1 | //! Everything related to types in our intermediate representation. |
2 | |
3 | use super::comp::CompInfo; |
4 | use super::context::{BindgenContext, ItemId, TypeId}; |
5 | use super::dot::DotAttributes; |
6 | use super::enum_ty::Enum; |
7 | use super::function::FunctionSig; |
8 | use super::item::{IsOpaque, Item}; |
9 | use super::layout::{Layout, Opaque}; |
10 | use super::objc::ObjCInterface; |
11 | use super::template::{ |
12 | AsTemplateParam, TemplateInstantiation, TemplateParameters, |
13 | }; |
14 | use super::traversal::{EdgeKind, Trace, Tracer}; |
15 | use crate::clang::{self, Cursor}; |
16 | use crate::parse::{ParseError, ParseResult}; |
17 | use std::borrow::Cow; |
18 | use std::io; |
19 | |
20 | pub use super::int::IntKind; |
21 | |
22 | /// The base representation of a type in bindgen. |
23 | /// |
24 | /// A type has an optional name, which if present cannot be empty, a `layout` |
25 | /// (size, alignment and packedness) if known, a `Kind`, which determines which |
26 | /// kind of type it is, and whether the type is const. |
27 | #[derive (Debug)] |
28 | pub(crate) struct Type { |
29 | /// The name of the type, or None if it was an unnamed struct or union. |
30 | name: Option<String>, |
31 | /// The layout of the type, if known. |
32 | layout: Option<Layout>, |
33 | /// The inner kind of the type |
34 | kind: TypeKind, |
35 | /// Whether this type is const-qualified. |
36 | is_const: bool, |
37 | } |
38 | |
39 | /// The maximum number of items in an array for which Rust implements common |
40 | /// traits, and so if we have a type containing an array with more than this |
41 | /// many items, we won't be able to derive common traits on that type. |
42 | /// |
43 | pub(crate) const RUST_DERIVE_IN_ARRAY_LIMIT: usize = 32; |
44 | |
45 | impl Type { |
46 | /// Get the underlying `CompInfo` for this type as a mutable reference, or |
47 | /// `None` if this is some other kind of type. |
48 | pub(crate) fn as_comp_mut(&mut self) -> Option<&mut CompInfo> { |
49 | match self.kind { |
50 | TypeKind::Comp(ref mut ci) => Some(ci), |
51 | _ => None, |
52 | } |
53 | } |
54 | |
55 | /// Construct a new `Type`. |
56 | pub(crate) fn new( |
57 | name: Option<String>, |
58 | layout: Option<Layout>, |
59 | kind: TypeKind, |
60 | is_const: bool, |
61 | ) -> Self { |
62 | Type { |
63 | name, |
64 | layout, |
65 | kind, |
66 | is_const, |
67 | } |
68 | } |
69 | |
70 | /// Which kind of type is this? |
71 | pub(crate) fn kind(&self) -> &TypeKind { |
72 | &self.kind |
73 | } |
74 | |
75 | /// Get a mutable reference to this type's kind. |
76 | pub(crate) fn kind_mut(&mut self) -> &mut TypeKind { |
77 | &mut self.kind |
78 | } |
79 | |
80 | /// Get this type's name. |
81 | pub(crate) fn name(&self) -> Option<&str> { |
82 | self.name.as_deref() |
83 | } |
84 | |
85 | /// Whether this is a block pointer type. |
86 | pub(crate) fn is_block_pointer(&self) -> bool { |
87 | matches!(self.kind, TypeKind::BlockPointer(..)) |
88 | } |
89 | |
90 | /// Is this an integer type, including `bool` or `char`? |
91 | pub(crate) fn is_int(&self) -> bool { |
92 | matches!(self.kind, TypeKind::Int(_)) |
93 | } |
94 | |
95 | /// Is this a compound type? |
96 | pub(crate) fn is_comp(&self) -> bool { |
97 | matches!(self.kind, TypeKind::Comp(..)) |
98 | } |
99 | |
100 | /// Is this a union? |
101 | pub(crate) fn is_union(&self) -> bool { |
102 | match self.kind { |
103 | TypeKind::Comp(ref comp) => comp.is_union(), |
104 | _ => false, |
105 | } |
106 | } |
107 | |
108 | /// Is this type of kind `TypeKind::TypeParam`? |
109 | pub(crate) fn is_type_param(&self) -> bool { |
110 | matches!(self.kind, TypeKind::TypeParam) |
111 | } |
112 | |
113 | /// Is this a template instantiation type? |
114 | pub(crate) fn is_template_instantiation(&self) -> bool { |
115 | matches!(self.kind, TypeKind::TemplateInstantiation(..)) |
116 | } |
117 | |
118 | /// Is this a function type? |
119 | pub(crate) fn is_function(&self) -> bool { |
120 | matches!(self.kind, TypeKind::Function(..)) |
121 | } |
122 | |
123 | /// Is this an enum type? |
124 | pub(crate) fn is_enum(&self) -> bool { |
125 | matches!(self.kind, TypeKind::Enum(..)) |
126 | } |
127 | |
128 | /// Is this void? |
129 | pub(crate) fn is_void(&self) -> bool { |
130 | matches!(self.kind, TypeKind::Void) |
131 | } |
132 | /// Is this either a builtin or named type? |
133 | pub(crate) fn is_builtin_or_type_param(&self) -> bool { |
134 | matches!( |
135 | self.kind, |
136 | TypeKind::Void | |
137 | TypeKind::NullPtr | |
138 | TypeKind::Function(..) | |
139 | TypeKind::Array(..) | |
140 | TypeKind::Reference(..) | |
141 | TypeKind::Pointer(..) | |
142 | TypeKind::Int(..) | |
143 | TypeKind::Float(..) | |
144 | TypeKind::TypeParam |
145 | ) |
146 | } |
147 | |
148 | /// Creates a new named type, with name `name`. |
149 | pub(crate) fn named(name: String) -> Self { |
150 | let name = if name.is_empty() { None } else { Some(name) }; |
151 | Self::new(name, None, TypeKind::TypeParam, false) |
152 | } |
153 | |
154 | /// Is this a floating point type? |
155 | pub(crate) fn is_float(&self) -> bool { |
156 | matches!(self.kind, TypeKind::Float(..)) |
157 | } |
158 | |
159 | /// Is this a boolean type? |
160 | pub(crate) fn is_bool(&self) -> bool { |
161 | matches!(self.kind, TypeKind::Int(IntKind::Bool)) |
162 | } |
163 | |
164 | /// Is this an integer type? |
165 | pub(crate) fn is_integer(&self) -> bool { |
166 | matches!(self.kind, TypeKind::Int(..)) |
167 | } |
168 | |
169 | /// Cast this type to an integer kind, or `None` if it is not an integer |
170 | /// type. |
171 | pub(crate) fn as_integer(&self) -> Option<IntKind> { |
172 | match self.kind { |
173 | TypeKind::Int(int_kind) => Some(int_kind), |
174 | _ => None, |
175 | } |
176 | } |
177 | |
178 | /// Is this a `const` qualified type? |
179 | pub(crate) fn is_const(&self) -> bool { |
180 | self.is_const |
181 | } |
182 | |
183 | /// Is this an unresolved reference? |
184 | pub(crate) fn is_unresolved_ref(&self) -> bool { |
185 | matches!(self.kind, TypeKind::UnresolvedTypeRef(_, _, _)) |
186 | } |
187 | |
188 | /// Is this a incomplete array type? |
189 | pub(crate) fn is_incomplete_array( |
190 | &self, |
191 | ctx: &BindgenContext, |
192 | ) -> Option<ItemId> { |
193 | match self.kind { |
194 | TypeKind::Array(item, len) => { |
195 | if len == 0 { |
196 | Some(item.into()) |
197 | } else { |
198 | None |
199 | } |
200 | } |
201 | TypeKind::ResolvedTypeRef(inner) => { |
202 | ctx.resolve_type(inner).is_incomplete_array(ctx) |
203 | } |
204 | _ => None, |
205 | } |
206 | } |
207 | |
208 | /// What is the layout of this type? |
209 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
210 | self.layout.or_else(|| { |
211 | match self.kind { |
212 | TypeKind::Comp(ref ci) => ci.layout(ctx), |
213 | TypeKind::Array(inner, 0) => Some(Layout::new( |
214 | 0, |
215 | ctx.resolve_type(inner).layout(ctx)?.align, |
216 | )), |
217 | // FIXME(emilio): This is a hack for anonymous union templates. |
218 | // Use the actual pointer size! |
219 | TypeKind::Pointer(..) => Some(Layout::new( |
220 | ctx.target_pointer_size(), |
221 | ctx.target_pointer_size(), |
222 | )), |
223 | TypeKind::ResolvedTypeRef(inner) => { |
224 | ctx.resolve_type(inner).layout(ctx) |
225 | } |
226 | _ => None, |
227 | } |
228 | }) |
229 | } |
230 | |
231 | /// Whether this named type is an invalid C++ identifier. This is done to |
232 | /// avoid generating invalid code with some cases we can't handle, see: |
233 | /// |
234 | /// tests/headers/381-decltype-alias.hpp |
235 | pub(crate) fn is_invalid_type_param(&self) -> bool { |
236 | match self.kind { |
237 | TypeKind::TypeParam => { |
238 | let name = self.name().expect("Unnamed named type?" ); |
239 | !clang::is_valid_identifier(name) |
240 | } |
241 | _ => false, |
242 | } |
243 | } |
244 | |
245 | /// Takes `name`, and returns a suitable identifier representation for it. |
246 | fn sanitize_name(name: &str) -> Cow<str> { |
247 | if clang::is_valid_identifier(name) { |
248 | return Cow::Borrowed(name); |
249 | } |
250 | |
251 | let name = name.replace(|c| c == ' ' || c == ':' || c == '.' , "_" ); |
252 | Cow::Owned(name) |
253 | } |
254 | |
255 | /// Get this type's santizied name. |
256 | pub(crate) fn sanitized_name<'a>( |
257 | &'a self, |
258 | ctx: &BindgenContext, |
259 | ) -> Option<Cow<'a, str>> { |
260 | let name_info = match *self.kind() { |
261 | TypeKind::Pointer(inner) => Some((inner, Cow::Borrowed("ptr" ))), |
262 | TypeKind::Reference(inner) => Some((inner, Cow::Borrowed("ref" ))), |
263 | TypeKind::Array(inner, length) => { |
264 | Some((inner, format!("array {}" , length).into())) |
265 | } |
266 | _ => None, |
267 | }; |
268 | if let Some((inner, prefix)) = name_info { |
269 | ctx.resolve_item(inner) |
270 | .expect_type() |
271 | .sanitized_name(ctx) |
272 | .map(|name| format!(" {}_ {}" , prefix, name).into()) |
273 | } else { |
274 | self.name().map(Self::sanitize_name) |
275 | } |
276 | } |
277 | |
278 | /// See safe_canonical_type. |
279 | pub(crate) fn canonical_type<'tr>( |
280 | &'tr self, |
281 | ctx: &'tr BindgenContext, |
282 | ) -> &'tr Type { |
283 | self.safe_canonical_type(ctx) |
284 | .expect("Should have been resolved after parsing!" ) |
285 | } |
286 | |
287 | /// Returns the canonical type of this type, that is, the "inner type". |
288 | /// |
289 | /// For example, for a `typedef`, the canonical type would be the |
290 | /// `typedef`ed type, for a template instantiation, would be the template |
291 | /// its specializing, and so on. Return None if the type is unresolved. |
292 | pub(crate) fn safe_canonical_type<'tr>( |
293 | &'tr self, |
294 | ctx: &'tr BindgenContext, |
295 | ) -> Option<&'tr Type> { |
296 | match self.kind { |
297 | TypeKind::TypeParam | |
298 | TypeKind::Array(..) | |
299 | TypeKind::Vector(..) | |
300 | TypeKind::Comp(..) | |
301 | TypeKind::Opaque | |
302 | TypeKind::Int(..) | |
303 | TypeKind::Float(..) | |
304 | TypeKind::Complex(..) | |
305 | TypeKind::Function(..) | |
306 | TypeKind::Enum(..) | |
307 | TypeKind::Reference(..) | |
308 | TypeKind::Void | |
309 | TypeKind::NullPtr | |
310 | TypeKind::Pointer(..) | |
311 | TypeKind::BlockPointer(..) | |
312 | TypeKind::ObjCId | |
313 | TypeKind::ObjCSel | |
314 | TypeKind::ObjCInterface(..) => Some(self), |
315 | |
316 | TypeKind::ResolvedTypeRef(inner) | |
317 | TypeKind::Alias(inner) | |
318 | TypeKind::TemplateAlias(inner, _) => { |
319 | ctx.resolve_type(inner).safe_canonical_type(ctx) |
320 | } |
321 | TypeKind::TemplateInstantiation(ref inst) => ctx |
322 | .resolve_type(inst.template_definition()) |
323 | .safe_canonical_type(ctx), |
324 | |
325 | TypeKind::UnresolvedTypeRef(..) => None, |
326 | } |
327 | } |
328 | |
329 | /// There are some types we don't want to stop at when finding an opaque |
330 | /// item, so we can arrive to the proper item that needs to be generated. |
331 | pub(crate) fn should_be_traced_unconditionally(&self) -> bool { |
332 | matches!( |
333 | self.kind, |
334 | TypeKind::Comp(..) | |
335 | TypeKind::Function(..) | |
336 | TypeKind::Pointer(..) | |
337 | TypeKind::Array(..) | |
338 | TypeKind::Reference(..) | |
339 | TypeKind::TemplateInstantiation(..) | |
340 | TypeKind::ResolvedTypeRef(..) |
341 | ) |
342 | } |
343 | } |
344 | |
345 | impl IsOpaque for Type { |
346 | type Extra = Item; |
347 | |
348 | fn is_opaque(&self, ctx: &BindgenContext, item: &Item) -> bool { |
349 | match self.kind { |
350 | TypeKind::Opaque => true, |
351 | TypeKind::TemplateInstantiation(ref inst: &TemplateInstantiation) => { |
352 | inst.is_opaque(ctx, extra:item) |
353 | } |
354 | TypeKind::Comp(ref comp: &CompInfo) => comp.is_opaque(ctx, &self.layout), |
355 | TypeKind::ResolvedTypeRef(to: TypeId) => to.is_opaque(ctx, &()), |
356 | _ => false, |
357 | } |
358 | } |
359 | } |
360 | |
361 | impl AsTemplateParam for Type { |
362 | type Extra = Item; |
363 | |
364 | fn as_template_param( |
365 | &self, |
366 | ctx: &BindgenContext, |
367 | item: &Item, |
368 | ) -> Option<TypeId> { |
369 | self.kind.as_template_param(ctx, extra:item) |
370 | } |
371 | } |
372 | |
373 | impl AsTemplateParam for TypeKind { |
374 | type Extra = Item; |
375 | |
376 | fn as_template_param( |
377 | &self, |
378 | ctx: &BindgenContext, |
379 | item: &Item, |
380 | ) -> Option<TypeId> { |
381 | match *self { |
382 | TypeKind::TypeParam => Some(item.id().expect_type_id(ctx)), |
383 | TypeKind::ResolvedTypeRef(id: TypeId) => id.as_template_param(ctx, &()), |
384 | _ => None, |
385 | } |
386 | } |
387 | } |
388 | |
389 | impl DotAttributes for Type { |
390 | fn dot_attributes<W>( |
391 | &self, |
392 | ctx: &BindgenContext, |
393 | out: &mut W, |
394 | ) -> io::Result<()> |
395 | where |
396 | W: io::Write, |
397 | { |
398 | if let Some(ref layout) = self.layout { |
399 | writeln!( |
400 | out, |
401 | "<tr><td>size</td><td> {}</td></tr> |
402 | <tr><td>align</td><td> {}</td></tr>" , |
403 | layout.size, layout.align |
404 | )?; |
405 | if layout.packed { |
406 | writeln!(out, "<tr><td>packed</td><td>true</td></tr>" )?; |
407 | } |
408 | } |
409 | |
410 | if self.is_const { |
411 | writeln!(out, "<tr><td>const</td><td>true</td></tr>" )?; |
412 | } |
413 | |
414 | self.kind.dot_attributes(ctx, out) |
415 | } |
416 | } |
417 | |
418 | impl DotAttributes for TypeKind { |
419 | fn dot_attributes<W>( |
420 | &self, |
421 | ctx: &BindgenContext, |
422 | out: &mut W, |
423 | ) -> io::Result<()> |
424 | where |
425 | W: io::Write, |
426 | { |
427 | writeln!( |
428 | out, |
429 | "<tr><td>type kind</td><td> {}</td></tr>" , |
430 | self.kind_name() |
431 | )?; |
432 | |
433 | if let TypeKind::Comp(ref comp: &CompInfo) = *self { |
434 | comp.dot_attributes(ctx, out)?; |
435 | } |
436 | |
437 | Ok(()) |
438 | } |
439 | } |
440 | |
441 | impl TypeKind { |
442 | fn kind_name(&self) -> &'static str { |
443 | match *self { |
444 | TypeKind::Void => "Void" , |
445 | TypeKind::NullPtr => "NullPtr" , |
446 | TypeKind::Comp(..) => "Comp" , |
447 | TypeKind::Opaque => "Opaque" , |
448 | TypeKind::Int(..) => "Int" , |
449 | TypeKind::Float(..) => "Float" , |
450 | TypeKind::Complex(..) => "Complex" , |
451 | TypeKind::Alias(..) => "Alias" , |
452 | TypeKind::TemplateAlias(..) => "TemplateAlias" , |
453 | TypeKind::Array(..) => "Array" , |
454 | TypeKind::Vector(..) => "Vector" , |
455 | TypeKind::Function(..) => "Function" , |
456 | TypeKind::Enum(..) => "Enum" , |
457 | TypeKind::Pointer(..) => "Pointer" , |
458 | TypeKind::BlockPointer(..) => "BlockPointer" , |
459 | TypeKind::Reference(..) => "Reference" , |
460 | TypeKind::TemplateInstantiation(..) => "TemplateInstantiation" , |
461 | TypeKind::UnresolvedTypeRef(..) => "UnresolvedTypeRef" , |
462 | TypeKind::ResolvedTypeRef(..) => "ResolvedTypeRef" , |
463 | TypeKind::TypeParam => "TypeParam" , |
464 | TypeKind::ObjCInterface(..) => "ObjCInterface" , |
465 | TypeKind::ObjCId => "ObjCId" , |
466 | TypeKind::ObjCSel => "ObjCSel" , |
467 | } |
468 | } |
469 | } |
470 | |
471 | #[test ] |
472 | fn is_invalid_type_param_valid() { |
473 | let ty: Type = Type::new(name:Some("foo" .into()), layout:None, kind:TypeKind::TypeParam, is_const:false); |
474 | assert!(!ty.is_invalid_type_param()) |
475 | } |
476 | |
477 | #[test ] |
478 | fn is_invalid_type_param_valid_underscore_and_numbers() { |
479 | let ty: Type = Type::new( |
480 | name:Some("_foo123456789_" .into()), |
481 | layout:None, |
482 | kind:TypeKind::TypeParam, |
483 | is_const:false, |
484 | ); |
485 | assert!(!ty.is_invalid_type_param()) |
486 | } |
487 | |
488 | #[test ] |
489 | fn is_invalid_type_param_valid_unnamed_kind() { |
490 | let ty: Type = Type::new(name:Some("foo" .into()), layout:None, kind:TypeKind::Void, is_const:false); |
491 | assert!(!ty.is_invalid_type_param()) |
492 | } |
493 | |
494 | #[test ] |
495 | fn is_invalid_type_param_invalid_start() { |
496 | let ty: Type = Type::new(name:Some("1foo" .into()), layout:None, kind:TypeKind::TypeParam, is_const:false); |
497 | assert!(ty.is_invalid_type_param()) |
498 | } |
499 | |
500 | #[test ] |
501 | fn is_invalid_type_param_invalid_remaing() { |
502 | let ty: Type = Type::new(name:Some("foo-" .into()), layout:None, kind:TypeKind::TypeParam, is_const:false); |
503 | assert!(ty.is_invalid_type_param()) |
504 | } |
505 | |
506 | #[test ] |
507 | #[should_panic ] |
508 | fn is_invalid_type_param_unnamed() { |
509 | let ty: Type = Type::new(name:None, layout:None, kind:TypeKind::TypeParam, is_const:false); |
510 | assert!(ty.is_invalid_type_param()) |
511 | } |
512 | |
513 | #[test ] |
514 | fn is_invalid_type_param_empty_name() { |
515 | let ty: Type = Type::new(name:Some("" .into()), layout:None, kind:TypeKind::TypeParam, is_const:false); |
516 | assert!(ty.is_invalid_type_param()) |
517 | } |
518 | |
519 | impl TemplateParameters for Type { |
520 | fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> { |
521 | self.kind.self_template_params(ctx) |
522 | } |
523 | } |
524 | |
525 | impl TemplateParameters for TypeKind { |
526 | fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> { |
527 | match *self { |
528 | TypeKind::ResolvedTypeRef(id) => { |
529 | ctx.resolve_type(id).self_template_params(ctx) |
530 | } |
531 | TypeKind::Comp(ref comp) => comp.self_template_params(ctx), |
532 | TypeKind::TemplateAlias(_, ref args) => args.clone(), |
533 | |
534 | TypeKind::Opaque | |
535 | TypeKind::TemplateInstantiation(..) | |
536 | TypeKind::Void | |
537 | TypeKind::NullPtr | |
538 | TypeKind::Int(_) | |
539 | TypeKind::Float(_) | |
540 | TypeKind::Complex(_) | |
541 | TypeKind::Array(..) | |
542 | TypeKind::Vector(..) | |
543 | TypeKind::Function(_) | |
544 | TypeKind::Enum(_) | |
545 | TypeKind::Pointer(_) | |
546 | TypeKind::BlockPointer(_) | |
547 | TypeKind::Reference(_) | |
548 | TypeKind::UnresolvedTypeRef(..) | |
549 | TypeKind::TypeParam | |
550 | TypeKind::Alias(_) | |
551 | TypeKind::ObjCId | |
552 | TypeKind::ObjCSel | |
553 | TypeKind::ObjCInterface(_) => vec![], |
554 | } |
555 | } |
556 | } |
557 | |
558 | /// The kind of float this type represents. |
559 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
560 | pub(crate) enum FloatKind { |
561 | /// A half (`_Float16` or `__fp16`) |
562 | Float16, |
563 | /// A `float`. |
564 | Float, |
565 | /// A `double`. |
566 | Double, |
567 | /// A `long double`. |
568 | LongDouble, |
569 | /// A `__float128`. |
570 | Float128, |
571 | } |
572 | |
573 | /// The different kinds of types that we can parse. |
574 | #[derive (Debug)] |
575 | pub(crate) enum TypeKind { |
576 | /// The void type. |
577 | Void, |
578 | |
579 | /// The `nullptr_t` type. |
580 | NullPtr, |
581 | |
582 | /// A compound type, that is, a class, struct, or union. |
583 | Comp(CompInfo), |
584 | |
585 | /// An opaque type that we just don't understand. All usage of this shoulf |
586 | /// result in an opaque blob of bytes generated from the containing type's |
587 | /// layout. |
588 | Opaque, |
589 | |
590 | /// An integer type, of a given kind. `bool` and `char` are also considered |
591 | /// integers. |
592 | Int(IntKind), |
593 | |
594 | /// A floating point type. |
595 | Float(FloatKind), |
596 | |
597 | /// A complex floating point type. |
598 | Complex(FloatKind), |
599 | |
600 | /// A type alias, with a name, that points to another type. |
601 | Alias(TypeId), |
602 | |
603 | /// A templated alias, pointing to an inner type, just as `Alias`, but with |
604 | /// template parameters. |
605 | TemplateAlias(TypeId, Vec<TypeId>), |
606 | |
607 | /// A packed vector type: element type, number of elements |
608 | Vector(TypeId, usize), |
609 | |
610 | /// An array of a type and a length. |
611 | Array(TypeId, usize), |
612 | |
613 | /// A function type, with a given signature. |
614 | Function(FunctionSig), |
615 | |
616 | /// An `enum` type. |
617 | Enum(Enum), |
618 | |
619 | /// A pointer to a type. The bool field represents whether it's const or |
620 | /// not. |
621 | Pointer(TypeId), |
622 | |
623 | /// A pointer to an Apple block. |
624 | BlockPointer(TypeId), |
625 | |
626 | /// A reference to a type, as in: int& foo(). |
627 | Reference(TypeId), |
628 | |
629 | /// An instantiation of an abstract template definition with a set of |
630 | /// concrete template arguments. |
631 | TemplateInstantiation(TemplateInstantiation), |
632 | |
633 | /// A reference to a yet-to-resolve type. This stores the clang cursor |
634 | /// itself, and postpones its resolution. |
635 | /// |
636 | /// These are gone in a phase after parsing where these are mapped to |
637 | /// already known types, and are converted to ResolvedTypeRef. |
638 | /// |
639 | /// see tests/headers/typeref.hpp to see somewhere where this is a problem. |
640 | UnresolvedTypeRef( |
641 | clang::Type, |
642 | clang::Cursor, |
643 | /* parent_id */ |
644 | Option<ItemId>, |
645 | ), |
646 | |
647 | /// An indirection to another type. |
648 | /// |
649 | /// These are generated after we resolve a forward declaration, or when we |
650 | /// replace one type with another. |
651 | ResolvedTypeRef(TypeId), |
652 | |
653 | /// A named type, that is, a template parameter. |
654 | TypeParam, |
655 | |
656 | /// Objective C interface. Always referenced through a pointer |
657 | ObjCInterface(ObjCInterface), |
658 | |
659 | /// Objective C 'id' type, points to any object |
660 | ObjCId, |
661 | |
662 | /// Objective C selector type |
663 | ObjCSel, |
664 | } |
665 | |
666 | impl Type { |
667 | /// This is another of the nasty methods. This one is the one that takes |
668 | /// care of the core logic of converting a clang type to a `Type`. |
669 | /// |
670 | /// It's sort of nasty and full of special-casing, but hopefully the |
671 | /// comments in every special case justify why they're there. |
672 | pub(crate) fn from_clang_ty( |
673 | potential_id: ItemId, |
674 | ty: &clang::Type, |
675 | location: Cursor, |
676 | parent_id: Option<ItemId>, |
677 | ctx: &mut BindgenContext, |
678 | ) -> Result<ParseResult<Self>, ParseError> { |
679 | use clang_sys::*; |
680 | { |
681 | let already_resolved = ctx.builtin_or_resolved_ty( |
682 | potential_id, |
683 | parent_id, |
684 | ty, |
685 | Some(location), |
686 | ); |
687 | if let Some(ty) = already_resolved { |
688 | debug!(" {:?} already resolved: {:?}" , ty, location); |
689 | return Ok(ParseResult::AlreadyResolved(ty.into())); |
690 | } |
691 | } |
692 | |
693 | let layout = ty.fallible_layout(ctx).ok(); |
694 | let cursor = ty.declaration(); |
695 | let is_anonymous = cursor.is_anonymous(); |
696 | let mut name = if is_anonymous { |
697 | None |
698 | } else { |
699 | Some(cursor.spelling()).filter(|n| !n.is_empty()) |
700 | }; |
701 | |
702 | debug!( |
703 | "from_clang_ty: {:?}, ty: {:?}, loc: {:?}" , |
704 | potential_id, ty, location |
705 | ); |
706 | debug!("currently_parsed_types: {:?}" , ctx.currently_parsed_types()); |
707 | |
708 | let canonical_ty = ty.canonical_type(); |
709 | |
710 | // Parse objc protocols as if they were interfaces |
711 | let mut ty_kind = ty.kind(); |
712 | match location.kind() { |
713 | CXCursor_ObjCProtocolDecl | CXCursor_ObjCCategoryDecl => { |
714 | ty_kind = CXType_ObjCInterface |
715 | } |
716 | _ => {} |
717 | } |
718 | |
719 | // Objective C template type parameter |
720 | // FIXME: This is probably wrong, we are attempting to find the |
721 | // objc template params, which seem to manifest as a typedef. |
722 | // We are rewriting them as ID to suppress multiple conflicting |
723 | // typedefs at root level |
724 | if ty_kind == CXType_Typedef { |
725 | let is_template_type_param = |
726 | ty.declaration().kind() == CXCursor_TemplateTypeParameter; |
727 | let is_canonical_objcpointer = |
728 | canonical_ty.kind() == CXType_ObjCObjectPointer; |
729 | |
730 | // We have found a template type for objc interface |
731 | if is_canonical_objcpointer && is_template_type_param { |
732 | // Objective-C generics are just ids with fancy name. |
733 | // To keep it simple, just name them ids |
734 | name = Some("id" .to_owned()); |
735 | } |
736 | } |
737 | |
738 | if location.kind() == CXCursor_ClassTemplatePartialSpecialization { |
739 | // Sorry! (Not sorry) |
740 | warn!( |
741 | "Found a partial template specialization; bindgen does not \ |
742 | support partial template specialization! Constructing \ |
743 | opaque type instead." |
744 | ); |
745 | return Ok(ParseResult::New( |
746 | Opaque::from_clang_ty(&canonical_ty, ctx), |
747 | None, |
748 | )); |
749 | } |
750 | |
751 | let kind = if location.kind() == CXCursor_TemplateRef || |
752 | (ty.template_args().is_some() && ty_kind != CXType_Typedef) |
753 | { |
754 | // This is a template instantiation. |
755 | match TemplateInstantiation::from_ty(ty, ctx) { |
756 | Some(inst) => TypeKind::TemplateInstantiation(inst), |
757 | None => TypeKind::Opaque, |
758 | } |
759 | } else { |
760 | match ty_kind { |
761 | CXType_Unexposed |
762 | if *ty != canonical_ty && |
763 | canonical_ty.kind() != CXType_Invalid && |
764 | ty.ret_type().is_none() && |
765 | // Sometime clang desugars some types more than |
766 | // what we need, specially with function |
767 | // pointers. |
768 | // |
769 | // We should also try the solution of inverting |
770 | // those checks instead of doing this, that is, |
771 | // something like: |
772 | // |
773 | // CXType_Unexposed if ty.ret_type().is_some() |
774 | // => { ... } |
775 | // |
776 | // etc. |
777 | !canonical_ty.spelling().contains("type-parameter" ) => |
778 | { |
779 | debug!("Looking for canonical type: {:?}" , canonical_ty); |
780 | return Self::from_clang_ty( |
781 | potential_id, |
782 | &canonical_ty, |
783 | location, |
784 | parent_id, |
785 | ctx, |
786 | ); |
787 | } |
788 | CXType_Unexposed | CXType_Invalid => { |
789 | // For some reason Clang doesn't give us any hint in some |
790 | // situations where we should generate a function pointer (see |
791 | // tests/headers/func_ptr_in_struct.h), so we do a guess here |
792 | // trying to see if it has a valid return type. |
793 | if ty.ret_type().is_some() { |
794 | let signature = |
795 | FunctionSig::from_ty(ty, &location, ctx)?; |
796 | TypeKind::Function(signature) |
797 | // Same here, with template specialisations we can safely |
798 | // assume this is a Comp(..) |
799 | } else if ty.is_fully_instantiated_template() { |
800 | debug!( |
801 | "Template specialization: {:?}, {:?} {:?}" , |
802 | ty, location, canonical_ty |
803 | ); |
804 | let complex = CompInfo::from_ty( |
805 | potential_id, |
806 | ty, |
807 | Some(location), |
808 | ctx, |
809 | ) |
810 | .expect("C'mon" ); |
811 | TypeKind::Comp(complex) |
812 | } else { |
813 | match location.kind() { |
814 | CXCursor_CXXBaseSpecifier | |
815 | CXCursor_ClassTemplate => { |
816 | if location.kind() == CXCursor_CXXBaseSpecifier |
817 | { |
818 | // In the case we're parsing a base specifier |
819 | // inside an unexposed or invalid type, it means |
820 | // that we're parsing one of two things: |
821 | // |
822 | // * A template parameter. |
823 | // * A complex class that isn't exposed. |
824 | // |
825 | // This means, unfortunately, that there's no |
826 | // good way to differentiate between them. |
827 | // |
828 | // Probably we could try to look at the |
829 | // declaration and complicate more this logic, |
830 | // but we'll keep it simple... if it's a valid |
831 | // C++ identifier, we'll consider it as a |
832 | // template parameter. |
833 | // |
834 | // This is because: |
835 | // |
836 | // * We expect every other base that is a |
837 | // proper identifier (that is, a simple |
838 | // struct/union declaration), to be exposed, |
839 | // so this path can't be reached in that |
840 | // case. |
841 | // |
842 | // * Quite conveniently, complex base |
843 | // specifiers preserve their full names (that |
844 | // is: Foo<T> instead of Foo). We can take |
845 | // advantage of this. |
846 | // |
847 | // If we find some edge case where this doesn't |
848 | // work (which I guess is unlikely, see the |
849 | // different test cases[1][2][3][4]), we'd need |
850 | // to find more creative ways of differentiating |
851 | // these two cases. |
852 | // |
853 | // [1]: inherit_named.hpp |
854 | // [2]: forward-inherit-struct-with-fields.hpp |
855 | // [3]: forward-inherit-struct.hpp |
856 | // [4]: inherit-namespaced.hpp |
857 | if location.spelling().chars().all(|c| { |
858 | c.is_alphanumeric() || c == '_' |
859 | }) { |
860 | return Err(ParseError::Recurse); |
861 | } |
862 | } else { |
863 | name = Some(location.spelling()); |
864 | } |
865 | |
866 | let complex = CompInfo::from_ty( |
867 | potential_id, |
868 | ty, |
869 | Some(location), |
870 | ctx, |
871 | ); |
872 | match complex { |
873 | Ok(complex) => TypeKind::Comp(complex), |
874 | Err(_) => { |
875 | warn!( |
876 | "Could not create complex type \ |
877 | from class template or base \ |
878 | specifier, using opaque blob" |
879 | ); |
880 | let opaque = |
881 | Opaque::from_clang_ty(ty, ctx); |
882 | return Ok(ParseResult::New( |
883 | opaque, None, |
884 | )); |
885 | } |
886 | } |
887 | } |
888 | CXCursor_TypeAliasTemplateDecl => { |
889 | debug!("TypeAliasTemplateDecl" ); |
890 | |
891 | // We need to manually unwind this one. |
892 | let mut inner = Err(ParseError::Continue); |
893 | let mut args = vec![]; |
894 | |
895 | location.visit(|cur| { |
896 | match cur.kind() { |
897 | CXCursor_TypeAliasDecl => { |
898 | let current = cur.cur_type(); |
899 | |
900 | debug_assert_eq!( |
901 | current.kind(), |
902 | CXType_Typedef |
903 | ); |
904 | |
905 | name = Some(location.spelling()); |
906 | |
907 | let inner_ty = cur |
908 | .typedef_type() |
909 | .expect("Not valid Type?" ); |
910 | inner = Ok(Item::from_ty_or_ref( |
911 | inner_ty, |
912 | cur, |
913 | Some(potential_id), |
914 | ctx, |
915 | )); |
916 | } |
917 | CXCursor_TemplateTypeParameter => { |
918 | let param = Item::type_param( |
919 | None, cur, ctx, |
920 | ) |
921 | .expect( |
922 | "Item::type_param shouldn't \ |
923 | ever fail if we are looking \ |
924 | at a TemplateTypeParameter" , |
925 | ); |
926 | args.push(param); |
927 | } |
928 | _ => {} |
929 | } |
930 | CXChildVisit_Continue |
931 | }); |
932 | |
933 | let inner_type = match inner { |
934 | Ok(inner) => inner, |
935 | Err(..) => { |
936 | warn!( |
937 | "Failed to parse template alias \ |
938 | {:?}" , |
939 | location |
940 | ); |
941 | return Err(ParseError::Continue); |
942 | } |
943 | }; |
944 | |
945 | TypeKind::TemplateAlias(inner_type, args) |
946 | } |
947 | CXCursor_TemplateRef => { |
948 | let referenced = location.referenced().unwrap(); |
949 | let referenced_ty = referenced.cur_type(); |
950 | |
951 | debug!( |
952 | "TemplateRef: location = {:?}; referenced = \ |
953 | {:?}; referenced_ty = {:?}" , |
954 | location, |
955 | referenced, |
956 | referenced_ty |
957 | ); |
958 | |
959 | return Self::from_clang_ty( |
960 | potential_id, |
961 | &referenced_ty, |
962 | referenced, |
963 | parent_id, |
964 | ctx, |
965 | ); |
966 | } |
967 | CXCursor_TypeRef => { |
968 | let referenced = location.referenced().unwrap(); |
969 | let referenced_ty = referenced.cur_type(); |
970 | let declaration = referenced_ty.declaration(); |
971 | |
972 | debug!( |
973 | "TypeRef: location = {:?}; referenced = \ |
974 | {:?}; referenced_ty = {:?}" , |
975 | location, referenced, referenced_ty |
976 | ); |
977 | |
978 | let id = Item::from_ty_or_ref_with_id( |
979 | potential_id, |
980 | referenced_ty, |
981 | declaration, |
982 | parent_id, |
983 | ctx, |
984 | ); |
985 | return Ok(ParseResult::AlreadyResolved( |
986 | id.into(), |
987 | )); |
988 | } |
989 | CXCursor_NamespaceRef => { |
990 | return Err(ParseError::Continue); |
991 | } |
992 | _ => { |
993 | if ty.kind() == CXType_Unexposed { |
994 | warn!( |
995 | "Unexposed type {:?}, recursing inside, \ |
996 | loc: {:?}" , |
997 | ty, |
998 | location |
999 | ); |
1000 | return Err(ParseError::Recurse); |
1001 | } |
1002 | |
1003 | warn!("invalid type {:?}" , ty); |
1004 | return Err(ParseError::Continue); |
1005 | } |
1006 | } |
1007 | } |
1008 | } |
1009 | CXType_Auto => { |
1010 | if canonical_ty == *ty { |
1011 | debug!("Couldn't find deduced type: {:?}" , ty); |
1012 | return Err(ParseError::Continue); |
1013 | } |
1014 | |
1015 | return Self::from_clang_ty( |
1016 | potential_id, |
1017 | &canonical_ty, |
1018 | location, |
1019 | parent_id, |
1020 | ctx, |
1021 | ); |
1022 | } |
1023 | // NOTE: We don't resolve pointers eagerly because the pointee type |
1024 | // might not have been parsed, and if it contains templates or |
1025 | // something else we might get confused, see the comment inside |
1026 | // TypeRef. |
1027 | // |
1028 | // We might need to, though, if the context is already in the |
1029 | // process of resolving them. |
1030 | CXType_ObjCObjectPointer | |
1031 | CXType_MemberPointer | |
1032 | CXType_Pointer => { |
1033 | let mut pointee = ty.pointee_type().unwrap(); |
1034 | if *ty != canonical_ty { |
1035 | let canonical_pointee = |
1036 | canonical_ty.pointee_type().unwrap(); |
1037 | // clang sometimes loses pointee constness here, see |
1038 | // #2244. |
1039 | if canonical_pointee.is_const() != pointee.is_const() { |
1040 | pointee = canonical_pointee; |
1041 | } |
1042 | } |
1043 | let inner = |
1044 | Item::from_ty_or_ref(pointee, location, None, ctx); |
1045 | TypeKind::Pointer(inner) |
1046 | } |
1047 | CXType_BlockPointer => { |
1048 | let pointee = ty.pointee_type().expect("Not valid Type?" ); |
1049 | let inner = |
1050 | Item::from_ty_or_ref(pointee, location, None, ctx); |
1051 | TypeKind::BlockPointer(inner) |
1052 | } |
1053 | // XXX: RValueReference is most likely wrong, but I don't think we |
1054 | // can even add bindings for that, so huh. |
1055 | CXType_RValueReference | CXType_LValueReference => { |
1056 | let inner = Item::from_ty_or_ref( |
1057 | ty.pointee_type().unwrap(), |
1058 | location, |
1059 | None, |
1060 | ctx, |
1061 | ); |
1062 | TypeKind::Reference(inner) |
1063 | } |
1064 | // XXX DependentSizedArray is wrong |
1065 | CXType_VariableArray | CXType_DependentSizedArray => { |
1066 | let inner = Item::from_ty( |
1067 | ty.elem_type().as_ref().unwrap(), |
1068 | location, |
1069 | None, |
1070 | ctx, |
1071 | ) |
1072 | .expect("Not able to resolve array element?" ); |
1073 | TypeKind::Pointer(inner) |
1074 | } |
1075 | CXType_IncompleteArray => { |
1076 | let inner = Item::from_ty( |
1077 | ty.elem_type().as_ref().unwrap(), |
1078 | location, |
1079 | None, |
1080 | ctx, |
1081 | ) |
1082 | .expect("Not able to resolve array element?" ); |
1083 | TypeKind::Array(inner, 0) |
1084 | } |
1085 | CXType_FunctionNoProto | CXType_FunctionProto => { |
1086 | let signature = FunctionSig::from_ty(ty, &location, ctx)?; |
1087 | TypeKind::Function(signature) |
1088 | } |
1089 | CXType_Typedef => { |
1090 | let inner = cursor.typedef_type().expect("Not valid Type?" ); |
1091 | let inner_id = |
1092 | Item::from_ty_or_ref(inner, location, None, ctx); |
1093 | if inner_id == potential_id { |
1094 | warn!( |
1095 | "Generating oqaque type instead of self-referential \ |
1096 | typedef" ); |
1097 | // This can happen if we bail out of recursive situations |
1098 | // within the clang parsing. |
1099 | TypeKind::Opaque |
1100 | } else { |
1101 | // Check if this type definition is an alias to a pointer of a `struct` / |
1102 | // `union` / `enum` with the same name and add the `_ptr` suffix to it to |
1103 | // avoid name collisions. |
1104 | if let Some(ref mut name) = name { |
1105 | if inner.kind() == CXType_Pointer && |
1106 | !ctx.options().c_naming |
1107 | { |
1108 | let pointee = inner.pointee_type().unwrap(); |
1109 | if pointee.kind() == CXType_Elaborated && |
1110 | pointee.declaration().spelling() == *name |
1111 | { |
1112 | *name += "_ptr" ; |
1113 | } |
1114 | } |
1115 | } |
1116 | TypeKind::Alias(inner_id) |
1117 | } |
1118 | } |
1119 | CXType_Enum => { |
1120 | let enum_ = Enum::from_ty(ty, ctx).expect("Not an enum?" ); |
1121 | |
1122 | if !is_anonymous { |
1123 | let pretty_name = ty.spelling(); |
1124 | if clang::is_valid_identifier(&pretty_name) { |
1125 | name = Some(pretty_name); |
1126 | } |
1127 | } |
1128 | |
1129 | TypeKind::Enum(enum_) |
1130 | } |
1131 | CXType_Record => { |
1132 | let complex = CompInfo::from_ty( |
1133 | potential_id, |
1134 | ty, |
1135 | Some(location), |
1136 | ctx, |
1137 | ) |
1138 | .expect("Not a complex type?" ); |
1139 | |
1140 | if !is_anonymous { |
1141 | // The pretty-printed name may contain typedefed name, |
1142 | // but may also be "struct (anonymous at .h:1)" |
1143 | let pretty_name = ty.spelling(); |
1144 | if clang::is_valid_identifier(&pretty_name) { |
1145 | name = Some(pretty_name); |
1146 | } |
1147 | } |
1148 | |
1149 | TypeKind::Comp(complex) |
1150 | } |
1151 | CXType_Vector => { |
1152 | let inner = Item::from_ty( |
1153 | ty.elem_type().as_ref().unwrap(), |
1154 | location, |
1155 | None, |
1156 | ctx, |
1157 | )?; |
1158 | TypeKind::Vector(inner, ty.num_elements().unwrap()) |
1159 | } |
1160 | CXType_ConstantArray => { |
1161 | let inner = Item::from_ty( |
1162 | ty.elem_type().as_ref().unwrap(), |
1163 | location, |
1164 | None, |
1165 | ctx, |
1166 | ) |
1167 | .expect("Not able to resolve array element?" ); |
1168 | TypeKind::Array(inner, ty.num_elements().unwrap()) |
1169 | } |
1170 | CXType_Elaborated => { |
1171 | return Self::from_clang_ty( |
1172 | potential_id, |
1173 | &ty.named(), |
1174 | location, |
1175 | parent_id, |
1176 | ctx, |
1177 | ); |
1178 | } |
1179 | CXType_ObjCId => TypeKind::ObjCId, |
1180 | CXType_ObjCSel => TypeKind::ObjCSel, |
1181 | CXType_ObjCClass | CXType_ObjCInterface => { |
1182 | let interface = ObjCInterface::from_ty(&location, ctx) |
1183 | .expect("Not a valid objc interface?" ); |
1184 | if !is_anonymous { |
1185 | name = Some(interface.rust_name()); |
1186 | } |
1187 | TypeKind::ObjCInterface(interface) |
1188 | } |
1189 | CXType_Dependent => { |
1190 | return Err(ParseError::Continue); |
1191 | } |
1192 | _ => { |
1193 | warn!( |
1194 | "unsupported type: kind = {:?}; ty = {:?}; at {:?}" , |
1195 | ty.kind(), |
1196 | ty, |
1197 | location |
1198 | ); |
1199 | return Err(ParseError::Continue); |
1200 | } |
1201 | } |
1202 | }; |
1203 | |
1204 | name = name.filter(|n| !n.is_empty()); |
1205 | |
1206 | let is_const = ty.is_const() || |
1207 | (ty.kind() == CXType_ConstantArray && |
1208 | ty.elem_type() |
1209 | .map_or(false, |element| element.is_const())); |
1210 | |
1211 | let ty = Type::new(name, layout, kind, is_const); |
1212 | // TODO: maybe declaration.canonical()? |
1213 | Ok(ParseResult::New(ty, Some(cursor.canonical()))) |
1214 | } |
1215 | } |
1216 | |
1217 | impl Trace for Type { |
1218 | type Extra = Item; |
1219 | |
1220 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
1221 | where |
1222 | T: Tracer, |
1223 | { |
1224 | if self |
1225 | .name() |
1226 | .map_or(false, |name| context.is_stdint_type(name)) |
1227 | { |
1228 | // These types are special-cased in codegen and don't need to be traversed. |
1229 | return; |
1230 | } |
1231 | match *self.kind() { |
1232 | TypeKind::Pointer(inner) | |
1233 | TypeKind::Reference(inner) | |
1234 | TypeKind::Array(inner, _) | |
1235 | TypeKind::Vector(inner, _) | |
1236 | TypeKind::BlockPointer(inner) | |
1237 | TypeKind::Alias(inner) | |
1238 | TypeKind::ResolvedTypeRef(inner) => { |
1239 | tracer.visit_kind(inner.into(), EdgeKind::TypeReference); |
1240 | } |
1241 | TypeKind::TemplateAlias(inner, ref template_params) => { |
1242 | tracer.visit_kind(inner.into(), EdgeKind::TypeReference); |
1243 | for param in template_params { |
1244 | tracer.visit_kind( |
1245 | param.into(), |
1246 | EdgeKind::TemplateParameterDefinition, |
1247 | ); |
1248 | } |
1249 | } |
1250 | TypeKind::TemplateInstantiation(ref inst) => { |
1251 | inst.trace(context, tracer, &()); |
1252 | } |
1253 | TypeKind::Comp(ref ci) => ci.trace(context, tracer, item), |
1254 | TypeKind::Function(ref sig) => sig.trace(context, tracer, &()), |
1255 | TypeKind::Enum(ref en) => { |
1256 | if let Some(repr) = en.repr() { |
1257 | tracer.visit(repr.into()); |
1258 | } |
1259 | } |
1260 | TypeKind::UnresolvedTypeRef(_, _, Some(id)) => { |
1261 | tracer.visit(id); |
1262 | } |
1263 | |
1264 | TypeKind::ObjCInterface(ref interface) => { |
1265 | interface.trace(context, tracer, &()); |
1266 | } |
1267 | |
1268 | // None of these variants have edges to other items and types. |
1269 | TypeKind::Opaque | |
1270 | TypeKind::UnresolvedTypeRef(_, _, None) | |
1271 | TypeKind::TypeParam | |
1272 | TypeKind::Void | |
1273 | TypeKind::NullPtr | |
1274 | TypeKind::Int(_) | |
1275 | TypeKind::Float(_) | |
1276 | TypeKind::Complex(_) | |
1277 | TypeKind::ObjCId | |
1278 | TypeKind::ObjCSel => {} |
1279 | } |
1280 | } |
1281 | } |
1282 | |