| 1 | use cfg_if::cfg_if; |
| 2 | |
| 3 | use crate::cell::UnsafeCell; |
| 4 | use crate::fmt; |
| 5 | use crate::ops::Deref; |
| 6 | use crate::panic::{RefUnwindSafe, UnwindSafe}; |
| 7 | use crate::sys::sync as sys; |
| 8 | use crate::thread::{ThreadId, current_id}; |
| 9 | |
| 10 | /// A re-entrant mutual exclusion lock |
| 11 | /// |
| 12 | /// This lock will block *other* threads waiting for the lock to become |
| 13 | /// available. The thread which has already locked the mutex can lock it |
| 14 | /// multiple times without blocking, preventing a common source of deadlocks. |
| 15 | /// |
| 16 | /// # Examples |
| 17 | /// |
| 18 | /// Allow recursively calling a function needing synchronization from within |
| 19 | /// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently |
| 20 | /// implemented): |
| 21 | /// |
| 22 | /// ``` |
| 23 | /// #![feature(reentrant_lock)] |
| 24 | /// |
| 25 | /// use std::cell::RefCell; |
| 26 | /// use std::sync::ReentrantLock; |
| 27 | /// |
| 28 | /// pub struct Log { |
| 29 | /// data: RefCell<String>, |
| 30 | /// } |
| 31 | /// |
| 32 | /// impl Log { |
| 33 | /// pub fn append(&self, msg: &str) { |
| 34 | /// self.data.borrow_mut().push_str(msg); |
| 35 | /// } |
| 36 | /// } |
| 37 | /// |
| 38 | /// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) }); |
| 39 | /// |
| 40 | /// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R { |
| 41 | /// let log = LOG.lock(); |
| 42 | /// f(&*log) |
| 43 | /// } |
| 44 | /// |
| 45 | /// with_log(|log| { |
| 46 | /// log.append("Hello" ); |
| 47 | /// with_log(|log| log.append(" there!" )); |
| 48 | /// }); |
| 49 | /// ``` |
| 50 | /// |
| 51 | // # Implementation details |
| 52 | // |
| 53 | // The 'owner' field tracks which thread has locked the mutex. |
| 54 | // |
| 55 | // We use thread::current_id() as the thread identifier, which is just the |
| 56 | // current thread's ThreadId, so it's unique across the process lifetime. |
| 57 | // |
| 58 | // If `owner` is set to the identifier of the current thread, |
| 59 | // we assume the mutex is already locked and instead of locking it again, |
| 60 | // we increment `lock_count`. |
| 61 | // |
| 62 | // When unlocking, we decrement `lock_count`, and only unlock the mutex when |
| 63 | // it reaches zero. |
| 64 | // |
| 65 | // `lock_count` is protected by the mutex and only accessed by the thread that has |
| 66 | // locked the mutex, so needs no synchronization. |
| 67 | // |
| 68 | // `owner` can be checked by other threads that want to see if they already |
| 69 | // hold the lock, so needs to be atomic. If it compares equal, we're on the |
| 70 | // same thread that holds the mutex and memory access can use relaxed ordering |
| 71 | // since we're not dealing with multiple threads. If it's not equal, |
| 72 | // synchronization is left to the mutex, making relaxed memory ordering for |
| 73 | // the `owner` field fine in all cases. |
| 74 | // |
| 75 | // On systems without 64 bit atomics we also store the address of a TLS variable |
| 76 | // along the 64-bit TID. We then first check that address against the address |
| 77 | // of that variable on the current thread, and only if they compare equal do we |
| 78 | // compare the actual TIDs. Because we only ever read the TID on the same thread |
| 79 | // that it was written on (or a thread sharing the TLS block with that writer thread), |
| 80 | // we don't need to further synchronize the TID accesses, so they can be regular 64-bit |
| 81 | // non-atomic accesses. |
| 82 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 83 | pub struct ReentrantLock<T: ?Sized> { |
| 84 | mutex: sys::Mutex, |
| 85 | owner: Tid, |
| 86 | lock_count: UnsafeCell<u32>, |
| 87 | data: T, |
| 88 | } |
| 89 | |
| 90 | cfg_if!( |
| 91 | if #[cfg(target_has_atomic = "64" )] { |
| 92 | use crate::sync::atomic::{Atomic, AtomicU64, Ordering::Relaxed}; |
| 93 | |
| 94 | struct Tid(Atomic<u64>); |
| 95 | |
| 96 | impl Tid { |
| 97 | const fn new() -> Self { |
| 98 | Self(AtomicU64::new(0)) |
| 99 | } |
| 100 | |
| 101 | #[inline ] |
| 102 | fn contains(&self, owner: ThreadId) -> bool { |
| 103 | owner.as_u64().get() == self.0.load(Relaxed) |
| 104 | } |
| 105 | |
| 106 | #[inline ] |
| 107 | // This is just unsafe to match the API of the Tid type below. |
| 108 | unsafe fn set(&self, tid: Option<ThreadId>) { |
| 109 | let value = tid.map_or(0, |tid| tid.as_u64().get()); |
| 110 | self.0.store(value, Relaxed); |
| 111 | } |
| 112 | } |
| 113 | } else { |
| 114 | /// Returns the address of a TLS variable. This is guaranteed to |
| 115 | /// be unique across all currently alive threads. |
| 116 | fn tls_addr() -> usize { |
| 117 | thread_local! { static X: u8 = const { 0u8 } }; |
| 118 | |
| 119 | X.with(|p| <*const u8>::addr(p)) |
| 120 | } |
| 121 | |
| 122 | use crate::sync::atomic::{ |
| 123 | Atomic, |
| 124 | AtomicUsize, |
| 125 | Ordering, |
| 126 | }; |
| 127 | |
| 128 | struct Tid { |
| 129 | // When a thread calls `set()`, this value gets updated to |
| 130 | // the address of a thread local on that thread. This is |
| 131 | // used as a first check in `contains()`; if the `tls_addr` |
| 132 | // doesn't match the TLS address of the current thread, then |
| 133 | // the ThreadId also can't match. Only if the TLS addresses do |
| 134 | // match do we read out the actual TID. |
| 135 | // Note also that we can use relaxed atomic operations here, because |
| 136 | // we only ever read from the tid if `tls_addr` matches the current |
| 137 | // TLS address. In that case, either the tid has been set by |
| 138 | // the current thread, or by a thread that has terminated before |
| 139 | // the current thread's `tls_addr` was allocated. In either case, no further |
| 140 | // synchronization is needed (as per <https://github.com/rust-lang/miri/issues/3450>) |
| 141 | tls_addr: Atomic<usize>, |
| 142 | tid: UnsafeCell<u64>, |
| 143 | } |
| 144 | |
| 145 | unsafe impl Send for Tid {} |
| 146 | unsafe impl Sync for Tid {} |
| 147 | |
| 148 | impl Tid { |
| 149 | const fn new() -> Self { |
| 150 | Self { tls_addr: AtomicUsize::new(0), tid: UnsafeCell::new(0) } |
| 151 | } |
| 152 | |
| 153 | #[inline] |
| 154 | // NOTE: This assumes that `owner` is the ID of the current |
| 155 | // thread, and may spuriously return `false` if that's not the case. |
| 156 | fn contains(&self, owner: ThreadId) -> bool { |
| 157 | // We must call `tls_addr()` *before* doing the load to ensure that if we reuse an |
| 158 | // earlier thread's address, the `tls_addr.load()` below happens-after everything |
| 159 | // that thread did. |
| 160 | let tls_addr = tls_addr(); |
| 161 | // SAFETY: See the comments in the struct definition. |
| 162 | self.tls_addr.load(Ordering::Relaxed) == tls_addr |
| 163 | && unsafe { *self.tid.get() } == owner.as_u64().get() |
| 164 | } |
| 165 | |
| 166 | #[inline] |
| 167 | // This may only be called by one thread at a time, and can lead to |
| 168 | // race conditions otherwise. |
| 169 | unsafe fn set(&self, tid: Option<ThreadId>) { |
| 170 | // It's important that we set `self.tls_addr` to 0 if the tid is |
| 171 | // cleared. Otherwise, there might be race conditions between |
| 172 | // `set()` and `get()`. |
| 173 | let tls_addr = if tid.is_some() { tls_addr() } else { 0 }; |
| 174 | let value = tid.map_or(0, |tid| tid.as_u64().get()); |
| 175 | self.tls_addr.store(tls_addr, Ordering::Relaxed); |
| 176 | unsafe { *self.tid.get() = value }; |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | ); |
| 181 | |
| 182 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 183 | unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {} |
| 184 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 185 | unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {} |
| 186 | |
| 187 | // Because of the `UnsafeCell`, these traits are not implemented automatically |
| 188 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 189 | impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {} |
| 190 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 191 | impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {} |
| 192 | |
| 193 | /// An RAII implementation of a "scoped lock" of a re-entrant lock. When this |
| 194 | /// structure is dropped (falls out of scope), the lock will be unlocked. |
| 195 | /// |
| 196 | /// The data protected by the mutex can be accessed through this guard via its |
| 197 | /// [`Deref`] implementation. |
| 198 | /// |
| 199 | /// This structure is created by the [`lock`](ReentrantLock::lock) method on |
| 200 | /// [`ReentrantLock`]. |
| 201 | /// |
| 202 | /// # Mutability |
| 203 | /// |
| 204 | /// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not |
| 205 | /// implement [`DerefMut`](crate::ops::DerefMut), because implementation of |
| 206 | /// the trait would violate Rust’s reference aliasing rules. Use interior |
| 207 | /// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate |
| 208 | /// the guarded data. |
| 209 | #[must_use = "if unused the ReentrantLock will immediately unlock" ] |
| 210 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 211 | pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> { |
| 212 | lock: &'a ReentrantLock<T>, |
| 213 | } |
| 214 | |
| 215 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 216 | impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {} |
| 217 | |
| 218 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 219 | unsafe impl<T: ?Sized + Sync> Sync for ReentrantLockGuard<'_, T> {} |
| 220 | |
| 221 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 222 | impl<T> ReentrantLock<T> { |
| 223 | /// Creates a new re-entrant lock in an unlocked state ready for use. |
| 224 | /// |
| 225 | /// # Examples |
| 226 | /// |
| 227 | /// ``` |
| 228 | /// #![feature(reentrant_lock)] |
| 229 | /// use std::sync::ReentrantLock; |
| 230 | /// |
| 231 | /// let lock = ReentrantLock::new(0); |
| 232 | /// ``` |
| 233 | pub const fn new(t: T) -> ReentrantLock<T> { |
| 234 | ReentrantLock { |
| 235 | mutex: sys::Mutex::new(), |
| 236 | owner: Tid::new(), |
| 237 | lock_count: UnsafeCell::new(0), |
| 238 | data: t, |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | /// Consumes this lock, returning the underlying data. |
| 243 | /// |
| 244 | /// # Examples |
| 245 | /// |
| 246 | /// ``` |
| 247 | /// #![feature(reentrant_lock)] |
| 248 | /// |
| 249 | /// use std::sync::ReentrantLock; |
| 250 | /// |
| 251 | /// let lock = ReentrantLock::new(0); |
| 252 | /// assert_eq!(lock.into_inner(), 0); |
| 253 | /// ``` |
| 254 | pub fn into_inner(self) -> T { |
| 255 | self.data |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 260 | impl<T: ?Sized> ReentrantLock<T> { |
| 261 | /// Acquires the lock, blocking the current thread until it is able to do |
| 262 | /// so. |
| 263 | /// |
| 264 | /// This function will block the caller until it is available to acquire |
| 265 | /// the lock. Upon returning, the thread is the only thread with the lock |
| 266 | /// held. When the thread calling this method already holds the lock, the |
| 267 | /// call succeeds without blocking. |
| 268 | /// |
| 269 | /// # Examples |
| 270 | /// |
| 271 | /// ``` |
| 272 | /// #![feature(reentrant_lock)] |
| 273 | /// use std::cell::Cell; |
| 274 | /// use std::sync::{Arc, ReentrantLock}; |
| 275 | /// use std::thread; |
| 276 | /// |
| 277 | /// let lock = Arc::new(ReentrantLock::new(Cell::new(0))); |
| 278 | /// let c_lock = Arc::clone(&lock); |
| 279 | /// |
| 280 | /// thread::spawn(move || { |
| 281 | /// c_lock.lock().set(10); |
| 282 | /// }).join().expect("thread::spawn failed" ); |
| 283 | /// assert_eq!(lock.lock().get(), 10); |
| 284 | /// ``` |
| 285 | pub fn lock(&self) -> ReentrantLockGuard<'_, T> { |
| 286 | let this_thread = current_id(); |
| 287 | // Safety: We only touch lock_count when we own the inner mutex. |
| 288 | // Additionally, we only call `self.owner.set()` while holding |
| 289 | // the inner mutex, so no two threads can call it concurrently. |
| 290 | unsafe { |
| 291 | if self.owner.contains(this_thread) { |
| 292 | self.increment_lock_count().expect("lock count overflow in reentrant mutex" ); |
| 293 | } else { |
| 294 | self.mutex.lock(); |
| 295 | self.owner.set(Some(this_thread)); |
| 296 | debug_assert_eq!(*self.lock_count.get(), 0); |
| 297 | *self.lock_count.get() = 1; |
| 298 | } |
| 299 | } |
| 300 | ReentrantLockGuard { lock: self } |
| 301 | } |
| 302 | |
| 303 | /// Returns a mutable reference to the underlying data. |
| 304 | /// |
| 305 | /// Since this call borrows the `ReentrantLock` mutably, no actual locking |
| 306 | /// needs to take place -- the mutable borrow statically guarantees no locks |
| 307 | /// exist. |
| 308 | /// |
| 309 | /// # Examples |
| 310 | /// |
| 311 | /// ``` |
| 312 | /// #![feature(reentrant_lock)] |
| 313 | /// use std::sync::ReentrantLock; |
| 314 | /// |
| 315 | /// let mut lock = ReentrantLock::new(0); |
| 316 | /// *lock.get_mut() = 10; |
| 317 | /// assert_eq!(*lock.lock(), 10); |
| 318 | /// ``` |
| 319 | pub fn get_mut(&mut self) -> &mut T { |
| 320 | &mut self.data |
| 321 | } |
| 322 | |
| 323 | /// Attempts to acquire this lock. |
| 324 | /// |
| 325 | /// If the lock could not be acquired at this time, then `None` is returned. |
| 326 | /// Otherwise, an RAII guard is returned. |
| 327 | /// |
| 328 | /// This function does not block. |
| 329 | // FIXME maybe make it a public part of the API? |
| 330 | #[unstable (issue = "none" , feature = "std_internals" )] |
| 331 | #[doc (hidden)] |
| 332 | pub fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> { |
| 333 | let this_thread = current_id(); |
| 334 | // Safety: We only touch lock_count when we own the inner mutex. |
| 335 | // Additionally, we only call `self.owner.set()` while holding |
| 336 | // the inner mutex, so no two threads can call it concurrently. |
| 337 | unsafe { |
| 338 | if self.owner.contains(this_thread) { |
| 339 | self.increment_lock_count()?; |
| 340 | Some(ReentrantLockGuard { lock: self }) |
| 341 | } else if self.mutex.try_lock() { |
| 342 | self.owner.set(Some(this_thread)); |
| 343 | debug_assert_eq!(*self.lock_count.get(), 0); |
| 344 | *self.lock_count.get() = 1; |
| 345 | Some(ReentrantLockGuard { lock: self }) |
| 346 | } else { |
| 347 | None |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /// Returns a raw pointer to the underlying data. |
| 353 | /// |
| 354 | /// The returned pointer is always non-null and properly aligned, but it is |
| 355 | /// the user's responsibility to ensure that any reads through it are |
| 356 | /// properly synchronized to avoid data races, and that it is not read |
| 357 | /// through after the lock is dropped. |
| 358 | #[unstable (feature = "reentrant_lock_data_ptr" , issue = "140368" )] |
| 359 | pub fn data_ptr(&self) -> *const T { |
| 360 | &raw const self.data |
| 361 | } |
| 362 | |
| 363 | unsafe fn increment_lock_count(&self) -> Option<()> { |
| 364 | unsafe { |
| 365 | *self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?; |
| 366 | } |
| 367 | Some(()) |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 372 | impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> { |
| 373 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 374 | let mut d: DebugStruct<'_, '_> = f.debug_struct(name:"ReentrantLock" ); |
| 375 | match self.try_lock() { |
| 376 | Some(v: ReentrantLockGuard<'_, T>) => d.field(name:"data" , &&*v), |
| 377 | None => d.field(name:"data" , &format_args!("<locked>" )), |
| 378 | }; |
| 379 | d.finish_non_exhaustive() |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 384 | impl<T: Default> Default for ReentrantLock<T> { |
| 385 | fn default() -> Self { |
| 386 | Self::new(T::default()) |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 391 | impl<T> From<T> for ReentrantLock<T> { |
| 392 | fn from(t: T) -> Self { |
| 393 | Self::new(t) |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 398 | impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> { |
| 399 | type Target = T; |
| 400 | |
| 401 | fn deref(&self) -> &T { |
| 402 | &self.lock.data |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 407 | impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> { |
| 408 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 409 | (**self).fmt(f) |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 414 | impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> { |
| 415 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 416 | (**self).fmt(f) |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | #[unstable (feature = "reentrant_lock" , issue = "121440" )] |
| 421 | impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> { |
| 422 | #[inline ] |
| 423 | fn drop(&mut self) { |
| 424 | // Safety: We own the lock. |
| 425 | unsafe { |
| 426 | *self.lock.lock_count.get() -= 1; |
| 427 | if *self.lock.lock_count.get() == 0 { |
| 428 | self.lock.owner.set(tid:None); |
| 429 | self.lock.mutex.unlock(); |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | |