1 | //! Common context that is passed around during parsing and codegen. |
2 | |
3 | use super::super::time::Timer; |
4 | use super::analysis::{ |
5 | analyze, as_cannot_derive_set, CannotDerive, DeriveTrait, |
6 | HasDestructorAnalysis, HasFloat, HasTypeParameterInArray, |
7 | HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult, |
8 | UsedTemplateParameters, |
9 | }; |
10 | use super::derive::{ |
11 | CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq, |
12 | CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd, |
13 | }; |
14 | use super::function::Function; |
15 | use super::int::IntKind; |
16 | use super::item::{IsOpaque, Item, ItemAncestors, ItemSet}; |
17 | use super::item_kind::ItemKind; |
18 | use super::module::{Module, ModuleKind}; |
19 | use super::template::{TemplateInstantiation, TemplateParameters}; |
20 | use super::traversal::{self, Edge, ItemTraversal}; |
21 | use super::ty::{FloatKind, Type, TypeKind}; |
22 | use crate::clang::{self, ABIKind, Cursor}; |
23 | use crate::codegen::CodegenError; |
24 | use crate::BindgenOptions; |
25 | use crate::{Entry, HashMap, HashSet}; |
26 | |
27 | use proc_macro2::{Ident, Span, TokenStream}; |
28 | use quote::ToTokens; |
29 | use std::borrow::Cow; |
30 | use std::cell::{Cell, RefCell}; |
31 | use std::collections::{BTreeSet, HashMap as StdHashMap}; |
32 | use std::iter::IntoIterator; |
33 | use std::mem; |
34 | |
35 | /// An identifier for some kind of IR item. |
36 | #[derive (Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
37 | pub(crate) struct ItemId(usize); |
38 | |
39 | /// Declare a newtype around `ItemId` with convesion methods. |
40 | macro_rules! item_id_newtype { |
41 | ( |
42 | $( #[$attr:meta] )* |
43 | pub(crate) struct $name:ident(ItemId) |
44 | where |
45 | $( #[$checked_attr:meta] )* |
46 | checked = $checked:ident with $check_method:ident, |
47 | $( #[$expected_attr:meta] )* |
48 | expected = $expected:ident, |
49 | $( #[$unchecked_attr:meta] )* |
50 | unchecked = $unchecked:ident; |
51 | ) => { |
52 | $( #[$attr] )* |
53 | #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
54 | pub(crate) struct $name(ItemId); |
55 | |
56 | impl $name { |
57 | /// Create an `ItemResolver` from this ID. |
58 | #[allow(dead_code)] |
59 | pub(crate) fn into_resolver(self) -> ItemResolver { |
60 | let id: ItemId = self.into(); |
61 | id.into() |
62 | } |
63 | } |
64 | |
65 | impl<T> ::std::cmp::PartialEq<T> for $name |
66 | where |
67 | T: Copy + Into<ItemId> |
68 | { |
69 | fn eq(&self, rhs: &T) -> bool { |
70 | let rhs: ItemId = (*rhs).into(); |
71 | self.0 == rhs |
72 | } |
73 | } |
74 | |
75 | impl From<$name> for ItemId { |
76 | fn from(id: $name) -> ItemId { |
77 | id.0 |
78 | } |
79 | } |
80 | |
81 | impl<'a> From<&'a $name> for ItemId { |
82 | fn from(id: &'a $name) -> ItemId { |
83 | id.0 |
84 | } |
85 | } |
86 | |
87 | #[allow(dead_code)] |
88 | impl ItemId { |
89 | $( #[$checked_attr] )* |
90 | pub(crate) fn $checked(&self, ctx: &BindgenContext) -> Option<$name> { |
91 | if ctx.resolve_item(*self).kind().$check_method() { |
92 | Some($name(*self)) |
93 | } else { |
94 | None |
95 | } |
96 | } |
97 | |
98 | $( #[$expected_attr] )* |
99 | pub(crate) fn $expected(&self, ctx: &BindgenContext) -> $name { |
100 | self.$checked(ctx) |
101 | .expect(concat!( |
102 | stringify!($expected), |
103 | " called with ItemId that points to the wrong ItemKind" |
104 | )) |
105 | } |
106 | |
107 | $( #[$unchecked_attr] )* |
108 | pub(crate) fn $unchecked(&self) -> $name { |
109 | $name(*self) |
110 | } |
111 | } |
112 | } |
113 | } |
114 | |
115 | item_id_newtype! { |
116 | /// An identifier for an `Item` whose `ItemKind` is known to be |
117 | /// `ItemKind::Type`. |
118 | pub(crate) struct TypeId(ItemId) |
119 | where |
120 | /// Convert this `ItemId` into a `TypeId` if its associated item is a type, |
121 | /// otherwise return `None`. |
122 | checked = as_type_id with is_type, |
123 | |
124 | /// Convert this `ItemId` into a `TypeId`. |
125 | /// |
126 | /// If this `ItemId` does not point to a type, then panic. |
127 | expected = expect_type_id, |
128 | |
129 | /// Convert this `ItemId` into a `TypeId` without actually checking whether |
130 | /// this ID actually points to a `Type`. |
131 | unchecked = as_type_id_unchecked; |
132 | } |
133 | |
134 | item_id_newtype! { |
135 | /// An identifier for an `Item` whose `ItemKind` is known to be |
136 | /// `ItemKind::Module`. |
137 | pub(crate) struct ModuleId(ItemId) |
138 | where |
139 | /// Convert this `ItemId` into a `ModuleId` if its associated item is a |
140 | /// module, otherwise return `None`. |
141 | checked = as_module_id with is_module, |
142 | |
143 | /// Convert this `ItemId` into a `ModuleId`. |
144 | /// |
145 | /// If this `ItemId` does not point to a module, then panic. |
146 | expected = expect_module_id, |
147 | |
148 | /// Convert this `ItemId` into a `ModuleId` without actually checking |
149 | /// whether this ID actually points to a `Module`. |
150 | unchecked = as_module_id_unchecked; |
151 | } |
152 | |
153 | item_id_newtype! { |
154 | /// An identifier for an `Item` whose `ItemKind` is known to be |
155 | /// `ItemKind::Var`. |
156 | pub(crate) struct VarId(ItemId) |
157 | where |
158 | /// Convert this `ItemId` into a `VarId` if its associated item is a var, |
159 | /// otherwise return `None`. |
160 | checked = as_var_id with is_var, |
161 | |
162 | /// Convert this `ItemId` into a `VarId`. |
163 | /// |
164 | /// If this `ItemId` does not point to a var, then panic. |
165 | expected = expect_var_id, |
166 | |
167 | /// Convert this `ItemId` into a `VarId` without actually checking whether |
168 | /// this ID actually points to a `Var`. |
169 | unchecked = as_var_id_unchecked; |
170 | } |
171 | |
172 | item_id_newtype! { |
173 | /// An identifier for an `Item` whose `ItemKind` is known to be |
174 | /// `ItemKind::Function`. |
175 | pub(crate) struct FunctionId(ItemId) |
176 | where |
177 | /// Convert this `ItemId` into a `FunctionId` if its associated item is a function, |
178 | /// otherwise return `None`. |
179 | checked = as_function_id with is_function, |
180 | |
181 | /// Convert this `ItemId` into a `FunctionId`. |
182 | /// |
183 | /// If this `ItemId` does not point to a function, then panic. |
184 | expected = expect_function_id, |
185 | |
186 | /// Convert this `ItemId` into a `FunctionId` without actually checking whether |
187 | /// this ID actually points to a `Function`. |
188 | unchecked = as_function_id_unchecked; |
189 | } |
190 | |
191 | impl From<ItemId> for usize { |
192 | fn from(id: ItemId) -> usize { |
193 | id.0 |
194 | } |
195 | } |
196 | |
197 | impl ItemId { |
198 | /// Get a numeric representation of this ID. |
199 | pub(crate) fn as_usize(&self) -> usize { |
200 | (*self).into() |
201 | } |
202 | } |
203 | |
204 | impl<T> ::std::cmp::PartialEq<T> for ItemId |
205 | where |
206 | T: Copy + Into<ItemId>, |
207 | { |
208 | fn eq(&self, rhs: &T) -> bool { |
209 | let rhs: ItemId = (*rhs).into(); |
210 | self.0 == rhs.0 |
211 | } |
212 | } |
213 | |
214 | impl<T> CanDeriveDebug for T |
215 | where |
216 | T: Copy + Into<ItemId>, |
217 | { |
218 | fn can_derive_debug(&self, ctx: &BindgenContext) -> bool { |
219 | ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self) |
220 | } |
221 | } |
222 | |
223 | impl<T> CanDeriveDefault for T |
224 | where |
225 | T: Copy + Into<ItemId>, |
226 | { |
227 | fn can_derive_default(&self, ctx: &BindgenContext) -> bool { |
228 | ctx.options().derive_default && ctx.lookup_can_derive_default(*self) |
229 | } |
230 | } |
231 | |
232 | impl<T> CanDeriveCopy for T |
233 | where |
234 | T: Copy + Into<ItemId>, |
235 | { |
236 | fn can_derive_copy(&self, ctx: &BindgenContext) -> bool { |
237 | ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self) |
238 | } |
239 | } |
240 | |
241 | impl<T> CanDeriveHash for T |
242 | where |
243 | T: Copy + Into<ItemId>, |
244 | { |
245 | fn can_derive_hash(&self, ctx: &BindgenContext) -> bool { |
246 | ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self) |
247 | } |
248 | } |
249 | |
250 | impl<T> CanDerivePartialOrd for T |
251 | where |
252 | T: Copy + Into<ItemId>, |
253 | { |
254 | fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool { |
255 | ctx.options().derive_partialord && |
256 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
257 | CanDerive::Yes |
258 | } |
259 | } |
260 | |
261 | impl<T> CanDerivePartialEq for T |
262 | where |
263 | T: Copy + Into<ItemId>, |
264 | { |
265 | fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool { |
266 | ctx.options().derive_partialeq && |
267 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
268 | CanDerive::Yes |
269 | } |
270 | } |
271 | |
272 | impl<T> CanDeriveEq for T |
273 | where |
274 | T: Copy + Into<ItemId>, |
275 | { |
276 | fn can_derive_eq(&self, ctx: &BindgenContext) -> bool { |
277 | ctx.options().derive_eq && |
278 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
279 | CanDerive::Yes && |
280 | !ctx.lookup_has_float(*self) |
281 | } |
282 | } |
283 | |
284 | impl<T> CanDeriveOrd for T |
285 | where |
286 | T: Copy + Into<ItemId>, |
287 | { |
288 | fn can_derive_ord(&self, ctx: &BindgenContext) -> bool { |
289 | ctx.options().derive_ord && |
290 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
291 | CanDerive::Yes && |
292 | !ctx.lookup_has_float(*self) |
293 | } |
294 | } |
295 | |
296 | /// A key used to index a resolved type, so we only process it once. |
297 | /// |
298 | /// This is almost always a USR string (an unique identifier generated by |
299 | /// clang), but it can also be the canonical declaration if the type is unnamed, |
300 | /// in which case clang may generate the same USR for multiple nested unnamed |
301 | /// types. |
302 | #[derive (Eq, PartialEq, Hash, Debug)] |
303 | enum TypeKey { |
304 | Usr(String), |
305 | Declaration(Cursor), |
306 | } |
307 | |
308 | /// A context used during parsing and generation of structs. |
309 | #[derive (Debug)] |
310 | pub(crate) struct BindgenContext { |
311 | /// The map of all the items parsed so far, keyed off ItemId. |
312 | items: Vec<Option<Item>>, |
313 | |
314 | /// Clang USR to type map. This is needed to be able to associate types with |
315 | /// item ids during parsing. |
316 | types: HashMap<TypeKey, TypeId>, |
317 | |
318 | /// Maps from a cursor to the item ID of the named template type parameter |
319 | /// for that cursor. |
320 | type_params: HashMap<clang::Cursor, TypeId>, |
321 | |
322 | /// A cursor to module map. Similar reason than above. |
323 | modules: HashMap<Cursor, ModuleId>, |
324 | |
325 | /// The root module, this is guaranteed to be an item of kind Module. |
326 | root_module: ModuleId, |
327 | |
328 | /// Current module being traversed. |
329 | current_module: ModuleId, |
330 | |
331 | /// A HashMap keyed on a type definition, and whose value is the parent ID |
332 | /// of the declaration. |
333 | /// |
334 | /// This is used to handle the cases where the semantic and the lexical |
335 | /// parents of the cursor differ, like when a nested class is defined |
336 | /// outside of the parent class. |
337 | semantic_parents: HashMap<clang::Cursor, ItemId>, |
338 | |
339 | /// A stack with the current type declarations and types we're parsing. This |
340 | /// is needed to avoid infinite recursion when parsing a type like: |
341 | /// |
342 | /// struct c { struct c* next; }; |
343 | /// |
344 | /// This means effectively, that a type has a potential ID before knowing if |
345 | /// it's a correct type. But that's not important in practice. |
346 | /// |
347 | /// We could also use the `types` HashMap, but my intention with it is that |
348 | /// only valid types and declarations end up there, and this could |
349 | /// potentially break that assumption. |
350 | currently_parsed_types: Vec<PartialType>, |
351 | |
352 | /// A map with all the already parsed macro names. This is done to avoid |
353 | /// hard errors while parsing duplicated macros, as well to allow macro |
354 | /// expression parsing. |
355 | /// |
356 | /// This needs to be an std::HashMap because the cexpr API requires it. |
357 | parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>, |
358 | |
359 | /// A map with all include locations. |
360 | /// |
361 | /// This is needed so that items are created in the order they are defined in. |
362 | /// |
363 | /// The key is the included file, the value is a pair of the source file and |
364 | /// the position of the `#include` directive in the source file. |
365 | includes: StdHashMap<String, (String, usize)>, |
366 | |
367 | /// A set of all the included filenames. |
368 | deps: BTreeSet<Box<str>>, |
369 | |
370 | /// The active replacements collected from replaces="xxx" annotations. |
371 | replacements: HashMap<Vec<String>, ItemId>, |
372 | |
373 | collected_typerefs: bool, |
374 | |
375 | in_codegen: bool, |
376 | |
377 | /// The translation unit for parsing. |
378 | translation_unit: clang::TranslationUnit, |
379 | |
380 | /// Target information that can be useful for some stuff. |
381 | target_info: clang::TargetInfo, |
382 | |
383 | /// The options given by the user via cli or other medium. |
384 | options: BindgenOptions, |
385 | |
386 | /// Whether a bindgen complex was generated |
387 | generated_bindgen_complex: Cell<bool>, |
388 | |
389 | /// Whether a bindgen float16 was generated |
390 | generated_bindgen_float16: Cell<bool>, |
391 | |
392 | /// The set of `ItemId`s that are allowlisted. This the very first thing |
393 | /// computed after parsing our IR, and before running any of our analyses. |
394 | allowlisted: Option<ItemSet>, |
395 | |
396 | /// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait` |
397 | blocklisted_types_implement_traits: |
398 | RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>, |
399 | |
400 | /// The set of `ItemId`s that are allowlisted for code generation _and_ that |
401 | /// we should generate accounting for the codegen options. |
402 | /// |
403 | /// It's computed right after computing the allowlisted items. |
404 | codegen_items: Option<ItemSet>, |
405 | |
406 | /// Map from an item's ID to the set of template parameter items that it |
407 | /// uses. See `ir::named` for more details. Always `Some` during the codegen |
408 | /// phase. |
409 | used_template_parameters: Option<HashMap<ItemId, ItemSet>>, |
410 | |
411 | /// The set of `TypeKind::Comp` items found during parsing that need their |
412 | /// bitfield allocation units computed. Drained in `compute_bitfield_units`. |
413 | need_bitfield_allocation: Vec<ItemId>, |
414 | |
415 | /// The set of enums that are defined by a pair of `enum` and `typedef`, |
416 | /// which is legal in C (but not C++). |
417 | /// |
418 | /// ```c++ |
419 | /// // in either order |
420 | /// enum Enum { Variants... }; |
421 | /// typedef int16_t Enum; |
422 | /// ``` |
423 | /// |
424 | /// The stored `ItemId` is that of the `TypeKind::Enum`, not of the |
425 | /// `TypeKind::Alias`. |
426 | /// |
427 | /// This is populated when we enter codegen by `compute_enum_typedef_combos` |
428 | /// and is always `None` before that and `Some` after. |
429 | enum_typedef_combos: Option<HashSet<ItemId>>, |
430 | |
431 | /// The set of (`ItemId`s of) types that can't derive debug. |
432 | /// |
433 | /// This is populated when we enter codegen by `compute_cannot_derive_debug` |
434 | /// and is always `None` before that and `Some` after. |
435 | cannot_derive_debug: Option<HashSet<ItemId>>, |
436 | |
437 | /// The set of (`ItemId`s of) types that can't derive default. |
438 | /// |
439 | /// This is populated when we enter codegen by `compute_cannot_derive_default` |
440 | /// and is always `None` before that and `Some` after. |
441 | cannot_derive_default: Option<HashSet<ItemId>>, |
442 | |
443 | /// The set of (`ItemId`s of) types that can't derive copy. |
444 | /// |
445 | /// This is populated when we enter codegen by `compute_cannot_derive_copy` |
446 | /// and is always `None` before that and `Some` after. |
447 | cannot_derive_copy: Option<HashSet<ItemId>>, |
448 | |
449 | /// The set of (`ItemId`s of) types that can't derive hash. |
450 | /// |
451 | /// This is populated when we enter codegen by `compute_can_derive_hash` |
452 | /// and is always `None` before that and `Some` after. |
453 | cannot_derive_hash: Option<HashSet<ItemId>>, |
454 | |
455 | /// The map why specified `ItemId`s of) types that can't derive hash. |
456 | /// |
457 | /// This is populated when we enter codegen by |
458 | /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None` |
459 | /// before that and `Some` after. |
460 | cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>, |
461 | |
462 | /// The sizedness of types. |
463 | /// |
464 | /// This is populated by `compute_sizedness` and is always `None` before |
465 | /// that function is invoked and `Some` afterwards. |
466 | sizedness: Option<HashMap<TypeId, SizednessResult>>, |
467 | |
468 | /// The set of (`ItemId's of`) types that has vtable. |
469 | /// |
470 | /// Populated when we enter codegen by `compute_has_vtable`; always `None` |
471 | /// before that and `Some` after. |
472 | have_vtable: Option<HashMap<ItemId, HasVtableResult>>, |
473 | |
474 | /// The set of (`ItemId's of`) types that has destructor. |
475 | /// |
476 | /// Populated when we enter codegen by `compute_has_destructor`; always `None` |
477 | /// before that and `Some` after. |
478 | have_destructor: Option<HashSet<ItemId>>, |
479 | |
480 | /// The set of (`ItemId's of`) types that has array. |
481 | /// |
482 | /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None` |
483 | /// before that and `Some` after. |
484 | has_type_param_in_array: Option<HashSet<ItemId>>, |
485 | |
486 | /// The set of (`ItemId's of`) types that has float. |
487 | /// |
488 | /// Populated when we enter codegen by `compute_has_float`; always `None` |
489 | /// before that and `Some` after. |
490 | has_float: Option<HashSet<ItemId>>, |
491 | } |
492 | |
493 | /// A traversal of allowlisted items. |
494 | struct AllowlistedItemsTraversal<'ctx> { |
495 | ctx: &'ctx BindgenContext, |
496 | traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>, |
497 | } |
498 | |
499 | impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> { |
500 | type Item = ItemId; |
501 | |
502 | fn next(&mut self) -> Option<ItemId> { |
503 | loop { |
504 | let id: ItemId = self.traversal.next()?; |
505 | |
506 | if self.ctx.resolve_item(item_id:id).is_blocklisted(self.ctx) { |
507 | continue; |
508 | } |
509 | |
510 | return Some(id); |
511 | } |
512 | } |
513 | } |
514 | |
515 | impl<'ctx> AllowlistedItemsTraversal<'ctx> { |
516 | /// Construct a new allowlisted items traversal. |
517 | pub(crate) fn new<R>( |
518 | ctx: &'ctx BindgenContext, |
519 | roots: R, |
520 | predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool, |
521 | ) -> Self |
522 | where |
523 | R: IntoIterator<Item = ItemId>, |
524 | { |
525 | AllowlistedItemsTraversal { |
526 | ctx, |
527 | traversal: ItemTraversal::new(ctx, roots, predicate), |
528 | } |
529 | } |
530 | } |
531 | |
532 | impl BindgenContext { |
533 | /// Construct the context for the given `options`. |
534 | pub(crate) fn new( |
535 | options: BindgenOptions, |
536 | input_unsaved_files: &[clang::UnsavedFile], |
537 | ) -> Self { |
538 | // TODO(emilio): Use the CXTargetInfo here when available. |
539 | // |
540 | // see: https://reviews.llvm.org/D32389 |
541 | let index = clang::Index::new(false, true); |
542 | |
543 | let parse_options = |
544 | clang_sys::CXTranslationUnit_DetailedPreprocessingRecord; |
545 | |
546 | let translation_unit = { |
547 | let _t = |
548 | Timer::new("translation_unit" ).with_output(options.time_phases); |
549 | |
550 | clang::TranslationUnit::parse( |
551 | &index, |
552 | "" , |
553 | &options.clang_args, |
554 | input_unsaved_files, |
555 | parse_options, |
556 | ).expect("libclang error; possible causes include: |
557 | - Invalid flag syntax |
558 | - Unrecognized flags |
559 | - Invalid flag arguments |
560 | - File I/O errors |
561 | - Host vs. target architecture mismatch |
562 | If you encounter an error missing from this list, please file an issue or a PR!" ) |
563 | }; |
564 | |
565 | let target_info = clang::TargetInfo::new(&translation_unit); |
566 | let root_module = Self::build_root_module(ItemId(0)); |
567 | let root_module_id = root_module.id().as_module_id_unchecked(); |
568 | |
569 | // depfiles need to include the explicitly listed headers too |
570 | let deps = options.input_headers.iter().cloned().collect(); |
571 | |
572 | BindgenContext { |
573 | items: vec![Some(root_module)], |
574 | includes: Default::default(), |
575 | deps, |
576 | types: Default::default(), |
577 | type_params: Default::default(), |
578 | modules: Default::default(), |
579 | root_module: root_module_id, |
580 | current_module: root_module_id, |
581 | semantic_parents: Default::default(), |
582 | currently_parsed_types: vec![], |
583 | parsed_macros: Default::default(), |
584 | replacements: Default::default(), |
585 | collected_typerefs: false, |
586 | in_codegen: false, |
587 | translation_unit, |
588 | target_info, |
589 | options, |
590 | generated_bindgen_complex: Cell::new(false), |
591 | generated_bindgen_float16: Cell::new(false), |
592 | allowlisted: None, |
593 | blocklisted_types_implement_traits: Default::default(), |
594 | codegen_items: None, |
595 | used_template_parameters: None, |
596 | need_bitfield_allocation: Default::default(), |
597 | enum_typedef_combos: None, |
598 | cannot_derive_debug: None, |
599 | cannot_derive_default: None, |
600 | cannot_derive_copy: None, |
601 | cannot_derive_hash: None, |
602 | cannot_derive_partialeq_or_partialord: None, |
603 | sizedness: None, |
604 | have_vtable: None, |
605 | have_destructor: None, |
606 | has_type_param_in_array: None, |
607 | has_float: None, |
608 | } |
609 | } |
610 | |
611 | /// Returns `true` if the target architecture is wasm32 |
612 | pub(crate) fn is_target_wasm32(&self) -> bool { |
613 | self.target_info.triple.starts_with("wasm32-" ) |
614 | } |
615 | |
616 | /// Creates a timer for the current bindgen phase. If time_phases is `true`, |
617 | /// the timer will print to stderr when it is dropped, otherwise it will do |
618 | /// nothing. |
619 | pub(crate) fn timer<'a>(&self, name: &'a str) -> Timer<'a> { |
620 | Timer::new(name).with_output(self.options.time_phases) |
621 | } |
622 | |
623 | /// Returns the pointer width to use for the target for the current |
624 | /// translation. |
625 | pub(crate) fn target_pointer_size(&self) -> usize { |
626 | self.target_info.pointer_width / 8 |
627 | } |
628 | |
629 | /// Returns the ABI, which is mostly useful for determining the mangling kind. |
630 | pub(crate) fn abi_kind(&self) -> ABIKind { |
631 | self.target_info.abi |
632 | } |
633 | |
634 | /// Get the stack of partially parsed types that we are in the middle of |
635 | /// parsing. |
636 | pub(crate) fn currently_parsed_types(&self) -> &[PartialType] { |
637 | &self.currently_parsed_types[..] |
638 | } |
639 | |
640 | /// Begin parsing the given partial type, and push it onto the |
641 | /// `currently_parsed_types` stack so that we won't infinite recurse if we |
642 | /// run into a reference to it while parsing it. |
643 | pub(crate) fn begin_parsing(&mut self, partial_ty: PartialType) { |
644 | self.currently_parsed_types.push(partial_ty); |
645 | } |
646 | |
647 | /// Finish parsing the current partial type, pop it off the |
648 | /// `currently_parsed_types` stack, and return it. |
649 | pub(crate) fn finish_parsing(&mut self) -> PartialType { |
650 | self.currently_parsed_types.pop().expect( |
651 | "should have been parsing a type, if we finished parsing a type" , |
652 | ) |
653 | } |
654 | |
655 | /// Add the location of the `#include` directive for the `included_file`. |
656 | pub(crate) fn add_include( |
657 | &mut self, |
658 | source_file: String, |
659 | included_file: String, |
660 | offset: usize, |
661 | ) { |
662 | self.includes |
663 | .entry(included_file) |
664 | .or_insert((source_file, offset)); |
665 | } |
666 | |
667 | /// Get the location of the first `#include` directive for the `included_file`. |
668 | pub(crate) fn included_file_location( |
669 | &self, |
670 | included_file: &str, |
671 | ) -> Option<(String, usize)> { |
672 | self.includes.get(included_file).cloned() |
673 | } |
674 | |
675 | /// Add an included file. |
676 | pub(crate) fn add_dep(&mut self, dep: Box<str>) { |
677 | self.deps.insert(dep); |
678 | } |
679 | |
680 | /// Get any included files. |
681 | pub(crate) fn deps(&self) -> &BTreeSet<Box<str>> { |
682 | &self.deps |
683 | } |
684 | |
685 | /// Define a new item. |
686 | /// |
687 | /// This inserts it into the internal items set, and its type into the |
688 | /// internal types set. |
689 | pub(crate) fn add_item( |
690 | &mut self, |
691 | item: Item, |
692 | declaration: Option<Cursor>, |
693 | location: Option<Cursor>, |
694 | ) { |
695 | debug!( |
696 | "BindgenContext::add_item( {:?}, declaration: {:?}, loc: {:?}" , |
697 | item, declaration, location |
698 | ); |
699 | debug_assert!( |
700 | declaration.is_some() || |
701 | !item.kind().is_type() || |
702 | item.kind().expect_type().is_builtin_or_type_param() || |
703 | item.kind().expect_type().is_opaque(self, &item) || |
704 | item.kind().expect_type().is_unresolved_ref(), |
705 | "Adding a type without declaration?" |
706 | ); |
707 | |
708 | let id = item.id(); |
709 | let is_type = item.kind().is_type(); |
710 | let is_unnamed = is_type && item.expect_type().name().is_none(); |
711 | let is_template_instantiation = |
712 | is_type && item.expect_type().is_template_instantiation(); |
713 | |
714 | if item.id() != self.root_module { |
715 | self.add_item_to_module(&item); |
716 | } |
717 | |
718 | if is_type && item.expect_type().is_comp() { |
719 | self.need_bitfield_allocation.push(id); |
720 | } |
721 | |
722 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
723 | assert!( |
724 | old_item.is_none(), |
725 | "should not have already associated an item with the given id" |
726 | ); |
727 | |
728 | // Unnamed items can have an USR, but they can't be referenced from |
729 | // other sites explicitly and the USR can match if the unnamed items are |
730 | // nested, so don't bother tracking them. |
731 | if !is_type || is_template_instantiation { |
732 | return; |
733 | } |
734 | if let Some(mut declaration) = declaration { |
735 | if !declaration.is_valid() { |
736 | if let Some(location) = location { |
737 | if location.is_template_like() { |
738 | declaration = location; |
739 | } |
740 | } |
741 | } |
742 | declaration = declaration.canonical(); |
743 | if !declaration.is_valid() { |
744 | // This could happen, for example, with types like `int*` or |
745 | // similar. |
746 | // |
747 | // Fortunately, we don't care about those types being |
748 | // duplicated, so we can just ignore them. |
749 | debug!( |
750 | "Invalid declaration {:?} found for type {:?}" , |
751 | declaration, |
752 | self.resolve_item_fallible(id) |
753 | .unwrap() |
754 | .kind() |
755 | .expect_type() |
756 | ); |
757 | return; |
758 | } |
759 | |
760 | let key = if is_unnamed { |
761 | TypeKey::Declaration(declaration) |
762 | } else if let Some(usr) = declaration.usr() { |
763 | TypeKey::Usr(usr) |
764 | } else { |
765 | warn!( |
766 | "Valid declaration with no USR: {:?}, {:?}" , |
767 | declaration, location |
768 | ); |
769 | TypeKey::Declaration(declaration) |
770 | }; |
771 | |
772 | let old = self.types.insert(key, id.as_type_id_unchecked()); |
773 | debug_assert_eq!(old, None); |
774 | } |
775 | } |
776 | |
777 | /// Ensure that every item (other than the root module) is in a module's |
778 | /// children list. This is to make sure that every allowlisted item get's |
779 | /// codegen'd, even if its parent is not allowlisted. See issue #769 for |
780 | /// details. |
781 | fn add_item_to_module(&mut self, item: &Item) { |
782 | assert!(item.id() != self.root_module); |
783 | assert!(self.resolve_item_fallible(item.id()).is_none()); |
784 | |
785 | if let Some(ref mut parent) = self.items[item.parent_id().0] { |
786 | if let Some(module) = parent.as_module_mut() { |
787 | debug!( |
788 | "add_item_to_module: adding {:?} as child of parent module {:?}" , |
789 | item.id(), |
790 | item.parent_id() |
791 | ); |
792 | |
793 | module.children_mut().insert(item.id()); |
794 | return; |
795 | } |
796 | } |
797 | |
798 | debug!( |
799 | "add_item_to_module: adding {:?} as child of current module {:?}" , |
800 | item.id(), |
801 | self.current_module |
802 | ); |
803 | |
804 | self.items[(self.current_module.0).0] |
805 | .as_mut() |
806 | .expect("Should always have an item for self.current_module" ) |
807 | .as_module_mut() |
808 | .expect("self.current_module should always be a module" ) |
809 | .children_mut() |
810 | .insert(item.id()); |
811 | } |
812 | |
813 | /// Add a new named template type parameter to this context's item set. |
814 | pub(crate) fn add_type_param( |
815 | &mut self, |
816 | item: Item, |
817 | definition: clang::Cursor, |
818 | ) { |
819 | debug!( |
820 | "BindgenContext::add_type_param: item = {:?}; definition = {:?}" , |
821 | item, definition |
822 | ); |
823 | |
824 | assert!( |
825 | item.expect_type().is_type_param(), |
826 | "Should directly be a named type, not a resolved reference or anything" |
827 | ); |
828 | assert_eq!( |
829 | definition.kind(), |
830 | clang_sys::CXCursor_TemplateTypeParameter |
831 | ); |
832 | |
833 | self.add_item_to_module(&item); |
834 | |
835 | let id = item.id(); |
836 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
837 | assert!( |
838 | old_item.is_none(), |
839 | "should not have already associated an item with the given id" |
840 | ); |
841 | |
842 | let old_named_ty = self |
843 | .type_params |
844 | .insert(definition, id.as_type_id_unchecked()); |
845 | assert!( |
846 | old_named_ty.is_none(), |
847 | "should not have already associated a named type with this id" |
848 | ); |
849 | } |
850 | |
851 | /// Get the named type defined at the given cursor location, if we've |
852 | /// already added one. |
853 | pub(crate) fn get_type_param( |
854 | &self, |
855 | definition: &clang::Cursor, |
856 | ) -> Option<TypeId> { |
857 | assert_eq!( |
858 | definition.kind(), |
859 | clang_sys::CXCursor_TemplateTypeParameter |
860 | ); |
861 | self.type_params.get(definition).cloned() |
862 | } |
863 | |
864 | // TODO: Move all this syntax crap to other part of the code. |
865 | |
866 | /// Mangles a name so it doesn't conflict with any keyword. |
867 | #[rustfmt::skip] |
868 | pub(crate) fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> { |
869 | if name.contains('@' ) || |
870 | name.contains('?' ) || |
871 | name.contains('$' ) || |
872 | matches!( |
873 | name, |
874 | "abstract" | "alignof" | "as" | "async" | "await" | "become" | |
875 | "box" | "break" | "const" | "continue" | "crate" | "do" | |
876 | "dyn" | "else" | "enum" | "extern" | "false" | "final" | |
877 | "fn" | "for" | "if" | "impl" | "in" | "let" | "loop" | |
878 | "macro" | "match" | "mod" | "move" | "mut" | "offsetof" | |
879 | "override" | "priv" | "proc" | "pub" | "pure" | "ref" | |
880 | "return" | "Self" | "self" | "sizeof" | "static" | |
881 | "struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" | |
882 | "unsafe" | "unsized" | "use" | "virtual" | "where" | |
883 | "while" | "yield" | "str" | "bool" | "f32" | "f64" | |
884 | "usize" | "isize" | "u128" | "i128" | "u64" | "i64" | |
885 | "u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_" |
886 | ) |
887 | { |
888 | let mut s = name.to_owned(); |
889 | s = s.replace('@' , "_" ); |
890 | s = s.replace('?' , "_" ); |
891 | s = s.replace('$' , "_" ); |
892 | s.push('_' ); |
893 | return Cow::Owned(s); |
894 | } |
895 | Cow::Borrowed(name) |
896 | } |
897 | |
898 | /// Returns a mangled name as a rust identifier. |
899 | pub(crate) fn rust_ident<S>(&self, name: S) -> Ident |
900 | where |
901 | S: AsRef<str>, |
902 | { |
903 | self.rust_ident_raw(self.rust_mangle(name.as_ref())) |
904 | } |
905 | |
906 | /// Returns a mangled name as a rust identifier. |
907 | pub(crate) fn rust_ident_raw<T>(&self, name: T) -> Ident |
908 | where |
909 | T: AsRef<str>, |
910 | { |
911 | Ident::new(name.as_ref(), Span::call_site()) |
912 | } |
913 | |
914 | /// Iterate over all items that have been defined. |
915 | pub(crate) fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> { |
916 | self.items.iter().enumerate().filter_map(|(index, item)| { |
917 | let item = item.as_ref()?; |
918 | Some((ItemId(index), item)) |
919 | }) |
920 | } |
921 | |
922 | /// Have we collected all unresolved type references yet? |
923 | pub(crate) fn collected_typerefs(&self) -> bool { |
924 | self.collected_typerefs |
925 | } |
926 | |
927 | /// Gather all the unresolved type references. |
928 | fn collect_typerefs( |
929 | &mut self, |
930 | ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> { |
931 | debug_assert!(!self.collected_typerefs); |
932 | self.collected_typerefs = true; |
933 | let mut typerefs = vec![]; |
934 | |
935 | for (id, item) in self.items() { |
936 | let kind = item.kind(); |
937 | let ty = match kind.as_type() { |
938 | Some(ty) => ty, |
939 | None => continue, |
940 | }; |
941 | |
942 | if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) = |
943 | *ty.kind() |
944 | { |
945 | typerefs.push((id, *ty, loc, parent_id)); |
946 | }; |
947 | } |
948 | typerefs |
949 | } |
950 | |
951 | /// Collect all of our unresolved type references and resolve them. |
952 | fn resolve_typerefs(&mut self) { |
953 | let _t = self.timer("resolve_typerefs" ); |
954 | |
955 | let typerefs = self.collect_typerefs(); |
956 | |
957 | for (id, ty, loc, parent_id) in typerefs { |
958 | let _resolved = |
959 | { |
960 | let resolved = Item::from_ty(&ty, loc, parent_id, self) |
961 | .unwrap_or_else(|_| { |
962 | warn!("Could not resolve type reference, falling back \ |
963 | to opaque blob" ); |
964 | Item::new_opaque_type(self.next_item_id(), &ty, self) |
965 | }); |
966 | |
967 | let item = self.items[id.0].as_mut().unwrap(); |
968 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
969 | TypeKind::ResolvedTypeRef(resolved); |
970 | resolved |
971 | }; |
972 | |
973 | // Something in the STL is trolling me. I don't need this assertion |
974 | // right now, but worth investigating properly once this lands. |
975 | // |
976 | // debug_assert!(self.items.get(&resolved).is_some(), "How?"); |
977 | // |
978 | // if let Some(parent_id) = parent_id { |
979 | // assert_eq!(self.items[&resolved].parent_id(), parent_id); |
980 | // } |
981 | } |
982 | } |
983 | |
984 | /// Temporarily loan `Item` with the given `ItemId`. This provides means to |
985 | /// mutably borrow `Item` while having a reference to `BindgenContext`. |
986 | /// |
987 | /// `Item` with the given `ItemId` is removed from the context, given |
988 | /// closure is executed and then `Item` is placed back. |
989 | /// |
990 | /// # Panics |
991 | /// |
992 | /// Panics if attempt to resolve given `ItemId` inside the given |
993 | /// closure is made. |
994 | fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T |
995 | where |
996 | F: (FnOnce(&BindgenContext, &mut Item) -> T), |
997 | { |
998 | let mut item = self.items[id.0].take().unwrap(); |
999 | |
1000 | let result = f(self, &mut item); |
1001 | |
1002 | let existing = mem::replace(&mut self.items[id.0], Some(item)); |
1003 | assert!(existing.is_none()); |
1004 | |
1005 | result |
1006 | } |
1007 | |
1008 | /// Compute the bitfield allocation units for all `TypeKind::Comp` items we |
1009 | /// parsed. |
1010 | fn compute_bitfield_units(&mut self) { |
1011 | let _t = self.timer("compute_bitfield_units" ); |
1012 | |
1013 | assert!(self.collected_typerefs()); |
1014 | |
1015 | let need_bitfield_allocation = |
1016 | mem::take(&mut self.need_bitfield_allocation); |
1017 | for id in need_bitfield_allocation { |
1018 | self.with_loaned_item(id, |ctx, item| { |
1019 | let ty = item.kind_mut().as_type_mut().unwrap(); |
1020 | let layout = ty.layout(ctx); |
1021 | ty.as_comp_mut() |
1022 | .unwrap() |
1023 | .compute_bitfield_units(ctx, layout.as_ref()); |
1024 | }); |
1025 | } |
1026 | } |
1027 | |
1028 | /// Assign a new generated name for each anonymous field. |
1029 | fn deanonymize_fields(&mut self) { |
1030 | let _t = self.timer("deanonymize_fields" ); |
1031 | |
1032 | let comp_item_ids: Vec<ItemId> = self |
1033 | .items() |
1034 | .filter_map(|(id, item)| { |
1035 | if item.kind().as_type()?.is_comp() { |
1036 | return Some(id); |
1037 | } |
1038 | None |
1039 | }) |
1040 | .collect(); |
1041 | |
1042 | for id in comp_item_ids { |
1043 | self.with_loaned_item(id, |ctx, item| { |
1044 | item.kind_mut() |
1045 | .as_type_mut() |
1046 | .unwrap() |
1047 | .as_comp_mut() |
1048 | .unwrap() |
1049 | .deanonymize_fields(ctx); |
1050 | }); |
1051 | } |
1052 | } |
1053 | |
1054 | /// Iterate over all items and replace any item that has been named in a |
1055 | /// `replaces="SomeType"` annotation with the replacement type. |
1056 | fn process_replacements(&mut self) { |
1057 | let _t = self.timer("process_replacements" ); |
1058 | if self.replacements.is_empty() { |
1059 | debug!("No replacements to process" ); |
1060 | return; |
1061 | } |
1062 | |
1063 | // FIXME: This is linear, but the replaces="xxx" annotation was already |
1064 | // there, and for better or worse it's useful, sigh... |
1065 | // |
1066 | // We leverage the ResolvedTypeRef thing, though, which is cool :P. |
1067 | |
1068 | let mut replacements = vec![]; |
1069 | |
1070 | for (id, item) in self.items() { |
1071 | if item.annotations().use_instead_of().is_some() { |
1072 | continue; |
1073 | } |
1074 | |
1075 | // Calls to `canonical_name` are expensive, so eagerly filter out |
1076 | // items that cannot be replaced. |
1077 | let ty = match item.kind().as_type() { |
1078 | Some(ty) => ty, |
1079 | None => continue, |
1080 | }; |
1081 | |
1082 | match *ty.kind() { |
1083 | TypeKind::Comp(..) | |
1084 | TypeKind::TemplateAlias(..) | |
1085 | TypeKind::Enum(..) | |
1086 | TypeKind::Alias(..) => {} |
1087 | _ => continue, |
1088 | } |
1089 | |
1090 | let path = item.path_for_allowlisting(self); |
1091 | let replacement = self.replacements.get(&path[1..]); |
1092 | |
1093 | if let Some(replacement) = replacement { |
1094 | if *replacement != id { |
1095 | // We set this just after parsing the annotation. It's |
1096 | // very unlikely, but this can happen. |
1097 | if self.resolve_item_fallible(*replacement).is_some() { |
1098 | replacements.push(( |
1099 | id.expect_type_id(self), |
1100 | replacement.expect_type_id(self), |
1101 | )); |
1102 | } |
1103 | } |
1104 | } |
1105 | } |
1106 | |
1107 | for (id, replacement_id) in replacements { |
1108 | debug!("Replacing {:?} with {:?}" , id, replacement_id); |
1109 | let new_parent = { |
1110 | let item_id: ItemId = id.into(); |
1111 | let item = self.items[item_id.0].as_mut().unwrap(); |
1112 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
1113 | TypeKind::ResolvedTypeRef(replacement_id); |
1114 | item.parent_id() |
1115 | }; |
1116 | |
1117 | // Relocate the replacement item from where it was declared, to |
1118 | // where the thing it is replacing was declared. |
1119 | // |
1120 | // First, we'll make sure that its parent ID is correct. |
1121 | |
1122 | let old_parent = self.resolve_item(replacement_id).parent_id(); |
1123 | if new_parent == old_parent { |
1124 | // Same parent and therefore also same containing |
1125 | // module. Nothing to do here. |
1126 | continue; |
1127 | } |
1128 | |
1129 | let replacement_item_id: ItemId = replacement_id.into(); |
1130 | self.items[replacement_item_id.0] |
1131 | .as_mut() |
1132 | .unwrap() |
1133 | .set_parent_for_replacement(new_parent); |
1134 | |
1135 | // Second, make sure that it is in the correct module's children |
1136 | // set. |
1137 | |
1138 | let old_module = { |
1139 | let immut_self = &*self; |
1140 | old_parent |
1141 | .ancestors(immut_self) |
1142 | .chain(Some(immut_self.root_module.into())) |
1143 | .find(|id| { |
1144 | let item = immut_self.resolve_item(*id); |
1145 | item.as_module().map_or(false, |m| { |
1146 | m.children().contains(&replacement_id.into()) |
1147 | }) |
1148 | }) |
1149 | }; |
1150 | let old_module = old_module |
1151 | .expect("Every replacement item should be in a module" ); |
1152 | |
1153 | let new_module = { |
1154 | let immut_self = &*self; |
1155 | new_parent |
1156 | .ancestors(immut_self) |
1157 | .find(|id| immut_self.resolve_item(*id).is_module()) |
1158 | }; |
1159 | let new_module = |
1160 | new_module.unwrap_or_else(|| self.root_module.into()); |
1161 | |
1162 | if new_module == old_module { |
1163 | // Already in the correct module. |
1164 | continue; |
1165 | } |
1166 | |
1167 | self.items[old_module.0] |
1168 | .as_mut() |
1169 | .unwrap() |
1170 | .as_module_mut() |
1171 | .unwrap() |
1172 | .children_mut() |
1173 | .remove(&replacement_id.into()); |
1174 | |
1175 | self.items[new_module.0] |
1176 | .as_mut() |
1177 | .unwrap() |
1178 | .as_module_mut() |
1179 | .unwrap() |
1180 | .children_mut() |
1181 | .insert(replacement_id.into()); |
1182 | } |
1183 | } |
1184 | |
1185 | /// Enter the code generation phase, invoke the given callback `cb`, and |
1186 | /// leave the code generation phase. |
1187 | pub(crate) fn gen<F, Out>( |
1188 | mut self, |
1189 | cb: F, |
1190 | ) -> Result<(Out, BindgenOptions), CodegenError> |
1191 | where |
1192 | F: FnOnce(&Self) -> Result<Out, CodegenError>, |
1193 | { |
1194 | self.in_codegen = true; |
1195 | |
1196 | self.resolve_typerefs(); |
1197 | self.compute_bitfield_units(); |
1198 | self.process_replacements(); |
1199 | |
1200 | self.deanonymize_fields(); |
1201 | |
1202 | self.assert_no_dangling_references(); |
1203 | |
1204 | // Compute the allowlisted set after processing replacements and |
1205 | // resolving type refs, as those are the final mutations of the IR |
1206 | // graph, and their completion means that the IR graph is now frozen. |
1207 | self.compute_allowlisted_and_codegen_items(); |
1208 | |
1209 | // Make sure to do this after processing replacements, since that messes |
1210 | // with the parentage and module children, and we want to assert that it |
1211 | // messes with them correctly. |
1212 | self.assert_every_item_in_a_module(); |
1213 | |
1214 | self.compute_has_vtable(); |
1215 | self.compute_sizedness(); |
1216 | self.compute_has_destructor(); |
1217 | self.find_used_template_parameters(); |
1218 | self.compute_enum_typedef_combos(); |
1219 | self.compute_cannot_derive_debug(); |
1220 | self.compute_cannot_derive_default(); |
1221 | self.compute_cannot_derive_copy(); |
1222 | self.compute_has_type_param_in_array(); |
1223 | self.compute_has_float(); |
1224 | self.compute_cannot_derive_hash(); |
1225 | self.compute_cannot_derive_partialord_partialeq_or_eq(); |
1226 | |
1227 | let ret = cb(&self)?; |
1228 | Ok((ret, self.options)) |
1229 | } |
1230 | |
1231 | /// When the `__testing_only_extra_assertions` feature is enabled, this |
1232 | /// function walks the IR graph and asserts that we do not have any edges |
1233 | /// referencing an ItemId for which we do not have an associated IR item. |
1234 | fn assert_no_dangling_references(&self) { |
1235 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
1236 | for _ in self.assert_no_dangling_item_traversal() { |
1237 | // The iterator's next method does the asserting for us. |
1238 | } |
1239 | } |
1240 | } |
1241 | |
1242 | fn assert_no_dangling_item_traversal( |
1243 | &self, |
1244 | ) -> traversal::AssertNoDanglingItemsTraversal { |
1245 | assert!(self.in_codegen_phase()); |
1246 | assert!(self.current_module == self.root_module); |
1247 | |
1248 | let roots = self.items().map(|(id, _)| id); |
1249 | traversal::AssertNoDanglingItemsTraversal::new( |
1250 | self, |
1251 | roots, |
1252 | traversal::all_edges, |
1253 | ) |
1254 | } |
1255 | |
1256 | /// When the `__testing_only_extra_assertions` feature is enabled, walk over |
1257 | /// every item and ensure that it is in the children set of one of its |
1258 | /// module ancestors. |
1259 | fn assert_every_item_in_a_module(&self) { |
1260 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
1261 | assert!(self.in_codegen_phase()); |
1262 | assert!(self.current_module == self.root_module); |
1263 | |
1264 | for (id, _item) in self.items() { |
1265 | if id == self.root_module { |
1266 | continue; |
1267 | } |
1268 | |
1269 | assert!( |
1270 | { |
1271 | let id = id |
1272 | .into_resolver() |
1273 | .through_type_refs() |
1274 | .through_type_aliases() |
1275 | .resolve(self) |
1276 | .id(); |
1277 | id.ancestors(self) |
1278 | .chain(Some(self.root_module.into())) |
1279 | .any(|ancestor| { |
1280 | debug!( |
1281 | "Checking if {:?} is a child of {:?}" , |
1282 | id, ancestor |
1283 | ); |
1284 | self.resolve_item(ancestor) |
1285 | .as_module() |
1286 | .map_or(false, |m| { |
1287 | m.children().contains(&id) |
1288 | }) |
1289 | }) |
1290 | }, |
1291 | " {:?} should be in some ancestor module's children set" , |
1292 | id |
1293 | ); |
1294 | } |
1295 | } |
1296 | } |
1297 | |
1298 | /// Compute for every type whether it is sized or not, and whether it is |
1299 | /// sized or not as a base class. |
1300 | fn compute_sizedness(&mut self) { |
1301 | let _t = self.timer("compute_sizedness" ); |
1302 | assert!(self.sizedness.is_none()); |
1303 | self.sizedness = Some(analyze::<SizednessAnalysis>(self)); |
1304 | } |
1305 | |
1306 | /// Look up whether the type with the given ID is sized or not. |
1307 | pub(crate) fn lookup_sizedness(&self, id: TypeId) -> SizednessResult { |
1308 | assert!( |
1309 | self.in_codegen_phase(), |
1310 | "We only compute sizedness after we've entered codegen" |
1311 | ); |
1312 | |
1313 | self.sizedness |
1314 | .as_ref() |
1315 | .unwrap() |
1316 | .get(&id) |
1317 | .cloned() |
1318 | .unwrap_or(SizednessResult::ZeroSized) |
1319 | } |
1320 | |
1321 | /// Compute whether the type has vtable. |
1322 | fn compute_has_vtable(&mut self) { |
1323 | let _t = self.timer("compute_has_vtable" ); |
1324 | assert!(self.have_vtable.is_none()); |
1325 | self.have_vtable = Some(analyze::<HasVtableAnalysis>(self)); |
1326 | } |
1327 | |
1328 | /// Look up whether the item with `id` has vtable or not. |
1329 | pub(crate) fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult { |
1330 | assert!( |
1331 | self.in_codegen_phase(), |
1332 | "We only compute vtables when we enter codegen" |
1333 | ); |
1334 | |
1335 | // Look up the computed value for whether the item with `id` has a |
1336 | // vtable or not. |
1337 | self.have_vtable |
1338 | .as_ref() |
1339 | .unwrap() |
1340 | .get(&id.into()) |
1341 | .cloned() |
1342 | .unwrap_or(HasVtableResult::No) |
1343 | } |
1344 | |
1345 | /// Compute whether the type has a destructor. |
1346 | fn compute_has_destructor(&mut self) { |
1347 | let _t = self.timer("compute_has_destructor" ); |
1348 | assert!(self.have_destructor.is_none()); |
1349 | self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self)); |
1350 | } |
1351 | |
1352 | /// Look up whether the item with `id` has a destructor. |
1353 | pub(crate) fn lookup_has_destructor(&self, id: TypeId) -> bool { |
1354 | assert!( |
1355 | self.in_codegen_phase(), |
1356 | "We only compute destructors when we enter codegen" |
1357 | ); |
1358 | |
1359 | self.have_destructor.as_ref().unwrap().contains(&id.into()) |
1360 | } |
1361 | |
1362 | fn find_used_template_parameters(&mut self) { |
1363 | let _t = self.timer("find_used_template_parameters" ); |
1364 | if self.options.allowlist_recursively { |
1365 | let used_params = analyze::<UsedTemplateParameters>(self); |
1366 | self.used_template_parameters = Some(used_params); |
1367 | } else { |
1368 | // If you aren't recursively allowlisting, then we can't really make |
1369 | // any sense of template parameter usage, and you're on your own. |
1370 | let mut used_params = HashMap::default(); |
1371 | for &id in self.allowlisted_items() { |
1372 | used_params.entry(id).or_insert_with(|| { |
1373 | id.self_template_params(self) |
1374 | .into_iter() |
1375 | .map(|p| p.into()) |
1376 | .collect() |
1377 | }); |
1378 | } |
1379 | self.used_template_parameters = Some(used_params); |
1380 | } |
1381 | } |
1382 | |
1383 | /// Return `true` if `item` uses the given `template_param`, `false` |
1384 | /// otherwise. |
1385 | /// |
1386 | /// This method may only be called during the codegen phase, because the |
1387 | /// template usage information is only computed as we enter the codegen |
1388 | /// phase. |
1389 | /// |
1390 | /// If the item is blocklisted, then we say that it always uses the template |
1391 | /// parameter. This is a little subtle. The template parameter usage |
1392 | /// analysis only considers allowlisted items, and if any blocklisted item |
1393 | /// shows up in the generated bindings, it is the user's responsibility to |
1394 | /// manually provide a definition for them. To give them the most |
1395 | /// flexibility when doing that, we assume that they use every template |
1396 | /// parameter and always pass template arguments through in instantiations. |
1397 | pub(crate) fn uses_template_parameter( |
1398 | &self, |
1399 | item: ItemId, |
1400 | template_param: TypeId, |
1401 | ) -> bool { |
1402 | assert!( |
1403 | self.in_codegen_phase(), |
1404 | "We only compute template parameter usage as we enter codegen" |
1405 | ); |
1406 | |
1407 | if self.resolve_item(item).is_blocklisted(self) { |
1408 | return true; |
1409 | } |
1410 | |
1411 | let template_param = template_param |
1412 | .into_resolver() |
1413 | .through_type_refs() |
1414 | .through_type_aliases() |
1415 | .resolve(self) |
1416 | .id(); |
1417 | |
1418 | self.used_template_parameters |
1419 | .as_ref() |
1420 | .expect("should have found template parameter usage if we're in codegen" ) |
1421 | .get(&item) |
1422 | .map_or(false, |items_used_params| items_used_params.contains(&template_param)) |
1423 | } |
1424 | |
1425 | /// Return `true` if `item` uses any unbound, generic template parameters, |
1426 | /// `false` otherwise. |
1427 | /// |
1428 | /// Has the same restrictions that `uses_template_parameter` has. |
1429 | pub(crate) fn uses_any_template_parameters(&self, item: ItemId) -> bool { |
1430 | assert!( |
1431 | self.in_codegen_phase(), |
1432 | "We only compute template parameter usage as we enter codegen" |
1433 | ); |
1434 | |
1435 | self.used_template_parameters |
1436 | .as_ref() |
1437 | .expect( |
1438 | "should have template parameter usage info in codegen phase" , |
1439 | ) |
1440 | .get(&item) |
1441 | .map_or(false, |used| !used.is_empty()) |
1442 | } |
1443 | |
1444 | // This deserves a comment. Builtin types don't get a valid declaration, so |
1445 | // we can't add it to the cursor->type map. |
1446 | // |
1447 | // That being said, they're not generated anyway, and are few, so the |
1448 | // duplication and special-casing is fine. |
1449 | // |
1450 | // If at some point we care about the memory here, probably a map TypeKind |
1451 | // -> builtin type ItemId would be the best to improve that. |
1452 | fn add_builtin_item(&mut self, item: Item) { |
1453 | debug!("add_builtin_item: item = {:?}" , item); |
1454 | debug_assert!(item.kind().is_type()); |
1455 | self.add_item_to_module(&item); |
1456 | let id = item.id(); |
1457 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
1458 | assert!(old_item.is_none(), "Inserted type twice?" ); |
1459 | } |
1460 | |
1461 | fn build_root_module(id: ItemId) -> Item { |
1462 | let module = Module::new(Some("root" .into()), ModuleKind::Normal); |
1463 | Item::new(id, None, None, id, ItemKind::Module(module), None) |
1464 | } |
1465 | |
1466 | /// Get the root module. |
1467 | pub(crate) fn root_module(&self) -> ModuleId { |
1468 | self.root_module |
1469 | } |
1470 | |
1471 | /// Resolve a type with the given ID. |
1472 | /// |
1473 | /// Panics if there is no item for the given `TypeId` or if the resolved |
1474 | /// item is not a `Type`. |
1475 | pub(crate) fn resolve_type(&self, type_id: TypeId) -> &Type { |
1476 | self.resolve_item(type_id).kind().expect_type() |
1477 | } |
1478 | |
1479 | /// Resolve a function with the given ID. |
1480 | /// |
1481 | /// Panics if there is no item for the given `FunctionId` or if the resolved |
1482 | /// item is not a `Function`. |
1483 | pub(crate) fn resolve_func(&self, func_id: FunctionId) -> &Function { |
1484 | self.resolve_item(func_id).kind().expect_function() |
1485 | } |
1486 | |
1487 | /// Resolve the given `ItemId` as a type, or `None` if there is no item with |
1488 | /// the given ID. |
1489 | /// |
1490 | /// Panics if the ID resolves to an item that is not a type. |
1491 | pub(crate) fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> { |
1492 | self.resolve_item_fallible(type_id) |
1493 | .map(|t| t.kind().expect_type()) |
1494 | } |
1495 | |
1496 | /// Resolve the given `ItemId` into an `Item`, or `None` if no such item |
1497 | /// exists. |
1498 | pub(crate) fn resolve_item_fallible<Id: Into<ItemId>>( |
1499 | &self, |
1500 | id: Id, |
1501 | ) -> Option<&Item> { |
1502 | self.items.get(id.into().0)?.as_ref() |
1503 | } |
1504 | |
1505 | /// Resolve the given `ItemId` into an `Item`. |
1506 | /// |
1507 | /// Panics if the given ID does not resolve to any item. |
1508 | pub(crate) fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item { |
1509 | let item_id = item_id.into(); |
1510 | match self.resolve_item_fallible(item_id) { |
1511 | Some(item) => item, |
1512 | None => panic!("Not an item: {:?}" , item_id), |
1513 | } |
1514 | } |
1515 | |
1516 | /// Get the current module. |
1517 | pub(crate) fn current_module(&self) -> ModuleId { |
1518 | self.current_module |
1519 | } |
1520 | |
1521 | /// Add a semantic parent for a given type definition. |
1522 | /// |
1523 | /// We do this from the type declaration, in order to be able to find the |
1524 | /// correct type definition afterwards. |
1525 | /// |
1526 | /// TODO(emilio): We could consider doing this only when |
1527 | /// declaration.lexical_parent() != definition.lexical_parent(), but it's |
1528 | /// not sure it's worth it. |
1529 | pub(crate) fn add_semantic_parent( |
1530 | &mut self, |
1531 | definition: clang::Cursor, |
1532 | parent_id: ItemId, |
1533 | ) { |
1534 | self.semantic_parents.insert(definition, parent_id); |
1535 | } |
1536 | |
1537 | /// Returns a known semantic parent for a given definition. |
1538 | pub(crate) fn known_semantic_parent( |
1539 | &self, |
1540 | definition: clang::Cursor, |
1541 | ) -> Option<ItemId> { |
1542 | self.semantic_parents.get(&definition).cloned() |
1543 | } |
1544 | |
1545 | /// Given a cursor pointing to the location of a template instantiation, |
1546 | /// return a tuple of the form `(declaration_cursor, declaration_id, |
1547 | /// num_expected_template_args)`. |
1548 | /// |
1549 | /// Note that `declaration_id` is not guaranteed to be in the context's item |
1550 | /// set! It is possible that it is a partial type that we are still in the |
1551 | /// middle of parsing. |
1552 | fn get_declaration_info_for_template_instantiation( |
1553 | &self, |
1554 | instantiation: &Cursor, |
1555 | ) -> Option<(Cursor, ItemId, usize)> { |
1556 | instantiation |
1557 | .cur_type() |
1558 | .canonical_declaration(Some(instantiation)) |
1559 | .and_then(|canon_decl| { |
1560 | self.get_resolved_type(&canon_decl).and_then( |
1561 | |template_decl_id| { |
1562 | let num_params = |
1563 | template_decl_id.num_self_template_params(self); |
1564 | if num_params == 0 { |
1565 | None |
1566 | } else { |
1567 | Some(( |
1568 | *canon_decl.cursor(), |
1569 | template_decl_id.into(), |
1570 | num_params, |
1571 | )) |
1572 | } |
1573 | }, |
1574 | ) |
1575 | }) |
1576 | .or_else(|| { |
1577 | // If we haven't already parsed the declaration of |
1578 | // the template being instantiated, then it *must* |
1579 | // be on the stack of types we are currently |
1580 | // parsing. If it wasn't then clang would have |
1581 | // already errored out before we started |
1582 | // constructing our IR because you can't instantiate |
1583 | // a template until it is fully defined. |
1584 | instantiation |
1585 | .referenced() |
1586 | .and_then(|referenced| { |
1587 | self.currently_parsed_types() |
1588 | .iter() |
1589 | .find(|partial_ty| *partial_ty.decl() == referenced) |
1590 | .cloned() |
1591 | }) |
1592 | .and_then(|template_decl| { |
1593 | let num_template_params = |
1594 | template_decl.num_self_template_params(self); |
1595 | if num_template_params == 0 { |
1596 | None |
1597 | } else { |
1598 | Some(( |
1599 | *template_decl.decl(), |
1600 | template_decl.id(), |
1601 | num_template_params, |
1602 | )) |
1603 | } |
1604 | }) |
1605 | }) |
1606 | } |
1607 | |
1608 | /// Parse a template instantiation, eg `Foo<int>`. |
1609 | /// |
1610 | /// This is surprisingly difficult to do with libclang, due to the fact that |
1611 | /// it doesn't provide explicit template argument information, except for |
1612 | /// function template declarations(!?!??!). |
1613 | /// |
1614 | /// The only way to do this is manually inspecting the AST and looking for |
1615 | /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for |
1616 | /// more complex cases, see the comment on the assertion below. |
1617 | /// |
1618 | /// To add insult to injury, the AST itself has structure that doesn't make |
1619 | /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might |
1620 | /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely |
1621 | /// flat: `(Foo Bar int)`. |
1622 | /// |
1623 | /// To see an example of what this method handles: |
1624 | /// |
1625 | /// ```c++ |
1626 | /// template<typename T> |
1627 | /// class Incomplete { |
1628 | /// T p; |
1629 | /// }; |
1630 | /// |
1631 | /// template<typename U> |
1632 | /// class Foo { |
1633 | /// Incomplete<U> bar; |
1634 | /// }; |
1635 | /// ``` |
1636 | /// |
1637 | /// Finally, template instantiations are always children of the current |
1638 | /// module. They use their template's definition for their name, so the |
1639 | /// parent is only useful for ensuring that their layout tests get |
1640 | /// codegen'd. |
1641 | fn instantiate_template( |
1642 | &mut self, |
1643 | with_id: ItemId, |
1644 | template: TypeId, |
1645 | ty: &clang::Type, |
1646 | location: clang::Cursor, |
1647 | ) -> Option<TypeId> { |
1648 | let num_expected_args = |
1649 | self.resolve_type(template).num_self_template_params(self); |
1650 | if num_expected_args == 0 { |
1651 | warn!( |
1652 | "Tried to instantiate a template for which we could not \ |
1653 | determine any template parameters" |
1654 | ); |
1655 | return None; |
1656 | } |
1657 | |
1658 | let mut args = vec![]; |
1659 | let mut found_const_arg = false; |
1660 | let mut children = location.collect_children(); |
1661 | |
1662 | if children.iter().all(|c| !c.has_children()) { |
1663 | // This is insanity... If clang isn't giving us a properly nested |
1664 | // AST for which template arguments belong to which template we are |
1665 | // instantiating, we'll need to construct it ourselves. However, |
1666 | // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef` |
1667 | // representing a reference to the outermost template declaration |
1668 | // that we need to filter out of the children. We need to do this |
1669 | // filtering because we already know which template declaration is |
1670 | // being specialized via the `location`'s type, and if we do not |
1671 | // filter it out, we'll add an extra layer of template instantiation |
1672 | // on accident. |
1673 | let idx = children |
1674 | .iter() |
1675 | .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef); |
1676 | if let Some(idx) = idx { |
1677 | if children |
1678 | .iter() |
1679 | .take(idx) |
1680 | .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef) |
1681 | { |
1682 | children = children.into_iter().skip(idx + 1).collect(); |
1683 | } |
1684 | } |
1685 | } |
1686 | |
1687 | for child in children.iter().rev() { |
1688 | match child.kind() { |
1689 | clang_sys::CXCursor_TypeRef | |
1690 | clang_sys::CXCursor_TypedefDecl | |
1691 | clang_sys::CXCursor_TypeAliasDecl => { |
1692 | // The `with_id` ID will potentially end up unused if we give up |
1693 | // on this type (for example, because it has const value |
1694 | // template args), so if we pass `with_id` as the parent, it is |
1695 | // potentially a dangling reference. Instead, use the canonical |
1696 | // template declaration as the parent. It is already parsed and |
1697 | // has a known-resolvable `ItemId`. |
1698 | let ty = Item::from_ty_or_ref( |
1699 | child.cur_type(), |
1700 | *child, |
1701 | Some(template.into()), |
1702 | self, |
1703 | ); |
1704 | args.push(ty); |
1705 | } |
1706 | clang_sys::CXCursor_TemplateRef => { |
1707 | let ( |
1708 | template_decl_cursor, |
1709 | template_decl_id, |
1710 | num_expected_template_args, |
1711 | ) = self.get_declaration_info_for_template_instantiation( |
1712 | child, |
1713 | )?; |
1714 | |
1715 | if num_expected_template_args == 0 || |
1716 | child.has_at_least_num_children( |
1717 | num_expected_template_args, |
1718 | ) |
1719 | { |
1720 | // Do a happy little parse. See comment in the TypeRef |
1721 | // match arm about parent IDs. |
1722 | let ty = Item::from_ty_or_ref( |
1723 | child.cur_type(), |
1724 | *child, |
1725 | Some(template.into()), |
1726 | self, |
1727 | ); |
1728 | args.push(ty); |
1729 | } else { |
1730 | // This is the case mentioned in the doc comment where |
1731 | // clang gives us a flattened AST and we have to |
1732 | // reconstruct which template arguments go to which |
1733 | // instantiation :( |
1734 | let args_len = args.len(); |
1735 | if args_len < num_expected_template_args { |
1736 | warn!( |
1737 | "Found a template instantiation without \ |
1738 | enough template arguments" |
1739 | ); |
1740 | return None; |
1741 | } |
1742 | |
1743 | let mut sub_args: Vec<_> = args |
1744 | .drain(args_len - num_expected_template_args..) |
1745 | .collect(); |
1746 | sub_args.reverse(); |
1747 | |
1748 | let sub_name = Some(template_decl_cursor.spelling()); |
1749 | let sub_inst = TemplateInstantiation::new( |
1750 | // This isn't guaranteed to be a type that we've |
1751 | // already finished parsing yet. |
1752 | template_decl_id.as_type_id_unchecked(), |
1753 | sub_args, |
1754 | ); |
1755 | let sub_kind = |
1756 | TypeKind::TemplateInstantiation(sub_inst); |
1757 | let sub_ty = Type::new( |
1758 | sub_name, |
1759 | template_decl_cursor |
1760 | .cur_type() |
1761 | .fallible_layout(self) |
1762 | .ok(), |
1763 | sub_kind, |
1764 | false, |
1765 | ); |
1766 | let sub_id = self.next_item_id(); |
1767 | let sub_item = Item::new( |
1768 | sub_id, |
1769 | None, |
1770 | None, |
1771 | self.current_module.into(), |
1772 | ItemKind::Type(sub_ty), |
1773 | Some(child.location()), |
1774 | ); |
1775 | |
1776 | // Bypass all the validations in add_item explicitly. |
1777 | debug!( |
1778 | "instantiate_template: inserting nested \ |
1779 | instantiation item: {:?}" , |
1780 | sub_item |
1781 | ); |
1782 | self.add_item_to_module(&sub_item); |
1783 | debug_assert_eq!(sub_id, sub_item.id()); |
1784 | self.items[sub_id.0] = Some(sub_item); |
1785 | args.push(sub_id.as_type_id_unchecked()); |
1786 | } |
1787 | } |
1788 | _ => { |
1789 | warn!( |
1790 | "Found template arg cursor we can't handle: {:?}" , |
1791 | child |
1792 | ); |
1793 | found_const_arg = true; |
1794 | } |
1795 | } |
1796 | } |
1797 | |
1798 | if found_const_arg { |
1799 | // This is a dependently typed template instantiation. That is, an |
1800 | // instantiation of a template with one or more const values as |
1801 | // template arguments, rather than only types as template |
1802 | // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`. |
1803 | // We can't handle these instantiations, so just punt in this |
1804 | // situation... |
1805 | warn!( |
1806 | "Found template instantiated with a const value; \ |
1807 | bindgen can't handle this kind of template instantiation!" |
1808 | ); |
1809 | return None; |
1810 | } |
1811 | |
1812 | if args.len() != num_expected_args { |
1813 | warn!( |
1814 | "Found a template with an unexpected number of template \ |
1815 | arguments" |
1816 | ); |
1817 | return None; |
1818 | } |
1819 | |
1820 | args.reverse(); |
1821 | let type_kind = TypeKind::TemplateInstantiation( |
1822 | TemplateInstantiation::new(template, args), |
1823 | ); |
1824 | let name = ty.spelling(); |
1825 | let name = if name.is_empty() { None } else { Some(name) }; |
1826 | let ty = Type::new( |
1827 | name, |
1828 | ty.fallible_layout(self).ok(), |
1829 | type_kind, |
1830 | ty.is_const(), |
1831 | ); |
1832 | let item = Item::new( |
1833 | with_id, |
1834 | None, |
1835 | None, |
1836 | self.current_module.into(), |
1837 | ItemKind::Type(ty), |
1838 | Some(location.location()), |
1839 | ); |
1840 | |
1841 | // Bypass all the validations in add_item explicitly. |
1842 | debug!("instantiate_template: inserting item: {:?}" , item); |
1843 | self.add_item_to_module(&item); |
1844 | debug_assert_eq!(with_id, item.id()); |
1845 | self.items[with_id.0] = Some(item); |
1846 | Some(with_id.as_type_id_unchecked()) |
1847 | } |
1848 | |
1849 | /// If we have already resolved the type for the given type declaration, |
1850 | /// return its `ItemId`. Otherwise, return `None`. |
1851 | pub(crate) fn get_resolved_type( |
1852 | &self, |
1853 | decl: &clang::CanonicalTypeDeclaration, |
1854 | ) -> Option<TypeId> { |
1855 | self.types |
1856 | .get(&TypeKey::Declaration(*decl.cursor())) |
1857 | .or_else(|| { |
1858 | decl.cursor() |
1859 | .usr() |
1860 | .and_then(|usr| self.types.get(&TypeKey::Usr(usr))) |
1861 | }) |
1862 | .cloned() |
1863 | } |
1864 | |
1865 | /// Looks up for an already resolved type, either because it's builtin, or |
1866 | /// because we already have it in the map. |
1867 | pub(crate) fn builtin_or_resolved_ty( |
1868 | &mut self, |
1869 | with_id: ItemId, |
1870 | parent_id: Option<ItemId>, |
1871 | ty: &clang::Type, |
1872 | location: Option<clang::Cursor>, |
1873 | ) -> Option<TypeId> { |
1874 | use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef}; |
1875 | debug!( |
1876 | "builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}" , |
1877 | ty, location, with_id, parent_id |
1878 | ); |
1879 | |
1880 | if let Some(decl) = ty.canonical_declaration(location.as_ref()) { |
1881 | if let Some(id) = self.get_resolved_type(&decl) { |
1882 | debug!( |
1883 | "Already resolved ty {:?}, {:?}, {:?} {:?}" , |
1884 | id, decl, ty, location |
1885 | ); |
1886 | // If the declaration already exists, then either: |
1887 | // |
1888 | // * the declaration is a template declaration of some sort, |
1889 | // and we are looking at an instantiation or specialization |
1890 | // of it, or |
1891 | // * we have already parsed and resolved this type, and |
1892 | // there's nothing left to do. |
1893 | if let Some(location) = location { |
1894 | if decl.cursor().is_template_like() && |
1895 | *ty != decl.cursor().cur_type() |
1896 | { |
1897 | // For specialized type aliases, there's no way to get the |
1898 | // template parameters as of this writing (for a struct |
1899 | // specialization we wouldn't be in this branch anyway). |
1900 | // |
1901 | // Explicitly return `None` if there aren't any |
1902 | // unspecialized parameters (contains any `TypeRef`) so we |
1903 | // resolve the canonical type if there is one and it's |
1904 | // exposed. |
1905 | // |
1906 | // This is _tricky_, I know :( |
1907 | if decl.cursor().kind() == |
1908 | CXCursor_TypeAliasTemplateDecl && |
1909 | !location.contains_cursor(CXCursor_TypeRef) && |
1910 | ty.canonical_type().is_valid_and_exposed() |
1911 | { |
1912 | return None; |
1913 | } |
1914 | |
1915 | return self |
1916 | .instantiate_template(with_id, id, ty, location) |
1917 | .or(Some(id)); |
1918 | } |
1919 | } |
1920 | |
1921 | return Some(self.build_ty_wrapper(with_id, id, parent_id, ty)); |
1922 | } |
1923 | } |
1924 | |
1925 | debug!("Not resolved, maybe builtin?" ); |
1926 | self.build_builtin_ty(ty) |
1927 | } |
1928 | |
1929 | /// Make a new item that is a resolved type reference to the `wrapped_id`. |
1930 | /// |
1931 | /// This is unfortunately a lot of bloat, but is needed to properly track |
1932 | /// constness et al. |
1933 | /// |
1934 | /// We should probably make the constness tracking separate, so it doesn't |
1935 | /// bloat that much, but hey, we already bloat the heck out of builtin |
1936 | /// types. |
1937 | pub(crate) fn build_ty_wrapper( |
1938 | &mut self, |
1939 | with_id: ItemId, |
1940 | wrapped_id: TypeId, |
1941 | parent_id: Option<ItemId>, |
1942 | ty: &clang::Type, |
1943 | ) -> TypeId { |
1944 | self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const()) |
1945 | } |
1946 | |
1947 | /// A wrapper over a type that adds a const qualifier explicitly. |
1948 | /// |
1949 | /// Needed to handle const methods in C++, wrapping the type . |
1950 | pub(crate) fn build_const_wrapper( |
1951 | &mut self, |
1952 | with_id: ItemId, |
1953 | wrapped_id: TypeId, |
1954 | parent_id: Option<ItemId>, |
1955 | ty: &clang::Type, |
1956 | ) -> TypeId { |
1957 | self.build_wrapper( |
1958 | with_id, wrapped_id, parent_id, ty, /* is_const = */ true, |
1959 | ) |
1960 | } |
1961 | |
1962 | fn build_wrapper( |
1963 | &mut self, |
1964 | with_id: ItemId, |
1965 | wrapped_id: TypeId, |
1966 | parent_id: Option<ItemId>, |
1967 | ty: &clang::Type, |
1968 | is_const: bool, |
1969 | ) -> TypeId { |
1970 | let spelling = ty.spelling(); |
1971 | let layout = ty.fallible_layout(self).ok(); |
1972 | let location = ty.declaration().location(); |
1973 | let type_kind = TypeKind::ResolvedTypeRef(wrapped_id); |
1974 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
1975 | let item = Item::new( |
1976 | with_id, |
1977 | None, |
1978 | None, |
1979 | parent_id.unwrap_or_else(|| self.current_module.into()), |
1980 | ItemKind::Type(ty), |
1981 | Some(location), |
1982 | ); |
1983 | self.add_builtin_item(item); |
1984 | with_id.as_type_id_unchecked() |
1985 | } |
1986 | |
1987 | /// Returns the next item ID to be used for an item. |
1988 | pub(crate) fn next_item_id(&mut self) -> ItemId { |
1989 | let ret = ItemId(self.items.len()); |
1990 | self.items.push(None); |
1991 | ret |
1992 | } |
1993 | |
1994 | fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> { |
1995 | use clang_sys::*; |
1996 | let type_kind = match ty.kind() { |
1997 | CXType_NullPtr => TypeKind::NullPtr, |
1998 | CXType_Void => TypeKind::Void, |
1999 | CXType_Bool => TypeKind::Int(IntKind::Bool), |
2000 | CXType_Int => TypeKind::Int(IntKind::Int), |
2001 | CXType_UInt => TypeKind::Int(IntKind::UInt), |
2002 | CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }), |
2003 | CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }), |
2004 | CXType_SChar => TypeKind::Int(IntKind::SChar), |
2005 | CXType_UChar => TypeKind::Int(IntKind::UChar), |
2006 | CXType_Short => TypeKind::Int(IntKind::Short), |
2007 | CXType_UShort => TypeKind::Int(IntKind::UShort), |
2008 | CXType_WChar => TypeKind::Int(IntKind::WChar), |
2009 | CXType_Char16 => TypeKind::Int(IntKind::U16), |
2010 | CXType_Char32 => TypeKind::Int(IntKind::U32), |
2011 | CXType_Long => TypeKind::Int(IntKind::Long), |
2012 | CXType_ULong => TypeKind::Int(IntKind::ULong), |
2013 | CXType_LongLong => TypeKind::Int(IntKind::LongLong), |
2014 | CXType_ULongLong => TypeKind::Int(IntKind::ULongLong), |
2015 | CXType_Int128 => TypeKind::Int(IntKind::I128), |
2016 | CXType_UInt128 => TypeKind::Int(IntKind::U128), |
2017 | CXType_Float16 | CXType_Half => TypeKind::Float(FloatKind::Float16), |
2018 | CXType_Float => TypeKind::Float(FloatKind::Float), |
2019 | CXType_Double => TypeKind::Float(FloatKind::Double), |
2020 | CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble), |
2021 | CXType_Float128 => TypeKind::Float(FloatKind::Float128), |
2022 | CXType_Complex => { |
2023 | let float_type = |
2024 | ty.elem_type().expect("Not able to resolve complex type?" ); |
2025 | let float_kind = match float_type.kind() { |
2026 | CXType_Float16 | CXType_Half => FloatKind::Float16, |
2027 | CXType_Float => FloatKind::Float, |
2028 | CXType_Double => FloatKind::Double, |
2029 | CXType_LongDouble => FloatKind::LongDouble, |
2030 | CXType_Float128 => FloatKind::Float128, |
2031 | _ => panic!( |
2032 | "Non floating-type complex? {:?}, {:?}" , |
2033 | ty, float_type, |
2034 | ), |
2035 | }; |
2036 | TypeKind::Complex(float_kind) |
2037 | } |
2038 | _ => return None, |
2039 | }; |
2040 | |
2041 | let spelling = ty.spelling(); |
2042 | let is_const = ty.is_const(); |
2043 | let layout = ty.fallible_layout(self).ok(); |
2044 | let location = ty.declaration().location(); |
2045 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
2046 | let id = self.next_item_id(); |
2047 | let item = Item::new( |
2048 | id, |
2049 | None, |
2050 | None, |
2051 | self.root_module.into(), |
2052 | ItemKind::Type(ty), |
2053 | Some(location), |
2054 | ); |
2055 | self.add_builtin_item(item); |
2056 | Some(id.as_type_id_unchecked()) |
2057 | } |
2058 | |
2059 | /// Get the current Clang translation unit that is being processed. |
2060 | pub(crate) fn translation_unit(&self) -> &clang::TranslationUnit { |
2061 | &self.translation_unit |
2062 | } |
2063 | |
2064 | /// Have we parsed the macro named `macro_name` already? |
2065 | pub(crate) fn parsed_macro(&self, macro_name: &[u8]) -> bool { |
2066 | self.parsed_macros.contains_key(macro_name) |
2067 | } |
2068 | |
2069 | /// Get the currently parsed macros. |
2070 | pub(crate) fn parsed_macros( |
2071 | &self, |
2072 | ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> { |
2073 | debug_assert!(!self.in_codegen_phase()); |
2074 | &self.parsed_macros |
2075 | } |
2076 | |
2077 | /// Mark the macro named `macro_name` as parsed. |
2078 | pub(crate) fn note_parsed_macro( |
2079 | &mut self, |
2080 | id: Vec<u8>, |
2081 | value: cexpr::expr::EvalResult, |
2082 | ) { |
2083 | self.parsed_macros.insert(id, value); |
2084 | } |
2085 | |
2086 | /// Are we in the codegen phase? |
2087 | pub(crate) fn in_codegen_phase(&self) -> bool { |
2088 | self.in_codegen |
2089 | } |
2090 | |
2091 | /// Mark the type with the given `name` as replaced by the type with ID |
2092 | /// `potential_ty`. |
2093 | /// |
2094 | /// Replacement types are declared using the `replaces="xxx"` annotation, |
2095 | /// and implies that the original type is hidden. |
2096 | pub(crate) fn replace(&mut self, name: &[String], potential_ty: ItemId) { |
2097 | match self.replacements.entry(name.into()) { |
2098 | Entry::Vacant(entry) => { |
2099 | debug!( |
2100 | "Defining replacement for {:?} as {:?}" , |
2101 | name, potential_ty |
2102 | ); |
2103 | entry.insert(potential_ty); |
2104 | } |
2105 | Entry::Occupied(occupied) => { |
2106 | warn!( |
2107 | "Replacement for {:?} already defined as {:?}; \ |
2108 | ignoring duplicate replacement definition as {:?}" , |
2109 | name, |
2110 | occupied.get(), |
2111 | potential_ty |
2112 | ); |
2113 | } |
2114 | } |
2115 | } |
2116 | |
2117 | /// Has the item with the given `name` and `id` been replaced by another |
2118 | /// type? |
2119 | pub(crate) fn is_replaced_type<Id: Into<ItemId>>( |
2120 | &self, |
2121 | path: &[String], |
2122 | id: Id, |
2123 | ) -> bool { |
2124 | let id = id.into(); |
2125 | matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id) |
2126 | } |
2127 | |
2128 | /// Is the type with the given `name` marked as opaque? |
2129 | pub(crate) fn opaque_by_name(&self, path: &[String]) -> bool { |
2130 | debug_assert!( |
2131 | self.in_codegen_phase(), |
2132 | "You're not supposed to call this yet" |
2133 | ); |
2134 | self.options.opaque_types.matches(path[1..].join("::" )) |
2135 | } |
2136 | |
2137 | /// Get the options used to configure this bindgen context. |
2138 | pub(crate) fn options(&self) -> &BindgenOptions { |
2139 | &self.options |
2140 | } |
2141 | |
2142 | /// Tokenizes a namespace cursor in order to get the name and kind of the |
2143 | /// namespace. |
2144 | fn tokenize_namespace( |
2145 | &self, |
2146 | cursor: &clang::Cursor, |
2147 | ) -> (Option<String>, ModuleKind) { |
2148 | assert_eq!( |
2149 | cursor.kind(), |
2150 | ::clang_sys::CXCursor_Namespace, |
2151 | "Be a nice person" |
2152 | ); |
2153 | |
2154 | let mut module_name = None; |
2155 | let spelling = cursor.spelling(); |
2156 | if !spelling.is_empty() { |
2157 | module_name = Some(spelling) |
2158 | } |
2159 | |
2160 | let mut kind = ModuleKind::Normal; |
2161 | let mut looking_for_name = false; |
2162 | for token in cursor.tokens().iter() { |
2163 | match token.spelling() { |
2164 | b"inline" => { |
2165 | debug_assert!( |
2166 | kind != ModuleKind::Inline, |
2167 | "Multiple inline keywords?" |
2168 | ); |
2169 | kind = ModuleKind::Inline; |
2170 | // When hitting a nested inline namespace we get a spelling |
2171 | // that looks like ["inline", "foo"]. Deal with it properly. |
2172 | looking_for_name = true; |
2173 | } |
2174 | // The double colon allows us to handle nested namespaces like |
2175 | // namespace foo::bar { } |
2176 | // |
2177 | // libclang still gives us two namespace cursors, which is cool, |
2178 | // but the tokenization of the second begins with the double |
2179 | // colon. That's ok, so we only need to handle the weird |
2180 | // tokenization here. |
2181 | b"namespace" | b"::" => { |
2182 | looking_for_name = true; |
2183 | } |
2184 | b"{" => { |
2185 | // This should be an anonymous namespace. |
2186 | assert!(looking_for_name); |
2187 | break; |
2188 | } |
2189 | name => { |
2190 | if looking_for_name { |
2191 | if module_name.is_none() { |
2192 | module_name = Some( |
2193 | String::from_utf8_lossy(name).into_owned(), |
2194 | ); |
2195 | } |
2196 | break; |
2197 | } else { |
2198 | // This is _likely_, but not certainly, a macro that's |
2199 | // been placed just before the namespace keyword. |
2200 | // Unfortunately, clang tokens don't let us easily see |
2201 | // through the ifdef tokens, so we don't know what this |
2202 | // token should really be. Instead of panicking though, |
2203 | // we warn the user that we assumed the token was blank, |
2204 | // and then move on. |
2205 | // |
2206 | // See also https://github.com/rust-lang/rust-bindgen/issues/1676. |
2207 | warn!( |
2208 | "Ignored unknown namespace prefix ' {}' at {:?} in {:?}" , |
2209 | String::from_utf8_lossy(name), |
2210 | token, |
2211 | cursor |
2212 | ); |
2213 | } |
2214 | } |
2215 | } |
2216 | } |
2217 | |
2218 | (module_name, kind) |
2219 | } |
2220 | |
2221 | /// Given a CXCursor_Namespace cursor, return the item ID of the |
2222 | /// corresponding module, or create one on the fly. |
2223 | pub(crate) fn module(&mut self, cursor: clang::Cursor) -> ModuleId { |
2224 | use clang_sys::*; |
2225 | assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person" ); |
2226 | let cursor = cursor.canonical(); |
2227 | if let Some(id) = self.modules.get(&cursor) { |
2228 | return *id; |
2229 | } |
2230 | |
2231 | let (module_name, kind) = self.tokenize_namespace(&cursor); |
2232 | |
2233 | let module_id = self.next_item_id(); |
2234 | let module = Module::new(module_name, kind); |
2235 | let module = Item::new( |
2236 | module_id, |
2237 | None, |
2238 | None, |
2239 | self.current_module.into(), |
2240 | ItemKind::Module(module), |
2241 | Some(cursor.location()), |
2242 | ); |
2243 | |
2244 | let module_id = module.id().as_module_id_unchecked(); |
2245 | self.modules.insert(cursor, module_id); |
2246 | |
2247 | self.add_item(module, None, None); |
2248 | |
2249 | module_id |
2250 | } |
2251 | |
2252 | /// Start traversing the module with the given `module_id`, invoke the |
2253 | /// callback `cb`, and then return to traversing the original module. |
2254 | pub(crate) fn with_module<F>(&mut self, module_id: ModuleId, cb: F) |
2255 | where |
2256 | F: FnOnce(&mut Self), |
2257 | { |
2258 | debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat" ); |
2259 | |
2260 | let previous_id = self.current_module; |
2261 | self.current_module = module_id; |
2262 | |
2263 | cb(self); |
2264 | |
2265 | self.current_module = previous_id; |
2266 | } |
2267 | |
2268 | /// Iterate over all (explicitly or transitively) allowlisted items. |
2269 | /// |
2270 | /// If no items are explicitly allowlisted, then all items are considered |
2271 | /// allowlisted. |
2272 | pub(crate) fn allowlisted_items(&self) -> &ItemSet { |
2273 | assert!(self.in_codegen_phase()); |
2274 | assert!(self.current_module == self.root_module); |
2275 | |
2276 | self.allowlisted.as_ref().unwrap() |
2277 | } |
2278 | |
2279 | /// Check whether a particular blocklisted type implements a trait or not. |
2280 | /// Results may be cached. |
2281 | pub(crate) fn blocklisted_type_implements_trait( |
2282 | &self, |
2283 | item: &Item, |
2284 | derive_trait: DeriveTrait, |
2285 | ) -> CanDerive { |
2286 | assert!(self.in_codegen_phase()); |
2287 | assert!(self.current_module == self.root_module); |
2288 | |
2289 | *self |
2290 | .blocklisted_types_implement_traits |
2291 | .borrow_mut() |
2292 | .entry(derive_trait) |
2293 | .or_default() |
2294 | .entry(item.id()) |
2295 | .or_insert_with(|| { |
2296 | item.expect_type() |
2297 | .name() |
2298 | .and_then(|name| { |
2299 | if self.options.parse_callbacks.is_empty() { |
2300 | // Sized integer types from <stdint.h> get mapped to Rust primitive |
2301 | // types regardless of whether they are blocklisted, so ensure that |
2302 | // standard traits are considered derivable for them too. |
2303 | if self.is_stdint_type(name) { |
2304 | Some(CanDerive::Yes) |
2305 | } else { |
2306 | Some(CanDerive::No) |
2307 | } |
2308 | } else { |
2309 | self.options.last_callback(|cb| { |
2310 | cb.blocklisted_type_implements_trait( |
2311 | name, |
2312 | derive_trait, |
2313 | ) |
2314 | }) |
2315 | } |
2316 | }) |
2317 | .unwrap_or(CanDerive::No) |
2318 | }) |
2319 | } |
2320 | |
2321 | /// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type? |
2322 | pub(crate) fn is_stdint_type(&self, name: &str) -> bool { |
2323 | match name { |
2324 | "int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" | |
2325 | "uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" | |
2326 | "intptr_t" | "ptrdiff_t" => true, |
2327 | "size_t" | "ssize_t" => self.options.size_t_is_usize, |
2328 | _ => false, |
2329 | } |
2330 | } |
2331 | |
2332 | /// Get a reference to the set of items we should generate. |
2333 | pub(crate) fn codegen_items(&self) -> &ItemSet { |
2334 | assert!(self.in_codegen_phase()); |
2335 | assert!(self.current_module == self.root_module); |
2336 | self.codegen_items.as_ref().unwrap() |
2337 | } |
2338 | |
2339 | /// Compute the allowlisted items set and populate `self.allowlisted`. |
2340 | fn compute_allowlisted_and_codegen_items(&mut self) { |
2341 | assert!(self.in_codegen_phase()); |
2342 | assert!(self.current_module == self.root_module); |
2343 | assert!(self.allowlisted.is_none()); |
2344 | let _t = self.timer("compute_allowlisted_and_codegen_items" ); |
2345 | |
2346 | let roots = { |
2347 | let mut roots = self |
2348 | .items() |
2349 | // Only consider roots that are enabled for codegen. |
2350 | .filter(|&(_, item)| item.is_enabled_for_codegen(self)) |
2351 | .filter(|&(_, item)| { |
2352 | // If nothing is explicitly allowlisted, then everything is fair |
2353 | // game. |
2354 | if self.options().allowlisted_types.is_empty() && |
2355 | self.options().allowlisted_functions.is_empty() && |
2356 | self.options().allowlisted_vars.is_empty() && |
2357 | self.options().allowlisted_files.is_empty() && |
2358 | self.options().allowlisted_items.is_empty() |
2359 | { |
2360 | return true; |
2361 | } |
2362 | |
2363 | // If this is a type that explicitly replaces another, we assume |
2364 | // you know what you're doing. |
2365 | if item.annotations().use_instead_of().is_some() { |
2366 | return true; |
2367 | } |
2368 | |
2369 | // Items with a source location in an explicitly allowlisted file |
2370 | // are always included. |
2371 | if !self.options().allowlisted_files.is_empty() { |
2372 | if let Some(location) = item.location() { |
2373 | let (file, _, _, _) = location.location(); |
2374 | if let Some(filename) = file.name() { |
2375 | if self |
2376 | .options() |
2377 | .allowlisted_files |
2378 | .matches(filename) |
2379 | { |
2380 | return true; |
2381 | } |
2382 | } |
2383 | } |
2384 | } |
2385 | |
2386 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2387 | debug!("allowlisted_items: testing {:?}" , name); |
2388 | |
2389 | if self.options().allowlisted_items.matches(&name) { |
2390 | return true; |
2391 | } |
2392 | |
2393 | match *item.kind() { |
2394 | ItemKind::Module(..) => true, |
2395 | ItemKind::Function(_) => { |
2396 | self.options().allowlisted_functions.matches(&name) |
2397 | } |
2398 | ItemKind::Var(_) => { |
2399 | self.options().allowlisted_vars.matches(&name) |
2400 | } |
2401 | ItemKind::Type(ref ty) => { |
2402 | if self.options().allowlisted_types.matches(&name) { |
2403 | return true; |
2404 | } |
2405 | |
2406 | // Auto-allowlist types that don't need code |
2407 | // generation if not allowlisting recursively, to |
2408 | // make the #[derive] analysis not be lame. |
2409 | if !self.options().allowlist_recursively { |
2410 | match *ty.kind() { |
2411 | TypeKind::Void | |
2412 | TypeKind::NullPtr | |
2413 | TypeKind::Int(..) | |
2414 | TypeKind::Float(..) | |
2415 | TypeKind::Complex(..) | |
2416 | TypeKind::Array(..) | |
2417 | TypeKind::Vector(..) | |
2418 | TypeKind::Pointer(..) | |
2419 | TypeKind::Reference(..) | |
2420 | TypeKind::Function(..) | |
2421 | TypeKind::ResolvedTypeRef(..) | |
2422 | TypeKind::Opaque | |
2423 | TypeKind::TypeParam => return true, |
2424 | _ => {} |
2425 | } |
2426 | if self.is_stdint_type(&name) { |
2427 | return true; |
2428 | } |
2429 | } |
2430 | |
2431 | // Unnamed top-level enums are special and we |
2432 | // allowlist them via the `allowlisted_vars` filter, |
2433 | // since they're effectively top-level constants, |
2434 | // and there's no way for them to be referenced |
2435 | // consistently. |
2436 | let parent = self.resolve_item(item.parent_id()); |
2437 | if !parent.is_module() { |
2438 | return false; |
2439 | } |
2440 | |
2441 | let enum_ = match *ty.kind() { |
2442 | TypeKind::Enum(ref e) => e, |
2443 | _ => return false, |
2444 | }; |
2445 | |
2446 | if ty.name().is_some() { |
2447 | return false; |
2448 | } |
2449 | |
2450 | let mut prefix_path = |
2451 | parent.path_for_allowlisting(self).clone(); |
2452 | enum_.variants().iter().any(|variant| { |
2453 | prefix_path.push( |
2454 | variant.name_for_allowlisting().into(), |
2455 | ); |
2456 | let name = prefix_path[1..].join("::" ); |
2457 | prefix_path.pop().unwrap(); |
2458 | self.options().allowlisted_vars.matches(name) |
2459 | }) |
2460 | } |
2461 | } |
2462 | }) |
2463 | .map(|(id, _)| id) |
2464 | .collect::<Vec<_>>(); |
2465 | |
2466 | // The reversal preserves the expected ordering of traversal, |
2467 | // resulting in more stable-ish bindgen-generated names for |
2468 | // anonymous types (like unions). |
2469 | roots.reverse(); |
2470 | roots |
2471 | }; |
2472 | |
2473 | let allowlisted_items_predicate = |
2474 | if self.options().allowlist_recursively { |
2475 | traversal::all_edges |
2476 | } else { |
2477 | // Only follow InnerType edges from the allowlisted roots. |
2478 | // Such inner types (e.g. anonymous structs/unions) are |
2479 | // always emitted by codegen, and they need to be allowlisted |
2480 | // to make sure they are processed by e.g. the derive analysis. |
2481 | traversal::only_inner_type_edges |
2482 | }; |
2483 | |
2484 | let allowlisted = AllowlistedItemsTraversal::new( |
2485 | self, |
2486 | roots.clone(), |
2487 | allowlisted_items_predicate, |
2488 | ) |
2489 | .collect::<ItemSet>(); |
2490 | |
2491 | let codegen_items = if self.options().allowlist_recursively { |
2492 | AllowlistedItemsTraversal::new( |
2493 | self, |
2494 | roots, |
2495 | traversal::codegen_edges, |
2496 | ) |
2497 | .collect::<ItemSet>() |
2498 | } else { |
2499 | allowlisted.clone() |
2500 | }; |
2501 | |
2502 | self.allowlisted = Some(allowlisted); |
2503 | self.codegen_items = Some(codegen_items); |
2504 | |
2505 | for item in self.options().allowlisted_functions.unmatched_items() { |
2506 | unused_regex_diagnostic(item, "--allowlist-function" , self); |
2507 | } |
2508 | |
2509 | for item in self.options().allowlisted_vars.unmatched_items() { |
2510 | unused_regex_diagnostic(item, "--allowlist-var" , self); |
2511 | } |
2512 | |
2513 | for item in self.options().allowlisted_types.unmatched_items() { |
2514 | unused_regex_diagnostic(item, "--allowlist-type" , self); |
2515 | } |
2516 | |
2517 | for item in self.options().allowlisted_items.unmatched_items() { |
2518 | unused_regex_diagnostic(item, "--allowlist-items" , self); |
2519 | } |
2520 | } |
2521 | |
2522 | /// Convenient method for getting the prefix to use for most traits in |
2523 | /// codegen depending on the `use_core` option. |
2524 | pub(crate) fn trait_prefix(&self) -> Ident { |
2525 | if self.options().use_core { |
2526 | self.rust_ident_raw("core" ) |
2527 | } else { |
2528 | self.rust_ident_raw("std" ) |
2529 | } |
2530 | } |
2531 | |
2532 | /// Call if a bindgen complex is generated |
2533 | pub(crate) fn generated_bindgen_complex(&self) { |
2534 | self.generated_bindgen_complex.set(true) |
2535 | } |
2536 | |
2537 | /// Whether we need to generate the bindgen complex type |
2538 | pub(crate) fn need_bindgen_complex_type(&self) -> bool { |
2539 | self.generated_bindgen_complex.get() |
2540 | } |
2541 | |
2542 | /// Call if a bindgen float16 is generated |
2543 | pub(crate) fn generated_bindgen_float16(&self) { |
2544 | self.generated_bindgen_float16.set(true) |
2545 | } |
2546 | |
2547 | /// Whether we need to generate the bindgen float16 type |
2548 | pub(crate) fn need_bindgen_float16_type(&self) -> bool { |
2549 | self.generated_bindgen_float16.get() |
2550 | } |
2551 | |
2552 | /// Compute which `enum`s have an associated `typedef` definition. |
2553 | fn compute_enum_typedef_combos(&mut self) { |
2554 | let _t = self.timer("compute_enum_typedef_combos" ); |
2555 | assert!(self.enum_typedef_combos.is_none()); |
2556 | |
2557 | let mut enum_typedef_combos = HashSet::default(); |
2558 | for item in &self.items { |
2559 | if let Some(ItemKind::Module(module)) = |
2560 | item.as_ref().map(Item::kind) |
2561 | { |
2562 | // Find typedefs in this module, and build set of their names. |
2563 | let mut names_of_typedefs = HashSet::default(); |
2564 | for child_id in module.children() { |
2565 | if let Some(ItemKind::Type(ty)) = |
2566 | self.items[child_id.0].as_ref().map(Item::kind) |
2567 | { |
2568 | if let (Some(name), TypeKind::Alias(type_id)) = |
2569 | (ty.name(), ty.kind()) |
2570 | { |
2571 | // We disregard aliases that refer to the enum |
2572 | // itself, such as in `typedef enum { ... } Enum;`. |
2573 | if type_id |
2574 | .into_resolver() |
2575 | .through_type_refs() |
2576 | .through_type_aliases() |
2577 | .resolve(self) |
2578 | .expect_type() |
2579 | .is_int() |
2580 | { |
2581 | names_of_typedefs.insert(name); |
2582 | } |
2583 | } |
2584 | } |
2585 | } |
2586 | |
2587 | // Find enums in this module, and record the ID of each one that |
2588 | // has a typedef. |
2589 | for child_id in module.children() { |
2590 | if let Some(ItemKind::Type(ty)) = |
2591 | self.items[child_id.0].as_ref().map(Item::kind) |
2592 | { |
2593 | if let (Some(name), true) = (ty.name(), ty.is_enum()) { |
2594 | if names_of_typedefs.contains(name) { |
2595 | enum_typedef_combos.insert(*child_id); |
2596 | } |
2597 | } |
2598 | } |
2599 | } |
2600 | } |
2601 | } |
2602 | |
2603 | self.enum_typedef_combos = Some(enum_typedef_combos); |
2604 | } |
2605 | |
2606 | /// Look up whether `id` refers to an `enum` whose underlying type is |
2607 | /// defined by a `typedef`. |
2608 | pub(crate) fn is_enum_typedef_combo(&self, id: ItemId) -> bool { |
2609 | assert!( |
2610 | self.in_codegen_phase(), |
2611 | "We only compute enum_typedef_combos when we enter codegen" , |
2612 | ); |
2613 | self.enum_typedef_combos.as_ref().unwrap().contains(&id) |
2614 | } |
2615 | |
2616 | /// Compute whether we can derive debug. |
2617 | fn compute_cannot_derive_debug(&mut self) { |
2618 | let _t = self.timer("compute_cannot_derive_debug" ); |
2619 | assert!(self.cannot_derive_debug.is_none()); |
2620 | if self.options.derive_debug { |
2621 | self.cannot_derive_debug = |
2622 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2623 | self, |
2624 | DeriveTrait::Debug, |
2625 | )))); |
2626 | } |
2627 | } |
2628 | |
2629 | /// Look up whether the item with `id` can |
2630 | /// derive debug or not. |
2631 | pub(crate) fn lookup_can_derive_debug<Id: Into<ItemId>>( |
2632 | &self, |
2633 | id: Id, |
2634 | ) -> bool { |
2635 | let id = id.into(); |
2636 | assert!( |
2637 | self.in_codegen_phase(), |
2638 | "We only compute can_derive_debug when we enter codegen" |
2639 | ); |
2640 | |
2641 | // Look up the computed value for whether the item with `id` can |
2642 | // derive debug or not. |
2643 | !self.cannot_derive_debug.as_ref().unwrap().contains(&id) |
2644 | } |
2645 | |
2646 | /// Compute whether we can derive default. |
2647 | fn compute_cannot_derive_default(&mut self) { |
2648 | let _t = self.timer("compute_cannot_derive_default" ); |
2649 | assert!(self.cannot_derive_default.is_none()); |
2650 | if self.options.derive_default { |
2651 | self.cannot_derive_default = |
2652 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2653 | self, |
2654 | DeriveTrait::Default, |
2655 | )))); |
2656 | } |
2657 | } |
2658 | |
2659 | /// Look up whether the item with `id` can |
2660 | /// derive default or not. |
2661 | pub(crate) fn lookup_can_derive_default<Id: Into<ItemId>>( |
2662 | &self, |
2663 | id: Id, |
2664 | ) -> bool { |
2665 | let id = id.into(); |
2666 | assert!( |
2667 | self.in_codegen_phase(), |
2668 | "We only compute can_derive_default when we enter codegen" |
2669 | ); |
2670 | |
2671 | // Look up the computed value for whether the item with `id` can |
2672 | // derive default or not. |
2673 | !self.cannot_derive_default.as_ref().unwrap().contains(&id) |
2674 | } |
2675 | |
2676 | /// Compute whether we can derive copy. |
2677 | fn compute_cannot_derive_copy(&mut self) { |
2678 | let _t = self.timer("compute_cannot_derive_copy" ); |
2679 | assert!(self.cannot_derive_copy.is_none()); |
2680 | self.cannot_derive_copy = |
2681 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2682 | self, |
2683 | DeriveTrait::Copy, |
2684 | )))); |
2685 | } |
2686 | |
2687 | /// Compute whether we can derive hash. |
2688 | fn compute_cannot_derive_hash(&mut self) { |
2689 | let _t = self.timer("compute_cannot_derive_hash" ); |
2690 | assert!(self.cannot_derive_hash.is_none()); |
2691 | if self.options.derive_hash { |
2692 | self.cannot_derive_hash = |
2693 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2694 | self, |
2695 | DeriveTrait::Hash, |
2696 | )))); |
2697 | } |
2698 | } |
2699 | |
2700 | /// Look up whether the item with `id` can |
2701 | /// derive hash or not. |
2702 | pub(crate) fn lookup_can_derive_hash<Id: Into<ItemId>>( |
2703 | &self, |
2704 | id: Id, |
2705 | ) -> bool { |
2706 | let id = id.into(); |
2707 | assert!( |
2708 | self.in_codegen_phase(), |
2709 | "We only compute can_derive_debug when we enter codegen" |
2710 | ); |
2711 | |
2712 | // Look up the computed value for whether the item with `id` can |
2713 | // derive hash or not. |
2714 | !self.cannot_derive_hash.as_ref().unwrap().contains(&id) |
2715 | } |
2716 | |
2717 | /// Compute whether we can derive PartialOrd, PartialEq or Eq. |
2718 | fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) { |
2719 | let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq" ); |
2720 | assert!(self.cannot_derive_partialeq_or_partialord.is_none()); |
2721 | if self.options.derive_partialord || |
2722 | self.options.derive_partialeq || |
2723 | self.options.derive_eq |
2724 | { |
2725 | self.cannot_derive_partialeq_or_partialord = |
2726 | Some(analyze::<CannotDerive>(( |
2727 | self, |
2728 | DeriveTrait::PartialEqOrPartialOrd, |
2729 | ))); |
2730 | } |
2731 | } |
2732 | |
2733 | /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`. |
2734 | pub(crate) fn lookup_can_derive_partialeq_or_partialord< |
2735 | Id: Into<ItemId>, |
2736 | >( |
2737 | &self, |
2738 | id: Id, |
2739 | ) -> CanDerive { |
2740 | let id = id.into(); |
2741 | assert!( |
2742 | self.in_codegen_phase(), |
2743 | "We only compute can_derive_partialeq_or_partialord when we enter codegen" |
2744 | ); |
2745 | |
2746 | // Look up the computed value for whether the item with `id` can |
2747 | // derive partialeq or not. |
2748 | self.cannot_derive_partialeq_or_partialord |
2749 | .as_ref() |
2750 | .unwrap() |
2751 | .get(&id) |
2752 | .cloned() |
2753 | .unwrap_or(CanDerive::Yes) |
2754 | } |
2755 | |
2756 | /// Look up whether the item with `id` can derive `Copy` or not. |
2757 | pub(crate) fn lookup_can_derive_copy<Id: Into<ItemId>>( |
2758 | &self, |
2759 | id: Id, |
2760 | ) -> bool { |
2761 | assert!( |
2762 | self.in_codegen_phase(), |
2763 | "We only compute can_derive_debug when we enter codegen" |
2764 | ); |
2765 | |
2766 | // Look up the computed value for whether the item with `id` can |
2767 | // derive `Copy` or not. |
2768 | let id = id.into(); |
2769 | |
2770 | !self.lookup_has_type_param_in_array(id) && |
2771 | !self.cannot_derive_copy.as_ref().unwrap().contains(&id) |
2772 | } |
2773 | |
2774 | /// Compute whether the type has type parameter in array. |
2775 | fn compute_has_type_param_in_array(&mut self) { |
2776 | let _t = self.timer("compute_has_type_param_in_array" ); |
2777 | assert!(self.has_type_param_in_array.is_none()); |
2778 | self.has_type_param_in_array = |
2779 | Some(analyze::<HasTypeParameterInArray>(self)); |
2780 | } |
2781 | |
2782 | /// Look up whether the item with `id` has type parameter in array or not. |
2783 | pub(crate) fn lookup_has_type_param_in_array<Id: Into<ItemId>>( |
2784 | &self, |
2785 | id: Id, |
2786 | ) -> bool { |
2787 | assert!( |
2788 | self.in_codegen_phase(), |
2789 | "We only compute has array when we enter codegen" |
2790 | ); |
2791 | |
2792 | // Look up the computed value for whether the item with `id` has |
2793 | // type parameter in array or not. |
2794 | self.has_type_param_in_array |
2795 | .as_ref() |
2796 | .unwrap() |
2797 | .contains(&id.into()) |
2798 | } |
2799 | |
2800 | /// Compute whether the type has float. |
2801 | fn compute_has_float(&mut self) { |
2802 | let _t = self.timer("compute_has_float" ); |
2803 | assert!(self.has_float.is_none()); |
2804 | if self.options.derive_eq || self.options.derive_ord { |
2805 | self.has_float = Some(analyze::<HasFloat>(self)); |
2806 | } |
2807 | } |
2808 | |
2809 | /// Look up whether the item with `id` has array or not. |
2810 | pub(crate) fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2811 | assert!( |
2812 | self.in_codegen_phase(), |
2813 | "We only compute has float when we enter codegen" |
2814 | ); |
2815 | |
2816 | // Look up the computed value for whether the item with `id` has |
2817 | // float or not. |
2818 | self.has_float.as_ref().unwrap().contains(&id.into()) |
2819 | } |
2820 | |
2821 | /// Check if `--no-partialeq` flag is enabled for this item. |
2822 | pub(crate) fn no_partialeq_by_name(&self, item: &Item) -> bool { |
2823 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2824 | self.options().no_partialeq_types.matches(name) |
2825 | } |
2826 | |
2827 | /// Check if `--no-copy` flag is enabled for this item. |
2828 | pub(crate) fn no_copy_by_name(&self, item: &Item) -> bool { |
2829 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2830 | self.options().no_copy_types.matches(name) |
2831 | } |
2832 | |
2833 | /// Check if `--no-debug` flag is enabled for this item. |
2834 | pub(crate) fn no_debug_by_name(&self, item: &Item) -> bool { |
2835 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2836 | self.options().no_debug_types.matches(name) |
2837 | } |
2838 | |
2839 | /// Check if `--no-default` flag is enabled for this item. |
2840 | pub(crate) fn no_default_by_name(&self, item: &Item) -> bool { |
2841 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2842 | self.options().no_default_types.matches(name) |
2843 | } |
2844 | |
2845 | /// Check if `--no-hash` flag is enabled for this item. |
2846 | pub(crate) fn no_hash_by_name(&self, item: &Item) -> bool { |
2847 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2848 | self.options().no_hash_types.matches(name) |
2849 | } |
2850 | |
2851 | /// Check if `--must-use-type` flag is enabled for this item. |
2852 | pub(crate) fn must_use_type_by_name(&self, item: &Item) -> bool { |
2853 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2854 | self.options().must_use_types.matches(name) |
2855 | } |
2856 | |
2857 | /// Wrap some tokens in an `unsafe` block if the `--wrap-unsafe-ops` option is enabled. |
2858 | pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream { |
2859 | if self.options.wrap_unsafe_ops { |
2860 | quote!(unsafe { #tokens }) |
2861 | } else { |
2862 | tokens.into_token_stream() |
2863 | } |
2864 | } |
2865 | |
2866 | /// Get the suffix to be added to `static` functions if the `--wrap-static-fns` option is |
2867 | /// enabled. |
2868 | pub(crate) fn wrap_static_fns_suffix(&self) -> &str { |
2869 | self.options() |
2870 | .wrap_static_fns_suffix |
2871 | .as_deref() |
2872 | .unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX) |
2873 | } |
2874 | } |
2875 | |
2876 | /// A builder struct for configuring item resolution options. |
2877 | #[derive (Debug, Copy, Clone)] |
2878 | pub(crate) struct ItemResolver { |
2879 | id: ItemId, |
2880 | through_type_refs: bool, |
2881 | through_type_aliases: bool, |
2882 | } |
2883 | |
2884 | impl ItemId { |
2885 | /// Create an `ItemResolver` from this item ID. |
2886 | pub(crate) fn into_resolver(self) -> ItemResolver { |
2887 | self.into() |
2888 | } |
2889 | } |
2890 | |
2891 | impl<T> From<T> for ItemResolver |
2892 | where |
2893 | T: Into<ItemId>, |
2894 | { |
2895 | fn from(id: T) -> ItemResolver { |
2896 | ItemResolver::new(id) |
2897 | } |
2898 | } |
2899 | |
2900 | impl ItemResolver { |
2901 | /// Construct a new `ItemResolver` from the given ID. |
2902 | pub(crate) fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver { |
2903 | let id = id.into(); |
2904 | ItemResolver { |
2905 | id, |
2906 | through_type_refs: false, |
2907 | through_type_aliases: false, |
2908 | } |
2909 | } |
2910 | |
2911 | /// Keep resolving through `Type::TypeRef` items. |
2912 | pub(crate) fn through_type_refs(mut self) -> ItemResolver { |
2913 | self.through_type_refs = true; |
2914 | self |
2915 | } |
2916 | |
2917 | /// Keep resolving through `Type::Alias` items. |
2918 | pub(crate) fn through_type_aliases(mut self) -> ItemResolver { |
2919 | self.through_type_aliases = true; |
2920 | self |
2921 | } |
2922 | |
2923 | /// Finish configuring and perform the actual item resolution. |
2924 | pub(crate) fn resolve(self, ctx: &BindgenContext) -> &Item { |
2925 | assert!(ctx.collected_typerefs()); |
2926 | |
2927 | let mut id = self.id; |
2928 | let mut seen_ids = HashSet::default(); |
2929 | loop { |
2930 | let item = ctx.resolve_item(id); |
2931 | |
2932 | // Detect cycles and bail out. These can happen in certain cases |
2933 | // involving incomplete qualified dependent types (#2085). |
2934 | if !seen_ids.insert(id) { |
2935 | return item; |
2936 | } |
2937 | |
2938 | let ty_kind = item.as_type().map(|t| t.kind()); |
2939 | match ty_kind { |
2940 | Some(&TypeKind::ResolvedTypeRef(next_id)) |
2941 | if self.through_type_refs => |
2942 | { |
2943 | id = next_id.into(); |
2944 | } |
2945 | // We intentionally ignore template aliases here, as they are |
2946 | // more complicated, and don't represent a simple renaming of |
2947 | // some type. |
2948 | Some(&TypeKind::Alias(next_id)) |
2949 | if self.through_type_aliases => |
2950 | { |
2951 | id = next_id.into(); |
2952 | } |
2953 | _ => return item, |
2954 | } |
2955 | } |
2956 | } |
2957 | } |
2958 | |
2959 | /// A type that we are in the middle of parsing. |
2960 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
2961 | pub(crate) struct PartialType { |
2962 | decl: Cursor, |
2963 | // Just an ItemId, and not a TypeId, because we haven't finished this type |
2964 | // yet, so there's still time for things to go wrong. |
2965 | id: ItemId, |
2966 | } |
2967 | |
2968 | impl PartialType { |
2969 | /// Construct a new `PartialType`. |
2970 | pub(crate) fn new(decl: Cursor, id: ItemId) -> PartialType { |
2971 | // assert!(decl == decl.canonical()); |
2972 | PartialType { decl, id } |
2973 | } |
2974 | |
2975 | /// The cursor pointing to this partial type's declaration location. |
2976 | pub(crate) fn decl(&self) -> &Cursor { |
2977 | &self.decl |
2978 | } |
2979 | |
2980 | /// The item ID allocated for this type. This is *NOT* a key for an entry in |
2981 | /// the context's item set yet! |
2982 | pub(crate) fn id(&self) -> ItemId { |
2983 | self.id |
2984 | } |
2985 | } |
2986 | |
2987 | impl TemplateParameters for PartialType { |
2988 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
2989 | // Maybe at some point we will eagerly parse named types, but for now we |
2990 | // don't and this information is unavailable. |
2991 | vec![] |
2992 | } |
2993 | |
2994 | fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize { |
2995 | // Wouldn't it be nice if libclang would reliably give us this |
2996 | // information‽ |
2997 | match self.decl().kind() { |
2998 | clang_sys::CXCursor_ClassTemplate | |
2999 | clang_sys::CXCursor_FunctionTemplate | |
3000 | clang_sys::CXCursor_TypeAliasTemplateDecl => { |
3001 | let mut num_params = 0; |
3002 | self.decl().visit(|c| { |
3003 | match c.kind() { |
3004 | clang_sys::CXCursor_TemplateTypeParameter | |
3005 | clang_sys::CXCursor_TemplateTemplateParameter | |
3006 | clang_sys::CXCursor_NonTypeTemplateParameter => { |
3007 | num_params += 1; |
3008 | } |
3009 | _ => {} |
3010 | }; |
3011 | clang_sys::CXChildVisit_Continue |
3012 | }); |
3013 | num_params |
3014 | } |
3015 | _ => 0, |
3016 | } |
3017 | } |
3018 | } |
3019 | |
3020 | fn unused_regex_diagnostic(item: &str, name: &str, _ctx: &BindgenContext) { |
3021 | warn!("unused option: {} {}" , name, item); |
3022 | |
3023 | #[cfg (feature = "experimental" )] |
3024 | if _ctx.options().emit_diagnostics { |
3025 | use crate::diagnostics::{Diagnostic, Level}; |
3026 | |
3027 | Diagnostic::default() |
3028 | .with_title( |
3029 | format!("Unused regular expression: ` {}`." , item), |
3030 | Level::Warn, |
3031 | ) |
3032 | .add_annotation( |
3033 | format!("This regular expression was passed to ` {}`." , name), |
3034 | Level::Note, |
3035 | ) |
3036 | .display(); |
3037 | } |
3038 | } |
3039 | |