1 | //! A higher level Clang API built on top of the generated bindings in the |
2 | //! `clang_sys` module. |
3 | |
4 | #![allow (non_upper_case_globals, dead_code)] |
5 | #![deny (clippy::missing_docs_in_private_items)] |
6 | |
7 | use crate::ir::context::BindgenContext; |
8 | use clang_sys::*; |
9 | use std::cmp; |
10 | |
11 | use std::ffi::{CStr, CString}; |
12 | use std::fmt; |
13 | use std::hash::Hash; |
14 | use std::hash::Hasher; |
15 | use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong}; |
16 | use std::{mem, ptr, slice}; |
17 | |
18 | /// Type representing a clang attribute. |
19 | /// |
20 | /// Values of this type can be used to check for different attributes using the `has_attrs` |
21 | /// function. |
22 | pub(crate) struct Attribute { |
23 | name: &'static [u8], |
24 | kind: Option<CXCursorKind>, |
25 | token_kind: CXTokenKind, |
26 | } |
27 | |
28 | impl Attribute { |
29 | /// A `warn_unused_result` attribute. |
30 | pub(crate) const MUST_USE: Self = Self { |
31 | name: b"warn_unused_result" , |
32 | // FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9). |
33 | kind: Some(440), |
34 | token_kind: CXToken_Identifier, |
35 | }; |
36 | |
37 | /// A `_Noreturn` attribute. |
38 | pub(crate) const NO_RETURN: Self = Self { |
39 | name: b"_Noreturn" , |
40 | kind: None, |
41 | token_kind: CXToken_Keyword, |
42 | }; |
43 | |
44 | /// A `[[noreturn]]` attribute. |
45 | pub(crate) const NO_RETURN_CPP: Self = Self { |
46 | name: b"noreturn" , |
47 | kind: None, |
48 | token_kind: CXToken_Identifier, |
49 | }; |
50 | } |
51 | |
52 | /// A cursor into the Clang AST, pointing to an AST node. |
53 | /// |
54 | /// We call the AST node pointed to by the cursor the cursor's "referent". |
55 | #[derive (Copy, Clone)] |
56 | pub(crate) struct Cursor { |
57 | x: CXCursor, |
58 | } |
59 | |
60 | impl fmt::Debug for Cursor { |
61 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
62 | write!( |
63 | fmt, |
64 | "Cursor( {} kind: {}, loc: {}, usr: {:?})" , |
65 | self.spelling(), |
66 | kind_to_str(self.kind()), |
67 | self.location(), |
68 | self.usr() |
69 | ) |
70 | } |
71 | } |
72 | |
73 | impl Cursor { |
74 | /// Get the Unified Symbol Resolution for this cursor's referent, if |
75 | /// available. |
76 | /// |
77 | /// The USR can be used to compare entities across translation units. |
78 | pub(crate) fn usr(&self) -> Option<String> { |
79 | let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) }; |
80 | if s.is_empty() { |
81 | None |
82 | } else { |
83 | Some(s) |
84 | } |
85 | } |
86 | |
87 | /// Is this cursor's referent a declaration? |
88 | pub(crate) fn is_declaration(&self) -> bool { |
89 | unsafe { clang_isDeclaration(self.kind()) != 0 } |
90 | } |
91 | |
92 | /// Is this cursor's referent an anonymous record or so? |
93 | pub(crate) fn is_anonymous(&self) -> bool { |
94 | unsafe { clang_Cursor_isAnonymous(self.x) != 0 } |
95 | } |
96 | |
97 | /// Get this cursor's referent's spelling. |
98 | pub(crate) fn spelling(&self) -> String { |
99 | unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) } |
100 | } |
101 | |
102 | /// Get this cursor's referent's display name. |
103 | /// |
104 | /// This is not necessarily a valid identifier. It includes extra |
105 | /// information, such as parameters for a function, etc. |
106 | pub(crate) fn display_name(&self) -> String { |
107 | unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) } |
108 | } |
109 | |
110 | /// Get the mangled name of this cursor's referent. |
111 | pub(crate) fn mangling(&self) -> String { |
112 | unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) } |
113 | } |
114 | |
115 | /// Gets the C++ manglings for this cursor, or an error if the manglings |
116 | /// are not available. |
117 | pub(crate) fn cxx_manglings(&self) -> Result<Vec<String>, ()> { |
118 | use clang_sys::*; |
119 | unsafe { |
120 | let manglings = clang_Cursor_getCXXManglings(self.x); |
121 | if manglings.is_null() { |
122 | return Err(()); |
123 | } |
124 | let count = (*manglings).Count as usize; |
125 | |
126 | let mut result = Vec::with_capacity(count); |
127 | for i in 0..count { |
128 | let string_ptr = (*manglings).Strings.add(i); |
129 | result.push(cxstring_to_string_leaky(*string_ptr)); |
130 | } |
131 | clang_disposeStringSet(manglings); |
132 | Ok(result) |
133 | } |
134 | } |
135 | |
136 | /// Returns whether the cursor refers to a built-in definition. |
137 | pub(crate) fn is_builtin(&self) -> bool { |
138 | let (file, _, _, _) = self.location().location(); |
139 | file.name().is_none() |
140 | } |
141 | |
142 | /// Get the `Cursor` for this cursor's referent's lexical parent. |
143 | /// |
144 | /// The lexical parent is the parent of the definition. The semantic parent |
145 | /// is the parent of the declaration. Generally, the lexical parent doesn't |
146 | /// have any effect on semantics, while the semantic parent does. |
147 | /// |
148 | /// In the following snippet, the `Foo` class would be the semantic parent |
149 | /// of the out-of-line `method` definition, while the lexical parent is the |
150 | /// translation unit. |
151 | /// |
152 | /// ```c++ |
153 | /// class Foo { |
154 | /// void method(); |
155 | /// }; |
156 | /// |
157 | /// void Foo::method() { /* ... */ } |
158 | /// ``` |
159 | pub(crate) fn lexical_parent(&self) -> Cursor { |
160 | unsafe { |
161 | Cursor { |
162 | x: clang_getCursorLexicalParent(self.x), |
163 | } |
164 | } |
165 | } |
166 | |
167 | /// Get the referent's semantic parent, if one is available. |
168 | /// |
169 | /// See documentation for `lexical_parent` for details on semantic vs |
170 | /// lexical parents. |
171 | pub(crate) fn fallible_semantic_parent(&self) -> Option<Cursor> { |
172 | let sp = unsafe { |
173 | Cursor { |
174 | x: clang_getCursorSemanticParent(self.x), |
175 | } |
176 | }; |
177 | if sp == *self || !sp.is_valid() { |
178 | return None; |
179 | } |
180 | Some(sp) |
181 | } |
182 | |
183 | /// Get the referent's semantic parent. |
184 | /// |
185 | /// See documentation for `lexical_parent` for details on semantic vs |
186 | /// lexical parents. |
187 | pub(crate) fn semantic_parent(&self) -> Cursor { |
188 | self.fallible_semantic_parent().unwrap() |
189 | } |
190 | |
191 | /// Return the number of template arguments used by this cursor's referent, |
192 | /// if the referent is either a template instantiation. Returns `None` |
193 | /// otherwise. |
194 | /// |
195 | /// NOTE: This may not return `Some` for partial template specializations, |
196 | /// see #193 and #194. |
197 | pub(crate) fn num_template_args(&self) -> Option<u32> { |
198 | // XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while |
199 | // `clang_Cursor_getNumTemplateArguments` is totally unreliable. |
200 | // Therefore, try former first, and only fallback to the latter if we |
201 | // have to. |
202 | self.cur_type() |
203 | .num_template_args() |
204 | .or_else(|| { |
205 | let n: c_int = |
206 | unsafe { clang_Cursor_getNumTemplateArguments(self.x) }; |
207 | |
208 | if n >= 0 { |
209 | Some(n as u32) |
210 | } else { |
211 | debug_assert_eq!(n, -1); |
212 | None |
213 | } |
214 | }) |
215 | .or_else(|| { |
216 | let canonical = self.canonical(); |
217 | if canonical != *self { |
218 | canonical.num_template_args() |
219 | } else { |
220 | None |
221 | } |
222 | }) |
223 | } |
224 | |
225 | /// Get a cursor pointing to this referent's containing translation unit. |
226 | /// |
227 | /// Note that we shouldn't create a `TranslationUnit` struct here, because |
228 | /// bindgen assumes there will only be one of them alive at a time, and |
229 | /// disposes it on drop. That can change if this would be required, but I |
230 | /// think we can survive fine without it. |
231 | pub(crate) fn translation_unit(&self) -> Cursor { |
232 | assert!(self.is_valid()); |
233 | unsafe { |
234 | let tu = clang_Cursor_getTranslationUnit(self.x); |
235 | let cursor = Cursor { |
236 | x: clang_getTranslationUnitCursor(tu), |
237 | }; |
238 | assert!(cursor.is_valid()); |
239 | cursor |
240 | } |
241 | } |
242 | |
243 | /// Is the referent a top level construct? |
244 | pub(crate) fn is_toplevel(&self) -> bool { |
245 | let mut semantic_parent = self.fallible_semantic_parent(); |
246 | |
247 | while semantic_parent.is_some() && |
248 | (semantic_parent.unwrap().kind() == CXCursor_Namespace || |
249 | semantic_parent.unwrap().kind() == |
250 | CXCursor_NamespaceAlias || |
251 | semantic_parent.unwrap().kind() == CXCursor_NamespaceRef) |
252 | { |
253 | semantic_parent = |
254 | semantic_parent.unwrap().fallible_semantic_parent(); |
255 | } |
256 | |
257 | let tu = self.translation_unit(); |
258 | // Yes, this can happen with, e.g., macro definitions. |
259 | semantic_parent == tu.fallible_semantic_parent() |
260 | } |
261 | |
262 | /// There are a few kinds of types that we need to treat specially, mainly |
263 | /// not tracking the type declaration but the location of the cursor, given |
264 | /// clang doesn't expose a proper declaration for these types. |
265 | pub(crate) fn is_template_like(&self) -> bool { |
266 | matches!( |
267 | self.kind(), |
268 | CXCursor_ClassTemplate | |
269 | CXCursor_ClassTemplatePartialSpecialization | |
270 | CXCursor_TypeAliasTemplateDecl |
271 | ) |
272 | } |
273 | |
274 | /// Is this Cursor pointing to a function-like macro definition? |
275 | pub(crate) fn is_macro_function_like(&self) -> bool { |
276 | unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 } |
277 | } |
278 | |
279 | /// Get the kind of referent this cursor is pointing to. |
280 | pub(crate) fn kind(&self) -> CXCursorKind { |
281 | self.x.kind |
282 | } |
283 | |
284 | /// Returns true if the cursor is a definition |
285 | pub(crate) fn is_definition(&self) -> bool { |
286 | unsafe { clang_isCursorDefinition(self.x) != 0 } |
287 | } |
288 | |
289 | /// Is the referent a template specialization? |
290 | pub(crate) fn is_template_specialization(&self) -> bool { |
291 | self.specialized().is_some() |
292 | } |
293 | |
294 | /// Is the referent a fully specialized template specialization without any |
295 | /// remaining free template arguments? |
296 | pub(crate) fn is_fully_specialized_template(&self) -> bool { |
297 | self.is_template_specialization() && |
298 | self.kind() != CXCursor_ClassTemplatePartialSpecialization && |
299 | self.num_template_args().unwrap_or(0) > 0 |
300 | } |
301 | |
302 | /// Is the referent a template specialization that still has remaining free |
303 | /// template arguments? |
304 | pub(crate) fn is_in_non_fully_specialized_template(&self) -> bool { |
305 | if self.is_toplevel() { |
306 | return false; |
307 | } |
308 | |
309 | let parent = self.semantic_parent(); |
310 | if parent.is_fully_specialized_template() { |
311 | return false; |
312 | } |
313 | |
314 | if !parent.is_template_like() { |
315 | return parent.is_in_non_fully_specialized_template(); |
316 | } |
317 | |
318 | true |
319 | } |
320 | |
321 | /// Is the referent any kind of template parameter? |
322 | pub(crate) fn is_template_parameter(&self) -> bool { |
323 | matches!( |
324 | self.kind(), |
325 | CXCursor_TemplateTemplateParameter | |
326 | CXCursor_TemplateTypeParameter | |
327 | CXCursor_NonTypeTemplateParameter |
328 | ) |
329 | } |
330 | |
331 | /// Does the referent's type or value depend on a template parameter? |
332 | pub(crate) fn is_dependent_on_template_parameter(&self) -> bool { |
333 | fn visitor( |
334 | found_template_parameter: &mut bool, |
335 | cur: Cursor, |
336 | ) -> CXChildVisitResult { |
337 | // If we found a template parameter, it is dependent. |
338 | if cur.is_template_parameter() { |
339 | *found_template_parameter = true; |
340 | return CXChildVisit_Break; |
341 | } |
342 | |
343 | // Get the referent and traverse it as well. |
344 | if let Some(referenced) = cur.referenced() { |
345 | if referenced.is_template_parameter() { |
346 | *found_template_parameter = true; |
347 | return CXChildVisit_Break; |
348 | } |
349 | |
350 | referenced |
351 | .visit(|next| visitor(found_template_parameter, next)); |
352 | if *found_template_parameter { |
353 | return CXChildVisit_Break; |
354 | } |
355 | } |
356 | |
357 | // Continue traversing the AST at the original cursor. |
358 | CXChildVisit_Recurse |
359 | } |
360 | |
361 | if self.is_template_parameter() { |
362 | return true; |
363 | } |
364 | |
365 | let mut found_template_parameter = false; |
366 | self.visit(|next| visitor(&mut found_template_parameter, next)); |
367 | |
368 | found_template_parameter |
369 | } |
370 | |
371 | /// Is this cursor pointing a valid referent? |
372 | pub(crate) fn is_valid(&self) -> bool { |
373 | unsafe { clang_isInvalid(self.kind()) == 0 } |
374 | } |
375 | |
376 | /// Get the source location for the referent. |
377 | pub(crate) fn location(&self) -> SourceLocation { |
378 | unsafe { |
379 | SourceLocation { |
380 | x: clang_getCursorLocation(self.x), |
381 | } |
382 | } |
383 | } |
384 | |
385 | /// Get the source location range for the referent. |
386 | pub(crate) fn extent(&self) -> CXSourceRange { |
387 | unsafe { clang_getCursorExtent(self.x) } |
388 | } |
389 | |
390 | /// Get the raw declaration comment for this referent, if one exists. |
391 | pub(crate) fn raw_comment(&self) -> Option<String> { |
392 | let s = unsafe { |
393 | cxstring_into_string(clang_Cursor_getRawCommentText(self.x)) |
394 | }; |
395 | if s.is_empty() { |
396 | None |
397 | } else { |
398 | Some(s) |
399 | } |
400 | } |
401 | |
402 | /// Get the referent's parsed comment. |
403 | pub(crate) fn comment(&self) -> Comment { |
404 | unsafe { |
405 | Comment { |
406 | x: clang_Cursor_getParsedComment(self.x), |
407 | } |
408 | } |
409 | } |
410 | |
411 | /// Get the referent's type. |
412 | pub(crate) fn cur_type(&self) -> Type { |
413 | unsafe { |
414 | Type { |
415 | x: clang_getCursorType(self.x), |
416 | } |
417 | } |
418 | } |
419 | |
420 | /// Given that this cursor's referent is a reference to another type, or is |
421 | /// a declaration, get the cursor pointing to the referenced type or type of |
422 | /// the declared thing. |
423 | pub(crate) fn definition(&self) -> Option<Cursor> { |
424 | unsafe { |
425 | let ret = Cursor { |
426 | x: clang_getCursorDefinition(self.x), |
427 | }; |
428 | |
429 | if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound { |
430 | Some(ret) |
431 | } else { |
432 | None |
433 | } |
434 | } |
435 | } |
436 | |
437 | /// Given that this cursor's referent is reference type, get the cursor |
438 | /// pointing to the referenced type. |
439 | pub(crate) fn referenced(&self) -> Option<Cursor> { |
440 | unsafe { |
441 | let ret = Cursor { |
442 | x: clang_getCursorReferenced(self.x), |
443 | }; |
444 | |
445 | if ret.is_valid() { |
446 | Some(ret) |
447 | } else { |
448 | None |
449 | } |
450 | } |
451 | } |
452 | |
453 | /// Get the canonical cursor for this referent. |
454 | /// |
455 | /// Many types can be declared multiple times before finally being properly |
456 | /// defined. This method allows us to get the canonical cursor for the |
457 | /// referent type. |
458 | pub(crate) fn canonical(&self) -> Cursor { |
459 | unsafe { |
460 | Cursor { |
461 | x: clang_getCanonicalCursor(self.x), |
462 | } |
463 | } |
464 | } |
465 | |
466 | /// Given that this cursor points to either a template specialization or a |
467 | /// template instantiation, get a cursor pointing to the template definition |
468 | /// that is being specialized. |
469 | pub(crate) fn specialized(&self) -> Option<Cursor> { |
470 | unsafe { |
471 | let ret = Cursor { |
472 | x: clang_getSpecializedCursorTemplate(self.x), |
473 | }; |
474 | if ret.is_valid() { |
475 | Some(ret) |
476 | } else { |
477 | None |
478 | } |
479 | } |
480 | } |
481 | |
482 | /// Assuming that this cursor's referent is a template declaration, get the |
483 | /// kind of cursor that would be generated for its specializations. |
484 | pub(crate) fn template_kind(&self) -> CXCursorKind { |
485 | unsafe { clang_getTemplateCursorKind(self.x) } |
486 | } |
487 | |
488 | /// Traverse this cursor's referent and its children. |
489 | /// |
490 | /// Call the given function on each AST node traversed. |
491 | pub(crate) fn visit<Visitor>(&self, mut visitor: Visitor) |
492 | where |
493 | Visitor: FnMut(Cursor) -> CXChildVisitResult, |
494 | { |
495 | let data = &mut visitor as *mut Visitor; |
496 | unsafe { |
497 | clang_visitChildren(self.x, visit_children::<Visitor>, data.cast()); |
498 | } |
499 | } |
500 | |
501 | /// Traverse all of this cursor's children, sorted by where they appear in source code. |
502 | /// |
503 | /// Call the given function on each AST node traversed. |
504 | pub(crate) fn visit_sorted<Visitor>( |
505 | &self, |
506 | ctx: &mut BindgenContext, |
507 | mut visitor: Visitor, |
508 | ) where |
509 | Visitor: FnMut(&mut BindgenContext, Cursor), |
510 | { |
511 | // FIXME(#2556): The current source order stuff doesn't account well for different levels |
512 | // of includes, or includes that show up at the same byte offset because they are passed in |
513 | // via CLI. |
514 | const SOURCE_ORDER_ENABLED: bool = false; |
515 | if !SOURCE_ORDER_ENABLED { |
516 | return self.visit(|c| { |
517 | visitor(ctx, c); |
518 | CXChildVisit_Continue |
519 | }); |
520 | } |
521 | |
522 | let mut children = self.collect_children(); |
523 | for child in &children { |
524 | if child.kind() == CXCursor_InclusionDirective { |
525 | if let Some(included_file) = child.get_included_file_name() { |
526 | let location = child.location(); |
527 | let (source_file, _, _, offset) = location.location(); |
528 | |
529 | if let Some(source_file) = source_file.name() { |
530 | ctx.add_include(source_file, included_file, offset); |
531 | } |
532 | } |
533 | } |
534 | } |
535 | children |
536 | .sort_by(|child1, child2| child1.cmp_by_source_order(child2, ctx)); |
537 | for child in children { |
538 | visitor(ctx, child); |
539 | } |
540 | } |
541 | |
542 | /// Compare source order of two cursors, considering `#include` directives. |
543 | /// |
544 | /// Built-in items provided by the compiler (which don't have a source file), |
545 | /// are sorted first. Remaining files are sorted by their position in the source file. |
546 | /// If the items' source files differ, they are sorted by the position of the first |
547 | /// `#include` for their source file. If no source files are included, `None` is returned. |
548 | fn cmp_by_source_order( |
549 | &self, |
550 | other: &Self, |
551 | ctx: &BindgenContext, |
552 | ) -> cmp::Ordering { |
553 | let (file, _, _, offset) = self.location().location(); |
554 | let (other_file, _, _, other_offset) = other.location().location(); |
555 | |
556 | let (file, other_file) = match (file.name(), other_file.name()) { |
557 | (Some(file), Some(other_file)) => (file, other_file), |
558 | // Built-in definitions should come first. |
559 | (Some(_), None) => return cmp::Ordering::Greater, |
560 | (None, Some(_)) => return cmp::Ordering::Less, |
561 | (None, None) => return cmp::Ordering::Equal, |
562 | }; |
563 | |
564 | if file == other_file { |
565 | // Both items are in the same source file, compare by byte offset. |
566 | return offset.cmp(&other_offset); |
567 | } |
568 | |
569 | let include_location = ctx.included_file_location(&file); |
570 | let other_include_location = ctx.included_file_location(&other_file); |
571 | match (include_location, other_include_location) { |
572 | (Some((file2, offset2)), _) if file2 == other_file => { |
573 | offset2.cmp(&other_offset) |
574 | } |
575 | (Some(_), None) => cmp::Ordering::Greater, |
576 | (_, Some((other_file2, other_offset2))) if file == other_file2 => { |
577 | offset.cmp(&other_offset2) |
578 | } |
579 | (None, Some(_)) => cmp::Ordering::Less, |
580 | (Some((file2, offset2)), Some((other_file2, other_offset2))) => { |
581 | if file2 == other_file2 { |
582 | offset2.cmp(&other_offset2) |
583 | } else { |
584 | cmp::Ordering::Equal |
585 | } |
586 | } |
587 | (None, None) => cmp::Ordering::Equal, |
588 | } |
589 | } |
590 | |
591 | /// Collect all of this cursor's children into a vec and return them. |
592 | pub(crate) fn collect_children(&self) -> Vec<Cursor> { |
593 | let mut children = vec![]; |
594 | self.visit(|c| { |
595 | children.push(c); |
596 | CXChildVisit_Continue |
597 | }); |
598 | children |
599 | } |
600 | |
601 | /// Does this cursor have any children? |
602 | pub(crate) fn has_children(&self) -> bool { |
603 | let mut has_children = false; |
604 | self.visit(|_| { |
605 | has_children = true; |
606 | CXChildVisit_Break |
607 | }); |
608 | has_children |
609 | } |
610 | |
611 | /// Does this cursor have at least `n` children? |
612 | pub(crate) fn has_at_least_num_children(&self, n: usize) -> bool { |
613 | assert!(n > 0); |
614 | let mut num_left = n; |
615 | self.visit(|_| { |
616 | num_left -= 1; |
617 | if num_left == 0 { |
618 | CXChildVisit_Break |
619 | } else { |
620 | CXChildVisit_Continue |
621 | } |
622 | }); |
623 | num_left == 0 |
624 | } |
625 | |
626 | /// Returns whether the given location contains a cursor with the given |
627 | /// kind in the first level of nesting underneath (doesn't look |
628 | /// recursively). |
629 | pub(crate) fn contains_cursor(&self, kind: CXCursorKind) -> bool { |
630 | let mut found = false; |
631 | |
632 | self.visit(|c| { |
633 | if c.kind() == kind { |
634 | found = true; |
635 | CXChildVisit_Break |
636 | } else { |
637 | CXChildVisit_Continue |
638 | } |
639 | }); |
640 | |
641 | found |
642 | } |
643 | |
644 | /// Is the referent an inlined function? |
645 | pub(crate) fn is_inlined_function(&self) -> bool { |
646 | unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 } |
647 | } |
648 | |
649 | /// Is the referent a defaulted function? |
650 | pub(crate) fn is_defaulted_function(&self) -> bool { |
651 | unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 } |
652 | } |
653 | |
654 | /// Is the referent a deleted function? |
655 | pub(crate) fn is_deleted_function(&self) -> bool { |
656 | // Unfortunately, libclang doesn't yet have an API for checking if a |
657 | // member function is deleted, but the following should be a good |
658 | // enough approximation. |
659 | // Deleted functions are implicitly inline according to paragraph 4 of |
660 | // [dcl.fct.def.delete] in the C++ standard. Normal inline functions |
661 | // have a definition in the same translation unit, so if this is an |
662 | // inline function without a definition, and it's not a defaulted |
663 | // function, we can reasonably safely conclude that it's a deleted |
664 | // function. |
665 | self.is_inlined_function() && |
666 | self.definition().is_none() && |
667 | !self.is_defaulted_function() |
668 | } |
669 | |
670 | /// Is the referent a bit field declaration? |
671 | pub(crate) fn is_bit_field(&self) -> bool { |
672 | unsafe { clang_Cursor_isBitField(self.x) != 0 } |
673 | } |
674 | |
675 | /// Get a cursor to the bit field's width expression, or `None` if it's not |
676 | /// a bit field. |
677 | pub(crate) fn bit_width_expr(&self) -> Option<Cursor> { |
678 | if !self.is_bit_field() { |
679 | return None; |
680 | } |
681 | |
682 | let mut result = None; |
683 | self.visit(|cur| { |
684 | // The first child may or may not be a TypeRef, depending on whether |
685 | // the field's type is builtin. Skip it. |
686 | if cur.kind() == CXCursor_TypeRef { |
687 | return CXChildVisit_Continue; |
688 | } |
689 | |
690 | // The next expression or literal is the bit width. |
691 | result = Some(cur); |
692 | |
693 | CXChildVisit_Break |
694 | }); |
695 | |
696 | result |
697 | } |
698 | |
699 | /// Get the width of this cursor's referent bit field, or `None` if the |
700 | /// referent is not a bit field or if the width could not be evaluated. |
701 | pub(crate) fn bit_width(&self) -> Option<u32> { |
702 | // It is not safe to check the bit width without ensuring it doesn't |
703 | // depend on a template parameter. See |
704 | // https://github.com/rust-lang/rust-bindgen/issues/2239 |
705 | if self.bit_width_expr()?.is_dependent_on_template_parameter() { |
706 | return None; |
707 | } |
708 | |
709 | unsafe { |
710 | let w = clang_getFieldDeclBitWidth(self.x); |
711 | if w == -1 { |
712 | None |
713 | } else { |
714 | Some(w as u32) |
715 | } |
716 | } |
717 | } |
718 | |
719 | /// Get the integer representation type used to hold this cursor's referent |
720 | /// enum type. |
721 | pub(crate) fn enum_type(&self) -> Option<Type> { |
722 | unsafe { |
723 | let t = Type { |
724 | x: clang_getEnumDeclIntegerType(self.x), |
725 | }; |
726 | if t.is_valid() { |
727 | Some(t) |
728 | } else { |
729 | None |
730 | } |
731 | } |
732 | } |
733 | |
734 | /// Get the boolean constant value for this cursor's enum variant referent. |
735 | /// |
736 | /// Returns None if the cursor's referent is not an enum variant. |
737 | pub(crate) fn enum_val_boolean(&self) -> Option<bool> { |
738 | unsafe { |
739 | if self.kind() == CXCursor_EnumConstantDecl { |
740 | Some(clang_getEnumConstantDeclValue(self.x) != 0) |
741 | } else { |
742 | None |
743 | } |
744 | } |
745 | } |
746 | |
747 | /// Get the signed constant value for this cursor's enum variant referent. |
748 | /// |
749 | /// Returns None if the cursor's referent is not an enum variant. |
750 | pub(crate) fn enum_val_signed(&self) -> Option<i64> { |
751 | unsafe { |
752 | if self.kind() == CXCursor_EnumConstantDecl { |
753 | #[allow (clippy::unnecessary_cast)] |
754 | Some(clang_getEnumConstantDeclValue(self.x) as i64) |
755 | } else { |
756 | None |
757 | } |
758 | } |
759 | } |
760 | |
761 | /// Get the unsigned constant value for this cursor's enum variant referent. |
762 | /// |
763 | /// Returns None if the cursor's referent is not an enum variant. |
764 | pub(crate) fn enum_val_unsigned(&self) -> Option<u64> { |
765 | unsafe { |
766 | if self.kind() == CXCursor_EnumConstantDecl { |
767 | #[allow (clippy::unnecessary_cast)] |
768 | Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64) |
769 | } else { |
770 | None |
771 | } |
772 | } |
773 | } |
774 | |
775 | /// Does this cursor have the given attributes? |
776 | pub(crate) fn has_attrs<const N: usize>( |
777 | &self, |
778 | attrs: &[Attribute; N], |
779 | ) -> [bool; N] { |
780 | let mut found_attrs = [false; N]; |
781 | let mut found_count = 0; |
782 | |
783 | self.visit(|cur| { |
784 | let kind = cur.kind(); |
785 | for (idx, attr) in attrs.iter().enumerate() { |
786 | let found_attr = &mut found_attrs[idx]; |
787 | if !*found_attr { |
788 | // `attr.name` and` attr.token_kind` are checked against unexposed attributes only. |
789 | if attr.kind.map_or(false, |k| k == kind) || |
790 | (kind == CXCursor_UnexposedAttr && |
791 | cur.tokens().iter().any(|t| { |
792 | t.kind == attr.token_kind && |
793 | t.spelling() == attr.name |
794 | })) |
795 | { |
796 | *found_attr = true; |
797 | found_count += 1; |
798 | |
799 | if found_count == N { |
800 | return CXChildVisit_Break; |
801 | } |
802 | } |
803 | } |
804 | } |
805 | |
806 | CXChildVisit_Continue |
807 | }); |
808 | |
809 | found_attrs |
810 | } |
811 | |
812 | /// Given that this cursor's referent is a `typedef`, get the `Type` that is |
813 | /// being aliased. |
814 | pub(crate) fn typedef_type(&self) -> Option<Type> { |
815 | let inner = Type { |
816 | x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) }, |
817 | }; |
818 | |
819 | if inner.is_valid() { |
820 | Some(inner) |
821 | } else { |
822 | None |
823 | } |
824 | } |
825 | |
826 | /// Get the linkage kind for this cursor's referent. |
827 | /// |
828 | /// This only applies to functions and variables. |
829 | pub(crate) fn linkage(&self) -> CXLinkageKind { |
830 | unsafe { clang_getCursorLinkage(self.x) } |
831 | } |
832 | |
833 | /// Get the visibility of this cursor's referent. |
834 | pub(crate) fn visibility(&self) -> CXVisibilityKind { |
835 | unsafe { clang_getCursorVisibility(self.x) } |
836 | } |
837 | |
838 | /// Given that this cursor's referent is a function, return cursors to its |
839 | /// parameters. |
840 | /// |
841 | /// Returns None if the cursor's referent is not a function/method call or |
842 | /// declaration. |
843 | pub(crate) fn args(&self) -> Option<Vec<Cursor>> { |
844 | // match self.kind() { |
845 | // CXCursor_FunctionDecl | |
846 | // CXCursor_CXXMethod => { |
847 | self.num_args().ok().map(|num| { |
848 | (0..num) |
849 | .map(|i| Cursor { |
850 | x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) }, |
851 | }) |
852 | .collect() |
853 | }) |
854 | } |
855 | |
856 | /// Given that this cursor's referent is a function/method call or |
857 | /// declaration, return the number of arguments it takes. |
858 | /// |
859 | /// Returns Err if the cursor's referent is not a function/method call or |
860 | /// declaration. |
861 | pub(crate) fn num_args(&self) -> Result<u32, ()> { |
862 | unsafe { |
863 | let w = clang_Cursor_getNumArguments(self.x); |
864 | if w == -1 { |
865 | Err(()) |
866 | } else { |
867 | Ok(w as u32) |
868 | } |
869 | } |
870 | } |
871 | |
872 | /// Get the access specifier for this cursor's referent. |
873 | pub(crate) fn access_specifier(&self) -> CX_CXXAccessSpecifier { |
874 | unsafe { clang_getCXXAccessSpecifier(self.x) } |
875 | } |
876 | |
877 | /// Is the cursor's referrent publically accessible in C++? |
878 | /// |
879 | /// Returns true if self.access_specifier() is `CX_CXXPublic` or |
880 | /// `CX_CXXInvalidAccessSpecifier`. |
881 | pub(crate) fn public_accessible(&self) -> bool { |
882 | let access = self.access_specifier(); |
883 | access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier |
884 | } |
885 | |
886 | /// Is this cursor's referent a field declaration that is marked as |
887 | /// `mutable`? |
888 | pub(crate) fn is_mutable_field(&self) -> bool { |
889 | unsafe { clang_CXXField_isMutable(self.x) != 0 } |
890 | } |
891 | |
892 | /// Get the offset of the field represented by the Cursor. |
893 | pub(crate) fn offset_of_field(&self) -> Result<usize, LayoutError> { |
894 | let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) }; |
895 | |
896 | if offset < 0 { |
897 | Err(LayoutError::from(offset as i32)) |
898 | } else { |
899 | Ok(offset as usize) |
900 | } |
901 | } |
902 | |
903 | /// Is this cursor's referent a member function that is declared `static`? |
904 | pub(crate) fn method_is_static(&self) -> bool { |
905 | unsafe { clang_CXXMethod_isStatic(self.x) != 0 } |
906 | } |
907 | |
908 | /// Is this cursor's referent a member function that is declared `const`? |
909 | pub(crate) fn method_is_const(&self) -> bool { |
910 | unsafe { clang_CXXMethod_isConst(self.x) != 0 } |
911 | } |
912 | |
913 | /// Is this cursor's referent a member function that is virtual? |
914 | pub(crate) fn method_is_virtual(&self) -> bool { |
915 | unsafe { clang_CXXMethod_isVirtual(self.x) != 0 } |
916 | } |
917 | |
918 | /// Is this cursor's referent a member function that is pure virtual? |
919 | pub(crate) fn method_is_pure_virtual(&self) -> bool { |
920 | unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 } |
921 | } |
922 | |
923 | /// Is this cursor's referent a struct or class with virtual members? |
924 | pub(crate) fn is_virtual_base(&self) -> bool { |
925 | unsafe { clang_isVirtualBase(self.x) != 0 } |
926 | } |
927 | |
928 | /// Try to evaluate this cursor. |
929 | pub(crate) fn evaluate(&self) -> Option<EvalResult> { |
930 | EvalResult::new(*self) |
931 | } |
932 | |
933 | /// Return the result type for this cursor |
934 | pub(crate) fn ret_type(&self) -> Option<Type> { |
935 | let rt = Type { |
936 | x: unsafe { clang_getCursorResultType(self.x) }, |
937 | }; |
938 | if rt.is_valid() { |
939 | Some(rt) |
940 | } else { |
941 | None |
942 | } |
943 | } |
944 | |
945 | /// Gets the tokens that correspond to that cursor. |
946 | pub(crate) fn tokens(&self) -> RawTokens { |
947 | RawTokens::new(self) |
948 | } |
949 | |
950 | /// Gets the tokens that correspond to that cursor as `cexpr` tokens. |
951 | pub(crate) fn cexpr_tokens(self) -> Vec<cexpr::token::Token> { |
952 | self.tokens() |
953 | .iter() |
954 | .filter_map(|token| token.as_cexpr_token()) |
955 | .collect() |
956 | } |
957 | |
958 | /// Obtain the real path name of a cursor of InclusionDirective kind. |
959 | /// |
960 | /// Returns None if the cursor does not include a file, otherwise the file's full name |
961 | pub(crate) fn get_included_file_name(&self) -> Option<String> { |
962 | let file = unsafe { clang_sys::clang_getIncludedFile(self.x) }; |
963 | if file.is_null() { |
964 | None |
965 | } else { |
966 | Some(unsafe { |
967 | cxstring_into_string(clang_sys::clang_getFileName(file)) |
968 | }) |
969 | } |
970 | } |
971 | } |
972 | |
973 | /// A struct that owns the tokenizer result from a given cursor. |
974 | pub(crate) struct RawTokens<'a> { |
975 | cursor: &'a Cursor, |
976 | tu: CXTranslationUnit, |
977 | tokens: *mut CXToken, |
978 | token_count: c_uint, |
979 | } |
980 | |
981 | impl<'a> RawTokens<'a> { |
982 | fn new(cursor: &'a Cursor) -> Self { |
983 | let mut tokens = ptr::null_mut(); |
984 | let mut token_count = 0; |
985 | let range = cursor.extent(); |
986 | let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) }; |
987 | unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) }; |
988 | Self { |
989 | cursor, |
990 | tu, |
991 | tokens, |
992 | token_count, |
993 | } |
994 | } |
995 | |
996 | fn as_slice(&self) -> &[CXToken] { |
997 | if self.tokens.is_null() { |
998 | return &[]; |
999 | } |
1000 | unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) } |
1001 | } |
1002 | |
1003 | /// Get an iterator over these tokens. |
1004 | pub(crate) fn iter(&self) -> ClangTokenIterator { |
1005 | ClangTokenIterator { |
1006 | tu: self.tu, |
1007 | raw: self.as_slice().iter(), |
1008 | } |
1009 | } |
1010 | } |
1011 | |
1012 | impl<'a> Drop for RawTokens<'a> { |
1013 | fn drop(&mut self) { |
1014 | if !self.tokens.is_null() { |
1015 | unsafe { |
1016 | clang_disposeTokens( |
1017 | self.tu, |
1018 | self.tokens, |
1019 | self.token_count as c_uint, |
1020 | ); |
1021 | } |
1022 | } |
1023 | } |
1024 | } |
1025 | |
1026 | /// A raw clang token, that exposes only kind, spelling, and extent. This is a |
1027 | /// slightly more convenient version of `CXToken` which owns the spelling |
1028 | /// string and extent. |
1029 | #[derive (Debug)] |
1030 | pub(crate) struct ClangToken { |
1031 | spelling: CXString, |
1032 | /// The extent of the token. This is the same as the relevant member from |
1033 | /// `CXToken`. |
1034 | pub(crate) extent: CXSourceRange, |
1035 | /// The kind of the token. This is the same as the relevant member from |
1036 | /// `CXToken`. |
1037 | pub(crate) kind: CXTokenKind, |
1038 | } |
1039 | |
1040 | impl ClangToken { |
1041 | /// Get the token spelling, without being converted to utf-8. |
1042 | pub(crate) fn spelling(&self) -> &[u8] { |
1043 | let c_str = unsafe { |
1044 | CStr::from_ptr(clang_getCString(self.spelling) as *const _) |
1045 | }; |
1046 | c_str.to_bytes() |
1047 | } |
1048 | |
1049 | /// Converts a ClangToken to a `cexpr` token if possible. |
1050 | pub(crate) fn as_cexpr_token(&self) -> Option<cexpr::token::Token> { |
1051 | use cexpr::token; |
1052 | |
1053 | let kind = match self.kind { |
1054 | CXToken_Punctuation => token::Kind::Punctuation, |
1055 | CXToken_Literal => token::Kind::Literal, |
1056 | CXToken_Identifier => token::Kind::Identifier, |
1057 | CXToken_Keyword => token::Kind::Keyword, |
1058 | // NB: cexpr is not too happy about comments inside |
1059 | // expressions, so we strip them down here. |
1060 | CXToken_Comment => return None, |
1061 | _ => { |
1062 | warn!("Found unexpected token kind: {:?}" , self); |
1063 | return None; |
1064 | } |
1065 | }; |
1066 | |
1067 | Some(token::Token { |
1068 | kind, |
1069 | raw: self.spelling().to_vec().into_boxed_slice(), |
1070 | }) |
1071 | } |
1072 | } |
1073 | |
1074 | impl Drop for ClangToken { |
1075 | fn drop(&mut self) { |
1076 | unsafe { clang_disposeString(self.spelling) } |
1077 | } |
1078 | } |
1079 | |
1080 | /// An iterator over a set of Tokens. |
1081 | pub(crate) struct ClangTokenIterator<'a> { |
1082 | tu: CXTranslationUnit, |
1083 | raw: slice::Iter<'a, CXToken>, |
1084 | } |
1085 | |
1086 | impl<'a> Iterator for ClangTokenIterator<'a> { |
1087 | type Item = ClangToken; |
1088 | |
1089 | fn next(&mut self) -> Option<Self::Item> { |
1090 | let raw: &CXToken = self.raw.next()?; |
1091 | unsafe { |
1092 | let kind: i32 = clang_getTokenKind(*raw); |
1093 | let spelling: CXString = clang_getTokenSpelling(self.tu, *raw); |
1094 | let extent: CXSourceRange = clang_getTokenExtent(self.tu, *raw); |
1095 | Some(ClangToken { |
1096 | kind, |
1097 | extent, |
1098 | spelling, |
1099 | }) |
1100 | } |
1101 | } |
1102 | } |
1103 | |
1104 | /// Checks whether the name looks like an identifier, i.e. is alphanumeric |
1105 | /// (including '_') and does not start with a digit. |
1106 | pub(crate) fn is_valid_identifier(name: &str) -> bool { |
1107 | let mut chars: Chars<'_> = name.chars(); |
1108 | let first_valid: bool = chars |
1109 | .next() |
1110 | .map(|c| c.is_alphabetic() || c == '_' ) |
1111 | .unwrap_or(default:false); |
1112 | |
1113 | first_valid && chars.all(|c: char| c.is_alphanumeric() || c == '_' ) |
1114 | } |
1115 | |
1116 | extern "C" fn visit_children<Visitor>( |
1117 | cur: CXCursor, |
1118 | _parent: CXCursor, |
1119 | data: CXClientData, |
1120 | ) -> CXChildVisitResult |
1121 | where |
1122 | Visitor: FnMut(Cursor) -> CXChildVisitResult, |
1123 | { |
1124 | let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) }; |
1125 | let child: Cursor = Cursor { x: cur }; |
1126 | |
1127 | (*func)(child) |
1128 | } |
1129 | |
1130 | impl PartialEq for Cursor { |
1131 | fn eq(&self, other: &Cursor) -> bool { |
1132 | unsafe { clang_equalCursors(self.x, right:other.x) == 1 } |
1133 | } |
1134 | } |
1135 | |
1136 | impl Eq for Cursor {} |
1137 | |
1138 | impl Hash for Cursor { |
1139 | fn hash<H: Hasher>(&self, state: &mut H) { |
1140 | unsafe { clang_hashCursor(self.x) }.hash(state) |
1141 | } |
1142 | } |
1143 | |
1144 | /// The type of a node in clang's AST. |
1145 | #[derive (Clone, Copy)] |
1146 | pub(crate) struct Type { |
1147 | x: CXType, |
1148 | } |
1149 | |
1150 | impl PartialEq for Type { |
1151 | fn eq(&self, other: &Self) -> bool { |
1152 | unsafe { clang_equalTypes(self.x, right:other.x) != 0 } |
1153 | } |
1154 | } |
1155 | |
1156 | impl Eq for Type {} |
1157 | |
1158 | impl fmt::Debug for Type { |
1159 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1160 | write!( |
1161 | fmt, |
1162 | "Type( {}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})" , |
1163 | self.spelling(), |
1164 | type_to_str(self.kind()), |
1165 | self.call_conv(), |
1166 | self.declaration(), |
1167 | self.declaration().canonical() |
1168 | ) |
1169 | } |
1170 | } |
1171 | |
1172 | /// An error about the layout of a struct, class, or type. |
1173 | #[derive (Debug, Copy, Clone, Eq, PartialEq, Hash)] |
1174 | pub(crate) enum LayoutError { |
1175 | /// Asked for the layout of an invalid type. |
1176 | Invalid, |
1177 | /// Asked for the layout of an incomplete type. |
1178 | Incomplete, |
1179 | /// Asked for the layout of a dependent type. |
1180 | Dependent, |
1181 | /// Asked for the layout of a type that does not have constant size. |
1182 | NotConstantSize, |
1183 | /// Asked for the layout of a field in a type that does not have such a |
1184 | /// field. |
1185 | InvalidFieldName, |
1186 | /// An unknown layout error. |
1187 | Unknown, |
1188 | } |
1189 | |
1190 | impl ::std::convert::From<i32> for LayoutError { |
1191 | fn from(val: i32) -> Self { |
1192 | use self::LayoutError::*; |
1193 | |
1194 | match val { |
1195 | CXTypeLayoutError_Invalid => Invalid, |
1196 | CXTypeLayoutError_Incomplete => Incomplete, |
1197 | CXTypeLayoutError_Dependent => Dependent, |
1198 | CXTypeLayoutError_NotConstantSize => NotConstantSize, |
1199 | CXTypeLayoutError_InvalidFieldName => InvalidFieldName, |
1200 | _ => Unknown, |
1201 | } |
1202 | } |
1203 | } |
1204 | |
1205 | impl Type { |
1206 | /// Get this type's kind. |
1207 | pub(crate) fn kind(&self) -> CXTypeKind { |
1208 | self.x.kind |
1209 | } |
1210 | |
1211 | /// Get a cursor pointing to this type's declaration. |
1212 | pub(crate) fn declaration(&self) -> Cursor { |
1213 | unsafe { |
1214 | Cursor { |
1215 | x: clang_getTypeDeclaration(self.x), |
1216 | } |
1217 | } |
1218 | } |
1219 | |
1220 | /// Get the canonical declaration of this type, if it is available. |
1221 | pub(crate) fn canonical_declaration( |
1222 | &self, |
1223 | location: Option<&Cursor>, |
1224 | ) -> Option<CanonicalTypeDeclaration> { |
1225 | let mut declaration = self.declaration(); |
1226 | if !declaration.is_valid() { |
1227 | if let Some(location) = location { |
1228 | let mut location = *location; |
1229 | if let Some(referenced) = location.referenced() { |
1230 | location = referenced; |
1231 | } |
1232 | if location.is_template_like() { |
1233 | declaration = location; |
1234 | } |
1235 | } |
1236 | } |
1237 | |
1238 | let canonical = declaration.canonical(); |
1239 | if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound { |
1240 | Some(CanonicalTypeDeclaration(*self, canonical)) |
1241 | } else { |
1242 | None |
1243 | } |
1244 | } |
1245 | |
1246 | /// Get a raw display name for this type. |
1247 | pub(crate) fn spelling(&self) -> String { |
1248 | let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) }; |
1249 | // Clang 5.0 introduced changes in the spelling API so it returned the |
1250 | // full qualified name. Let's undo that here. |
1251 | if s.split("::" ).all(is_valid_identifier) { |
1252 | if let Some(s) = s.split("::" ).last() { |
1253 | return s.to_owned(); |
1254 | } |
1255 | } |
1256 | |
1257 | s |
1258 | } |
1259 | |
1260 | /// Is this type const qualified? |
1261 | pub(crate) fn is_const(&self) -> bool { |
1262 | unsafe { clang_isConstQualifiedType(self.x) != 0 } |
1263 | } |
1264 | |
1265 | #[inline ] |
1266 | fn is_non_deductible_auto_type(&self) -> bool { |
1267 | debug_assert_eq!(self.kind(), CXType_Auto); |
1268 | self.canonical_type() == *self |
1269 | } |
1270 | |
1271 | #[inline ] |
1272 | fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong { |
1273 | match self.kind() { |
1274 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
1275 | CXType_RValueReference | CXType_LValueReference => { |
1276 | ctx.target_pointer_size() as c_longlong |
1277 | } |
1278 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
1279 | CXType_Auto if self.is_non_deductible_auto_type() => -6, |
1280 | _ => unsafe { clang_Type_getSizeOf(self.x) }, |
1281 | } |
1282 | } |
1283 | |
1284 | #[inline ] |
1285 | fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong { |
1286 | match self.kind() { |
1287 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
1288 | CXType_RValueReference | CXType_LValueReference => { |
1289 | ctx.target_pointer_size() as c_longlong |
1290 | } |
1291 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
1292 | CXType_Auto if self.is_non_deductible_auto_type() => -6, |
1293 | _ => unsafe { clang_Type_getAlignOf(self.x) }, |
1294 | } |
1295 | } |
1296 | |
1297 | /// What is the size of this type? Paper over invalid types by returning `0` |
1298 | /// for them. |
1299 | pub(crate) fn size(&self, ctx: &BindgenContext) -> usize { |
1300 | let val = self.clang_size_of(ctx); |
1301 | if val < 0 { |
1302 | 0 |
1303 | } else { |
1304 | val as usize |
1305 | } |
1306 | } |
1307 | |
1308 | /// What is the size of this type? |
1309 | pub(crate) fn fallible_size( |
1310 | &self, |
1311 | ctx: &BindgenContext, |
1312 | ) -> Result<usize, LayoutError> { |
1313 | let val = self.clang_size_of(ctx); |
1314 | if val < 0 { |
1315 | Err(LayoutError::from(val as i32)) |
1316 | } else { |
1317 | Ok(val as usize) |
1318 | } |
1319 | } |
1320 | |
1321 | /// What is the alignment of this type? Paper over invalid types by |
1322 | /// returning `0`. |
1323 | pub(crate) fn align(&self, ctx: &BindgenContext) -> usize { |
1324 | let val = self.clang_align_of(ctx); |
1325 | if val < 0 { |
1326 | 0 |
1327 | } else { |
1328 | val as usize |
1329 | } |
1330 | } |
1331 | |
1332 | /// What is the alignment of this type? |
1333 | pub(crate) fn fallible_align( |
1334 | &self, |
1335 | ctx: &BindgenContext, |
1336 | ) -> Result<usize, LayoutError> { |
1337 | let val = self.clang_align_of(ctx); |
1338 | if val < 0 { |
1339 | Err(LayoutError::from(val as i32)) |
1340 | } else { |
1341 | Ok(val as usize) |
1342 | } |
1343 | } |
1344 | |
1345 | /// Get the layout for this type, or an error describing why it does not |
1346 | /// have a valid layout. |
1347 | pub(crate) fn fallible_layout( |
1348 | &self, |
1349 | ctx: &BindgenContext, |
1350 | ) -> Result<crate::ir::layout::Layout, LayoutError> { |
1351 | use crate::ir::layout::Layout; |
1352 | let size = self.fallible_size(ctx)?; |
1353 | let align = self.fallible_align(ctx)?; |
1354 | Ok(Layout::new(size, align)) |
1355 | } |
1356 | |
1357 | /// Get the number of template arguments this type has, or `None` if it is |
1358 | /// not some kind of template. |
1359 | pub(crate) fn num_template_args(&self) -> Option<u32> { |
1360 | let n = unsafe { clang_Type_getNumTemplateArguments(self.x) }; |
1361 | if n >= 0 { |
1362 | Some(n as u32) |
1363 | } else { |
1364 | debug_assert_eq!(n, -1); |
1365 | None |
1366 | } |
1367 | } |
1368 | |
1369 | /// If this type is a class template specialization, return its |
1370 | /// template arguments. Otherwise, return None. |
1371 | pub(crate) fn template_args(&self) -> Option<TypeTemplateArgIterator> { |
1372 | self.num_template_args().map(|n| TypeTemplateArgIterator { |
1373 | x: self.x, |
1374 | length: n, |
1375 | index: 0, |
1376 | }) |
1377 | } |
1378 | |
1379 | /// Given that this type is a function prototype, return the types of its parameters. |
1380 | /// |
1381 | /// Returns None if the type is not a function prototype. |
1382 | pub(crate) fn args(&self) -> Option<Vec<Type>> { |
1383 | self.num_args().ok().map(|num| { |
1384 | (0..num) |
1385 | .map(|i| Type { |
1386 | x: unsafe { clang_getArgType(self.x, i as c_uint) }, |
1387 | }) |
1388 | .collect() |
1389 | }) |
1390 | } |
1391 | |
1392 | /// Given that this type is a function prototype, return the number of arguments it takes. |
1393 | /// |
1394 | /// Returns Err if the type is not a function prototype. |
1395 | pub(crate) fn num_args(&self) -> Result<u32, ()> { |
1396 | unsafe { |
1397 | let w = clang_getNumArgTypes(self.x); |
1398 | if w == -1 { |
1399 | Err(()) |
1400 | } else { |
1401 | Ok(w as u32) |
1402 | } |
1403 | } |
1404 | } |
1405 | |
1406 | /// Given that this type is a pointer type, return the type that it points |
1407 | /// to. |
1408 | pub(crate) fn pointee_type(&self) -> Option<Type> { |
1409 | match self.kind() { |
1410 | CXType_Pointer | |
1411 | CXType_RValueReference | |
1412 | CXType_LValueReference | |
1413 | CXType_MemberPointer | |
1414 | CXType_BlockPointer | |
1415 | CXType_ObjCObjectPointer => { |
1416 | let ret = Type { |
1417 | x: unsafe { clang_getPointeeType(self.x) }, |
1418 | }; |
1419 | debug_assert!(ret.is_valid()); |
1420 | Some(ret) |
1421 | } |
1422 | _ => None, |
1423 | } |
1424 | } |
1425 | |
1426 | /// Given that this type is an array, vector, or complex type, return the |
1427 | /// type of its elements. |
1428 | pub(crate) fn elem_type(&self) -> Option<Type> { |
1429 | let current_type = Type { |
1430 | x: unsafe { clang_getElementType(self.x) }, |
1431 | }; |
1432 | if current_type.is_valid() { |
1433 | Some(current_type) |
1434 | } else { |
1435 | None |
1436 | } |
1437 | } |
1438 | |
1439 | /// Given that this type is an array or vector type, return its number of |
1440 | /// elements. |
1441 | pub(crate) fn num_elements(&self) -> Option<usize> { |
1442 | let num_elements_returned = unsafe { clang_getNumElements(self.x) }; |
1443 | if num_elements_returned != -1 { |
1444 | Some(num_elements_returned as usize) |
1445 | } else { |
1446 | None |
1447 | } |
1448 | } |
1449 | |
1450 | /// Get the canonical version of this type. This sees through `typedef`s and |
1451 | /// aliases to get the underlying, canonical type. |
1452 | pub(crate) fn canonical_type(&self) -> Type { |
1453 | unsafe { |
1454 | Type { |
1455 | x: clang_getCanonicalType(self.x), |
1456 | } |
1457 | } |
1458 | } |
1459 | |
1460 | /// Is this type a variadic function type? |
1461 | pub(crate) fn is_variadic(&self) -> bool { |
1462 | unsafe { clang_isFunctionTypeVariadic(self.x) != 0 } |
1463 | } |
1464 | |
1465 | /// Given that this type is a function type, get the type of its return |
1466 | /// value. |
1467 | pub(crate) fn ret_type(&self) -> Option<Type> { |
1468 | let rt = Type { |
1469 | x: unsafe { clang_getResultType(self.x) }, |
1470 | }; |
1471 | if rt.is_valid() { |
1472 | Some(rt) |
1473 | } else { |
1474 | None |
1475 | } |
1476 | } |
1477 | |
1478 | /// Given that this type is a function type, get its calling convention. If |
1479 | /// this is not a function type, `CXCallingConv_Invalid` is returned. |
1480 | pub(crate) fn call_conv(&self) -> CXCallingConv { |
1481 | unsafe { clang_getFunctionTypeCallingConv(self.x) } |
1482 | } |
1483 | |
1484 | /// For elaborated types (types which use `class`, `struct`, or `union` to |
1485 | /// disambiguate types from local bindings), get the underlying type. |
1486 | pub(crate) fn named(&self) -> Type { |
1487 | unsafe { |
1488 | Type { |
1489 | x: clang_Type_getNamedType(self.x), |
1490 | } |
1491 | } |
1492 | } |
1493 | |
1494 | /// Is this a valid type? |
1495 | pub(crate) fn is_valid(&self) -> bool { |
1496 | self.kind() != CXType_Invalid |
1497 | } |
1498 | |
1499 | /// Is this a valid and exposed type? |
1500 | pub(crate) fn is_valid_and_exposed(&self) -> bool { |
1501 | self.is_valid() && self.kind() != CXType_Unexposed |
1502 | } |
1503 | |
1504 | /// Is this type a fully instantiated template? |
1505 | pub(crate) fn is_fully_instantiated_template(&self) -> bool { |
1506 | // Yep, the spelling of this containing type-parameter is extremely |
1507 | // nasty... But can happen in <type_traits>. Unfortunately I couldn't |
1508 | // reduce it enough :( |
1509 | self.template_args().map_or(false, |args| args.len() > 0) && |
1510 | !matches!( |
1511 | self.declaration().kind(), |
1512 | CXCursor_ClassTemplatePartialSpecialization | |
1513 | CXCursor_TypeAliasTemplateDecl | |
1514 | CXCursor_TemplateTemplateParameter |
1515 | ) |
1516 | } |
1517 | |
1518 | /// Is this type an associated template type? Eg `T::Associated` in |
1519 | /// this example: |
1520 | /// |
1521 | /// ```c++ |
1522 | /// template <typename T> |
1523 | /// class Foo { |
1524 | /// typename T::Associated member; |
1525 | /// }; |
1526 | /// ``` |
1527 | pub(crate) fn is_associated_type(&self) -> bool { |
1528 | // This is terrible :( |
1529 | fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool { |
1530 | lazy_static! { |
1531 | static ref ASSOC_TYPE_RE: regex::Regex = regex::Regex::new( |
1532 | r"typename type\-parameter\-\d+\-\d+::.+" |
1533 | ) |
1534 | .unwrap(); |
1535 | } |
1536 | ASSOC_TYPE_RE.is_match(spelling.as_ref()) |
1537 | } |
1538 | |
1539 | self.kind() == CXType_Unexposed && |
1540 | (hacky_parse_associated_type(self.spelling()) || |
1541 | hacky_parse_associated_type( |
1542 | self.canonical_type().spelling(), |
1543 | )) |
1544 | } |
1545 | } |
1546 | |
1547 | /// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its |
1548 | /// cursor is the canonical declaration for its type. If you have a |
1549 | /// `CanonicalTypeDeclaration` instance, you know for sure that the type and |
1550 | /// cursor match up in a canonical declaration relationship, and it simply |
1551 | /// cannot be otherwise. |
1552 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
1553 | pub(crate) struct CanonicalTypeDeclaration(Type, Cursor); |
1554 | |
1555 | impl CanonicalTypeDeclaration { |
1556 | /// Get the type. |
1557 | pub(crate) fn ty(&self) -> &Type { |
1558 | &self.0 |
1559 | } |
1560 | |
1561 | /// Get the type's canonical declaration cursor. |
1562 | pub(crate) fn cursor(&self) -> &Cursor { |
1563 | &self.1 |
1564 | } |
1565 | } |
1566 | |
1567 | /// An iterator for a type's template arguments. |
1568 | pub(crate) struct TypeTemplateArgIterator { |
1569 | x: CXType, |
1570 | length: u32, |
1571 | index: u32, |
1572 | } |
1573 | |
1574 | impl Iterator for TypeTemplateArgIterator { |
1575 | type Item = Type; |
1576 | fn next(&mut self) -> Option<Type> { |
1577 | if self.index < self.length { |
1578 | let idx: u32 = self.index as c_uint; |
1579 | self.index += 1; |
1580 | Some(Type { |
1581 | x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, index:idx) }, |
1582 | }) |
1583 | } else { |
1584 | None |
1585 | } |
1586 | } |
1587 | } |
1588 | |
1589 | impl ExactSizeIterator for TypeTemplateArgIterator { |
1590 | fn len(&self) -> usize { |
1591 | assert!(self.index <= self.length); |
1592 | (self.length - self.index) as usize |
1593 | } |
1594 | } |
1595 | |
1596 | /// A `SourceLocation` is a file, line, column, and byte offset location for |
1597 | /// some source text. |
1598 | pub(crate) struct SourceLocation { |
1599 | x: CXSourceLocation, |
1600 | } |
1601 | |
1602 | impl SourceLocation { |
1603 | /// Get the (file, line, column, byte offset) tuple for this source |
1604 | /// location. |
1605 | pub(crate) fn location(&self) -> (File, usize, usize, usize) { |
1606 | unsafe { |
1607 | let mut file: *mut c_void = mem::zeroed(); |
1608 | let mut line: u32 = 0; |
1609 | let mut col: u32 = 0; |
1610 | let mut off: u32 = 0; |
1611 | clang_getSpellingLocation( |
1612 | self.x, &mut file, &mut line, &mut col, &mut off, |
1613 | ); |
1614 | (File { x: file }, line as usize, col as usize, off as usize) |
1615 | } |
1616 | } |
1617 | } |
1618 | |
1619 | impl fmt::Display for SourceLocation { |
1620 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1621 | let (file: File, line: usize, col: usize, _) = self.location(); |
1622 | if let Some(name: String) = file.name() { |
1623 | write!(f, " {}: {}: {}" , name, line, col) |
1624 | } else { |
1625 | "builtin definitions" .fmt(f) |
1626 | } |
1627 | } |
1628 | } |
1629 | |
1630 | impl fmt::Debug for SourceLocation { |
1631 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1632 | write!(f, " {}" , self) |
1633 | } |
1634 | } |
1635 | |
1636 | /// A comment in the source text. |
1637 | /// |
1638 | /// Comments are sort of parsed by Clang, and have a tree structure. |
1639 | pub(crate) struct Comment { |
1640 | x: CXComment, |
1641 | } |
1642 | |
1643 | impl Comment { |
1644 | /// What kind of comment is this? |
1645 | pub(crate) fn kind(&self) -> CXCommentKind { |
1646 | unsafe { clang_Comment_getKind(self.x) } |
1647 | } |
1648 | |
1649 | /// Get this comment's children comment |
1650 | pub(crate) fn get_children(&self) -> CommentChildrenIterator { |
1651 | CommentChildrenIterator { |
1652 | parent: self.x, |
1653 | length: unsafe { clang_Comment_getNumChildren(self.x) }, |
1654 | index: 0, |
1655 | } |
1656 | } |
1657 | |
1658 | /// Given that this comment is the start or end of an HTML tag, get its tag |
1659 | /// name. |
1660 | pub(crate) fn get_tag_name(&self) -> String { |
1661 | unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) } |
1662 | } |
1663 | |
1664 | /// Given that this comment is an HTML start tag, get its attributes. |
1665 | pub(crate) fn get_tag_attrs(&self) -> CommentAttributesIterator { |
1666 | CommentAttributesIterator { |
1667 | x: self.x, |
1668 | length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) }, |
1669 | index: 0, |
1670 | } |
1671 | } |
1672 | } |
1673 | |
1674 | /// An iterator for a comment's children |
1675 | pub(crate) struct CommentChildrenIterator { |
1676 | parent: CXComment, |
1677 | length: c_uint, |
1678 | index: c_uint, |
1679 | } |
1680 | |
1681 | impl Iterator for CommentChildrenIterator { |
1682 | type Item = Comment; |
1683 | fn next(&mut self) -> Option<Comment> { |
1684 | if self.index < self.length { |
1685 | let idx: u32 = self.index; |
1686 | self.index += 1; |
1687 | Some(Comment { |
1688 | x: unsafe { clang_Comment_getChild(self.parent, index:idx) }, |
1689 | }) |
1690 | } else { |
1691 | None |
1692 | } |
1693 | } |
1694 | } |
1695 | |
1696 | /// An HTML start tag comment attribute |
1697 | pub(crate) struct CommentAttribute { |
1698 | /// HTML start tag attribute name |
1699 | pub(crate) name: String, |
1700 | /// HTML start tag attribute value |
1701 | pub(crate) value: String, |
1702 | } |
1703 | |
1704 | /// An iterator for a comment's attributes |
1705 | pub(crate) struct CommentAttributesIterator { |
1706 | x: CXComment, |
1707 | length: c_uint, |
1708 | index: c_uint, |
1709 | } |
1710 | |
1711 | impl Iterator for CommentAttributesIterator { |
1712 | type Item = CommentAttribute; |
1713 | fn next(&mut self) -> Option<CommentAttribute> { |
1714 | if self.index < self.length { |
1715 | let idx: u32 = self.index; |
1716 | self.index += 1; |
1717 | Some(CommentAttribute { |
1718 | name: unsafe { |
1719 | cxstring_into_string(clang_HTMLStartTag_getAttrName( |
1720 | self.x, index:idx, |
1721 | )) |
1722 | }, |
1723 | value: unsafe { |
1724 | cxstring_into_string(clang_HTMLStartTag_getAttrValue( |
1725 | self.x, index:idx, |
1726 | )) |
1727 | }, |
1728 | }) |
1729 | } else { |
1730 | None |
1731 | } |
1732 | } |
1733 | } |
1734 | |
1735 | /// A source file. |
1736 | pub(crate) struct File { |
1737 | x: CXFile, |
1738 | } |
1739 | |
1740 | impl File { |
1741 | /// Get the name of this source file. |
1742 | pub(crate) fn name(&self) -> Option<String> { |
1743 | if self.x.is_null() { |
1744 | return None; |
1745 | } |
1746 | Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) }) |
1747 | } |
1748 | } |
1749 | |
1750 | fn cxstring_to_string_leaky(s: CXString) -> String { |
1751 | if s.data.is_null() { |
1752 | return "" .to_owned(); |
1753 | } |
1754 | let c_str: &CStr = unsafe { CStr::from_ptr(clang_getCString(string:s) as *const _) }; |
1755 | c_str.to_string_lossy().into_owned() |
1756 | } |
1757 | |
1758 | fn cxstring_into_string(s: CXString) -> String { |
1759 | let ret: String = cxstring_to_string_leaky(s); |
1760 | unsafe { clang_disposeString(string:s) }; |
1761 | ret |
1762 | } |
1763 | |
1764 | /// An `Index` is an environment for a set of translation units that will |
1765 | /// typically end up linked together in one final binary. |
1766 | pub(crate) struct Index { |
1767 | x: CXIndex, |
1768 | } |
1769 | |
1770 | impl Index { |
1771 | /// Construct a new `Index`. |
1772 | /// |
1773 | /// The `pch` parameter controls whether declarations in pre-compiled |
1774 | /// headers are included when enumerating a translation unit's "locals". |
1775 | /// |
1776 | /// The `diag` parameter controls whether debugging diagnostics are enabled. |
1777 | pub(crate) fn new(pch: bool, diag: bool) -> Index { |
1778 | unsafe { |
1779 | Index { |
1780 | x: clang_createIndex(exclude:pch as c_int, display:diag as c_int), |
1781 | } |
1782 | } |
1783 | } |
1784 | } |
1785 | |
1786 | impl fmt::Debug for Index { |
1787 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1788 | write!(fmt, "Index {{ }}" ) |
1789 | } |
1790 | } |
1791 | |
1792 | impl Drop for Index { |
1793 | fn drop(&mut self) { |
1794 | unsafe { |
1795 | clang_disposeIndex(self.x); |
1796 | } |
1797 | } |
1798 | } |
1799 | |
1800 | /// A translation unit (or "compilation unit"). |
1801 | pub(crate) struct TranslationUnit { |
1802 | x: CXTranslationUnit, |
1803 | } |
1804 | |
1805 | impl fmt::Debug for TranslationUnit { |
1806 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1807 | write!(fmt, "TranslationUnit {{ }}" ) |
1808 | } |
1809 | } |
1810 | |
1811 | impl TranslationUnit { |
1812 | /// Parse a source file into a translation unit. |
1813 | pub(crate) fn parse( |
1814 | ix: &Index, |
1815 | file: &str, |
1816 | cmd_args: &[Box<str>], |
1817 | unsaved: &[UnsavedFile], |
1818 | opts: CXTranslationUnit_Flags, |
1819 | ) -> Option<TranslationUnit> { |
1820 | let fname = CString::new(file).unwrap(); |
1821 | let _c_args: Vec<CString> = cmd_args |
1822 | .iter() |
1823 | .map(|s| CString::new(s.as_bytes()).unwrap()) |
1824 | .collect(); |
1825 | let c_args: Vec<*const c_char> = |
1826 | _c_args.iter().map(|s| s.as_ptr()).collect(); |
1827 | let mut c_unsaved: Vec<CXUnsavedFile> = |
1828 | unsaved.iter().map(|f| f.x).collect(); |
1829 | let tu = unsafe { |
1830 | clang_parseTranslationUnit( |
1831 | ix.x, |
1832 | fname.as_ptr(), |
1833 | c_args.as_ptr(), |
1834 | c_args.len() as c_int, |
1835 | c_unsaved.as_mut_ptr(), |
1836 | c_unsaved.len() as c_uint, |
1837 | opts, |
1838 | ) |
1839 | }; |
1840 | if tu.is_null() { |
1841 | None |
1842 | } else { |
1843 | Some(TranslationUnit { x: tu }) |
1844 | } |
1845 | } |
1846 | |
1847 | /// Get the Clang diagnostic information associated with this translation |
1848 | /// unit. |
1849 | pub(crate) fn diags(&self) -> Vec<Diagnostic> { |
1850 | unsafe { |
1851 | let num = clang_getNumDiagnostics(self.x) as usize; |
1852 | let mut diags = vec![]; |
1853 | for i in 0..num { |
1854 | diags.push(Diagnostic { |
1855 | x: clang_getDiagnostic(self.x, i as c_uint), |
1856 | }); |
1857 | } |
1858 | diags |
1859 | } |
1860 | } |
1861 | |
1862 | /// Get a cursor pointing to the root of this translation unit's AST. |
1863 | pub(crate) fn cursor(&self) -> Cursor { |
1864 | unsafe { |
1865 | Cursor { |
1866 | x: clang_getTranslationUnitCursor(self.x), |
1867 | } |
1868 | } |
1869 | } |
1870 | |
1871 | /// Is this the null translation unit? |
1872 | pub(crate) fn is_null(&self) -> bool { |
1873 | self.x.is_null() |
1874 | } |
1875 | } |
1876 | |
1877 | impl Drop for TranslationUnit { |
1878 | fn drop(&mut self) { |
1879 | unsafe { |
1880 | clang_disposeTranslationUnit(self.x); |
1881 | } |
1882 | } |
1883 | } |
1884 | |
1885 | /// A diagnostic message generated while parsing a translation unit. |
1886 | pub(crate) struct Diagnostic { |
1887 | x: CXDiagnostic, |
1888 | } |
1889 | |
1890 | impl Diagnostic { |
1891 | /// Format this diagnostic message as a string, using the given option bit |
1892 | /// flags. |
1893 | pub(crate) fn format(&self) -> String { |
1894 | unsafe { |
1895 | let opts: i32 = clang_defaultDiagnosticDisplayOptions(); |
1896 | cxstring_into_string(clang_formatDiagnostic(self.x, flags:opts)) |
1897 | } |
1898 | } |
1899 | |
1900 | /// What is the severity of this diagnostic message? |
1901 | pub(crate) fn severity(&self) -> CXDiagnosticSeverity { |
1902 | unsafe { clang_getDiagnosticSeverity(self.x) } |
1903 | } |
1904 | } |
1905 | |
1906 | impl Drop for Diagnostic { |
1907 | /// Destroy this diagnostic message. |
1908 | fn drop(&mut self) { |
1909 | unsafe { |
1910 | clang_disposeDiagnostic(self.x); |
1911 | } |
1912 | } |
1913 | } |
1914 | |
1915 | /// A file which has not been saved to disk. |
1916 | pub(crate) struct UnsavedFile { |
1917 | x: CXUnsavedFile, |
1918 | /// The name of the unsaved file. Kept here to avoid leaving dangling pointers in |
1919 | /// `CXUnsavedFile`. |
1920 | pub(crate) name: CString, |
1921 | contents: CString, |
1922 | } |
1923 | |
1924 | impl UnsavedFile { |
1925 | /// Construct a new unsaved file with the given `name` and `contents`. |
1926 | pub(crate) fn new(name: &str, contents: &str) -> UnsavedFile { |
1927 | let name: CString = CString::new(name.as_bytes()).unwrap(); |
1928 | let contents: CString = CString::new(contents.as_bytes()).unwrap(); |
1929 | let x: CXUnsavedFile = CXUnsavedFile { |
1930 | Filename: name.as_ptr(), |
1931 | Contents: contents.as_ptr(), |
1932 | Length: contents.as_bytes().len() as c_ulong, |
1933 | }; |
1934 | UnsavedFile { x, name, contents } |
1935 | } |
1936 | } |
1937 | |
1938 | impl fmt::Debug for UnsavedFile { |
1939 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1940 | write!( |
1941 | fmt, |
1942 | "UnsavedFile(name: {:?}, contents: {:?})" , |
1943 | self.name, self.contents |
1944 | ) |
1945 | } |
1946 | } |
1947 | |
1948 | /// Convert a cursor kind into a static string. |
1949 | pub(crate) fn kind_to_str(x: CXCursorKind) -> String { |
1950 | unsafe { cxstring_into_string(clang_getCursorKindSpelling(kind:x)) } |
1951 | } |
1952 | |
1953 | /// Convert a type kind to a static string. |
1954 | pub(crate) fn type_to_str(x: CXTypeKind) -> String { |
1955 | unsafe { cxstring_into_string(clang_getTypeKindSpelling(type_:x)) } |
1956 | } |
1957 | |
1958 | /// Dump the Clang AST to stdout for debugging purposes. |
1959 | pub(crate) fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult { |
1960 | fn print_indent<S: AsRef<str>>(depth: isize, s: S) { |
1961 | for _ in 0..depth { |
1962 | print!(" " ); |
1963 | } |
1964 | println!(" {}" , s.as_ref()); |
1965 | } |
1966 | |
1967 | fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) { |
1968 | let prefix = prefix.as_ref(); |
1969 | print_indent( |
1970 | depth, |
1971 | format!(" {}kind = {}" , prefix, kind_to_str(c.kind())), |
1972 | ); |
1973 | print_indent( |
1974 | depth, |
1975 | format!(" {}spelling = \"{}\"" , prefix, c.spelling()), |
1976 | ); |
1977 | print_indent(depth, format!(" {}location = {}" , prefix, c.location())); |
1978 | print_indent( |
1979 | depth, |
1980 | format!(" {}is-definition? {}" , prefix, c.is_definition()), |
1981 | ); |
1982 | print_indent( |
1983 | depth, |
1984 | format!(" {}is-declaration? {}" , prefix, c.is_declaration()), |
1985 | ); |
1986 | print_indent( |
1987 | depth, |
1988 | format!( |
1989 | " {}is-inlined-function? {}" , |
1990 | prefix, |
1991 | c.is_inlined_function() |
1992 | ), |
1993 | ); |
1994 | |
1995 | let templ_kind = c.template_kind(); |
1996 | if templ_kind != CXCursor_NoDeclFound { |
1997 | print_indent( |
1998 | depth, |
1999 | format!( |
2000 | " {}template-kind = {}" , |
2001 | prefix, |
2002 | kind_to_str(templ_kind) |
2003 | ), |
2004 | ); |
2005 | } |
2006 | if let Some(usr) = c.usr() { |
2007 | print_indent(depth, format!(" {}usr = \"{}\"" , prefix, usr)); |
2008 | } |
2009 | if let Ok(num) = c.num_args() { |
2010 | print_indent(depth, format!(" {}number-of-args = {}" , prefix, num)); |
2011 | } |
2012 | if let Some(num) = c.num_template_args() { |
2013 | print_indent( |
2014 | depth, |
2015 | format!(" {}number-of-template-args = {}" , prefix, num), |
2016 | ); |
2017 | } |
2018 | |
2019 | if c.is_bit_field() { |
2020 | let width = match c.bit_width() { |
2021 | Some(w) => w.to_string(), |
2022 | None => "<unevaluable>" .to_string(), |
2023 | }; |
2024 | print_indent(depth, format!(" {}bit-width = {}" , prefix, width)); |
2025 | } |
2026 | |
2027 | if let Some(ty) = c.enum_type() { |
2028 | print_indent( |
2029 | depth, |
2030 | format!(" {}enum-type = {}" , prefix, type_to_str(ty.kind())), |
2031 | ); |
2032 | } |
2033 | if let Some(val) = c.enum_val_signed() { |
2034 | print_indent(depth, format!(" {}enum-val = {}" , prefix, val)); |
2035 | } |
2036 | if let Some(ty) = c.typedef_type() { |
2037 | print_indent( |
2038 | depth, |
2039 | format!(" {}typedef-type = {}" , prefix, type_to_str(ty.kind())), |
2040 | ); |
2041 | } |
2042 | if let Some(ty) = c.ret_type() { |
2043 | print_indent( |
2044 | depth, |
2045 | format!(" {}ret-type = {}" , prefix, type_to_str(ty.kind())), |
2046 | ); |
2047 | } |
2048 | |
2049 | if let Some(refd) = c.referenced() { |
2050 | if refd != *c { |
2051 | println!(); |
2052 | print_cursor( |
2053 | depth, |
2054 | String::from(prefix) + "referenced." , |
2055 | &refd, |
2056 | ); |
2057 | } |
2058 | } |
2059 | |
2060 | let canonical = c.canonical(); |
2061 | if canonical != *c { |
2062 | println!(); |
2063 | print_cursor( |
2064 | depth, |
2065 | String::from(prefix) + "canonical." , |
2066 | &canonical, |
2067 | ); |
2068 | } |
2069 | |
2070 | if let Some(specialized) = c.specialized() { |
2071 | if specialized != *c { |
2072 | println!(); |
2073 | print_cursor( |
2074 | depth, |
2075 | String::from(prefix) + "specialized." , |
2076 | &specialized, |
2077 | ); |
2078 | } |
2079 | } |
2080 | |
2081 | if let Some(parent) = c.fallible_semantic_parent() { |
2082 | println!(); |
2083 | print_cursor( |
2084 | depth, |
2085 | String::from(prefix) + "semantic-parent." , |
2086 | &parent, |
2087 | ); |
2088 | } |
2089 | } |
2090 | |
2091 | fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) { |
2092 | let prefix = prefix.as_ref(); |
2093 | |
2094 | let kind = ty.kind(); |
2095 | print_indent(depth, format!(" {}kind = {}" , prefix, type_to_str(kind))); |
2096 | if kind == CXType_Invalid { |
2097 | return; |
2098 | } |
2099 | |
2100 | print_indent(depth, format!(" {}cconv = {}" , prefix, ty.call_conv())); |
2101 | |
2102 | print_indent( |
2103 | depth, |
2104 | format!(" {}spelling = \"{}\"" , prefix, ty.spelling()), |
2105 | ); |
2106 | let num_template_args = |
2107 | unsafe { clang_Type_getNumTemplateArguments(ty.x) }; |
2108 | if num_template_args >= 0 { |
2109 | print_indent( |
2110 | depth, |
2111 | format!( |
2112 | " {}number-of-template-args = {}" , |
2113 | prefix, num_template_args |
2114 | ), |
2115 | ); |
2116 | } |
2117 | if let Some(num) = ty.num_elements() { |
2118 | print_indent( |
2119 | depth, |
2120 | format!(" {}number-of-elements = {}" , prefix, num), |
2121 | ); |
2122 | } |
2123 | print_indent( |
2124 | depth, |
2125 | format!(" {}is-variadic? {}" , prefix, ty.is_variadic()), |
2126 | ); |
2127 | |
2128 | let canonical = ty.canonical_type(); |
2129 | if canonical != *ty { |
2130 | println!(); |
2131 | print_type(depth, String::from(prefix) + "canonical." , &canonical); |
2132 | } |
2133 | |
2134 | if let Some(pointee) = ty.pointee_type() { |
2135 | if pointee != *ty { |
2136 | println!(); |
2137 | print_type(depth, String::from(prefix) + "pointee." , &pointee); |
2138 | } |
2139 | } |
2140 | |
2141 | if let Some(elem) = ty.elem_type() { |
2142 | if elem != *ty { |
2143 | println!(); |
2144 | print_type(depth, String::from(prefix) + "elements." , &elem); |
2145 | } |
2146 | } |
2147 | |
2148 | if let Some(ret) = ty.ret_type() { |
2149 | if ret != *ty { |
2150 | println!(); |
2151 | print_type(depth, String::from(prefix) + "return." , &ret); |
2152 | } |
2153 | } |
2154 | |
2155 | let named = ty.named(); |
2156 | if named != *ty && named.is_valid() { |
2157 | println!(); |
2158 | print_type(depth, String::from(prefix) + "named." , &named); |
2159 | } |
2160 | } |
2161 | |
2162 | print_indent(depth, "(" ); |
2163 | print_cursor(depth, "" , c); |
2164 | |
2165 | println!(); |
2166 | let ty = c.cur_type(); |
2167 | print_type(depth, "type." , &ty); |
2168 | |
2169 | let declaration = ty.declaration(); |
2170 | if declaration != *c && declaration.kind() != CXCursor_NoDeclFound { |
2171 | println!(); |
2172 | print_cursor(depth, "type.declaration." , &declaration); |
2173 | } |
2174 | |
2175 | // Recurse. |
2176 | let mut found_children = false; |
2177 | c.visit(|s| { |
2178 | if !found_children { |
2179 | println!(); |
2180 | found_children = true; |
2181 | } |
2182 | ast_dump(&s, depth + 1) |
2183 | }); |
2184 | |
2185 | print_indent(depth, ")" ); |
2186 | |
2187 | CXChildVisit_Continue |
2188 | } |
2189 | |
2190 | /// Try to extract the clang version to a string |
2191 | pub(crate) fn extract_clang_version() -> String { |
2192 | unsafe { cxstring_into_string(clang_getClangVersion()) } |
2193 | } |
2194 | |
2195 | /// A wrapper for the result of evaluating an expression. |
2196 | #[derive (Debug)] |
2197 | pub(crate) struct EvalResult { |
2198 | x: CXEvalResult, |
2199 | ty: Type, |
2200 | } |
2201 | |
2202 | impl EvalResult { |
2203 | /// Evaluate `cursor` and return the result. |
2204 | pub(crate) fn new(cursor: Cursor) -> Option<Self> { |
2205 | // Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see: |
2206 | // * https://github.com/rust-lang/rust-bindgen/issues/283 |
2207 | // * https://github.com/rust-lang/rust-bindgen/issues/1590 |
2208 | { |
2209 | let mut found_cant_eval = false; |
2210 | cursor.visit(|c| { |
2211 | if c.kind() == CXCursor_TypeRef && |
2212 | c.cur_type().canonical_type().kind() == CXType_Unexposed |
2213 | { |
2214 | found_cant_eval = true; |
2215 | return CXChildVisit_Break; |
2216 | } |
2217 | |
2218 | CXChildVisit_Recurse |
2219 | }); |
2220 | |
2221 | if found_cant_eval { |
2222 | return None; |
2223 | } |
2224 | } |
2225 | Some(EvalResult { |
2226 | x: unsafe { clang_Cursor_Evaluate(cursor.x) }, |
2227 | ty: cursor.cur_type().canonical_type(), |
2228 | }) |
2229 | } |
2230 | |
2231 | fn kind(&self) -> CXEvalResultKind { |
2232 | unsafe { clang_EvalResult_getKind(self.x) } |
2233 | } |
2234 | |
2235 | /// Try to get back the result as a double. |
2236 | pub(crate) fn as_double(&self) -> Option<f64> { |
2237 | match self.kind() { |
2238 | CXEval_Float => { |
2239 | Some(unsafe { clang_EvalResult_getAsDouble(self.x) }) |
2240 | } |
2241 | _ => None, |
2242 | } |
2243 | } |
2244 | |
2245 | /// Try to get back the result as an integer. |
2246 | pub(crate) fn as_int(&self) -> Option<i64> { |
2247 | if self.kind() != CXEval_Int { |
2248 | return None; |
2249 | } |
2250 | |
2251 | if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 { |
2252 | let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) }; |
2253 | if value > i64::max_value() as c_ulonglong { |
2254 | return None; |
2255 | } |
2256 | |
2257 | return Some(value as i64); |
2258 | } |
2259 | |
2260 | let value = unsafe { clang_EvalResult_getAsLongLong(self.x) }; |
2261 | if value > i64::max_value() as c_longlong { |
2262 | return None; |
2263 | } |
2264 | if value < i64::min_value() as c_longlong { |
2265 | return None; |
2266 | } |
2267 | #[allow (clippy::unnecessary_cast)] |
2268 | Some(value as i64) |
2269 | } |
2270 | |
2271 | /// Evaluates the expression as a literal string, that may or may not be |
2272 | /// valid utf-8. |
2273 | pub(crate) fn as_literal_string(&self) -> Option<Vec<u8>> { |
2274 | if self.kind() != CXEval_StrLiteral { |
2275 | return None; |
2276 | } |
2277 | |
2278 | let char_ty = self.ty.pointee_type().or_else(|| self.ty.elem_type())?; |
2279 | match char_ty.kind() { |
2280 | CXType_Char_S | CXType_SChar | CXType_Char_U | CXType_UChar => { |
2281 | let ret = unsafe { |
2282 | CStr::from_ptr(clang_EvalResult_getAsStr(self.x)) |
2283 | }; |
2284 | Some(ret.to_bytes().to_vec()) |
2285 | } |
2286 | // FIXME: Support generating these. |
2287 | CXType_Char16 => None, |
2288 | CXType_Char32 => None, |
2289 | CXType_WChar => None, |
2290 | _ => None, |
2291 | } |
2292 | } |
2293 | } |
2294 | |
2295 | impl Drop for EvalResult { |
2296 | fn drop(&mut self) { |
2297 | unsafe { clang_EvalResult_dispose(self.x) }; |
2298 | } |
2299 | } |
2300 | /// ABI kinds as defined in |
2301 | /// <https://github.com/llvm/llvm-project/blob/ddf1de20a3f7db3bca1ef6ba7e6cbb90aac5fd2d/clang/include/clang/Basic/TargetCXXABI.def> |
2302 | #[derive (Debug, Eq, PartialEq, Copy, Clone)] |
2303 | pub(crate) enum ABIKind { |
2304 | /// All the regular targets like Linux, Mac, WASM, etc. implement the Itanium ABI |
2305 | GenericItanium, |
2306 | /// The ABI used when compiling for the MSVC target |
2307 | Microsoft, |
2308 | } |
2309 | |
2310 | /// Target information obtained from libclang. |
2311 | #[derive (Debug)] |
2312 | pub(crate) struct TargetInfo { |
2313 | /// The target triple. |
2314 | pub(crate) triple: String, |
2315 | /// The width of the pointer _in bits_. |
2316 | pub(crate) pointer_width: usize, |
2317 | /// The ABI of the target |
2318 | pub(crate) abi: ABIKind, |
2319 | } |
2320 | |
2321 | impl TargetInfo { |
2322 | /// Tries to obtain target information from libclang. |
2323 | pub(crate) fn new(tu: &TranslationUnit) -> Self { |
2324 | let triple; |
2325 | let pointer_width; |
2326 | unsafe { |
2327 | let ti = clang_getTranslationUnitTargetInfo(tu.x); |
2328 | triple = cxstring_into_string(clang_TargetInfo_getTriple(ti)); |
2329 | pointer_width = clang_TargetInfo_getPointerWidth(ti); |
2330 | clang_TargetInfo_dispose(ti); |
2331 | } |
2332 | assert!(pointer_width > 0); |
2333 | assert_eq!(pointer_width % 8, 0); |
2334 | |
2335 | let abi = if triple.contains("msvc" ) { |
2336 | ABIKind::Microsoft |
2337 | } else { |
2338 | ABIKind::GenericItanium |
2339 | }; |
2340 | |
2341 | TargetInfo { |
2342 | triple, |
2343 | pointer_width: pointer_width as usize, |
2344 | abi, |
2345 | } |
2346 | } |
2347 | } |
2348 | |