1 | //! Compound types (unions and structs) in our intermediate representation. |
2 | |
3 | use itertools::Itertools; |
4 | |
5 | use super::analysis::Sizedness; |
6 | use super::annotations::Annotations; |
7 | use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId}; |
8 | use super::dot::DotAttributes; |
9 | use super::item::{IsOpaque, Item}; |
10 | use super::layout::Layout; |
11 | use super::template::TemplateParameters; |
12 | use super::traversal::{EdgeKind, Trace, Tracer}; |
13 | use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT; |
14 | use crate::clang; |
15 | use crate::codegen::struct_layout::{align_to, bytes_from_bits_pow2}; |
16 | use crate::ir::derive::CanDeriveCopy; |
17 | use crate::parse::ParseError; |
18 | use crate::HashMap; |
19 | use crate::NonCopyUnionStyle; |
20 | use std::cmp; |
21 | use std::io; |
22 | use std::mem; |
23 | |
24 | /// The kind of compound type. |
25 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
26 | pub(crate) enum CompKind { |
27 | /// A struct. |
28 | Struct, |
29 | /// A union. |
30 | Union, |
31 | } |
32 | |
33 | /// The kind of C++ method. |
34 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
35 | pub(crate) enum MethodKind { |
36 | /// A constructor. We represent it as method for convenience, to avoid code |
37 | /// duplication. |
38 | Constructor, |
39 | /// A destructor. |
40 | Destructor, |
41 | /// A virtual destructor. |
42 | VirtualDestructor { |
43 | /// Whether it's pure virtual. |
44 | pure_virtual: bool, |
45 | }, |
46 | /// A static method. |
47 | Static, |
48 | /// A normal method. |
49 | Normal, |
50 | /// A virtual method. |
51 | Virtual { |
52 | /// Whether it's pure virtual. |
53 | pure_virtual: bool, |
54 | }, |
55 | } |
56 | |
57 | impl MethodKind { |
58 | /// Is this a destructor method? |
59 | pub(crate) fn is_destructor(&self) -> bool { |
60 | matches!( |
61 | *self, |
62 | MethodKind::Destructor | MethodKind::VirtualDestructor { .. } |
63 | ) |
64 | } |
65 | |
66 | /// Is this a pure virtual method? |
67 | pub(crate) fn is_pure_virtual(&self) -> bool { |
68 | match *self { |
69 | MethodKind::Virtual { pure_virtual: bool } | |
70 | MethodKind::VirtualDestructor { pure_virtual: bool } => pure_virtual, |
71 | _ => false, |
72 | } |
73 | } |
74 | } |
75 | |
76 | /// A struct representing a C++ method, either static, normal, or virtual. |
77 | #[derive (Debug)] |
78 | pub(crate) struct Method { |
79 | kind: MethodKind, |
80 | /// The signature of the method. Take into account this is not a `Type` |
81 | /// item, but a `Function` one. |
82 | /// |
83 | /// This is tricky and probably this field should be renamed. |
84 | signature: FunctionId, |
85 | is_const: bool, |
86 | } |
87 | |
88 | impl Method { |
89 | /// Construct a new `Method`. |
90 | pub(crate) fn new( |
91 | kind: MethodKind, |
92 | signature: FunctionId, |
93 | is_const: bool, |
94 | ) -> Self { |
95 | Method { |
96 | kind, |
97 | signature, |
98 | is_const, |
99 | } |
100 | } |
101 | |
102 | /// What kind of method is this? |
103 | pub(crate) fn kind(&self) -> MethodKind { |
104 | self.kind |
105 | } |
106 | |
107 | /// Is this a constructor? |
108 | pub(crate) fn is_constructor(&self) -> bool { |
109 | self.kind == MethodKind::Constructor |
110 | } |
111 | |
112 | /// Is this a virtual method? |
113 | pub(crate) fn is_virtual(&self) -> bool { |
114 | matches!( |
115 | self.kind, |
116 | MethodKind::Virtual { .. } | MethodKind::VirtualDestructor { .. } |
117 | ) |
118 | } |
119 | |
120 | /// Is this a static method? |
121 | pub(crate) fn is_static(&self) -> bool { |
122 | self.kind == MethodKind::Static |
123 | } |
124 | |
125 | /// Get the ID for the `Function` signature for this method. |
126 | pub(crate) fn signature(&self) -> FunctionId { |
127 | self.signature |
128 | } |
129 | |
130 | /// Is this a const qualified method? |
131 | pub(crate) fn is_const(&self) -> bool { |
132 | self.is_const |
133 | } |
134 | } |
135 | |
136 | /// Methods common to the various field types. |
137 | pub(crate) trait FieldMethods { |
138 | /// Get the name of this field. |
139 | fn name(&self) -> Option<&str>; |
140 | |
141 | /// Get the type of this field. |
142 | fn ty(&self) -> TypeId; |
143 | |
144 | /// Get the comment for this field. |
145 | fn comment(&self) -> Option<&str>; |
146 | |
147 | /// If this is a bitfield, how many bits does it need? |
148 | fn bitfield_width(&self) -> Option<u32>; |
149 | |
150 | /// Is this feild declared public? |
151 | fn is_public(&self) -> bool; |
152 | |
153 | /// Get the annotations for this field. |
154 | fn annotations(&self) -> &Annotations; |
155 | |
156 | /// The offset of the field (in bits) |
157 | fn offset(&self) -> Option<usize>; |
158 | } |
159 | |
160 | /// A contiguous set of logical bitfields that live within the same physical |
161 | /// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section |
162 | /// 2.4.II.1 in the Itanium C++ |
163 | /// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types). |
164 | #[derive (Debug)] |
165 | pub(crate) struct BitfieldUnit { |
166 | nth: usize, |
167 | layout: Layout, |
168 | bitfields: Vec<Bitfield>, |
169 | } |
170 | |
171 | impl BitfieldUnit { |
172 | /// Get the 1-based index of this bitfield unit within its containing |
173 | /// struct. Useful for generating a Rust struct's field name for this unit |
174 | /// of bitfields. |
175 | pub(crate) fn nth(&self) -> usize { |
176 | self.nth |
177 | } |
178 | |
179 | /// Get the layout within which these bitfields reside. |
180 | pub(crate) fn layout(&self) -> Layout { |
181 | self.layout |
182 | } |
183 | |
184 | /// Get the bitfields within this unit. |
185 | pub(crate) fn bitfields(&self) -> &[Bitfield] { |
186 | &self.bitfields |
187 | } |
188 | } |
189 | |
190 | /// A struct representing a C++ field. |
191 | #[derive (Debug)] |
192 | pub(crate) enum Field { |
193 | /// A normal data member. |
194 | DataMember(FieldData), |
195 | |
196 | /// A physical allocation unit containing many logical bitfields. |
197 | Bitfields(BitfieldUnit), |
198 | } |
199 | |
200 | impl Field { |
201 | /// Get this field's layout. |
202 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
203 | match *self { |
204 | Field::Bitfields(BitfieldUnit { layout: Layout, .. }) => Some(layout), |
205 | Field::DataMember(ref data: &FieldData) => { |
206 | ctx.resolve_type(type_id:data.ty).layout(ctx) |
207 | } |
208 | } |
209 | } |
210 | } |
211 | |
212 | impl Trace for Field { |
213 | type Extra = (); |
214 | |
215 | fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &()) |
216 | where |
217 | T: Tracer, |
218 | { |
219 | match *self { |
220 | Field::DataMember(ref data: &FieldData) => { |
221 | tracer.visit_kind(item:data.ty.into(), kind:EdgeKind::Field); |
222 | } |
223 | Field::Bitfields(BitfieldUnit { ref bitfields: &Vec, .. }) => { |
224 | for bf: &Bitfield in bitfields { |
225 | tracer.visit_kind(item:bf.ty().into(), kind:EdgeKind::Field); |
226 | } |
227 | } |
228 | } |
229 | } |
230 | } |
231 | |
232 | impl DotAttributes for Field { |
233 | fn dot_attributes<W>( |
234 | &self, |
235 | ctx: &BindgenContext, |
236 | out: &mut W, |
237 | ) -> io::Result<()> |
238 | where |
239 | W: io::Write, |
240 | { |
241 | match *self { |
242 | Field::DataMember(ref data) => data.dot_attributes(ctx, out), |
243 | Field::Bitfields(BitfieldUnit { |
244 | layout, |
245 | ref bitfields, |
246 | .. |
247 | }) => { |
248 | writeln!( |
249 | out, |
250 | r#"<tr> |
251 | <td>bitfield unit</td> |
252 | <td> |
253 | <table border="0"> |
254 | <tr> |
255 | <td>unit.size</td><td> {}</td> |
256 | </tr> |
257 | <tr> |
258 | <td>unit.align</td><td> {}</td> |
259 | </tr> |
260 | "# , |
261 | layout.size, layout.align |
262 | )?; |
263 | for bf in bitfields { |
264 | bf.dot_attributes(ctx, out)?; |
265 | } |
266 | writeln!(out, "</table></td></tr>" ) |
267 | } |
268 | } |
269 | } |
270 | } |
271 | |
272 | impl DotAttributes for FieldData { |
273 | fn dot_attributes<W>( |
274 | &self, |
275 | _ctx: &BindgenContext, |
276 | out: &mut W, |
277 | ) -> io::Result<()> |
278 | where |
279 | W: io::Write, |
280 | { |
281 | writeln!( |
282 | out, |
283 | "<tr><td> {}</td><td> {:?}</td></tr>" , |
284 | self.name().unwrap_or("(anonymous)" ), |
285 | self.ty() |
286 | ) |
287 | } |
288 | } |
289 | |
290 | impl DotAttributes for Bitfield { |
291 | fn dot_attributes<W>( |
292 | &self, |
293 | _ctx: &BindgenContext, |
294 | out: &mut W, |
295 | ) -> io::Result<()> |
296 | where |
297 | W: io::Write, |
298 | { |
299 | writeln!( |
300 | out, |
301 | "<tr><td> {} : {}</td><td> {:?}</td></tr>" , |
302 | self.name().unwrap_or("(anonymous)" ), |
303 | self.width(), |
304 | self.ty() |
305 | ) |
306 | } |
307 | } |
308 | |
309 | /// A logical bitfield within some physical bitfield allocation unit. |
310 | #[derive (Debug)] |
311 | pub(crate) struct Bitfield { |
312 | /// Index of the bit within this bitfield's allocation unit where this |
313 | /// bitfield's bits begin. |
314 | offset_into_unit: usize, |
315 | |
316 | /// The field data for this bitfield. |
317 | data: FieldData, |
318 | |
319 | /// Name of the generated Rust getter for this bitfield. |
320 | /// |
321 | /// Should be assigned before codegen. |
322 | getter_name: Option<String>, |
323 | |
324 | /// Name of the generated Rust setter for this bitfield. |
325 | /// |
326 | /// Should be assigned before codegen. |
327 | setter_name: Option<String>, |
328 | } |
329 | |
330 | impl Bitfield { |
331 | /// Construct a new bitfield. |
332 | fn new(offset_into_unit: usize, raw: RawField) -> Bitfield { |
333 | assert!(raw.bitfield_width().is_some()); |
334 | |
335 | Bitfield { |
336 | offset_into_unit, |
337 | data: raw.0, |
338 | getter_name: None, |
339 | setter_name: None, |
340 | } |
341 | } |
342 | |
343 | /// Get the index of the bit within this bitfield's allocation unit where |
344 | /// this bitfield begins. |
345 | pub(crate) fn offset_into_unit(&self) -> usize { |
346 | self.offset_into_unit |
347 | } |
348 | |
349 | /// Get the bit width of this bitfield. |
350 | pub(crate) fn width(&self) -> u32 { |
351 | self.data.bitfield_width().unwrap() |
352 | } |
353 | |
354 | /// Name of the generated Rust getter for this bitfield. |
355 | /// |
356 | /// Panics if called before assigning bitfield accessor names or if |
357 | /// this bitfield have no name. |
358 | pub(crate) fn getter_name(&self) -> &str { |
359 | assert!( |
360 | self.name().is_some(), |
361 | "`Bitfield::getter_name` called on anonymous field" |
362 | ); |
363 | self.getter_name.as_ref().expect( |
364 | "`Bitfield::getter_name` should only be called after\ |
365 | assigning bitfield accessor names" , |
366 | ) |
367 | } |
368 | |
369 | /// Name of the generated Rust setter for this bitfield. |
370 | /// |
371 | /// Panics if called before assigning bitfield accessor names or if |
372 | /// this bitfield have no name. |
373 | pub(crate) fn setter_name(&self) -> &str { |
374 | assert!( |
375 | self.name().is_some(), |
376 | "`Bitfield::setter_name` called on anonymous field" |
377 | ); |
378 | self.setter_name.as_ref().expect( |
379 | "`Bitfield::setter_name` should only be called\ |
380 | after assigning bitfield accessor names" , |
381 | ) |
382 | } |
383 | } |
384 | |
385 | impl FieldMethods for Bitfield { |
386 | fn name(&self) -> Option<&str> { |
387 | self.data.name() |
388 | } |
389 | |
390 | fn ty(&self) -> TypeId { |
391 | self.data.ty() |
392 | } |
393 | |
394 | fn comment(&self) -> Option<&str> { |
395 | self.data.comment() |
396 | } |
397 | |
398 | fn bitfield_width(&self) -> Option<u32> { |
399 | self.data.bitfield_width() |
400 | } |
401 | |
402 | fn is_public(&self) -> bool { |
403 | self.data.is_public() |
404 | } |
405 | |
406 | fn annotations(&self) -> &Annotations { |
407 | self.data.annotations() |
408 | } |
409 | |
410 | fn offset(&self) -> Option<usize> { |
411 | self.data.offset() |
412 | } |
413 | } |
414 | |
415 | /// A raw field might be either of a plain data member or a bitfield within a |
416 | /// bitfield allocation unit, but we haven't processed it and determined which |
417 | /// yet (which would involve allocating it into a bitfield unit if it is a |
418 | /// bitfield). |
419 | #[derive (Debug)] |
420 | struct RawField(FieldData); |
421 | |
422 | impl RawField { |
423 | /// Construct a new `RawField`. |
424 | fn new( |
425 | name: Option<String>, |
426 | ty: TypeId, |
427 | comment: Option<String>, |
428 | annotations: Option<Annotations>, |
429 | bitfield_width: Option<u32>, |
430 | public: bool, |
431 | offset: Option<usize>, |
432 | ) -> RawField { |
433 | RawField(FieldData { |
434 | name, |
435 | ty, |
436 | comment, |
437 | annotations: annotations.unwrap_or_default(), |
438 | bitfield_width, |
439 | public, |
440 | offset, |
441 | }) |
442 | } |
443 | } |
444 | |
445 | impl FieldMethods for RawField { |
446 | fn name(&self) -> Option<&str> { |
447 | self.0.name() |
448 | } |
449 | |
450 | fn ty(&self) -> TypeId { |
451 | self.0.ty() |
452 | } |
453 | |
454 | fn comment(&self) -> Option<&str> { |
455 | self.0.comment() |
456 | } |
457 | |
458 | fn bitfield_width(&self) -> Option<u32> { |
459 | self.0.bitfield_width() |
460 | } |
461 | |
462 | fn is_public(&self) -> bool { |
463 | self.0.is_public() |
464 | } |
465 | |
466 | fn annotations(&self) -> &Annotations { |
467 | self.0.annotations() |
468 | } |
469 | |
470 | fn offset(&self) -> Option<usize> { |
471 | self.0.offset() |
472 | } |
473 | } |
474 | |
475 | /// Convert the given ordered set of raw fields into a list of either plain data |
476 | /// members, and/or bitfield units containing multiple bitfields. |
477 | /// |
478 | /// If we do not have the layout for a bitfield's type, then we can't reliably |
479 | /// compute its allocation unit. In such cases, we return an error. |
480 | fn raw_fields_to_fields_and_bitfield_units<I>( |
481 | ctx: &BindgenContext, |
482 | raw_fields: I, |
483 | packed: bool, |
484 | ) -> Result<(Vec<Field>, bool), ()> |
485 | where |
486 | I: IntoIterator<Item = RawField>, |
487 | { |
488 | let mut raw_fields = raw_fields.into_iter().fuse().peekable(); |
489 | let mut fields = vec![]; |
490 | let mut bitfield_unit_count = 0; |
491 | |
492 | loop { |
493 | // While we have plain old data members, just keep adding them to our |
494 | // resulting fields. We introduce a scope here so that we can use |
495 | // `raw_fields` again after the `by_ref` iterator adaptor is dropped. |
496 | { |
497 | let non_bitfields = raw_fields |
498 | .by_ref() |
499 | .peeking_take_while(|f| f.bitfield_width().is_none()) |
500 | .map(|f| Field::DataMember(f.0)); |
501 | fields.extend(non_bitfields); |
502 | } |
503 | |
504 | // Now gather all the consecutive bitfields. Only consecutive bitfields |
505 | // may potentially share a bitfield allocation unit with each other in |
506 | // the Itanium C++ ABI. |
507 | let mut bitfields = raw_fields |
508 | .by_ref() |
509 | .peeking_take_while(|f| f.bitfield_width().is_some()) |
510 | .peekable(); |
511 | |
512 | if bitfields.peek().is_none() { |
513 | break; |
514 | } |
515 | |
516 | bitfields_to_allocation_units( |
517 | ctx, |
518 | &mut bitfield_unit_count, |
519 | &mut fields, |
520 | bitfields, |
521 | packed, |
522 | )?; |
523 | } |
524 | |
525 | assert!( |
526 | raw_fields.next().is_none(), |
527 | "The above loop should consume all items in `raw_fields`" |
528 | ); |
529 | |
530 | Ok((fields, bitfield_unit_count != 0)) |
531 | } |
532 | |
533 | /// Given a set of contiguous raw bitfields, group and allocate them into |
534 | /// (potentially multiple) bitfield units. |
535 | fn bitfields_to_allocation_units<E, I>( |
536 | ctx: &BindgenContext, |
537 | bitfield_unit_count: &mut usize, |
538 | fields: &mut E, |
539 | raw_bitfields: I, |
540 | packed: bool, |
541 | ) -> Result<(), ()> |
542 | where |
543 | E: Extend<Field>, |
544 | I: IntoIterator<Item = RawField>, |
545 | { |
546 | assert!(ctx.collected_typerefs()); |
547 | |
548 | // NOTE: What follows is reverse-engineered from LLVM's |
549 | // lib/AST/RecordLayoutBuilder.cpp |
550 | // |
551 | // FIXME(emilio): There are some differences between Microsoft and the |
552 | // Itanium ABI, but we'll ignore those and stick to Itanium for now. |
553 | // |
554 | // Also, we need to handle packed bitfields and stuff. |
555 | // |
556 | // TODO(emilio): Take into account C++'s wide bitfields, and |
557 | // packing, sigh. |
558 | |
559 | fn flush_allocation_unit<E>( |
560 | fields: &mut E, |
561 | bitfield_unit_count: &mut usize, |
562 | unit_size_in_bits: usize, |
563 | unit_align_in_bits: usize, |
564 | bitfields: Vec<Bitfield>, |
565 | packed: bool, |
566 | ) where |
567 | E: Extend<Field>, |
568 | { |
569 | *bitfield_unit_count += 1; |
570 | let align = if packed { |
571 | 1 |
572 | } else { |
573 | bytes_from_bits_pow2(unit_align_in_bits) |
574 | }; |
575 | let size = align_to(unit_size_in_bits, 8) / 8; |
576 | let layout = Layout::new(size, align); |
577 | fields.extend(Some(Field::Bitfields(BitfieldUnit { |
578 | nth: *bitfield_unit_count, |
579 | layout, |
580 | bitfields, |
581 | }))); |
582 | } |
583 | |
584 | let mut max_align = 0; |
585 | let mut unfilled_bits_in_unit = 0; |
586 | let mut unit_size_in_bits = 0; |
587 | let mut unit_align = 0; |
588 | let mut bitfields_in_unit = vec![]; |
589 | |
590 | // TODO(emilio): Determine this from attributes or pragma ms_struct |
591 | // directives. Also, perhaps we should check if the target is MSVC? |
592 | const is_ms_struct: bool = false; |
593 | |
594 | for bitfield in raw_bitfields { |
595 | let bitfield_width = bitfield.bitfield_width().unwrap() as usize; |
596 | let bitfield_layout = |
597 | ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?; |
598 | let bitfield_size = bitfield_layout.size; |
599 | let bitfield_align = bitfield_layout.align; |
600 | |
601 | let mut offset = unit_size_in_bits; |
602 | if !packed { |
603 | if is_ms_struct { |
604 | if unit_size_in_bits != 0 && |
605 | (bitfield_width == 0 || |
606 | bitfield_width > unfilled_bits_in_unit) |
607 | { |
608 | // We've reached the end of this allocation unit, so flush it |
609 | // and its bitfields. |
610 | unit_size_in_bits = |
611 | align_to(unit_size_in_bits, unit_align * 8); |
612 | flush_allocation_unit( |
613 | fields, |
614 | bitfield_unit_count, |
615 | unit_size_in_bits, |
616 | unit_align, |
617 | mem::take(&mut bitfields_in_unit), |
618 | packed, |
619 | ); |
620 | |
621 | // Now we're working on a fresh bitfield allocation unit, so reset |
622 | // the current unit size and alignment. |
623 | offset = 0; |
624 | unit_align = 0; |
625 | } |
626 | } else if offset != 0 && |
627 | (bitfield_width == 0 || |
628 | (offset & (bitfield_align * 8 - 1)) + bitfield_width > |
629 | bitfield_size * 8) |
630 | { |
631 | offset = align_to(offset, bitfield_align * 8); |
632 | } |
633 | } |
634 | |
635 | // According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not |
636 | // affect the alignment of a structure or union". This makes sense: such |
637 | // bit-fields are only used for padding, and we can't perform an |
638 | // un-aligned read of something we can't read because we can't even name |
639 | // it. |
640 | if bitfield.name().is_some() { |
641 | max_align = cmp::max(max_align, bitfield_align); |
642 | |
643 | // NB: The `bitfield_width` here is completely, absolutely |
644 | // intentional. Alignment of the allocation unit is based on the |
645 | // maximum bitfield width, not (directly) on the bitfields' types' |
646 | // alignment. |
647 | unit_align = cmp::max(unit_align, bitfield_width); |
648 | } |
649 | |
650 | // Always keep all bitfields around. While unnamed bitifields are used |
651 | // for padding (and usually not needed hereafter), large unnamed |
652 | // bitfields over their types size cause weird allocation size behavior from clang. |
653 | // Therefore, all bitfields needed to be kept around in order to check for this |
654 | // and make the struct opaque in this case |
655 | bitfields_in_unit.push(Bitfield::new(offset, bitfield)); |
656 | |
657 | unit_size_in_bits = offset + bitfield_width; |
658 | |
659 | // Compute what the physical unit's final size would be given what we |
660 | // have seen so far, and use that to compute how many bits are still |
661 | // available in the unit. |
662 | let data_size = align_to(unit_size_in_bits, bitfield_align * 8); |
663 | unfilled_bits_in_unit = data_size - unit_size_in_bits; |
664 | } |
665 | |
666 | if unit_size_in_bits != 0 { |
667 | // Flush the last allocation unit and its bitfields. |
668 | flush_allocation_unit( |
669 | fields, |
670 | bitfield_unit_count, |
671 | unit_size_in_bits, |
672 | unit_align, |
673 | bitfields_in_unit, |
674 | packed, |
675 | ); |
676 | } |
677 | |
678 | Ok(()) |
679 | } |
680 | |
681 | /// A compound structure's fields are initially raw, and have bitfields that |
682 | /// have not been grouped into allocation units. During this time, the fields |
683 | /// are mutable and we build them up during parsing. |
684 | /// |
685 | /// Then, once resolving typerefs is completed, we compute all structs' fields' |
686 | /// bitfield allocation units, and they remain frozen and immutable forever |
687 | /// after. |
688 | #[derive (Debug)] |
689 | enum CompFields { |
690 | Before(Vec<RawField>), |
691 | After { |
692 | fields: Vec<Field>, |
693 | has_bitfield_units: bool, |
694 | }, |
695 | Error, |
696 | } |
697 | |
698 | impl Default for CompFields { |
699 | fn default() -> CompFields { |
700 | CompFields::Before(vec![]) |
701 | } |
702 | } |
703 | |
704 | impl CompFields { |
705 | fn append_raw_field(&mut self, raw: RawField) { |
706 | match *self { |
707 | CompFields::Before(ref mut raws) => { |
708 | raws.push(raw); |
709 | } |
710 | _ => { |
711 | panic!( |
712 | "Must not append new fields after computing bitfield allocation units" |
713 | ); |
714 | } |
715 | } |
716 | } |
717 | |
718 | fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) { |
719 | let raws = match *self { |
720 | CompFields::Before(ref mut raws) => mem::take(raws), |
721 | _ => { |
722 | panic!("Already computed bitfield units" ); |
723 | } |
724 | }; |
725 | |
726 | let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed); |
727 | |
728 | match result { |
729 | Ok((fields, has_bitfield_units)) => { |
730 | *self = CompFields::After { |
731 | fields, |
732 | has_bitfield_units, |
733 | }; |
734 | } |
735 | Err(()) => { |
736 | *self = CompFields::Error; |
737 | } |
738 | } |
739 | } |
740 | |
741 | fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) { |
742 | let fields = match *self { |
743 | CompFields::After { ref mut fields, .. } => fields, |
744 | // Nothing to do here. |
745 | CompFields::Error => return, |
746 | CompFields::Before(_) => { |
747 | panic!("Not yet computed bitfield units." ); |
748 | } |
749 | }; |
750 | |
751 | fn has_method( |
752 | methods: &[Method], |
753 | ctx: &BindgenContext, |
754 | name: &str, |
755 | ) -> bool { |
756 | methods.iter().any(|method| { |
757 | let method_name = ctx.resolve_func(method.signature()).name(); |
758 | method_name == name || ctx.rust_mangle(method_name) == name |
759 | }) |
760 | } |
761 | |
762 | struct AccessorNamesPair { |
763 | getter: String, |
764 | setter: String, |
765 | } |
766 | |
767 | let mut accessor_names: HashMap<String, AccessorNamesPair> = fields |
768 | .iter() |
769 | .flat_map(|field| match *field { |
770 | Field::Bitfields(ref bu) => &*bu.bitfields, |
771 | Field::DataMember(_) => &[], |
772 | }) |
773 | .filter_map(|bitfield| bitfield.name()) |
774 | .map(|bitfield_name| { |
775 | let bitfield_name = bitfield_name.to_string(); |
776 | let getter = { |
777 | let mut getter = |
778 | ctx.rust_mangle(&bitfield_name).to_string(); |
779 | if has_method(methods, ctx, &getter) { |
780 | getter.push_str("_bindgen_bitfield" ); |
781 | } |
782 | getter |
783 | }; |
784 | let setter = { |
785 | let setter = format!("set_ {}" , bitfield_name); |
786 | let mut setter = ctx.rust_mangle(&setter).to_string(); |
787 | if has_method(methods, ctx, &setter) { |
788 | setter.push_str("_bindgen_bitfield" ); |
789 | } |
790 | setter |
791 | }; |
792 | (bitfield_name, AccessorNamesPair { getter, setter }) |
793 | }) |
794 | .collect(); |
795 | |
796 | let mut anon_field_counter = 0; |
797 | for field in fields.iter_mut() { |
798 | match *field { |
799 | Field::DataMember(FieldData { ref mut name, .. }) => { |
800 | if name.is_some() { |
801 | continue; |
802 | } |
803 | |
804 | anon_field_counter += 1; |
805 | *name = Some(format!( |
806 | " {}{}" , |
807 | ctx.options().anon_fields_prefix, |
808 | anon_field_counter |
809 | )); |
810 | } |
811 | Field::Bitfields(ref mut bu) => { |
812 | for bitfield in &mut bu.bitfields { |
813 | if bitfield.name().is_none() { |
814 | continue; |
815 | } |
816 | |
817 | if let Some(AccessorNamesPair { getter, setter }) = |
818 | accessor_names.remove(bitfield.name().unwrap()) |
819 | { |
820 | bitfield.getter_name = Some(getter); |
821 | bitfield.setter_name = Some(setter); |
822 | } |
823 | } |
824 | } |
825 | } |
826 | } |
827 | } |
828 | } |
829 | |
830 | impl Trace for CompFields { |
831 | type Extra = (); |
832 | |
833 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &()) |
834 | where |
835 | T: Tracer, |
836 | { |
837 | match *self { |
838 | CompFields::Error => {} |
839 | CompFields::Before(ref fields: &Vec) => { |
840 | for f: &RawField in fields { |
841 | tracer.visit_kind(item:f.ty().into(), kind:EdgeKind::Field); |
842 | } |
843 | } |
844 | CompFields::After { ref fields: &Vec, .. } => { |
845 | for f: &Field in fields { |
846 | f.trace(context, tracer, &()); |
847 | } |
848 | } |
849 | } |
850 | } |
851 | } |
852 | |
853 | /// Common data shared across different field types. |
854 | #[derive (Clone, Debug)] |
855 | pub(crate) struct FieldData { |
856 | /// The name of the field, empty if it's an unnamed bitfield width. |
857 | name: Option<String>, |
858 | |
859 | /// The inner type. |
860 | ty: TypeId, |
861 | |
862 | /// The doc comment on the field if any. |
863 | comment: Option<String>, |
864 | |
865 | /// Annotations for this field, or the default. |
866 | annotations: Annotations, |
867 | |
868 | /// If this field is a bitfield, and how many bits does it contain if it is. |
869 | bitfield_width: Option<u32>, |
870 | |
871 | /// If the C++ field is declared `public` |
872 | public: bool, |
873 | |
874 | /// The offset of the field (in bits) |
875 | offset: Option<usize>, |
876 | } |
877 | |
878 | impl FieldMethods for FieldData { |
879 | fn name(&self) -> Option<&str> { |
880 | self.name.as_deref() |
881 | } |
882 | |
883 | fn ty(&self) -> TypeId { |
884 | self.ty |
885 | } |
886 | |
887 | fn comment(&self) -> Option<&str> { |
888 | self.comment.as_deref() |
889 | } |
890 | |
891 | fn bitfield_width(&self) -> Option<u32> { |
892 | self.bitfield_width |
893 | } |
894 | |
895 | fn is_public(&self) -> bool { |
896 | self.public |
897 | } |
898 | |
899 | fn annotations(&self) -> &Annotations { |
900 | &self.annotations |
901 | } |
902 | |
903 | fn offset(&self) -> Option<usize> { |
904 | self.offset |
905 | } |
906 | } |
907 | |
908 | /// The kind of inheritance a base class is using. |
909 | #[derive (Clone, Debug, PartialEq, Eq)] |
910 | pub(crate) enum BaseKind { |
911 | /// Normal inheritance, like: |
912 | /// |
913 | /// ```cpp |
914 | /// class A : public B {}; |
915 | /// ``` |
916 | Normal, |
917 | /// Virtual inheritance, like: |
918 | /// |
919 | /// ```cpp |
920 | /// class A: public virtual B {}; |
921 | /// ``` |
922 | Virtual, |
923 | } |
924 | |
925 | /// A base class. |
926 | #[derive (Clone, Debug)] |
927 | pub(crate) struct Base { |
928 | /// The type of this base class. |
929 | pub(crate) ty: TypeId, |
930 | /// The kind of inheritance we're doing. |
931 | pub(crate) kind: BaseKind, |
932 | /// Name of the field in which this base should be stored. |
933 | pub(crate) field_name: String, |
934 | /// Whether this base is inherited from publically. |
935 | pub(crate) is_pub: bool, |
936 | } |
937 | |
938 | impl Base { |
939 | /// Whether this base class is inheriting virtually. |
940 | pub(crate) fn is_virtual(&self) -> bool { |
941 | self.kind == BaseKind::Virtual |
942 | } |
943 | |
944 | /// Whether this base class should have it's own field for storage. |
945 | pub(crate) fn requires_storage(&self, ctx: &BindgenContext) -> bool { |
946 | // Virtual bases are already taken into account by the vtable |
947 | // pointer. |
948 | // |
949 | // FIXME(emilio): Is this always right? |
950 | if self.is_virtual() { |
951 | return false; |
952 | } |
953 | |
954 | // NB: We won't include zero-sized types in our base chain because they |
955 | // would contribute to our size given the dummy field we insert for |
956 | // zero-sized types. |
957 | if self.ty.is_zero_sized(ctx) { |
958 | return false; |
959 | } |
960 | |
961 | true |
962 | } |
963 | |
964 | /// Whether this base is inherited from publically. |
965 | pub(crate) fn is_public(&self) -> bool { |
966 | self.is_pub |
967 | } |
968 | } |
969 | |
970 | /// A compound type. |
971 | /// |
972 | /// Either a struct or union, a compound type is built up from the combination |
973 | /// of fields which also are associated with their own (potentially compound) |
974 | /// type. |
975 | #[derive (Debug)] |
976 | pub(crate) struct CompInfo { |
977 | /// Whether this is a struct or a union. |
978 | kind: CompKind, |
979 | |
980 | /// The members of this struct or union. |
981 | fields: CompFields, |
982 | |
983 | /// The abstract template parameters of this class. Note that these are NOT |
984 | /// concrete template arguments, and should always be a |
985 | /// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see |
986 | /// `TypeKind::TemplateInstantiation`. |
987 | template_params: Vec<TypeId>, |
988 | |
989 | /// The method declarations inside this class, if in C++ mode. |
990 | methods: Vec<Method>, |
991 | |
992 | /// The different constructors this struct or class contains. |
993 | constructors: Vec<FunctionId>, |
994 | |
995 | /// The destructor of this type. The bool represents whether this destructor |
996 | /// is virtual. |
997 | destructor: Option<(MethodKind, FunctionId)>, |
998 | |
999 | /// Vector of classes this one inherits from. |
1000 | base_members: Vec<Base>, |
1001 | |
1002 | /// The inner types that were declared inside this class, in something like: |
1003 | /// |
1004 | /// class Foo { |
1005 | /// typedef int FooTy; |
1006 | /// struct Bar { |
1007 | /// int baz; |
1008 | /// }; |
1009 | /// } |
1010 | /// |
1011 | /// static Foo::Bar const = {3}; |
1012 | inner_types: Vec<TypeId>, |
1013 | |
1014 | /// Set of static constants declared inside this class. |
1015 | inner_vars: Vec<VarId>, |
1016 | |
1017 | /// Whether this type should generate an vtable (TODO: Should be able to |
1018 | /// look at the virtual methods and ditch this field). |
1019 | has_own_virtual_method: bool, |
1020 | |
1021 | /// Whether this type has destructor. |
1022 | has_destructor: bool, |
1023 | |
1024 | /// Whether this type has a base type with more than one member. |
1025 | /// |
1026 | /// TODO: We should be able to compute this. |
1027 | has_nonempty_base: bool, |
1028 | |
1029 | /// If this type has a template parameter which is not a type (e.g.: a |
1030 | /// size_t) |
1031 | has_non_type_template_params: bool, |
1032 | |
1033 | /// Whether this type has a bit field member whose width couldn't be |
1034 | /// evaluated (e.g. if it depends on a template parameter). We generate an |
1035 | /// opaque type in this case. |
1036 | has_unevaluable_bit_field_width: bool, |
1037 | |
1038 | /// Whether we saw `__attribute__((packed))` on or within this type. |
1039 | packed_attr: bool, |
1040 | |
1041 | /// Used to know if we've found an opaque attribute that could cause us to |
1042 | /// generate a type with invalid layout. This is explicitly used to avoid us |
1043 | /// generating bad alignments when parsing types like max_align_t. |
1044 | /// |
1045 | /// It's not clear what the behavior should be here, if generating the item |
1046 | /// and pray, or behave as an opaque type. |
1047 | found_unknown_attr: bool, |
1048 | |
1049 | /// Used to indicate when a struct has been forward declared. Usually used |
1050 | /// in headers so that APIs can't modify them directly. |
1051 | is_forward_declaration: bool, |
1052 | } |
1053 | |
1054 | impl CompInfo { |
1055 | /// Construct a new compound type. |
1056 | pub(crate) fn new(kind: CompKind) -> Self { |
1057 | CompInfo { |
1058 | kind, |
1059 | fields: CompFields::default(), |
1060 | template_params: vec![], |
1061 | methods: vec![], |
1062 | constructors: vec![], |
1063 | destructor: None, |
1064 | base_members: vec![], |
1065 | inner_types: vec![], |
1066 | inner_vars: vec![], |
1067 | has_own_virtual_method: false, |
1068 | has_destructor: false, |
1069 | has_nonempty_base: false, |
1070 | has_non_type_template_params: false, |
1071 | has_unevaluable_bit_field_width: false, |
1072 | packed_attr: false, |
1073 | found_unknown_attr: false, |
1074 | is_forward_declaration: false, |
1075 | } |
1076 | } |
1077 | |
1078 | /// Compute the layout of this type. |
1079 | /// |
1080 | /// This is called as a fallback under some circumstances where LLVM doesn't |
1081 | /// give us the correct layout. |
1082 | /// |
1083 | /// If we're a union without known layout, we try to compute it from our |
1084 | /// members. This is not ideal, but clang fails to report the size for these |
1085 | /// kind of unions, see test/headers/template_union.hpp |
1086 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
1087 | // We can't do better than clang here, sorry. |
1088 | if self.kind == CompKind::Struct { |
1089 | return None; |
1090 | } |
1091 | |
1092 | // By definition, we don't have the right layout information here if |
1093 | // we're a forward declaration. |
1094 | if self.is_forward_declaration() { |
1095 | return None; |
1096 | } |
1097 | |
1098 | // empty union case |
1099 | if !self.has_fields() { |
1100 | return None; |
1101 | } |
1102 | |
1103 | let mut max_size = 0; |
1104 | // Don't allow align(0) |
1105 | let mut max_align = 1; |
1106 | self.each_known_field_layout(ctx, |layout| { |
1107 | max_size = cmp::max(max_size, layout.size); |
1108 | max_align = cmp::max(max_align, layout.align); |
1109 | }); |
1110 | |
1111 | Some(Layout::new(max_size, max_align)) |
1112 | } |
1113 | |
1114 | /// Get this type's set of fields. |
1115 | pub(crate) fn fields(&self) -> &[Field] { |
1116 | match self.fields { |
1117 | CompFields::Error => &[], |
1118 | CompFields::After { ref fields, .. } => fields, |
1119 | CompFields::Before(..) => { |
1120 | panic!("Should always have computed bitfield units first" ); |
1121 | } |
1122 | } |
1123 | } |
1124 | |
1125 | fn has_fields(&self) -> bool { |
1126 | match self.fields { |
1127 | CompFields::Error => false, |
1128 | CompFields::After { ref fields, .. } => !fields.is_empty(), |
1129 | CompFields::Before(ref raw_fields) => !raw_fields.is_empty(), |
1130 | } |
1131 | } |
1132 | |
1133 | fn each_known_field_layout( |
1134 | &self, |
1135 | ctx: &BindgenContext, |
1136 | mut callback: impl FnMut(Layout), |
1137 | ) { |
1138 | match self.fields { |
1139 | CompFields::Error => {} |
1140 | CompFields::After { ref fields, .. } => { |
1141 | for field in fields.iter() { |
1142 | if let Some(layout) = field.layout(ctx) { |
1143 | callback(layout); |
1144 | } |
1145 | } |
1146 | } |
1147 | CompFields::Before(ref raw_fields) => { |
1148 | for field in raw_fields.iter() { |
1149 | let field_ty = ctx.resolve_type(field.0.ty); |
1150 | if let Some(layout) = field_ty.layout(ctx) { |
1151 | callback(layout); |
1152 | } |
1153 | } |
1154 | } |
1155 | } |
1156 | } |
1157 | |
1158 | fn has_bitfields(&self) -> bool { |
1159 | match self.fields { |
1160 | CompFields::Error => false, |
1161 | CompFields::After { |
1162 | has_bitfield_units, .. |
1163 | } => has_bitfield_units, |
1164 | CompFields::Before(_) => { |
1165 | panic!("Should always have computed bitfield units first" ); |
1166 | } |
1167 | } |
1168 | } |
1169 | |
1170 | /// Returns whether we have a too large bitfield unit, in which case we may |
1171 | /// not be able to derive some of the things we should be able to normally |
1172 | /// derive. |
1173 | pub(crate) fn has_too_large_bitfield_unit(&self) -> bool { |
1174 | if !self.has_bitfields() { |
1175 | return false; |
1176 | } |
1177 | self.fields().iter().any(|field| match *field { |
1178 | Field::DataMember(..) => false, |
1179 | Field::Bitfields(ref unit) => { |
1180 | unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT |
1181 | } |
1182 | }) |
1183 | } |
1184 | |
1185 | /// Does this type have any template parameters that aren't types |
1186 | /// (e.g. int)? |
1187 | pub(crate) fn has_non_type_template_params(&self) -> bool { |
1188 | self.has_non_type_template_params |
1189 | } |
1190 | |
1191 | /// Do we see a virtual function during parsing? |
1192 | /// Get the has_own_virtual_method boolean. |
1193 | pub(crate) fn has_own_virtual_method(&self) -> bool { |
1194 | self.has_own_virtual_method |
1195 | } |
1196 | |
1197 | /// Did we see a destructor when parsing this type? |
1198 | pub(crate) fn has_own_destructor(&self) -> bool { |
1199 | self.has_destructor |
1200 | } |
1201 | |
1202 | /// Get this type's set of methods. |
1203 | pub(crate) fn methods(&self) -> &[Method] { |
1204 | &self.methods |
1205 | } |
1206 | |
1207 | /// Get this type's set of constructors. |
1208 | pub(crate) fn constructors(&self) -> &[FunctionId] { |
1209 | &self.constructors |
1210 | } |
1211 | |
1212 | /// Get this type's destructor. |
1213 | pub(crate) fn destructor(&self) -> Option<(MethodKind, FunctionId)> { |
1214 | self.destructor |
1215 | } |
1216 | |
1217 | /// What kind of compound type is this? |
1218 | pub(crate) fn kind(&self) -> CompKind { |
1219 | self.kind |
1220 | } |
1221 | |
1222 | /// Is this a union? |
1223 | pub(crate) fn is_union(&self) -> bool { |
1224 | self.kind() == CompKind::Union |
1225 | } |
1226 | |
1227 | /// The set of types that this one inherits from. |
1228 | pub(crate) fn base_members(&self) -> &[Base] { |
1229 | &self.base_members |
1230 | } |
1231 | |
1232 | /// Construct a new compound type from a Clang type. |
1233 | pub(crate) fn from_ty( |
1234 | potential_id: ItemId, |
1235 | ty: &clang::Type, |
1236 | location: Option<clang::Cursor>, |
1237 | ctx: &mut BindgenContext, |
1238 | ) -> Result<Self, ParseError> { |
1239 | use clang_sys::*; |
1240 | assert!( |
1241 | ty.template_args().is_none(), |
1242 | "We handle template instantiations elsewhere" |
1243 | ); |
1244 | |
1245 | let mut cursor = ty.declaration(); |
1246 | let mut kind = Self::kind_from_cursor(&cursor); |
1247 | if kind.is_err() { |
1248 | if let Some(location) = location { |
1249 | kind = Self::kind_from_cursor(&location); |
1250 | cursor = location; |
1251 | } |
1252 | } |
1253 | |
1254 | let kind = kind?; |
1255 | |
1256 | debug!("CompInfo::from_ty( {:?}, {:?})" , kind, cursor); |
1257 | |
1258 | let mut ci = CompInfo::new(kind); |
1259 | ci.is_forward_declaration = |
1260 | location.map_or(true, |cur| match cur.kind() { |
1261 | CXCursor_ParmDecl => true, |
1262 | CXCursor_StructDecl | CXCursor_UnionDecl | |
1263 | CXCursor_ClassDecl => !cur.is_definition(), |
1264 | _ => false, |
1265 | }); |
1266 | |
1267 | let mut maybe_anonymous_struct_field = None; |
1268 | cursor.visit(|cur| { |
1269 | if cur.kind() != CXCursor_FieldDecl { |
1270 | if let Some((ty, clang_ty, public, offset)) = |
1271 | maybe_anonymous_struct_field.take() |
1272 | { |
1273 | if cur.kind() == CXCursor_TypedefDecl && |
1274 | cur.typedef_type().unwrap().canonical_type() == |
1275 | clang_ty |
1276 | { |
1277 | // Typedefs of anonymous structs appear later in the ast |
1278 | // than the struct itself, that would otherwise be an |
1279 | // anonymous field. Detect that case here, and do |
1280 | // nothing. |
1281 | } else { |
1282 | let field = RawField::new( |
1283 | None, ty, None, None, None, public, offset, |
1284 | ); |
1285 | ci.fields.append_raw_field(field); |
1286 | } |
1287 | } |
1288 | } |
1289 | |
1290 | match cur.kind() { |
1291 | CXCursor_FieldDecl => { |
1292 | if let Some((ty, clang_ty, public, offset)) = |
1293 | maybe_anonymous_struct_field.take() |
1294 | { |
1295 | let mut used = false; |
1296 | cur.visit(|child| { |
1297 | if child.cur_type() == clang_ty { |
1298 | used = true; |
1299 | } |
1300 | CXChildVisit_Continue |
1301 | }); |
1302 | |
1303 | if !used { |
1304 | let field = RawField::new( |
1305 | None, ty, None, None, None, public, offset, |
1306 | ); |
1307 | ci.fields.append_raw_field(field); |
1308 | } |
1309 | } |
1310 | |
1311 | let bit_width = if cur.is_bit_field() { |
1312 | let width = cur.bit_width(); |
1313 | |
1314 | // Make opaque type if the bit width couldn't be |
1315 | // evaluated. |
1316 | if width.is_none() { |
1317 | ci.has_unevaluable_bit_field_width = true; |
1318 | return CXChildVisit_Break; |
1319 | } |
1320 | |
1321 | width |
1322 | } else { |
1323 | None |
1324 | }; |
1325 | |
1326 | let field_type = Item::from_ty_or_ref( |
1327 | cur.cur_type(), |
1328 | cur, |
1329 | Some(potential_id), |
1330 | ctx, |
1331 | ); |
1332 | |
1333 | let comment = cur.raw_comment(); |
1334 | let annotations = Annotations::new(&cur); |
1335 | let name = cur.spelling(); |
1336 | let is_public = cur.public_accessible(); |
1337 | let offset = cur.offset_of_field().ok(); |
1338 | |
1339 | // Name can be empty if there are bitfields, for example, |
1340 | // see tests/headers/struct_with_bitfields.h |
1341 | assert!( |
1342 | !name.is_empty() || bit_width.is_some(), |
1343 | "Empty field name?" |
1344 | ); |
1345 | |
1346 | let name = if name.is_empty() { None } else { Some(name) }; |
1347 | |
1348 | let field = RawField::new( |
1349 | name, |
1350 | field_type, |
1351 | comment, |
1352 | annotations, |
1353 | bit_width, |
1354 | is_public, |
1355 | offset, |
1356 | ); |
1357 | ci.fields.append_raw_field(field); |
1358 | |
1359 | // No we look for things like attributes and stuff. |
1360 | cur.visit(|cur| { |
1361 | if cur.kind() == CXCursor_UnexposedAttr { |
1362 | ci.found_unknown_attr = true; |
1363 | } |
1364 | CXChildVisit_Continue |
1365 | }); |
1366 | } |
1367 | CXCursor_UnexposedAttr => { |
1368 | ci.found_unknown_attr = true; |
1369 | } |
1370 | CXCursor_EnumDecl | |
1371 | CXCursor_TypeAliasDecl | |
1372 | CXCursor_TypeAliasTemplateDecl | |
1373 | CXCursor_TypedefDecl | |
1374 | CXCursor_StructDecl | |
1375 | CXCursor_UnionDecl | |
1376 | CXCursor_ClassTemplate | |
1377 | CXCursor_ClassDecl => { |
1378 | // We can find non-semantic children here, clang uses a |
1379 | // StructDecl to note incomplete structs that haven't been |
1380 | // forward-declared before, see [1]. |
1381 | // |
1382 | // Also, clang seems to scope struct definitions inside |
1383 | // unions, and other named struct definitions inside other |
1384 | // structs to the whole translation unit. |
1385 | // |
1386 | // Let's just assume that if the cursor we've found is a |
1387 | // definition, it's a valid inner type. |
1388 | // |
1389 | // [1]: https://github.com/rust-lang/rust-bindgen/issues/482 |
1390 | let is_inner_struct = |
1391 | cur.semantic_parent() == cursor || cur.is_definition(); |
1392 | if !is_inner_struct { |
1393 | return CXChildVisit_Continue; |
1394 | } |
1395 | |
1396 | // Even if this is a definition, we may not be the semantic |
1397 | // parent, see #1281. |
1398 | let inner = Item::parse(cur, Some(potential_id), ctx) |
1399 | .expect("Inner ClassDecl" ); |
1400 | |
1401 | // If we avoided recursion parsing this type (in |
1402 | // `Item::from_ty_with_id()`), then this might not be a |
1403 | // valid type ID, so check and gracefully handle this. |
1404 | if ctx.resolve_item_fallible(inner).is_some() { |
1405 | let inner = inner.expect_type_id(ctx); |
1406 | |
1407 | ci.inner_types.push(inner); |
1408 | |
1409 | // A declaration of an union or a struct without name |
1410 | // could also be an unnamed field, unfortunately. |
1411 | if cur.is_anonymous() && cur.kind() != CXCursor_EnumDecl |
1412 | { |
1413 | let ty = cur.cur_type(); |
1414 | let public = cur.public_accessible(); |
1415 | let offset = cur.offset_of_field().ok(); |
1416 | |
1417 | maybe_anonymous_struct_field = |
1418 | Some((inner, ty, public, offset)); |
1419 | } |
1420 | } |
1421 | } |
1422 | CXCursor_PackedAttr => { |
1423 | ci.packed_attr = true; |
1424 | } |
1425 | CXCursor_TemplateTypeParameter => { |
1426 | let param = Item::type_param(None, cur, ctx).expect( |
1427 | "Item::type_param should't fail when pointing \ |
1428 | at a TemplateTypeParameter" , |
1429 | ); |
1430 | ci.template_params.push(param); |
1431 | } |
1432 | CXCursor_CXXBaseSpecifier => { |
1433 | let is_virtual_base = cur.is_virtual_base(); |
1434 | ci.has_own_virtual_method |= is_virtual_base; |
1435 | |
1436 | let kind = if is_virtual_base { |
1437 | BaseKind::Virtual |
1438 | } else { |
1439 | BaseKind::Normal |
1440 | }; |
1441 | |
1442 | let field_name = match ci.base_members.len() { |
1443 | 0 => "_base" .into(), |
1444 | n => format!("_base_ {}" , n), |
1445 | }; |
1446 | let type_id = |
1447 | Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx); |
1448 | ci.base_members.push(Base { |
1449 | ty: type_id, |
1450 | kind, |
1451 | field_name, |
1452 | is_pub: cur.access_specifier() == |
1453 | clang_sys::CX_CXXPublic, |
1454 | }); |
1455 | } |
1456 | CXCursor_Constructor | CXCursor_Destructor | |
1457 | CXCursor_CXXMethod => { |
1458 | let is_virtual = cur.method_is_virtual(); |
1459 | let is_static = cur.method_is_static(); |
1460 | debug_assert!(!(is_static && is_virtual), "How?" ); |
1461 | |
1462 | ci.has_destructor |= cur.kind() == CXCursor_Destructor; |
1463 | ci.has_own_virtual_method |= is_virtual; |
1464 | |
1465 | // This used to not be here, but then I tried generating |
1466 | // stylo bindings with this (without path filters), and |
1467 | // cried a lot with a method in gfx/Point.h |
1468 | // (ToUnknownPoint), that somehow was causing the same type |
1469 | // to be inserted in the map two times. |
1470 | // |
1471 | // I couldn't make a reduced test case, but anyway... |
1472 | // Methods of template functions not only used to be inlined, |
1473 | // but also instantiated, and we wouldn't be able to call |
1474 | // them, so just bail out. |
1475 | if !ci.template_params.is_empty() { |
1476 | return CXChildVisit_Continue; |
1477 | } |
1478 | |
1479 | // NB: This gets us an owned `Function`, not a |
1480 | // `FunctionSig`. |
1481 | let signature = |
1482 | match Item::parse(cur, Some(potential_id), ctx) { |
1483 | Ok(item) |
1484 | if ctx |
1485 | .resolve_item(item) |
1486 | .kind() |
1487 | .is_function() => |
1488 | { |
1489 | item |
1490 | } |
1491 | _ => return CXChildVisit_Continue, |
1492 | }; |
1493 | |
1494 | let signature = signature.expect_function_id(ctx); |
1495 | |
1496 | match cur.kind() { |
1497 | CXCursor_Constructor => { |
1498 | ci.constructors.push(signature); |
1499 | } |
1500 | CXCursor_Destructor => { |
1501 | let kind = if is_virtual { |
1502 | MethodKind::VirtualDestructor { |
1503 | pure_virtual: cur.method_is_pure_virtual(), |
1504 | } |
1505 | } else { |
1506 | MethodKind::Destructor |
1507 | }; |
1508 | ci.destructor = Some((kind, signature)); |
1509 | } |
1510 | CXCursor_CXXMethod => { |
1511 | let is_const = cur.method_is_const(); |
1512 | let method_kind = if is_static { |
1513 | MethodKind::Static |
1514 | } else if is_virtual { |
1515 | MethodKind::Virtual { |
1516 | pure_virtual: cur.method_is_pure_virtual(), |
1517 | } |
1518 | } else { |
1519 | MethodKind::Normal |
1520 | }; |
1521 | |
1522 | let method = |
1523 | Method::new(method_kind, signature, is_const); |
1524 | |
1525 | ci.methods.push(method); |
1526 | } |
1527 | _ => unreachable!("How can we see this here?" ), |
1528 | } |
1529 | } |
1530 | CXCursor_NonTypeTemplateParameter => { |
1531 | ci.has_non_type_template_params = true; |
1532 | } |
1533 | CXCursor_VarDecl => { |
1534 | let linkage = cur.linkage(); |
1535 | if linkage != CXLinkage_External && |
1536 | linkage != CXLinkage_UniqueExternal |
1537 | { |
1538 | return CXChildVisit_Continue; |
1539 | } |
1540 | |
1541 | let visibility = cur.visibility(); |
1542 | if visibility != CXVisibility_Default { |
1543 | return CXChildVisit_Continue; |
1544 | } |
1545 | |
1546 | if let Ok(item) = Item::parse(cur, Some(potential_id), ctx) |
1547 | { |
1548 | ci.inner_vars.push(item.as_var_id_unchecked()); |
1549 | } |
1550 | } |
1551 | // Intentionally not handled |
1552 | CXCursor_CXXAccessSpecifier | |
1553 | CXCursor_CXXFinalAttr | |
1554 | CXCursor_FunctionTemplate | |
1555 | CXCursor_ConversionFunction => {} |
1556 | _ => { |
1557 | warn!( |
1558 | "unhandled comp member ` {}` (kind {:?}) in ` {}` ( {})" , |
1559 | cur.spelling(), |
1560 | clang::kind_to_str(cur.kind()), |
1561 | cursor.spelling(), |
1562 | cur.location() |
1563 | ); |
1564 | } |
1565 | } |
1566 | CXChildVisit_Continue |
1567 | }); |
1568 | |
1569 | if let Some((ty, _, public, offset)) = maybe_anonymous_struct_field { |
1570 | let field = |
1571 | RawField::new(None, ty, None, None, None, public, offset); |
1572 | ci.fields.append_raw_field(field); |
1573 | } |
1574 | |
1575 | Ok(ci) |
1576 | } |
1577 | |
1578 | fn kind_from_cursor( |
1579 | cursor: &clang::Cursor, |
1580 | ) -> Result<CompKind, ParseError> { |
1581 | use clang_sys::*; |
1582 | Ok(match cursor.kind() { |
1583 | CXCursor_UnionDecl => CompKind::Union, |
1584 | CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct, |
1585 | CXCursor_CXXBaseSpecifier | |
1586 | CXCursor_ClassTemplatePartialSpecialization | |
1587 | CXCursor_ClassTemplate => match cursor.template_kind() { |
1588 | CXCursor_UnionDecl => CompKind::Union, |
1589 | _ => CompKind::Struct, |
1590 | }, |
1591 | _ => { |
1592 | warn!("Unknown kind for comp type: {:?}" , cursor); |
1593 | return Err(ParseError::Continue); |
1594 | } |
1595 | }) |
1596 | } |
1597 | |
1598 | /// Get the set of types that were declared within this compound type |
1599 | /// (e.g. nested class definitions). |
1600 | pub(crate) fn inner_types(&self) -> &[TypeId] { |
1601 | &self.inner_types |
1602 | } |
1603 | |
1604 | /// Get the set of static variables declared within this compound type. |
1605 | pub(crate) fn inner_vars(&self) -> &[VarId] { |
1606 | &self.inner_vars |
1607 | } |
1608 | |
1609 | /// Have we found a field with an opaque type that could potentially mess up |
1610 | /// the layout of this compound type? |
1611 | pub(crate) fn found_unknown_attr(&self) -> bool { |
1612 | self.found_unknown_attr |
1613 | } |
1614 | |
1615 | /// Is this compound type packed? |
1616 | pub(crate) fn is_packed( |
1617 | &self, |
1618 | ctx: &BindgenContext, |
1619 | layout: Option<&Layout>, |
1620 | ) -> bool { |
1621 | if self.packed_attr { |
1622 | return true; |
1623 | } |
1624 | |
1625 | // Even though `libclang` doesn't expose `#pragma packed(...)`, we can |
1626 | // detect it through its effects. |
1627 | if let Some(parent_layout) = layout { |
1628 | let mut packed = false; |
1629 | self.each_known_field_layout(ctx, |layout| { |
1630 | packed = packed || layout.align > parent_layout.align; |
1631 | }); |
1632 | if packed { |
1633 | info!("Found a struct that was defined within `#pragma packed(...)`" ); |
1634 | return true; |
1635 | } |
1636 | |
1637 | if self.has_own_virtual_method && parent_layout.align == 1 { |
1638 | return true; |
1639 | } |
1640 | } |
1641 | |
1642 | false |
1643 | } |
1644 | |
1645 | /// Return true if a compound type is "naturally packed". This means we can exclude the |
1646 | /// "packed" attribute without changing the layout. |
1647 | /// This is useful for types that need an "align(N)" attribute since rustc won't compile |
1648 | /// structs that have both of those attributes. |
1649 | pub(crate) fn already_packed(&self, ctx: &BindgenContext) -> Option<bool> { |
1650 | let mut total_size: usize = 0; |
1651 | |
1652 | for field in self.fields().iter() { |
1653 | let layout = field.layout(ctx)?; |
1654 | |
1655 | if layout.align != 0 && total_size % layout.align != 0 { |
1656 | return Some(false); |
1657 | } |
1658 | |
1659 | total_size += layout.size; |
1660 | } |
1661 | |
1662 | Some(true) |
1663 | } |
1664 | |
1665 | /// Returns true if compound type has been forward declared |
1666 | pub(crate) fn is_forward_declaration(&self) -> bool { |
1667 | self.is_forward_declaration |
1668 | } |
1669 | |
1670 | /// Compute this compound structure's bitfield allocation units. |
1671 | pub(crate) fn compute_bitfield_units( |
1672 | &mut self, |
1673 | ctx: &BindgenContext, |
1674 | layout: Option<&Layout>, |
1675 | ) { |
1676 | let packed = self.is_packed(ctx, layout); |
1677 | self.fields.compute_bitfield_units(ctx, packed) |
1678 | } |
1679 | |
1680 | /// Assign for each anonymous field a generated name. |
1681 | pub(crate) fn deanonymize_fields(&mut self, ctx: &BindgenContext) { |
1682 | self.fields.deanonymize_fields(ctx, &self.methods); |
1683 | } |
1684 | |
1685 | /// Returns whether the current union can be represented as a Rust `union` |
1686 | /// |
1687 | /// Requirements: |
1688 | /// 1. Current RustTarget allows for `untagged_union` |
1689 | /// 2. Each field can derive `Copy` or we use ManuallyDrop. |
1690 | /// 3. It's not zero-sized. |
1691 | /// |
1692 | /// Second boolean returns whether all fields can be copied (and thus |
1693 | /// ManuallyDrop is not needed). |
1694 | pub(crate) fn is_rust_union( |
1695 | &self, |
1696 | ctx: &BindgenContext, |
1697 | layout: Option<&Layout>, |
1698 | name: &str, |
1699 | ) -> (bool, bool) { |
1700 | if !self.is_union() { |
1701 | return (false, false); |
1702 | } |
1703 | |
1704 | if !ctx.options().untagged_union { |
1705 | return (false, false); |
1706 | } |
1707 | |
1708 | if self.is_forward_declaration() { |
1709 | return (false, false); |
1710 | } |
1711 | |
1712 | let union_style = if ctx.options().bindgen_wrapper_union.matches(name) { |
1713 | NonCopyUnionStyle::BindgenWrapper |
1714 | } else if ctx.options().manually_drop_union.matches(name) { |
1715 | NonCopyUnionStyle::ManuallyDrop |
1716 | } else { |
1717 | ctx.options().default_non_copy_union_style |
1718 | }; |
1719 | |
1720 | let all_can_copy = self.fields().iter().all(|f| match *f { |
1721 | Field::DataMember(ref field_data) => { |
1722 | field_data.ty().can_derive_copy(ctx) |
1723 | } |
1724 | Field::Bitfields(_) => true, |
1725 | }); |
1726 | |
1727 | if !all_can_copy && union_style == NonCopyUnionStyle::BindgenWrapper { |
1728 | return (false, false); |
1729 | } |
1730 | |
1731 | if layout.map_or(false, |l| l.size == 0) { |
1732 | return (false, false); |
1733 | } |
1734 | |
1735 | (true, all_can_copy) |
1736 | } |
1737 | } |
1738 | |
1739 | impl DotAttributes for CompInfo { |
1740 | fn dot_attributes<W>( |
1741 | &self, |
1742 | ctx: &BindgenContext, |
1743 | out: &mut W, |
1744 | ) -> io::Result<()> |
1745 | where |
1746 | W: io::Write, |
1747 | { |
1748 | writeln!(out, "<tr><td>CompKind</td><td> {:?}</td></tr>" , self.kind)?; |
1749 | |
1750 | if self.has_own_virtual_method { |
1751 | writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>" )?; |
1752 | } |
1753 | |
1754 | if self.has_destructor { |
1755 | writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>" )?; |
1756 | } |
1757 | |
1758 | if self.has_nonempty_base { |
1759 | writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>" )?; |
1760 | } |
1761 | |
1762 | if self.has_non_type_template_params { |
1763 | writeln!( |
1764 | out, |
1765 | "<tr><td>has_non_type_template_params</td><td>true</td></tr>" |
1766 | )?; |
1767 | } |
1768 | |
1769 | if self.packed_attr { |
1770 | writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>" )?; |
1771 | } |
1772 | |
1773 | if self.is_forward_declaration { |
1774 | writeln!( |
1775 | out, |
1776 | "<tr><td>is_forward_declaration</td><td>true</td></tr>" |
1777 | )?; |
1778 | } |
1779 | |
1780 | if !self.fields().is_empty() { |
1781 | writeln!(out, r#"<tr><td>fields</td><td><table border="0">"# )?; |
1782 | for field in self.fields() { |
1783 | field.dot_attributes(ctx, out)?; |
1784 | } |
1785 | writeln!(out, "</table></td></tr>" )?; |
1786 | } |
1787 | |
1788 | Ok(()) |
1789 | } |
1790 | } |
1791 | |
1792 | impl IsOpaque for CompInfo { |
1793 | type Extra = Option<Layout>; |
1794 | |
1795 | fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool { |
1796 | if self.has_non_type_template_params || |
1797 | self.has_unevaluable_bit_field_width |
1798 | { |
1799 | return true; |
1800 | } |
1801 | |
1802 | // When we do not have the layout for a bitfield's type (for example, it |
1803 | // is a type parameter), then we can't compute bitfield units. We are |
1804 | // left with no choice but to make the whole struct opaque, or else we |
1805 | // might generate structs with incorrect sizes and alignments. |
1806 | if let CompFields::Error = self.fields { |
1807 | return true; |
1808 | } |
1809 | |
1810 | // Bitfields with a width that is larger than their unit's width have |
1811 | // some strange things going on, and the best we can do is make the |
1812 | // whole struct opaque. |
1813 | if self.fields().iter().any(|f| match *f { |
1814 | Field::DataMember(_) => false, |
1815 | Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| { |
1816 | let bitfield_layout = ctx |
1817 | .resolve_type(bf.ty()) |
1818 | .layout(ctx) |
1819 | .expect("Bitfield without layout? Gah!" ); |
1820 | bf.width() / 8 > bitfield_layout.size as u32 |
1821 | }), |
1822 | }) { |
1823 | return true; |
1824 | } |
1825 | |
1826 | if !ctx.options().rust_features().repr_packed_n { |
1827 | // If we don't have `#[repr(packed(N)]`, the best we can |
1828 | // do is make this struct opaque. |
1829 | // |
1830 | // See https://github.com/rust-lang/rust-bindgen/issues/537 and |
1831 | // https://github.com/rust-lang/rust/issues/33158 |
1832 | if self.is_packed(ctx, layout.as_ref()) && |
1833 | layout.map_or(false, |l| l.align > 1) |
1834 | { |
1835 | warn!("Found a type that is both packed and aligned to greater than \ |
1836 | 1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \ |
1837 | are treating it as opaque. You may wish to set bindgen's rust target \ |
1838 | version to 1.33 or later to enable `#[repr(packed(N))]` support." ); |
1839 | return true; |
1840 | } |
1841 | } |
1842 | |
1843 | false |
1844 | } |
1845 | } |
1846 | |
1847 | impl TemplateParameters for CompInfo { |
1848 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
1849 | self.template_params.clone() |
1850 | } |
1851 | } |
1852 | |
1853 | impl Trace for CompInfo { |
1854 | type Extra = Item; |
1855 | |
1856 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
1857 | where |
1858 | T: Tracer, |
1859 | { |
1860 | for p in item.all_template_params(context) { |
1861 | tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition); |
1862 | } |
1863 | |
1864 | for ty in self.inner_types() { |
1865 | tracer.visit_kind(ty.into(), EdgeKind::InnerType); |
1866 | } |
1867 | |
1868 | for &var in self.inner_vars() { |
1869 | tracer.visit_kind(var.into(), EdgeKind::InnerVar); |
1870 | } |
1871 | |
1872 | for method in self.methods() { |
1873 | tracer.visit_kind(method.signature.into(), EdgeKind::Method); |
1874 | } |
1875 | |
1876 | if let Some((_kind, signature)) = self.destructor() { |
1877 | tracer.visit_kind(signature.into(), EdgeKind::Destructor); |
1878 | } |
1879 | |
1880 | for ctor in self.constructors() { |
1881 | tracer.visit_kind(ctor.into(), EdgeKind::Constructor); |
1882 | } |
1883 | |
1884 | // Base members and fields are not generated for opaque types (but all |
1885 | // of the above things are) so stop here. |
1886 | if item.is_opaque(context, &()) { |
1887 | return; |
1888 | } |
1889 | |
1890 | for base in self.base_members() { |
1891 | tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember); |
1892 | } |
1893 | |
1894 | self.fields.trace(context, tracer, &()); |
1895 | } |
1896 | } |
1897 | |