1#![allow(missing_docs)]
2
3use std::mem;
4
5#[cfg(test)]
6mod tests;
7
8fn local_sort(v: &mut [f64]) {
9 v.sort_by(|x: &f64, y: &f64| x.total_cmp(y));
10}
11
12/// Trait that provides simple descriptive statistics on a univariate set of numeric samples.
13pub trait Stats {
14 /// Sum of the samples.
15 ///
16 /// Note: this method sacrifices performance at the altar of accuracy
17 /// Depends on IEEE 754 arithmetic guarantees. See proof of correctness at:
18 /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
19 /// Predicates"][paper]
20 ///
21 /// [paper]: https://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps
22 fn sum(&self) -> f64;
23
24 /// Minimum value of the samples.
25 fn min(&self) -> f64;
26
27 /// Maximum value of the samples.
28 fn max(&self) -> f64;
29
30 /// Arithmetic mean (average) of the samples: sum divided by sample-count.
31 ///
32 /// See: <https://en.wikipedia.org/wiki/Arithmetic_mean>
33 fn mean(&self) -> f64;
34
35 /// Median of the samples: value separating the lower half of the samples from the higher half.
36 /// Equal to `self.percentile(50.0)`.
37 ///
38 /// See: <https://en.wikipedia.org/wiki/Median>
39 fn median(&self) -> f64;
40
41 /// Variance of the samples: bias-corrected mean of the squares of the differences of each
42 /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the
43 /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n`
44 /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather
45 /// than `n`.
46 ///
47 /// See: <https://en.wikipedia.org/wiki/Variance>
48 fn var(&self) -> f64;
49
50 /// Standard deviation: the square root of the sample variance.
51 ///
52 /// Note: this is not a robust statistic for non-normal distributions. Prefer the
53 /// `median_abs_dev` for unknown distributions.
54 ///
55 /// See: <https://en.wikipedia.org/wiki/Standard_deviation>
56 fn std_dev(&self) -> f64;
57
58 /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`.
59 ///
60 /// Note: this is not a robust statistic for non-normal distributions. Prefer the
61 /// `median_abs_dev_pct` for unknown distributions.
62 fn std_dev_pct(&self) -> f64;
63
64 /// Scaled median of the absolute deviations of each sample from the sample median. This is a
65 /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to
66 /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled
67 /// by the constant `1.4826` to allow its use as a consistent estimator for the standard
68 /// deviation.
69 ///
70 /// See: <https://en.wikipedia.org/wiki/Median_absolute_deviation>
71 fn median_abs_dev(&self) -> f64;
72
73 /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`.
74 fn median_abs_dev_pct(&self) -> f64;
75
76 /// Percentile: the value below which `pct` percent of the values in `self` fall. For example,
77 /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self`
78 /// satisfy `s <= v`.
79 ///
80 /// Calculated by linear interpolation between closest ranks.
81 ///
82 /// See: <https://en.wikipedia.org/wiki/Percentile>
83 fn percentile(&self, pct: f64) -> f64;
84
85 /// Quartiles of the sample: three values that divide the sample into four equal groups, each
86 /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This
87 /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but
88 /// is otherwise equivalent.
89 ///
90 /// See also: <https://en.wikipedia.org/wiki/Quartile>
91 fn quartiles(&self) -> (f64, f64, f64);
92
93 /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th
94 /// percentile (3rd quartile). See `quartiles`.
95 ///
96 /// See also: <https://en.wikipedia.org/wiki/Interquartile_range>
97 fn iqr(&self) -> f64;
98}
99
100/// Extracted collection of all the summary statistics of a sample set.
101#[derive(Debug, Clone, PartialEq, Copy)]
102#[allow(missing_docs)]
103pub struct Summary {
104 pub sum: f64,
105 pub min: f64,
106 pub max: f64,
107 pub mean: f64,
108 pub median: f64,
109 pub var: f64,
110 pub std_dev: f64,
111 pub std_dev_pct: f64,
112 pub median_abs_dev: f64,
113 pub median_abs_dev_pct: f64,
114 pub quartiles: (f64, f64, f64),
115 pub iqr: f64,
116}
117
118impl Summary {
119 /// Construct a new summary of a sample set.
120 pub fn new(samples: &[f64]) -> Summary {
121 Summary {
122 sum: samples.sum(),
123 min: samples.min(),
124 max: samples.max(),
125 mean: samples.mean(),
126 median: samples.median(),
127 var: samples.var(),
128 std_dev: samples.std_dev(),
129 std_dev_pct: samples.std_dev_pct(),
130 median_abs_dev: samples.median_abs_dev(),
131 median_abs_dev_pct: samples.median_abs_dev_pct(),
132 quartiles: samples.quartiles(),
133 iqr: samples.iqr(),
134 }
135 }
136}
137
138impl Stats for [f64] {
139 // FIXME #11059 handle NaN, inf and overflow
140 fn sum(&self) -> f64 {
141 let mut partials = vec![];
142
143 for &x in self {
144 let mut x = x;
145 let mut j = 0;
146 // This inner loop applies `hi`/`lo` summation to each
147 // partial so that the list of partial sums remains exact.
148 for i in 0..partials.len() {
149 let mut y: f64 = partials[i];
150 if x.abs() < y.abs() {
151 mem::swap(&mut x, &mut y);
152 }
153 // Rounded `x+y` is stored in `hi` with round-off stored in
154 // `lo`. Together `hi+lo` are exactly equal to `x+y`.
155 let hi = x + y;
156 let lo = y - (hi - x);
157 if lo != 0.0 {
158 partials[j] = lo;
159 j += 1;
160 }
161 x = hi;
162 }
163 if j >= partials.len() {
164 partials.push(x);
165 } else {
166 partials[j] = x;
167 partials.truncate(j + 1);
168 }
169 }
170 let zero: f64 = 0.0;
171 partials.iter().fold(zero, |p, q| p + *q)
172 }
173
174 fn min(&self) -> f64 {
175 assert!(!self.is_empty());
176 self.iter().fold(self[0], |p, q| p.min(*q))
177 }
178
179 fn max(&self) -> f64 {
180 assert!(!self.is_empty());
181 self.iter().fold(self[0], |p, q| p.max(*q))
182 }
183
184 fn mean(&self) -> f64 {
185 assert!(!self.is_empty());
186 self.sum() / (self.len() as f64)
187 }
188
189 fn median(&self) -> f64 {
190 self.percentile(50_f64)
191 }
192
193 fn var(&self) -> f64 {
194 if self.len() < 2 {
195 0.0
196 } else {
197 let mean = self.mean();
198 let mut v: f64 = 0.0;
199 for s in self {
200 let x = *s - mean;
201 v += x * x;
202 }
203 // N.B., this is _supposed to be_ len-1, not len. If you
204 // change it back to len, you will be calculating a
205 // population variance, not a sample variance.
206 let denom = (self.len() - 1) as f64;
207 v / denom
208 }
209 }
210
211 fn std_dev(&self) -> f64 {
212 self.var().sqrt()
213 }
214
215 fn std_dev_pct(&self) -> f64 {
216 let hundred = 100_f64;
217 (self.std_dev() / self.mean()) * hundred
218 }
219
220 fn median_abs_dev(&self) -> f64 {
221 let med = self.median();
222 let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect();
223 // This constant is derived by smarter statistics brains than me, but it is
224 // consistent with how R and other packages treat the MAD.
225 let number = 1.4826;
226 abs_devs.median() * number
227 }
228
229 fn median_abs_dev_pct(&self) -> f64 {
230 let hundred = 100_f64;
231 (self.median_abs_dev() / self.median()) * hundred
232 }
233
234 fn percentile(&self, pct: f64) -> f64 {
235 let mut tmp = self.to_vec();
236 local_sort(&mut tmp);
237 percentile_of_sorted(&tmp, pct)
238 }
239
240 fn quartiles(&self) -> (f64, f64, f64) {
241 let mut tmp = self.to_vec();
242 local_sort(&mut tmp);
243 let first = 25_f64;
244 let a = percentile_of_sorted(&tmp, first);
245 let second = 50_f64;
246 let b = percentile_of_sorted(&tmp, second);
247 let third = 75_f64;
248 let c = percentile_of_sorted(&tmp, third);
249 (a, b, c)
250 }
251
252 fn iqr(&self) -> f64 {
253 let (a, _, c) = self.quartiles();
254 c - a
255 }
256}
257
258// Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using
259// linear interpolation. If samples are not sorted, return nonsensical value.
260fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 {
261 assert!(!sorted_samples.is_empty());
262 if sorted_samples.len() == 1 {
263 return sorted_samples[0];
264 }
265 let zero: f64 = 0.0;
266 assert!(zero <= pct);
267 let hundred: f64 = 100_f64;
268 assert!(pct <= hundred);
269 if pct == hundred {
270 return sorted_samples[sorted_samples.len() - 1];
271 }
272 let length: f64 = (sorted_samples.len() - 1) as f64;
273 let rank: f64 = (pct / hundred) * length;
274 let lrank: f64 = rank.floor();
275 let d: f64 = rank - lrank;
276 let n: usize = lrank as usize;
277 let lo = sorted_samples[n];
278 let hi = sorted_samples[n + 1];
279 lo + (hi - lo) * d
280}
281
282/// Winsorize a set of samples, replacing values above the `100-pct` percentile
283/// and below the `pct` percentile with those percentiles themselves. This is a
284/// way of minimizing the effect of outliers, at the cost of biasing the sample.
285/// It differs from trimming in that it does not change the number of samples,
286/// just changes the values of those that are outliers.
287///
288/// See: <https://en.wikipedia.org/wiki/Winsorising>
289pub fn winsorize(samples: &mut [f64], pct: f64) {
290 let mut tmp: [f64] = samples.to_vec();
291 local_sort(&mut tmp);
292 let lo: f64 = percentile_of_sorted(&tmp, pct);
293 let hundred: f64 = 100_f64;
294 let hi: f64 = percentile_of_sorted(&tmp, pct:hundred - pct);
295 for samp in samples {
296 if *samp > hi {
297 *samp = hi
298 } else if *samp < lo {
299 *samp = lo
300 }
301 }
302}
303