when the repetition can match 0 times. |
2528 | if rep.min == 0 |
2529 | && inner.static_explicit_captures_len.map_or(false, |len| len > 0) |
2530 | { |
2531 | // If we require a match 0 times, then our captures len is |
2532 | // guaranteed to be zero. Otherwise, if we *can* match the empty |
2533 | // string, then it's impossible to know how many captures will be |
2534 | // in the resulting match. |
2535 | if rep.max == Some(0) { |
2536 | inner.static_explicit_captures_len = Some(0); |
2537 | } else { |
2538 | inner.static_explicit_captures_len = None; |
2539 | } |
2540 | } |
2541 | Properties(Box::new(inner)) |
2542 | } |
2543 | |
2544 | /// Create a new set of HIR properties for a capture. |
2545 | fn capture(capture: &Capture) -> Properties { |
2546 | let p = capture.sub.properties(); |
2547 | Properties(Box::new(PropertiesI { |
2548 | explicit_captures_len: p.explicit_captures_len().saturating_add(1), |
2549 | static_explicit_captures_len: p |
2550 | .static_explicit_captures_len() |
2551 | .map(|len| len.saturating_add(1)), |
2552 | literal: false, |
2553 | alternation_literal: false, |
2554 | ..*p.0.clone() |
2555 | })) |
2556 | } |
2557 | |
2558 | /// Create a new set of HIR properties for a concatenation. |
2559 | fn concat(concat: &[Hir]) -> Properties { |
2560 | // The base case is an empty concatenation, which matches the empty |
2561 | // string. Note though that empty concatenations aren't possible, |
2562 | // because the Hir::concat smart constructor rewrites those as |
2563 | // Hir::empty. |
2564 | let mut props = PropertiesI { |
2565 | minimum_len: Some(0), |
2566 | maximum_len: Some(0), |
2567 | look_set: LookSet::empty(), |
2568 | look_set_prefix: LookSet::empty(), |
2569 | look_set_suffix: LookSet::empty(), |
2570 | look_set_prefix_any: LookSet::empty(), |
2571 | look_set_suffix_any: LookSet::empty(), |
2572 | utf8: true, |
2573 | explicit_captures_len: 0, |
2574 | static_explicit_captures_len: Some(0), |
2575 | literal: true, |
2576 | alternation_literal: true, |
2577 | }; |
2578 | // Handle properties that need to visit every child hir. |
2579 | for x in concat.iter() { |
2580 | let p = x.properties(); |
2581 | props.look_set.set_union(p.look_set()); |
2582 | props.utf8 = props.utf8 && p.is_utf8(); |
2583 | props.explicit_captures_len = props |
2584 | .explicit_captures_len |
2585 | .saturating_add(p.explicit_captures_len()); |
2586 | props.static_explicit_captures_len = p |
2587 | .static_explicit_captures_len() |
2588 | .and_then(|len1| { |
2589 | Some((len1, props.static_explicit_captures_len?)) |
2590 | }) |
2591 | .and_then(|(len1, len2)| Some(len1.saturating_add(len2))); |
2592 | props.literal = props.literal && p.is_literal(); |
2593 | props.alternation_literal = |
2594 | props.alternation_literal && p.is_alternation_literal(); |
2595 | if let Some(minimum_len) = props.minimum_len { |
2596 | match p.minimum_len() { |
2597 | None => props.minimum_len = None, |
2598 | Some(len) => { |
2599 | // We use saturating arithmetic here because the |
2600 | // minimum is just a lower bound. We can't go any |
2601 | // higher than what our number types permit. |
2602 | props.minimum_len = |
2603 | Some(minimum_len.saturating_add(len)); |
2604 | } |
2605 | } |
2606 | } |
2607 | if let Some(maximum_len) = props.maximum_len { |
2608 | match p.maximum_len() { |
2609 | None => props.maximum_len = None, |
2610 | Some(len) => { |
2611 | props.maximum_len = maximum_len.checked_add(len) |
2612 | } |
2613 | } |
2614 | } |
2615 | } |
2616 | // Handle the prefix properties, which only requires visiting |
2617 | // child exprs until one matches more than the empty string. |
2618 | let mut it = concat.iter(); |
2619 | while let Some(x) = it.next() { |
2620 | props.look_set_prefix.set_union(x.properties().look_set_prefix()); |
2621 | props |
2622 | .look_set_prefix_any |
2623 | .set_union(x.properties().look_set_prefix_any()); |
2624 | if x.properties().maximum_len().map_or(true, |x| x > 0) { |
2625 | break; |
2626 | } |
2627 | } |
2628 | // Same thing for the suffix properties, but in reverse. |
2629 | let mut it = concat.iter().rev(); |
2630 | while let Some(x) = it.next() { |
2631 | props.look_set_suffix.set_union(x.properties().look_set_suffix()); |
2632 | props |
2633 | .look_set_suffix_any |
2634 | .set_union(x.properties().look_set_suffix_any()); |
2635 | if x.properties().maximum_len().map_or(true, |x| x > 0) { |
2636 | break; |
2637 | } |
2638 | } |
2639 | Properties(Box::new(props)) |
2640 | } |
2641 | |
2642 | /// Create a new set of HIR properties for a concatenation. |
2643 | fn alternation(alts: &[Hir]) -> Properties { |
2644 | Properties::union(alts.iter().map(|hir| hir.properties())) |
2645 | } |
2646 | } |
2647 | |
2648 | /// A set of look-around assertions. |
2649 | /// |
2650 | /// This is useful for efficiently tracking look-around assertions. For |
2651 | /// example, an [`Hir`] provides properties that return `LookSet`s. |
2652 | #[derive (Clone, Copy, Default, Eq, PartialEq)] |
2653 | pub struct LookSet { |
2654 | /// The underlying representation this set is exposed to make it possible |
2655 | /// to store it somewhere efficiently. The representation is that |
2656 | /// of a bitset, where each assertion occupies bit `i` where `i = |
2657 | /// Look::as_repr()`. |
2658 | /// |
2659 | /// Note that users of this internal representation must permit the full |
2660 | /// range of `u16` values to be represented. For example, even if the |
2661 | /// current implementation only makes use of the 10 least significant bits, |
2662 | /// it may use more bits in a future semver compatible release. |
2663 | pub bits: u32, |
2664 | } |
2665 | |
2666 | impl LookSet { |
2667 | /// Create an empty set of look-around assertions. |
2668 | #[inline ] |
2669 | pub fn empty() -> LookSet { |
2670 | LookSet { bits: 0 } |
2671 | } |
2672 | |
2673 | /// Create a full set of look-around assertions. |
2674 | /// |
2675 | /// This set contains all possible look-around assertions. |
2676 | #[inline ] |
2677 | pub fn full() -> LookSet { |
2678 | LookSet { bits: !0 } |
2679 | } |
2680 | |
2681 | /// Create a look-around set containing the look-around assertion given. |
2682 | /// |
2683 | /// This is a convenience routine for creating an empty set and inserting |
2684 | /// one look-around assertions. |
2685 | #[inline ] |
2686 | pub fn singleton(look: Look) -> LookSet { |
2687 | LookSet::empty().insert(look) |
2688 | } |
2689 | |
2690 | /// Returns the total number of look-around assertions in this set. |
2691 | #[inline ] |
2692 | pub fn len(self) -> usize { |
2693 | // OK because max value always fits in a u8, which in turn always |
2694 | // fits in a usize, regardless of target. |
2695 | usize::try_from(self.bits.count_ones()).unwrap() |
2696 | } |
2697 | |
2698 | /// Returns true if and only if this set is empty. |
2699 | #[inline ] |
2700 | pub fn is_empty(self) -> bool { |
2701 | self.len() == 0 |
2702 | } |
2703 | |
2704 | /// Returns true if and only if the given look-around assertion is in this |
2705 | /// set. |
2706 | #[inline ] |
2707 | pub fn contains(self, look: Look) -> bool { |
2708 | self.bits & look.as_repr() != 0 |
2709 | } |
2710 | |
2711 | /// Returns true if and only if this set contains any anchor assertions. |
2712 | /// This includes both "start/end of haystack" and "start/end of line." |
2713 | #[inline ] |
2714 | pub fn contains_anchor(&self) -> bool { |
2715 | self.contains_anchor_haystack() || self.contains_anchor_line() |
2716 | } |
2717 | |
2718 | /// Returns true if and only if this set contains any "start/end of |
2719 | /// haystack" anchors. This doesn't include "start/end of line" anchors. |
2720 | #[inline ] |
2721 | pub fn contains_anchor_haystack(&self) -> bool { |
2722 | self.contains(Look::Start) || self.contains(Look::End) |
2723 | } |
2724 | |
2725 | /// Returns true if and only if this set contains any "start/end of line" |
2726 | /// anchors. This doesn't include "start/end of haystack" anchors. This |
2727 | /// includes both `\n` line anchors and CRLF (`\r\n`) aware line anchors. |
2728 | #[inline ] |
2729 | pub fn contains_anchor_line(&self) -> bool { |
2730 | self.contains(Look::StartLF) |
2731 | || self.contains(Look::EndLF) |
2732 | || self.contains(Look::StartCRLF) |
2733 | || self.contains(Look::EndCRLF) |
2734 | } |
2735 | |
2736 | /// Returns true if and only if this set contains any "start/end of line" |
2737 | /// anchors that only treat `\n` as line terminators. This does not include |
2738 | /// haystack anchors or CRLF aware line anchors. |
2739 | #[inline ] |
2740 | pub fn contains_anchor_lf(&self) -> bool { |
2741 | self.contains(Look::StartLF) || self.contains(Look::EndLF) |
2742 | } |
2743 | |
2744 | /// Returns true if and only if this set contains any "start/end of line" |
2745 | /// anchors that are CRLF-aware. This doesn't include "start/end of |
2746 | /// haystack" or "start/end of line-feed" anchors. |
2747 | #[inline ] |
2748 | pub fn contains_anchor_crlf(&self) -> bool { |
2749 | self.contains(Look::StartCRLF) || self.contains(Look::EndCRLF) |
2750 | } |
2751 | |
2752 | /// Returns true if and only if this set contains any word boundary or |
2753 | /// negated word boundary assertions. This include both Unicode and ASCII |
2754 | /// word boundaries. |
2755 | #[inline ] |
2756 | pub fn contains_word(self) -> bool { |
2757 | self.contains_word_unicode() || self.contains_word_ascii() |
2758 | } |
2759 | |
2760 | /// Returns true if and only if this set contains any Unicode word boundary |
2761 | /// or negated Unicode word boundary assertions. |
2762 | #[inline ] |
2763 | pub fn contains_word_unicode(self) -> bool { |
2764 | self.contains(Look::WordUnicode) |
2765 | || self.contains(Look::WordUnicodeNegate) |
2766 | || self.contains(Look::WordStartUnicode) |
2767 | || self.contains(Look::WordEndUnicode) |
2768 | || self.contains(Look::WordStartHalfUnicode) |
2769 | || self.contains(Look::WordEndHalfUnicode) |
2770 | } |
2771 | |
2772 | /// Returns true if and only if this set contains any ASCII word boundary |
2773 | /// or negated ASCII word boundary assertions. |
2774 | #[inline ] |
2775 | pub fn contains_word_ascii(self) -> bool { |
2776 | self.contains(Look::WordAscii) |
2777 | || self.contains(Look::WordAsciiNegate) |
2778 | || self.contains(Look::WordStartAscii) |
2779 | || self.contains(Look::WordEndAscii) |
2780 | || self.contains(Look::WordStartHalfAscii) |
2781 | || self.contains(Look::WordEndHalfAscii) |
2782 | } |
2783 | |
2784 | /// Returns an iterator over all of the look-around assertions in this set. |
2785 | #[inline ] |
2786 | pub fn iter(self) -> LookSetIter { |
2787 | LookSetIter { set: self } |
2788 | } |
2789 | |
2790 | /// Return a new set that is equivalent to the original, but with the given |
2791 | /// assertion added to it. If the assertion is already in the set, then the |
2792 | /// returned set is equivalent to the original. |
2793 | #[inline ] |
2794 | pub fn insert(self, look: Look) -> LookSet { |
2795 | LookSet { bits: self.bits | look.as_repr() } |
2796 | } |
2797 | |
2798 | /// Updates this set in place with the result of inserting the given |
2799 | /// assertion into this set. |
2800 | #[inline ] |
2801 | pub fn set_insert(&mut self, look: Look) { |
2802 | *self = self.insert(look); |
2803 | } |
2804 | |
2805 | /// Return a new set that is equivalent to the original, but with the given |
2806 | /// assertion removed from it. If the assertion is not in the set, then the |
2807 | /// returned set is equivalent to the original. |
2808 | #[inline ] |
2809 | pub fn remove(self, look: Look) -> LookSet { |
2810 | LookSet { bits: self.bits & !look.as_repr() } |
2811 | } |
2812 | |
2813 | /// Updates this set in place with the result of removing the given |
2814 | /// assertion from this set. |
2815 | #[inline ] |
2816 | pub fn set_remove(&mut self, look: Look) { |
2817 | *self = self.remove(look); |
2818 | } |
2819 | |
2820 | /// Returns a new set that is the result of subtracting the given set from |
2821 | /// this set. |
2822 | #[inline ] |
2823 | pub fn subtract(self, other: LookSet) -> LookSet { |
2824 | LookSet { bits: self.bits & !other.bits } |
2825 | } |
2826 | |
2827 | /// Updates this set in place with the result of subtracting the given set |
2828 | /// from this set. |
2829 | #[inline ] |
2830 | pub fn set_subtract(&mut self, other: LookSet) { |
2831 | *self = self.subtract(other); |
2832 | } |
2833 | |
2834 | /// Returns a new set that is the union of this and the one given. |
2835 | #[inline ] |
2836 | pub fn union(self, other: LookSet) -> LookSet { |
2837 | LookSet { bits: self.bits | other.bits } |
2838 | } |
2839 | |
2840 | /// Updates this set in place with the result of unioning it with the one |
2841 | /// given. |
2842 | #[inline ] |
2843 | pub fn set_union(&mut self, other: LookSet) { |
2844 | *self = self.union(other); |
2845 | } |
2846 | |
2847 | /// Returns a new set that is the intersection of this and the one given. |
2848 | #[inline ] |
2849 | pub fn intersect(self, other: LookSet) -> LookSet { |
2850 | LookSet { bits: self.bits & other.bits } |
2851 | } |
2852 | |
2853 | /// Updates this set in place with the result of intersecting it with the |
2854 | /// one given. |
2855 | #[inline ] |
2856 | pub fn set_intersect(&mut self, other: LookSet) { |
2857 | *self = self.intersect(other); |
2858 | } |
2859 | |
2860 | /// Return a `LookSet` from the slice given as a native endian 32-bit |
2861 | /// integer. |
2862 | /// |
2863 | /// # Panics |
2864 | /// |
2865 | /// This panics if `slice.len() < 4`. |
2866 | #[inline ] |
2867 | pub fn read_repr(slice: &[u8]) -> LookSet { |
2868 | let bits = u32::from_ne_bytes(slice[..4].try_into().unwrap()); |
2869 | LookSet { bits } |
2870 | } |
2871 | |
2872 | /// Write a `LookSet` as a native endian 32-bit integer to the beginning |
2873 | /// of the slice given. |
2874 | /// |
2875 | /// # Panics |
2876 | /// |
2877 | /// This panics if `slice.len() < 4`. |
2878 | #[inline ] |
2879 | pub fn write_repr(self, slice: &mut [u8]) { |
2880 | let raw = self.bits.to_ne_bytes(); |
2881 | slice[0] = raw[0]; |
2882 | slice[1] = raw[1]; |
2883 | slice[2] = raw[2]; |
2884 | slice[3] = raw[3]; |
2885 | } |
2886 | } |
2887 | |
2888 | impl core::fmt::Debug for LookSet { |
2889 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2890 | if self.is_empty() { |
2891 | return write!(f, "∅" ); |
2892 | } |
2893 | for look: Look in self.iter() { |
2894 | write!(f, " {}" , look.as_char())?; |
2895 | } |
2896 | Ok(()) |
2897 | } |
2898 | } |
2899 | |
2900 | /// An iterator over all look-around assertions in a [`LookSet`]. |
2901 | /// |
2902 | /// This iterator is created by [`LookSet::iter`]. |
2903 | #[derive (Clone, Debug)] |
2904 | pub struct LookSetIter { |
2905 | set: LookSet, |
2906 | } |
2907 | |
2908 | impl Iterator for LookSetIter { |
2909 | type Item = Look; |
2910 | |
2911 | #[inline ] |
2912 | fn next(&mut self) -> Option<Look> { |
2913 | if self.set.is_empty() { |
2914 | return None; |
2915 | } |
2916 | // We'll never have more than u8::MAX distinct look-around assertions, |
2917 | // so 'bit' will always fit into a u16. |
2918 | let bit: u16 = u16::try_from(self.set.bits.trailing_zeros()).unwrap(); |
2919 | let look: Look = Look::from_repr(1 << bit)?; |
2920 | self.set = self.set.remove(look); |
2921 | Some(look) |
2922 | } |
2923 | } |
2924 | |
2925 | /// Given a sequence of HIR values where each value corresponds to a Unicode |
2926 | /// class (or an all-ASCII byte class), return a single Unicode class |
2927 | /// corresponding to the union of the classes found. |
2928 | fn class_chars(hirs: &[Hir]) -> Option<Class> { |
2929 | let mut cls: ClassUnicode = ClassUnicode::new(ranges:vec![]); |
2930 | for hir: &Hir in hirs.iter() { |
2931 | match *hir.kind() { |
2932 | HirKind::Class(Class::Unicode(ref cls2: &ClassUnicode)) => { |
2933 | cls.union(cls2); |
2934 | } |
2935 | HirKind::Class(Class::Bytes(ref cls2: &ClassBytes)) => { |
2936 | cls.union(&cls2.to_unicode_class()?); |
2937 | } |
2938 | _ => return None, |
2939 | }; |
2940 | } |
2941 | Some(Class::Unicode(cls)) |
2942 | } |
2943 | |
2944 | /// Given a sequence of HIR values where each value corresponds to a byte class |
2945 | /// (or an all-ASCII Unicode class), return a single byte class corresponding |
2946 | /// to the union of the classes found. |
2947 | fn class_bytes(hirs: &[Hir]) -> Option<Class> { |
2948 | let mut cls: ClassBytes = ClassBytes::new(ranges:vec![]); |
2949 | for hir: &Hir in hirs.iter() { |
2950 | match *hir.kind() { |
2951 | HirKind::Class(Class::Unicode(ref cls2: &ClassUnicode)) => { |
2952 | cls.union(&cls2.to_byte_class()?); |
2953 | } |
2954 | HirKind::Class(Class::Bytes(ref cls2: &ClassBytes)) => { |
2955 | cls.union(cls2); |
2956 | } |
2957 | _ => return None, |
2958 | }; |
2959 | } |
2960 | Some(Class::Bytes(cls)) |
2961 | } |
2962 | |
2963 | /// Given a sequence of HIR values where each value corresponds to a literal |
2964 | /// that is a single `char`, return that sequence of `char`s. Otherwise return |
2965 | /// None. No deduplication is done. |
2966 | fn singleton_chars(hirs: &[Hir]) -> Option<Vec<char>> { |
2967 | let mut singletons: Vec = vec![]; |
2968 | for hir: &Hir in hirs.iter() { |
2969 | let literal: &Box<[u8]> = match *hir.kind() { |
2970 | HirKind::Literal(Literal(ref bytes: &Box<[u8]>)) => bytes, |
2971 | _ => return None, |
2972 | }; |
2973 | let ch: char = match crate::debug::utf8_decode(bytes:literal) { |
2974 | None => return None, |
2975 | Some(Err(_)) => return None, |
2976 | Some(Ok(ch: char)) => ch, |
2977 | }; |
2978 | if literal.len() != ch.len_utf8() { |
2979 | return None; |
2980 | } |
2981 | singletons.push(ch); |
2982 | } |
2983 | Some(singletons) |
2984 | } |
2985 | |
2986 | /// Given a sequence of HIR values where each value corresponds to a literal |
2987 | /// that is a single byte, return that sequence of bytes. Otherwise return |
2988 | /// None. No deduplication is done. |
2989 | fn singleton_bytes(hirs: &[Hir]) -> Option<Vec<u8>> { |
2990 | let mut singletons: Vec = vec![]; |
2991 | for hir: &Hir in hirs.iter() { |
2992 | let literal: &Box<[u8]> = match *hir.kind() { |
2993 | HirKind::Literal(Literal(ref bytes: &Box<[u8]>)) => bytes, |
2994 | _ => return None, |
2995 | }; |
2996 | if literal.len() != 1 { |
2997 | return None; |
2998 | } |
2999 | singletons.push(literal[0]); |
3000 | } |
3001 | Some(singletons) |
3002 | } |
3003 | |
3004 | /// Looks for a common prefix in the list of alternation branches given. If one |
3005 | /// is found, then an equivalent but (hopefully) simplified Hir is returned. |
3006 | /// Otherwise, the original given list of branches is returned unmodified. |
3007 | /// |
3008 | /// This is not quite as good as it could be. Right now, it requires that |
3009 | /// all branches are 'Concat' expressions. It also doesn't do well with |
3010 | /// literals. For example, given 'foofoo|foobar', it will not refactor it to |
3011 | /// 'foo(?:foo|bar)' because literals are flattened into their own special |
3012 | /// concatenation. (One wonders if perhaps 'Literal' should be a single atom |
3013 | /// instead of a string of bytes because of this. Otherwise, handling the |
3014 | /// current representation in this routine will be pretty gnarly. Sigh.) |
3015 | fn lift_common_prefix(hirs: Vec<Hir>) -> Result<Hir, Vec<Hir>> { |
3016 | if hirs.len() <= 1 { |
3017 | return Err(hirs); |
3018 | } |
3019 | let mut prefix = match hirs[0].kind() { |
3020 | HirKind::Concat(ref xs) => &**xs, |
3021 | _ => return Err(hirs), |
3022 | }; |
3023 | if prefix.is_empty() { |
3024 | return Err(hirs); |
3025 | } |
3026 | for h in hirs.iter().skip(1) { |
3027 | let concat = match h.kind() { |
3028 | HirKind::Concat(ref xs) => xs, |
3029 | _ => return Err(hirs), |
3030 | }; |
3031 | let common_len = prefix |
3032 | .iter() |
3033 | .zip(concat.iter()) |
3034 | .take_while(|(x, y)| x == y) |
3035 | .count(); |
3036 | prefix = &prefix[..common_len]; |
3037 | if prefix.is_empty() { |
3038 | return Err(hirs); |
3039 | } |
3040 | } |
3041 | let len = prefix.len(); |
3042 | assert_ne!(0, len); |
3043 | let mut prefix_concat = vec![]; |
3044 | let mut suffix_alts = vec![]; |
3045 | for h in hirs { |
3046 | let mut concat = match h.into_kind() { |
3047 | HirKind::Concat(xs) => xs, |
3048 | // We required all sub-expressions to be |
3049 | // concats above, so we're only here if we |
3050 | // have a concat. |
3051 | _ => unreachable!(), |
3052 | }; |
3053 | suffix_alts.push(Hir::concat(concat.split_off(len))); |
3054 | if prefix_concat.is_empty() { |
3055 | prefix_concat = concat; |
3056 | } |
3057 | } |
3058 | let mut concat = prefix_concat; |
3059 | concat.push(Hir::alternation(suffix_alts)); |
3060 | Ok(Hir::concat(concat)) |
3061 | } |
3062 | |
3063 | #[cfg (test)] |
3064 | mod tests { |
3065 | use super::*; |
3066 | |
3067 | fn uclass(ranges: &[(char, char)]) -> ClassUnicode { |
3068 | let ranges: Vec<ClassUnicodeRange> = ranges |
3069 | .iter() |
3070 | .map(|&(s, e)| ClassUnicodeRange::new(s, e)) |
3071 | .collect(); |
3072 | ClassUnicode::new(ranges) |
3073 | } |
3074 | |
3075 | fn bclass(ranges: &[(u8, u8)]) -> ClassBytes { |
3076 | let ranges: Vec<ClassBytesRange> = |
3077 | ranges.iter().map(|&(s, e)| ClassBytesRange::new(s, e)).collect(); |
3078 | ClassBytes::new(ranges) |
3079 | } |
3080 | |
3081 | fn uranges(cls: &ClassUnicode) -> Vec<(char, char)> { |
3082 | cls.iter().map(|x| (x.start(), x.end())).collect() |
3083 | } |
3084 | |
3085 | #[cfg (feature = "unicode-case" )] |
3086 | fn ucasefold(cls: &ClassUnicode) -> ClassUnicode { |
3087 | let mut cls_ = cls.clone(); |
3088 | cls_.case_fold_simple(); |
3089 | cls_ |
3090 | } |
3091 | |
3092 | fn uunion(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
3093 | let mut cls_ = cls1.clone(); |
3094 | cls_.union(cls2); |
3095 | cls_ |
3096 | } |
3097 | |
3098 | fn uintersect(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
3099 | let mut cls_ = cls1.clone(); |
3100 | cls_.intersect(cls2); |
3101 | cls_ |
3102 | } |
3103 | |
3104 | fn udifference(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
3105 | let mut cls_ = cls1.clone(); |
3106 | cls_.difference(cls2); |
3107 | cls_ |
3108 | } |
3109 | |
3110 | fn usymdifference( |
3111 | cls1: &ClassUnicode, |
3112 | cls2: &ClassUnicode, |
3113 | ) -> ClassUnicode { |
3114 | let mut cls_ = cls1.clone(); |
3115 | cls_.symmetric_difference(cls2); |
3116 | cls_ |
3117 | } |
3118 | |
3119 | fn unegate(cls: &ClassUnicode) -> ClassUnicode { |
3120 | let mut cls_ = cls.clone(); |
3121 | cls_.negate(); |
3122 | cls_ |
3123 | } |
3124 | |
3125 | fn branges(cls: &ClassBytes) -> Vec<(u8, u8)> { |
3126 | cls.iter().map(|x| (x.start(), x.end())).collect() |
3127 | } |
3128 | |
3129 | fn bcasefold(cls: &ClassBytes) -> ClassBytes { |
3130 | let mut cls_ = cls.clone(); |
3131 | cls_.case_fold_simple(); |
3132 | cls_ |
3133 | } |
3134 | |
3135 | fn bunion(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3136 | let mut cls_ = cls1.clone(); |
3137 | cls_.union(cls2); |
3138 | cls_ |
3139 | } |
3140 | |
3141 | fn bintersect(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3142 | let mut cls_ = cls1.clone(); |
3143 | cls_.intersect(cls2); |
3144 | cls_ |
3145 | } |
3146 | |
3147 | fn bdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3148 | let mut cls_ = cls1.clone(); |
3149 | cls_.difference(cls2); |
3150 | cls_ |
3151 | } |
3152 | |
3153 | fn bsymdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3154 | let mut cls_ = cls1.clone(); |
3155 | cls_.symmetric_difference(cls2); |
3156 | cls_ |
3157 | } |
3158 | |
3159 | fn bnegate(cls: &ClassBytes) -> ClassBytes { |
3160 | let mut cls_ = cls.clone(); |
3161 | cls_.negate(); |
3162 | cls_ |
3163 | } |
3164 | |
3165 | #[test ] |
3166 | fn class_range_canonical_unicode() { |
3167 | let range = ClassUnicodeRange::new(' \u{00FF}' , ' \0' ); |
3168 | assert_eq!(' \0' , range.start()); |
3169 | assert_eq!(' \u{00FF}' , range.end()); |
3170 | } |
3171 | |
3172 | #[test ] |
3173 | fn class_range_canonical_bytes() { |
3174 | let range = ClassBytesRange::new(b' \xFF' , b' \0' ); |
3175 | assert_eq!(b' \0' , range.start()); |
3176 | assert_eq!(b' \xFF' , range.end()); |
3177 | } |
3178 | |
3179 | #[test ] |
3180 | fn class_canonicalize_unicode() { |
3181 | let cls = uclass(&[('a' , 'c' ), ('x' , 'z' )]); |
3182 | let expected = vec![('a' , 'c' ), ('x' , 'z' )]; |
3183 | assert_eq!(expected, uranges(&cls)); |
3184 | |
3185 | let cls = uclass(&[('x' , 'z' ), ('a' , 'c' )]); |
3186 | let expected = vec![('a' , 'c' ), ('x' , 'z' )]; |
3187 | assert_eq!(expected, uranges(&cls)); |
3188 | |
3189 | let cls = uclass(&[('x' , 'z' ), ('w' , 'y' )]); |
3190 | let expected = vec![('w' , 'z' )]; |
3191 | assert_eq!(expected, uranges(&cls)); |
3192 | |
3193 | let cls = uclass(&[ |
3194 | ('c' , 'f' ), |
3195 | ('a' , 'g' ), |
3196 | ('d' , 'j' ), |
3197 | ('a' , 'c' ), |
3198 | ('m' , 'p' ), |
3199 | ('l' , 's' ), |
3200 | ]); |
3201 | let expected = vec![('a' , 'j' ), ('l' , 's' )]; |
3202 | assert_eq!(expected, uranges(&cls)); |
3203 | |
3204 | let cls = uclass(&[('x' , 'z' ), ('u' , 'w' )]); |
3205 | let expected = vec![('u' , 'z' )]; |
3206 | assert_eq!(expected, uranges(&cls)); |
3207 | |
3208 | let cls = uclass(&[(' \x00' , ' \u{10FFFF}' ), (' \x00' , ' \u{10FFFF}' )]); |
3209 | let expected = vec![(' \x00' , ' \u{10FFFF}' )]; |
3210 | assert_eq!(expected, uranges(&cls)); |
3211 | |
3212 | let cls = uclass(&[('a' , 'a' ), ('b' , 'b' )]); |
3213 | let expected = vec![('a' , 'b' )]; |
3214 | assert_eq!(expected, uranges(&cls)); |
3215 | } |
3216 | |
3217 | #[test ] |
3218 | fn class_canonicalize_bytes() { |
3219 | let cls = bclass(&[(b'a' , b'c' ), (b'x' , b'z' )]); |
3220 | let expected = vec![(b'a' , b'c' ), (b'x' , b'z' )]; |
3221 | assert_eq!(expected, branges(&cls)); |
3222 | |
3223 | let cls = bclass(&[(b'x' , b'z' ), (b'a' , b'c' )]); |
3224 | let expected = vec![(b'a' , b'c' ), (b'x' , b'z' )]; |
3225 | assert_eq!(expected, branges(&cls)); |
3226 | |
3227 | let cls = bclass(&[(b'x' , b'z' ), (b'w' , b'y' )]); |
3228 | let expected = vec![(b'w' , b'z' )]; |
3229 | assert_eq!(expected, branges(&cls)); |
3230 | |
3231 | let cls = bclass(&[ |
3232 | (b'c' , b'f' ), |
3233 | (b'a' , b'g' ), |
3234 | (b'd' , b'j' ), |
3235 | (b'a' , b'c' ), |
3236 | (b'm' , b'p' ), |
3237 | (b'l' , b's' ), |
3238 | ]); |
3239 | let expected = vec![(b'a' , b'j' ), (b'l' , b's' )]; |
3240 | assert_eq!(expected, branges(&cls)); |
3241 | |
3242 | let cls = bclass(&[(b'x' , b'z' ), (b'u' , b'w' )]); |
3243 | let expected = vec![(b'u' , b'z' )]; |
3244 | assert_eq!(expected, branges(&cls)); |
3245 | |
3246 | let cls = bclass(&[(b' \x00' , b' \xFF' ), (b' \x00' , b' \xFF' )]); |
3247 | let expected = vec![(b' \x00' , b' \xFF' )]; |
3248 | assert_eq!(expected, branges(&cls)); |
3249 | |
3250 | let cls = bclass(&[(b'a' , b'a' ), (b'b' , b'b' )]); |
3251 | let expected = vec![(b'a' , b'b' )]; |
3252 | assert_eq!(expected, branges(&cls)); |
3253 | } |
3254 | |
3255 | #[test ] |
3256 | #[cfg (feature = "unicode-case" )] |
3257 | fn class_case_fold_unicode() { |
3258 | let cls = uclass(&[ |
3259 | ('C' , 'F' ), |
3260 | ('A' , 'G' ), |
3261 | ('D' , 'J' ), |
3262 | ('A' , 'C' ), |
3263 | ('M' , 'P' ), |
3264 | ('L' , 'S' ), |
3265 | ('c' , 'f' ), |
3266 | ]); |
3267 | let expected = uclass(&[ |
3268 | ('A' , 'J' ), |
3269 | ('L' , 'S' ), |
3270 | ('a' , 'j' ), |
3271 | ('l' , 's' ), |
3272 | (' \u{17F}' , ' \u{17F}' ), |
3273 | ]); |
3274 | assert_eq!(expected, ucasefold(&cls)); |
3275 | |
3276 | let cls = uclass(&[('A' , 'Z' )]); |
3277 | let expected = uclass(&[ |
3278 | ('A' , 'Z' ), |
3279 | ('a' , 'z' ), |
3280 | (' \u{17F}' , ' \u{17F}' ), |
3281 | (' \u{212A}' , ' \u{212A}' ), |
3282 | ]); |
3283 | assert_eq!(expected, ucasefold(&cls)); |
3284 | |
3285 | let cls = uclass(&[('a' , 'z' )]); |
3286 | let expected = uclass(&[ |
3287 | ('A' , 'Z' ), |
3288 | ('a' , 'z' ), |
3289 | (' \u{17F}' , ' \u{17F}' ), |
3290 | (' \u{212A}' , ' \u{212A}' ), |
3291 | ]); |
3292 | assert_eq!(expected, ucasefold(&cls)); |
3293 | |
3294 | let cls = uclass(&[('A' , 'A' ), ('_' , '_' )]); |
3295 | let expected = uclass(&[('A' , 'A' ), ('_' , '_' ), ('a' , 'a' )]); |
3296 | assert_eq!(expected, ucasefold(&cls)); |
3297 | |
3298 | let cls = uclass(&[('A' , 'A' ), ('=' , '=' )]); |
3299 | let expected = uclass(&[('=' , '=' ), ('A' , 'A' ), ('a' , 'a' )]); |
3300 | assert_eq!(expected, ucasefold(&cls)); |
3301 | |
3302 | let cls = uclass(&[(' \x00' , ' \x10' )]); |
3303 | assert_eq!(cls, ucasefold(&cls)); |
3304 | |
3305 | let cls = uclass(&[('k' , 'k' )]); |
3306 | let expected = |
3307 | uclass(&[('K' , 'K' ), ('k' , 'k' ), (' \u{212A}' , ' \u{212A}' )]); |
3308 | assert_eq!(expected, ucasefold(&cls)); |
3309 | |
3310 | let cls = uclass(&[('@' , '@' )]); |
3311 | assert_eq!(cls, ucasefold(&cls)); |
3312 | } |
3313 | |
3314 | #[test ] |
3315 | #[cfg (not(feature = "unicode-case" ))] |
3316 | fn class_case_fold_unicode_disabled() { |
3317 | let mut cls = uclass(&[ |
3318 | ('C' , 'F' ), |
3319 | ('A' , 'G' ), |
3320 | ('D' , 'J' ), |
3321 | ('A' , 'C' ), |
3322 | ('M' , 'P' ), |
3323 | ('L' , 'S' ), |
3324 | ('c' , 'f' ), |
3325 | ]); |
3326 | assert!(cls.try_case_fold_simple().is_err()); |
3327 | } |
3328 | |
3329 | #[test ] |
3330 | #[should_panic ] |
3331 | #[cfg (not(feature = "unicode-case" ))] |
3332 | fn class_case_fold_unicode_disabled_panics() { |
3333 | let mut cls = uclass(&[ |
3334 | ('C' , 'F' ), |
3335 | ('A' , 'G' ), |
3336 | ('D' , 'J' ), |
3337 | ('A' , 'C' ), |
3338 | ('M' , 'P' ), |
3339 | ('L' , 'S' ), |
3340 | ('c' , 'f' ), |
3341 | ]); |
3342 | cls.case_fold_simple(); |
3343 | } |
3344 | |
3345 | #[test ] |
3346 | fn class_case_fold_bytes() { |
3347 | let cls = bclass(&[ |
3348 | (b'C' , b'F' ), |
3349 | (b'A' , b'G' ), |
3350 | (b'D' , b'J' ), |
3351 | (b'A' , b'C' ), |
3352 | (b'M' , b'P' ), |
3353 | (b'L' , b'S' ), |
3354 | (b'c' , b'f' ), |
3355 | ]); |
3356 | let expected = |
3357 | bclass(&[(b'A' , b'J' ), (b'L' , b'S' ), (b'a' , b'j' ), (b'l' , b's' )]); |
3358 | assert_eq!(expected, bcasefold(&cls)); |
3359 | |
3360 | let cls = bclass(&[(b'A' , b'Z' )]); |
3361 | let expected = bclass(&[(b'A' , b'Z' ), (b'a' , b'z' )]); |
3362 | assert_eq!(expected, bcasefold(&cls)); |
3363 | |
3364 | let cls = bclass(&[(b'a' , b'z' )]); |
3365 | let expected = bclass(&[(b'A' , b'Z' ), (b'a' , b'z' )]); |
3366 | assert_eq!(expected, bcasefold(&cls)); |
3367 | |
3368 | let cls = bclass(&[(b'A' , b'A' ), (b'_' , b'_' )]); |
3369 | let expected = bclass(&[(b'A' , b'A' ), (b'_' , b'_' ), (b'a' , b'a' )]); |
3370 | assert_eq!(expected, bcasefold(&cls)); |
3371 | |
3372 | let cls = bclass(&[(b'A' , b'A' ), (b'=' , b'=' )]); |
3373 | let expected = bclass(&[(b'=' , b'=' ), (b'A' , b'A' ), (b'a' , b'a' )]); |
3374 | assert_eq!(expected, bcasefold(&cls)); |
3375 | |
3376 | let cls = bclass(&[(b' \x00' , b' \x10' )]); |
3377 | assert_eq!(cls, bcasefold(&cls)); |
3378 | |
3379 | let cls = bclass(&[(b'k' , b'k' )]); |
3380 | let expected = bclass(&[(b'K' , b'K' ), (b'k' , b'k' )]); |
3381 | assert_eq!(expected, bcasefold(&cls)); |
3382 | |
3383 | let cls = bclass(&[(b'@' , b'@' )]); |
3384 | assert_eq!(cls, bcasefold(&cls)); |
3385 | } |
3386 | |
3387 | #[test ] |
3388 | fn class_negate_unicode() { |
3389 | let cls = uclass(&[('a' , 'a' )]); |
3390 | let expected = uclass(&[(' \x00' , ' \x60' ), (' \x62' , ' \u{10FFFF}' )]); |
3391 | assert_eq!(expected, unegate(&cls)); |
3392 | |
3393 | let cls = uclass(&[('a' , 'a' ), ('b' , 'b' )]); |
3394 | let expected = uclass(&[(' \x00' , ' \x60' ), (' \x63' , ' \u{10FFFF}' )]); |
3395 | assert_eq!(expected, unegate(&cls)); |
3396 | |
3397 | let cls = uclass(&[('a' , 'c' ), ('x' , 'z' )]); |
3398 | let expected = uclass(&[ |
3399 | (' \x00' , ' \x60' ), |
3400 | (' \x64' , ' \x77' ), |
3401 | (' \x7B' , ' \u{10FFFF}' ), |
3402 | ]); |
3403 | assert_eq!(expected, unegate(&cls)); |
3404 | |
3405 | let cls = uclass(&[(' \x00' , 'a' )]); |
3406 | let expected = uclass(&[(' \x62' , ' \u{10FFFF}' )]); |
3407 | assert_eq!(expected, unegate(&cls)); |
3408 | |
3409 | let cls = uclass(&[('a' , ' \u{10FFFF}' )]); |
3410 | let expected = uclass(&[(' \x00' , ' \x60' )]); |
3411 | assert_eq!(expected, unegate(&cls)); |
3412 | |
3413 | let cls = uclass(&[(' \x00' , ' \u{10FFFF}' )]); |
3414 | let expected = uclass(&[]); |
3415 | assert_eq!(expected, unegate(&cls)); |
3416 | |
3417 | let cls = uclass(&[]); |
3418 | let expected = uclass(&[(' \x00' , ' \u{10FFFF}' )]); |
3419 | assert_eq!(expected, unegate(&cls)); |
3420 | |
3421 | let cls = |
3422 | uclass(&[(' \x00' , ' \u{10FFFD}' ), (' \u{10FFFF}' , ' \u{10FFFF}' )]); |
3423 | let expected = uclass(&[(' \u{10FFFE}' , ' \u{10FFFE}' )]); |
3424 | assert_eq!(expected, unegate(&cls)); |
3425 | |
3426 | let cls = uclass(&[(' \x00' , ' \u{D7FF}' )]); |
3427 | let expected = uclass(&[(' \u{E000}' , ' \u{10FFFF}' )]); |
3428 | assert_eq!(expected, unegate(&cls)); |
3429 | |
3430 | let cls = uclass(&[(' \x00' , ' \u{D7FE}' )]); |
3431 | let expected = uclass(&[(' \u{D7FF}' , ' \u{10FFFF}' )]); |
3432 | assert_eq!(expected, unegate(&cls)); |
3433 | |
3434 | let cls = uclass(&[(' \u{E000}' , ' \u{10FFFF}' )]); |
3435 | let expected = uclass(&[(' \x00' , ' \u{D7FF}' )]); |
3436 | assert_eq!(expected, unegate(&cls)); |
3437 | |
3438 | let cls = uclass(&[(' \u{E001}' , ' \u{10FFFF}' )]); |
3439 | let expected = uclass(&[(' \x00' , ' \u{E000}' )]); |
3440 | assert_eq!(expected, unegate(&cls)); |
3441 | } |
3442 | |
3443 | #[test ] |
3444 | fn class_negate_bytes() { |
3445 | let cls = bclass(&[(b'a' , b'a' )]); |
3446 | let expected = bclass(&[(b' \x00' , b' \x60' ), (b' \x62' , b' \xFF' )]); |
3447 | assert_eq!(expected, bnegate(&cls)); |
3448 | |
3449 | let cls = bclass(&[(b'a' , b'a' ), (b'b' , b'b' )]); |
3450 | let expected = bclass(&[(b' \x00' , b' \x60' ), (b' \x63' , b' \xFF' )]); |
3451 | assert_eq!(expected, bnegate(&cls)); |
3452 | |
3453 | let cls = bclass(&[(b'a' , b'c' ), (b'x' , b'z' )]); |
3454 | let expected = bclass(&[ |
3455 | (b' \x00' , b' \x60' ), |
3456 | (b' \x64' , b' \x77' ), |
3457 | (b' \x7B' , b' \xFF' ), |
3458 | ]); |
3459 | assert_eq!(expected, bnegate(&cls)); |
3460 | |
3461 | let cls = bclass(&[(b' \x00' , b'a' )]); |
3462 | let expected = bclass(&[(b' \x62' , b' \xFF' )]); |
3463 | assert_eq!(expected, bnegate(&cls)); |
3464 | |
3465 | let cls = bclass(&[(b'a' , b' \xFF' )]); |
3466 | let expected = bclass(&[(b' \x00' , b' \x60' )]); |
3467 | assert_eq!(expected, bnegate(&cls)); |
3468 | |
3469 | let cls = bclass(&[(b' \x00' , b' \xFF' )]); |
3470 | let expected = bclass(&[]); |
3471 | assert_eq!(expected, bnegate(&cls)); |
3472 | |
3473 | let cls = bclass(&[]); |
3474 | let expected = bclass(&[(b' \x00' , b' \xFF' )]); |
3475 | assert_eq!(expected, bnegate(&cls)); |
3476 | |
3477 | let cls = bclass(&[(b' \x00' , b' \xFD' ), (b' \xFF' , b' \xFF' )]); |
3478 | let expected = bclass(&[(b' \xFE' , b' \xFE' )]); |
3479 | assert_eq!(expected, bnegate(&cls)); |
3480 | } |
3481 | |
3482 | #[test ] |
3483 | fn class_union_unicode() { |
3484 | let cls1 = uclass(&[('a' , 'g' ), ('m' , 't' ), ('A' , 'C' )]); |
3485 | let cls2 = uclass(&[('a' , 'z' )]); |
3486 | let expected = uclass(&[('a' , 'z' ), ('A' , 'C' )]); |
3487 | assert_eq!(expected, uunion(&cls1, &cls2)); |
3488 | } |
3489 | |
3490 | #[test ] |
3491 | fn class_union_bytes() { |
3492 | let cls1 = bclass(&[(b'a' , b'g' ), (b'm' , b't' ), (b'A' , b'C' )]); |
3493 | let cls2 = bclass(&[(b'a' , b'z' )]); |
3494 | let expected = bclass(&[(b'a' , b'z' ), (b'A' , b'C' )]); |
3495 | assert_eq!(expected, bunion(&cls1, &cls2)); |
3496 | } |
3497 | |
3498 | #[test ] |
3499 | fn class_intersect_unicode() { |
3500 | let cls1 = uclass(&[]); |
3501 | let cls2 = uclass(&[('a' , 'a' )]); |
3502 | let expected = uclass(&[]); |
3503 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3504 | |
3505 | let cls1 = uclass(&[('a' , 'a' )]); |
3506 | let cls2 = uclass(&[('a' , 'a' )]); |
3507 | let expected = uclass(&[('a' , 'a' )]); |
3508 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3509 | |
3510 | let cls1 = uclass(&[('a' , 'a' )]); |
3511 | let cls2 = uclass(&[('b' , 'b' )]); |
3512 | let expected = uclass(&[]); |
3513 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3514 | |
3515 | let cls1 = uclass(&[('a' , 'a' )]); |
3516 | let cls2 = uclass(&[('a' , 'c' )]); |
3517 | let expected = uclass(&[('a' , 'a' )]); |
3518 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3519 | |
3520 | let cls1 = uclass(&[('a' , 'b' )]); |
3521 | let cls2 = uclass(&[('a' , 'c' )]); |
3522 | let expected = uclass(&[('a' , 'b' )]); |
3523 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3524 | |
3525 | let cls1 = uclass(&[('a' , 'b' )]); |
3526 | let cls2 = uclass(&[('b' , 'c' )]); |
3527 | let expected = uclass(&[('b' , 'b' )]); |
3528 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3529 | |
3530 | let cls1 = uclass(&[('a' , 'b' )]); |
3531 | let cls2 = uclass(&[('c' , 'd' )]); |
3532 | let expected = uclass(&[]); |
3533 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3534 | |
3535 | let cls1 = uclass(&[('b' , 'c' )]); |
3536 | let cls2 = uclass(&[('a' , 'd' )]); |
3537 | let expected = uclass(&[('b' , 'c' )]); |
3538 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3539 | |
3540 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3541 | let cls2 = uclass(&[('a' , 'h' )]); |
3542 | let expected = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3543 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3544 | |
3545 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3546 | let cls2 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3547 | let expected = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3548 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3549 | |
3550 | let cls1 = uclass(&[('a' , 'b' ), ('g' , 'h' )]); |
3551 | let cls2 = uclass(&[('d' , 'e' ), ('k' , 'l' )]); |
3552 | let expected = uclass(&[]); |
3553 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3554 | |
3555 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3556 | let cls2 = uclass(&[('h' , 'h' )]); |
3557 | let expected = uclass(&[('h' , 'h' )]); |
3558 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3559 | |
3560 | let cls1 = uclass(&[('a' , 'b' ), ('e' , 'f' ), ('i' , 'j' )]); |
3561 | let cls2 = uclass(&[('c' , 'd' ), ('g' , 'h' ), ('k' , 'l' )]); |
3562 | let expected = uclass(&[]); |
3563 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3564 | |
3565 | let cls1 = uclass(&[('a' , 'b' ), ('c' , 'd' ), ('e' , 'f' )]); |
3566 | let cls2 = uclass(&[('b' , 'c' ), ('d' , 'e' ), ('f' , 'g' )]); |
3567 | let expected = uclass(&[('b' , 'f' )]); |
3568 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3569 | } |
3570 | |
3571 | #[test ] |
3572 | fn class_intersect_bytes() { |
3573 | let cls1 = bclass(&[]); |
3574 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3575 | let expected = bclass(&[]); |
3576 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3577 | |
3578 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3579 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3580 | let expected = bclass(&[(b'a' , b'a' )]); |
3581 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3582 | |
3583 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3584 | let cls2 = bclass(&[(b'b' , b'b' )]); |
3585 | let expected = bclass(&[]); |
3586 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3587 | |
3588 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3589 | let cls2 = bclass(&[(b'a' , b'c' )]); |
3590 | let expected = bclass(&[(b'a' , b'a' )]); |
3591 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3592 | |
3593 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3594 | let cls2 = bclass(&[(b'a' , b'c' )]); |
3595 | let expected = bclass(&[(b'a' , b'b' )]); |
3596 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3597 | |
3598 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3599 | let cls2 = bclass(&[(b'b' , b'c' )]); |
3600 | let expected = bclass(&[(b'b' , b'b' )]); |
3601 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3602 | |
3603 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3604 | let cls2 = bclass(&[(b'c' , b'd' )]); |
3605 | let expected = bclass(&[]); |
3606 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3607 | |
3608 | let cls1 = bclass(&[(b'b' , b'c' )]); |
3609 | let cls2 = bclass(&[(b'a' , b'd' )]); |
3610 | let expected = bclass(&[(b'b' , b'c' )]); |
3611 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3612 | |
3613 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3614 | let cls2 = bclass(&[(b'a' , b'h' )]); |
3615 | let expected = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3616 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3617 | |
3618 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3619 | let cls2 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3620 | let expected = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3621 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3622 | |
3623 | let cls1 = bclass(&[(b'a' , b'b' ), (b'g' , b'h' )]); |
3624 | let cls2 = bclass(&[(b'd' , b'e' ), (b'k' , b'l' )]); |
3625 | let expected = bclass(&[]); |
3626 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3627 | |
3628 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3629 | let cls2 = bclass(&[(b'h' , b'h' )]); |
3630 | let expected = bclass(&[(b'h' , b'h' )]); |
3631 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3632 | |
3633 | let cls1 = bclass(&[(b'a' , b'b' ), (b'e' , b'f' ), (b'i' , b'j' )]); |
3634 | let cls2 = bclass(&[(b'c' , b'd' ), (b'g' , b'h' ), (b'k' , b'l' )]); |
3635 | let expected = bclass(&[]); |
3636 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3637 | |
3638 | let cls1 = bclass(&[(b'a' , b'b' ), (b'c' , b'd' ), (b'e' , b'f' )]); |
3639 | let cls2 = bclass(&[(b'b' , b'c' ), (b'd' , b'e' ), (b'f' , b'g' )]); |
3640 | let expected = bclass(&[(b'b' , b'f' )]); |
3641 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3642 | } |
3643 | |
3644 | #[test ] |
3645 | fn class_difference_unicode() { |
3646 | let cls1 = uclass(&[('a' , 'a' )]); |
3647 | let cls2 = uclass(&[('a' , 'a' )]); |
3648 | let expected = uclass(&[]); |
3649 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3650 | |
3651 | let cls1 = uclass(&[('a' , 'a' )]); |
3652 | let cls2 = uclass(&[]); |
3653 | let expected = uclass(&[('a' , 'a' )]); |
3654 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3655 | |
3656 | let cls1 = uclass(&[]); |
3657 | let cls2 = uclass(&[('a' , 'a' )]); |
3658 | let expected = uclass(&[]); |
3659 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3660 | |
3661 | let cls1 = uclass(&[('a' , 'z' )]); |
3662 | let cls2 = uclass(&[('a' , 'a' )]); |
3663 | let expected = uclass(&[('b' , 'z' )]); |
3664 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3665 | |
3666 | let cls1 = uclass(&[('a' , 'z' )]); |
3667 | let cls2 = uclass(&[('z' , 'z' )]); |
3668 | let expected = uclass(&[('a' , 'y' )]); |
3669 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3670 | |
3671 | let cls1 = uclass(&[('a' , 'z' )]); |
3672 | let cls2 = uclass(&[('m' , 'm' )]); |
3673 | let expected = uclass(&[('a' , 'l' ), ('n' , 'z' )]); |
3674 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3675 | |
3676 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3677 | let cls2 = uclass(&[('a' , 'z' )]); |
3678 | let expected = uclass(&[]); |
3679 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3680 | |
3681 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3682 | let cls2 = uclass(&[('d' , 'v' )]); |
3683 | let expected = uclass(&[('a' , 'c' )]); |
3684 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3685 | |
3686 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3687 | let cls2 = uclass(&[('b' , 'g' ), ('s' , 'u' )]); |
3688 | let expected = uclass(&[('a' , 'a' ), ('h' , 'i' ), ('r' , 'r' )]); |
3689 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3690 | |
3691 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3692 | let cls2 = uclass(&[('b' , 'd' ), ('e' , 'g' ), ('s' , 'u' )]); |
3693 | let expected = uclass(&[('a' , 'a' ), ('h' , 'i' ), ('r' , 'r' )]); |
3694 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3695 | |
3696 | let cls1 = uclass(&[('x' , 'z' )]); |
3697 | let cls2 = uclass(&[('a' , 'c' ), ('e' , 'g' ), ('s' , 'u' )]); |
3698 | let expected = uclass(&[('x' , 'z' )]); |
3699 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3700 | |
3701 | let cls1 = uclass(&[('a' , 'z' )]); |
3702 | let cls2 = uclass(&[('a' , 'c' ), ('e' , 'g' ), ('s' , 'u' )]); |
3703 | let expected = uclass(&[('d' , 'd' ), ('h' , 'r' ), ('v' , 'z' )]); |
3704 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3705 | } |
3706 | |
3707 | #[test ] |
3708 | fn class_difference_bytes() { |
3709 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3710 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3711 | let expected = bclass(&[]); |
3712 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3713 | |
3714 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3715 | let cls2 = bclass(&[]); |
3716 | let expected = bclass(&[(b'a' , b'a' )]); |
3717 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3718 | |
3719 | let cls1 = bclass(&[]); |
3720 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3721 | let expected = bclass(&[]); |
3722 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3723 | |
3724 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3725 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3726 | let expected = bclass(&[(b'b' , b'z' )]); |
3727 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3728 | |
3729 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3730 | let cls2 = bclass(&[(b'z' , b'z' )]); |
3731 | let expected = bclass(&[(b'a' , b'y' )]); |
3732 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3733 | |
3734 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3735 | let cls2 = bclass(&[(b'm' , b'm' )]); |
3736 | let expected = bclass(&[(b'a' , b'l' ), (b'n' , b'z' )]); |
3737 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3738 | |
3739 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3740 | let cls2 = bclass(&[(b'a' , b'z' )]); |
3741 | let expected = bclass(&[]); |
3742 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3743 | |
3744 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3745 | let cls2 = bclass(&[(b'd' , b'v' )]); |
3746 | let expected = bclass(&[(b'a' , b'c' )]); |
3747 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3748 | |
3749 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3750 | let cls2 = bclass(&[(b'b' , b'g' ), (b's' , b'u' )]); |
3751 | let expected = bclass(&[(b'a' , b'a' ), (b'h' , b'i' ), (b'r' , b'r' )]); |
3752 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3753 | |
3754 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3755 | let cls2 = bclass(&[(b'b' , b'd' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3756 | let expected = bclass(&[(b'a' , b'a' ), (b'h' , b'i' ), (b'r' , b'r' )]); |
3757 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3758 | |
3759 | let cls1 = bclass(&[(b'x' , b'z' )]); |
3760 | let cls2 = bclass(&[(b'a' , b'c' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3761 | let expected = bclass(&[(b'x' , b'z' )]); |
3762 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3763 | |
3764 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3765 | let cls2 = bclass(&[(b'a' , b'c' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3766 | let expected = bclass(&[(b'd' , b'd' ), (b'h' , b'r' ), (b'v' , b'z' )]); |
3767 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3768 | } |
3769 | |
3770 | #[test ] |
3771 | fn class_symmetric_difference_unicode() { |
3772 | let cls1 = uclass(&[('a' , 'm' )]); |
3773 | let cls2 = uclass(&[('g' , 't' )]); |
3774 | let expected = uclass(&[('a' , 'f' ), ('n' , 't' )]); |
3775 | assert_eq!(expected, usymdifference(&cls1, &cls2)); |
3776 | } |
3777 | |
3778 | #[test ] |
3779 | fn class_symmetric_difference_bytes() { |
3780 | let cls1 = bclass(&[(b'a' , b'm' )]); |
3781 | let cls2 = bclass(&[(b'g' , b't' )]); |
3782 | let expected = bclass(&[(b'a' , b'f' ), (b'n' , b't' )]); |
3783 | assert_eq!(expected, bsymdifference(&cls1, &cls2)); |
3784 | } |
3785 | |
3786 | // We use a thread with an explicit stack size to test that our destructor |
3787 | // for Hir can handle arbitrarily sized expressions in constant stack |
3788 | // space. In case we run on a platform without threads (WASM?), we limit |
3789 | // this test to Windows/Unix. |
3790 | #[test ] |
3791 | #[cfg (any(unix, windows))] |
3792 | fn no_stack_overflow_on_drop() { |
3793 | use std::thread; |
3794 | |
3795 | let run = || { |
3796 | let mut expr = Hir::empty(); |
3797 | for _ in 0..100 { |
3798 | expr = Hir::capture(Capture { |
3799 | index: 1, |
3800 | name: None, |
3801 | sub: Box::new(expr), |
3802 | }); |
3803 | expr = Hir::repetition(Repetition { |
3804 | min: 0, |
3805 | max: Some(1), |
3806 | greedy: true, |
3807 | sub: Box::new(expr), |
3808 | }); |
3809 | |
3810 | expr = Hir { |
3811 | kind: HirKind::Concat(vec![expr]), |
3812 | props: Properties::empty(), |
3813 | }; |
3814 | expr = Hir { |
3815 | kind: HirKind::Alternation(vec![expr]), |
3816 | props: Properties::empty(), |
3817 | }; |
3818 | } |
3819 | assert!(!matches!(*expr.kind(), HirKind::Empty)); |
3820 | }; |
3821 | |
3822 | // We run our test on a thread with a small stack size so we can |
3823 | // force the issue more easily. |
3824 | // |
3825 | // NOTE(2023-03-21): See the corresponding test in 'crate::ast::tests' |
3826 | // for context on the specific stack size chosen here. |
3827 | thread::Builder::new() |
3828 | .stack_size(16 << 10) |
3829 | .spawn(run) |
3830 | .unwrap() |
3831 | .join() |
3832 | .unwrap(); |
3833 | } |
3834 | |
3835 | #[test ] |
3836 | fn look_set_iter() { |
3837 | let set = LookSet::empty(); |
3838 | assert_eq!(0, set.iter().count()); |
3839 | |
3840 | let set = LookSet::full(); |
3841 | assert_eq!(18, set.iter().count()); |
3842 | |
3843 | let set = |
3844 | LookSet::empty().insert(Look::StartLF).insert(Look::WordUnicode); |
3845 | assert_eq!(2, set.iter().count()); |
3846 | |
3847 | let set = LookSet::empty().insert(Look::StartLF); |
3848 | assert_eq!(1, set.iter().count()); |
3849 | |
3850 | let set = LookSet::empty().insert(Look::WordAsciiNegate); |
3851 | assert_eq!(1, set.iter().count()); |
3852 | } |
3853 | |
3854 | #[test ] |
3855 | fn look_set_debug() { |
3856 | let res = format!(" {:?}" , LookSet::empty()); |
3857 | assert_eq!("∅" , res); |
3858 | let res = format!(" {:?}" , LookSet::full()); |
3859 | assert_eq!("Az^$rRbB𝛃𝚩<>〈〉◁▷◀▶" , res); |
3860 | } |
3861 | } |
3862 | |