1 | //! Async I/O and timers. |
2 | //! |
3 | //! This crate provides two tools: |
4 | //! |
5 | //! * [`Async`], an adapter for standard networking types (and [many other] types) to use in |
6 | //! async programs. |
7 | //! * [`Timer`], a future or stream that emits timed events. |
8 | //! |
9 | //! For concrete async networking types built on top of this crate, see [`async-net`]. |
10 | //! |
11 | //! [many other]: https://github.com/smol-rs/async-io/tree/master/examples |
12 | //! [`async-net`]: https://docs.rs/async-net |
13 | //! |
14 | //! # Implementation |
15 | //! |
16 | //! The first time [`Async`] or [`Timer`] is used, a thread named "async-io" will be spawned. |
17 | //! The purpose of this thread is to wait for I/O events reported by the operating system, and then |
18 | //! wake appropriate futures blocked on I/O or timers when they can be resumed. |
19 | //! |
20 | //! To wait for the next I/O event, the "async-io" thread uses [epoll] on Linux/Android/illumos, |
21 | //! [kqueue] on macOS/iOS/BSD, [event ports] on illumos/Solaris, and [IOCP] on Windows. That |
22 | //! functionality is provided by the [`polling`] crate. |
23 | //! |
24 | //! However, note that you can also process I/O events and wake futures on any thread using the |
25 | //! [`block_on()`] function. The "async-io" thread is therefore just a fallback mechanism |
26 | //! processing I/O events in case no other threads are. |
27 | //! |
28 | //! [epoll]: https://en.wikipedia.org/wiki/Epoll |
29 | //! [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
30 | //! [event ports]: https://illumos.org/man/port_create |
31 | //! [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
32 | //! [`polling`]: https://docs.rs/polling |
33 | //! |
34 | //! # Examples |
35 | //! |
36 | //! Connect to `example.com:80`, or time out after 10 seconds. |
37 | //! |
38 | //! ``` |
39 | //! use async_io::{Async, Timer}; |
40 | //! use futures_lite::{future::FutureExt, io}; |
41 | //! |
42 | //! use std::net::{TcpStream, ToSocketAddrs}; |
43 | //! use std::time::Duration; |
44 | //! |
45 | //! # futures_lite::future::block_on(async { |
46 | //! let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
47 | //! |
48 | //! let stream = Async::<TcpStream>::connect(addr).or(async { |
49 | //! Timer::after(Duration::from_secs(10)).await; |
50 | //! Err(io::ErrorKind::TimedOut.into()) |
51 | //! }) |
52 | //! .await?; |
53 | //! # std::io::Result::Ok(()) }); |
54 | //! ``` |
55 | |
56 | #![warn (missing_docs, missing_debug_implementations, rust_2018_idioms)] |
57 | #![doc ( |
58 | html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
59 | )] |
60 | #![doc ( |
61 | html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
62 | )] |
63 | |
64 | use std::future::Future; |
65 | use std::io::{self, IoSlice, IoSliceMut, Read, Write}; |
66 | use std::net::{SocketAddr, TcpListener, TcpStream, UdpSocket}; |
67 | use std::pin::Pin; |
68 | use std::sync::Arc; |
69 | use std::task::{Context, Poll, Waker}; |
70 | use std::time::{Duration, Instant}; |
71 | |
72 | #[cfg (unix)] |
73 | use std::{ |
74 | os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd}, |
75 | os::unix::net::{SocketAddr as UnixSocketAddr, UnixDatagram, UnixListener, UnixStream}, |
76 | path::Path, |
77 | }; |
78 | |
79 | #[cfg (windows)] |
80 | use std::os::windows::io::{AsRawSocket, AsSocket, BorrowedSocket, OwnedSocket, RawSocket}; |
81 | |
82 | use futures_io::{AsyncRead, AsyncWrite}; |
83 | use futures_lite::stream::{self, Stream}; |
84 | use futures_lite::{future, pin, ready}; |
85 | |
86 | use rustix::io as rio; |
87 | use rustix::net as rn; |
88 | |
89 | use crate::reactor::{Reactor, Registration, Source}; |
90 | |
91 | mod driver; |
92 | mod reactor; |
93 | |
94 | pub mod os; |
95 | |
96 | pub use driver::block_on; |
97 | pub use reactor::{Readable, ReadableOwned, Writable, WritableOwned}; |
98 | |
99 | /// A future or stream that emits timed events. |
100 | /// |
101 | /// Timers are futures that output a single [`Instant`] when they fire. |
102 | /// |
103 | /// Timers are also streams that can output [`Instant`]s periodically. |
104 | /// |
105 | /// # Precision |
106 | /// |
107 | /// There is a limit on the maximum precision that a `Timer` can provide. This limit is |
108 | /// dependent on the current platform; for instance, on Windows, the maximum precision is |
109 | /// about 16 milliseconds. Because of this limit, the timer may sleep for longer than the |
110 | /// requested duration. It will never sleep for less. |
111 | /// |
112 | /// # Examples |
113 | /// |
114 | /// Sleep for 1 second: |
115 | /// |
116 | /// ``` |
117 | /// use async_io::Timer; |
118 | /// use std::time::Duration; |
119 | /// |
120 | /// # futures_lite::future::block_on(async { |
121 | /// Timer::after(Duration::from_secs(1)).await; |
122 | /// # }); |
123 | /// ``` |
124 | /// |
125 | /// Timeout after 1 second: |
126 | /// |
127 | /// ``` |
128 | /// use async_io::Timer; |
129 | /// use futures_lite::FutureExt; |
130 | /// use std::time::Duration; |
131 | /// |
132 | /// # futures_lite::future::block_on(async { |
133 | /// let addrs = async_net::resolve("google.com:80" ) |
134 | /// .or(async { |
135 | /// Timer::after(Duration::from_secs(1)).await; |
136 | /// Err(std::io::ErrorKind::TimedOut.into()) |
137 | /// }) |
138 | /// .await?; |
139 | /// # std::io::Result::Ok(()) }); |
140 | /// ``` |
141 | #[derive (Debug)] |
142 | pub struct Timer { |
143 | /// This timer's ID and last waker that polled it. |
144 | /// |
145 | /// When this field is set to `None`, this timer is not registered in the reactor. |
146 | id_and_waker: Option<(usize, Waker)>, |
147 | |
148 | /// The next instant at which this timer fires. |
149 | /// |
150 | /// If this timer is a blank timer, this value is None. If the timer |
151 | /// must be set, this value contains the next instant at which the |
152 | /// timer must fire. |
153 | when: Option<Instant>, |
154 | |
155 | /// The period. |
156 | period: Duration, |
157 | } |
158 | |
159 | impl Timer { |
160 | /// Creates a timer that will never fire. |
161 | /// |
162 | /// # Examples |
163 | /// |
164 | /// This function may also be useful for creating a function with an optional timeout. |
165 | /// |
166 | /// ``` |
167 | /// # futures_lite::future::block_on(async { |
168 | /// use async_io::Timer; |
169 | /// use futures_lite::prelude::*; |
170 | /// use std::time::Duration; |
171 | /// |
172 | /// async fn run_with_timeout(timeout: Option<Duration>) { |
173 | /// let timer = timeout |
174 | /// .map(|timeout| Timer::after(timeout)) |
175 | /// .unwrap_or_else(Timer::never); |
176 | /// |
177 | /// run_lengthy_operation().or(timer).await; |
178 | /// } |
179 | /// # // Note that since a Timer as a Future returns an Instant, |
180 | /// # // this function needs to return an Instant to be used |
181 | /// # // in "or". |
182 | /// # async fn run_lengthy_operation() -> std::time::Instant { |
183 | /// # std::time::Instant::now() |
184 | /// # } |
185 | /// |
186 | /// // Times out after 5 seconds. |
187 | /// run_with_timeout(Some(Duration::from_secs(5))).await; |
188 | /// // Does not time out. |
189 | /// run_with_timeout(None).await; |
190 | /// # }); |
191 | /// ``` |
192 | pub fn never() -> Timer { |
193 | Timer { |
194 | id_and_waker: None, |
195 | when: None, |
196 | period: Duration::MAX, |
197 | } |
198 | } |
199 | |
200 | /// Creates a timer that emits an event once after the given duration of time. |
201 | /// |
202 | /// # Examples |
203 | /// |
204 | /// ``` |
205 | /// use async_io::Timer; |
206 | /// use std::time::Duration; |
207 | /// |
208 | /// # futures_lite::future::block_on(async { |
209 | /// Timer::after(Duration::from_secs(1)).await; |
210 | /// # }); |
211 | /// ``` |
212 | pub fn after(duration: Duration) -> Timer { |
213 | Instant::now() |
214 | .checked_add(duration) |
215 | .map_or_else(Timer::never, Timer::at) |
216 | } |
217 | |
218 | /// Creates a timer that emits an event once at the given time instant. |
219 | /// |
220 | /// # Examples |
221 | /// |
222 | /// ``` |
223 | /// use async_io::Timer; |
224 | /// use std::time::{Duration, Instant}; |
225 | /// |
226 | /// # futures_lite::future::block_on(async { |
227 | /// let now = Instant::now(); |
228 | /// let when = now + Duration::from_secs(1); |
229 | /// Timer::at(when).await; |
230 | /// # }); |
231 | /// ``` |
232 | pub fn at(instant: Instant) -> Timer { |
233 | Timer::interval_at(instant, Duration::MAX) |
234 | } |
235 | |
236 | /// Creates a timer that emits events periodically. |
237 | /// |
238 | /// # Examples |
239 | /// |
240 | /// ``` |
241 | /// use async_io::Timer; |
242 | /// use futures_lite::StreamExt; |
243 | /// use std::time::{Duration, Instant}; |
244 | /// |
245 | /// # futures_lite::future::block_on(async { |
246 | /// let period = Duration::from_secs(1); |
247 | /// Timer::interval(period).next().await; |
248 | /// # }); |
249 | /// ``` |
250 | pub fn interval(period: Duration) -> Timer { |
251 | Instant::now() |
252 | .checked_add(period) |
253 | .map_or_else(Timer::never, |at| Timer::interval_at(at, period)) |
254 | } |
255 | |
256 | /// Creates a timer that emits events periodically, starting at `start`. |
257 | /// |
258 | /// # Examples |
259 | /// |
260 | /// ``` |
261 | /// use async_io::Timer; |
262 | /// use futures_lite::StreamExt; |
263 | /// use std::time::{Duration, Instant}; |
264 | /// |
265 | /// # futures_lite::future::block_on(async { |
266 | /// let start = Instant::now(); |
267 | /// let period = Duration::from_secs(1); |
268 | /// Timer::interval_at(start, period).next().await; |
269 | /// # }); |
270 | /// ``` |
271 | pub fn interval_at(start: Instant, period: Duration) -> Timer { |
272 | Timer { |
273 | id_and_waker: None, |
274 | when: Some(start), |
275 | period, |
276 | } |
277 | } |
278 | |
279 | /// Indicates whether or not this timer will ever fire. |
280 | /// |
281 | /// [`never()`] will never fire, and timers created with [`after()`] or [`at()`] will fire |
282 | /// if the duration is not too large. |
283 | /// |
284 | /// [`never()`]: Timer::never() |
285 | /// [`after()`]: Timer::after() |
286 | /// [`at()`]: Timer::at() |
287 | /// |
288 | /// # Examples |
289 | /// |
290 | /// ``` |
291 | /// # futures_lite::future::block_on(async { |
292 | /// use async_io::Timer; |
293 | /// use futures_lite::prelude::*; |
294 | /// use std::time::Duration; |
295 | /// |
296 | /// // `never` will never fire. |
297 | /// assert!(!Timer::never().will_fire()); |
298 | /// |
299 | /// // `after` will fire if the duration is not too large. |
300 | /// assert!(Timer::after(Duration::from_secs(1)).will_fire()); |
301 | /// assert!(!Timer::after(Duration::MAX).will_fire()); |
302 | /// |
303 | /// // However, once an `after` timer has fired, it will never fire again. |
304 | /// let mut t = Timer::after(Duration::from_secs(1)); |
305 | /// assert!(t.will_fire()); |
306 | /// (&mut t).await; |
307 | /// assert!(!t.will_fire()); |
308 | /// |
309 | /// // Interval timers will fire periodically. |
310 | /// let mut t = Timer::interval(Duration::from_secs(1)); |
311 | /// assert!(t.will_fire()); |
312 | /// t.next().await; |
313 | /// assert!(t.will_fire()); |
314 | /// # }); |
315 | /// ``` |
316 | #[inline ] |
317 | pub fn will_fire(&self) -> bool { |
318 | self.when.is_some() |
319 | } |
320 | |
321 | /// Sets the timer to emit an en event once after the given duration of time. |
322 | /// |
323 | /// Note that resetting a timer is different from creating a new timer because |
324 | /// [`set_after()`][`Timer::set_after()`] does not remove the waker associated with the task |
325 | /// that is polling the timer. |
326 | /// |
327 | /// # Examples |
328 | /// |
329 | /// ``` |
330 | /// use async_io::Timer; |
331 | /// use std::time::Duration; |
332 | /// |
333 | /// # futures_lite::future::block_on(async { |
334 | /// let mut t = Timer::after(Duration::from_secs(1)); |
335 | /// t.set_after(Duration::from_millis(100)); |
336 | /// # }); |
337 | /// ``` |
338 | pub fn set_after(&mut self, duration: Duration) { |
339 | match Instant::now().checked_add(duration) { |
340 | Some(instant) => self.set_at(instant), |
341 | None => { |
342 | // Overflow to never going off. |
343 | self.clear(); |
344 | self.when = None; |
345 | } |
346 | } |
347 | } |
348 | |
349 | /// Sets the timer to emit an event once at the given time instant. |
350 | /// |
351 | /// Note that resetting a timer is different from creating a new timer because |
352 | /// [`set_at()`][`Timer::set_at()`] does not remove the waker associated with the task |
353 | /// that is polling the timer. |
354 | /// |
355 | /// # Examples |
356 | /// |
357 | /// ``` |
358 | /// use async_io::Timer; |
359 | /// use std::time::{Duration, Instant}; |
360 | /// |
361 | /// # futures_lite::future::block_on(async { |
362 | /// let mut t = Timer::after(Duration::from_secs(1)); |
363 | /// |
364 | /// let now = Instant::now(); |
365 | /// let when = now + Duration::from_secs(1); |
366 | /// t.set_at(when); |
367 | /// # }); |
368 | /// ``` |
369 | pub fn set_at(&mut self, instant: Instant) { |
370 | self.clear(); |
371 | |
372 | // Update the timeout. |
373 | self.when = Some(instant); |
374 | |
375 | if let Some((id, waker)) = self.id_and_waker.as_mut() { |
376 | // Re-register the timer with the new timeout. |
377 | *id = Reactor::get().insert_timer(instant, waker); |
378 | } |
379 | } |
380 | |
381 | /// Sets the timer to emit events periodically. |
382 | /// |
383 | /// Note that resetting a timer is different from creating a new timer because |
384 | /// [`set_interval()`][`Timer::set_interval()`] does not remove the waker associated with the |
385 | /// task that is polling the timer. |
386 | /// |
387 | /// # Examples |
388 | /// |
389 | /// ``` |
390 | /// use async_io::Timer; |
391 | /// use futures_lite::StreamExt; |
392 | /// use std::time::{Duration, Instant}; |
393 | /// |
394 | /// # futures_lite::future::block_on(async { |
395 | /// let mut t = Timer::after(Duration::from_secs(1)); |
396 | /// |
397 | /// let period = Duration::from_secs(2); |
398 | /// t.set_interval(period); |
399 | /// # }); |
400 | /// ``` |
401 | pub fn set_interval(&mut self, period: Duration) { |
402 | match Instant::now().checked_add(period) { |
403 | Some(instant) => self.set_interval_at(instant, period), |
404 | None => { |
405 | // Overflow to never going off. |
406 | self.clear(); |
407 | self.when = None; |
408 | } |
409 | } |
410 | } |
411 | |
412 | /// Sets the timer to emit events periodically, starting at `start`. |
413 | /// |
414 | /// Note that resetting a timer is different from creating a new timer because |
415 | /// [`set_interval_at()`][`Timer::set_interval_at()`] does not remove the waker associated with |
416 | /// the task that is polling the timer. |
417 | /// |
418 | /// # Examples |
419 | /// |
420 | /// ``` |
421 | /// use async_io::Timer; |
422 | /// use futures_lite::StreamExt; |
423 | /// use std::time::{Duration, Instant}; |
424 | /// |
425 | /// # futures_lite::future::block_on(async { |
426 | /// let mut t = Timer::after(Duration::from_secs(1)); |
427 | /// |
428 | /// let start = Instant::now(); |
429 | /// let period = Duration::from_secs(2); |
430 | /// t.set_interval_at(start, period); |
431 | /// # }); |
432 | /// ``` |
433 | pub fn set_interval_at(&mut self, start: Instant, period: Duration) { |
434 | self.clear(); |
435 | |
436 | self.when = Some(start); |
437 | self.period = period; |
438 | |
439 | if let Some((id, waker)) = self.id_and_waker.as_mut() { |
440 | // Re-register the timer with the new timeout. |
441 | *id = Reactor::get().insert_timer(start, waker); |
442 | } |
443 | } |
444 | |
445 | /// Helper function to clear the current timer. |
446 | fn clear(&mut self) { |
447 | if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.as_ref()) { |
448 | // Deregister the timer from the reactor. |
449 | Reactor::get().remove_timer(when, *id); |
450 | } |
451 | } |
452 | } |
453 | |
454 | impl Drop for Timer { |
455 | fn drop(&mut self) { |
456 | if let (Some(when: Instant), Some((id: usize, _))) = (self.when, self.id_and_waker.take()) { |
457 | // Deregister the timer from the reactor. |
458 | Reactor::get().remove_timer(when, id); |
459 | } |
460 | } |
461 | } |
462 | |
463 | impl Future for Timer { |
464 | type Output = Instant; |
465 | |
466 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
467 | match self.poll_next(cx) { |
468 | Poll::Ready(Some(when: Instant)) => Poll::Ready(when), |
469 | Poll::Pending => Poll::Pending, |
470 | Poll::Ready(None) => unreachable!(), |
471 | } |
472 | } |
473 | } |
474 | |
475 | impl Stream for Timer { |
476 | type Item = Instant; |
477 | |
478 | fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { |
479 | let this = self.get_mut(); |
480 | |
481 | if let Some(ref mut when) = this.when { |
482 | // Check if the timer has already fired. |
483 | if Instant::now() >= *when { |
484 | if let Some((id, _)) = this.id_and_waker.take() { |
485 | // Deregister the timer from the reactor. |
486 | Reactor::get().remove_timer(*when, id); |
487 | } |
488 | let result_time = *when; |
489 | if let Some(next) = (*when).checked_add(this.period) { |
490 | *when = next; |
491 | // Register the timer in the reactor. |
492 | let id = Reactor::get().insert_timer(next, cx.waker()); |
493 | this.id_and_waker = Some((id, cx.waker().clone())); |
494 | } else { |
495 | this.when = None; |
496 | } |
497 | return Poll::Ready(Some(result_time)); |
498 | } else { |
499 | match &this.id_and_waker { |
500 | None => { |
501 | // Register the timer in the reactor. |
502 | let id = Reactor::get().insert_timer(*when, cx.waker()); |
503 | this.id_and_waker = Some((id, cx.waker().clone())); |
504 | } |
505 | Some((id, w)) if !w.will_wake(cx.waker()) => { |
506 | // Deregister the timer from the reactor to remove the old waker. |
507 | Reactor::get().remove_timer(*when, *id); |
508 | |
509 | // Register the timer in the reactor with the new waker. |
510 | let id = Reactor::get().insert_timer(*when, cx.waker()); |
511 | this.id_and_waker = Some((id, cx.waker().clone())); |
512 | } |
513 | Some(_) => {} |
514 | } |
515 | } |
516 | } |
517 | |
518 | Poll::Pending |
519 | } |
520 | } |
521 | |
522 | /// Async adapter for I/O types. |
523 | /// |
524 | /// This type puts an I/O handle into non-blocking mode, registers it in |
525 | /// [epoll]/[kqueue]/[event ports]/[IOCP], and then provides an async interface for it. |
526 | /// |
527 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
528 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
529 | /// [event ports]: https://illumos.org/man/port_create |
530 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
531 | /// |
532 | /// # Caveats |
533 | /// |
534 | /// [`Async`] is a low-level primitive, and as such it comes with some caveats. |
535 | /// |
536 | /// For higher-level primitives built on top of [`Async`], look into [`async-net`] or |
537 | /// [`async-process`] (on Unix). |
538 | /// |
539 | /// The most notable caveat is that it is unsafe to access the inner I/O source mutably |
540 | /// using this primitive. Traits likes [`AsyncRead`] and [`AsyncWrite`] are not implemented by |
541 | /// default unless it is guaranteed that the resource won't be invalidated by reading or writing. |
542 | /// See the [`IoSafe`] trait for more information. |
543 | /// |
544 | /// [`async-net`]: https://github.com/smol-rs/async-net |
545 | /// [`async-process`]: https://github.com/smol-rs/async-process |
546 | /// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html |
547 | /// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html |
548 | /// |
549 | /// ### Supported types |
550 | /// |
551 | /// [`Async`] supports all networking types, as well as some OS-specific file descriptors like |
552 | /// [timerfd] and [inotify]. |
553 | /// |
554 | /// However, do not use [`Async`] with types like [`File`][`std::fs::File`], |
555 | /// [`Stdin`][`std::io::Stdin`], [`Stdout`][`std::io::Stdout`], or [`Stderr`][`std::io::Stderr`] |
556 | /// because all operating systems have issues with them when put in non-blocking mode. |
557 | /// |
558 | /// [timerfd]: https://github.com/smol-rs/async-io/blob/master/examples/linux-timerfd.rs |
559 | /// [inotify]: https://github.com/smol-rs/async-io/blob/master/examples/linux-inotify.rs |
560 | /// |
561 | /// ### Concurrent I/O |
562 | /// |
563 | /// Note that [`&Async<T>`][`Async`] implements [`AsyncRead`] and [`AsyncWrite`] if `&T` |
564 | /// implements those traits, which means tasks can concurrently read and write using shared |
565 | /// references. |
566 | /// |
567 | /// But there is a catch: only one task can read a time, and only one task can write at a time. It |
568 | /// is okay to have two tasks where one is reading and the other is writing at the same time, but |
569 | /// it is not okay to have two tasks reading at the same time or writing at the same time. If you |
570 | /// try to do that, conflicting tasks will just keep waking each other in turn, thus wasting CPU |
571 | /// time. |
572 | /// |
573 | /// Besides [`AsyncRead`] and [`AsyncWrite`], this caveat also applies to |
574 | /// [`poll_readable()`][`Async::poll_readable()`] and |
575 | /// [`poll_writable()`][`Async::poll_writable()`]. |
576 | /// |
577 | /// However, any number of tasks can be concurrently calling other methods like |
578 | /// [`readable()`][`Async::readable()`] or [`read_with()`][`Async::read_with()`]. |
579 | /// |
580 | /// ### Closing |
581 | /// |
582 | /// Closing the write side of [`Async`] with [`close()`][`futures_lite::AsyncWriteExt::close()`] |
583 | /// simply flushes. If you want to shutdown a TCP or Unix socket, use |
584 | /// [`Shutdown`][`std::net::Shutdown`]. |
585 | /// |
586 | /// # Examples |
587 | /// |
588 | /// Connect to a server and echo incoming messages back to the server: |
589 | /// |
590 | /// ```no_run |
591 | /// use async_io::Async; |
592 | /// use futures_lite::io; |
593 | /// use std::net::TcpStream; |
594 | /// |
595 | /// # futures_lite::future::block_on(async { |
596 | /// // Connect to a local server. |
597 | /// let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?; |
598 | /// |
599 | /// // Echo all messages from the read side of the stream into the write side. |
600 | /// io::copy(&stream, &stream).await?; |
601 | /// # std::io::Result::Ok(()) }); |
602 | /// ``` |
603 | /// |
604 | /// You can use either predefined async methods or wrap blocking I/O operations in |
605 | /// [`Async::read_with()`], [`Async::read_with_mut()`], [`Async::write_with()`], and |
606 | /// [`Async::write_with_mut()`]: |
607 | /// |
608 | /// ```no_run |
609 | /// use async_io::Async; |
610 | /// use std::net::TcpListener; |
611 | /// |
612 | /// # futures_lite::future::block_on(async { |
613 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
614 | /// |
615 | /// // These two lines are equivalent: |
616 | /// let (stream, addr) = listener.accept().await?; |
617 | /// let (stream, addr) = listener.read_with(|inner| inner.accept()).await?; |
618 | /// # std::io::Result::Ok(()) }); |
619 | /// ``` |
620 | #[derive (Debug)] |
621 | pub struct Async<T> { |
622 | /// A source registered in the reactor. |
623 | source: Arc<Source>, |
624 | |
625 | /// The inner I/O handle. |
626 | io: Option<T>, |
627 | } |
628 | |
629 | impl<T> Unpin for Async<T> {} |
630 | |
631 | #[cfg (unix)] |
632 | impl<T: AsFd> Async<T> { |
633 | /// Creates an async I/O handle. |
634 | /// |
635 | /// This method will put the handle in non-blocking mode and register it in |
636 | /// [epoll]/[kqueue]/[event ports]/[IOCP]. |
637 | /// |
638 | /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement |
639 | /// `AsSocket`. |
640 | /// |
641 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
642 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
643 | /// [event ports]: https://illumos.org/man/port_create |
644 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
645 | /// |
646 | /// # Examples |
647 | /// |
648 | /// ``` |
649 | /// use async_io::Async; |
650 | /// use std::net::{SocketAddr, TcpListener}; |
651 | /// |
652 | /// # futures_lite::future::block_on(async { |
653 | /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?; |
654 | /// let listener = Async::new(listener)?; |
655 | /// # std::io::Result::Ok(()) }); |
656 | /// ``` |
657 | pub fn new(io: T) -> io::Result<Async<T>> { |
658 | // Put the file descriptor in non-blocking mode. |
659 | set_nonblocking(io.as_fd())?; |
660 | |
661 | Self::new_nonblocking(io) |
662 | } |
663 | |
664 | /// Creates an async I/O handle without setting it to non-blocking mode. |
665 | /// |
666 | /// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP]. |
667 | /// |
668 | /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement |
669 | /// `AsSocket`. |
670 | /// |
671 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
672 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
673 | /// [event ports]: https://illumos.org/man/port_create |
674 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
675 | /// |
676 | /// # Caveats |
677 | /// |
678 | /// The caller should ensure that the handle is set to non-blocking mode or that it is okay if |
679 | /// it is not set. If not set to non-blocking mode, I/O operations may block the current thread |
680 | /// and cause a deadlock in an asynchronous context. |
681 | pub fn new_nonblocking(io: T) -> io::Result<Async<T>> { |
682 | // SAFETY: It is impossible to drop the I/O source while it is registered through |
683 | // this type. |
684 | let registration = unsafe { Registration::new(io.as_fd()) }; |
685 | |
686 | Ok(Async { |
687 | source: Reactor::get().insert_io(registration)?, |
688 | io: Some(io), |
689 | }) |
690 | } |
691 | } |
692 | |
693 | #[cfg (unix)] |
694 | impl<T: AsRawFd> AsRawFd for Async<T> { |
695 | fn as_raw_fd(&self) -> RawFd { |
696 | self.get_ref().as_raw_fd() |
697 | } |
698 | } |
699 | |
700 | #[cfg (unix)] |
701 | impl<T: AsFd> AsFd for Async<T> { |
702 | fn as_fd(&self) -> BorrowedFd<'_> { |
703 | self.get_ref().as_fd() |
704 | } |
705 | } |
706 | |
707 | #[cfg (unix)] |
708 | impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Async<T> { |
709 | type Error = io::Error; |
710 | |
711 | fn try_from(value: OwnedFd) -> Result<Self, Self::Error> { |
712 | Async::new(io:value.into()) |
713 | } |
714 | } |
715 | |
716 | #[cfg (unix)] |
717 | impl<T: Into<OwnedFd>> TryFrom<Async<T>> for OwnedFd { |
718 | type Error = io::Error; |
719 | |
720 | fn try_from(value: Async<T>) -> Result<Self, Self::Error> { |
721 | value.into_inner().map(op:Into::into) |
722 | } |
723 | } |
724 | |
725 | #[cfg (windows)] |
726 | impl<T: AsSocket> Async<T> { |
727 | /// Creates an async I/O handle. |
728 | /// |
729 | /// This method will put the handle in non-blocking mode and register it in |
730 | /// [epoll]/[kqueue]/[event ports]/[IOCP]. |
731 | /// |
732 | /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement |
733 | /// `AsSocket`. |
734 | /// |
735 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
736 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
737 | /// [event ports]: https://illumos.org/man/port_create |
738 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
739 | /// |
740 | /// # Examples |
741 | /// |
742 | /// ``` |
743 | /// use async_io::Async; |
744 | /// use std::net::{SocketAddr, TcpListener}; |
745 | /// |
746 | /// # futures_lite::future::block_on(async { |
747 | /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?; |
748 | /// let listener = Async::new(listener)?; |
749 | /// # std::io::Result::Ok(()) }); |
750 | /// ``` |
751 | pub fn new(io: T) -> io::Result<Async<T>> { |
752 | // Put the socket in non-blocking mode. |
753 | set_nonblocking(io.as_socket())?; |
754 | |
755 | Self::new_nonblocking(io) |
756 | } |
757 | |
758 | /// Creates an async I/O handle without setting it to non-blocking mode. |
759 | /// |
760 | /// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP]. |
761 | /// |
762 | /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement |
763 | /// `AsSocket`. |
764 | /// |
765 | /// [epoll]: https://en.wikipedia.org/wiki/Epoll |
766 | /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue |
767 | /// [event ports]: https://illumos.org/man/port_create |
768 | /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports |
769 | /// |
770 | /// # Caveats |
771 | /// |
772 | /// The caller should ensure that the handle is set to non-blocking mode or that it is okay if |
773 | /// it is not set. If not set to non-blocking mode, I/O operations may block the current thread |
774 | /// and cause a deadlock in an asynchronous context. |
775 | pub fn new_nonblocking(io: T) -> io::Result<Async<T>> { |
776 | // Create the registration. |
777 | // |
778 | // SAFETY: It is impossible to drop the I/O source while it is registered through |
779 | // this type. |
780 | let registration = unsafe { Registration::new(io.as_socket()) }; |
781 | |
782 | Ok(Async { |
783 | source: Reactor::get().insert_io(registration)?, |
784 | io: Some(io), |
785 | }) |
786 | } |
787 | } |
788 | |
789 | #[cfg (windows)] |
790 | impl<T: AsRawSocket> AsRawSocket for Async<T> { |
791 | fn as_raw_socket(&self) -> RawSocket { |
792 | self.get_ref().as_raw_socket() |
793 | } |
794 | } |
795 | |
796 | #[cfg (windows)] |
797 | impl<T: AsSocket> AsSocket for Async<T> { |
798 | fn as_socket(&self) -> BorrowedSocket<'_> { |
799 | self.get_ref().as_socket() |
800 | } |
801 | } |
802 | |
803 | #[cfg (windows)] |
804 | impl<T: AsSocket + From<OwnedSocket>> TryFrom<OwnedSocket> for Async<T> { |
805 | type Error = io::Error; |
806 | |
807 | fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> { |
808 | Async::new(value.into()) |
809 | } |
810 | } |
811 | |
812 | #[cfg (windows)] |
813 | impl<T: Into<OwnedSocket>> TryFrom<Async<T>> for OwnedSocket { |
814 | type Error = io::Error; |
815 | |
816 | fn try_from(value: Async<T>) -> Result<Self, Self::Error> { |
817 | value.into_inner().map(Into::into) |
818 | } |
819 | } |
820 | |
821 | impl<T> Async<T> { |
822 | /// Gets a reference to the inner I/O handle. |
823 | /// |
824 | /// # Examples |
825 | /// |
826 | /// ``` |
827 | /// use async_io::Async; |
828 | /// use std::net::TcpListener; |
829 | /// |
830 | /// # futures_lite::future::block_on(async { |
831 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
832 | /// let inner = listener.get_ref(); |
833 | /// # std::io::Result::Ok(()) }); |
834 | /// ``` |
835 | pub fn get_ref(&self) -> &T { |
836 | self.io.as_ref().unwrap() |
837 | } |
838 | |
839 | /// Gets a mutable reference to the inner I/O handle. |
840 | /// |
841 | /// # Safety |
842 | /// |
843 | /// The underlying I/O source must not be dropped using this function. |
844 | /// |
845 | /// # Examples |
846 | /// |
847 | /// ``` |
848 | /// use async_io::Async; |
849 | /// use std::net::TcpListener; |
850 | /// |
851 | /// # futures_lite::future::block_on(async { |
852 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
853 | /// let inner = unsafe { listener.get_mut() }; |
854 | /// # std::io::Result::Ok(()) }); |
855 | /// ``` |
856 | pub unsafe fn get_mut(&mut self) -> &mut T { |
857 | self.io.as_mut().unwrap() |
858 | } |
859 | |
860 | /// Unwraps the inner I/O handle. |
861 | /// |
862 | /// This method will **not** put the I/O handle back into blocking mode. |
863 | /// |
864 | /// # Examples |
865 | /// |
866 | /// ``` |
867 | /// use async_io::Async; |
868 | /// use std::net::TcpListener; |
869 | /// |
870 | /// # futures_lite::future::block_on(async { |
871 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
872 | /// let inner = listener.into_inner()?; |
873 | /// |
874 | /// // Put the listener back into blocking mode. |
875 | /// inner.set_nonblocking(false)?; |
876 | /// # std::io::Result::Ok(()) }); |
877 | /// ``` |
878 | pub fn into_inner(mut self) -> io::Result<T> { |
879 | let io = self.io.take().unwrap(); |
880 | Reactor::get().remove_io(&self.source)?; |
881 | Ok(io) |
882 | } |
883 | |
884 | /// Waits until the I/O handle is readable. |
885 | /// |
886 | /// This method completes when a read operation on this I/O handle wouldn't block. |
887 | /// |
888 | /// # Examples |
889 | /// |
890 | /// ```no_run |
891 | /// use async_io::Async; |
892 | /// use std::net::TcpListener; |
893 | /// |
894 | /// # futures_lite::future::block_on(async { |
895 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
896 | /// |
897 | /// // Wait until a client can be accepted. |
898 | /// listener.readable().await?; |
899 | /// # std::io::Result::Ok(()) }); |
900 | /// ``` |
901 | pub fn readable(&self) -> Readable<'_, T> { |
902 | Source::readable(self) |
903 | } |
904 | |
905 | /// Waits until the I/O handle is readable. |
906 | /// |
907 | /// This method completes when a read operation on this I/O handle wouldn't block. |
908 | pub fn readable_owned(self: Arc<Self>) -> ReadableOwned<T> { |
909 | Source::readable_owned(self) |
910 | } |
911 | |
912 | /// Waits until the I/O handle is writable. |
913 | /// |
914 | /// This method completes when a write operation on this I/O handle wouldn't block. |
915 | /// |
916 | /// # Examples |
917 | /// |
918 | /// ``` |
919 | /// use async_io::Async; |
920 | /// use std::net::{TcpStream, ToSocketAddrs}; |
921 | /// |
922 | /// # futures_lite::future::block_on(async { |
923 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
924 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
925 | /// |
926 | /// // Wait until the stream is writable. |
927 | /// stream.writable().await?; |
928 | /// # std::io::Result::Ok(()) }); |
929 | /// ``` |
930 | pub fn writable(&self) -> Writable<'_, T> { |
931 | Source::writable(self) |
932 | } |
933 | |
934 | /// Waits until the I/O handle is writable. |
935 | /// |
936 | /// This method completes when a write operation on this I/O handle wouldn't block. |
937 | pub fn writable_owned(self: Arc<Self>) -> WritableOwned<T> { |
938 | Source::writable_owned(self) |
939 | } |
940 | |
941 | /// Polls the I/O handle for readability. |
942 | /// |
943 | /// When this method returns [`Poll::Ready`], that means the OS has delivered an event |
944 | /// indicating readability since the last time this task has called the method and received |
945 | /// [`Poll::Pending`]. |
946 | /// |
947 | /// # Caveats |
948 | /// |
949 | /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks |
950 | /// will just keep waking each other in turn, thus wasting CPU time. |
951 | /// |
952 | /// Note that the [`AsyncRead`] implementation for [`Async`] also uses this method. |
953 | /// |
954 | /// # Examples |
955 | /// |
956 | /// ```no_run |
957 | /// use async_io::Async; |
958 | /// use futures_lite::future; |
959 | /// use std::net::TcpListener; |
960 | /// |
961 | /// # futures_lite::future::block_on(async { |
962 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
963 | /// |
964 | /// // Wait until a client can be accepted. |
965 | /// future::poll_fn(|cx| listener.poll_readable(cx)).await?; |
966 | /// # std::io::Result::Ok(()) }); |
967 | /// ``` |
968 | pub fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
969 | self.source.poll_readable(cx) |
970 | } |
971 | |
972 | /// Polls the I/O handle for writability. |
973 | /// |
974 | /// When this method returns [`Poll::Ready`], that means the OS has delivered an event |
975 | /// indicating writability since the last time this task has called the method and received |
976 | /// [`Poll::Pending`]. |
977 | /// |
978 | /// # Caveats |
979 | /// |
980 | /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks |
981 | /// will just keep waking each other in turn, thus wasting CPU time. |
982 | /// |
983 | /// Note that the [`AsyncWrite`] implementation for [`Async`] also uses this method. |
984 | /// |
985 | /// # Examples |
986 | /// |
987 | /// ``` |
988 | /// use async_io::Async; |
989 | /// use futures_lite::future; |
990 | /// use std::net::{TcpStream, ToSocketAddrs}; |
991 | /// |
992 | /// # futures_lite::future::block_on(async { |
993 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
994 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
995 | /// |
996 | /// // Wait until the stream is writable. |
997 | /// future::poll_fn(|cx| stream.poll_writable(cx)).await?; |
998 | /// # std::io::Result::Ok(()) }); |
999 | /// ``` |
1000 | pub fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1001 | self.source.poll_writable(cx) |
1002 | } |
1003 | |
1004 | /// Performs a read operation asynchronously. |
1005 | /// |
1006 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1007 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1008 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1009 | /// sends a notification that the I/O handle is readable. |
1010 | /// |
1011 | /// The closure receives a shared reference to the I/O handle. |
1012 | /// |
1013 | /// # Examples |
1014 | /// |
1015 | /// ```no_run |
1016 | /// use async_io::Async; |
1017 | /// use std::net::TcpListener; |
1018 | /// |
1019 | /// # futures_lite::future::block_on(async { |
1020 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
1021 | /// |
1022 | /// // Accept a new client asynchronously. |
1023 | /// let (stream, addr) = listener.read_with(|l| l.accept()).await?; |
1024 | /// # std::io::Result::Ok(()) }); |
1025 | /// ``` |
1026 | pub async fn read_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> { |
1027 | let mut op = op; |
1028 | loop { |
1029 | match op(self.get_ref()) { |
1030 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1031 | res => return res, |
1032 | } |
1033 | optimistic(self.readable()).await?; |
1034 | } |
1035 | } |
1036 | |
1037 | /// Performs a read operation asynchronously. |
1038 | /// |
1039 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1040 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1041 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1042 | /// sends a notification that the I/O handle is readable. |
1043 | /// |
1044 | /// The closure receives a mutable reference to the I/O handle. |
1045 | /// |
1046 | /// # Safety |
1047 | /// |
1048 | /// In the closure, the underlying I/O source must not be dropped. |
1049 | /// |
1050 | /// # Examples |
1051 | /// |
1052 | /// ```no_run |
1053 | /// use async_io::Async; |
1054 | /// use std::net::TcpListener; |
1055 | /// |
1056 | /// # futures_lite::future::block_on(async { |
1057 | /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
1058 | /// |
1059 | /// // Accept a new client asynchronously. |
1060 | /// let (stream, addr) = unsafe { listener.read_with_mut(|l| l.accept()).await? }; |
1061 | /// # std::io::Result::Ok(()) }); |
1062 | /// ``` |
1063 | pub async unsafe fn read_with_mut<R>( |
1064 | &mut self, |
1065 | op: impl FnMut(&mut T) -> io::Result<R>, |
1066 | ) -> io::Result<R> { |
1067 | let mut op = op; |
1068 | loop { |
1069 | match op(self.get_mut()) { |
1070 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1071 | res => return res, |
1072 | } |
1073 | optimistic(self.readable()).await?; |
1074 | } |
1075 | } |
1076 | |
1077 | /// Performs a write operation asynchronously. |
1078 | /// |
1079 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1080 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1081 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1082 | /// sends a notification that the I/O handle is writable. |
1083 | /// |
1084 | /// The closure receives a shared reference to the I/O handle. |
1085 | /// |
1086 | /// # Examples |
1087 | /// |
1088 | /// ```no_run |
1089 | /// use async_io::Async; |
1090 | /// use std::net::UdpSocket; |
1091 | /// |
1092 | /// # futures_lite::future::block_on(async { |
1093 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1094 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1095 | /// |
1096 | /// let msg = b"hello" ; |
1097 | /// let len = socket.write_with(|s| s.send(msg)).await?; |
1098 | /// # std::io::Result::Ok(()) }); |
1099 | /// ``` |
1100 | pub async fn write_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> { |
1101 | let mut op = op; |
1102 | loop { |
1103 | match op(self.get_ref()) { |
1104 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1105 | res => return res, |
1106 | } |
1107 | optimistic(self.writable()).await?; |
1108 | } |
1109 | } |
1110 | |
1111 | /// Performs a write operation asynchronously. |
1112 | /// |
1113 | /// The I/O handle is registered in the reactor and put in non-blocking mode. This method |
1114 | /// invokes the `op` closure in a loop until it succeeds or returns an error other than |
1115 | /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS |
1116 | /// sends a notification that the I/O handle is writable. |
1117 | /// |
1118 | /// # Safety |
1119 | /// |
1120 | /// The closure receives a mutable reference to the I/O handle. In the closure, the underlying |
1121 | /// I/O source must not be dropped. |
1122 | /// |
1123 | /// # Examples |
1124 | /// |
1125 | /// ```no_run |
1126 | /// use async_io::Async; |
1127 | /// use std::net::UdpSocket; |
1128 | /// |
1129 | /// # futures_lite::future::block_on(async { |
1130 | /// let mut socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1131 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1132 | /// |
1133 | /// let msg = b"hello" ; |
1134 | /// let len = unsafe { socket.write_with_mut(|s| s.send(msg)).await? }; |
1135 | /// # std::io::Result::Ok(()) }); |
1136 | /// ``` |
1137 | pub async unsafe fn write_with_mut<R>( |
1138 | &mut self, |
1139 | op: impl FnMut(&mut T) -> io::Result<R>, |
1140 | ) -> io::Result<R> { |
1141 | let mut op = op; |
1142 | loop { |
1143 | match op(self.get_mut()) { |
1144 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1145 | res => return res, |
1146 | } |
1147 | optimistic(self.writable()).await?; |
1148 | } |
1149 | } |
1150 | } |
1151 | |
1152 | impl<T> AsRef<T> for Async<T> { |
1153 | fn as_ref(&self) -> &T { |
1154 | self.get_ref() |
1155 | } |
1156 | } |
1157 | |
1158 | impl<T> Drop for Async<T> { |
1159 | fn drop(&mut self) { |
1160 | if self.io.is_some() { |
1161 | // Deregister and ignore errors because destructors should not panic. |
1162 | Reactor::get().remove_io(&self.source).ok(); |
1163 | |
1164 | // Drop the I/O handle to close it. |
1165 | self.io.take(); |
1166 | } |
1167 | } |
1168 | } |
1169 | |
1170 | /// Types whose I/O trait implementations do not drop the underlying I/O source. |
1171 | /// |
1172 | /// The resource contained inside of the [`Async`] cannot be invalidated. This invalidation can |
1173 | /// happen if the inner resource (the [`TcpStream`], [`UnixListener`] or other `T`) is moved out |
1174 | /// and dropped before the [`Async`]. Because of this, functions that grant mutable access to |
1175 | /// the inner type are unsafe, as there is no way to guarantee that the source won't be dropped |
1176 | /// and a dangling handle won't be left behind. |
1177 | /// |
1178 | /// Unfortunately this extends to implementations of [`Read`] and [`Write`]. Since methods on those |
1179 | /// traits take `&mut`, there is no guarantee that the implementor of those traits won't move the |
1180 | /// source out while the method is being run. |
1181 | /// |
1182 | /// This trait is an antidote to this predicament. By implementing this trait, the user pledges |
1183 | /// that using any I/O traits won't destroy the source. This way, [`Async`] can implement the |
1184 | /// `async` version of these I/O traits, like [`AsyncRead`] and [`AsyncWrite`]. |
1185 | /// |
1186 | /// # Safety |
1187 | /// |
1188 | /// Any I/O trait implementations for this type must not drop the underlying I/O source. Traits |
1189 | /// affected by this trait include [`Read`], [`Write`], [`Seek`] and [`BufRead`]. |
1190 | /// |
1191 | /// This trait is implemented by default on top of `libstd` types. In addition, it is implemented |
1192 | /// for immutable reference types, as it is impossible to invalidate any outstanding references |
1193 | /// while holding an immutable reference, even with interior mutability. As Rust's current pinning |
1194 | /// system relies on similar guarantees, I believe that this approach is robust. |
1195 | /// |
1196 | /// [`BufRead`]: https://doc.rust-lang.org/std/io/trait.BufRead.html |
1197 | /// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html |
1198 | /// [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html |
1199 | /// [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html |
1200 | /// |
1201 | /// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html |
1202 | /// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html |
1203 | pub unsafe trait IoSafe {} |
1204 | |
1205 | /// Reference types can't be mutated. |
1206 | /// |
1207 | /// The worst thing that can happen is that external state is used to change what kind of pointer |
1208 | /// `as_fd()` returns. For instance: |
1209 | /// |
1210 | /// ``` |
1211 | /// # #[cfg (unix)] { |
1212 | /// use std::cell::Cell; |
1213 | /// use std::net::TcpStream; |
1214 | /// use std::os::unix::io::{AsFd, BorrowedFd}; |
1215 | /// |
1216 | /// struct Bar { |
1217 | /// flag: Cell<bool>, |
1218 | /// a: TcpStream, |
1219 | /// b: TcpStream |
1220 | /// } |
1221 | /// |
1222 | /// impl AsFd for Bar { |
1223 | /// fn as_fd(&self) -> BorrowedFd<'_> { |
1224 | /// if self.flag.replace(!self.flag.get()) { |
1225 | /// self.a.as_fd() |
1226 | /// } else { |
1227 | /// self.b.as_fd() |
1228 | /// } |
1229 | /// } |
1230 | /// } |
1231 | /// # } |
1232 | /// ``` |
1233 | /// |
1234 | /// We solve this problem by only calling `as_fd()` once to get the original source. Implementations |
1235 | /// like this are considered buggy (but not unsound) and are thus not really supported by `async-io`. |
1236 | unsafe impl<T: ?Sized> IoSafe for &T {} |
1237 | |
1238 | // Can be implemented on top of libstd types. |
1239 | unsafe impl IoSafe for std::fs::File {} |
1240 | unsafe impl IoSafe for std::io::Stderr {} |
1241 | unsafe impl IoSafe for std::io::Stdin {} |
1242 | unsafe impl IoSafe for std::io::Stdout {} |
1243 | unsafe impl IoSafe for std::io::StderrLock<'_> {} |
1244 | unsafe impl IoSafe for std::io::StdinLock<'_> {} |
1245 | unsafe impl IoSafe for std::io::StdoutLock<'_> {} |
1246 | unsafe impl IoSafe for std::net::TcpStream {} |
1247 | unsafe impl IoSafe for std::process::ChildStdin {} |
1248 | unsafe impl IoSafe for std::process::ChildStdout {} |
1249 | unsafe impl IoSafe for std::process::ChildStderr {} |
1250 | |
1251 | #[cfg (unix)] |
1252 | unsafe impl IoSafe for std::os::unix::net::UnixStream {} |
1253 | |
1254 | unsafe impl<T: IoSafe + Read> IoSafe for std::io::BufReader<T> {} |
1255 | unsafe impl<T: IoSafe + Write> IoSafe for std::io::BufWriter<T> {} |
1256 | unsafe impl<T: IoSafe + Write> IoSafe for std::io::LineWriter<T> {} |
1257 | unsafe impl<T: IoSafe + ?Sized> IoSafe for &mut T {} |
1258 | unsafe impl<T: IoSafe + ?Sized> IoSafe for Box<T> {} |
1259 | unsafe impl<T: Clone + IoSafe + ?Sized> IoSafe for std::borrow::Cow<'_, T> {} |
1260 | |
1261 | impl<T: IoSafe + Read> AsyncRead for Async<T> { |
1262 | fn poll_read( |
1263 | mut self: Pin<&mut Self>, |
1264 | cx: &mut Context<'_>, |
1265 | buf: &mut [u8], |
1266 | ) -> Poll<io::Result<usize>> { |
1267 | loop { |
1268 | match unsafe { (*self).get_mut() }.read(buf) { |
1269 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1270 | res => return Poll::Ready(res), |
1271 | } |
1272 | ready!(self.poll_readable(cx))?; |
1273 | } |
1274 | } |
1275 | |
1276 | fn poll_read_vectored( |
1277 | mut self: Pin<&mut Self>, |
1278 | cx: &mut Context<'_>, |
1279 | bufs: &mut [IoSliceMut<'_>], |
1280 | ) -> Poll<io::Result<usize>> { |
1281 | loop { |
1282 | match unsafe { (*self).get_mut() }.read_vectored(bufs) { |
1283 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1284 | res => return Poll::Ready(res), |
1285 | } |
1286 | ready!(self.poll_readable(cx))?; |
1287 | } |
1288 | } |
1289 | } |
1290 | |
1291 | // Since this is through a reference, we can't mutate the inner I/O source. |
1292 | // Therefore this is safe! |
1293 | impl<T> AsyncRead for &Async<T> |
1294 | where |
1295 | for<'a> &'a T: Read, |
1296 | { |
1297 | fn poll_read( |
1298 | self: Pin<&mut Self>, |
1299 | cx: &mut Context<'_>, |
1300 | buf: &mut [u8], |
1301 | ) -> Poll<io::Result<usize>> { |
1302 | loop { |
1303 | match (*self).get_ref().read(buf) { |
1304 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1305 | res => return Poll::Ready(res), |
1306 | } |
1307 | ready!(self.poll_readable(cx))?; |
1308 | } |
1309 | } |
1310 | |
1311 | fn poll_read_vectored( |
1312 | self: Pin<&mut Self>, |
1313 | cx: &mut Context<'_>, |
1314 | bufs: &mut [IoSliceMut<'_>], |
1315 | ) -> Poll<io::Result<usize>> { |
1316 | loop { |
1317 | match (*self).get_ref().read_vectored(bufs) { |
1318 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1319 | res => return Poll::Ready(res), |
1320 | } |
1321 | ready!(self.poll_readable(cx))?; |
1322 | } |
1323 | } |
1324 | } |
1325 | |
1326 | impl<T: IoSafe + Write> AsyncWrite for Async<T> { |
1327 | fn poll_write( |
1328 | mut self: Pin<&mut Self>, |
1329 | cx: &mut Context<'_>, |
1330 | buf: &[u8], |
1331 | ) -> Poll<io::Result<usize>> { |
1332 | loop { |
1333 | match unsafe { (*self).get_mut() }.write(buf) { |
1334 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1335 | res => return Poll::Ready(res), |
1336 | } |
1337 | ready!(self.poll_writable(cx))?; |
1338 | } |
1339 | } |
1340 | |
1341 | fn poll_write_vectored( |
1342 | mut self: Pin<&mut Self>, |
1343 | cx: &mut Context<'_>, |
1344 | bufs: &[IoSlice<'_>], |
1345 | ) -> Poll<io::Result<usize>> { |
1346 | loop { |
1347 | match unsafe { (*self).get_mut() }.write_vectored(bufs) { |
1348 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1349 | res => return Poll::Ready(res), |
1350 | } |
1351 | ready!(self.poll_writable(cx))?; |
1352 | } |
1353 | } |
1354 | |
1355 | fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1356 | loop { |
1357 | match unsafe { (*self).get_mut() }.flush() { |
1358 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1359 | res => return Poll::Ready(res), |
1360 | } |
1361 | ready!(self.poll_writable(cx))?; |
1362 | } |
1363 | } |
1364 | |
1365 | fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1366 | self.poll_flush(cx) |
1367 | } |
1368 | } |
1369 | |
1370 | impl<T> AsyncWrite for &Async<T> |
1371 | where |
1372 | for<'a> &'a T: Write, |
1373 | { |
1374 | fn poll_write( |
1375 | self: Pin<&mut Self>, |
1376 | cx: &mut Context<'_>, |
1377 | buf: &[u8], |
1378 | ) -> Poll<io::Result<usize>> { |
1379 | loop { |
1380 | match (*self).get_ref().write(buf) { |
1381 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1382 | res => return Poll::Ready(res), |
1383 | } |
1384 | ready!(self.poll_writable(cx))?; |
1385 | } |
1386 | } |
1387 | |
1388 | fn poll_write_vectored( |
1389 | self: Pin<&mut Self>, |
1390 | cx: &mut Context<'_>, |
1391 | bufs: &[IoSlice<'_>], |
1392 | ) -> Poll<io::Result<usize>> { |
1393 | loop { |
1394 | match (*self).get_ref().write_vectored(bufs) { |
1395 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1396 | res => return Poll::Ready(res), |
1397 | } |
1398 | ready!(self.poll_writable(cx))?; |
1399 | } |
1400 | } |
1401 | |
1402 | fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1403 | loop { |
1404 | match (*self).get_ref().flush() { |
1405 | Err(err) if err.kind() == io::ErrorKind::WouldBlock => {} |
1406 | res => return Poll::Ready(res), |
1407 | } |
1408 | ready!(self.poll_writable(cx))?; |
1409 | } |
1410 | } |
1411 | |
1412 | fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { |
1413 | self.poll_flush(cx) |
1414 | } |
1415 | } |
1416 | |
1417 | impl Async<TcpListener> { |
1418 | /// Creates a TCP listener bound to the specified address. |
1419 | /// |
1420 | /// Binding with port number 0 will request an available port from the OS. |
1421 | /// |
1422 | /// # Examples |
1423 | /// |
1424 | /// ``` |
1425 | /// use async_io::Async; |
1426 | /// use std::net::TcpListener; |
1427 | /// |
1428 | /// # futures_lite::future::block_on(async { |
1429 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?; |
1430 | /// println!("Listening on {}" , listener.get_ref().local_addr()?); |
1431 | /// # std::io::Result::Ok(()) }); |
1432 | /// ``` |
1433 | pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpListener>> { |
1434 | let addr = addr.into(); |
1435 | Async::new(TcpListener::bind(addr)?) |
1436 | } |
1437 | |
1438 | /// Accepts a new incoming TCP connection. |
1439 | /// |
1440 | /// When a connection is established, it will be returned as a TCP stream together with its |
1441 | /// remote address. |
1442 | /// |
1443 | /// # Examples |
1444 | /// |
1445 | /// ```no_run |
1446 | /// use async_io::Async; |
1447 | /// use std::net::TcpListener; |
1448 | /// |
1449 | /// # futures_lite::future::block_on(async { |
1450 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?; |
1451 | /// let (stream, addr) = listener.accept().await?; |
1452 | /// println!("Accepted client: {}" , addr); |
1453 | /// # std::io::Result::Ok(()) }); |
1454 | /// ``` |
1455 | pub async fn accept(&self) -> io::Result<(Async<TcpStream>, SocketAddr)> { |
1456 | let (stream, addr) = self.read_with(|io| io.accept()).await?; |
1457 | Ok((Async::new(stream)?, addr)) |
1458 | } |
1459 | |
1460 | /// Returns a stream of incoming TCP connections. |
1461 | /// |
1462 | /// The stream is infinite, i.e. it never stops with a [`None`]. |
1463 | /// |
1464 | /// # Examples |
1465 | /// |
1466 | /// ```no_run |
1467 | /// use async_io::Async; |
1468 | /// use futures_lite::{pin, stream::StreamExt}; |
1469 | /// use std::net::TcpListener; |
1470 | /// |
1471 | /// # futures_lite::future::block_on(async { |
1472 | /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?; |
1473 | /// let incoming = listener.incoming(); |
1474 | /// pin!(incoming); |
1475 | /// |
1476 | /// while let Some(stream) = incoming.next().await { |
1477 | /// let stream = stream?; |
1478 | /// println!("Accepted client: {}" , stream.get_ref().peer_addr()?); |
1479 | /// } |
1480 | /// # std::io::Result::Ok(()) }); |
1481 | /// ``` |
1482 | pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<TcpStream>>> + Send + '_ { |
1483 | stream::unfold(self, |listener| async move { |
1484 | let res = listener.accept().await.map(|(stream, _)| stream); |
1485 | Some((res, listener)) |
1486 | }) |
1487 | } |
1488 | } |
1489 | |
1490 | impl TryFrom<std::net::TcpListener> for Async<std::net::TcpListener> { |
1491 | type Error = io::Error; |
1492 | |
1493 | fn try_from(listener: std::net::TcpListener) -> io::Result<Self> { |
1494 | Async::new(io:listener) |
1495 | } |
1496 | } |
1497 | |
1498 | impl Async<TcpStream> { |
1499 | /// Creates a TCP connection to the specified address. |
1500 | /// |
1501 | /// # Examples |
1502 | /// |
1503 | /// ``` |
1504 | /// use async_io::Async; |
1505 | /// use std::net::{TcpStream, ToSocketAddrs}; |
1506 | /// |
1507 | /// # futures_lite::future::block_on(async { |
1508 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
1509 | /// let stream = Async::<TcpStream>::connect(addr).await?; |
1510 | /// # std::io::Result::Ok(()) }); |
1511 | /// ``` |
1512 | pub async fn connect<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpStream>> { |
1513 | // Figure out how to handle this address. |
1514 | let addr = addr.into(); |
1515 | let (domain, sock_addr) = match addr { |
1516 | SocketAddr::V4(v4) => (rn::AddressFamily::INET, rn::SocketAddrAny::V4(v4)), |
1517 | SocketAddr::V6(v6) => (rn::AddressFamily::INET6, rn::SocketAddrAny::V6(v6)), |
1518 | }; |
1519 | |
1520 | // Begin async connect. |
1521 | let socket = connect(sock_addr, domain, Some(rn::ipproto::TCP))?; |
1522 | // Use new_nonblocking because connect already sets socket to non-blocking mode. |
1523 | let stream = Async::new_nonblocking(TcpStream::from(socket))?; |
1524 | |
1525 | // The stream becomes writable when connected. |
1526 | stream.writable().await?; |
1527 | |
1528 | // Check if there was an error while connecting. |
1529 | match stream.get_ref().take_error()? { |
1530 | None => Ok(stream), |
1531 | Some(err) => Err(err), |
1532 | } |
1533 | } |
1534 | |
1535 | /// Reads data from the stream without removing it from the buffer. |
1536 | /// |
1537 | /// Returns the number of bytes read. Successive calls of this method read the same data. |
1538 | /// |
1539 | /// # Examples |
1540 | /// |
1541 | /// ``` |
1542 | /// use async_io::Async; |
1543 | /// use futures_lite::{io::AsyncWriteExt, stream::StreamExt}; |
1544 | /// use std::net::{TcpStream, ToSocketAddrs}; |
1545 | /// |
1546 | /// # futures_lite::future::block_on(async { |
1547 | /// let addr = "example.com:80" .to_socket_addrs()?.next().unwrap(); |
1548 | /// let mut stream = Async::<TcpStream>::connect(addr).await?; |
1549 | /// |
1550 | /// stream |
1551 | /// .write_all(b"GET / HTTP/1.1 \r\nHost: example.com \r\n\r\n" ) |
1552 | /// .await?; |
1553 | /// |
1554 | /// let mut buf = [0u8; 1024]; |
1555 | /// let len = stream.peek(&mut buf).await?; |
1556 | /// # std::io::Result::Ok(()) }); |
1557 | /// ``` |
1558 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1559 | self.read_with(|io| io.peek(buf)).await |
1560 | } |
1561 | } |
1562 | |
1563 | impl TryFrom<std::net::TcpStream> for Async<std::net::TcpStream> { |
1564 | type Error = io::Error; |
1565 | |
1566 | fn try_from(stream: std::net::TcpStream) -> io::Result<Self> { |
1567 | Async::new(io:stream) |
1568 | } |
1569 | } |
1570 | |
1571 | impl Async<UdpSocket> { |
1572 | /// Creates a UDP socket bound to the specified address. |
1573 | /// |
1574 | /// Binding with port number 0 will request an available port from the OS. |
1575 | /// |
1576 | /// # Examples |
1577 | /// |
1578 | /// ``` |
1579 | /// use async_io::Async; |
1580 | /// use std::net::UdpSocket; |
1581 | /// |
1582 | /// # futures_lite::future::block_on(async { |
1583 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?; |
1584 | /// println!("Bound to {}" , socket.get_ref().local_addr()?); |
1585 | /// # std::io::Result::Ok(()) }); |
1586 | /// ``` |
1587 | pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<UdpSocket>> { |
1588 | let addr = addr.into(); |
1589 | Async::new(UdpSocket::bind(addr)?) |
1590 | } |
1591 | |
1592 | /// Receives a single datagram message. |
1593 | /// |
1594 | /// Returns the number of bytes read and the address the message came from. |
1595 | /// |
1596 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1597 | /// If the message is too long to fit, excess bytes may get discarded. |
1598 | /// |
1599 | /// # Examples |
1600 | /// |
1601 | /// ```no_run |
1602 | /// use async_io::Async; |
1603 | /// use std::net::UdpSocket; |
1604 | /// |
1605 | /// # futures_lite::future::block_on(async { |
1606 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1607 | /// |
1608 | /// let mut buf = [0u8; 1024]; |
1609 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1610 | /// # std::io::Result::Ok(()) }); |
1611 | /// ``` |
1612 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1613 | self.read_with(|io| io.recv_from(buf)).await |
1614 | } |
1615 | |
1616 | /// Receives a single datagram message without removing it from the queue. |
1617 | /// |
1618 | /// Returns the number of bytes read and the address the message came from. |
1619 | /// |
1620 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1621 | /// If the message is too long to fit, excess bytes may get discarded. |
1622 | /// |
1623 | /// # Examples |
1624 | /// |
1625 | /// ```no_run |
1626 | /// use async_io::Async; |
1627 | /// use std::net::UdpSocket; |
1628 | /// |
1629 | /// # futures_lite::future::block_on(async { |
1630 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1631 | /// |
1632 | /// let mut buf = [0u8; 1024]; |
1633 | /// let (len, addr) = socket.peek_from(&mut buf).await?; |
1634 | /// # std::io::Result::Ok(()) }); |
1635 | /// ``` |
1636 | pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { |
1637 | self.read_with(|io| io.peek_from(buf)).await |
1638 | } |
1639 | |
1640 | /// Sends data to the specified address. |
1641 | /// |
1642 | /// Returns the number of bytes writen. |
1643 | /// |
1644 | /// # Examples |
1645 | /// |
1646 | /// ```no_run |
1647 | /// use async_io::Async; |
1648 | /// use std::net::UdpSocket; |
1649 | /// |
1650 | /// # futures_lite::future::block_on(async { |
1651 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?; |
1652 | /// let addr = socket.get_ref().local_addr()?; |
1653 | /// |
1654 | /// let msg = b"hello" ; |
1655 | /// let len = socket.send_to(msg, addr).await?; |
1656 | /// # std::io::Result::Ok(()) }); |
1657 | /// ``` |
1658 | pub async fn send_to<A: Into<SocketAddr>>(&self, buf: &[u8], addr: A) -> io::Result<usize> { |
1659 | let addr = addr.into(); |
1660 | self.write_with(|io| io.send_to(buf, addr)).await |
1661 | } |
1662 | |
1663 | /// Receives a single datagram message from the connected peer. |
1664 | /// |
1665 | /// Returns the number of bytes read. |
1666 | /// |
1667 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1668 | /// If the message is too long to fit, excess bytes may get discarded. |
1669 | /// |
1670 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1671 | /// This method will fail if the socket is not connected. |
1672 | /// |
1673 | /// # Examples |
1674 | /// |
1675 | /// ```no_run |
1676 | /// use async_io::Async; |
1677 | /// use std::net::UdpSocket; |
1678 | /// |
1679 | /// # futures_lite::future::block_on(async { |
1680 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1681 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1682 | /// |
1683 | /// let mut buf = [0u8; 1024]; |
1684 | /// let len = socket.recv(&mut buf).await?; |
1685 | /// # std::io::Result::Ok(()) }); |
1686 | /// ``` |
1687 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
1688 | self.read_with(|io| io.recv(buf)).await |
1689 | } |
1690 | |
1691 | /// Receives a single datagram message from the connected peer without removing it from the |
1692 | /// queue. |
1693 | /// |
1694 | /// Returns the number of bytes read and the address the message came from. |
1695 | /// |
1696 | /// This method must be called with a valid byte slice of sufficient size to hold the message. |
1697 | /// If the message is too long to fit, excess bytes may get discarded. |
1698 | /// |
1699 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1700 | /// This method will fail if the socket is not connected. |
1701 | /// |
1702 | /// # Examples |
1703 | /// |
1704 | /// ```no_run |
1705 | /// use async_io::Async; |
1706 | /// use std::net::UdpSocket; |
1707 | /// |
1708 | /// # futures_lite::future::block_on(async { |
1709 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1710 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1711 | /// |
1712 | /// let mut buf = [0u8; 1024]; |
1713 | /// let len = socket.peek(&mut buf).await?; |
1714 | /// # std::io::Result::Ok(()) }); |
1715 | /// ``` |
1716 | pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { |
1717 | self.read_with(|io| io.peek(buf)).await |
1718 | } |
1719 | |
1720 | /// Sends data to the connected peer. |
1721 | /// |
1722 | /// Returns the number of bytes written. |
1723 | /// |
1724 | /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address. |
1725 | /// This method will fail if the socket is not connected. |
1726 | /// |
1727 | /// # Examples |
1728 | /// |
1729 | /// ```no_run |
1730 | /// use async_io::Async; |
1731 | /// use std::net::UdpSocket; |
1732 | /// |
1733 | /// # futures_lite::future::block_on(async { |
1734 | /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?; |
1735 | /// socket.get_ref().connect("127.0.0.1:9000" )?; |
1736 | /// |
1737 | /// let msg = b"hello" ; |
1738 | /// let len = socket.send(msg).await?; |
1739 | /// # std::io::Result::Ok(()) }); |
1740 | /// ``` |
1741 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
1742 | self.write_with(|io| io.send(buf)).await |
1743 | } |
1744 | } |
1745 | |
1746 | impl TryFrom<std::net::UdpSocket> for Async<std::net::UdpSocket> { |
1747 | type Error = io::Error; |
1748 | |
1749 | fn try_from(socket: std::net::UdpSocket) -> io::Result<Self> { |
1750 | Async::new(io:socket) |
1751 | } |
1752 | } |
1753 | |
1754 | #[cfg (unix)] |
1755 | impl Async<UnixListener> { |
1756 | /// Creates a UDS listener bound to the specified path. |
1757 | /// |
1758 | /// # Examples |
1759 | /// |
1760 | /// ```no_run |
1761 | /// use async_io::Async; |
1762 | /// use std::os::unix::net::UnixListener; |
1763 | /// |
1764 | /// # futures_lite::future::block_on(async { |
1765 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1766 | /// println!("Listening on {:?}" , listener.get_ref().local_addr()?); |
1767 | /// # std::io::Result::Ok(()) }); |
1768 | /// ``` |
1769 | pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixListener>> { |
1770 | let path = path.as_ref().to_owned(); |
1771 | Async::new(UnixListener::bind(path)?) |
1772 | } |
1773 | |
1774 | /// Accepts a new incoming UDS stream connection. |
1775 | /// |
1776 | /// When a connection is established, it will be returned as a stream together with its remote |
1777 | /// address. |
1778 | /// |
1779 | /// # Examples |
1780 | /// |
1781 | /// ```no_run |
1782 | /// use async_io::Async; |
1783 | /// use std::os::unix::net::UnixListener; |
1784 | /// |
1785 | /// # futures_lite::future::block_on(async { |
1786 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1787 | /// let (stream, addr) = listener.accept().await?; |
1788 | /// println!("Accepted client: {:?}" , addr); |
1789 | /// # std::io::Result::Ok(()) }); |
1790 | /// ``` |
1791 | pub async fn accept(&self) -> io::Result<(Async<UnixStream>, UnixSocketAddr)> { |
1792 | let (stream, addr) = self.read_with(|io| io.accept()).await?; |
1793 | Ok((Async::new(stream)?, addr)) |
1794 | } |
1795 | |
1796 | /// Returns a stream of incoming UDS connections. |
1797 | /// |
1798 | /// The stream is infinite, i.e. it never stops with a [`None`] item. |
1799 | /// |
1800 | /// # Examples |
1801 | /// |
1802 | /// ```no_run |
1803 | /// use async_io::Async; |
1804 | /// use futures_lite::{pin, stream::StreamExt}; |
1805 | /// use std::os::unix::net::UnixListener; |
1806 | /// |
1807 | /// # futures_lite::future::block_on(async { |
1808 | /// let listener = Async::<UnixListener>::bind("/tmp/socket" )?; |
1809 | /// let incoming = listener.incoming(); |
1810 | /// pin!(incoming); |
1811 | /// |
1812 | /// while let Some(stream) = incoming.next().await { |
1813 | /// let stream = stream?; |
1814 | /// println!("Accepted client: {:?}" , stream.get_ref().peer_addr()?); |
1815 | /// } |
1816 | /// # std::io::Result::Ok(()) }); |
1817 | /// ``` |
1818 | pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<UnixStream>>> + Send + '_ { |
1819 | stream::unfold(self, |listener| async move { |
1820 | let res = listener.accept().await.map(|(stream, _)| stream); |
1821 | Some((res, listener)) |
1822 | }) |
1823 | } |
1824 | } |
1825 | |
1826 | #[cfg (unix)] |
1827 | impl TryFrom<std::os::unix::net::UnixListener> for Async<std::os::unix::net::UnixListener> { |
1828 | type Error = io::Error; |
1829 | |
1830 | fn try_from(listener: std::os::unix::net::UnixListener) -> io::Result<Self> { |
1831 | Async::new(io:listener) |
1832 | } |
1833 | } |
1834 | |
1835 | #[cfg (unix)] |
1836 | impl Async<UnixStream> { |
1837 | /// Creates a UDS stream connected to the specified path. |
1838 | /// |
1839 | /// # Examples |
1840 | /// |
1841 | /// ```no_run |
1842 | /// use async_io::Async; |
1843 | /// use std::os::unix::net::UnixStream; |
1844 | /// |
1845 | /// # futures_lite::future::block_on(async { |
1846 | /// let stream = Async::<UnixStream>::connect("/tmp/socket" ).await?; |
1847 | /// # std::io::Result::Ok(()) }); |
1848 | /// ``` |
1849 | pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixStream>> { |
1850 | let address = convert_path_to_socket_address(path.as_ref())?; |
1851 | |
1852 | // Begin async connect. |
1853 | let socket = connect(address.into(), rn::AddressFamily::UNIX, None)?; |
1854 | // Use new_nonblocking because connect already sets socket to non-blocking mode. |
1855 | let stream = Async::new_nonblocking(UnixStream::from(socket))?; |
1856 | |
1857 | // The stream becomes writable when connected. |
1858 | stream.writable().await?; |
1859 | |
1860 | // On Linux, it appears the socket may become writable even when connecting fails, so we |
1861 | // must do an extra check here and see if the peer address is retrievable. |
1862 | stream.get_ref().peer_addr()?; |
1863 | Ok(stream) |
1864 | } |
1865 | |
1866 | /// Creates an unnamed pair of connected UDS stream sockets. |
1867 | /// |
1868 | /// # Examples |
1869 | /// |
1870 | /// ```no_run |
1871 | /// use async_io::Async; |
1872 | /// use std::os::unix::net::UnixStream; |
1873 | /// |
1874 | /// # futures_lite::future::block_on(async { |
1875 | /// let (stream1, stream2) = Async::<UnixStream>::pair()?; |
1876 | /// # std::io::Result::Ok(()) }); |
1877 | /// ``` |
1878 | pub fn pair() -> io::Result<(Async<UnixStream>, Async<UnixStream>)> { |
1879 | let (stream1, stream2) = UnixStream::pair()?; |
1880 | Ok((Async::new(stream1)?, Async::new(stream2)?)) |
1881 | } |
1882 | } |
1883 | |
1884 | #[cfg (unix)] |
1885 | impl TryFrom<std::os::unix::net::UnixStream> for Async<std::os::unix::net::UnixStream> { |
1886 | type Error = io::Error; |
1887 | |
1888 | fn try_from(stream: std::os::unix::net::UnixStream) -> io::Result<Self> { |
1889 | Async::new(io:stream) |
1890 | } |
1891 | } |
1892 | |
1893 | #[cfg (unix)] |
1894 | impl Async<UnixDatagram> { |
1895 | /// Creates a UDS datagram socket bound to the specified path. |
1896 | /// |
1897 | /// # Examples |
1898 | /// |
1899 | /// ```no_run |
1900 | /// use async_io::Async; |
1901 | /// use std::os::unix::net::UnixDatagram; |
1902 | /// |
1903 | /// # futures_lite::future::block_on(async { |
1904 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket" )?; |
1905 | /// # std::io::Result::Ok(()) }); |
1906 | /// ``` |
1907 | pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixDatagram>> { |
1908 | let path = path.as_ref().to_owned(); |
1909 | Async::new(UnixDatagram::bind(path)?) |
1910 | } |
1911 | |
1912 | /// Creates a UDS datagram socket not bound to any address. |
1913 | /// |
1914 | /// # Examples |
1915 | /// |
1916 | /// ```no_run |
1917 | /// use async_io::Async; |
1918 | /// use std::os::unix::net::UnixDatagram; |
1919 | /// |
1920 | /// # futures_lite::future::block_on(async { |
1921 | /// let socket = Async::<UnixDatagram>::unbound()?; |
1922 | /// # std::io::Result::Ok(()) }); |
1923 | /// ``` |
1924 | pub fn unbound() -> io::Result<Async<UnixDatagram>> { |
1925 | Async::new(UnixDatagram::unbound()?) |
1926 | } |
1927 | |
1928 | /// Creates an unnamed pair of connected Unix datagram sockets. |
1929 | /// |
1930 | /// # Examples |
1931 | /// |
1932 | /// ```no_run |
1933 | /// use async_io::Async; |
1934 | /// use std::os::unix::net::UnixDatagram; |
1935 | /// |
1936 | /// # futures_lite::future::block_on(async { |
1937 | /// let (socket1, socket2) = Async::<UnixDatagram>::pair()?; |
1938 | /// # std::io::Result::Ok(()) }); |
1939 | /// ``` |
1940 | pub fn pair() -> io::Result<(Async<UnixDatagram>, Async<UnixDatagram>)> { |
1941 | let (socket1, socket2) = UnixDatagram::pair()?; |
1942 | Ok((Async::new(socket1)?, Async::new(socket2)?)) |
1943 | } |
1944 | |
1945 | /// Receives data from the socket. |
1946 | /// |
1947 | /// Returns the number of bytes read and the address the message came from. |
1948 | /// |
1949 | /// # Examples |
1950 | /// |
1951 | /// ```no_run |
1952 | /// use async_io::Async; |
1953 | /// use std::os::unix::net::UnixDatagram; |
1954 | /// |
1955 | /// # futures_lite::future::block_on(async { |
1956 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket" )?; |
1957 | /// |
1958 | /// let mut buf = [0u8; 1024]; |
1959 | /// let (len, addr) = socket.recv_from(&mut buf).await?; |
1960 | /// # std::io::Result::Ok(()) }); |
1961 | /// ``` |
1962 | pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, UnixSocketAddr)> { |
1963 | self.read_with(|io| io.recv_from(buf)).await |
1964 | } |
1965 | |
1966 | /// Sends data to the specified address. |
1967 | /// |
1968 | /// Returns the number of bytes written. |
1969 | /// |
1970 | /// # Examples |
1971 | /// |
1972 | /// ```no_run |
1973 | /// use async_io::Async; |
1974 | /// use std::os::unix::net::UnixDatagram; |
1975 | /// |
1976 | /// # futures_lite::future::block_on(async { |
1977 | /// let socket = Async::<UnixDatagram>::unbound()?; |
1978 | /// |
1979 | /// let msg = b"hello" ; |
1980 | /// let addr = "/tmp/socket" ; |
1981 | /// let len = socket.send_to(msg, addr).await?; |
1982 | /// # std::io::Result::Ok(()) }); |
1983 | /// ``` |
1984 | pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> { |
1985 | self.write_with(|io| io.send_to(buf, &path)).await |
1986 | } |
1987 | |
1988 | /// Receives data from the connected peer. |
1989 | /// |
1990 | /// Returns the number of bytes read and the address the message came from. |
1991 | /// |
1992 | /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address. |
1993 | /// This method will fail if the socket is not connected. |
1994 | /// |
1995 | /// # Examples |
1996 | /// |
1997 | /// ```no_run |
1998 | /// use async_io::Async; |
1999 | /// use std::os::unix::net::UnixDatagram; |
2000 | /// |
2001 | /// # futures_lite::future::block_on(async { |
2002 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1" )?; |
2003 | /// socket.get_ref().connect("/tmp/socket2" )?; |
2004 | /// |
2005 | /// let mut buf = [0u8; 1024]; |
2006 | /// let len = socket.recv(&mut buf).await?; |
2007 | /// # std::io::Result::Ok(()) }); |
2008 | /// ``` |
2009 | pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { |
2010 | self.read_with(|io| io.recv(buf)).await |
2011 | } |
2012 | |
2013 | /// Sends data to the connected peer. |
2014 | /// |
2015 | /// Returns the number of bytes written. |
2016 | /// |
2017 | /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address. |
2018 | /// This method will fail if the socket is not connected. |
2019 | /// |
2020 | /// # Examples |
2021 | /// |
2022 | /// ```no_run |
2023 | /// use async_io::Async; |
2024 | /// use std::os::unix::net::UnixDatagram; |
2025 | /// |
2026 | /// # futures_lite::future::block_on(async { |
2027 | /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1" )?; |
2028 | /// socket.get_ref().connect("/tmp/socket2" )?; |
2029 | /// |
2030 | /// let msg = b"hello" ; |
2031 | /// let len = socket.send(msg).await?; |
2032 | /// # std::io::Result::Ok(()) }); |
2033 | /// ``` |
2034 | pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { |
2035 | self.write_with(|io| io.send(buf)).await |
2036 | } |
2037 | } |
2038 | |
2039 | #[cfg (unix)] |
2040 | impl TryFrom<std::os::unix::net::UnixDatagram> for Async<std::os::unix::net::UnixDatagram> { |
2041 | type Error = io::Error; |
2042 | |
2043 | fn try_from(socket: std::os::unix::net::UnixDatagram) -> io::Result<Self> { |
2044 | Async::new(io:socket) |
2045 | } |
2046 | } |
2047 | |
2048 | /// Polls a future once, waits for a wakeup, and then optimistically assumes the future is ready. |
2049 | async fn optimistic(fut: impl Future<Output = io::Result<()>>) -> io::Result<()> { |
2050 | let mut polled: bool = false; |
2051 | pin!(fut); |
2052 | |
2053 | futurePollFn) -> …>::poll_fn(|cx: &mut Context<'_>| { |
2054 | if !polled { |
2055 | polled = true; |
2056 | fut.as_mut().poll(cx) |
2057 | } else { |
2058 | Poll::Ready(Ok(())) |
2059 | } |
2060 | }) |
2061 | .await |
2062 | } |
2063 | |
2064 | fn connect( |
2065 | addr: rn::SocketAddrAny, |
2066 | domain: rn::AddressFamily, |
2067 | protocol: Option<rn::Protocol>, |
2068 | ) -> io::Result<rustix::fd::OwnedFd> { |
2069 | #[cfg (windows)] |
2070 | use rustix::fd::AsFd; |
2071 | |
2072 | setup_networking(); |
2073 | |
2074 | #[cfg (any( |
2075 | target_os = "android" , |
2076 | target_os = "dragonfly" , |
2077 | target_os = "freebsd" , |
2078 | target_os = "fuchsia" , |
2079 | target_os = "illumos" , |
2080 | target_os = "linux" , |
2081 | target_os = "netbsd" , |
2082 | target_os = "openbsd" |
2083 | ))] |
2084 | let socket = rn::socket_with( |
2085 | domain, |
2086 | rn::SocketType::STREAM, |
2087 | rn::SocketFlags::CLOEXEC | rn::SocketFlags::NONBLOCK, |
2088 | protocol, |
2089 | )?; |
2090 | |
2091 | #[cfg (not(any( |
2092 | target_os = "android" , |
2093 | target_os = "dragonfly" , |
2094 | target_os = "freebsd" , |
2095 | target_os = "fuchsia" , |
2096 | target_os = "illumos" , |
2097 | target_os = "linux" , |
2098 | target_os = "netbsd" , |
2099 | target_os = "openbsd" |
2100 | )))] |
2101 | let socket = { |
2102 | #[cfg (not(any( |
2103 | target_os = "aix" , |
2104 | target_os = "macos" , |
2105 | target_os = "ios" , |
2106 | target_os = "tvos" , |
2107 | target_os = "watchos" , |
2108 | target_os = "espidf" , |
2109 | windows, |
2110 | )))] |
2111 | let flags = rn::SocketFlags::CLOEXEC; |
2112 | #[cfg (any( |
2113 | target_os = "aix" , |
2114 | target_os = "macos" , |
2115 | target_os = "ios" , |
2116 | target_os = "tvos" , |
2117 | target_os = "watchos" , |
2118 | target_os = "espidf" , |
2119 | windows, |
2120 | ))] |
2121 | let flags = rn::SocketFlags::empty(); |
2122 | |
2123 | // Create the socket. |
2124 | let socket = rn::socket_with(domain, rn::SocketType::STREAM, flags, protocol)?; |
2125 | |
2126 | // Set cloexec if necessary. |
2127 | #[cfg (any( |
2128 | target_os = "aix" , |
2129 | target_os = "macos" , |
2130 | target_os = "ios" , |
2131 | target_os = "tvos" , |
2132 | target_os = "watchos" , |
2133 | ))] |
2134 | rio::fcntl_setfd(&socket, rio::fcntl_getfd(&socket)? | rio::FdFlags::CLOEXEC)?; |
2135 | |
2136 | // Set non-blocking mode. |
2137 | set_nonblocking(socket.as_fd())?; |
2138 | |
2139 | socket |
2140 | }; |
2141 | |
2142 | // Set nosigpipe if necessary. |
2143 | #[cfg (any( |
2144 | target_os = "macos" , |
2145 | target_os = "ios" , |
2146 | target_os = "tvos" , |
2147 | target_os = "watchos" , |
2148 | target_os = "freebsd" |
2149 | ))] |
2150 | rn::sockopt::set_socket_nosigpipe(&socket, true)?; |
2151 | |
2152 | // Set the handle information to HANDLE_FLAG_INHERIT. |
2153 | #[cfg (windows)] |
2154 | unsafe { |
2155 | if windows_sys::Win32::Foundation::SetHandleInformation( |
2156 | socket.as_raw_socket() as _, |
2157 | windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT, |
2158 | windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT, |
2159 | ) == 0 |
2160 | { |
2161 | return Err(io::Error::last_os_error()); |
2162 | } |
2163 | } |
2164 | |
2165 | #[allow (unreachable_patterns)] |
2166 | match rn::connect_any(&socket, &addr) { |
2167 | Ok(_) => {} |
2168 | #[cfg (unix)] |
2169 | Err(rio::Errno::INPROGRESS) => {} |
2170 | Err(rio::Errno::AGAIN) | Err(rio::Errno::WOULDBLOCK) => {} |
2171 | Err(err) => return Err(err.into()), |
2172 | } |
2173 | Ok(socket) |
2174 | } |
2175 | |
2176 | #[inline ] |
2177 | fn setup_networking() { |
2178 | #[cfg (windows)] |
2179 | { |
2180 | // On Windows, we need to call WSAStartup before calling any networking code. |
2181 | // Make sure to call it at least once. |
2182 | static INIT: std::sync::Once = std::sync::Once::new(); |
2183 | |
2184 | INIT.call_once(|| { |
2185 | let _ = rustix::net::wsa_startup(); |
2186 | }); |
2187 | } |
2188 | } |
2189 | |
2190 | #[inline ] |
2191 | fn set_nonblocking( |
2192 | #[cfg (unix)] fd: BorrowedFd<'_>, |
2193 | #[cfg (windows)] fd: BorrowedSocket<'_>, |
2194 | ) -> io::Result<()> { |
2195 | cfg_if::cfg_if! { |
2196 | // ioctl(FIONBIO) sets the flag atomically, but we use this only on Linux |
2197 | // for now, as with the standard library, because it seems to behave |
2198 | // differently depending on the platform. |
2199 | // https://github.com/rust-lang/rust/commit/efeb42be2837842d1beb47b51bb693c7474aba3d |
2200 | // https://github.com/libuv/libuv/blob/e9d91fccfc3e5ff772d5da90e1c4a24061198ca0/src/unix/poll.c#L78-L80 |
2201 | // https://github.com/tokio-rs/mio/commit/0db49f6d5caf54b12176821363d154384357e70a |
2202 | if #[cfg(any(windows, target_os = "linux" ))] { |
2203 | rustix::io::ioctl_fionbio(fd, true)?; |
2204 | } else { |
2205 | let previous = rustix::fs::fcntl_getfl(fd)?; |
2206 | let new = previous | rustix::fs::OFlags::NONBLOCK; |
2207 | if new != previous { |
2208 | rustix::fs::fcntl_setfl(fd, new)?; |
2209 | } |
2210 | } |
2211 | } |
2212 | |
2213 | Ok(()) |
2214 | } |
2215 | |
2216 | /// Converts a `Path` to its socket address representation. |
2217 | /// |
2218 | /// This function is abstract socket-aware. |
2219 | #[cfg (unix)] |
2220 | #[inline ] |
2221 | fn convert_path_to_socket_address(path: &Path) -> io::Result<rn::SocketAddrUnix> { |
2222 | // SocketAddrUnix::new() will throw EINVAL when a path with a zero in it is passed in. |
2223 | // However, some users expect to be able to pass in paths to abstract sockets, which |
2224 | // triggers this error as it has a zero in it. Therefore, if a path starts with a zero, |
2225 | // make it an abstract socket. |
2226 | #[cfg (any(target_os = "linux" , target_os = "android" ))] |
2227 | let address: SocketAddrUnix = { |
2228 | use std::os::unix::ffi::OsStrExt; |
2229 | |
2230 | let path: &OsStr = path.as_os_str(); |
2231 | match path.as_bytes().first() { |
2232 | Some(0) => rn::SocketAddrUnix::new_abstract_name(path.as_bytes().get(index:1..).unwrap())?, |
2233 | _ => rn::SocketAddrUnix::new(path)?, |
2234 | } |
2235 | }; |
2236 | |
2237 | // Only Linux and Android support abstract sockets. |
2238 | #[cfg (not(any(target_os = "linux" , target_os = "android" )))] |
2239 | let address = rn::SocketAddrUnix::new(path)?; |
2240 | |
2241 | Ok(address) |
2242 | } |
2243 | |