| 1 | // Copyright 2023 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| 4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 6 | // This file may not be copied, modified, or distributed except according to |
| 7 | // those terms. |
| 8 | |
| 9 | use core::ptr::NonNull; |
| 10 | |
| 11 | use crate::{util::AsAddress, CastType, KnownLayout}; |
| 12 | |
| 13 | /// Module used to gate access to [`Ptr`]'s fields. |
| 14 | mod def { |
| 15 | #[cfg (doc)] |
| 16 | use super::invariant; |
| 17 | use super::Invariants; |
| 18 | use core::{marker::PhantomData, ptr::NonNull}; |
| 19 | |
| 20 | /// A raw pointer with more restrictions. |
| 21 | /// |
| 22 | /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the |
| 23 | /// following ways (note that these requirements only hold of non-zero-sized |
| 24 | /// referents): |
| 25 | /// - It must derive from a valid allocation. |
| 26 | /// - It must reference a byte range which is contained inside the |
| 27 | /// allocation from which it derives. |
| 28 | /// - As a consequence, the byte range it references must have a size |
| 29 | /// which does not overflow `isize`. |
| 30 | /// |
| 31 | /// Depending on how `Ptr` is parameterized, it may have additional |
| 32 | /// invariants: |
| 33 | /// - `ptr` conforms to the aliasing invariant of |
| 34 | /// [`I::Aliasing`](invariant::Aliasing). |
| 35 | /// - `ptr` conforms to the alignment invariant of |
| 36 | /// [`I::Alignment`](invariant::Alignment). |
| 37 | /// - `ptr` conforms to the validity invariant of |
| 38 | /// [`I::Validity`](invariant::Validity). |
| 39 | /// |
| 40 | /// `Ptr<'a, T>` is [covariant] in `'a` and `T`. |
| 41 | /// |
| 42 | /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html |
| 43 | pub struct Ptr<'a, T, I> |
| 44 | where |
| 45 | T: 'a + ?Sized, |
| 46 | I: Invariants, |
| 47 | { |
| 48 | /// # Invariants |
| 49 | /// |
| 50 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from |
| 51 | /// some valid Rust allocation, `A`. |
| 52 | /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
| 53 | /// provenance for `A`. |
| 54 | /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
| 55 | /// byte range which is entirely contained in `A`. |
| 56 | /// 3. `ptr` addresses a byte range whose length fits in an `isize`. |
| 57 | /// 4. `ptr` addresses a byte range which does not wrap around the |
| 58 | /// address space. |
| 59 | /// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live |
| 60 | /// for at least `'a`. |
| 61 | /// 6. `T: 'a`. |
| 62 | /// 7. `ptr` conforms to the aliasing invariant of |
| 63 | /// [`I::Aliasing`](invariant::Aliasing). |
| 64 | /// 8. `ptr` conforms to the alignment invariant of |
| 65 | /// [`I::Alignment`](invariant::Alignment). |
| 66 | /// 9. `ptr` conforms to the validity invariant of |
| 67 | /// [`I::Validity`](invariant::Validity). |
| 68 | // SAFETY: `NonNull<T>` is covariant over `T` [1]. |
| 69 | // |
| 70 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html |
| 71 | ptr: NonNull<T>, |
| 72 | // SAFETY: `&'a ()` is covariant over `'a` [1]. |
| 73 | // |
| 74 | // [1]: https://doc.rust-lang.org/reference/subtyping.html#variance |
| 75 | _invariants: PhantomData<&'a I>, |
| 76 | } |
| 77 | |
| 78 | impl<'a, T, I> Ptr<'a, T, I> |
| 79 | where |
| 80 | T: 'a + ?Sized, |
| 81 | I: Invariants, |
| 82 | { |
| 83 | /// Constructs a `Ptr` from a [`NonNull`]. |
| 84 | /// |
| 85 | /// # Safety |
| 86 | /// |
| 87 | /// The caller promises that: |
| 88 | /// |
| 89 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from |
| 90 | /// some valid Rust allocation, `A`. |
| 91 | /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
| 92 | /// provenance for `A`. |
| 93 | /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
| 94 | /// byte range which is entirely contained in `A`. |
| 95 | /// 3. `ptr` addresses a byte range whose length fits in an `isize`. |
| 96 | /// 4. `ptr` addresses a byte range which does not wrap around the |
| 97 | /// address space. |
| 98 | /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to |
| 99 | /// live for at least `'a`. |
| 100 | /// 6. `ptr` conforms to the aliasing invariant of |
| 101 | /// [`I::Aliasing`](invariant::Aliasing). |
| 102 | /// 7. `ptr` conforms to the alignment invariant of |
| 103 | /// [`I::Alignment`](invariant::Alignment). |
| 104 | /// 8. `ptr` conforms to the validity invariant of |
| 105 | /// [`I::Validity`](invariant::Validity). |
| 106 | pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> { |
| 107 | // SAFETY: The caller has promised to satisfy all safety invariants |
| 108 | // of `Ptr`. |
| 109 | Self { ptr, _invariants: PhantomData } |
| 110 | } |
| 111 | |
| 112 | /// Converts this `Ptr<T>` to a [`NonNull<T>`]. |
| 113 | /// |
| 114 | /// Note that this method does not consume `self`. The caller should |
| 115 | /// watch out for `unsafe` code which uses the returned `NonNull` in a |
| 116 | /// way that violates the safety invariants of `self`. |
| 117 | pub(crate) fn as_non_null(&self) -> NonNull<T> { |
| 118 | self.ptr |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | #[allow (unreachable_pub)] // This is a false positive on our MSRV toolchain. |
| 124 | pub use def::Ptr; |
| 125 | |
| 126 | /// Used to define the system of [invariants][invariant] of `Ptr`. |
| 127 | macro_rules! define_system { |
| 128 | ($(#[$system_attr:meta])* $system:ident { |
| 129 | $($(#[$set_attr:meta])* $set:ident { |
| 130 | $( $(#[$elem_attr:meta])* $elem:ident $(< $($stronger_elem:ident)|*)?,)* |
| 131 | })* |
| 132 | }) => { |
| 133 | /// No requirement - any invariant is allowed. |
| 134 | #[allow(missing_copy_implementations, missing_debug_implementations)] |
| 135 | pub enum Any {} |
| 136 | |
| 137 | /// `Self` imposes a requirement at least as strict as `I`. |
| 138 | pub trait AtLeast<I> {} |
| 139 | |
| 140 | mod sealed { |
| 141 | pub trait Sealed {} |
| 142 | |
| 143 | impl<$($set,)*> Sealed for ($($set,)*) |
| 144 | where |
| 145 | $($set: super::$set,)* |
| 146 | {} |
| 147 | |
| 148 | impl Sealed for super::Any {} |
| 149 | |
| 150 | $($( |
| 151 | impl Sealed for super::$elem {} |
| 152 | )*)* |
| 153 | } |
| 154 | |
| 155 | $(#[$system_attr])* |
| 156 | /// |
| 157 | #[doc = concat!( |
| 158 | stringify!($system), |
| 159 | " are encoded as tuples of (" , |
| 160 | )] |
| 161 | $(#[doc = concat!( |
| 162 | "[`" , |
| 163 | stringify!($set), |
| 164 | "`]," |
| 165 | )])* |
| 166 | #[doc = concat!( |
| 167 | ")." , |
| 168 | )] |
| 169 | /// This trait is implemented for such tuples, and can be used to |
| 170 | /// project out the components of these tuples via its associated types. |
| 171 | pub trait $system: sealed::Sealed { |
| 172 | $( |
| 173 | $(#[$set_attr])* |
| 174 | type $set: $set; |
| 175 | )* |
| 176 | } |
| 177 | |
| 178 | impl<$($set,)*> $system for ($($set,)*) |
| 179 | where |
| 180 | $($set: self::$set,)* |
| 181 | { |
| 182 | $(type $set = $set;)* |
| 183 | } |
| 184 | |
| 185 | $( |
| 186 | $(#[$set_attr])* |
| 187 | pub trait $set: 'static + sealed::Sealed { |
| 188 | // This only exists for use in |
| 189 | // `into_exclusive_or_post_monomorphization_error`. |
| 190 | #[doc(hidden)] |
| 191 | const NAME: &'static str; |
| 192 | } |
| 193 | |
| 194 | impl $set for Any { |
| 195 | const NAME: &'static str = stringify!(Any); |
| 196 | } |
| 197 | |
| 198 | $( |
| 199 | $(#[$elem_attr])* |
| 200 | #[allow(missing_copy_implementations, missing_debug_implementations)] |
| 201 | pub enum $elem {} |
| 202 | |
| 203 | $(#[$elem_attr])* |
| 204 | impl $set for $elem { |
| 205 | const NAME: &'static str = stringify!($elem); |
| 206 | } |
| 207 | )* |
| 208 | )* |
| 209 | |
| 210 | $($( |
| 211 | impl AtLeast<Any> for $elem {} |
| 212 | impl AtLeast<$elem> for $elem {} |
| 213 | |
| 214 | $($(impl AtLeast<$elem> for $stronger_elem {})*)? |
| 215 | )*)* |
| 216 | }; |
| 217 | } |
| 218 | |
| 219 | /// The parameterized invariants of a [`Ptr`]. |
| 220 | /// |
| 221 | /// Invariants are encoded as ([`Aliasing`], [`Alignment`], [`Validity`]) |
| 222 | /// triples implementing the [`Invariants`] trait. |
| 223 | #[doc (hidden)] |
| 224 | pub mod invariant { |
| 225 | define_system! { |
| 226 | /// The invariants of a [`Ptr`][super::Ptr]. |
| 227 | Invariants { |
| 228 | /// The aliasing invariant of a [`Ptr`][super::Ptr]. |
| 229 | Aliasing { |
| 230 | /// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a T`. |
| 231 | /// |
| 232 | /// The referent of a shared-aliased `Ptr` may be concurrently |
| 233 | /// referenced by any number of shared-aliased `Ptr` or `&T` |
| 234 | /// references, and may not be concurrently referenced by any |
| 235 | /// exclusively-aliased `Ptr`s or `&mut T` references. The |
| 236 | /// referent must not be mutated, except via [`UnsafeCell`]s. |
| 237 | /// |
| 238 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
| 239 | Shared < Exclusive, |
| 240 | |
| 241 | /// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a mut |
| 242 | /// T`. |
| 243 | /// |
| 244 | /// The referent of an exclusively-aliased `Ptr` may not be |
| 245 | /// concurrently referenced by any other `Ptr`s or references, |
| 246 | /// and may not be accessed (read or written) other than via |
| 247 | /// this `Ptr`. |
| 248 | Exclusive, |
| 249 | } |
| 250 | |
| 251 | /// The alignment invariant of a [`Ptr`][super::Ptr]. |
| 252 | Alignment { |
| 253 | /// The referent is aligned: for `Ptr<T>`, the referent's |
| 254 | /// address is a multiple of the `T`'s alignment. |
| 255 | Aligned, |
| 256 | } |
| 257 | |
| 258 | /// The validity invariant of a [`Ptr`][super::Ptr]. |
| 259 | Validity { |
| 260 | /// The byte ranges initialized in `T` are also initialized in |
| 261 | /// the referent. |
| 262 | /// |
| 263 | /// Formally: uninitialized bytes may only be present in |
| 264 | /// `Ptr<T>`'s referent where they are guaranteed to be present |
| 265 | /// in `T`. This is a dynamic property: if, at a particular byte |
| 266 | /// offset, a valid enum discriminant is set, the subsequent |
| 267 | /// bytes may only have uninitialized bytes as specificed by the |
| 268 | /// corresponding enum. |
| 269 | /// |
| 270 | /// Formally, given `len = size_of_val_raw(ptr)`, at every byte |
| 271 | /// offset, `b`, in the range `[0, len)`: |
| 272 | /// - If, in any instance `t: T` of length `len`, the byte at |
| 273 | /// offset `b` in `t` is initialized, then the byte at offset |
| 274 | /// `b` within `*ptr` must be initialized. |
| 275 | /// - Let `c` be the contents of the byte range `[0, b)` in |
| 276 | /// `*ptr`. Let `S` be the subset of valid instances of `T` of |
| 277 | /// length `len` which contain `c` in the offset range `[0, |
| 278 | /// b)`. If, in any instance of `t: T` in `S`, the byte at |
| 279 | /// offset `b` in `t` is initialized, then the byte at offset |
| 280 | /// `b` in `*ptr` must be initialized. |
| 281 | /// |
| 282 | /// Pragmatically, this means that if `*ptr` is guaranteed to |
| 283 | /// contain an enum type at a particular offset, and the enum |
| 284 | /// discriminant stored in `*ptr` corresponds to a valid |
| 285 | /// variant of that enum type, then it is guaranteed that the |
| 286 | /// appropriate bytes of `*ptr` are initialized as defined by |
| 287 | /// that variant's bit validity (although note that the |
| 288 | /// variant may contain another enum type, in which case the |
| 289 | /// same rules apply depending on the state of its |
| 290 | /// discriminant, and so on recursively). |
| 291 | AsInitialized < Initialized | Valid, |
| 292 | |
| 293 | /// The byte ranges in the referent are fully initialized. In |
| 294 | /// other words, if the referent is `N` bytes long, then it |
| 295 | /// contains a bit-valid `[u8; N]`. |
| 296 | Initialized, |
| 297 | |
| 298 | /// The referent is bit-valid for `T`. |
| 299 | Valid, |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | pub(crate) use invariant::*; |
| 306 | |
| 307 | /// External trait implementations on [`Ptr`]. |
| 308 | mod _external { |
| 309 | use super::*; |
| 310 | use core::fmt::{Debug, Formatter}; |
| 311 | |
| 312 | /// SAFETY: Shared pointers are safely `Copy`. We do not implement `Copy` |
| 313 | /// for exclusive pointers, since at most one may exist at a time. `Ptr`'s |
| 314 | /// other invariants are unaffected by the number of references that exist |
| 315 | /// to `Ptr`'s referent. |
| 316 | impl<'a, T, I> Copy for Ptr<'a, T, I> |
| 317 | where |
| 318 | T: 'a + ?Sized, |
| 319 | I: Invariants, |
| 320 | Shared: AtLeast<I::Aliasing>, |
| 321 | { |
| 322 | } |
| 323 | |
| 324 | /// SAFETY: Shared pointers are safely `Clone`. We do not implement `Clone` |
| 325 | /// for exclusive pointers, since at most one may exist at a time. `Ptr`'s |
| 326 | /// other invariants are unaffected by the number of references that exist |
| 327 | /// to `Ptr`'s referent. |
| 328 | impl<'a, T, I> Clone for Ptr<'a, T, I> |
| 329 | where |
| 330 | T: 'a + ?Sized, |
| 331 | I: Invariants, |
| 332 | Shared: AtLeast<I::Aliasing>, |
| 333 | { |
| 334 | #[inline ] |
| 335 | fn clone(&self) -> Self { |
| 336 | *self |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | impl<'a, T, I> Debug for Ptr<'a, T, I> |
| 341 | where |
| 342 | T: 'a + ?Sized, |
| 343 | I: Invariants, |
| 344 | { |
| 345 | #[inline ] |
| 346 | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
| 347 | self.as_non_null().fmt(f) |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /// Methods for converting to and from `Ptr` and Rust's safe reference types. |
| 353 | mod _conversions { |
| 354 | use super::*; |
| 355 | use crate::util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance}; |
| 356 | |
| 357 | /// `&'a T` → `Ptr<'a, T>` |
| 358 | impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)> |
| 359 | where |
| 360 | T: 'a + ?Sized, |
| 361 | { |
| 362 | /// Constructs a `Ptr` from a shared reference. |
| 363 | #[doc (hidden)] |
| 364 | #[inline ] |
| 365 | pub fn from_ref(ptr: &'a T) -> Self { |
| 366 | let ptr = NonNull::from(ptr); |
| 367 | // SAFETY: |
| 368 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 369 | // invariant on `&'a T`, is derived from some valid Rust |
| 370 | // allocation, `A`. |
| 371 | // 1. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 372 | // invariant on `&'a T`, has valid provenance for `A`. |
| 373 | // 2. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 374 | // invariant on `&'a T`, addresses a byte range which is entirely |
| 375 | // contained in `A`. |
| 376 | // 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose |
| 377 | // length fits in an `isize`. |
| 378 | // 4. `ptr`, by invariant on `&'a T`, addresses a byte range which |
| 379 | // does not wrap around the address space. |
| 380 | // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant |
| 381 | // on `&'a T`, is guaranteed to live for at least `'a`. |
| 382 | // 6. `T: 'a`. |
| 383 | // 7. `ptr`, by invariant on `&'a T`, conforms to the aliasing |
| 384 | // invariant of `Shared`. |
| 385 | // 8. `ptr`, by invariant on `&'a T`, conforms to the alignment |
| 386 | // invariant of `Aligned`. |
| 387 | // 9. `ptr`, by invariant on `&'a T`, conforms to the validity |
| 388 | // invariant of `Valid`. |
| 389 | unsafe { Self::new(ptr) } |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | /// `&'a mut T` → `Ptr<'a, T>` |
| 394 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
| 395 | where |
| 396 | T: 'a + ?Sized, |
| 397 | { |
| 398 | /// Constructs a `Ptr` from an exclusive reference. |
| 399 | #[inline ] |
| 400 | pub(crate) fn from_mut(ptr: &'a mut T) -> Self { |
| 401 | let ptr = NonNull::from(ptr); |
| 402 | // SAFETY: |
| 403 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 404 | // invariant on `&'a mut T`, is derived from some valid Rust |
| 405 | // allocation, `A`. |
| 406 | // 1. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 407 | // invariant on `&'a mut T`, has valid provenance for `A`. |
| 408 | // 2. If `ptr`'s referent is not zero sized, then `ptr`, by |
| 409 | // invariant on `&'a mut T`, addresses a byte range which is |
| 410 | // entirely contained in `A`. |
| 411 | // 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range |
| 412 | // whose length fits in an `isize`. |
| 413 | // 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range |
| 414 | // which does not wrap around the address space. |
| 415 | // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant |
| 416 | // on `&'a mut T`, is guaranteed to live for at least `'a`. |
| 417 | // 6. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing |
| 418 | // invariant of `Exclusive`. |
| 419 | // 7. `ptr`, by invariant on `&'a mut T`, conforms to the alignment |
| 420 | // invariant of `Aligned`. |
| 421 | // 8. `ptr`, by invariant on `&'a mut T`, conforms to the validity |
| 422 | // invariant of `Valid`. |
| 423 | unsafe { Self::new(ptr) } |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /// `Ptr<'a, T>` → `&'a T` |
| 428 | impl<'a, T, I> Ptr<'a, T, I> |
| 429 | where |
| 430 | T: 'a + ?Sized, |
| 431 | I: Invariants<Alignment = Aligned, Validity = Valid>, |
| 432 | I::Aliasing: AtLeast<Shared>, |
| 433 | { |
| 434 | /// Converts `self` to a shared reference. |
| 435 | // This consumes `self`, not `&self`, because `self` is, logically, a |
| 436 | // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so |
| 437 | // this doesn't prevent the caller from still using the pointer after |
| 438 | // calling `as_ref`. |
| 439 | #[allow (clippy::wrong_self_convention)] |
| 440 | pub(crate) fn as_ref(self) -> &'a T { |
| 441 | let raw = self.as_non_null(); |
| 442 | // SAFETY: This invocation of `NonNull::as_ref` satisfies its |
| 443 | // documented safety preconditions: |
| 444 | // |
| 445 | // 1. The pointer is properly aligned. This is ensured by-contract |
| 446 | // on `Ptr`, because the `I::Alignment` is `Aligned`. |
| 447 | // |
| 448 | // 2. If the pointer's referent is not zero-sized, then the pointer |
| 449 | // must be “dereferenceable” in the sense defined in the module |
| 450 | // documentation; i.e.: |
| 451 | // |
| 452 | // > The memory range of the given size starting at the pointer |
| 453 | // > must all be within the bounds of a single allocated object. |
| 454 | // > [2] |
| 455 | // |
| 456 | // This is ensured by contract on all `Ptr`s. |
| 457 | // |
| 458 | // 3. The pointer must point to an initialized instance of `T`. This |
| 459 | // is ensured by-contract on `Ptr`, because the `I::Validity` is |
| 460 | // `Valid`. |
| 461 | // |
| 462 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
| 463 | // contract on `Ptr`, because the `I::Aliasing` is |
| 464 | // `AtLeast<Shared>`. Either it is `Shared` or `Exclusive`. If it |
| 465 | // is `Shared`, other references may not mutate the referent |
| 466 | // outside of `UnsafeCell`s. |
| 467 | // |
| 468 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref |
| 469 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
| 470 | unsafe { raw.as_ref() } |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | impl<'a, T, I> Ptr<'a, T, I> |
| 475 | where |
| 476 | T: 'a + ?Sized, |
| 477 | I: Invariants, |
| 478 | I::Aliasing: AtLeast<Shared>, |
| 479 | { |
| 480 | /// Reborrows `self`, producing another `Ptr`. |
| 481 | /// |
| 482 | /// Since `self` is borrowed immutably, this prevents any mutable |
| 483 | /// methods from being called on `self` as long as the returned `Ptr` |
| 484 | /// exists. |
| 485 | #[doc (hidden)] |
| 486 | #[inline ] |
| 487 | #[allow (clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below. |
| 488 | pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I> |
| 489 | where |
| 490 | 'a: 'b, |
| 491 | { |
| 492 | // SAFETY: The following all hold by invariant on `self`, and thus |
| 493 | // hold of `ptr = self.as_non_null()`: |
| 494 | // 0. If `ptr`'s referent is not zero sized, then `ptr` is derived |
| 495 | // from some valid Rust allocation, `A`. |
| 496 | // 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
| 497 | // provenance for `A`. |
| 498 | // 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
| 499 | // byte range which is entirely contained in `A`. |
| 500 | // 3. `ptr` addresses a byte range whose length fits in an `isize`. |
| 501 | // 4. `ptr` addresses a byte range which does not wrap around the |
| 502 | // address space. |
| 503 | // 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed |
| 504 | // to live for at least `'a`. |
| 505 | // 6. SEE BELOW. |
| 506 | // 7. `ptr` conforms to the alignment invariant of |
| 507 | // [`I::Alignment`](invariant::Alignment). |
| 508 | // 8. `ptr` conforms to the validity invariant of |
| 509 | // [`I::Validity`](invariant::Validity). |
| 510 | // |
| 511 | // For aliasing (6 above), since `I::Aliasing: AtLeast<Shared>`, |
| 512 | // there are two cases for `I::Aliasing`: |
| 513 | // - For `invariant::Shared`: `'a` outlives `'b`, and so the |
| 514 | // returned `Ptr` does not permit accessing the referent any |
| 515 | // longer than is possible via `self`. For shared aliasing, it is |
| 516 | // sound for multiple `Ptr`s to exist simultaneously which |
| 517 | // reference the same memory, so creating a new one is not |
| 518 | // problematic. |
| 519 | // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we |
| 520 | // return a `Ptr` with lifetime `'b`, `self` is inaccessible to |
| 521 | // the caller for the lifetime `'b` - in other words, `self` is |
| 522 | // inaccessible to the caller as long as the returned `Ptr` |
| 523 | // exists. Since `self` is an exclusive `Ptr`, no other live |
| 524 | // references or `Ptr`s may exist which refer to the same memory |
| 525 | // while `self` is live. Thus, as long as the returned `Ptr` |
| 526 | // exists, no other references or `Ptr`s which refer to the same |
| 527 | // memory may be live. |
| 528 | unsafe { Ptr::new(self.as_non_null()) } |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | /// `Ptr<'a, T>` → `&'a mut T` |
| 533 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
| 534 | where |
| 535 | T: 'a + ?Sized, |
| 536 | { |
| 537 | /// Converts `self` to a mutable reference. |
| 538 | #[allow (clippy::wrong_self_convention)] |
| 539 | pub(crate) fn as_mut(self) -> &'a mut T { |
| 540 | let mut raw = self.as_non_null(); |
| 541 | // SAFETY: This invocation of `NonNull::as_mut` satisfies its |
| 542 | // documented safety preconditions: |
| 543 | // |
| 544 | // 1. The pointer is properly aligned. This is ensured by-contract |
| 545 | // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`. |
| 546 | // |
| 547 | // 2. If the pointer's referent is not zero-sized, then the pointer |
| 548 | // must be “dereferenceable” in the sense defined in the module |
| 549 | // documentation; i.e.: |
| 550 | // |
| 551 | // > The memory range of the given size starting at the pointer |
| 552 | // > must all be within the bounds of a single allocated object. |
| 553 | // > [2] |
| 554 | // |
| 555 | // This is ensured by contract on all `Ptr`s. |
| 556 | // |
| 557 | // 3. The pointer must point to an initialized instance of `T`. This |
| 558 | // is ensured by-contract on `Ptr`, because the |
| 559 | // `VALIDITY_INVARIANT` is `Valid`. |
| 560 | // |
| 561 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
| 562 | // contract on `Ptr`, because the `ALIASING_INVARIANT` is |
| 563 | // `Exclusive`. |
| 564 | // |
| 565 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut |
| 566 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
| 567 | unsafe { raw.as_mut() } |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | /// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>` |
| 572 | impl<'a, T, I> Ptr<'a, T, I> |
| 573 | where |
| 574 | T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized, |
| 575 | I: Invariants, |
| 576 | { |
| 577 | /// Converts `self` to a transparent wrapper type into a `Ptr` to the |
| 578 | /// wrapped inner type. |
| 579 | pub(crate) fn transparent_wrapper_into_inner( |
| 580 | self, |
| 581 | ) -> Ptr< |
| 582 | 'a, |
| 583 | T::Inner, |
| 584 | ( |
| 585 | I::Aliasing, |
| 586 | <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied, |
| 587 | <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied, |
| 588 | ), |
| 589 | > { |
| 590 | // SAFETY: |
| 591 | // - By invariant on `TransparentWrapper::cast_into_inner`: |
| 592 | // - This cast preserves address and referent size, and thus the |
| 593 | // returned pointer addresses the same bytes as `p` |
| 594 | // - This cast preserves provenance |
| 595 | // - By invariant on `TransparentWrapper<UnsafeCellVariance = |
| 596 | // Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same |
| 597 | // byte ranges. Since `p` and the returned pointer address the |
| 598 | // same byte range, they refer to `UnsafeCell`s at the same byte |
| 599 | // ranges. |
| 600 | let c = unsafe { self.cast_unsized(|p| T::cast_into_inner(p)) }; |
| 601 | // SAFETY: By invariant on `TransparentWrapper`, since `self` |
| 602 | // satisfies the alignment invariant `I::Alignment`, `c` (of type |
| 603 | // `T::Inner`) satisfies the given "applied" alignment invariant. |
| 604 | let c = unsafe { |
| 605 | c.assume_alignment::<<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied>() |
| 606 | }; |
| 607 | // SAFETY: By invariant on `TransparentWrapper`, since `self` |
| 608 | // satisfies the validity invariant `I::Validity`, `c` (of type |
| 609 | // `T::Inner`) satisfies the given "applied" validity invariant. |
| 610 | let c = unsafe { |
| 611 | c.assume_validity::<<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied>() |
| 612 | }; |
| 613 | c |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>` |
| 618 | impl<'a, T, I> Ptr<'a, T, I> |
| 619 | where |
| 620 | I: Invariants, |
| 621 | { |
| 622 | /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned |
| 623 | /// `Unalign<T>`. |
| 624 | pub(crate) fn into_unalign( |
| 625 | self, |
| 626 | ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> { |
| 627 | // SAFETY: |
| 628 | // - This cast preserves provenance. |
| 629 | // - This cast preserves address. `Unalign<T>` promises to have the |
| 630 | // same size as `T`, and so the cast returns a pointer addressing |
| 631 | // the same byte range as `p`. |
| 632 | // - By the same argument, the returned pointer refers to |
| 633 | // `UnsafeCell`s at the same locations as `p`. |
| 634 | let ptr = unsafe { |
| 635 | #[allow (clippy::as_conversions)] |
| 636 | self.cast_unsized(|p: *mut T| p as *mut crate::Unalign<T>) |
| 637 | }; |
| 638 | // SAFETY: `Unalign<T>` promises to have the same bit validity as |
| 639 | // `T`. |
| 640 | let ptr = unsafe { ptr.assume_validity::<I::Validity>() }; |
| 641 | // SAFETY: `Unalign<T>` promises to have alignment 1, and so it is |
| 642 | // trivially aligned. |
| 643 | let ptr = unsafe { ptr.assume_alignment::<Aligned>() }; |
| 644 | ptr |
| 645 | } |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | /// State transitions between invariants. |
| 650 | mod _transitions { |
| 651 | use super::*; |
| 652 | use crate::{AlignmentError, TryFromBytes, ValidityError}; |
| 653 | |
| 654 | impl<'a, T, I> Ptr<'a, T, I> |
| 655 | where |
| 656 | T: 'a + ?Sized, |
| 657 | I: Invariants, |
| 658 | { |
| 659 | /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has |
| 660 | /// `Exclusive` aliasing. |
| 661 | /// |
| 662 | /// This allows code which is generic over aliasing to down-cast to a |
| 663 | /// concrete aliasing. |
| 664 | /// |
| 665 | /// [`Exclusive`]: invariant::Exclusive |
| 666 | #[inline ] |
| 667 | pub(crate) fn into_exclusive_or_post_monomorphization_error( |
| 668 | self, |
| 669 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
| 670 | trait AliasingExt: Aliasing { |
| 671 | const IS_EXCLUSIVE: bool; |
| 672 | } |
| 673 | |
| 674 | impl<A: Aliasing> AliasingExt for A { |
| 675 | const IS_EXCLUSIVE: bool = { |
| 676 | let is_exclusive = |
| 677 | strs_are_equal(<Self as Aliasing>::NAME, <Exclusive as Aliasing>::NAME); |
| 678 | const_assert!(is_exclusive); |
| 679 | true |
| 680 | }; |
| 681 | } |
| 682 | |
| 683 | const fn strs_are_equal(s: &str, t: &str) -> bool { |
| 684 | if s.len() != t.len() { |
| 685 | return false; |
| 686 | } |
| 687 | |
| 688 | let s = s.as_bytes(); |
| 689 | let t = t.as_bytes(); |
| 690 | |
| 691 | let mut i = 0; |
| 692 | #[allow (clippy::arithmetic_side_effects)] |
| 693 | while i < s.len() { |
| 694 | #[allow (clippy::indexing_slicing)] |
| 695 | if s[i] != t[i] { |
| 696 | return false; |
| 697 | } |
| 698 | |
| 699 | i += 1; |
| 700 | } |
| 701 | |
| 702 | true |
| 703 | } |
| 704 | |
| 705 | assert!(I::Aliasing::IS_EXCLUSIVE); |
| 706 | |
| 707 | // SAFETY: We've confirmed that `self` already has the aliasing |
| 708 | // `Exclusive`. If it didn't, either the preceding assert would fail |
| 709 | // or evaluating `I::Aliasing::IS_EXCLUSIVE` would fail. We're |
| 710 | // *pretty* sure that it's guaranteed to fail const eval, but the |
| 711 | // `assert!` provides a backstop in case that doesn't work. |
| 712 | unsafe { self.assume_exclusive() } |
| 713 | } |
| 714 | |
| 715 | /// Assumes that `self` satisfies the invariants `H`. |
| 716 | /// |
| 717 | /// # Safety |
| 718 | /// |
| 719 | /// The caller promises that `self` satisfies the invariants `H`. |
| 720 | unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> { |
| 721 | // SAFETY: The caller has promised to satisfy all parameterized |
| 722 | // invariants of `Ptr`. `Ptr`'s other invariants are satisfied |
| 723 | // by-contract by the source `Ptr`. |
| 724 | unsafe { Ptr::new(self.as_non_null()) } |
| 725 | } |
| 726 | |
| 727 | /// Helps the type system unify two distinct invariant types which are |
| 728 | /// actually the same. |
| 729 | pub(crate) fn unify_invariants< |
| 730 | H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>, |
| 731 | >( |
| 732 | self, |
| 733 | ) -> Ptr<'a, T, H> { |
| 734 | // SAFETY: The associated type bounds on `H` ensure that the |
| 735 | // invariants are unchanged. |
| 736 | unsafe { self.assume_invariants::<H>() } |
| 737 | } |
| 738 | |
| 739 | /// Assumes that `self` satisfies the aliasing requirement of `A`. |
| 740 | /// |
| 741 | /// # Safety |
| 742 | /// |
| 743 | /// The caller promises that `self` satisfies the aliasing requirement |
| 744 | /// of `A`. |
| 745 | #[inline ] |
| 746 | pub(crate) unsafe fn assume_aliasing<A: Aliasing>( |
| 747 | self, |
| 748 | ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> { |
| 749 | // SAFETY: The caller promises that `self` satisfies the aliasing |
| 750 | // requirements of `A`. |
| 751 | unsafe { self.assume_invariants() } |
| 752 | } |
| 753 | |
| 754 | /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`]. |
| 755 | /// |
| 756 | /// # Safety |
| 757 | /// |
| 758 | /// The caller promises that `self` satisfies the aliasing requirement |
| 759 | /// of `Exclusive`. |
| 760 | /// |
| 761 | /// [`Exclusive`]: invariant::Exclusive |
| 762 | #[inline ] |
| 763 | pub(crate) unsafe fn assume_exclusive( |
| 764 | self, |
| 765 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
| 766 | // SAFETY: The caller promises that `self` satisfies the aliasing |
| 767 | // requirements of `Exclusive`. |
| 768 | unsafe { self.assume_aliasing::<Exclusive>() } |
| 769 | } |
| 770 | |
| 771 | /// Assumes that `self`'s referent is validly-aligned for `T` if |
| 772 | /// required by `A`. |
| 773 | /// |
| 774 | /// # Safety |
| 775 | /// |
| 776 | /// The caller promises that `self`'s referent conforms to the alignment |
| 777 | /// invariant of `T` if required by `A`. |
| 778 | #[inline ] |
| 779 | pub(crate) unsafe fn assume_alignment<A: Alignment>( |
| 780 | self, |
| 781 | ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> { |
| 782 | // SAFETY: The caller promises that `self`'s referent is |
| 783 | // well-aligned for `T` if required by `A` . |
| 784 | unsafe { self.assume_invariants() } |
| 785 | } |
| 786 | |
| 787 | /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr` |
| 788 | /// on success. |
| 789 | pub(crate) fn bikeshed_try_into_aligned( |
| 790 | self, |
| 791 | ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>> |
| 792 | where |
| 793 | T: Sized, |
| 794 | { |
| 795 | if let Err(err) = crate::util::validate_aligned_to::<_, T>(self.as_non_null()) { |
| 796 | return Err(err.with_src(self)); |
| 797 | } |
| 798 | |
| 799 | // SAFETY: We just checked the alignment. |
| 800 | Ok(unsafe { self.assume_alignment::<Aligned>() }) |
| 801 | } |
| 802 | |
| 803 | /// Recalls that `self`'s referent is validly-aligned for `T`. |
| 804 | #[inline ] |
| 805 | // TODO(#859): Reconsider the name of this method before making it |
| 806 | // public. |
| 807 | pub(crate) fn bikeshed_recall_aligned( |
| 808 | self, |
| 809 | ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)> |
| 810 | where |
| 811 | T: crate::Unaligned, |
| 812 | { |
| 813 | // SAFETY: The bound `T: Unaligned` ensures that `T` has no |
| 814 | // non-trivial alignment requirement. |
| 815 | unsafe { self.assume_alignment::<Aligned>() } |
| 816 | } |
| 817 | |
| 818 | /// Assumes that `self`'s referent conforms to the validity requirement |
| 819 | /// of `V`. |
| 820 | /// |
| 821 | /// # Safety |
| 822 | /// |
| 823 | /// The caller promises that `self`'s referent conforms to the validity |
| 824 | /// requirement of `V`. |
| 825 | #[doc (hidden)] |
| 826 | #[must_use ] |
| 827 | #[inline ] |
| 828 | pub unsafe fn assume_validity<V: Validity>( |
| 829 | self, |
| 830 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> { |
| 831 | // SAFETY: The caller promises that `self`'s referent conforms to |
| 832 | // the validity requirement of `V`. |
| 833 | unsafe { self.assume_invariants() } |
| 834 | } |
| 835 | |
| 836 | /// A shorthand for `self.assume_validity<invariant::Initialized>()`. |
| 837 | /// |
| 838 | /// # Safety |
| 839 | /// |
| 840 | /// The caller promises to uphold the safety preconditions of |
| 841 | /// `self.assume_validity<invariant::Initialized>()`. |
| 842 | #[doc (hidden)] |
| 843 | #[must_use ] |
| 844 | #[inline ] |
| 845 | pub unsafe fn assume_initialized( |
| 846 | self, |
| 847 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> { |
| 848 | // SAFETY: The caller has promised to uphold the safety |
| 849 | // preconditions. |
| 850 | unsafe { self.assume_validity::<Initialized>() } |
| 851 | } |
| 852 | |
| 853 | /// A shorthand for `self.assume_validity<Valid>()`. |
| 854 | /// |
| 855 | /// # Safety |
| 856 | /// |
| 857 | /// The caller promises to uphold the safety preconditions of |
| 858 | /// `self.assume_validity<Valid>()`. |
| 859 | #[doc (hidden)] |
| 860 | #[must_use ] |
| 861 | #[inline ] |
| 862 | pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> { |
| 863 | // SAFETY: The caller has promised to uphold the safety |
| 864 | // preconditions. |
| 865 | unsafe { self.assume_validity::<Valid>() } |
| 866 | } |
| 867 | |
| 868 | /// Recalls that `self`'s referent is bit-valid for `T`. |
| 869 | #[doc (hidden)] |
| 870 | #[must_use ] |
| 871 | #[inline ] |
| 872 | // TODO(#859): Reconsider the name of this method before making it |
| 873 | // public. |
| 874 | pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> |
| 875 | where |
| 876 | T: crate::FromBytes, |
| 877 | I: Invariants<Validity = Initialized>, |
| 878 | { |
| 879 | // SAFETY: The bound `T: FromBytes` ensures that any initialized |
| 880 | // sequence of bytes is bit-valid for `T`. `I: Invariants<Validity = |
| 881 | // invariant::Initialized>` ensures that all of the referent bytes |
| 882 | // are initialized. |
| 883 | unsafe { self.assume_valid() } |
| 884 | } |
| 885 | |
| 886 | /// Checks that `self`'s referent is validly initialized for `T`, |
| 887 | /// returning a `Ptr` with `Valid` on success. |
| 888 | /// |
| 889 | /// # Panics |
| 890 | /// |
| 891 | /// This method will panic if |
| 892 | /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics. |
| 893 | /// |
| 894 | /// # Safety |
| 895 | /// |
| 896 | /// On error, unsafe code may rely on this method's returned |
| 897 | /// `ValidityError` containing `self`. |
| 898 | #[inline ] |
| 899 | pub(crate) fn try_into_valid( |
| 900 | mut self, |
| 901 | ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>> |
| 902 | where |
| 903 | T: TryFromBytes, |
| 904 | I::Aliasing: AtLeast<Shared>, |
| 905 | I: Invariants<Validity = Initialized>, |
| 906 | { |
| 907 | // This call may panic. If that happens, it doesn't cause any soundness |
| 908 | // issues, as we have not generated any invalid state which we need to |
| 909 | // fix before returning. |
| 910 | if T::is_bit_valid(self.reborrow().forget_aligned()) { |
| 911 | // SAFETY: If `T::is_bit_valid`, code may assume that `self` |
| 912 | // contains a bit-valid instance of `Self`. |
| 913 | Ok(unsafe { self.assume_valid() }) |
| 914 | } else { |
| 915 | Err(ValidityError::new(self)) |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | /// Forgets that `self`'s referent exclusively references `T`, |
| 920 | /// downgrading to a shared reference. |
| 921 | #[doc (hidden)] |
| 922 | #[must_use ] |
| 923 | #[inline ] |
| 924 | pub fn forget_exclusive(self) -> Ptr<'a, T, (Shared, I::Alignment, I::Validity)> |
| 925 | where |
| 926 | I::Aliasing: AtLeast<Shared>, |
| 927 | { |
| 928 | // SAFETY: `I::Aliasing` is at least as restrictive as `Shared`. |
| 929 | unsafe { self.assume_invariants() } |
| 930 | } |
| 931 | |
| 932 | /// Forgets that `self`'s referent is validly-aligned for `T`. |
| 933 | #[doc (hidden)] |
| 934 | #[must_use ] |
| 935 | #[inline ] |
| 936 | pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Any, I::Validity)> { |
| 937 | // SAFETY: `Any` is less restrictive than `Aligned`. |
| 938 | unsafe { self.assume_invariants() } |
| 939 | } |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | /// Casts of the referent type. |
| 944 | mod _casts { |
| 945 | use super::*; |
| 946 | use crate::{ |
| 947 | layout::{DstLayout, MetadataCastError}, |
| 948 | pointer::aliasing_safety::*, |
| 949 | AlignmentError, CastError, PointerMetadata, SizeError, |
| 950 | }; |
| 951 | |
| 952 | impl<'a, T, I> Ptr<'a, T, I> |
| 953 | where |
| 954 | T: 'a + ?Sized, |
| 955 | I: Invariants, |
| 956 | { |
| 957 | /// Casts to a different (unsized) target type. |
| 958 | /// |
| 959 | /// # Safety |
| 960 | /// |
| 961 | /// The caller promises that `u = cast(p)` is a pointer cast with the |
| 962 | /// following properties: |
| 963 | /// - `u` addresses a subset of the bytes addressed by `p` |
| 964 | /// - `u` has the same provenance as `p` |
| 965 | /// - If `I::Aliasing` is [`Any`] or [`Shared`], `UnsafeCell`s in `*u` |
| 966 | /// must exist at ranges identical to those at which `UnsafeCell`s |
| 967 | /// exist in `*p` |
| 968 | #[doc (hidden)] |
| 969 | #[inline ] |
| 970 | pub unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>( |
| 971 | self, |
| 972 | cast: F, |
| 973 | ) -> Ptr<'a, U, (I::Aliasing, Any, Any)> { |
| 974 | let ptr = cast(self.as_non_null().as_ptr()); |
| 975 | |
| 976 | // SAFETY: Caller promises that `cast` returns a pointer whose |
| 977 | // address is in the range of `self.as_non_null()`'s referent. By |
| 978 | // invariant, none of these addresses are null. |
| 979 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
| 980 | |
| 981 | // SAFETY: |
| 982 | // |
| 983 | // Lemma 1: `ptr` has the same provenance as `self`. The caller |
| 984 | // promises that `cast` preserves provenance, and we call it with |
| 985 | // `self.as_non_null()`. |
| 986 | // |
| 987 | // 0. By invariant, if `self`'s referent is not zero sized, then |
| 988 | // `self` is derived from some valid Rust allocation, `A`. By |
| 989 | // Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr` |
| 990 | // is derived from `A`. |
| 991 | // 1. By invariant, if `self`'s referent is not zero sized, then |
| 992 | // `self` has valid provenance for `A`. By Lemma 1, so does |
| 993 | // `ptr`. |
| 994 | // 2. By invariant on `self` and caller precondition, if `ptr`'s |
| 995 | // referent is not zero sized, then `ptr` addresses a byte range |
| 996 | // which is entirely contained in `A`. |
| 997 | // 3. By invariant on `self` and caller precondition, `ptr` |
| 998 | // addresses a byte range whose length fits in an `isize`. |
| 999 | // 4. By invariant on `self` and caller precondition, `ptr` |
| 1000 | // addresses a byte range which does not wrap around the address |
| 1001 | // space. |
| 1002 | // 5. By invariant on `self`, if `self`'s referent is not zero |
| 1003 | // sized, then `A` is guaranteed to live for at least `'a`. |
| 1004 | // 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`: |
| 1005 | // - `Exclusive`: `self` is the only `Ptr` or reference which is |
| 1006 | // permitted to read or modify the referent for the lifetime |
| 1007 | // `'a`. Since we consume `self` by value, the returned pointer |
| 1008 | // remains the only `Ptr` or reference which is permitted to |
| 1009 | // read or modify the referent for the lifetime `'a`. |
| 1010 | // - `Shared`: Since `self` has aliasing `Shared`, we know that |
| 1011 | // no other code may mutate the referent during the lifetime |
| 1012 | // `'a`, except via `UnsafeCell`s. The caller promises that |
| 1013 | // `UnsafeCell`s cover the same byte ranges in `*self` and |
| 1014 | // `*ptr`. For each byte in the referent, there are two cases: |
| 1015 | // - If the byte is not covered by an `UnsafeCell` in `*ptr`, |
| 1016 | // then it is not covered in `*self`. By invariant on `self`, |
| 1017 | // it will not be mutated during `'a`, as required by the |
| 1018 | // constructed pointer. Similarly, the returned pointer will |
| 1019 | // not permit any mutations to these locations, as required |
| 1020 | // by the invariant on `self`. |
| 1021 | // - If the byte is covered by an `UnsafeCell` in `*ptr`, then |
| 1022 | // the returned pointer's invariants do not assume that the |
| 1023 | // byte will not be mutated during `'a`. While the returned |
| 1024 | // pointer will permit mutation of this byte during `'a`, by |
| 1025 | // invariant on `self`, no other code assumes that this will |
| 1026 | // not happen. |
| 1027 | // 7. `ptr`, trivially, conforms to the alignment invariant of |
| 1028 | // `Any`. |
| 1029 | // 8. `ptr`, trivially, conforms to the validity invariant of `Any`. |
| 1030 | unsafe { Ptr::new(ptr) } |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | impl<'a, T, I> Ptr<'a, T, I> |
| 1035 | where |
| 1036 | T: 'a + KnownLayout + ?Sized, |
| 1037 | I: Invariants<Validity = Initialized>, |
| 1038 | { |
| 1039 | /// Casts this pointer-to-initialized into a pointer-to-bytes. |
| 1040 | #[allow (clippy::wrong_self_convention)] |
| 1041 | pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)> |
| 1042 | where |
| 1043 | [u8]: AliasingSafe<T, I::Aliasing, R>, |
| 1044 | R: AliasingSafeReason, |
| 1045 | { |
| 1046 | let bytes = match T::size_of_val_raw(self.as_non_null()) { |
| 1047 | Some(bytes) => bytes, |
| 1048 | // SAFETY: `KnownLayout::size_of_val_raw` promises to always |
| 1049 | // return `Some` so long as the resulting size fits in a |
| 1050 | // `usize`. By invariant on `Ptr`, `self` refers to a range of |
| 1051 | // bytes whose size fits in an `isize`, which implies that it |
| 1052 | // also fits in a `usize`. |
| 1053 | None => unsafe { core::hint::unreachable_unchecked() }, |
| 1054 | }; |
| 1055 | |
| 1056 | // SAFETY: |
| 1057 | // - `slice_from_raw_parts_mut` and `.cast` both preserve the |
| 1058 | // pointer's address, and `bytes` is the length of `p`, so the |
| 1059 | // returned pointer addresses the same bytes as `p` |
| 1060 | // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance |
| 1061 | // - Because `[u8]: AliasingSafe<T, I::Aliasing, _>`, either: |
| 1062 | // - `I::Aliasing` is `Exclusive` |
| 1063 | // - `T` and `[u8]` are both `Immutable`, in which case they |
| 1064 | // trivially contain `UnsafeCell`s at identical locations |
| 1065 | let ptr: Ptr<'a, [u8], _> = unsafe { |
| 1066 | self.cast_unsized(|p: *mut T| { |
| 1067 | #[allow (clippy::as_conversions)] |
| 1068 | core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes) |
| 1069 | }) |
| 1070 | }; |
| 1071 | |
| 1072 | let ptr = ptr.bikeshed_recall_aligned(); |
| 1073 | |
| 1074 | // SAFETY: `ptr`'s referent begins as `Initialized`, denoting that |
| 1075 | // all bytes of the referent are initialized bytes. The referent |
| 1076 | // type is then casted to `[u8]`, whose only validity invariant is |
| 1077 | // that its bytes are initialized. This validity invariant is |
| 1078 | // satisfied by the `Initialized` invariant on the starting `ptr`. |
| 1079 | unsafe { ptr.assume_validity::<Valid>() } |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I> |
| 1084 | where |
| 1085 | T: 'a, |
| 1086 | I: Invariants, |
| 1087 | { |
| 1088 | /// Casts this pointer-to-array into a slice. |
| 1089 | #[allow (clippy::wrong_self_convention)] |
| 1090 | pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> { |
| 1091 | let start = self.as_non_null().cast::<T>().as_ptr(); |
| 1092 | let slice = core::ptr::slice_from_raw_parts_mut(start, N); |
| 1093 | // SAFETY: `slice` is not null, because it is derived from `start` |
| 1094 | // which is non-null. |
| 1095 | let slice = unsafe { NonNull::new_unchecked(slice) }; |
| 1096 | // SAFETY: Lemma: In the following safety arguments, note that |
| 1097 | // `slice` is derived from `self` in two steps: first, by casting |
| 1098 | // `self: [T; N]` to `start: T`, then by constructing a pointer to a |
| 1099 | // slice starting at `start` of length `N`. As a result, `slice` |
| 1100 | // references exactly the same allocation as `self`, if any. |
| 1101 | // |
| 1102 | // 0. By the above lemma, if `slice`'s referent is not zero sized, |
| 1103 | // then `slice` is derived from the same allocation as `self`, |
| 1104 | // which, by invariant on `Ptr`, is valid. |
| 1105 | // 1. By the above lemma, if `slice`'s referent is not zero sized, |
| 1106 | // then , `slice` has valid provenance for `A`, since it is |
| 1107 | // derived from the pointer `self`, which, by invariant on `Ptr`, |
| 1108 | // has valid provenance for `A`. |
| 1109 | // 2. By the above lemma, if `slice`'s referent is not zero sized, |
| 1110 | // then `slice` addresses a byte range which is entirely |
| 1111 | // contained in `A`, because it references exactly the same byte |
| 1112 | // range as `self`, which, by invariant on `Ptr`, is entirely |
| 1113 | // contained in `A`. |
| 1114 | // 3. By the above lemma, `slice` addresses a byte range whose |
| 1115 | // length fits in an `isize`, since it addresses exactly the same |
| 1116 | // byte range as `self`, which, by invariant on `Ptr`, has a |
| 1117 | // length that fits in an `isize`. |
| 1118 | // 4. By the above lemma, `slice` addresses a byte range which does |
| 1119 | // not wrap around the address space, since it addresses exactly |
| 1120 | // the same byte range as `self`, which, by invariant on `Ptr`, |
| 1121 | // does not wrap around the address space. |
| 1122 | // 5. By the above lemma, if `slice`'s referent is not zero sized, |
| 1123 | // then `A` is guaranteed to live for at least `'a`, because it |
| 1124 | // is derived from the same allocation as `self`, which, by |
| 1125 | // invariant on `Ptr`, lives for at least `'a`. |
| 1126 | // 6. By the above lemma, `slice` conforms to the aliasing invariant |
| 1127 | // of `I::Aliasing`, because the operations that produced `slice` |
| 1128 | // from `self` do not impact aliasing. |
| 1129 | // 7. By the above lemma, `slice` conforms to the alignment |
| 1130 | // invariant of `I::Alignment`, because the operations that |
| 1131 | // produced `slice` from `self` do not impact alignment. |
| 1132 | // 8. By the above lemma, `slice` conforms to the validity invariant |
| 1133 | // of `I::Validity`, because the operations that produced `slice` |
| 1134 | // from `self` do not impact validity. |
| 1135 | unsafe { Ptr::new(slice) } |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /// For caller convenience, these methods are generic over alignment |
| 1140 | /// invariant. In practice, the referent is always well-aligned, because the |
| 1141 | /// alignment of `[u8]` is 1. |
| 1142 | impl<'a, I> Ptr<'a, [u8], I> |
| 1143 | where |
| 1144 | I: Invariants<Validity = Valid>, |
| 1145 | { |
| 1146 | /// Attempts to cast `self` to a `U` using the given cast type. |
| 1147 | /// |
| 1148 | /// If `U` is a slice DST and pointer metadata (`meta`) is provided, |
| 1149 | /// then the cast will only succeed if it would produce an object with |
| 1150 | /// the given metadata. |
| 1151 | /// |
| 1152 | /// Returns `None` if the resulting `U` would be invalidly-aligned, if |
| 1153 | /// no `U` can fit in `self`, or if the provided pointer metadata |
| 1154 | /// describes an invalid instance of `U`. On success, returns a pointer |
| 1155 | /// to the largest-possible `U` which fits in `self`. |
| 1156 | /// |
| 1157 | /// # Safety |
| 1158 | /// |
| 1159 | /// The caller may assume that this implementation is correct, and may |
| 1160 | /// rely on that assumption for the soundness of their code. In |
| 1161 | /// particular, the caller may assume that, if `try_cast_into` returns |
| 1162 | /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to |
| 1163 | /// non-overlapping byte ranges within `self`, and that `ptr` and |
| 1164 | /// `remainder` entirely cover `self`. Finally: |
| 1165 | /// - If this is a prefix cast, `ptr` has the same address as `self`. |
| 1166 | /// - If this is a suffix cast, `remainder` has the same address as |
| 1167 | /// `self`. |
| 1168 | #[inline (always)] |
| 1169 | pub(crate) fn try_cast_into<U, R>( |
| 1170 | self, |
| 1171 | cast_type: CastType, |
| 1172 | meta: Option<U::PointerMetadata>, |
| 1173 | ) -> Result< |
| 1174 | (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>), |
| 1175 | CastError<Self, U>, |
| 1176 | > |
| 1177 | where |
| 1178 | R: AliasingSafeReason, |
| 1179 | U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>, |
| 1180 | { |
| 1181 | let layout = match meta { |
| 1182 | None => U::LAYOUT, |
| 1183 | // This can return `None` if the metadata describes an object |
| 1184 | // which can't fit in an `isize`. |
| 1185 | Some(meta) => { |
| 1186 | let size = match meta.size_for_metadata(U::LAYOUT) { |
| 1187 | Some(size) => size, |
| 1188 | None => return Err(CastError::Size(SizeError::new(self))), |
| 1189 | }; |
| 1190 | DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } } |
| 1191 | } |
| 1192 | }; |
| 1193 | // PANICS: By invariant, the byte range addressed by `self.ptr` does |
| 1194 | // not wrap around the address space. This implies that the sum of |
| 1195 | // the address (represented as a `usize`) and length do not overflow |
| 1196 | // `usize`, as required by `validate_cast_and_convert_metadata`. |
| 1197 | // Thus, this call to `validate_cast_and_convert_metadata` will only |
| 1198 | // panic if `U` is a DST whose trailing slice element is zero-sized. |
| 1199 | let maybe_metadata = layout.validate_cast_and_convert_metadata( |
| 1200 | AsAddress::addr(self.as_non_null().as_ptr()), |
| 1201 | self.len(), |
| 1202 | cast_type, |
| 1203 | ); |
| 1204 | |
| 1205 | let (elems, split_at) = match maybe_metadata { |
| 1206 | Ok((elems, split_at)) => (elems, split_at), |
| 1207 | Err(MetadataCastError::Alignment) => { |
| 1208 | // SAFETY: Since `validate_cast_and_convert_metadata` |
| 1209 | // returned an alignment error, `U` must have an alignment |
| 1210 | // requirement greater than one. |
| 1211 | let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) }; |
| 1212 | return Err(CastError::Alignment(err)); |
| 1213 | } |
| 1214 | Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))), |
| 1215 | }; |
| 1216 | |
| 1217 | // SAFETY: `validate_cast_and_convert_metadata` promises to return |
| 1218 | // `split_at <= self.len()`. |
| 1219 | let (l_slice, r_slice) = unsafe { self.split_at(split_at) }; |
| 1220 | |
| 1221 | let (target, remainder) = match cast_type { |
| 1222 | CastType::Prefix => (l_slice, r_slice), |
| 1223 | CastType::Suffix => (r_slice, l_slice), |
| 1224 | }; |
| 1225 | |
| 1226 | let base = target.as_non_null().cast::<u8>(); |
| 1227 | |
| 1228 | let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems); |
| 1229 | // For a slice DST type, if `meta` is `Some(elems)`, then we |
| 1230 | // synthesize `layout` to describe a sized type whose size is equal |
| 1231 | // to the size of the instance that we are asked to cast. For sized |
| 1232 | // types, `validate_cast_and_convert_metadata` returns `elems == 0`. |
| 1233 | // Thus, in this case, we need to use the `elems` passed by the |
| 1234 | // caller, not the one returned by |
| 1235 | // `validate_cast_and_convert_metadata`. |
| 1236 | let elems = meta.unwrap_or(elems); |
| 1237 | |
| 1238 | let ptr = U::raw_from_ptr_len(base, elems); |
| 1239 | |
| 1240 | // SAFETY: |
| 1241 | // 0. By invariant, if `target`'s referent is not zero sized, then |
| 1242 | // `target` is derived from some valid Rust allocation, `A`. By |
| 1243 | // contract on `cast`, `ptr` is derived from `self`, and thus |
| 1244 | // from the same valid Rust allocation, `A`. |
| 1245 | // 1. By invariant, if `target`'s referent is not zero sized, then |
| 1246 | // `target` has provenance valid for some Rust allocation, `A`. |
| 1247 | // Because `ptr` is derived from `target` via |
| 1248 | // provenance-preserving operations, `ptr` will also have |
| 1249 | // provenance valid for `A`. |
| 1250 | // - `validate_cast_and_convert_metadata` promises that the object |
| 1251 | // described by `elems` and `split_at` lives at a byte range |
| 1252 | // which is a subset of the input byte range. Thus: |
| 1253 | // 2. Since, by invariant, if `target`'s referent is not zero |
| 1254 | // sized, then `target` addresses a byte range which is |
| 1255 | // entirely contained in `A`, so does `ptr`. |
| 1256 | // 3. Since, by invariant, `target` addresses a byte range whose |
| 1257 | // length fits in an `isize`, so does `ptr`. |
| 1258 | // 4. Since, by invariant, `target` addresses a byte range which |
| 1259 | // does not wrap around the address space, so does `ptr`. |
| 1260 | // 5. Since, by invariant, if `target`'s referent is not zero |
| 1261 | // sized, then `target` refers to an allocation which is |
| 1262 | // guaranteed to live for at least `'a`, so does `ptr`. |
| 1263 | // 6. Since `U: AliasingSafe<[u8], I::Aliasing, _>`, either: |
| 1264 | // - `I::Aliasing` is `Exclusive`, in which case both `src` |
| 1265 | // and `ptr` conform to `Exclusive` |
| 1266 | // - `I::Aliasing` is `Shared` or `Any` and both `U` and |
| 1267 | // `[u8]` are `Immutable`. In this case, neither pointer |
| 1268 | // permits mutation, and so `Shared` aliasing is satisfied. |
| 1269 | // 7. `ptr` conforms to the alignment invariant of `Aligned` because |
| 1270 | // it is derived from `validate_cast_and_convert_metadata`, which |
| 1271 | // promises that the object described by `target` is validly |
| 1272 | // aligned for `U`. |
| 1273 | // 8. By trait bound, `self` - and thus `target` - is a bit-valid |
| 1274 | // `[u8]`. All bit-valid `[u8]`s have all of their bytes |
| 1275 | // initialized, so `ptr` conforms to the validity invariant of |
| 1276 | // `Initialized`. |
| 1277 | Ok((unsafe { Ptr::new(ptr) }, remainder)) |
| 1278 | } |
| 1279 | |
| 1280 | /// Attempts to cast `self` into a `U`, failing if all of the bytes of |
| 1281 | /// `self` cannot be treated as a `U`. |
| 1282 | /// |
| 1283 | /// In particular, this method fails if `self` is not validly-aligned |
| 1284 | /// for `U` or if `self`'s size is not a valid size for `U`. |
| 1285 | /// |
| 1286 | /// # Safety |
| 1287 | /// |
| 1288 | /// On success, the caller may assume that the returned pointer |
| 1289 | /// references the same byte range as `self`. |
| 1290 | #[allow (unused)] |
| 1291 | #[inline (always)] |
| 1292 | pub(crate) fn try_cast_into_no_leftover<U, R>( |
| 1293 | self, |
| 1294 | meta: Option<U::PointerMetadata>, |
| 1295 | ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>> |
| 1296 | where |
| 1297 | U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>, |
| 1298 | R: AliasingSafeReason, |
| 1299 | { |
| 1300 | // TODO(#67): Remove this allow. See NonNulSlicelExt for more |
| 1301 | // details. |
| 1302 | #[allow (unstable_name_collisions)] |
| 1303 | match self.try_cast_into(CastType::Prefix, meta) { |
| 1304 | Ok((slf, remainder)) => { |
| 1305 | if remainder.len() == 0 { |
| 1306 | Ok(slf) |
| 1307 | } else { |
| 1308 | // Undo the cast so we can return the original bytes. |
| 1309 | let slf = slf.as_bytes(); |
| 1310 | // Restore the initial alignment invariant of `self`. |
| 1311 | // |
| 1312 | // SAFETY: The referent type of `slf` is now equal to |
| 1313 | // that of `self`, but the alignment invariants |
| 1314 | // nominally differ. Since `slf` and `self` refer to the |
| 1315 | // same memory and no actions have been taken that would |
| 1316 | // violate the original invariants on `self`, it is |
| 1317 | // sound to apply the alignment invariant of `self` onto |
| 1318 | // `slf`. |
| 1319 | let slf = unsafe { slf.assume_alignment::<I::Alignment>() }; |
| 1320 | let slf = slf.unify_invariants(); |
| 1321 | Err(CastError::Size(SizeError::<_, U>::new(slf))) |
| 1322 | } |
| 1323 | } |
| 1324 | Err(err) => Err(err), |
| 1325 | } |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I> |
| 1330 | where |
| 1331 | T: 'a + ?Sized, |
| 1332 | I: Invariants<Aliasing = Exclusive>, |
| 1333 | { |
| 1334 | /// Converts this `Ptr` into a pointer to the underlying data. |
| 1335 | /// |
| 1336 | /// This call borrows the `UnsafeCell` mutably (at compile-time) which |
| 1337 | /// guarantees that we possess the only reference. |
| 1338 | /// |
| 1339 | /// This is like [`UnsafeCell::get_mut`], but for `Ptr`. |
| 1340 | /// |
| 1341 | /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut |
| 1342 | #[must_use ] |
| 1343 | #[inline (always)] |
| 1344 | pub fn get_mut(self) -> Ptr<'a, T, I> { |
| 1345 | // SAFETY: |
| 1346 | // - The closure uses an `as` cast, which preserves address range |
| 1347 | // and provenance. |
| 1348 | // - We require `I: Invariants<Aliasing = Exclusive>`, so we are not |
| 1349 | // required to uphold `UnsafeCell` equality. |
| 1350 | #[allow (clippy::as_conversions)] |
| 1351 | let ptr = unsafe { self.cast_unsized(|p| p as *mut T) }; |
| 1352 | |
| 1353 | // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1], |
| 1354 | // and so if `self` is guaranteed to be aligned, then so is the |
| 1355 | // returned `Ptr`. |
| 1356 | // |
| 1357 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
| 1358 | // |
| 1359 | // `UnsafeCell<T>` has the same in-memory representation as |
| 1360 | // its inner type `T`. A consequence of this guarantee is that |
| 1361 | // it is possible to convert between `T` and `UnsafeCell<T>`. |
| 1362 | let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() }; |
| 1363 | |
| 1364 | // SAFETY: `UnsafeCell<T>` has the same bit validity as `T` [1], and |
| 1365 | // so if `self` has a particular validity invariant, then the same |
| 1366 | // holds of the returned `Ptr`. Technically the term |
| 1367 | // "representation" doesn't guarantee this, but the subsequent |
| 1368 | // sentence in the documentation makes it clear that this is the |
| 1369 | // intention. |
| 1370 | // |
| 1371 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
| 1372 | // |
| 1373 | // `UnsafeCell<T>` has the same in-memory representation as its |
| 1374 | // inner type `T`. A consequence of this guarantee is that it is |
| 1375 | // possible to convert between `T` and `UnsafeCell<T>`. |
| 1376 | let ptr = unsafe { ptr.assume_validity::<I::Validity>() }; |
| 1377 | ptr.unify_invariants() |
| 1378 | } |
| 1379 | } |
| 1380 | } |
| 1381 | |
| 1382 | /// Projections through the referent. |
| 1383 | mod _project { |
| 1384 | use core::ops::Range; |
| 1385 | |
| 1386 | #[allow (unused_imports)] |
| 1387 | use crate::util::polyfills::NumExt as _; |
| 1388 | |
| 1389 | use super::*; |
| 1390 | |
| 1391 | impl<'a, T, I> Ptr<'a, T, I> |
| 1392 | where |
| 1393 | T: 'a + ?Sized, |
| 1394 | I: Invariants<Validity = Initialized>, |
| 1395 | { |
| 1396 | /// Projects a field from `self`. |
| 1397 | /// |
| 1398 | /// # Safety |
| 1399 | /// |
| 1400 | /// `project` has the same safety preconditions as `cast_unsized`. |
| 1401 | #[doc (hidden)] |
| 1402 | #[inline ] |
| 1403 | pub unsafe fn project<U: 'a + ?Sized>( |
| 1404 | self, |
| 1405 | projector: impl FnOnce(*mut T) -> *mut U, |
| 1406 | ) -> Ptr<'a, U, (I::Aliasing, Any, Initialized)> { |
| 1407 | // TODO(#1122): If `cast_unsized` were able to reason that, when |
| 1408 | // casting from an `Initialized` pointer, the result is another |
| 1409 | // `Initialized` pointer, we could remove this method entirely. |
| 1410 | |
| 1411 | // SAFETY: This method has the same safety preconditions as |
| 1412 | // `cast_unsized`. |
| 1413 | let ptr = unsafe { self.cast_unsized(projector) }; |
| 1414 | |
| 1415 | // SAFETY: If all of the bytes of `self` are initialized (as |
| 1416 | // promised by `I: Invariants<Validity = Initialized>`), then any |
| 1417 | // subset of those bytes are also all initialized. |
| 1418 | unsafe { ptr.assume_validity::<Initialized>() } |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | impl<'a, T, I> Ptr<'a, T, I> |
| 1423 | where |
| 1424 | T: 'a + KnownLayout<PointerMetadata = usize> + ?Sized, |
| 1425 | I: Invariants, |
| 1426 | { |
| 1427 | /// The number of trailing slice elements in the object referenced by |
| 1428 | /// `self`. |
| 1429 | /// |
| 1430 | /// # Safety |
| 1431 | /// |
| 1432 | /// Unsafe code my rely on `trailing_slice_len` satisfying the above |
| 1433 | /// contract. |
| 1434 | pub(super) fn trailing_slice_len(&self) -> usize { |
| 1435 | T::pointer_to_metadata(self.as_non_null().as_ptr()) |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | impl<'a, T, I> Ptr<'a, [T], I> |
| 1440 | where |
| 1441 | T: 'a, |
| 1442 | I: Invariants, |
| 1443 | { |
| 1444 | /// The number of slice elements in the object referenced by `self`. |
| 1445 | /// |
| 1446 | /// # Safety |
| 1447 | /// |
| 1448 | /// Unsafe code my rely on `len` satisfying the above contract. |
| 1449 | pub(crate) fn len(&self) -> usize { |
| 1450 | self.trailing_slice_len() |
| 1451 | } |
| 1452 | |
| 1453 | /// Creates a pointer which addresses the given `range` of self. |
| 1454 | /// |
| 1455 | /// # Safety |
| 1456 | /// |
| 1457 | /// `range` is a valid range (`start <= end`) and `end <= self.len()`. |
| 1458 | pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self { |
| 1459 | let base = self.as_non_null().cast::<T>().as_ptr(); |
| 1460 | |
| 1461 | // SAFETY: The caller promises that `start <= end <= self.len()`. By |
| 1462 | // invariant, if `self`'s referent is not zero-sized, then `self` |
| 1463 | // refers to a byte range which is contained within a single |
| 1464 | // allocation, which is no more than `isize::MAX` bytes long, and |
| 1465 | // which does not wrap around the address space. Thus, this pointer |
| 1466 | // arithmetic remains in-bounds of the same allocation, and does not |
| 1467 | // wrap around the address space. The offset (in bytes) does not |
| 1468 | // overflow `isize`. |
| 1469 | // |
| 1470 | // If `self`'s referent is zero-sized, then these conditions are |
| 1471 | // trivially satisfied. |
| 1472 | let base = unsafe { base.add(range.start) }; |
| 1473 | |
| 1474 | // SAFETY: The caller promises that `start <= end`, and so this will |
| 1475 | // not underflow. |
| 1476 | #[allow (unstable_name_collisions, clippy::incompatible_msrv)] |
| 1477 | let len = unsafe { range.end.unchecked_sub(range.start) }; |
| 1478 | |
| 1479 | let ptr = core::ptr::slice_from_raw_parts_mut(base, len); |
| 1480 | |
| 1481 | // SAFETY: By invariant, `self`'s address is non-null and its range |
| 1482 | // does not wrap around the address space. Since, by the preceding |
| 1483 | // lemma, `ptr` addresses a range within that addressed by `self`, |
| 1484 | // `ptr` is non-null. |
| 1485 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
| 1486 | |
| 1487 | // SAFETY: |
| 1488 | // |
| 1489 | // Lemma 0: `ptr` addresses a subset of the bytes addressed by |
| 1490 | // `self`, and has the same provenance. |
| 1491 | // Proof: The caller guarantees that `start <= end <= self.len()`. |
| 1492 | // Thus, `base` is in-bounds of `self`, and `base + (end - |
| 1493 | // start)` is also in-bounds of self. Finally, `ptr` is |
| 1494 | // constructed using provenance-preserving operations. |
| 1495 | // |
| 1496 | // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
| 1497 | // not zero sized, then `ptr` is derived from some valid Rust |
| 1498 | // allocation, `A`. |
| 1499 | // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
| 1500 | // not zero sized, then `ptr` has valid provenance for `A`. |
| 1501 | // 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
| 1502 | // not zero sized, then `ptr` addresses a byte range which is |
| 1503 | // entirely contained in `A`. |
| 1504 | // 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte |
| 1505 | // range whose length fits in an `isize`. |
| 1506 | // 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte |
| 1507 | // range which does not wrap around the address space. |
| 1508 | // 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
| 1509 | // not zero sized, then `A` is guaranteed to live for at least |
| 1510 | // `'a`. |
| 1511 | // 6. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
| 1512 | // aliasing invariant of [`I::Aliasing`](invariant::Aliasing). |
| 1513 | // 7. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
| 1514 | // alignment invariant of [`I::Alignment`](invariant::Alignment). |
| 1515 | // 8. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
| 1516 | // validity invariant of [`I::Validity`](invariant::Validity). |
| 1517 | unsafe { Ptr::new(ptr) } |
| 1518 | } |
| 1519 | |
| 1520 | /// Splits the slice in two. |
| 1521 | /// |
| 1522 | /// # Safety |
| 1523 | /// |
| 1524 | /// The caller promises that `l_len <= self.len()`. |
| 1525 | pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) { |
| 1526 | // SAFETY: `Any` imposes no invariants, and so this is always sound. |
| 1527 | let slf = unsafe { self.assume_aliasing::<Any>() }; |
| 1528 | |
| 1529 | // SAFETY: The caller promises that `l_len <= self.len()`. |
| 1530 | // Trivially, `0 <= l_len`. |
| 1531 | let left = unsafe { slf.slice_unchecked(0..l_len) }; |
| 1532 | |
| 1533 | // SAFETY: The caller promises that `l_len <= self.len() = |
| 1534 | // slf.len()`. Trivially, `slf.len() <= slf.len()`. |
| 1535 | let right = unsafe { slf.slice_unchecked(l_len..slf.len()) }; |
| 1536 | |
| 1537 | // LEMMA: `left` and `right` are non-overlapping. Proof: `left` is |
| 1538 | // constructed from `slf` with `l_len` as its (exclusive) upper |
| 1539 | // bound, while `right` is constructed from `slf` with `l_len` as |
| 1540 | // its (inclusive) lower bound. Thus, no index is a member of both |
| 1541 | // ranges. |
| 1542 | |
| 1543 | // SAFETY: By the preceding lemma, `left` and `right` do not alias. |
| 1544 | // We do not construct any other `Ptr`s or references which alias |
| 1545 | // `left` or `right`. Thus, the only `Ptr`s or references which |
| 1546 | // alias `left` or `right` are outside of this method. By invariant, |
| 1547 | // `self` obeys the aliasing invariant `I::Aliasing` with respect to |
| 1548 | // those other `Ptr`s or references, and so `left` and `right` do as |
| 1549 | // well. |
| 1550 | let (left, right) = unsafe { |
| 1551 | (left.assume_aliasing::<I::Aliasing>(), right.assume_aliasing::<I::Aliasing>()) |
| 1552 | }; |
| 1553 | (left.unify_invariants(), right.unify_invariants()) |
| 1554 | } |
| 1555 | |
| 1556 | /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`. |
| 1557 | pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> { |
| 1558 | // TODO(#429): Once `NonNull::cast` documents that it preserves |
| 1559 | // provenance, cite those docs. |
| 1560 | let base = self.as_non_null().cast::<T>().as_ptr(); |
| 1561 | (0..self.len()).map(move |i| { |
| 1562 | // TODO(https://github.com/rust-lang/rust/issues/74265): Use |
| 1563 | // `NonNull::get_unchecked_mut`. |
| 1564 | |
| 1565 | // SAFETY: If the following conditions are not satisfied |
| 1566 | // `pointer::cast` may induce Undefined Behavior [1]: |
| 1567 | // |
| 1568 | // > - The computed offset, `count * size_of::<T>()` bytes, must |
| 1569 | // > not overflow `isize``. |
| 1570 | // > - If the computed offset is non-zero, then `self` must be |
| 1571 | // > derived from a pointer to some allocated object, and the |
| 1572 | // > entire memory range between `self` and the result must be |
| 1573 | // > in bounds of that allocated object. In particular, this |
| 1574 | // > range must not “wrap around” the edge of the address |
| 1575 | // > space. |
| 1576 | // |
| 1577 | // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add |
| 1578 | // |
| 1579 | // We satisfy both of these conditions here: |
| 1580 | // - By invariant on `Ptr`, `self` addresses a byte range whose |
| 1581 | // length fits in an `isize`. Since `elem` is contained in |
| 1582 | // `self`, the computed offset of `elem` must fit within |
| 1583 | // `isize.` |
| 1584 | // - If the computed offset is non-zero, then this means that |
| 1585 | // the referent is not zero-sized. In this case, `base` points |
| 1586 | // to an allocated object (by invariant on `self`). Thus: |
| 1587 | // - By contract, `self.len()` accurately reflects the number |
| 1588 | // of elements in the slice. `i` is in bounds of `c.len()` |
| 1589 | // by construction, and so the result of this addition |
| 1590 | // cannot overflow past the end of the allocation referred |
| 1591 | // to by `c`. |
| 1592 | // - By invariant on `Ptr`, `self` addresses a byte range |
| 1593 | // which does not wrap around the address space. Since |
| 1594 | // `elem` is contained in `self`, the computed offset of |
| 1595 | // `elem` must wrap around the address space. |
| 1596 | // |
| 1597 | // TODO(#429): Once `pointer::add` documents that it preserves |
| 1598 | // provenance, cite those docs. |
| 1599 | let elem = unsafe { base.add(i) }; |
| 1600 | |
| 1601 | // SAFETY: |
| 1602 | // - `elem` must not be null. `base` is constructed from a |
| 1603 | // `NonNull` pointer, and the addition that produces `elem` |
| 1604 | // must not overflow or wrap around, so `elem >= base > 0`. |
| 1605 | // |
| 1606 | // TODO(#429): Once `NonNull::new_unchecked` documents that it |
| 1607 | // preserves provenance, cite those docs. |
| 1608 | let elem = unsafe { NonNull::new_unchecked(elem) }; |
| 1609 | |
| 1610 | // SAFETY: The safety invariants of `Ptr::new` (see definition) |
| 1611 | // are satisfied: |
| 1612 | // 0. If `elem`'s referent is not zero sized, then `elem` is |
| 1613 | // derived from a valid Rust allocation, because `self` is |
| 1614 | // derived from a valid Rust allocation, by invariant on |
| 1615 | // `Ptr`. |
| 1616 | // 1. If `elem`'s referent is not zero sized, then `elem` has |
| 1617 | // valid provenance for `self`, because it derived from |
| 1618 | // `self` using a series of provenance-preserving operations. |
| 1619 | // 2. If `elem`'s referent is not zero sized, then `elem` is |
| 1620 | // entirely contained in the allocation of `self` (see |
| 1621 | // above). |
| 1622 | // 3. `elem` addresses a byte range whose length fits in an |
| 1623 | // `isize` (see above). |
| 1624 | // 4. `elem` addresses a byte range which does not wrap around |
| 1625 | // the address space (see above). |
| 1626 | // 5. If `elem`'s referent is not zero sized, then the |
| 1627 | // allocation of `elem` is guaranteed to live for at least |
| 1628 | // `'a`, because `elem` is entirely contained in `self`, |
| 1629 | // which lives for at least `'a` by invariant on `Ptr`. |
| 1630 | // 6. `elem` conforms to the aliasing invariant of `I::Aliasing` |
| 1631 | // because projection does not impact the aliasing invariant. |
| 1632 | // 7. `elem`, conditionally, conforms to the validity invariant |
| 1633 | // of `I::Alignment`. If `elem` is projected from data |
| 1634 | // well-aligned for `[T]`, `elem` will be valid for `T`. |
| 1635 | // 8. `elem`, conditionally, conforms to the validity invariant |
| 1636 | // of `I::Validity`. If `elem` is projected from data valid |
| 1637 | // for `[T]`, `elem` will be valid for `T`. |
| 1638 | unsafe { Ptr::new(elem) } |
| 1639 | }) |
| 1640 | } |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | #[cfg (test)] |
| 1645 | mod tests { |
| 1646 | use core::mem::{self, MaybeUninit}; |
| 1647 | |
| 1648 | use static_assertions::{assert_impl_all, assert_not_impl_any}; |
| 1649 | |
| 1650 | use super::*; |
| 1651 | use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable}; |
| 1652 | |
| 1653 | #[test ] |
| 1654 | fn test_split_at() { |
| 1655 | const N: usize = 16; |
| 1656 | let mut arr = [1; N]; |
| 1657 | let mut ptr = Ptr::from_mut(&mut arr).as_slice(); |
| 1658 | for i in 0..=N { |
| 1659 | assert_eq!(ptr.len(), N); |
| 1660 | // SAFETY: `i` is in bounds by construction. |
| 1661 | let (l, r) = unsafe { ptr.reborrow().split_at(i) }; |
| 1662 | let l_sum: usize = l.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum(); |
| 1663 | let r_sum: usize = r.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum(); |
| 1664 | assert_eq!(l_sum, i); |
| 1665 | assert_eq!(r_sum, N - i); |
| 1666 | assert_eq!(l_sum + r_sum, N); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | mod test_ptr_try_cast_into_soundness { |
| 1671 | use super::*; |
| 1672 | |
| 1673 | // This test is designed so that if `Ptr::try_cast_into_xxx` are |
| 1674 | // buggy, it will manifest as unsoundness that Miri can detect. |
| 1675 | |
| 1676 | // - If `size_of::<T>() == 0`, `N == 4` |
| 1677 | // - Else, `N == 4 * size_of::<T>()` |
| 1678 | // |
| 1679 | // Each test will be run for each metadata in `metas`. |
| 1680 | fn test<T, I, const N: usize>(metas: I) |
| 1681 | where |
| 1682 | T: ?Sized + KnownLayout + Immutable + FromBytes, |
| 1683 | I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone, |
| 1684 | { |
| 1685 | let mut bytes = [MaybeUninit::<u8>::uninit(); N]; |
| 1686 | let initialized = [MaybeUninit::new(0u8); N]; |
| 1687 | for start in 0..=bytes.len() { |
| 1688 | for end in start..=bytes.len() { |
| 1689 | // Set all bytes to uninitialized other than those in |
| 1690 | // the range we're going to pass to `try_cast_from`. |
| 1691 | // This allows Miri to detect out-of-bounds reads |
| 1692 | // because they read uninitialized memory. Without this, |
| 1693 | // some out-of-bounds reads would still be in-bounds of |
| 1694 | // `bytes`, and so might spuriously be accepted. |
| 1695 | bytes = [MaybeUninit::<u8>::uninit(); N]; |
| 1696 | let bytes = &mut bytes[start..end]; |
| 1697 | // Initialize only the byte range we're going to pass to |
| 1698 | // `try_cast_from`. |
| 1699 | bytes.copy_from_slice(&initialized[start..end]); |
| 1700 | |
| 1701 | let bytes = { |
| 1702 | let bytes: *const [MaybeUninit<u8>] = bytes; |
| 1703 | #[allow (clippy::as_conversions)] |
| 1704 | let bytes = bytes as *const [u8]; |
| 1705 | // SAFETY: We just initialized these bytes to valid |
| 1706 | // `u8`s. |
| 1707 | unsafe { &*bytes } |
| 1708 | }; |
| 1709 | |
| 1710 | // SAFETY: The bytes in `slf` must be initialized. |
| 1711 | unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>( |
| 1712 | slf: Ptr<'_, T, (Shared, Aligned, Initialized)>, |
| 1713 | ) -> usize { |
| 1714 | let t = slf.bikeshed_recall_valid().as_ref(); |
| 1715 | |
| 1716 | let bytes = { |
| 1717 | let len = mem::size_of_val(t); |
| 1718 | let t: *const T = t; |
| 1719 | // SAFETY: |
| 1720 | // - We know `t`'s bytes are all initialized |
| 1721 | // because we just read it from `slf`, which |
| 1722 | // points to an initialized range of bytes. If |
| 1723 | // there's a bug and this doesn't hold, then |
| 1724 | // that's exactly what we're hoping Miri will |
| 1725 | // catch! |
| 1726 | // - Since `T: FromBytes`, `T` doesn't contain |
| 1727 | // any `UnsafeCell`s, so it's okay for `t: T` |
| 1728 | // and a `&[u8]` to the same memory to be |
| 1729 | // alive concurrently. |
| 1730 | unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) } |
| 1731 | }; |
| 1732 | |
| 1733 | // This assertion ensures that `t`'s bytes are read |
| 1734 | // and compared to another value, which in turn |
| 1735 | // ensures that Miri gets a chance to notice if any |
| 1736 | // of `t`'s bytes are uninitialized, which they |
| 1737 | // shouldn't be (see the comment above). |
| 1738 | assert_eq!(bytes, vec![0u8; bytes.len()]); |
| 1739 | |
| 1740 | mem::size_of_val(t) |
| 1741 | } |
| 1742 | |
| 1743 | for meta in metas.clone().into_iter() { |
| 1744 | for cast_type in [CastType::Prefix, CastType::Suffix] { |
| 1745 | if let Ok((slf, remaining)) = Ptr::from_ref(bytes) |
| 1746 | .try_cast_into::<T, BecauseImmutable>(cast_type, meta) |
| 1747 | { |
| 1748 | // SAFETY: All bytes in `bytes` have been |
| 1749 | // initialized. |
| 1750 | let len = unsafe { validate_and_get_len(slf) }; |
| 1751 | assert_eq!(remaining.len(), bytes.len() - len); |
| 1752 | #[allow (unstable_name_collisions)] |
| 1753 | let bytes_addr = bytes.as_ptr().addr(); |
| 1754 | #[allow (unstable_name_collisions)] |
| 1755 | let remaining_addr = remaining.as_non_null().as_ptr().addr(); |
| 1756 | match cast_type { |
| 1757 | CastType::Prefix => { |
| 1758 | assert_eq!(remaining_addr, bytes_addr + len) |
| 1759 | } |
| 1760 | CastType::Suffix => assert_eq!(remaining_addr, bytes_addr), |
| 1761 | } |
| 1762 | |
| 1763 | if let Some(want) = meta { |
| 1764 | let got = KnownLayout::pointer_to_metadata( |
| 1765 | slf.as_non_null().as_ptr(), |
| 1766 | ); |
| 1767 | assert_eq!(got, want); |
| 1768 | } |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | if let Ok(slf) = Ptr::from_ref(bytes) |
| 1773 | .try_cast_into_no_leftover::<T, BecauseImmutable>(meta) |
| 1774 | { |
| 1775 | // SAFETY: All bytes in `bytes` have been |
| 1776 | // initialized. |
| 1777 | let len = unsafe { validate_and_get_len(slf) }; |
| 1778 | assert_eq!(len, bytes.len()); |
| 1779 | |
| 1780 | if let Some(want) = meta { |
| 1781 | let got = |
| 1782 | KnownLayout::pointer_to_metadata(slf.as_non_null().as_ptr()); |
| 1783 | assert_eq!(got, want); |
| 1784 | } |
| 1785 | } |
| 1786 | } |
| 1787 | } |
| 1788 | } |
| 1789 | } |
| 1790 | |
| 1791 | #[derive (FromBytes, KnownLayout, Immutable)] |
| 1792 | #[repr (C)] |
| 1793 | struct SliceDst<T> { |
| 1794 | a: u8, |
| 1795 | trailing: [T], |
| 1796 | } |
| 1797 | |
| 1798 | // Each test case becomes its own `#[test]` function. We do this because |
| 1799 | // this test in particular takes far, far longer to execute under Miri |
| 1800 | // than all of our other tests combined. Previously, we had these |
| 1801 | // execute sequentially in a single test function. We run Miri tests in |
| 1802 | // parallel in CI, but this test being sequential meant that most of |
| 1803 | // that parallelism was wasted, as all other tests would finish in a |
| 1804 | // fraction of the total execution time, leaving this test to execute on |
| 1805 | // a single thread for the remainder of the test. By putting each test |
| 1806 | // case in its own function, we permit better use of available |
| 1807 | // parallelism. |
| 1808 | macro_rules! test { |
| 1809 | ($test_name:ident: $ty:ty) => { |
| 1810 | #[test] |
| 1811 | #[allow(non_snake_case)] |
| 1812 | fn $test_name() { |
| 1813 | const S: usize = core::mem::size_of::<$ty>(); |
| 1814 | const N: usize = if S == 0 { 4 } else { S * 4 }; |
| 1815 | test::<$ty, _, N>([None]); |
| 1816 | |
| 1817 | // If `$ty` is a ZST, then we can't pass `None` as the |
| 1818 | // pointer metadata, or else computing the correct trailing |
| 1819 | // slice length will panic. |
| 1820 | if S == 0 { |
| 1821 | test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]); |
| 1822 | test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]); |
| 1823 | } else { |
| 1824 | test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
| 1825 | test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
| 1826 | } |
| 1827 | } |
| 1828 | }; |
| 1829 | ($ty:ident) => { |
| 1830 | test!($ty: $ty); |
| 1831 | }; |
| 1832 | ($($ty:ident),*) => { $(test!($ty);)* } |
| 1833 | } |
| 1834 | |
| 1835 | test !(empty_tuple: ()); |
| 1836 | test !(u8, u16, u32, u64, u128, usize, AU64); |
| 1837 | test !(i8, i16, i32, i64, i128, isize); |
| 1838 | test !(f32, f64); |
| 1839 | } |
| 1840 | |
| 1841 | #[test ] |
| 1842 | fn test_invariants() { |
| 1843 | // Test that the correct invariant relationships hold. |
| 1844 | use super::invariant::*; |
| 1845 | |
| 1846 | assert_not_impl_any!(Any: AtLeast<Shared>); |
| 1847 | assert_impl_all!(Shared: AtLeast<Shared>); |
| 1848 | assert_impl_all!(Exclusive: AtLeast<Shared>); |
| 1849 | |
| 1850 | assert_not_impl_any!(Any: AtLeast<AsInitialized>); |
| 1851 | assert_impl_all!(AsInitialized: AtLeast<AsInitialized>); |
| 1852 | assert_impl_all!(Initialized: AtLeast<AsInitialized>); |
| 1853 | assert_impl_all!(Valid: AtLeast<AsInitialized>); |
| 1854 | } |
| 1855 | |
| 1856 | #[test ] |
| 1857 | fn test_try_cast_into_explicit_count() { |
| 1858 | macro_rules! test { |
| 1859 | ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{ |
| 1860 | let bytes = [0u8; $bytes]; |
| 1861 | let ptr = Ptr::from_ref(&bytes[..]); |
| 1862 | let res = |
| 1863 | ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems)); |
| 1864 | if let Some(expect) = $expect { |
| 1865 | let (ptr, _) = res.unwrap(); |
| 1866 | assert_eq!( |
| 1867 | KnownLayout::pointer_to_metadata(ptr.as_non_null().as_ptr()), |
| 1868 | expect |
| 1869 | ); |
| 1870 | } else { |
| 1871 | let _ = res.unwrap_err(); |
| 1872 | } |
| 1873 | }}; |
| 1874 | } |
| 1875 | |
| 1876 | #[derive (KnownLayout, Immutable)] |
| 1877 | #[repr (C)] |
| 1878 | struct ZstDst { |
| 1879 | u: [u8; 8], |
| 1880 | slc: [()], |
| 1881 | } |
| 1882 | |
| 1883 | test !(ZstDst, 8, 0, Some(0)); |
| 1884 | test !(ZstDst, 7, 0, None); |
| 1885 | |
| 1886 | test !(ZstDst, 8, usize::MAX, Some(usize::MAX)); |
| 1887 | test !(ZstDst, 7, usize::MAX, None); |
| 1888 | |
| 1889 | #[derive (KnownLayout, Immutable)] |
| 1890 | #[repr (C)] |
| 1891 | struct Dst { |
| 1892 | u: [u8; 8], |
| 1893 | slc: [u8], |
| 1894 | } |
| 1895 | |
| 1896 | test !(Dst, 8, 0, Some(0)); |
| 1897 | test !(Dst, 7, 0, None); |
| 1898 | |
| 1899 | test !(Dst, 9, 1, Some(1)); |
| 1900 | test !(Dst, 8, 1, None); |
| 1901 | |
| 1902 | // If we didn't properly check for overflow, this would cause the |
| 1903 | // metadata to overflow to 0, and thus the cast would spuriously |
| 1904 | // succeed. |
| 1905 | test !(Dst, 8, usize::MAX - 8 + 1, None); |
| 1906 | } |
| 1907 | } |
| 1908 | |