1//! Defines how the compiler represents types internally.
2//!
3//! Two important entities in this module are:
4//!
5//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
6//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
7//!
8//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
9//!
10//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
11
12#![allow(rustc::usage_of_ty_tykind)]
13
14use std::assert_matches::assert_matches;
15use std::fmt::Debug;
16use std::hash::{Hash, Hasher};
17use std::marker::PhantomData;
18use std::num::NonZero;
19use std::ptr::NonNull;
20use std::{fmt, str};
21
22pub use adt::*;
23pub use assoc::*;
24pub use generic_args::{GenericArgKind, TermKind, *};
25pub use generics::*;
26pub use intrinsic::IntrinsicDef;
27use rustc_abi::{Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, VariantIdx};
28use rustc_ast::expand::StrippedCfgItem;
29use rustc_ast::node_id::NodeMap;
30pub use rustc_ast_ir::{Movability, Mutability, try_visit};
31use rustc_attr_data_structures::AttributeKind;
32use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
33use rustc_data_structures::intern::Interned;
34use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
35use rustc_data_structures::steal::Steal;
36use rustc_data_structures::unord::UnordMap;
37use rustc_errors::{Diag, ErrorGuaranteed};
38use rustc_hir::LangItem;
39use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res};
40use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap};
41use rustc_index::IndexVec;
42use rustc_macros::{
43 Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable,
44 extension,
45};
46use rustc_query_system::ich::StableHashingContext;
47use rustc_serialize::{Decodable, Encodable};
48use rustc_session::lint::LintBuffer;
49pub use rustc_session::lint::RegisteredTools;
50use rustc_span::hygiene::MacroKind;
51use rustc_span::{ExpnId, ExpnKind, Ident, Span, Symbol, kw, sym};
52pub use rustc_type_ir::relate::VarianceDiagInfo;
53pub use rustc_type_ir::*;
54use tracing::{debug, instrument};
55pub use vtable::*;
56use {rustc_ast as ast, rustc_attr_data_structures as attr, rustc_hir as hir};
57
58pub use self::closure::{
59 BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo,
60 MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId,
61 UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture,
62 place_to_string_for_capture,
63};
64pub use self::consts::{
65 Const, ConstInt, ConstKind, Expr, ExprKind, ScalarInt, UnevaluatedConst, ValTree, ValTreeKind,
66 Value,
67};
68pub use self::context::{
69 CtxtInterners, CurrentGcx, DeducedParamAttrs, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt,
70 TyCtxtFeed, tls,
71};
72pub use self::fold::*;
73pub use self::instance::{Instance, InstanceKind, ReifyReason, ShortInstance, UnusedGenericParams};
74pub use self::list::{List, ListWithCachedTypeInfo};
75pub use self::opaque_types::OpaqueTypeKey;
76pub use self::parameterized::ParameterizedOverTcx;
77pub use self::pattern::{Pattern, PatternKind};
78pub use self::predicate::{
79 AliasTerm, Clause, ClauseKind, CoercePredicate, ExistentialPredicate,
80 ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef,
81 HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate,
82 PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef,
83 PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate,
84 PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate,
85 RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate,
86};
87pub use self::region::{
88 BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region,
89 RegionKind, RegionVid,
90};
91pub use self::rvalue_scopes::RvalueScopes;
92pub use self::sty::{
93 AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
94 CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst,
95 ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs,
96};
97pub use self::trait_def::TraitDef;
98pub use self::typeck_results::{
99 CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity,
100 Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind,
101};
102pub use self::visit::*;
103use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
104use crate::metadata::ModChild;
105use crate::middle::privacy::EffectiveVisibilities;
106use crate::mir::{Body, CoroutineLayout};
107use crate::query::{IntoQueryParam, Providers};
108use crate::ty;
109use crate::ty::codec::{TyDecoder, TyEncoder};
110pub use crate::ty::diagnostics::*;
111use crate::ty::fast_reject::SimplifiedType;
112use crate::ty::util::Discr;
113
114pub mod abstract_const;
115pub mod adjustment;
116pub mod cast;
117pub mod codec;
118pub mod error;
119pub mod fast_reject;
120pub mod flags;
121pub mod inhabitedness;
122pub mod layout;
123pub mod normalize_erasing_regions;
124pub mod pattern;
125pub mod print;
126pub mod relate;
127pub mod significant_drop_order;
128pub mod trait_def;
129pub mod util;
130pub mod vtable;
131pub mod walk;
132
133mod adt;
134mod assoc;
135mod closure;
136mod consts;
137mod context;
138mod diagnostics;
139mod elaborate_impl;
140mod erase_regions;
141mod fold;
142mod generic_args;
143mod generics;
144mod impls_ty;
145mod instance;
146mod intrinsic;
147mod list;
148mod opaque_types;
149mod parameterized;
150mod predicate;
151mod region;
152mod rvalue_scopes;
153mod structural_impls;
154#[allow(hidden_glob_reexports)]
155mod sty;
156mod typeck_results;
157mod visit;
158
159// Data types
160
161pub struct ResolverOutputs {
162 pub global_ctxt: ResolverGlobalCtxt,
163 pub ast_lowering: ResolverAstLowering,
164}
165
166#[derive(Debug)]
167pub struct ResolverGlobalCtxt {
168 pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
169 /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
170 pub expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
171 pub effective_visibilities: EffectiveVisibilities,
172 pub extern_crate_map: UnordMap<LocalDefId, CrateNum>,
173 pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
174 pub module_children: LocalDefIdMap<Vec<ModChild>>,
175 pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
176 pub main_def: Option<MainDefinition>,
177 pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
178 /// A list of proc macro LocalDefIds, written out in the order in which
179 /// they are declared in the static array generated by proc_macro_harness.
180 pub proc_macros: Vec<LocalDefId>,
181 /// Mapping from ident span to path span for paths that don't exist as written, but that
182 /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
183 pub confused_type_with_std_module: FxIndexMap<Span, Span>,
184 pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
185 pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
186 pub all_macro_rules: FxHashSet<Symbol>,
187 pub stripped_cfg_items: Steal<Vec<StrippedCfgItem>>,
188}
189
190/// Resolutions that should only be used for lowering.
191/// This struct is meant to be consumed by lowering.
192#[derive(Debug)]
193pub struct ResolverAstLowering {
194 pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
195
196 /// Resolutions for nodes that have a single resolution.
197 pub partial_res_map: NodeMap<hir::def::PartialRes>,
198 /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
199 pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
200 /// Resolutions for labels (node IDs of their corresponding blocks or loops).
201 pub label_res_map: NodeMap<ast::NodeId>,
202 /// Resolutions for lifetimes.
203 pub lifetimes_res_map: NodeMap<LifetimeRes>,
204 /// Lifetime parameters that lowering will have to introduce.
205 pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,
206
207 pub next_node_id: ast::NodeId,
208
209 pub node_id_to_def_id: NodeMap<LocalDefId>,
210
211 pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
212 /// List functions and methods for which lifetime elision was successful.
213 pub lifetime_elision_allowed: FxHashSet<ast::NodeId>,
214
215 /// Lints that were emitted by the resolver and early lints.
216 pub lint_buffer: Steal<LintBuffer>,
217
218 /// Information about functions signatures for delegation items expansion
219 pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
220}
221
222#[derive(Debug)]
223pub struct DelegationFnSig {
224 pub header: ast::FnHeader,
225 pub param_count: usize,
226 pub has_self: bool,
227 pub c_variadic: bool,
228 pub target_feature: bool,
229}
230
231#[derive(Clone, Copy, Debug)]
232pub struct MainDefinition {
233 pub res: Res<ast::NodeId>,
234 pub is_import: bool,
235 pub span: Span,
236}
237
238impl MainDefinition {
239 pub fn opt_fn_def_id(self) -> Option<DefId> {
240 if let Res::Def(DefKind::Fn, def_id: DefId) = self.res { Some(def_id) } else { None }
241 }
242}
243
244/// The "header" of an impl is everything outside the body: a Self type, a trait
245/// ref (in the case of a trait impl), and a set of predicates (from the
246/// bounds / where-clauses).
247#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
248pub struct ImplHeader<'tcx> {
249 pub impl_def_id: DefId,
250 pub impl_args: ty::GenericArgsRef<'tcx>,
251 pub self_ty: Ty<'tcx>,
252 pub trait_ref: Option<TraitRef<'tcx>>,
253 pub predicates: Vec<Predicate<'tcx>>,
254}
255
256#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
257pub struct ImplTraitHeader<'tcx> {
258 pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>,
259 pub polarity: ImplPolarity,
260 pub safety: hir::Safety,
261 pub constness: hir::Constness,
262}
263
264#[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)]
265pub enum ImplSubject<'tcx> {
266 Trait(TraitRef<'tcx>),
267 Inherent(Ty<'tcx>),
268}
269
270#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
271#[derive(TypeFoldable, TypeVisitable)]
272pub enum Asyncness {
273 Yes,
274 No,
275}
276
277impl Asyncness {
278 pub fn is_async(self) -> bool {
279 matches!(self, Asyncness::Yes)
280 }
281}
282
283#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)]
284pub enum Visibility<Id = LocalDefId> {
285 /// Visible everywhere (including in other crates).
286 Public,
287 /// Visible only in the given crate-local module.
288 Restricted(Id),
289}
290
291impl Visibility {
292 pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
293 match self {
294 ty::Visibility::Restricted(restricted_id: LocalDefId) => {
295 if restricted_id.is_top_level_module() {
296 "pub(crate)".to_string()
297 } else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() {
298 "pub(self)".to_string()
299 } else {
300 format!("pub({})", tcx.item_name(restricted_id.to_def_id()))
301 }
302 }
303 ty::Visibility::Public => "pub".to_string(),
304 }
305 }
306}
307
308#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
309#[derive(TypeFoldable, TypeVisitable)]
310pub struct ClosureSizeProfileData<'tcx> {
311 /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
312 pub before_feature_tys: Ty<'tcx>,
313 /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
314 pub after_feature_tys: Ty<'tcx>,
315}
316
317impl TyCtxt<'_> {
318 #[inline]
319 pub fn opt_parent(self, id: DefId) -> Option<DefId> {
320 self.def_key(id).parent.map(|index| DefId { index, ..id })
321 }
322
323 #[inline]
324 #[track_caller]
325 pub fn parent(self, id: DefId) -> DefId {
326 match self.opt_parent(id) {
327 Some(id) => id,
328 // not `unwrap_or_else` to avoid breaking caller tracking
329 None => bug!("{id:?} doesn't have a parent"),
330 }
331 }
332
333 #[inline]
334 #[track_caller]
335 pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
336 self.opt_parent(id.to_def_id()).map(DefId::expect_local)
337 }
338
339 #[inline]
340 #[track_caller]
341 pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId {
342 self.parent(id.into().to_def_id()).expect_local()
343 }
344
345 pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
346 if descendant.krate != ancestor.krate {
347 return false;
348 }
349
350 while descendant != ancestor {
351 match self.opt_parent(descendant) {
352 Some(parent) => descendant = parent,
353 None => return false,
354 }
355 }
356 true
357 }
358}
359
360impl<Id> Visibility<Id> {
361 pub fn is_public(self) -> bool {
362 matches!(self, Visibility::Public)
363 }
364
365 pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
366 match self {
367 Visibility::Public => Visibility::Public,
368 Visibility::Restricted(id: Id) => Visibility::Restricted(f(id)),
369 }
370 }
371}
372
373impl<Id: Into<DefId>> Visibility<Id> {
374 pub fn to_def_id(self) -> Visibility<DefId> {
375 self.map_id(Into::into)
376 }
377
378 /// Returns `true` if an item with this visibility is accessible from the given module.
379 pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool {
380 match self {
381 // Public items are visible everywhere.
382 Visibility::Public => true,
383 Visibility::Restricted(id: Id) => tcx.is_descendant_of(descendant:module.into(), ancestor:id.into()),
384 }
385 }
386
387 /// Returns `true` if this visibility is at least as accessible as the given visibility
388 pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool {
389 match vis {
390 Visibility::Public => self.is_public(),
391 Visibility::Restricted(id: impl Into) => self.is_accessible_from(module:id, tcx),
392 }
393 }
394}
395
396impl Visibility<DefId> {
397 pub fn expect_local(self) -> Visibility {
398 self.map_id(|id: DefId| id.expect_local())
399 }
400
401 /// Returns `true` if this item is visible anywhere in the local crate.
402 pub fn is_visible_locally(self) -> bool {
403 match self {
404 Visibility::Public => true,
405 Visibility::Restricted(def_id: DefId) => def_id.is_local(),
406 }
407 }
408}
409
410/// The crate variances map is computed during typeck and contains the
411/// variance of every item in the local crate. You should not use it
412/// directly, because to do so will make your pass dependent on the
413/// HIR of every item in the local crate. Instead, use
414/// `tcx.variances_of()` to get the variance for a *particular*
415/// item.
416#[derive(HashStable, Debug)]
417pub struct CrateVariancesMap<'tcx> {
418 /// For each item with generics, maps to a vector of the variance
419 /// of its generics. If an item has no generics, it will have no
420 /// entry.
421 pub variances: DefIdMap<&'tcx [ty::Variance]>,
422}
423
424// Contains information needed to resolve types and (in the future) look up
425// the types of AST nodes.
426#[derive(Copy, Clone, PartialEq, Eq, Hash)]
427pub struct CReaderCacheKey {
428 pub cnum: Option<CrateNum>,
429 pub pos: usize,
430}
431
432/// Use this rather than `TyKind`, whenever possible.
433#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
434#[rustc_diagnostic_item = "Ty"]
435#[rustc_pass_by_value]
436pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>);
437
438impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> {
439 type Kind = TyKind<'tcx>;
440
441 fn kind(self) -> TyKind<'tcx> {
442 *self.kind()
443 }
444}
445
446impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> {
447 fn flags(&self) -> TypeFlags {
448 self.0.flags
449 }
450
451 fn outer_exclusive_binder(&self) -> DebruijnIndex {
452 self.0.outer_exclusive_binder
453 }
454}
455
456impl EarlyParamRegion {
457 /// Does this early bound region have a name? Early bound regions normally
458 /// always have names except when using anonymous lifetimes (`'_`).
459 pub fn has_name(&self) -> bool {
460 self.name != kw::UnderscoreLifetime
461 }
462}
463
464/// The crate outlives map is computed during typeck and contains the
465/// outlives of every item in the local crate. You should not use it
466/// directly, because to do so will make your pass dependent on the
467/// HIR of every item in the local crate. Instead, use
468/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
469/// item.
470#[derive(HashStable, Debug)]
471pub struct CratePredicatesMap<'tcx> {
472 /// For each struct with outlive bounds, maps to a vector of the
473 /// predicate of its outlive bounds. If an item has no outlives
474 /// bounds, it will have no entry.
475 pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>,
476}
477
478#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
479pub struct Term<'tcx> {
480 ptr: NonNull<()>,
481 marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
482}
483
484impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {}
485
486impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> {
487 type Kind = TermKind<'tcx>;
488
489 fn kind(self) -> Self::Kind {
490 self.unpack()
491 }
492}
493
494unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where
495 &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend
496{
497}
498unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where
499 &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync
500{
501}
502unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {}
503unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {}
504
505impl Debug for Term<'_> {
506 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
507 match self.unpack() {
508 TermKind::Ty(ty: Ty<'_>) => write!(f, "Term::Ty({ty:?})"),
509 TermKind::Const(ct: Const<'_>) => write!(f, "Term::Const({ct:?})"),
510 }
511 }
512}
513
514impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
515 fn from(ty: Ty<'tcx>) -> Self {
516 TermKind::Ty(ty).pack()
517 }
518}
519
520impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
521 fn from(c: Const<'tcx>) -> Self {
522 TermKind::Const(c).pack()
523 }
524}
525
526impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
527 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
528 self.unpack().hash_stable(hcx, hasher);
529 }
530}
531
532impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> {
533 fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
534 self,
535 folder: &mut F,
536 ) -> Result<Self, F::Error> {
537 match self.unpack() {
538 ty::TermKind::Ty(ty: Ty<'_>) => ty.try_fold_with(folder).map(op:Into::into),
539 ty::TermKind::Const(ct: Const<'_>) => ct.try_fold_with(folder).map(op:Into::into),
540 }
541 }
542}
543
544impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> {
545 fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
546 match self.unpack() {
547 ty::TermKind::Ty(ty: Ty<'_>) => ty.visit_with(visitor),
548 ty::TermKind::Const(ct: Const<'_>) => ct.visit_with(visitor),
549 }
550 }
551}
552
553impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> {
554 fn encode(&self, e: &mut E) {
555 self.unpack().encode(e)
556 }
557}
558
559impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> {
560 fn decode(d: &mut D) -> Self {
561 let res: TermKind<'tcx> = Decodable::decode(d);
562 res.pack()
563 }
564}
565
566impl<'tcx> Term<'tcx> {
567 #[inline]
568 pub fn unpack(self) -> TermKind<'tcx> {
569 let ptr =
570 unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
571 // SAFETY: use of `Interned::new_unchecked` here is ok because these
572 // pointers were originally created from `Interned` types in `pack()`,
573 // and this is just going in the other direction.
574 unsafe {
575 match self.ptr.addr().get() & TAG_MASK {
576 TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
577 ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
578 ))),
579 CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
580 ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(),
581 ))),
582 _ => core::intrinsics::unreachable(),
583 }
584 }
585 }
586
587 pub fn as_type(&self) -> Option<Ty<'tcx>> {
588 if let TermKind::Ty(ty) = self.unpack() { Some(ty) } else { None }
589 }
590
591 pub fn expect_type(&self) -> Ty<'tcx> {
592 self.as_type().expect("expected a type, but found a const")
593 }
594
595 pub fn as_const(&self) -> Option<Const<'tcx>> {
596 if let TermKind::Const(c) = self.unpack() { Some(c) } else { None }
597 }
598
599 pub fn expect_const(&self) -> Const<'tcx> {
600 self.as_const().expect("expected a const, but found a type")
601 }
602
603 pub fn into_arg(self) -> GenericArg<'tcx> {
604 match self.unpack() {
605 TermKind::Ty(ty) => ty.into(),
606 TermKind::Const(c) => c.into(),
607 }
608 }
609
610 pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> {
611 match self.unpack() {
612 TermKind::Ty(ty) => match *ty.kind() {
613 ty::Alias(_kind, alias_ty) => Some(alias_ty.into()),
614 _ => None,
615 },
616 TermKind::Const(ct) => match ct.kind() {
617 ConstKind::Unevaluated(uv) => Some(uv.into()),
618 _ => None,
619 },
620 }
621 }
622
623 pub fn is_infer(&self) -> bool {
624 match self.unpack() {
625 TermKind::Ty(ty) => ty.is_ty_var(),
626 TermKind::Const(ct) => ct.is_ct_infer(),
627 }
628 }
629}
630
631const TAG_MASK: usize = 0b11;
632const TYPE_TAG: usize = 0b00;
633const CONST_TAG: usize = 0b01;
634
635#[extension(pub trait TermKindPackExt<'tcx>)]
636impl<'tcx> TermKind<'tcx> {
637 #[inline]
638 fn pack(self) -> Term<'tcx> {
639 let (tag: usize, ptr: NonNull<()>) = match self {
640 TermKind::Ty(ty: Ty<'_>) => {
641 // Ensure we can use the tag bits.
642 assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0);
643 (TYPE_TAG, NonNull::from(ty.0.0).cast())
644 }
645 TermKind::Const(ct: Const<'_>) => {
646 // Ensure we can use the tag bits.
647 assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0);
648 (CONST_TAG, NonNull::from(ct.0.0).cast())
649 }
650 };
651
652 Term { ptr: ptr.map_addr(|addr: NonZero| addr | tag), marker: PhantomData }
653 }
654}
655
656#[derive(Copy, Clone, PartialEq, Eq, Debug)]
657pub enum ParamTerm {
658 Ty(ParamTy),
659 Const(ParamConst),
660}
661
662impl ParamTerm {
663 pub fn index(self) -> usize {
664 match self {
665 ParamTerm::Ty(ty: ParamTy) => ty.index as usize,
666 ParamTerm::Const(ct: ParamConst) => ct.index as usize,
667 }
668 }
669}
670
671#[derive(Copy, Clone, Eq, PartialEq, Debug)]
672pub enum TermVid {
673 Ty(ty::TyVid),
674 Const(ty::ConstVid),
675}
676
677impl From<ty::TyVid> for TermVid {
678 fn from(value: ty::TyVid) -> Self {
679 TermVid::Ty(value)
680 }
681}
682
683impl From<ty::ConstVid> for TermVid {
684 fn from(value: ty::ConstVid) -> Self {
685 TermVid::Const(value)
686 }
687}
688
689/// Represents the bounds declared on a particular set of type
690/// parameters. Should eventually be generalized into a flag list of
691/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
692/// `GenericPredicates` by using the `instantiate` method. Note that this method
693/// reflects an important semantic invariant of `InstantiatedPredicates`: while
694/// the `GenericPredicates` are expressed in terms of the bound type
695/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
696/// represented a set of bounds for some particular instantiation,
697/// meaning that the generic parameters have been instantiated with
698/// their values.
699///
700/// Example:
701/// ```ignore (illustrative)
702/// struct Foo<T, U: Bar<T>> { ... }
703/// ```
704/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
705/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
706/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
707/// [usize:Bar<isize>]]`.
708#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
709pub struct InstantiatedPredicates<'tcx> {
710 pub predicates: Vec<Clause<'tcx>>,
711 pub spans: Vec<Span>,
712}
713
714impl<'tcx> InstantiatedPredicates<'tcx> {
715 pub fn empty() -> InstantiatedPredicates<'tcx> {
716 InstantiatedPredicates { predicates: vec![], spans: vec![] }
717 }
718
719 pub fn is_empty(&self) -> bool {
720 self.predicates.is_empty()
721 }
722
723 pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter {
724 self.into_iter()
725 }
726}
727
728impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> {
729 type Item = (Clause<'tcx>, Span);
730
731 type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>;
732
733 fn into_iter(self) -> Self::IntoIter {
734 debug_assert_eq!(self.predicates.len(), self.spans.len());
735 std::iter::zip(self.predicates, self.spans)
736 }
737}
738
739impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> {
740 type Item = (Clause<'tcx>, Span);
741
742 type IntoIter = std::iter::Zip<
743 std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>,
744 std::iter::Copied<std::slice::Iter<'a, Span>>,
745 >;
746
747 fn into_iter(self) -> Self::IntoIter {
748 debug_assert_eq!(self.predicates.len(), self.spans.len());
749 std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied())
750 }
751}
752
753#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
754pub struct OpaqueHiddenType<'tcx> {
755 /// The span of this particular definition of the opaque type. So
756 /// for example:
757 ///
758 /// ```ignore (incomplete snippet)
759 /// type Foo = impl Baz;
760 /// fn bar() -> Foo {
761 /// // ^^^ This is the span we are looking for!
762 /// }
763 /// ```
764 ///
765 /// In cases where the fn returns `(impl Trait, impl Trait)` or
766 /// other such combinations, the result is currently
767 /// over-approximated, but better than nothing.
768 pub span: Span,
769
770 /// The type variable that represents the value of the opaque type
771 /// that we require. In other words, after we compile this function,
772 /// we will be created a constraint like:
773 /// ```ignore (pseudo-rust)
774 /// Foo<'a, T> = ?C
775 /// ```
776 /// where `?C` is the value of this type variable. =) It may
777 /// naturally refer to the type and lifetime parameters in scope
778 /// in this function, though ultimately it should only reference
779 /// those that are arguments to `Foo` in the constraint above. (In
780 /// other words, `?C` should not include `'b`, even though it's a
781 /// lifetime parameter on `foo`.)
782 pub ty: Ty<'tcx>,
783}
784
785impl<'tcx> OpaqueHiddenType<'tcx> {
786 pub fn build_mismatch_error(
787 &self,
788 other: &Self,
789 tcx: TyCtxt<'tcx>,
790 ) -> Result<Diag<'tcx>, ErrorGuaranteed> {
791 (self.ty, other.ty).error_reported()?;
792 // Found different concrete types for the opaque type.
793 let sub_diag = if self.span == other.span {
794 TypeMismatchReason::ConflictType { span: self.span }
795 } else {
796 TypeMismatchReason::PreviousUse { span: self.span }
797 };
798 Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
799 self_ty: self.ty,
800 other_ty: other.ty,
801 other_span: other.span,
802 sub: sub_diag,
803 }))
804 }
805
806 #[instrument(level = "debug", skip(tcx), ret)]
807 pub fn remap_generic_params_to_declaration_params(
808 self,
809 opaque_type_key: OpaqueTypeKey<'tcx>,
810 tcx: TyCtxt<'tcx>,
811 // typeck errors have subpar spans for opaque types, so delay error reporting until borrowck.
812 ignore_errors: bool,
813 ) -> Self {
814 let OpaqueTypeKey { def_id, args } = opaque_type_key;
815
816 // Use args to build up a reverse map from regions to their
817 // identity mappings. This is necessary because of `impl
818 // Trait` lifetimes are computed by replacing existing
819 // lifetimes with 'static and remapping only those used in the
820 // `impl Trait` return type, resulting in the parameters
821 // shifting.
822 let id_args = GenericArgs::identity_for_item(tcx, def_id);
823 debug!(?id_args);
824
825 // This zip may have several times the same lifetime in `args` paired with a different
826 // lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour:
827 // it will pick the last one, which is the one we introduced in the impl-trait desugaring.
828 let map = args.iter().zip(id_args).collect();
829 debug!("map = {:#?}", map);
830
831 // Convert the type from the function into a type valid outside
832 // the function, by replacing invalid regions with 'static,
833 // after producing an error for each of them.
834 self.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span, ignore_errors))
835 }
836}
837
838/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
839/// identified by both a universe, as well as a name residing within that universe. Distinct bound
840/// regions/types/consts within the same universe simply have an unknown relationship to one
841/// another.
842#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
843#[derive(HashStable, TyEncodable, TyDecodable)]
844pub struct Placeholder<T> {
845 pub universe: UniverseIndex,
846 pub bound: T,
847}
848impl Placeholder<BoundVar> {
849 pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
850 let mut candidates: impl Iterator> = env.caller_bounds().iter().filter_map(|clause: Clause<'tcx>| {
851 // `ConstArgHasType` are never desugared to be higher ranked.
852 match clause.kind().skip_binder() {
853 ty::ClauseKind::ConstArgHasType(placeholder_ct: Const<'_>, ty: Ty<'_>) => {
854 assert!(!(placeholder_ct, ty).has_escaping_bound_vars());
855
856 match placeholder_ct.kind() {
857 ty::ConstKind::Placeholder(placeholder_ct: Placeholder<{unknown}>) if placeholder_ct == self => {
858 Some(ty)
859 }
860 _ => None,
861 }
862 }
863 _ => None,
864 }
865 });
866
867 let ty: Ty<'_> = candidates.next().unwrap();
868 assert!(candidates.next().is_none());
869 ty
870 }
871}
872
873pub type PlaceholderRegion = Placeholder<BoundRegion>;
874
875impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderRegion {
876 fn universe(self) -> UniverseIndex {
877 self.universe
878 }
879
880 fn var(self) -> BoundVar {
881 self.bound.var
882 }
883
884 fn with_updated_universe(self, ui: UniverseIndex) -> Self {
885 Placeholder { universe: ui, ..self }
886 }
887
888 fn new(ui: UniverseIndex, var: BoundVar) -> Self {
889 Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::Anon } }
890 }
891}
892
893pub type PlaceholderType = Placeholder<BoundTy>;
894
895impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderType {
896 fn universe(self) -> UniverseIndex {
897 self.universe
898 }
899
900 fn var(self) -> BoundVar {
901 self.bound.var
902 }
903
904 fn with_updated_universe(self, ui: UniverseIndex) -> Self {
905 Placeholder { universe: ui, ..self }
906 }
907
908 fn new(ui: UniverseIndex, var: BoundVar) -> Self {
909 Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } }
910 }
911}
912
913#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
914#[derive(TyEncodable, TyDecodable)]
915pub struct BoundConst<'tcx> {
916 pub var: BoundVar,
917 pub ty: Ty<'tcx>,
918}
919
920pub type PlaceholderConst = Placeholder<BoundVar>;
921
922impl rustc_type_ir::inherent::PlaceholderLike for PlaceholderConst {
923 fn universe(self) -> UniverseIndex {
924 self.universe
925 }
926
927 fn var(self) -> BoundVar {
928 self.bound
929 }
930
931 fn with_updated_universe(self, ui: UniverseIndex) -> Self {
932 Placeholder { universe: ui, ..self }
933 }
934
935 fn new(ui: UniverseIndex, var: BoundVar) -> Self {
936 Placeholder { universe: ui, bound: var }
937 }
938}
939
940pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>;
941
942impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> {
943 fn flags(&self) -> TypeFlags {
944 (**self).flags()
945 }
946
947 fn outer_exclusive_binder(&self) -> DebruijnIndex {
948 (**self).outer_exclusive_binder()
949 }
950}
951
952/// When interacting with the type system we must provide information about the
953/// environment. `ParamEnv` is the type that represents this information. See the
954/// [dev guide chapter][param_env_guide] for more information.
955///
956/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
957#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
958#[derive(HashStable, TypeVisitable, TypeFoldable)]
959pub struct ParamEnv<'tcx> {
960 /// Caller bounds are `Obligation`s that the caller must satisfy. This is
961 /// basically the set of bounds on the in-scope type parameters, translated
962 /// into `Obligation`s, and elaborated and normalized.
963 ///
964 /// Use the `caller_bounds()` method to access.
965 caller_bounds: Clauses<'tcx>,
966}
967
968impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> {
969 fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> {
970 self.caller_bounds()
971 }
972}
973
974impl<'tcx> ParamEnv<'tcx> {
975 /// Construct a trait environment suitable for contexts where there are
976 /// no where-clauses in scope. In the majority of cases it is incorrect
977 /// to use an empty environment. See the [dev guide section][param_env_guide]
978 /// for information on what a `ParamEnv` is and how to acquire one.
979 ///
980 /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/param_env/param_env_summary.html
981 #[inline]
982 pub fn empty() -> Self {
983 Self::new(ListWithCachedTypeInfo::empty())
984 }
985
986 #[inline]
987 pub fn caller_bounds(self) -> Clauses<'tcx> {
988 self.caller_bounds
989 }
990
991 /// Construct a trait environment with the given set of predicates.
992 #[inline]
993 pub fn new(caller_bounds: Clauses<'tcx>) -> Self {
994 ParamEnv { caller_bounds }
995 }
996
997 /// Creates a pair of param-env and value for use in queries.
998 pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
999 ParamEnvAnd { param_env: self, value }
1000 }
1001}
1002
1003#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
1004#[derive(HashStable)]
1005pub struct ParamEnvAnd<'tcx, T> {
1006 pub param_env: ParamEnv<'tcx>,
1007 pub value: T,
1008}
1009
1010impl<'tcx, T> ParamEnvAnd<'tcx, T> {
1011 pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1012 (self.param_env, self.value)
1013 }
1014}
1015
1016/// The environment in which to do trait solving.
1017///
1018/// Most of the time you only need to care about the `ParamEnv`
1019/// as the `TypingMode` is simply stored in the `InferCtxt`.
1020///
1021/// However, there are some places which rely on trait solving
1022/// without using an `InferCtxt` themselves. For these to be
1023/// able to use the trait system they have to be able to initialize
1024/// such an `InferCtxt` with the right `typing_mode`, so they need
1025/// to track both.
1026#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
1027#[derive(TypeVisitable, TypeFoldable)]
1028pub struct TypingEnv<'tcx> {
1029 pub typing_mode: TypingMode<'tcx>,
1030 pub param_env: ParamEnv<'tcx>,
1031}
1032
1033impl<'tcx> TypingEnv<'tcx> {
1034 /// Create a typing environment with no where-clauses in scope
1035 /// where all opaque types and default associated items are revealed.
1036 ///
1037 /// This is only suitable for monomorphized, post-typeck environments.
1038 /// Do not use this for MIR optimizations, as even though they also
1039 /// use `TypingMode::PostAnalysis`, they may still have where-clauses
1040 /// in scope.
1041 pub fn fully_monomorphized() -> TypingEnv<'tcx> {
1042 TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() }
1043 }
1044
1045 /// Create a typing environment for use during analysis outside of a body.
1046 ///
1047 /// Using a typing environment inside of bodies is not supported as the body
1048 /// may define opaque types. In this case the used functions have to be
1049 /// converted to use proper canonical inputs instead.
1050 pub fn non_body_analysis(
1051 tcx: TyCtxt<'tcx>,
1052 def_id: impl IntoQueryParam<DefId>,
1053 ) -> TypingEnv<'tcx> {
1054 TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) }
1055 }
1056
1057 pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> {
1058 TypingEnv {
1059 typing_mode: TypingMode::PostAnalysis,
1060 param_env: tcx.param_env_normalized_for_post_analysis(def_id),
1061 }
1062 }
1063
1064 /// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all
1065 /// opaque types in the `param_env`.
1066 pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
1067 let TypingEnv { typing_mode, param_env } = self;
1068 if let TypingMode::PostAnalysis = typing_mode {
1069 return self;
1070 }
1071
1072 // No need to reveal opaques with the new solver enabled,
1073 // since we have lazy norm.
1074 let param_env = if tcx.next_trait_solver_globally() {
1075 ParamEnv::new(param_env.caller_bounds())
1076 } else {
1077 ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds()))
1078 };
1079 TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env }
1080 }
1081
1082 /// Combine this typing environment with the given `value` to be used by
1083 /// not (yet) canonicalized queries. This only works if the value does not
1084 /// contain anything local to some `InferCtxt`, i.e. inference variables or
1085 /// placeholders.
1086 pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T>
1087 where
1088 T: TypeVisitable<TyCtxt<'tcx>>,
1089 {
1090 // FIXME(#132279): We should assert that the value does not contain any placeholders
1091 // as these placeholders are also local to the current inference context. However, we
1092 // currently use pseudo-canonical queries in the trait solver which replaces params with
1093 // placeholders. We should also simply not use pseudo-canonical queries in the trait
1094 // solver, at which point we can readd this assert. As of writing this comment, this is
1095 // only used by `fn layout_is_pointer_like` when calling `layout_of`.
1096 //
1097 // debug_assert!(!value.has_placeholders());
1098 PseudoCanonicalInput { typing_env: self, value }
1099 }
1100}
1101
1102/// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment
1103/// necessary to do any kind of trait solving inside of nested queries.
1104///
1105/// Unlike proper canonicalization, this requires the `param_env` and the `value` to not
1106/// contain anything local to the `infcx` of the caller, so we don't actually canonicalize
1107/// anything.
1108///
1109/// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)`
1110/// or by using `typing_env.as_query_input(value)`.
1111#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1112#[derive(HashStable, TypeVisitable, TypeFoldable)]
1113pub struct PseudoCanonicalInput<'tcx, T> {
1114 pub typing_env: TypingEnv<'tcx>,
1115 pub value: T,
1116}
1117
1118#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1119pub struct Destructor {
1120 /// The `DefId` of the destructor method
1121 pub did: DefId,
1122 /// The constness of the destructor method
1123 pub constness: hir::Constness,
1124}
1125
1126// FIXME: consider combining this definition with regular `Destructor`
1127#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
1128pub struct AsyncDestructor {
1129 /// The `DefId` of the async destructor future constructor
1130 pub ctor: DefId,
1131 /// The `DefId` of the async destructor future type
1132 pub future: DefId,
1133}
1134
1135#[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
1136pub struct VariantFlags(u8);
1137bitflags::bitflags! {
1138 impl VariantFlags: u8 {
1139 const NO_VARIANT_FLAGS = 0;
1140 /// Indicates whether the field list of this variant is `#[non_exhaustive]`.
1141 const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
1142 }
1143}
1144rustc_data_structures::external_bitflags_debug! { VariantFlags }
1145
1146/// Definition of a variant -- a struct's fields or an enum variant.
1147#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1148pub struct VariantDef {
1149 /// `DefId` that identifies the variant itself.
1150 /// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
1151 pub def_id: DefId,
1152 /// `DefId` that identifies the variant's constructor.
1153 /// If this variant is a struct variant, then this is `None`.
1154 pub ctor: Option<(CtorKind, DefId)>,
1155 /// Variant or struct name.
1156 pub name: Symbol,
1157 /// Discriminant of this variant.
1158 pub discr: VariantDiscr,
1159 /// Fields of this variant.
1160 pub fields: IndexVec<FieldIdx, FieldDef>,
1161 /// The error guarantees from parser, if any.
1162 tainted: Option<ErrorGuaranteed>,
1163 /// Flags of the variant (e.g. is field list non-exhaustive)?
1164 flags: VariantFlags,
1165}
1166
1167impl VariantDef {
1168 /// Creates a new `VariantDef`.
1169 ///
1170 /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
1171 /// represents an enum variant).
1172 ///
1173 /// `ctor_did` is the `DefId` that identifies the constructor of unit or
1174 /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
1175 ///
1176 /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
1177 /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
1178 /// to go through the redirect of checking the ctor's attributes - but compiling a small crate
1179 /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
1180 /// built-in trait), and we do not want to load attributes twice.
1181 ///
1182 /// If someone speeds up attribute loading to not be a performance concern, they can
1183 /// remove this hack and use the constructor `DefId` everywhere.
1184 #[instrument(level = "debug")]
1185 pub fn new(
1186 name: Symbol,
1187 variant_did: Option<DefId>,
1188 ctor: Option<(CtorKind, DefId)>,
1189 discr: VariantDiscr,
1190 fields: IndexVec<FieldIdx, FieldDef>,
1191 parent_did: DefId,
1192 recover_tainted: Option<ErrorGuaranteed>,
1193 is_field_list_non_exhaustive: bool,
1194 ) -> Self {
1195 let mut flags = VariantFlags::NO_VARIANT_FLAGS;
1196 if is_field_list_non_exhaustive {
1197 flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
1198 }
1199
1200 VariantDef {
1201 def_id: variant_did.unwrap_or(parent_did),
1202 ctor,
1203 name,
1204 discr,
1205 fields,
1206 flags,
1207 tainted: recover_tainted,
1208 }
1209 }
1210
1211 /// Returns `true` if the field list of this variant is `#[non_exhaustive]`.
1212 ///
1213 /// Note that this function will return `true` even if the type has been
1214 /// defined in the crate currently being compiled. If that's not what you
1215 /// want, see [`Self::field_list_has_applicable_non_exhaustive`].
1216 #[inline]
1217 pub fn is_field_list_non_exhaustive(&self) -> bool {
1218 self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
1219 }
1220
1221 /// Returns `true` if the field list of this variant is `#[non_exhaustive]`
1222 /// and the type has been defined in another crate.
1223 #[inline]
1224 pub fn field_list_has_applicable_non_exhaustive(&self) -> bool {
1225 self.is_field_list_non_exhaustive() && !self.def_id.is_local()
1226 }
1227
1228 /// Computes the `Ident` of this variant by looking up the `Span`
1229 pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1230 Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
1231 }
1232
1233 /// Was this variant obtained as part of recovering from a syntactic error?
1234 #[inline]
1235 pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> {
1236 self.tainted.map_or(Ok(()), Err)
1237 }
1238
1239 #[inline]
1240 pub fn ctor_kind(&self) -> Option<CtorKind> {
1241 self.ctor.map(|(kind, _)| kind)
1242 }
1243
1244 #[inline]
1245 pub fn ctor_def_id(&self) -> Option<DefId> {
1246 self.ctor.map(|(_, def_id)| def_id)
1247 }
1248
1249 /// Returns the one field in this variant.
1250 ///
1251 /// `panic!`s if there are no fields or multiple fields.
1252 #[inline]
1253 pub fn single_field(&self) -> &FieldDef {
1254 assert!(self.fields.len() == 1);
1255
1256 &self.fields[FieldIdx::ZERO]
1257 }
1258
1259 /// Returns the last field in this variant, if present.
1260 #[inline]
1261 pub fn tail_opt(&self) -> Option<&FieldDef> {
1262 self.fields.raw.last()
1263 }
1264
1265 /// Returns the last field in this variant.
1266 ///
1267 /// # Panics
1268 ///
1269 /// Panics, if the variant has no fields.
1270 #[inline]
1271 pub fn tail(&self) -> &FieldDef {
1272 self.tail_opt().expect("expected unsized ADT to have a tail field")
1273 }
1274
1275 /// Returns whether this variant has unsafe fields.
1276 pub fn has_unsafe_fields(&self) -> bool {
1277 self.fields.iter().any(|x| x.safety.is_unsafe())
1278 }
1279}
1280
1281impl PartialEq for VariantDef {
1282 #[inline]
1283 fn eq(&self, other: &Self) -> bool {
1284 // There should be only one `VariantDef` for each `def_id`, therefore
1285 // it is fine to implement `PartialEq` only based on `def_id`.
1286 //
1287 // Below, we exhaustively destructure `self` and `other` so that if the
1288 // definition of `VariantDef` changes, a compile-error will be produced,
1289 // reminding us to revisit this assumption.
1290
1291 let Self {
1292 def_id: lhs_def_id,
1293 ctor: _,
1294 name: _,
1295 discr: _,
1296 fields: _,
1297 flags: _,
1298 tainted: _,
1299 } = &self;
1300 let Self {
1301 def_id: rhs_def_id,
1302 ctor: _,
1303 name: _,
1304 discr: _,
1305 fields: _,
1306 flags: _,
1307 tainted: _,
1308 } = other;
1309
1310 let res = lhs_def_id == rhs_def_id;
1311
1312 // Double check that implicit assumption detailed above.
1313 if cfg!(debug_assertions) && res {
1314 let deep = self.ctor == other.ctor
1315 && self.name == other.name
1316 && self.discr == other.discr
1317 && self.fields == other.fields
1318 && self.flags == other.flags;
1319 assert!(deep, "VariantDef for the same def-id has differing data");
1320 }
1321
1322 res
1323 }
1324}
1325
1326impl Eq for VariantDef {}
1327
1328impl Hash for VariantDef {
1329 #[inline]
1330 fn hash<H: Hasher>(&self, s: &mut H) {
1331 // There should be only one `VariantDef` for each `def_id`, therefore
1332 // it is fine to implement `Hash` only based on `def_id`.
1333 //
1334 // Below, we exhaustively destructure `self` so that if the definition
1335 // of `VariantDef` changes, a compile-error will be produced, reminding
1336 // us to revisit this assumption.
1337
1338 let Self { def_id: &DefId, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self;
1339 def_id.hash(state:s)
1340 }
1341}
1342
1343#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
1344pub enum VariantDiscr {
1345 /// Explicit value for this variant, i.e., `X = 123`.
1346 /// The `DefId` corresponds to the embedded constant.
1347 Explicit(DefId),
1348
1349 /// The previous variant's discriminant plus one.
1350 /// For efficiency reasons, the distance from the
1351 /// last `Explicit` discriminant is being stored,
1352 /// or `0` for the first variant, if it has none.
1353 Relative(u32),
1354}
1355
1356#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
1357pub struct FieldDef {
1358 pub did: DefId,
1359 pub name: Symbol,
1360 pub vis: Visibility<DefId>,
1361 pub safety: hir::Safety,
1362 pub value: Option<DefId>,
1363}
1364
1365impl PartialEq for FieldDef {
1366 #[inline]
1367 fn eq(&self, other: &Self) -> bool {
1368 // There should be only one `FieldDef` for each `did`, therefore it is
1369 // fine to implement `PartialEq` only based on `did`.
1370 //
1371 // Below, we exhaustively destructure `self` so that if the definition
1372 // of `FieldDef` changes, a compile-error will be produced, reminding
1373 // us to revisit this assumption.
1374
1375 let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self;
1376
1377 let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other;
1378
1379 let res = lhs_did == rhs_did;
1380
1381 // Double check that implicit assumption detailed above.
1382 if cfg!(debug_assertions) && res {
1383 let deep =
1384 self.name == other.name && self.vis == other.vis && self.safety == other.safety;
1385 assert!(deep, "FieldDef for the same def-id has differing data");
1386 }
1387
1388 res
1389 }
1390}
1391
1392impl Eq for FieldDef {}
1393
1394impl Hash for FieldDef {
1395 #[inline]
1396 fn hash<H: Hasher>(&self, s: &mut H) {
1397 // There should be only one `FieldDef` for each `did`, therefore it is
1398 // fine to implement `Hash` only based on `did`.
1399 //
1400 // Below, we exhaustively destructure `self` so that if the definition
1401 // of `FieldDef` changes, a compile-error will be produced, reminding
1402 // us to revisit this assumption.
1403
1404 let Self { did: &DefId, name: _, vis: _, safety: _, value: _ } = &self;
1405
1406 did.hash(state:s)
1407 }
1408}
1409
1410impl<'tcx> FieldDef {
1411 /// Returns the type of this field. The resulting type is not normalized. The `arg` is
1412 /// typically obtained via the second field of [`TyKind::Adt`].
1413 pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
1414 tcx.type_of(self.did).instantiate(cx:tcx, args)
1415 }
1416
1417 /// Computes the `Ident` of this variant by looking up the `Span`
1418 pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
1419 Ident::new(self.name, span:tcx.def_ident_span(self.did).unwrap())
1420 }
1421}
1422
1423#[derive(Debug, PartialEq, Eq)]
1424pub enum ImplOverlapKind {
1425 /// These impls are always allowed to overlap.
1426 Permitted {
1427 /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
1428 marker: bool,
1429 },
1430}
1431
1432/// Useful source information about where a desugared associated type for an
1433/// RPITIT originated from.
1434#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)]
1435pub enum ImplTraitInTraitData {
1436 Trait { fn_def_id: DefId, opaque_def_id: DefId },
1437 Impl { fn_def_id: DefId },
1438}
1439
1440impl<'tcx> TyCtxt<'tcx> {
1441 pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
1442 self.typeck(self.hir_body_owner_def_id(body))
1443 }
1444
1445 pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
1446 self.associated_items(id)
1447 .in_definition_order()
1448 .filter(move |item| item.kind == AssocKind::Fn && item.defaultness(self).has_value())
1449 }
1450
1451 pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions {
1452 let mut flags = ReprFlags::empty();
1453 let mut size = None;
1454 let mut max_align: Option<Align> = None;
1455 let mut min_pack: Option<Align> = None;
1456
1457 // Generate a deterministically-derived seed from the item's path hash
1458 // to allow for cross-crate compilation to actually work
1459 let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash();
1460
1461 // If the user defined a custom seed for layout randomization, xor the item's
1462 // path hash with the user defined seed, this will allowing determinism while
1463 // still allowing users to further randomize layout generation for e.g. fuzzing
1464 if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed {
1465 field_shuffle_seed ^= user_seed;
1466 }
1467
1468 if let Some(reprs) = attr::find_attr!(self.get_all_attrs(did), AttributeKind::Repr(r) => r)
1469 {
1470 for (r, _) in reprs {
1471 flags.insert(match *r {
1472 attr::ReprRust => ReprFlags::empty(),
1473 attr::ReprC => ReprFlags::IS_C,
1474 attr::ReprPacked(pack) => {
1475 min_pack = Some(if let Some(min_pack) = min_pack {
1476 min_pack.min(pack)
1477 } else {
1478 pack
1479 });
1480 ReprFlags::empty()
1481 }
1482 attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1483 attr::ReprSimd => ReprFlags::IS_SIMD,
1484 attr::ReprInt(i) => {
1485 size = Some(match i {
1486 attr::IntType::SignedInt(x) => match x {
1487 ast::IntTy::Isize => IntegerType::Pointer(true),
1488 ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true),
1489 ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true),
1490 ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true),
1491 ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true),
1492 ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true),
1493 },
1494 attr::IntType::UnsignedInt(x) => match x {
1495 ast::UintTy::Usize => IntegerType::Pointer(false),
1496 ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false),
1497 ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false),
1498 ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false),
1499 ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false),
1500 ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false),
1501 },
1502 });
1503 ReprFlags::empty()
1504 }
1505 attr::ReprAlign(align) => {
1506 max_align = max_align.max(Some(align));
1507 ReprFlags::empty()
1508 }
1509 attr::ReprEmpty => {
1510 /* skip these, they're just for diagnostics */
1511 ReprFlags::empty()
1512 }
1513 });
1514 }
1515 }
1516
1517 // If `-Z randomize-layout` was enabled for the type definition then we can
1518 // consider performing layout randomization
1519 if self.sess.opts.unstable_opts.randomize_layout {
1520 flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
1521 }
1522
1523 // box is special, on the one hand the compiler assumes an ordered layout, with the pointer
1524 // always at offset zero. On the other hand we want scalar abi optimizations.
1525 let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox);
1526
1527 // This is here instead of layout because the choice must make it into metadata.
1528 if is_box {
1529 flags.insert(ReprFlags::IS_LINEAR);
1530 }
1531
1532 ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
1533 }
1534
1535 /// Look up the name of a definition across crates. This does not look at HIR.
1536 pub fn opt_item_name(self, def_id: DefId) -> Option<Symbol> {
1537 if let Some(cnum) = def_id.as_crate_root() {
1538 Some(self.crate_name(cnum))
1539 } else {
1540 let def_key = self.def_key(def_id);
1541 match def_key.disambiguated_data.data {
1542 // The name of a constructor is that of its parent.
1543 rustc_hir::definitions::DefPathData::Ctor => self
1544 .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
1545 _ => def_key.get_opt_name(),
1546 }
1547 }
1548 }
1549
1550 /// Look up the name of a definition across crates. This does not look at HIR.
1551 ///
1552 /// This method will ICE if the corresponding item does not have a name. In these cases, use
1553 /// [`opt_item_name`] instead.
1554 ///
1555 /// [`opt_item_name`]: Self::opt_item_name
1556 pub fn item_name(self, id: DefId) -> Symbol {
1557 self.opt_item_name(id).unwrap_or_else(|| {
1558 bug!("item_name: no name for {:?}", self.def_path(id));
1559 })
1560 }
1561
1562 /// Look up the name and span of a definition.
1563 ///
1564 /// See [`item_name`][Self::item_name] for more information.
1565 pub fn opt_item_ident(self, def_id: DefId) -> Option<Ident> {
1566 let def = self.opt_item_name(def_id)?;
1567 let span = self
1568 .def_ident_span(def_id)
1569 .unwrap_or_else(|| bug!("missing ident span for {def_id:?}"));
1570 Some(Ident::new(def, span))
1571 }
1572
1573 /// Look up the name and span of a definition.
1574 ///
1575 /// See [`item_name`][Self::item_name] for more information.
1576 pub fn item_ident(self, def_id: DefId) -> Ident {
1577 self.opt_item_ident(def_id).unwrap_or_else(|| {
1578 bug!("item_ident: no name for {:?}", self.def_path(def_id));
1579 })
1580 }
1581
1582 pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
1583 if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1584 Some(self.associated_item(def_id))
1585 } else {
1586 None
1587 }
1588 }
1589
1590 /// If the `def_id` is an associated type that was desugared from a
1591 /// return-position `impl Trait` from a trait, then provide the source info
1592 /// about where that RPITIT came from.
1593 pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> {
1594 if let DefKind::AssocTy = self.def_kind(def_id) {
1595 self.associated_item(def_id).opt_rpitit_info
1596 } else {
1597 None
1598 }
1599 }
1600
1601 pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> {
1602 variant.fields.iter_enumerated().find_map(|(i, field)| {
1603 self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i)
1604 })
1605 }
1606
1607 /// Returns `Some` if the impls are the same polarity and the trait either
1608 /// has no items or is annotated `#[marker]` and prevents item overrides.
1609 #[instrument(level = "debug", skip(self), ret)]
1610 pub fn impls_are_allowed_to_overlap(
1611 self,
1612 def_id1: DefId,
1613 def_id2: DefId,
1614 ) -> Option<ImplOverlapKind> {
1615 let impl1 = self.impl_trait_header(def_id1).unwrap();
1616 let impl2 = self.impl_trait_header(def_id2).unwrap();
1617
1618 let trait_ref1 = impl1.trait_ref.skip_binder();
1619 let trait_ref2 = impl2.trait_ref.skip_binder();
1620
1621 // If either trait impl references an error, they're allowed to overlap,
1622 // as one of them essentially doesn't exist.
1623 if trait_ref1.references_error() || trait_ref2.references_error() {
1624 return Some(ImplOverlapKind::Permitted { marker: false });
1625 }
1626
1627 match (impl1.polarity, impl2.polarity) {
1628 (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
1629 // `#[rustc_reservation_impl]` impls don't overlap with anything
1630 return Some(ImplOverlapKind::Permitted { marker: false });
1631 }
1632 (ImplPolarity::Positive, ImplPolarity::Negative)
1633 | (ImplPolarity::Negative, ImplPolarity::Positive) => {
1634 // `impl AutoTrait for Type` + `impl !AutoTrait for Type`
1635 return None;
1636 }
1637 (ImplPolarity::Positive, ImplPolarity::Positive)
1638 | (ImplPolarity::Negative, ImplPolarity::Negative) => {}
1639 };
1640
1641 let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker;
1642 let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2);
1643
1644 if is_marker_overlap {
1645 return Some(ImplOverlapKind::Permitted { marker: true });
1646 }
1647
1648 None
1649 }
1650
1651 /// Returns `ty::VariantDef` if `res` refers to a struct,
1652 /// or variant or their constructors, panics otherwise.
1653 pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
1654 match res {
1655 Res::Def(DefKind::Variant, did) => {
1656 let enum_did = self.parent(did);
1657 self.adt_def(enum_did).variant_with_id(did)
1658 }
1659 Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
1660 Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
1661 let variant_did = self.parent(variant_ctor_did);
1662 let enum_did = self.parent(variant_did);
1663 self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
1664 }
1665 Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
1666 let struct_did = self.parent(ctor_did);
1667 self.adt_def(struct_did).non_enum_variant()
1668 }
1669 _ => bug!("expect_variant_res used with unexpected res {:?}", res),
1670 }
1671 }
1672
1673 /// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`].
1674 #[instrument(skip(self), level = "debug")]
1675 pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> {
1676 match instance {
1677 ty::InstanceKind::Item(def) => {
1678 debug!("calling def_kind on def: {:?}", def);
1679 let def_kind = self.def_kind(def);
1680 debug!("returned from def_kind: {:?}", def_kind);
1681 match def_kind {
1682 DefKind::Const
1683 | DefKind::Static { .. }
1684 | DefKind::AssocConst
1685 | DefKind::Ctor(..)
1686 | DefKind::AnonConst
1687 | DefKind::InlineConst => self.mir_for_ctfe(def),
1688 // If the caller wants `mir_for_ctfe` of a function they should not be using
1689 // `instance_mir`, so we'll assume const fn also wants the optimized version.
1690 _ => self.optimized_mir(def),
1691 }
1692 }
1693 ty::InstanceKind::VTableShim(..)
1694 | ty::InstanceKind::ReifyShim(..)
1695 | ty::InstanceKind::Intrinsic(..)
1696 | ty::InstanceKind::FnPtrShim(..)
1697 | ty::InstanceKind::Virtual(..)
1698 | ty::InstanceKind::ClosureOnceShim { .. }
1699 | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
1700 | ty::InstanceKind::DropGlue(..)
1701 | ty::InstanceKind::CloneShim(..)
1702 | ty::InstanceKind::ThreadLocalShim(..)
1703 | ty::InstanceKind::FnPtrAddrShim(..)
1704 | ty::InstanceKind::AsyncDropGlueCtorShim(..) => self.mir_shims(instance),
1705 }
1706 }
1707
1708 // FIXME(@lcnr): Remove this function.
1709 pub fn get_attrs_unchecked(self, did: DefId) -> &'tcx [hir::Attribute] {
1710 if let Some(did) = did.as_local() {
1711 self.hir_attrs(self.local_def_id_to_hir_id(did))
1712 } else {
1713 self.attrs_for_def(did)
1714 }
1715 }
1716
1717 /// Gets all attributes with the given name.
1718 pub fn get_attrs(
1719 self,
1720 did: impl Into<DefId>,
1721 attr: Symbol,
1722 ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1723 self.get_all_attrs(did).filter(move |a: &&hir::Attribute| a.has_name(attr))
1724 }
1725
1726 /// Gets all attributes.
1727 ///
1728 /// To see if an item has a specific attribute, you should use [`rustc_attr_data_structures::find_attr!`] so you can use matching.
1729 pub fn get_all_attrs(
1730 self,
1731 did: impl Into<DefId>,
1732 ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1733 let did: DefId = did.into();
1734 if let Some(did) = did.as_local() {
1735 self.hir_attrs(self.local_def_id_to_hir_id(did)).iter()
1736 } else {
1737 self.attrs_for_def(did).iter()
1738 }
1739 }
1740
1741 /// Get an attribute from the diagnostic attribute namespace
1742 ///
1743 /// This function requests an attribute with the following structure:
1744 ///
1745 /// `#[diagnostic::$attr]`
1746 ///
1747 /// This function performs feature checking, so if an attribute is returned
1748 /// it can be used by the consumer
1749 pub fn get_diagnostic_attr(
1750 self,
1751 did: impl Into<DefId>,
1752 attr: Symbol,
1753 ) -> Option<&'tcx hir::Attribute> {
1754 let did: DefId = did.into();
1755 if did.as_local().is_some() {
1756 // it's a crate local item, we need to check feature flags
1757 if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) {
1758 self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next()
1759 } else {
1760 None
1761 }
1762 } else {
1763 // we filter out unstable diagnostic attributes before
1764 // encoding attributes
1765 debug_assert!(rustc_feature::encode_cross_crate(attr));
1766 self.attrs_for_def(did)
1767 .iter()
1768 .find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr))
1769 }
1770 }
1771
1772 pub fn get_attrs_by_path(
1773 self,
1774 did: DefId,
1775 attr: &[Symbol],
1776 ) -> impl Iterator<Item = &'tcx hir::Attribute> {
1777 let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr);
1778 if let Some(did) = did.as_local() {
1779 self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
1780 } else {
1781 self.attrs_for_def(did).iter().filter(filter_fn)
1782 }
1783 }
1784
1785 pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> {
1786 if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
1787 let did: DefId = did.into();
1788 bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
1789 } else {
1790 self.get_attrs(did, attr).next()
1791 }
1792 }
1793
1794 /// Determines whether an item is annotated with an attribute.
1795 pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool {
1796 self.get_attrs(did, attr).next().is_some()
1797 }
1798
1799 /// Determines whether an item is annotated with a multi-segment attribute
1800 pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool {
1801 self.get_attrs_by_path(did.into(), attrs).next().is_some()
1802 }
1803
1804 /// Returns `true` if this is an `auto trait`.
1805 pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
1806 self.trait_def(trait_def_id).has_auto_impl
1807 }
1808
1809 /// Returns `true` if this is coinductive, either because it is
1810 /// an auto trait or because it has the `#[rustc_coinductive]` attribute.
1811 pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool {
1812 self.trait_def(trait_def_id).is_coinductive
1813 }
1814
1815 /// Returns `true` if this is a trait alias.
1816 pub fn trait_is_alias(self, trait_def_id: DefId) -> bool {
1817 self.def_kind(trait_def_id) == DefKind::TraitAlias
1818 }
1819
1820 /// Returns layout of a coroutine. Layout might be unavailable if the
1821 /// coroutine is tainted by errors.
1822 ///
1823 /// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`,
1824 /// e.g. `args.as_coroutine().kind_ty()`.
1825 pub fn coroutine_layout(
1826 self,
1827 def_id: DefId,
1828 coroutine_kind_ty: Ty<'tcx>,
1829 ) -> Option<&'tcx CoroutineLayout<'tcx>> {
1830 let mir = self.optimized_mir(def_id);
1831 // Regular coroutine
1832 if coroutine_kind_ty.is_unit() {
1833 mir.coroutine_layout_raw()
1834 } else {
1835 // If we have a `Coroutine` that comes from an coroutine-closure,
1836 // then it may be a by-move or by-ref body.
1837 let ty::Coroutine(_, identity_args) =
1838 *self.type_of(def_id).instantiate_identity().kind()
1839 else {
1840 unreachable!();
1841 };
1842 let identity_kind_ty = identity_args.as_coroutine().kind_ty();
1843 // If the types differ, then we must be getting the by-move body of
1844 // a by-ref coroutine.
1845 if identity_kind_ty == coroutine_kind_ty {
1846 mir.coroutine_layout_raw()
1847 } else {
1848 assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce));
1849 assert_matches!(
1850 identity_kind_ty.to_opt_closure_kind(),
1851 Some(ClosureKind::Fn | ClosureKind::FnMut)
1852 );
1853 self.optimized_mir(self.coroutine_by_move_body_def_id(def_id))
1854 .coroutine_layout_raw()
1855 }
1856 }
1857 }
1858
1859 /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
1860 /// If it implements no trait, returns `None`.
1861 pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
1862 self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id)
1863 }
1864
1865 /// If the given `DefId` describes an item belonging to a trait,
1866 /// returns the `DefId` of the trait that the trait item belongs to;
1867 /// otherwise, returns `None`.
1868 pub fn trait_of_item(self, def_id: DefId) -> Option<DefId> {
1869 if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1870 let parent = self.parent(def_id);
1871 if let DefKind::Trait | DefKind::TraitAlias = self.def_kind(parent) {
1872 return Some(parent);
1873 }
1874 }
1875 None
1876 }
1877
1878 /// If the given `DefId` describes a method belonging to an impl, returns the
1879 /// `DefId` of the impl that the method belongs to; otherwise, returns `None`.
1880 pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
1881 if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
1882 let parent = self.parent(def_id);
1883 if let DefKind::Impl { .. } = self.def_kind(parent) {
1884 return Some(parent);
1885 }
1886 }
1887 None
1888 }
1889
1890 /// Check if the given `DefId` is `#\[automatically_derived\]`, *and*
1891 /// whether it was produced by expanding a builtin derive macro.
1892 pub fn is_builtin_derived(self, def_id: DefId) -> bool {
1893 if self.is_automatically_derived(def_id)
1894 && let Some(def_id) = def_id.as_local()
1895 && let outer = self.def_span(def_id).ctxt().outer_expn_data()
1896 && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _))
1897 && self.has_attr(outer.macro_def_id.unwrap(), sym::rustc_builtin_macro)
1898 {
1899 true
1900 } else {
1901 false
1902 }
1903 }
1904
1905 /// Check if the given `DefId` is `#\[automatically_derived\]`.
1906 pub fn is_automatically_derived(self, def_id: DefId) -> bool {
1907 self.has_attr(def_id, sym::automatically_derived)
1908 }
1909
1910 /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
1911 /// with the name of the crate containing the impl.
1912 pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> {
1913 if let Some(impl_def_id) = impl_def_id.as_local() {
1914 Ok(self.def_span(impl_def_id))
1915 } else {
1916 Err(self.crate_name(impl_def_id.krate))
1917 }
1918 }
1919
1920 /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
1921 /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
1922 /// definition's parent/scope to perform comparison.
1923 pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool {
1924 // We could use `Ident::eq` here, but we deliberately don't. The name
1925 // comparison fails frequently, and we want to avoid the expensive
1926 // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
1927 use_name.name == def_name.name
1928 && use_name
1929 .span
1930 .ctxt()
1931 .hygienic_eq(def_name.span.ctxt(), self.expn_that_defined(def_parent_def_id))
1932 }
1933
1934 pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
1935 ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
1936 ident
1937 }
1938
1939 // FIXME(vincenzopalazzo): move the HirId to a LocalDefId
1940 pub fn adjust_ident_and_get_scope(
1941 self,
1942 mut ident: Ident,
1943 scope: DefId,
1944 block: hir::HirId,
1945 ) -> (Ident, DefId) {
1946 let scope = ident
1947 .span
1948 .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
1949 .and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
1950 .unwrap_or_else(|| self.parent_module(block).to_def_id());
1951 (ident, scope)
1952 }
1953
1954 /// Checks whether this is a `const fn`. Returns `false` for non-functions.
1955 ///
1956 /// Even if this returns `true`, constness may still be unstable!
1957 #[inline]
1958 pub fn is_const_fn(self, def_id: DefId) -> bool {
1959 matches!(
1960 self.def_kind(def_id),
1961 DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure
1962 ) && self.constness(def_id) == hir::Constness::Const
1963 }
1964
1965 /// Whether this item is conditionally constant for the purposes of the
1966 /// effects implementation.
1967 ///
1968 /// This roughly corresponds to all const functions and other callable
1969 /// items, along with const impls and traits, and associated types within
1970 /// those impls and traits.
1971 pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool {
1972 let def_id: DefId = def_id.into();
1973 match self.def_kind(def_id) {
1974 DefKind::Impl { of_trait: true } => {
1975 let header = self.impl_trait_header(def_id).unwrap();
1976 header.constness == hir::Constness::Const
1977 && self.is_const_trait(header.trait_ref.skip_binder().def_id)
1978 }
1979 DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => {
1980 self.constness(def_id) == hir::Constness::Const
1981 }
1982 DefKind::Trait => self.is_const_trait(def_id),
1983 DefKind::AssocTy => {
1984 let parent_def_id = self.parent(def_id);
1985 match self.def_kind(parent_def_id) {
1986 DefKind::Impl { of_trait: false } => false,
1987 DefKind::Impl { of_trait: true } | DefKind::Trait => {
1988 self.is_conditionally_const(parent_def_id)
1989 }
1990 _ => bug!("unexpected parent item of associated type: {parent_def_id:?}"),
1991 }
1992 }
1993 DefKind::AssocFn => {
1994 let parent_def_id = self.parent(def_id);
1995 match self.def_kind(parent_def_id) {
1996 DefKind::Impl { of_trait: false } => {
1997 self.constness(def_id) == hir::Constness::Const
1998 }
1999 DefKind::Impl { of_trait: true } | DefKind::Trait => {
2000 self.is_conditionally_const(parent_def_id)
2001 }
2002 _ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"),
2003 }
2004 }
2005 DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) {
2006 hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent),
2007 hir::OpaqueTyOrigin::AsyncFn { .. } => false,
2008 // FIXME(const_trait_impl): ATPITs could be conditionally const?
2009 hir::OpaqueTyOrigin::TyAlias { .. } => false,
2010 },
2011 DefKind::Closure => {
2012 // Closures and RPITs will eventually have const conditions
2013 // for `~const` bounds.
2014 false
2015 }
2016 DefKind::Ctor(_, CtorKind::Const)
2017 | DefKind::Impl { of_trait: false }
2018 | DefKind::Mod
2019 | DefKind::Struct
2020 | DefKind::Union
2021 | DefKind::Enum
2022 | DefKind::Variant
2023 | DefKind::TyAlias
2024 | DefKind::ForeignTy
2025 | DefKind::TraitAlias
2026 | DefKind::TyParam
2027 | DefKind::Const
2028 | DefKind::ConstParam
2029 | DefKind::Static { .. }
2030 | DefKind::AssocConst
2031 | DefKind::Macro(_)
2032 | DefKind::ExternCrate
2033 | DefKind::Use
2034 | DefKind::ForeignMod
2035 | DefKind::AnonConst
2036 | DefKind::InlineConst
2037 | DefKind::Field
2038 | DefKind::LifetimeParam
2039 | DefKind::GlobalAsm
2040 | DefKind::SyntheticCoroutineBody => false,
2041 }
2042 }
2043
2044 #[inline]
2045 pub fn is_const_trait(self, def_id: DefId) -> bool {
2046 self.trait_def(def_id).constness == hir::Constness::Const
2047 }
2048
2049 #[inline]
2050 pub fn is_const_default_method(self, def_id: DefId) -> bool {
2051 matches!(self.trait_of_item(def_id), Some(trait_id) if self.is_const_trait(trait_id))
2052 }
2053
2054 pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool {
2055 if self.def_kind(def_id) != DefKind::AssocFn {
2056 return false;
2057 }
2058
2059 let Some(item) = self.opt_associated_item(def_id) else {
2060 return false;
2061 };
2062 if item.container != ty::AssocItemContainer::Impl {
2063 return false;
2064 }
2065
2066 let Some(trait_item_def_id) = item.trait_item_def_id else {
2067 return false;
2068 };
2069
2070 return !self
2071 .associated_types_for_impl_traits_in_associated_fn(trait_item_def_id)
2072 .is_empty();
2073 }
2074}
2075
2076pub fn int_ty(ity: ast::IntTy) -> IntTy {
2077 match ity {
2078 ast::IntTy::Isize => IntTy::Isize,
2079 ast::IntTy::I8 => IntTy::I8,
2080 ast::IntTy::I16 => IntTy::I16,
2081 ast::IntTy::I32 => IntTy::I32,
2082 ast::IntTy::I64 => IntTy::I64,
2083 ast::IntTy::I128 => IntTy::I128,
2084 }
2085}
2086
2087pub fn uint_ty(uty: ast::UintTy) -> UintTy {
2088 match uty {
2089 ast::UintTy::Usize => UintTy::Usize,
2090 ast::UintTy::U8 => UintTy::U8,
2091 ast::UintTy::U16 => UintTy::U16,
2092 ast::UintTy::U32 => UintTy::U32,
2093 ast::UintTy::U64 => UintTy::U64,
2094 ast::UintTy::U128 => UintTy::U128,
2095 }
2096}
2097
2098pub fn float_ty(fty: ast::FloatTy) -> FloatTy {
2099 match fty {
2100 ast::FloatTy::F16 => FloatTy::F16,
2101 ast::FloatTy::F32 => FloatTy::F32,
2102 ast::FloatTy::F64 => FloatTy::F64,
2103 ast::FloatTy::F128 => FloatTy::F128,
2104 }
2105}
2106
2107pub fn ast_int_ty(ity: IntTy) -> ast::IntTy {
2108 match ity {
2109 IntTy::Isize => ast::IntTy::Isize,
2110 IntTy::I8 => ast::IntTy::I8,
2111 IntTy::I16 => ast::IntTy::I16,
2112 IntTy::I32 => ast::IntTy::I32,
2113 IntTy::I64 => ast::IntTy::I64,
2114 IntTy::I128 => ast::IntTy::I128,
2115 }
2116}
2117
2118pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy {
2119 match uty {
2120 UintTy::Usize => ast::UintTy::Usize,
2121 UintTy::U8 => ast::UintTy::U8,
2122 UintTy::U16 => ast::UintTy::U16,
2123 UintTy::U32 => ast::UintTy::U32,
2124 UintTy::U64 => ast::UintTy::U64,
2125 UintTy::U128 => ast::UintTy::U128,
2126 }
2127}
2128
2129pub fn provide(providers: &mut Providers) {
2130 closure::provide(providers);
2131 context::provide(providers);
2132 erase_regions::provide(providers);
2133 inhabitedness::provide(providers);
2134 util::provide(providers);
2135 print::provide(providers);
2136 super::util::bug::provide(providers);
2137 *providers = Providers {
2138 trait_impls_of: trait_def::trait_impls_of_provider,
2139 incoherent_impls: trait_def::incoherent_impls_provider,
2140 trait_impls_in_crate: trait_def::trait_impls_in_crate_provider,
2141 traits: trait_def::traits_provider,
2142 vtable_allocation: vtable::vtable_allocation_provider,
2143 ..*providers
2144 };
2145}
2146
2147/// A map for the local crate mapping each type to a vector of its
2148/// inherent impls. This is not meant to be used outside of coherence;
2149/// rather, you should request the vector for a specific type via
2150/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
2151/// (constructing this map requires touching the entire crate).
2152#[derive(Clone, Debug, Default, HashStable)]
2153pub struct CrateInherentImpls {
2154 pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>,
2155 pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>,
2156}
2157
2158#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
2159pub struct SymbolName<'tcx> {
2160 /// `&str` gives a consistent ordering, which ensures reproducible builds.
2161 pub name: &'tcx str,
2162}
2163
2164impl<'tcx> SymbolName<'tcx> {
2165 pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
2166 SymbolName { name: tcx.arena.alloc_str(string:name) }
2167 }
2168}
2169
2170impl<'tcx> fmt::Display for SymbolName<'tcx> {
2171 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2172 fmt::Display::fmt(&self.name, f:fmt)
2173 }
2174}
2175
2176impl<'tcx> fmt::Debug for SymbolName<'tcx> {
2177 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2178 fmt::Display::fmt(&self.name, f:fmt)
2179 }
2180}
2181
2182#[derive(Debug, Default, Copy, Clone)]
2183pub struct InferVarInfo {
2184 /// This is true if we identified that this Ty (`?T`) is found in a `?T: Foo`
2185 /// obligation, where:
2186 ///
2187 /// * `Foo` is not `Sized`
2188 /// * `(): Foo` may be satisfied
2189 pub self_in_trait: bool,
2190 /// This is true if we identified that this Ty (`?T`) is found in a `<_ as
2191 /// _>::AssocType = ?T`
2192 pub output: bool,
2193}
2194
2195/// The constituent parts of a type level constant of kind ADT or array.
2196#[derive(Copy, Clone, Debug, HashStable)]
2197pub struct DestructuredConst<'tcx> {
2198 pub variant: Option<VariantIdx>,
2199 pub fields: &'tcx [ty::Const<'tcx>],
2200}
2201
2202// Some types are used a lot. Make sure they don't unintentionally get bigger.
2203#[cfg(target_pointer_width = "64")]
2204mod size_asserts {
2205 use rustc_data_structures::static_assert_size;
2206
2207 use super::*;
2208 // tidy-alphabetical-start
2209 static_assert_size!(PredicateKind<'_>, 32);
2210 static_assert_size!(WithCachedTypeInfo<TyKind<'_>>, 48);
2211 // tidy-alphabetical-end
2212}
2213

Provided by KDAB

Privacy Policy
Learn Rust with the experts
Find out more