| 1 | #![cfg_attr (not(feature = "std" ), no_std)] |
| 2 | #![warn ( |
| 3 | missing_debug_implementations, |
| 4 | missing_docs, |
| 5 | rust_2018_idioms, |
| 6 | unreachable_pub |
| 7 | )] |
| 8 | #![doc (test( |
| 9 | no_crate_inject, |
| 10 | attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables)) |
| 11 | ))] |
| 12 | |
| 13 | //! Pre-allocated storage for a uniform data type. |
| 14 | //! |
| 15 | //! `Slab` provides pre-allocated storage for a single data type. If many values |
| 16 | //! of a single type are being allocated, it can be more efficient to |
| 17 | //! pre-allocate the necessary storage. Since the size of the type is uniform, |
| 18 | //! memory fragmentation can be avoided. Storing, clearing, and lookup |
| 19 | //! operations become very cheap. |
| 20 | //! |
| 21 | //! While `Slab` may look like other Rust collections, it is not intended to be |
| 22 | //! used as a general purpose collection. The primary difference between `Slab` |
| 23 | //! and `Vec` is that `Slab` returns the key when storing the value. |
| 24 | //! |
| 25 | //! It is important to note that keys may be reused. In other words, once a |
| 26 | //! value associated with a given key is removed from a slab, that key may be |
| 27 | //! returned from future calls to `insert`. |
| 28 | //! |
| 29 | //! # Examples |
| 30 | //! |
| 31 | //! Basic storing and retrieval. |
| 32 | //! |
| 33 | //! ``` |
| 34 | //! # use slab::*; |
| 35 | //! let mut slab = Slab::new(); |
| 36 | //! |
| 37 | //! let hello = slab.insert("hello" ); |
| 38 | //! let world = slab.insert("world" ); |
| 39 | //! |
| 40 | //! assert_eq!(slab[hello], "hello" ); |
| 41 | //! assert_eq!(slab[world], "world" ); |
| 42 | //! |
| 43 | //! slab[world] = "earth" ; |
| 44 | //! assert_eq!(slab[world], "earth" ); |
| 45 | //! ``` |
| 46 | //! |
| 47 | //! Sometimes it is useful to be able to associate the key with the value being |
| 48 | //! inserted in the slab. This can be done with the `vacant_entry` API as such: |
| 49 | //! |
| 50 | //! ``` |
| 51 | //! # use slab::*; |
| 52 | //! let mut slab = Slab::new(); |
| 53 | //! |
| 54 | //! let hello = { |
| 55 | //! let entry = slab.vacant_entry(); |
| 56 | //! let key = entry.key(); |
| 57 | //! |
| 58 | //! entry.insert((key, "hello" )); |
| 59 | //! key |
| 60 | //! }; |
| 61 | //! |
| 62 | //! assert_eq!(hello, slab[hello].0); |
| 63 | //! assert_eq!("hello" , slab[hello].1); |
| 64 | //! ``` |
| 65 | //! |
| 66 | //! It is generally a good idea to specify the desired capacity of a slab at |
| 67 | //! creation time. Note that `Slab` will grow the internal capacity when |
| 68 | //! attempting to insert a new value once the existing capacity has been reached. |
| 69 | //! To avoid this, add a check. |
| 70 | //! |
| 71 | //! ``` |
| 72 | //! # use slab::*; |
| 73 | //! let mut slab = Slab::with_capacity(1024); |
| 74 | //! |
| 75 | //! // ... use the slab |
| 76 | //! |
| 77 | //! if slab.len() == slab.capacity() { |
| 78 | //! panic!("slab full" ); |
| 79 | //! } |
| 80 | //! |
| 81 | //! slab.insert("the slab is not at capacity yet" ); |
| 82 | //! ``` |
| 83 | //! |
| 84 | //! # Capacity and reallocation |
| 85 | //! |
| 86 | //! The capacity of a slab is the amount of space allocated for any future |
| 87 | //! values that will be inserted in the slab. This is not to be confused with |
| 88 | //! the *length* of the slab, which specifies the number of actual values |
| 89 | //! currently being inserted. If a slab's length is equal to its capacity, the |
| 90 | //! next value inserted into the slab will require growing the slab by |
| 91 | //! reallocating. |
| 92 | //! |
| 93 | //! For example, a slab with capacity 10 and length 0 would be an empty slab |
| 94 | //! with space for 10 more stored values. Storing 10 or fewer elements into the |
| 95 | //! slab will not change its capacity or cause reallocation to occur. However, |
| 96 | //! if the slab length is increased to 11 (due to another `insert`), it will |
| 97 | //! have to reallocate, which can be slow. For this reason, it is recommended to |
| 98 | //! use [`Slab::with_capacity`] whenever possible to specify how many values the |
| 99 | //! slab is expected to store. |
| 100 | //! |
| 101 | //! # Implementation |
| 102 | //! |
| 103 | //! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or |
| 104 | //! vacant. `Slab` maintains a stack of vacant slots using a linked list. To |
| 105 | //! find a vacant slot, the stack is popped. When a slot is released, it is |
| 106 | //! pushed onto the stack. |
| 107 | //! |
| 108 | //! If there are no more available slots in the stack, then `Vec::reserve(1)` is |
| 109 | //! called and a new slot is created. |
| 110 | //! |
| 111 | //! [`Slab::with_capacity`]: struct.Slab.html#with_capacity |
| 112 | |
| 113 | #[cfg (not(feature = "std" ))] |
| 114 | extern crate alloc; |
| 115 | #[cfg (feature = "std" )] |
| 116 | extern crate std as alloc; |
| 117 | |
| 118 | #[cfg (feature = "serde" )] |
| 119 | mod serde; |
| 120 | |
| 121 | mod builder; |
| 122 | |
| 123 | use alloc::vec::{self, Vec}; |
| 124 | use core::iter::{self, FromIterator, FusedIterator}; |
| 125 | use core::{fmt, mem, ops, slice}; |
| 126 | |
| 127 | /// Pre-allocated storage for a uniform data type |
| 128 | /// |
| 129 | /// See the [module documentation] for more details. |
| 130 | /// |
| 131 | /// [module documentation]: index.html |
| 132 | pub struct Slab<T> { |
| 133 | // Chunk of memory |
| 134 | entries: Vec<Entry<T>>, |
| 135 | |
| 136 | // Number of Filled elements currently in the slab |
| 137 | len: usize, |
| 138 | |
| 139 | // Offset of the next available slot in the slab. Set to the slab's |
| 140 | // capacity when the slab is full. |
| 141 | next: usize, |
| 142 | } |
| 143 | |
| 144 | impl<T> Clone for Slab<T> |
| 145 | where |
| 146 | T: Clone, |
| 147 | { |
| 148 | fn clone(&self) -> Self { |
| 149 | Self { |
| 150 | entries: self.entries.clone(), |
| 151 | len: self.len, |
| 152 | next: self.next, |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | fn clone_from(&mut self, source: &Self) { |
| 157 | self.entries.clone_from(&source.entries); |
| 158 | self.len = source.len; |
| 159 | self.next = source.next; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | impl<T> Default for Slab<T> { |
| 164 | fn default() -> Self { |
| 165 | Slab::new() |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// A handle to a vacant entry in a `Slab`. |
| 170 | /// |
| 171 | /// `VacantEntry` allows constructing values with the key that they will be |
| 172 | /// assigned to. |
| 173 | /// |
| 174 | /// # Examples |
| 175 | /// |
| 176 | /// ``` |
| 177 | /// # use slab::*; |
| 178 | /// let mut slab = Slab::new(); |
| 179 | /// |
| 180 | /// let hello = { |
| 181 | /// let entry = slab.vacant_entry(); |
| 182 | /// let key = entry.key(); |
| 183 | /// |
| 184 | /// entry.insert((key, "hello" )); |
| 185 | /// key |
| 186 | /// }; |
| 187 | /// |
| 188 | /// assert_eq!(hello, slab[hello].0); |
| 189 | /// assert_eq!("hello" , slab[hello].1); |
| 190 | /// ``` |
| 191 | #[derive (Debug)] |
| 192 | pub struct VacantEntry<'a, T> { |
| 193 | slab: &'a mut Slab<T>, |
| 194 | key: usize, |
| 195 | } |
| 196 | |
| 197 | /// A consuming iterator over the values stored in a `Slab` |
| 198 | pub struct IntoIter<T> { |
| 199 | entries: iter::Enumerate<vec::IntoIter<Entry<T>>>, |
| 200 | len: usize, |
| 201 | } |
| 202 | |
| 203 | /// An iterator over the values stored in the `Slab` |
| 204 | pub struct Iter<'a, T> { |
| 205 | entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>, |
| 206 | len: usize, |
| 207 | } |
| 208 | |
| 209 | impl<'a, T> Clone for Iter<'a, T> { |
| 210 | fn clone(&self) -> Self { |
| 211 | Self { |
| 212 | entries: self.entries.clone(), |
| 213 | len: self.len, |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /// A mutable iterator over the values stored in the `Slab` |
| 219 | pub struct IterMut<'a, T> { |
| 220 | entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>, |
| 221 | len: usize, |
| 222 | } |
| 223 | |
| 224 | /// A draining iterator for `Slab` |
| 225 | pub struct Drain<'a, T> { |
| 226 | inner: vec::Drain<'a, Entry<T>>, |
| 227 | len: usize, |
| 228 | } |
| 229 | |
| 230 | #[derive (Clone)] |
| 231 | enum Entry<T> { |
| 232 | Vacant(usize), |
| 233 | Occupied(T), |
| 234 | } |
| 235 | |
| 236 | impl<T> Slab<T> { |
| 237 | /// Construct a new, empty `Slab`. |
| 238 | /// |
| 239 | /// The function does not allocate and the returned slab will have no |
| 240 | /// capacity until `insert` is called or capacity is explicitly reserved. |
| 241 | /// |
| 242 | /// This is `const fn` on Rust 1.39+. |
| 243 | /// |
| 244 | /// # Examples |
| 245 | /// |
| 246 | /// ``` |
| 247 | /// # use slab::*; |
| 248 | /// let slab: Slab<i32> = Slab::new(); |
| 249 | /// ``` |
| 250 | #[cfg (not(slab_no_const_vec_new))] |
| 251 | pub const fn new() -> Self { |
| 252 | Self { |
| 253 | entries: Vec::new(), |
| 254 | next: 0, |
| 255 | len: 0, |
| 256 | } |
| 257 | } |
| 258 | /// Construct a new, empty `Slab`. |
| 259 | /// |
| 260 | /// The function does not allocate and the returned slab will have no |
| 261 | /// capacity until `insert` is called or capacity is explicitly reserved. |
| 262 | /// |
| 263 | /// This is `const fn` on Rust 1.39+. |
| 264 | #[cfg (slab_no_const_vec_new)] |
| 265 | pub fn new() -> Self { |
| 266 | Self { |
| 267 | entries: Vec::new(), |
| 268 | next: 0, |
| 269 | len: 0, |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /// Construct a new, empty `Slab` with the specified capacity. |
| 274 | /// |
| 275 | /// The returned slab will be able to store exactly `capacity` without |
| 276 | /// reallocating. If `capacity` is 0, the slab will not allocate. |
| 277 | /// |
| 278 | /// It is important to note that this function does not specify the *length* |
| 279 | /// of the returned slab, but only the capacity. For an explanation of the |
| 280 | /// difference between length and capacity, see [Capacity and |
| 281 | /// reallocation](index.html#capacity-and-reallocation). |
| 282 | /// |
| 283 | /// # Examples |
| 284 | /// |
| 285 | /// ``` |
| 286 | /// # use slab::*; |
| 287 | /// let mut slab = Slab::with_capacity(10); |
| 288 | /// |
| 289 | /// // The slab contains no values, even though it has capacity for more |
| 290 | /// assert_eq!(slab.len(), 0); |
| 291 | /// |
| 292 | /// // These are all done without reallocating... |
| 293 | /// for i in 0..10 { |
| 294 | /// slab.insert(i); |
| 295 | /// } |
| 296 | /// |
| 297 | /// // ...but this may make the slab reallocate |
| 298 | /// slab.insert(11); |
| 299 | /// ``` |
| 300 | pub fn with_capacity(capacity: usize) -> Slab<T> { |
| 301 | Slab { |
| 302 | entries: Vec::with_capacity(capacity), |
| 303 | next: 0, |
| 304 | len: 0, |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /// Return the number of values the slab can store without reallocating. |
| 309 | /// |
| 310 | /// # Examples |
| 311 | /// |
| 312 | /// ``` |
| 313 | /// # use slab::*; |
| 314 | /// let slab: Slab<i32> = Slab::with_capacity(10); |
| 315 | /// assert_eq!(slab.capacity(), 10); |
| 316 | /// ``` |
| 317 | pub fn capacity(&self) -> usize { |
| 318 | self.entries.capacity() |
| 319 | } |
| 320 | |
| 321 | /// Reserve capacity for at least `additional` more values to be stored |
| 322 | /// without allocating. |
| 323 | /// |
| 324 | /// `reserve` does nothing if the slab already has sufficient capacity for |
| 325 | /// `additional` more values. If more capacity is required, a new segment of |
| 326 | /// memory will be allocated and all existing values will be copied into it. |
| 327 | /// As such, if the slab is already very large, a call to `reserve` can end |
| 328 | /// up being expensive. |
| 329 | /// |
| 330 | /// The slab may reserve more than `additional` extra space in order to |
| 331 | /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee |
| 332 | /// that only the requested space is allocated. |
| 333 | /// |
| 334 | /// # Panics |
| 335 | /// |
| 336 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
| 337 | /// |
| 338 | /// # Examples |
| 339 | /// |
| 340 | /// ``` |
| 341 | /// # use slab::*; |
| 342 | /// let mut slab = Slab::new(); |
| 343 | /// slab.insert("hello" ); |
| 344 | /// slab.reserve(10); |
| 345 | /// assert!(slab.capacity() >= 11); |
| 346 | /// ``` |
| 347 | pub fn reserve(&mut self, additional: usize) { |
| 348 | if self.capacity() - self.len >= additional { |
| 349 | return; |
| 350 | } |
| 351 | let need_add = additional - (self.entries.len() - self.len); |
| 352 | self.entries.reserve(need_add); |
| 353 | } |
| 354 | |
| 355 | /// Reserve the minimum capacity required to store exactly `additional` |
| 356 | /// more values. |
| 357 | /// |
| 358 | /// `reserve_exact` does nothing if the slab already has sufficient capacity |
| 359 | /// for `additional` more values. If more capacity is required, a new segment |
| 360 | /// of memory will be allocated and all existing values will be copied into |
| 361 | /// it. As such, if the slab is already very large, a call to `reserve` can |
| 362 | /// end up being expensive. |
| 363 | /// |
| 364 | /// Note that the allocator may give the slab more space than it requests. |
| 365 | /// Therefore capacity can not be relied upon to be precisely minimal. |
| 366 | /// Prefer `reserve` if future insertions are expected. |
| 367 | /// |
| 368 | /// # Panics |
| 369 | /// |
| 370 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
| 371 | /// |
| 372 | /// # Examples |
| 373 | /// |
| 374 | /// ``` |
| 375 | /// # use slab::*; |
| 376 | /// let mut slab = Slab::new(); |
| 377 | /// slab.insert("hello" ); |
| 378 | /// slab.reserve_exact(10); |
| 379 | /// assert!(slab.capacity() >= 11); |
| 380 | /// ``` |
| 381 | pub fn reserve_exact(&mut self, additional: usize) { |
| 382 | if self.capacity() - self.len >= additional { |
| 383 | return; |
| 384 | } |
| 385 | let need_add = additional - (self.entries.len() - self.len); |
| 386 | self.entries.reserve_exact(need_add); |
| 387 | } |
| 388 | |
| 389 | /// Shrink the capacity of the slab as much as possible without invalidating keys. |
| 390 | /// |
| 391 | /// Because values cannot be moved to a different index, the slab cannot |
| 392 | /// shrink past any stored values. |
| 393 | /// It will drop down as close as possible to the length but the allocator may |
| 394 | /// still inform the underlying vector that there is space for a few more elements. |
| 395 | /// |
| 396 | /// This function can take O(n) time even when the capacity cannot be reduced |
| 397 | /// or the allocation is shrunk in place. Repeated calls run in O(1) though. |
| 398 | /// |
| 399 | /// # Examples |
| 400 | /// |
| 401 | /// ``` |
| 402 | /// # use slab::*; |
| 403 | /// let mut slab = Slab::with_capacity(10); |
| 404 | /// |
| 405 | /// for i in 0..3 { |
| 406 | /// slab.insert(i); |
| 407 | /// } |
| 408 | /// |
| 409 | /// slab.shrink_to_fit(); |
| 410 | /// assert!(slab.capacity() >= 3 && slab.capacity() < 10); |
| 411 | /// ``` |
| 412 | /// |
| 413 | /// The slab cannot shrink past the last present value even if previous |
| 414 | /// values are removed: |
| 415 | /// |
| 416 | /// ``` |
| 417 | /// # use slab::*; |
| 418 | /// let mut slab = Slab::with_capacity(10); |
| 419 | /// |
| 420 | /// for i in 0..4 { |
| 421 | /// slab.insert(i); |
| 422 | /// } |
| 423 | /// |
| 424 | /// slab.remove(0); |
| 425 | /// slab.remove(3); |
| 426 | /// |
| 427 | /// slab.shrink_to_fit(); |
| 428 | /// assert!(slab.capacity() >= 3 && slab.capacity() < 10); |
| 429 | /// ``` |
| 430 | pub fn shrink_to_fit(&mut self) { |
| 431 | // Remove all vacant entries after the last occupied one, so that |
| 432 | // the capacity can be reduced to what is actually needed. |
| 433 | // If the slab is empty the vector can simply be cleared, but that |
| 434 | // optimization would not affect time complexity when T: Drop. |
| 435 | let len_before = self.entries.len(); |
| 436 | while let Some(&Entry::Vacant(_)) = self.entries.last() { |
| 437 | self.entries.pop(); |
| 438 | } |
| 439 | |
| 440 | // Removing entries breaks the list of vacant entries, |
| 441 | // so it must be repaired |
| 442 | if self.entries.len() != len_before { |
| 443 | // Some vacant entries were removed, so the list now likely¹ |
| 444 | // either contains references to the removed entries, or has an |
| 445 | // invalid end marker. Fix this by recreating the list. |
| 446 | self.recreate_vacant_list(); |
| 447 | // ¹: If the removed entries formed the tail of the list, with the |
| 448 | // most recently popped entry being the head of them, (so that its |
| 449 | // index is now the end marker) the list is still valid. |
| 450 | // Checking for that unlikely scenario of this infrequently called |
| 451 | // is not worth the code complexity. |
| 452 | } |
| 453 | |
| 454 | self.entries.shrink_to_fit(); |
| 455 | } |
| 456 | |
| 457 | /// Iterate through all entries to recreate and repair the vacant list. |
| 458 | /// self.len must be correct and is not modified. |
| 459 | fn recreate_vacant_list(&mut self) { |
| 460 | self.next = self.entries.len(); |
| 461 | // We can stop once we've found all vacant entries |
| 462 | let mut remaining_vacant = self.entries.len() - self.len; |
| 463 | if remaining_vacant == 0 { |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | // Iterate in reverse order so that lower keys are at the start of |
| 468 | // the vacant list. This way future shrinks are more likely to be |
| 469 | // able to remove vacant entries. |
| 470 | for (i, entry) in self.entries.iter_mut().enumerate().rev() { |
| 471 | if let Entry::Vacant(ref mut next) = *entry { |
| 472 | *next = self.next; |
| 473 | self.next = i; |
| 474 | remaining_vacant -= 1; |
| 475 | if remaining_vacant == 0 { |
| 476 | break; |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | /// Reduce the capacity as much as possible, changing the key for elements when necessary. |
| 483 | /// |
| 484 | /// To allow updating references to the elements which must be moved to a new key, |
| 485 | /// this function takes a closure which is called before moving each element. |
| 486 | /// The second and third parameters to the closure are the current key and |
| 487 | /// new key respectively. |
| 488 | /// In case changing the key for one element turns out not to be possible, |
| 489 | /// the move can be cancelled by returning `false` from the closure. |
| 490 | /// In that case no further attempts at relocating elements is made. |
| 491 | /// If the closure unwinds, the slab will be left in a consistent state, |
| 492 | /// but the value that the closure panicked on might be removed. |
| 493 | /// |
| 494 | /// # Examples |
| 495 | /// |
| 496 | /// ``` |
| 497 | /// # use slab::*; |
| 498 | /// |
| 499 | /// let mut slab = Slab::with_capacity(10); |
| 500 | /// let a = slab.insert('a' ); |
| 501 | /// slab.insert('b' ); |
| 502 | /// slab.insert('c' ); |
| 503 | /// slab.remove(a); |
| 504 | /// slab.compact(|&mut value, from, to| { |
| 505 | /// assert_eq!((value, from, to), ('c' , 2, 0)); |
| 506 | /// true |
| 507 | /// }); |
| 508 | /// assert!(slab.capacity() >= 2 && slab.capacity() < 10); |
| 509 | /// ``` |
| 510 | /// |
| 511 | /// The value is not moved when the closure returns `Err`: |
| 512 | /// |
| 513 | /// ``` |
| 514 | /// # use slab::*; |
| 515 | /// |
| 516 | /// let mut slab = Slab::with_capacity(100); |
| 517 | /// let a = slab.insert('a' ); |
| 518 | /// let b = slab.insert('b' ); |
| 519 | /// slab.remove(a); |
| 520 | /// slab.compact(|&mut value, from, to| false); |
| 521 | /// assert_eq!(slab.iter().next(), Some((b, &'b' ))); |
| 522 | /// ``` |
| 523 | pub fn compact<F>(&mut self, mut rekey: F) |
| 524 | where |
| 525 | F: FnMut(&mut T, usize, usize) -> bool, |
| 526 | { |
| 527 | // If the closure unwinds, we need to restore a valid list of vacant entries |
| 528 | struct CleanupGuard<'a, T> { |
| 529 | slab: &'a mut Slab<T>, |
| 530 | decrement: bool, |
| 531 | } |
| 532 | impl<T> Drop for CleanupGuard<'_, T> { |
| 533 | fn drop(&mut self) { |
| 534 | if self.decrement { |
| 535 | // Value was popped and not pushed back on |
| 536 | self.slab.len -= 1; |
| 537 | } |
| 538 | self.slab.recreate_vacant_list(); |
| 539 | } |
| 540 | } |
| 541 | let mut guard = CleanupGuard { |
| 542 | slab: self, |
| 543 | decrement: true, |
| 544 | }; |
| 545 | |
| 546 | let mut occupied_until = 0; |
| 547 | // While there are vacant entries |
| 548 | while guard.slab.entries.len() > guard.slab.len { |
| 549 | // Find a value that needs to be moved, |
| 550 | // by popping entries until we find an occupied one. |
| 551 | // (entries cannot be empty because 0 is not greater than anything) |
| 552 | if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() { |
| 553 | // Found one, now find a vacant entry to move it to |
| 554 | while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) { |
| 555 | occupied_until += 1; |
| 556 | } |
| 557 | // Let the caller try to update references to the key |
| 558 | if !rekey(&mut value, guard.slab.entries.len(), occupied_until) { |
| 559 | // Changing the key failed, so push the entry back on at its old index. |
| 560 | guard.slab.entries.push(Entry::Occupied(value)); |
| 561 | guard.decrement = false; |
| 562 | guard.slab.entries.shrink_to_fit(); |
| 563 | return; |
| 564 | // Guard drop handles cleanup |
| 565 | } |
| 566 | // Put the value in its new spot |
| 567 | guard.slab.entries[occupied_until] = Entry::Occupied(value); |
| 568 | // ... and mark it as occupied (this is optional) |
| 569 | occupied_until += 1; |
| 570 | } |
| 571 | } |
| 572 | guard.slab.next = guard.slab.len; |
| 573 | guard.slab.entries.shrink_to_fit(); |
| 574 | // Normal cleanup is not necessary |
| 575 | mem::forget(guard); |
| 576 | } |
| 577 | |
| 578 | /// Clear the slab of all values. |
| 579 | /// |
| 580 | /// # Examples |
| 581 | /// |
| 582 | /// ``` |
| 583 | /// # use slab::*; |
| 584 | /// let mut slab = Slab::new(); |
| 585 | /// |
| 586 | /// for i in 0..3 { |
| 587 | /// slab.insert(i); |
| 588 | /// } |
| 589 | /// |
| 590 | /// slab.clear(); |
| 591 | /// assert!(slab.is_empty()); |
| 592 | /// ``` |
| 593 | pub fn clear(&mut self) { |
| 594 | self.entries.clear(); |
| 595 | self.len = 0; |
| 596 | self.next = 0; |
| 597 | } |
| 598 | |
| 599 | /// Return the number of stored values. |
| 600 | /// |
| 601 | /// # Examples |
| 602 | /// |
| 603 | /// ``` |
| 604 | /// # use slab::*; |
| 605 | /// let mut slab = Slab::new(); |
| 606 | /// |
| 607 | /// for i in 0..3 { |
| 608 | /// slab.insert(i); |
| 609 | /// } |
| 610 | /// |
| 611 | /// assert_eq!(3, slab.len()); |
| 612 | /// ``` |
| 613 | pub fn len(&self) -> usize { |
| 614 | self.len |
| 615 | } |
| 616 | |
| 617 | /// Return `true` if there are no values stored in the slab. |
| 618 | /// |
| 619 | /// # Examples |
| 620 | /// |
| 621 | /// ``` |
| 622 | /// # use slab::*; |
| 623 | /// let mut slab = Slab::new(); |
| 624 | /// assert!(slab.is_empty()); |
| 625 | /// |
| 626 | /// slab.insert(1); |
| 627 | /// assert!(!slab.is_empty()); |
| 628 | /// ``` |
| 629 | pub fn is_empty(&self) -> bool { |
| 630 | self.len == 0 |
| 631 | } |
| 632 | |
| 633 | /// Return an iterator over the slab. |
| 634 | /// |
| 635 | /// This function should generally be **avoided** as it is not efficient. |
| 636 | /// Iterators must iterate over every slot in the slab even if it is |
| 637 | /// vacant. As such, a slab with a capacity of 1 million but only one |
| 638 | /// stored value must still iterate the million slots. |
| 639 | /// |
| 640 | /// # Examples |
| 641 | /// |
| 642 | /// ``` |
| 643 | /// # use slab::*; |
| 644 | /// let mut slab = Slab::new(); |
| 645 | /// |
| 646 | /// for i in 0..3 { |
| 647 | /// slab.insert(i); |
| 648 | /// } |
| 649 | /// |
| 650 | /// let mut iterator = slab.iter(); |
| 651 | /// |
| 652 | /// assert_eq!(iterator.next(), Some((0, &0))); |
| 653 | /// assert_eq!(iterator.next(), Some((1, &1))); |
| 654 | /// assert_eq!(iterator.next(), Some((2, &2))); |
| 655 | /// assert_eq!(iterator.next(), None); |
| 656 | /// ``` |
| 657 | pub fn iter(&self) -> Iter<'_, T> { |
| 658 | Iter { |
| 659 | entries: self.entries.iter().enumerate(), |
| 660 | len: self.len, |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | /// Return an iterator that allows modifying each value. |
| 665 | /// |
| 666 | /// This function should generally be **avoided** as it is not efficient. |
| 667 | /// Iterators must iterate over every slot in the slab even if it is |
| 668 | /// vacant. As such, a slab with a capacity of 1 million but only one |
| 669 | /// stored value must still iterate the million slots. |
| 670 | /// |
| 671 | /// # Examples |
| 672 | /// |
| 673 | /// ``` |
| 674 | /// # use slab::*; |
| 675 | /// let mut slab = Slab::new(); |
| 676 | /// |
| 677 | /// let key1 = slab.insert(0); |
| 678 | /// let key2 = slab.insert(1); |
| 679 | /// |
| 680 | /// for (key, val) in slab.iter_mut() { |
| 681 | /// if key == key1 { |
| 682 | /// *val += 2; |
| 683 | /// } |
| 684 | /// } |
| 685 | /// |
| 686 | /// assert_eq!(slab[key1], 2); |
| 687 | /// assert_eq!(slab[key2], 1); |
| 688 | /// ``` |
| 689 | pub fn iter_mut(&mut self) -> IterMut<'_, T> { |
| 690 | IterMut { |
| 691 | entries: self.entries.iter_mut().enumerate(), |
| 692 | len: self.len, |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /// Return a reference to the value associated with the given key. |
| 697 | /// |
| 698 | /// If the given key is not associated with a value, then `None` is |
| 699 | /// returned. |
| 700 | /// |
| 701 | /// # Examples |
| 702 | /// |
| 703 | /// ``` |
| 704 | /// # use slab::*; |
| 705 | /// let mut slab = Slab::new(); |
| 706 | /// let key = slab.insert("hello" ); |
| 707 | /// |
| 708 | /// assert_eq!(slab.get(key), Some(&"hello" )); |
| 709 | /// assert_eq!(slab.get(123), None); |
| 710 | /// ``` |
| 711 | pub fn get(&self, key: usize) -> Option<&T> { |
| 712 | match self.entries.get(key) { |
| 713 | Some(Entry::Occupied(val)) => Some(val), |
| 714 | _ => None, |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | /// Return a mutable reference to the value associated with the given key. |
| 719 | /// |
| 720 | /// If the given key is not associated with a value, then `None` is |
| 721 | /// returned. |
| 722 | /// |
| 723 | /// # Examples |
| 724 | /// |
| 725 | /// ``` |
| 726 | /// # use slab::*; |
| 727 | /// let mut slab = Slab::new(); |
| 728 | /// let key = slab.insert("hello" ); |
| 729 | /// |
| 730 | /// *slab.get_mut(key).unwrap() = "world" ; |
| 731 | /// |
| 732 | /// assert_eq!(slab[key], "world" ); |
| 733 | /// assert_eq!(slab.get_mut(123), None); |
| 734 | /// ``` |
| 735 | pub fn get_mut(&mut self, key: usize) -> Option<&mut T> { |
| 736 | match self.entries.get_mut(key) { |
| 737 | Some(&mut Entry::Occupied(ref mut val)) => Some(val), |
| 738 | _ => None, |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /// Return two mutable references to the values associated with the two |
| 743 | /// given keys simultaneously. |
| 744 | /// |
| 745 | /// If any one of the given keys is not associated with a value, then `None` |
| 746 | /// is returned. |
| 747 | /// |
| 748 | /// This function can be used to get two mutable references out of one slab, |
| 749 | /// so that you can manipulate both of them at the same time, eg. swap them. |
| 750 | /// |
| 751 | /// # Panics |
| 752 | /// |
| 753 | /// This function will panic if `key1` and `key2` are the same. |
| 754 | /// |
| 755 | /// # Examples |
| 756 | /// |
| 757 | /// ``` |
| 758 | /// # use slab::*; |
| 759 | /// use std::mem; |
| 760 | /// |
| 761 | /// let mut slab = Slab::new(); |
| 762 | /// let key1 = slab.insert(1); |
| 763 | /// let key2 = slab.insert(2); |
| 764 | /// let (value1, value2) = slab.get2_mut(key1, key2).unwrap(); |
| 765 | /// mem::swap(value1, value2); |
| 766 | /// assert_eq!(slab[key1], 2); |
| 767 | /// assert_eq!(slab[key2], 1); |
| 768 | /// ``` |
| 769 | pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> { |
| 770 | assert!(key1 != key2); |
| 771 | |
| 772 | let (entry1, entry2); |
| 773 | |
| 774 | if key1 > key2 { |
| 775 | let (slice1, slice2) = self.entries.split_at_mut(key1); |
| 776 | entry1 = slice2.get_mut(0); |
| 777 | entry2 = slice1.get_mut(key2); |
| 778 | } else { |
| 779 | let (slice1, slice2) = self.entries.split_at_mut(key2); |
| 780 | entry1 = slice1.get_mut(key1); |
| 781 | entry2 = slice2.get_mut(0); |
| 782 | } |
| 783 | |
| 784 | match (entry1, entry2) { |
| 785 | ( |
| 786 | Some(&mut Entry::Occupied(ref mut val1)), |
| 787 | Some(&mut Entry::Occupied(ref mut val2)), |
| 788 | ) => Some((val1, val2)), |
| 789 | _ => None, |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | /// Return a reference to the value associated with the given key without |
| 794 | /// performing bounds checking. |
| 795 | /// |
| 796 | /// For a safe alternative see [`get`](Slab::get). |
| 797 | /// |
| 798 | /// This function should be used with care. |
| 799 | /// |
| 800 | /// # Safety |
| 801 | /// |
| 802 | /// The key must be within bounds. |
| 803 | /// |
| 804 | /// # Examples |
| 805 | /// |
| 806 | /// ``` |
| 807 | /// # use slab::*; |
| 808 | /// let mut slab = Slab::new(); |
| 809 | /// let key = slab.insert(2); |
| 810 | /// |
| 811 | /// unsafe { |
| 812 | /// assert_eq!(slab.get_unchecked(key), &2); |
| 813 | /// } |
| 814 | /// ``` |
| 815 | pub unsafe fn get_unchecked(&self, key: usize) -> &T { |
| 816 | match *self.entries.get_unchecked(key) { |
| 817 | Entry::Occupied(ref val) => val, |
| 818 | _ => unreachable!(), |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | /// Return a mutable reference to the value associated with the given key |
| 823 | /// without performing bounds checking. |
| 824 | /// |
| 825 | /// For a safe alternative see [`get_mut`](Slab::get_mut). |
| 826 | /// |
| 827 | /// This function should be used with care. |
| 828 | /// |
| 829 | /// # Safety |
| 830 | /// |
| 831 | /// The key must be within bounds. |
| 832 | /// |
| 833 | /// # Examples |
| 834 | /// |
| 835 | /// ``` |
| 836 | /// # use slab::*; |
| 837 | /// let mut slab = Slab::new(); |
| 838 | /// let key = slab.insert(2); |
| 839 | /// |
| 840 | /// unsafe { |
| 841 | /// let val = slab.get_unchecked_mut(key); |
| 842 | /// *val = 13; |
| 843 | /// } |
| 844 | /// |
| 845 | /// assert_eq!(slab[key], 13); |
| 846 | /// ``` |
| 847 | pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T { |
| 848 | match *self.entries.get_unchecked_mut(key) { |
| 849 | Entry::Occupied(ref mut val) => val, |
| 850 | _ => unreachable!(), |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | /// Return two mutable references to the values associated with the two |
| 855 | /// given keys simultaneously without performing bounds checking and safety |
| 856 | /// condition checking. |
| 857 | /// |
| 858 | /// For a safe alternative see [`get2_mut`](Slab::get2_mut). |
| 859 | /// |
| 860 | /// This function should be used with care. |
| 861 | /// |
| 862 | /// # Safety |
| 863 | /// |
| 864 | /// - Both keys must be within bounds. |
| 865 | /// - The condition `key1 != key2` must hold. |
| 866 | /// |
| 867 | /// # Examples |
| 868 | /// |
| 869 | /// ``` |
| 870 | /// # use slab::*; |
| 871 | /// use std::mem; |
| 872 | /// |
| 873 | /// let mut slab = Slab::new(); |
| 874 | /// let key1 = slab.insert(1); |
| 875 | /// let key2 = slab.insert(2); |
| 876 | /// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) }; |
| 877 | /// mem::swap(value1, value2); |
| 878 | /// assert_eq!(slab[key1], 2); |
| 879 | /// assert_eq!(slab[key2], 1); |
| 880 | /// ``` |
| 881 | pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) { |
| 882 | debug_assert_ne!(key1, key2); |
| 883 | let ptr = self.entries.as_mut_ptr(); |
| 884 | let ptr1 = ptr.add(key1); |
| 885 | let ptr2 = ptr.add(key2); |
| 886 | match (&mut *ptr1, &mut *ptr2) { |
| 887 | (&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => { |
| 888 | (val1, val2) |
| 889 | } |
| 890 | _ => unreachable!(), |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | /// Get the key for an element in the slab. |
| 895 | /// |
| 896 | /// The reference must point to an element owned by the slab. |
| 897 | /// Otherwise this function will panic. |
| 898 | /// This is a constant-time operation because the key can be calculated |
| 899 | /// from the reference with pointer arithmetic. |
| 900 | /// |
| 901 | /// # Panics |
| 902 | /// |
| 903 | /// This function will panic if the reference does not point to an element |
| 904 | /// of the slab. |
| 905 | /// |
| 906 | /// # Examples |
| 907 | /// |
| 908 | /// ``` |
| 909 | /// # use slab::*; |
| 910 | /// |
| 911 | /// let mut slab = Slab::new(); |
| 912 | /// let key = slab.insert(String::from("foo" )); |
| 913 | /// let value = &slab[key]; |
| 914 | /// assert_eq!(slab.key_of(value), key); |
| 915 | /// ``` |
| 916 | /// |
| 917 | /// Values are not compared, so passing a reference to a different location |
| 918 | /// will result in a panic: |
| 919 | /// |
| 920 | /// ```should_panic |
| 921 | /// # use slab::*; |
| 922 | /// |
| 923 | /// let mut slab = Slab::new(); |
| 924 | /// let key = slab.insert(0); |
| 925 | /// let bad = &0; |
| 926 | /// slab.key_of(bad); // this will panic |
| 927 | /// unreachable!(); |
| 928 | /// ``` |
| 929 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
| 930 | pub fn key_of(&self, present_element: &T) -> usize { |
| 931 | let element_ptr = present_element as *const T as usize; |
| 932 | let base_ptr = self.entries.as_ptr() as usize; |
| 933 | // Use wrapping subtraction in case the reference is bad |
| 934 | let byte_offset = element_ptr.wrapping_sub(base_ptr); |
| 935 | // The division rounds away any offset of T inside Entry |
| 936 | // The size of Entry<T> is never zero even if T is due to Vacant(usize) |
| 937 | let key = byte_offset / mem::size_of::<Entry<T>>(); |
| 938 | // Prevent returning unspecified (but out of bounds) values |
| 939 | if key >= self.entries.len() { |
| 940 | panic!("The reference points to a value outside this slab" ); |
| 941 | } |
| 942 | // The reference cannot point to a vacant entry, because then it would not be valid |
| 943 | key |
| 944 | } |
| 945 | |
| 946 | /// Insert a value in the slab, returning key assigned to the value. |
| 947 | /// |
| 948 | /// The returned key can later be used to retrieve or remove the value using indexed |
| 949 | /// lookup and `remove`. Additional capacity is allocated if needed. See |
| 950 | /// [Capacity and reallocation](index.html#capacity-and-reallocation). |
| 951 | /// |
| 952 | /// # Panics |
| 953 | /// |
| 954 | /// Panics if the new storage in the vector exceeds `isize::MAX` bytes. |
| 955 | /// |
| 956 | /// # Examples |
| 957 | /// |
| 958 | /// ``` |
| 959 | /// # use slab::*; |
| 960 | /// let mut slab = Slab::new(); |
| 961 | /// let key = slab.insert("hello" ); |
| 962 | /// assert_eq!(slab[key], "hello" ); |
| 963 | /// ``` |
| 964 | pub fn insert(&mut self, val: T) -> usize { |
| 965 | let key = self.next; |
| 966 | |
| 967 | self.insert_at(key, val); |
| 968 | |
| 969 | key |
| 970 | } |
| 971 | |
| 972 | /// Returns the key of the next vacant entry. |
| 973 | /// |
| 974 | /// This function returns the key of the vacant entry which will be used |
| 975 | /// for the next insertion. This is equivalent to |
| 976 | /// `slab.vacant_entry().key()`, but it doesn't require mutable access. |
| 977 | /// |
| 978 | /// # Examples |
| 979 | /// |
| 980 | /// ``` |
| 981 | /// # use slab::*; |
| 982 | /// let mut slab = Slab::new(); |
| 983 | /// assert_eq!(slab.vacant_key(), 0); |
| 984 | /// |
| 985 | /// slab.insert(0); |
| 986 | /// assert_eq!(slab.vacant_key(), 1); |
| 987 | /// |
| 988 | /// slab.insert(1); |
| 989 | /// slab.remove(0); |
| 990 | /// assert_eq!(slab.vacant_key(), 0); |
| 991 | /// ``` |
| 992 | pub fn vacant_key(&self) -> usize { |
| 993 | self.next |
| 994 | } |
| 995 | |
| 996 | /// Return a handle to a vacant entry allowing for further manipulation. |
| 997 | /// |
| 998 | /// This function is useful when creating values that must contain their |
| 999 | /// slab key. The returned `VacantEntry` reserves a slot in the slab and is |
| 1000 | /// able to query the associated key. |
| 1001 | /// |
| 1002 | /// # Examples |
| 1003 | /// |
| 1004 | /// ``` |
| 1005 | /// # use slab::*; |
| 1006 | /// let mut slab = Slab::new(); |
| 1007 | /// |
| 1008 | /// let hello = { |
| 1009 | /// let entry = slab.vacant_entry(); |
| 1010 | /// let key = entry.key(); |
| 1011 | /// |
| 1012 | /// entry.insert((key, "hello" )); |
| 1013 | /// key |
| 1014 | /// }; |
| 1015 | /// |
| 1016 | /// assert_eq!(hello, slab[hello].0); |
| 1017 | /// assert_eq!("hello" , slab[hello].1); |
| 1018 | /// ``` |
| 1019 | pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> { |
| 1020 | VacantEntry { |
| 1021 | key: self.next, |
| 1022 | slab: self, |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | fn insert_at(&mut self, key: usize, val: T) { |
| 1027 | self.len += 1; |
| 1028 | |
| 1029 | if key == self.entries.len() { |
| 1030 | self.entries.push(Entry::Occupied(val)); |
| 1031 | self.next = key + 1; |
| 1032 | } else { |
| 1033 | self.next = match self.entries.get(key) { |
| 1034 | Some(&Entry::Vacant(next)) => next, |
| 1035 | _ => unreachable!(), |
| 1036 | }; |
| 1037 | self.entries[key] = Entry::Occupied(val); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | /// Tries to remove the value associated with the given key, |
| 1042 | /// returning the value if the key existed. |
| 1043 | /// |
| 1044 | /// The key is then released and may be associated with future stored |
| 1045 | /// values. |
| 1046 | /// |
| 1047 | /// # Examples |
| 1048 | /// |
| 1049 | /// ``` |
| 1050 | /// # use slab::*; |
| 1051 | /// let mut slab = Slab::new(); |
| 1052 | /// |
| 1053 | /// let hello = slab.insert("hello" ); |
| 1054 | /// |
| 1055 | /// assert_eq!(slab.try_remove(hello), Some("hello" )); |
| 1056 | /// assert!(!slab.contains(hello)); |
| 1057 | /// ``` |
| 1058 | pub fn try_remove(&mut self, key: usize) -> Option<T> { |
| 1059 | if let Some(entry) = self.entries.get_mut(key) { |
| 1060 | // Swap the entry at the provided value |
| 1061 | let prev = mem::replace(entry, Entry::Vacant(self.next)); |
| 1062 | |
| 1063 | match prev { |
| 1064 | Entry::Occupied(val) => { |
| 1065 | self.len -= 1; |
| 1066 | self.next = key; |
| 1067 | return val.into(); |
| 1068 | } |
| 1069 | _ => { |
| 1070 | // Woops, the entry is actually vacant, restore the state |
| 1071 | *entry = prev; |
| 1072 | } |
| 1073 | } |
| 1074 | } |
| 1075 | None |
| 1076 | } |
| 1077 | |
| 1078 | /// Remove and return the value associated with the given key. |
| 1079 | /// |
| 1080 | /// The key is then released and may be associated with future stored |
| 1081 | /// values. |
| 1082 | /// |
| 1083 | /// # Panics |
| 1084 | /// |
| 1085 | /// Panics if `key` is not associated with a value. |
| 1086 | /// |
| 1087 | /// # Examples |
| 1088 | /// |
| 1089 | /// ``` |
| 1090 | /// # use slab::*; |
| 1091 | /// let mut slab = Slab::new(); |
| 1092 | /// |
| 1093 | /// let hello = slab.insert("hello" ); |
| 1094 | /// |
| 1095 | /// assert_eq!(slab.remove(hello), "hello" ); |
| 1096 | /// assert!(!slab.contains(hello)); |
| 1097 | /// ``` |
| 1098 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
| 1099 | pub fn remove(&mut self, key: usize) -> T { |
| 1100 | self.try_remove(key).expect("invalid key" ) |
| 1101 | } |
| 1102 | |
| 1103 | /// Return `true` if a value is associated with the given key. |
| 1104 | /// |
| 1105 | /// # Examples |
| 1106 | /// |
| 1107 | /// ``` |
| 1108 | /// # use slab::*; |
| 1109 | /// let mut slab = Slab::new(); |
| 1110 | /// |
| 1111 | /// let hello = slab.insert("hello" ); |
| 1112 | /// assert!(slab.contains(hello)); |
| 1113 | /// |
| 1114 | /// slab.remove(hello); |
| 1115 | /// |
| 1116 | /// assert!(!slab.contains(hello)); |
| 1117 | /// ``` |
| 1118 | pub fn contains(&self, key: usize) -> bool { |
| 1119 | match self.entries.get(key) { |
| 1120 | Some(&Entry::Occupied(_)) => true, |
| 1121 | _ => false, |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | /// Retain only the elements specified by the predicate. |
| 1126 | /// |
| 1127 | /// In other words, remove all elements `e` such that `f(usize, &mut e)` |
| 1128 | /// returns false. This method operates in place and preserves the key |
| 1129 | /// associated with the retained values. |
| 1130 | /// |
| 1131 | /// # Examples |
| 1132 | /// |
| 1133 | /// ``` |
| 1134 | /// # use slab::*; |
| 1135 | /// let mut slab = Slab::new(); |
| 1136 | /// |
| 1137 | /// let k1 = slab.insert(0); |
| 1138 | /// let k2 = slab.insert(1); |
| 1139 | /// let k3 = slab.insert(2); |
| 1140 | /// |
| 1141 | /// slab.retain(|key, val| key == k1 || *val == 1); |
| 1142 | /// |
| 1143 | /// assert!(slab.contains(k1)); |
| 1144 | /// assert!(slab.contains(k2)); |
| 1145 | /// assert!(!slab.contains(k3)); |
| 1146 | /// |
| 1147 | /// assert_eq!(2, slab.len()); |
| 1148 | /// ``` |
| 1149 | pub fn retain<F>(&mut self, mut f: F) |
| 1150 | where |
| 1151 | F: FnMut(usize, &mut T) -> bool, |
| 1152 | { |
| 1153 | for i in 0..self.entries.len() { |
| 1154 | let keep = match self.entries[i] { |
| 1155 | Entry::Occupied(ref mut v) => f(i, v), |
| 1156 | _ => true, |
| 1157 | }; |
| 1158 | |
| 1159 | if !keep { |
| 1160 | self.remove(i); |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | /// Return a draining iterator that removes all elements from the slab and |
| 1166 | /// yields the removed items. |
| 1167 | /// |
| 1168 | /// Note: Elements are removed even if the iterator is only partially |
| 1169 | /// consumed or not consumed at all. |
| 1170 | /// |
| 1171 | /// # Examples |
| 1172 | /// |
| 1173 | /// ``` |
| 1174 | /// # use slab::*; |
| 1175 | /// let mut slab = Slab::new(); |
| 1176 | /// |
| 1177 | /// let _ = slab.insert(0); |
| 1178 | /// let _ = slab.insert(1); |
| 1179 | /// let _ = slab.insert(2); |
| 1180 | /// |
| 1181 | /// { |
| 1182 | /// let mut drain = slab.drain(); |
| 1183 | /// |
| 1184 | /// assert_eq!(Some(0), drain.next()); |
| 1185 | /// assert_eq!(Some(1), drain.next()); |
| 1186 | /// assert_eq!(Some(2), drain.next()); |
| 1187 | /// assert_eq!(None, drain.next()); |
| 1188 | /// } |
| 1189 | /// |
| 1190 | /// assert!(slab.is_empty()); |
| 1191 | /// ``` |
| 1192 | pub fn drain(&mut self) -> Drain<'_, T> { |
| 1193 | let old_len = self.len; |
| 1194 | self.len = 0; |
| 1195 | self.next = 0; |
| 1196 | Drain { |
| 1197 | inner: self.entries.drain(..), |
| 1198 | len: old_len, |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | impl<T> ops::Index<usize> for Slab<T> { |
| 1204 | type Output = T; |
| 1205 | |
| 1206 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
| 1207 | fn index(&self, key: usize) -> &T { |
| 1208 | match self.entries.get(index:key) { |
| 1209 | Some(Entry::Occupied(v: &T)) => v, |
| 1210 | _ => panic!("invalid key" ), |
| 1211 | } |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | impl<T> ops::IndexMut<usize> for Slab<T> { |
| 1216 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
| 1217 | fn index_mut(&mut self, key: usize) -> &mut T { |
| 1218 | match self.entries.get_mut(index:key) { |
| 1219 | Some(&mut Entry::Occupied(ref mut v: &mut T)) => v, |
| 1220 | _ => panic!("invalid key" ), |
| 1221 | } |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | impl<T> IntoIterator for Slab<T> { |
| 1226 | type Item = (usize, T); |
| 1227 | type IntoIter = IntoIter<T>; |
| 1228 | |
| 1229 | fn into_iter(self) -> IntoIter<T> { |
| 1230 | IntoIter { |
| 1231 | entries: self.entries.into_iter().enumerate(), |
| 1232 | len: self.len, |
| 1233 | } |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | impl<'a, T> IntoIterator for &'a Slab<T> { |
| 1238 | type Item = (usize, &'a T); |
| 1239 | type IntoIter = Iter<'a, T>; |
| 1240 | |
| 1241 | fn into_iter(self) -> Iter<'a, T> { |
| 1242 | self.iter() |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | impl<'a, T> IntoIterator for &'a mut Slab<T> { |
| 1247 | type Item = (usize, &'a mut T); |
| 1248 | type IntoIter = IterMut<'a, T>; |
| 1249 | |
| 1250 | fn into_iter(self) -> IterMut<'a, T> { |
| 1251 | self.iter_mut() |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | /// Create a slab from an iterator of key-value pairs. |
| 1256 | /// |
| 1257 | /// If the iterator produces duplicate keys, the previous value is replaced with the later one. |
| 1258 | /// The keys does not need to be sorted beforehand, and this function always |
| 1259 | /// takes O(n) time. |
| 1260 | /// Note that the returned slab will use space proportional to the largest key, |
| 1261 | /// so don't use `Slab` with untrusted keys. |
| 1262 | /// |
| 1263 | /// # Examples |
| 1264 | /// |
| 1265 | /// ``` |
| 1266 | /// # use slab::*; |
| 1267 | /// |
| 1268 | /// let vec = vec![(2,'a' ), (6,'b' ), (7,'c' )]; |
| 1269 | /// let slab = vec.into_iter().collect::<Slab<char>>(); |
| 1270 | /// assert_eq!(slab.len(), 3); |
| 1271 | /// assert!(slab.capacity() >= 8); |
| 1272 | /// assert_eq!(slab[2], 'a' ); |
| 1273 | /// ``` |
| 1274 | /// |
| 1275 | /// With duplicate and unsorted keys: |
| 1276 | /// |
| 1277 | /// ``` |
| 1278 | /// # use slab::*; |
| 1279 | /// |
| 1280 | /// let vec = vec![(20,'a' ), (10,'b' ), (11,'c' ), (10,'d' )]; |
| 1281 | /// let slab = vec.into_iter().collect::<Slab<char>>(); |
| 1282 | /// assert_eq!(slab.len(), 3); |
| 1283 | /// assert_eq!(slab[10], 'd' ); |
| 1284 | /// ``` |
| 1285 | impl<T> FromIterator<(usize, T)> for Slab<T> { |
| 1286 | fn from_iter<I>(iterable: I) -> Self |
| 1287 | where |
| 1288 | I: IntoIterator<Item = (usize, T)>, |
| 1289 | { |
| 1290 | let iterator: ::IntoIter = iterable.into_iter(); |
| 1291 | let mut builder: Builder = builder::Builder::with_capacity(iterator.size_hint().0); |
| 1292 | |
| 1293 | for (key: usize, value: T) in iterator { |
| 1294 | builder.pair(key, value) |
| 1295 | } |
| 1296 | builder.build() |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | impl<T> fmt::Debug for Slab<T> |
| 1301 | where |
| 1302 | T: fmt::Debug, |
| 1303 | { |
| 1304 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1305 | if fmt.alternate() { |
| 1306 | fmt.debug_map().entries(self.iter()).finish() |
| 1307 | } else { |
| 1308 | fmt&mut DebugStruct<'_, '_>.debug_struct("Slab" ) |
| 1309 | .field("len" , &self.len) |
| 1310 | .field(name:"cap" , &self.capacity()) |
| 1311 | .finish() |
| 1312 | } |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | impl<T> fmt::Debug for IntoIter<T> |
| 1317 | where |
| 1318 | T: fmt::Debug, |
| 1319 | { |
| 1320 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1321 | fmt&mut DebugStruct<'_, '_>.debug_struct("IntoIter" ) |
| 1322 | .field(name:"remaining" , &self.len) |
| 1323 | .finish() |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | impl<T> fmt::Debug for Iter<'_, T> |
| 1328 | where |
| 1329 | T: fmt::Debug, |
| 1330 | { |
| 1331 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1332 | fmt&mut DebugStruct<'_, '_>.debug_struct("Iter" ) |
| 1333 | .field(name:"remaining" , &self.len) |
| 1334 | .finish() |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | impl<T> fmt::Debug for IterMut<'_, T> |
| 1339 | where |
| 1340 | T: fmt::Debug, |
| 1341 | { |
| 1342 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1343 | fmt&mut DebugStruct<'_, '_>.debug_struct("IterMut" ) |
| 1344 | .field(name:"remaining" , &self.len) |
| 1345 | .finish() |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | impl<T> fmt::Debug for Drain<'_, T> { |
| 1350 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1351 | fmt.debug_struct(name:"Drain" ).finish() |
| 1352 | } |
| 1353 | } |
| 1354 | |
| 1355 | // ===== VacantEntry ===== |
| 1356 | |
| 1357 | impl<'a, T> VacantEntry<'a, T> { |
| 1358 | /// Insert a value in the entry, returning a mutable reference to the value. |
| 1359 | /// |
| 1360 | /// To get the key associated with the value, use `key` prior to calling |
| 1361 | /// `insert`. |
| 1362 | /// |
| 1363 | /// # Examples |
| 1364 | /// |
| 1365 | /// ``` |
| 1366 | /// # use slab::*; |
| 1367 | /// let mut slab = Slab::new(); |
| 1368 | /// |
| 1369 | /// let hello = { |
| 1370 | /// let entry = slab.vacant_entry(); |
| 1371 | /// let key = entry.key(); |
| 1372 | /// |
| 1373 | /// entry.insert((key, "hello" )); |
| 1374 | /// key |
| 1375 | /// }; |
| 1376 | /// |
| 1377 | /// assert_eq!(hello, slab[hello].0); |
| 1378 | /// assert_eq!("hello" , slab[hello].1); |
| 1379 | /// ``` |
| 1380 | pub fn insert(self, val: T) -> &'a mut T { |
| 1381 | self.slab.insert_at(self.key, val); |
| 1382 | |
| 1383 | match self.slab.entries.get_mut(self.key) { |
| 1384 | Some(&mut Entry::Occupied(ref mut v)) => v, |
| 1385 | _ => unreachable!(), |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | /// Return the key associated with this entry. |
| 1390 | /// |
| 1391 | /// A value stored in this entry will be associated with this key. |
| 1392 | /// |
| 1393 | /// # Examples |
| 1394 | /// |
| 1395 | /// ``` |
| 1396 | /// # use slab::*; |
| 1397 | /// let mut slab = Slab::new(); |
| 1398 | /// |
| 1399 | /// let hello = { |
| 1400 | /// let entry = slab.vacant_entry(); |
| 1401 | /// let key = entry.key(); |
| 1402 | /// |
| 1403 | /// entry.insert((key, "hello" )); |
| 1404 | /// key |
| 1405 | /// }; |
| 1406 | /// |
| 1407 | /// assert_eq!(hello, slab[hello].0); |
| 1408 | /// assert_eq!("hello" , slab[hello].1); |
| 1409 | /// ``` |
| 1410 | pub fn key(&self) -> usize { |
| 1411 | self.key |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | // ===== IntoIter ===== |
| 1416 | |
| 1417 | impl<T> Iterator for IntoIter<T> { |
| 1418 | type Item = (usize, T); |
| 1419 | |
| 1420 | fn next(&mut self) -> Option<Self::Item> { |
| 1421 | for (key: usize, entry: Entry) in &mut self.entries { |
| 1422 | if let Entry::Occupied(v: T) = entry { |
| 1423 | self.len -= 1; |
| 1424 | return Some((key, v)); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | debug_assert_eq!(self.len, 0); |
| 1429 | None |
| 1430 | } |
| 1431 | |
| 1432 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1433 | (self.len, Some(self.len)) |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | impl<T> DoubleEndedIterator for IntoIter<T> { |
| 1438 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1439 | while let Some((key: usize, entry: Entry)) = self.entries.next_back() { |
| 1440 | if let Entry::Occupied(v: T) = entry { |
| 1441 | self.len -= 1; |
| 1442 | return Some((key, v)); |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | debug_assert_eq!(self.len, 0); |
| 1447 | None |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | impl<T> ExactSizeIterator for IntoIter<T> { |
| 1452 | fn len(&self) -> usize { |
| 1453 | self.len |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | impl<T> FusedIterator for IntoIter<T> {} |
| 1458 | |
| 1459 | // ===== Iter ===== |
| 1460 | |
| 1461 | impl<'a, T> Iterator for Iter<'a, T> { |
| 1462 | type Item = (usize, &'a T); |
| 1463 | |
| 1464 | fn next(&mut self) -> Option<Self::Item> { |
| 1465 | for (key: usize, entry: &'a Entry) in &mut self.entries { |
| 1466 | if let Entry::Occupied(ref v: &T) = *entry { |
| 1467 | self.len -= 1; |
| 1468 | return Some((key, v)); |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | debug_assert_eq!(self.len, 0); |
| 1473 | None |
| 1474 | } |
| 1475 | |
| 1476 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1477 | (self.len, Some(self.len)) |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | impl<T> DoubleEndedIterator for Iter<'_, T> { |
| 1482 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1483 | while let Some((key: usize, entry: &Entry)) = self.entries.next_back() { |
| 1484 | if let Entry::Occupied(ref v: &T) = *entry { |
| 1485 | self.len -= 1; |
| 1486 | return Some((key, v)); |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | debug_assert_eq!(self.len, 0); |
| 1491 | None |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | impl<T> ExactSizeIterator for Iter<'_, T> { |
| 1496 | fn len(&self) -> usize { |
| 1497 | self.len |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | impl<T> FusedIterator for Iter<'_, T> {} |
| 1502 | |
| 1503 | // ===== IterMut ===== |
| 1504 | |
| 1505 | impl<'a, T> Iterator for IterMut<'a, T> { |
| 1506 | type Item = (usize, &'a mut T); |
| 1507 | |
| 1508 | fn next(&mut self) -> Option<Self::Item> { |
| 1509 | for (key: usize, entry: &'a mut Entry) in &mut self.entries { |
| 1510 | if let Entry::Occupied(ref mut v: &mut T) = *entry { |
| 1511 | self.len -= 1; |
| 1512 | return Some((key, v)); |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | debug_assert_eq!(self.len, 0); |
| 1517 | None |
| 1518 | } |
| 1519 | |
| 1520 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1521 | (self.len, Some(self.len)) |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | impl<T> DoubleEndedIterator for IterMut<'_, T> { |
| 1526 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1527 | while let Some((key: usize, entry: &mut Entry)) = self.entries.next_back() { |
| 1528 | if let Entry::Occupied(ref mut v: &mut T) = *entry { |
| 1529 | self.len -= 1; |
| 1530 | return Some((key, v)); |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | debug_assert_eq!(self.len, 0); |
| 1535 | None |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | impl<T> ExactSizeIterator for IterMut<'_, T> { |
| 1540 | fn len(&self) -> usize { |
| 1541 | self.len |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | impl<T> FusedIterator for IterMut<'_, T> {} |
| 1546 | |
| 1547 | // ===== Drain ===== |
| 1548 | |
| 1549 | impl<T> Iterator for Drain<'_, T> { |
| 1550 | type Item = T; |
| 1551 | |
| 1552 | fn next(&mut self) -> Option<Self::Item> { |
| 1553 | for entry: Entry in &mut self.inner { |
| 1554 | if let Entry::Occupied(v: T) = entry { |
| 1555 | self.len -= 1; |
| 1556 | return Some(v); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | debug_assert_eq!(self.len, 0); |
| 1561 | None |
| 1562 | } |
| 1563 | |
| 1564 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1565 | (self.len, Some(self.len)) |
| 1566 | } |
| 1567 | } |
| 1568 | |
| 1569 | impl<T> DoubleEndedIterator for Drain<'_, T> { |
| 1570 | fn next_back(&mut self) -> Option<Self::Item> { |
| 1571 | while let Some(entry: Entry) = self.inner.next_back() { |
| 1572 | if let Entry::Occupied(v: T) = entry { |
| 1573 | self.len -= 1; |
| 1574 | return Some(v); |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | debug_assert_eq!(self.len, 0); |
| 1579 | None |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | impl<T> ExactSizeIterator for Drain<'_, T> { |
| 1584 | fn len(&self) -> usize { |
| 1585 | self.len |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | impl<T> FusedIterator for Drain<'_, T> {} |
| 1590 | |