1 | use core::iter::{FromIterator, Iterator}; |
2 | use core::mem::{self, ManuallyDrop, MaybeUninit}; |
3 | use core::ops::{Deref, DerefMut}; |
4 | use core::ptr::{self, NonNull}; |
5 | use core::{cmp, fmt, hash, isize, slice, usize}; |
6 | |
7 | use alloc::{ |
8 | borrow::{Borrow, BorrowMut}, |
9 | boxed::Box, |
10 | string::String, |
11 | vec, |
12 | vec::Vec, |
13 | }; |
14 | |
15 | use crate::buf::{IntoIter, UninitSlice}; |
16 | use crate::bytes::Vtable; |
17 | #[allow (unused)] |
18 | use crate::loom::sync::atomic::AtomicMut; |
19 | use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; |
20 | use crate::{Buf, BufMut, Bytes}; |
21 | |
22 | /// A unique reference to a contiguous slice of memory. |
23 | /// |
24 | /// `BytesMut` represents a unique view into a potentially shared memory region. |
25 | /// Given the uniqueness guarantee, owners of `BytesMut` handles are able to |
26 | /// mutate the memory. |
27 | /// |
28 | /// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset |
29 | /// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the |
30 | /// same `buf` overlaps with its slice. That guarantee means that a write lock |
31 | /// is not required. |
32 | /// |
33 | /// # Growth |
34 | /// |
35 | /// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as |
36 | /// necessary. However, explicitly reserving the required space up-front before |
37 | /// a series of inserts will be more efficient. |
38 | /// |
39 | /// # Examples |
40 | /// |
41 | /// ``` |
42 | /// use bytes::{BytesMut, BufMut}; |
43 | /// |
44 | /// let mut buf = BytesMut::with_capacity(64); |
45 | /// |
46 | /// buf.put_u8(b'h' ); |
47 | /// buf.put_u8(b'e' ); |
48 | /// buf.put(&b"llo" [..]); |
49 | /// |
50 | /// assert_eq!(&buf[..], b"hello" ); |
51 | /// |
52 | /// // Freeze the buffer so that it can be shared |
53 | /// let a = buf.freeze(); |
54 | /// |
55 | /// // This does not allocate, instead `b` points to the same memory. |
56 | /// let b = a.clone(); |
57 | /// |
58 | /// assert_eq!(&a[..], b"hello" ); |
59 | /// assert_eq!(&b[..], b"hello" ); |
60 | /// ``` |
61 | pub struct BytesMut { |
62 | ptr: NonNull<u8>, |
63 | len: usize, |
64 | cap: usize, |
65 | data: *mut Shared, |
66 | } |
67 | |
68 | // Thread-safe reference-counted container for the shared storage. This mostly |
69 | // the same as `core::sync::Arc` but without the weak counter. The ref counting |
70 | // fns are based on the ones found in `std`. |
71 | // |
72 | // The main reason to use `Shared` instead of `core::sync::Arc` is that it ends |
73 | // up making the overall code simpler and easier to reason about. This is due to |
74 | // some of the logic around setting `Inner::arc` and other ways the `arc` field |
75 | // is used. Using `Arc` ended up requiring a number of funky transmutes and |
76 | // other shenanigans to make it work. |
77 | struct Shared { |
78 | vec: Vec<u8>, |
79 | original_capacity_repr: usize, |
80 | ref_count: AtomicUsize, |
81 | } |
82 | |
83 | // Buffer storage strategy flags. |
84 | const KIND_ARC: usize = 0b0; |
85 | const KIND_VEC: usize = 0b1; |
86 | const KIND_MASK: usize = 0b1; |
87 | |
88 | // The max original capacity value. Any `Bytes` allocated with a greater initial |
89 | // capacity will default to this. |
90 | const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17; |
91 | // The original capacity algorithm will not take effect unless the originally |
92 | // allocated capacity was at least 1kb in size. |
93 | const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10; |
94 | // The original capacity is stored in powers of 2 starting at 1kb to a max of |
95 | // 64kb. Representing it as such requires only 3 bits of storage. |
96 | const ORIGINAL_CAPACITY_MASK: usize = 0b11100; |
97 | const ORIGINAL_CAPACITY_OFFSET: usize = 2; |
98 | |
99 | // When the storage is in the `Vec` representation, the pointer can be advanced |
100 | // at most this value. This is due to the amount of storage available to track |
101 | // the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY |
102 | // bits. |
103 | const VEC_POS_OFFSET: usize = 5; |
104 | const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET; |
105 | const NOT_VEC_POS_MASK: usize = 0b11111; |
106 | |
107 | #[cfg (target_pointer_width = "64" )] |
108 | const PTR_WIDTH: usize = 64; |
109 | #[cfg (target_pointer_width = "32" )] |
110 | const PTR_WIDTH: usize = 32; |
111 | |
112 | /* |
113 | * |
114 | * ===== BytesMut ===== |
115 | * |
116 | */ |
117 | |
118 | impl BytesMut { |
119 | /// Creates a new `BytesMut` with the specified capacity. |
120 | /// |
121 | /// The returned `BytesMut` will be able to hold at least `capacity` bytes |
122 | /// without reallocating. |
123 | /// |
124 | /// It is important to note that this function does not specify the length |
125 | /// of the returned `BytesMut`, but only the capacity. |
126 | /// |
127 | /// # Examples |
128 | /// |
129 | /// ``` |
130 | /// use bytes::{BytesMut, BufMut}; |
131 | /// |
132 | /// let mut bytes = BytesMut::with_capacity(64); |
133 | /// |
134 | /// // `bytes` contains no data, even though there is capacity |
135 | /// assert_eq!(bytes.len(), 0); |
136 | /// |
137 | /// bytes.put(&b"hello world" [..]); |
138 | /// |
139 | /// assert_eq!(&bytes[..], b"hello world" ); |
140 | /// ``` |
141 | #[inline ] |
142 | pub fn with_capacity(capacity: usize) -> BytesMut { |
143 | BytesMut::from_vec(Vec::with_capacity(capacity)) |
144 | } |
145 | |
146 | /// Creates a new `BytesMut` with default capacity. |
147 | /// |
148 | /// Resulting object has length 0 and unspecified capacity. |
149 | /// This function does not allocate. |
150 | /// |
151 | /// # Examples |
152 | /// |
153 | /// ``` |
154 | /// use bytes::{BytesMut, BufMut}; |
155 | /// |
156 | /// let mut bytes = BytesMut::new(); |
157 | /// |
158 | /// assert_eq!(0, bytes.len()); |
159 | /// |
160 | /// bytes.reserve(2); |
161 | /// bytes.put_slice(b"xy" ); |
162 | /// |
163 | /// assert_eq!(&b"xy" [..], &bytes[..]); |
164 | /// ``` |
165 | #[inline ] |
166 | pub fn new() -> BytesMut { |
167 | BytesMut::with_capacity(0) |
168 | } |
169 | |
170 | /// Returns the number of bytes contained in this `BytesMut`. |
171 | /// |
172 | /// # Examples |
173 | /// |
174 | /// ``` |
175 | /// use bytes::BytesMut; |
176 | /// |
177 | /// let b = BytesMut::from(&b"hello" [..]); |
178 | /// assert_eq!(b.len(), 5); |
179 | /// ``` |
180 | #[inline ] |
181 | pub fn len(&self) -> usize { |
182 | self.len |
183 | } |
184 | |
185 | /// Returns true if the `BytesMut` has a length of 0. |
186 | /// |
187 | /// # Examples |
188 | /// |
189 | /// ``` |
190 | /// use bytes::BytesMut; |
191 | /// |
192 | /// let b = BytesMut::with_capacity(64); |
193 | /// assert!(b.is_empty()); |
194 | /// ``` |
195 | #[inline ] |
196 | pub fn is_empty(&self) -> bool { |
197 | self.len == 0 |
198 | } |
199 | |
200 | /// Returns the number of bytes the `BytesMut` can hold without reallocating. |
201 | /// |
202 | /// # Examples |
203 | /// |
204 | /// ``` |
205 | /// use bytes::BytesMut; |
206 | /// |
207 | /// let b = BytesMut::with_capacity(64); |
208 | /// assert_eq!(b.capacity(), 64); |
209 | /// ``` |
210 | #[inline ] |
211 | pub fn capacity(&self) -> usize { |
212 | self.cap |
213 | } |
214 | |
215 | /// Converts `self` into an immutable `Bytes`. |
216 | /// |
217 | /// The conversion is zero cost and is used to indicate that the slice |
218 | /// referenced by the handle will no longer be mutated. Once the conversion |
219 | /// is done, the handle can be cloned and shared across threads. |
220 | /// |
221 | /// # Examples |
222 | /// |
223 | /// ``` |
224 | /// use bytes::{BytesMut, BufMut}; |
225 | /// use std::thread; |
226 | /// |
227 | /// let mut b = BytesMut::with_capacity(64); |
228 | /// b.put(&b"hello world" [..]); |
229 | /// let b1 = b.freeze(); |
230 | /// let b2 = b1.clone(); |
231 | /// |
232 | /// let th = thread::spawn(move || { |
233 | /// assert_eq!(&b1[..], b"hello world" ); |
234 | /// }); |
235 | /// |
236 | /// assert_eq!(&b2[..], b"hello world" ); |
237 | /// th.join().unwrap(); |
238 | /// ``` |
239 | #[inline ] |
240 | pub fn freeze(mut self) -> Bytes { |
241 | if self.kind() == KIND_VEC { |
242 | // Just re-use `Bytes` internal Vec vtable |
243 | unsafe { |
244 | let (off, _) = self.get_vec_pos(); |
245 | let vec = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off); |
246 | mem::forget(self); |
247 | let mut b: Bytes = vec.into(); |
248 | b.advance(off); |
249 | b |
250 | } |
251 | } else { |
252 | debug_assert_eq!(self.kind(), KIND_ARC); |
253 | |
254 | let ptr = self.ptr.as_ptr(); |
255 | let len = self.len; |
256 | let data = AtomicPtr::new(self.data.cast()); |
257 | mem::forget(self); |
258 | unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) } |
259 | } |
260 | } |
261 | |
262 | /// Creates a new `BytesMut`, which is initialized with zero. |
263 | /// |
264 | /// # Examples |
265 | /// |
266 | /// ``` |
267 | /// use bytes::BytesMut; |
268 | /// |
269 | /// let zeros = BytesMut::zeroed(42); |
270 | /// |
271 | /// assert_eq!(zeros.len(), 42); |
272 | /// zeros.into_iter().for_each(|x| assert_eq!(x, 0)); |
273 | /// ``` |
274 | pub fn zeroed(len: usize) -> BytesMut { |
275 | BytesMut::from_vec(vec![0; len]) |
276 | } |
277 | |
278 | /// Splits the bytes into two at the given index. |
279 | /// |
280 | /// Afterwards `self` contains elements `[0, at)`, and the returned |
281 | /// `BytesMut` contains elements `[at, capacity)`. |
282 | /// |
283 | /// This is an `O(1)` operation that just increases the reference count |
284 | /// and sets a few indices. |
285 | /// |
286 | /// # Examples |
287 | /// |
288 | /// ``` |
289 | /// use bytes::BytesMut; |
290 | /// |
291 | /// let mut a = BytesMut::from(&b"hello world" [..]); |
292 | /// let mut b = a.split_off(5); |
293 | /// |
294 | /// a[0] = b'j' ; |
295 | /// b[0] = b'!' ; |
296 | /// |
297 | /// assert_eq!(&a[..], b"jello" ); |
298 | /// assert_eq!(&b[..], b"!world" ); |
299 | /// ``` |
300 | /// |
301 | /// # Panics |
302 | /// |
303 | /// Panics if `at > capacity`. |
304 | #[must_use = "consider BytesMut::truncate if you don't need the other half" ] |
305 | pub fn split_off(&mut self, at: usize) -> BytesMut { |
306 | assert!( |
307 | at <= self.capacity(), |
308 | "split_off out of bounds: {:?} <= {:?}" , |
309 | at, |
310 | self.capacity(), |
311 | ); |
312 | unsafe { |
313 | let mut other = self.shallow_clone(); |
314 | other.set_start(at); |
315 | self.set_end(at); |
316 | other |
317 | } |
318 | } |
319 | |
320 | /// Removes the bytes from the current view, returning them in a new |
321 | /// `BytesMut` handle. |
322 | /// |
323 | /// Afterwards, `self` will be empty, but will retain any additional |
324 | /// capacity that it had before the operation. This is identical to |
325 | /// `self.split_to(self.len())`. |
326 | /// |
327 | /// This is an `O(1)` operation that just increases the reference count and |
328 | /// sets a few indices. |
329 | /// |
330 | /// # Examples |
331 | /// |
332 | /// ``` |
333 | /// use bytes::{BytesMut, BufMut}; |
334 | /// |
335 | /// let mut buf = BytesMut::with_capacity(1024); |
336 | /// buf.put(&b"hello world" [..]); |
337 | /// |
338 | /// let other = buf.split(); |
339 | /// |
340 | /// assert!(buf.is_empty()); |
341 | /// assert_eq!(1013, buf.capacity()); |
342 | /// |
343 | /// assert_eq!(other, b"hello world" [..]); |
344 | /// ``` |
345 | #[must_use = "consider BytesMut::advance(len()) if you don't need the other half" ] |
346 | pub fn split(&mut self) -> BytesMut { |
347 | let len = self.len(); |
348 | self.split_to(len) |
349 | } |
350 | |
351 | /// Splits the buffer into two at the given index. |
352 | /// |
353 | /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut` |
354 | /// contains elements `[0, at)`. |
355 | /// |
356 | /// This is an `O(1)` operation that just increases the reference count and |
357 | /// sets a few indices. |
358 | /// |
359 | /// # Examples |
360 | /// |
361 | /// ``` |
362 | /// use bytes::BytesMut; |
363 | /// |
364 | /// let mut a = BytesMut::from(&b"hello world" [..]); |
365 | /// let mut b = a.split_to(5); |
366 | /// |
367 | /// a[0] = b'!' ; |
368 | /// b[0] = b'j' ; |
369 | /// |
370 | /// assert_eq!(&a[..], b"!world" ); |
371 | /// assert_eq!(&b[..], b"jello" ); |
372 | /// ``` |
373 | /// |
374 | /// # Panics |
375 | /// |
376 | /// Panics if `at > len`. |
377 | #[must_use = "consider BytesMut::advance if you don't need the other half" ] |
378 | pub fn split_to(&mut self, at: usize) -> BytesMut { |
379 | assert!( |
380 | at <= self.len(), |
381 | "split_to out of bounds: {:?} <= {:?}" , |
382 | at, |
383 | self.len(), |
384 | ); |
385 | |
386 | unsafe { |
387 | let mut other = self.shallow_clone(); |
388 | other.set_end(at); |
389 | self.set_start(at); |
390 | other |
391 | } |
392 | } |
393 | |
394 | /// Shortens the buffer, keeping the first `len` bytes and dropping the |
395 | /// rest. |
396 | /// |
397 | /// If `len` is greater than the buffer's current length, this has no |
398 | /// effect. |
399 | /// |
400 | /// Existing underlying capacity is preserved. |
401 | /// |
402 | /// The [`split_off`] method can emulate `truncate`, but this causes the |
403 | /// excess bytes to be returned instead of dropped. |
404 | /// |
405 | /// # Examples |
406 | /// |
407 | /// ``` |
408 | /// use bytes::BytesMut; |
409 | /// |
410 | /// let mut buf = BytesMut::from(&b"hello world" [..]); |
411 | /// buf.truncate(5); |
412 | /// assert_eq!(buf, b"hello" [..]); |
413 | /// ``` |
414 | /// |
415 | /// [`split_off`]: #method.split_off |
416 | pub fn truncate(&mut self, len: usize) { |
417 | if len <= self.len() { |
418 | unsafe { |
419 | self.set_len(len); |
420 | } |
421 | } |
422 | } |
423 | |
424 | /// Clears the buffer, removing all data. Existing capacity is preserved. |
425 | /// |
426 | /// # Examples |
427 | /// |
428 | /// ``` |
429 | /// use bytes::BytesMut; |
430 | /// |
431 | /// let mut buf = BytesMut::from(&b"hello world" [..]); |
432 | /// buf.clear(); |
433 | /// assert!(buf.is_empty()); |
434 | /// ``` |
435 | pub fn clear(&mut self) { |
436 | self.truncate(0); |
437 | } |
438 | |
439 | /// Resizes the buffer so that `len` is equal to `new_len`. |
440 | /// |
441 | /// If `new_len` is greater than `len`, the buffer is extended by the |
442 | /// difference with each additional byte set to `value`. If `new_len` is |
443 | /// less than `len`, the buffer is simply truncated. |
444 | /// |
445 | /// # Examples |
446 | /// |
447 | /// ``` |
448 | /// use bytes::BytesMut; |
449 | /// |
450 | /// let mut buf = BytesMut::new(); |
451 | /// |
452 | /// buf.resize(3, 0x1); |
453 | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]); |
454 | /// |
455 | /// buf.resize(2, 0x2); |
456 | /// assert_eq!(&buf[..], &[0x1, 0x1]); |
457 | /// |
458 | /// buf.resize(4, 0x3); |
459 | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]); |
460 | /// ``` |
461 | pub fn resize(&mut self, new_len: usize, value: u8) { |
462 | let len = self.len(); |
463 | if new_len > len { |
464 | let additional = new_len - len; |
465 | self.reserve(additional); |
466 | unsafe { |
467 | let dst = self.chunk_mut().as_mut_ptr(); |
468 | ptr::write_bytes(dst, value, additional); |
469 | self.set_len(new_len); |
470 | } |
471 | } else { |
472 | self.truncate(new_len); |
473 | } |
474 | } |
475 | |
476 | /// Sets the length of the buffer. |
477 | /// |
478 | /// This will explicitly set the size of the buffer without actually |
479 | /// modifying the data, so it is up to the caller to ensure that the data |
480 | /// has been initialized. |
481 | /// |
482 | /// # Examples |
483 | /// |
484 | /// ``` |
485 | /// use bytes::BytesMut; |
486 | /// |
487 | /// let mut b = BytesMut::from(&b"hello world" [..]); |
488 | /// |
489 | /// unsafe { |
490 | /// b.set_len(5); |
491 | /// } |
492 | /// |
493 | /// assert_eq!(&b[..], b"hello" ); |
494 | /// |
495 | /// unsafe { |
496 | /// b.set_len(11); |
497 | /// } |
498 | /// |
499 | /// assert_eq!(&b[..], b"hello world" ); |
500 | /// ``` |
501 | #[inline ] |
502 | pub unsafe fn set_len(&mut self, len: usize) { |
503 | debug_assert!(len <= self.cap, "set_len out of bounds" ); |
504 | self.len = len; |
505 | } |
506 | |
507 | /// Reserves capacity for at least `additional` more bytes to be inserted |
508 | /// into the given `BytesMut`. |
509 | /// |
510 | /// More than `additional` bytes may be reserved in order to avoid frequent |
511 | /// reallocations. A call to `reserve` may result in an allocation. |
512 | /// |
513 | /// Before allocating new buffer space, the function will attempt to reclaim |
514 | /// space in the existing buffer. If the current handle references a view |
515 | /// into a larger original buffer, and all other handles referencing part |
516 | /// of the same original buffer have been dropped, then the current view |
517 | /// can be copied/shifted to the front of the buffer and the handle can take |
518 | /// ownership of the full buffer, provided that the full buffer is large |
519 | /// enough to fit the requested additional capacity. |
520 | /// |
521 | /// This optimization will only happen if shifting the data from the current |
522 | /// view to the front of the buffer is not too expensive in terms of the |
523 | /// (amortized) time required. The precise condition is subject to change; |
524 | /// as of now, the length of the data being shifted needs to be at least as |
525 | /// large as the distance that it's shifted by. If the current view is empty |
526 | /// and the original buffer is large enough to fit the requested additional |
527 | /// capacity, then reallocations will never happen. |
528 | /// |
529 | /// # Examples |
530 | /// |
531 | /// In the following example, a new buffer is allocated. |
532 | /// |
533 | /// ``` |
534 | /// use bytes::BytesMut; |
535 | /// |
536 | /// let mut buf = BytesMut::from(&b"hello" [..]); |
537 | /// buf.reserve(64); |
538 | /// assert!(buf.capacity() >= 69); |
539 | /// ``` |
540 | /// |
541 | /// In the following example, the existing buffer is reclaimed. |
542 | /// |
543 | /// ``` |
544 | /// use bytes::{BytesMut, BufMut}; |
545 | /// |
546 | /// let mut buf = BytesMut::with_capacity(128); |
547 | /// buf.put(&[0; 64][..]); |
548 | /// |
549 | /// let ptr = buf.as_ptr(); |
550 | /// let other = buf.split(); |
551 | /// |
552 | /// assert!(buf.is_empty()); |
553 | /// assert_eq!(buf.capacity(), 64); |
554 | /// |
555 | /// drop(other); |
556 | /// buf.reserve(128); |
557 | /// |
558 | /// assert_eq!(buf.capacity(), 128); |
559 | /// assert_eq!(buf.as_ptr(), ptr); |
560 | /// ``` |
561 | /// |
562 | /// # Panics |
563 | /// |
564 | /// Panics if the new capacity overflows `usize`. |
565 | #[inline ] |
566 | pub fn reserve(&mut self, additional: usize) { |
567 | let len = self.len(); |
568 | let rem = self.capacity() - len; |
569 | |
570 | if additional <= rem { |
571 | // The handle can already store at least `additional` more bytes, so |
572 | // there is no further work needed to be done. |
573 | return; |
574 | } |
575 | |
576 | self.reserve_inner(additional); |
577 | } |
578 | |
579 | // In separate function to allow the short-circuits in `reserve` to |
580 | // be inline-able. Significant helps performance. |
581 | fn reserve_inner(&mut self, additional: usize) { |
582 | let len = self.len(); |
583 | let kind = self.kind(); |
584 | |
585 | if kind == KIND_VEC { |
586 | // If there's enough free space before the start of the buffer, then |
587 | // just copy the data backwards and reuse the already-allocated |
588 | // space. |
589 | // |
590 | // Otherwise, since backed by a vector, use `Vec::reserve` |
591 | // |
592 | // We need to make sure that this optimization does not kill the |
593 | // amortized runtimes of BytesMut's operations. |
594 | unsafe { |
595 | let (off, prev) = self.get_vec_pos(); |
596 | |
597 | // Only reuse space if we can satisfy the requested additional space. |
598 | // |
599 | // Also check if the value of `off` suggests that enough bytes |
600 | // have been read to account for the overhead of shifting all |
601 | // the data (in an amortized analysis). |
602 | // Hence the condition `off >= self.len()`. |
603 | // |
604 | // This condition also already implies that the buffer is going |
605 | // to be (at least) half-empty in the end; so we do not break |
606 | // the (amortized) runtime with future resizes of the underlying |
607 | // `Vec`. |
608 | // |
609 | // [For more details check issue #524, and PR #525.] |
610 | if self.capacity() - self.len() + off >= additional && off >= self.len() { |
611 | // There's enough space, and it's not too much overhead: |
612 | // reuse the space! |
613 | // |
614 | // Just move the pointer back to the start after copying |
615 | // data back. |
616 | let base_ptr = self.ptr.as_ptr().offset(-(off as isize)); |
617 | // Since `off >= self.len()`, the two regions don't overlap. |
618 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len); |
619 | self.ptr = vptr(base_ptr); |
620 | self.set_vec_pos(0, prev); |
621 | |
622 | // Length stays constant, but since we moved backwards we |
623 | // can gain capacity back. |
624 | self.cap += off; |
625 | } else { |
626 | // Not enough space, or reusing might be too much overhead: |
627 | // allocate more space! |
628 | let mut v = |
629 | ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off)); |
630 | v.reserve(additional); |
631 | |
632 | // Update the info |
633 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
634 | self.len = v.len() - off; |
635 | self.cap = v.capacity() - off; |
636 | } |
637 | |
638 | return; |
639 | } |
640 | } |
641 | |
642 | debug_assert_eq!(kind, KIND_ARC); |
643 | let shared: *mut Shared = self.data; |
644 | |
645 | // Reserving involves abandoning the currently shared buffer and |
646 | // allocating a new vector with the requested capacity. |
647 | // |
648 | // Compute the new capacity |
649 | let mut new_cap = len.checked_add(additional).expect("overflow" ); |
650 | |
651 | let original_capacity; |
652 | let original_capacity_repr; |
653 | |
654 | unsafe { |
655 | original_capacity_repr = (*shared).original_capacity_repr; |
656 | original_capacity = original_capacity_from_repr(original_capacity_repr); |
657 | |
658 | // First, try to reclaim the buffer. This is possible if the current |
659 | // handle is the only outstanding handle pointing to the buffer. |
660 | if (*shared).is_unique() { |
661 | // This is the only handle to the buffer. It can be reclaimed. |
662 | // However, before doing the work of copying data, check to make |
663 | // sure that the vector has enough capacity. |
664 | let v = &mut (*shared).vec; |
665 | |
666 | let v_capacity = v.capacity(); |
667 | let ptr = v.as_mut_ptr(); |
668 | |
669 | let offset = offset_from(self.ptr.as_ptr(), ptr); |
670 | |
671 | // Compare the condition in the `kind == KIND_VEC` case above |
672 | // for more details. |
673 | if v_capacity >= new_cap + offset { |
674 | self.cap = new_cap; |
675 | // no copy is necessary |
676 | } else if v_capacity >= new_cap && offset >= len { |
677 | // The capacity is sufficient, and copying is not too much |
678 | // overhead: reclaim the buffer! |
679 | |
680 | // `offset >= len` means: no overlap |
681 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len); |
682 | |
683 | self.ptr = vptr(ptr); |
684 | self.cap = v.capacity(); |
685 | } else { |
686 | // calculate offset |
687 | let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize); |
688 | |
689 | // new_cap is calculated in terms of `BytesMut`, not the underlying |
690 | // `Vec`, so it does not take the offset into account. |
691 | // |
692 | // Thus we have to manually add it here. |
693 | new_cap = new_cap.checked_add(off).expect("overflow" ); |
694 | |
695 | // The vector capacity is not sufficient. The reserve request is |
696 | // asking for more than the initial buffer capacity. Allocate more |
697 | // than requested if `new_cap` is not much bigger than the current |
698 | // capacity. |
699 | // |
700 | // There are some situations, using `reserve_exact` that the |
701 | // buffer capacity could be below `original_capacity`, so do a |
702 | // check. |
703 | let double = v.capacity().checked_shl(1).unwrap_or(new_cap); |
704 | |
705 | new_cap = cmp::max(double, new_cap); |
706 | |
707 | // No space - allocate more |
708 | // |
709 | // The length field of `Shared::vec` is not used by the `BytesMut`; |
710 | // instead we use the `len` field in the `BytesMut` itself. However, |
711 | // when calling `reserve`, it doesn't guarantee that data stored in |
712 | // the unused capacity of the vector is copied over to the new |
713 | // allocation, so we need to ensure that we don't have any data we |
714 | // care about in the unused capacity before calling `reserve`. |
715 | debug_assert!(off + len <= v.capacity()); |
716 | v.set_len(off + len); |
717 | v.reserve(new_cap - v.len()); |
718 | |
719 | // Update the info |
720 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
721 | self.cap = v.capacity() - off; |
722 | } |
723 | |
724 | return; |
725 | } else { |
726 | new_cap = cmp::max(new_cap, original_capacity); |
727 | } |
728 | } |
729 | |
730 | // Create a new vector to store the data |
731 | let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap)); |
732 | |
733 | // Copy the bytes |
734 | v.extend_from_slice(self.as_ref()); |
735 | |
736 | // Release the shared handle. This must be done *after* the bytes are |
737 | // copied. |
738 | unsafe { release_shared(shared) }; |
739 | |
740 | // Update self |
741 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
742 | self.data = invalid_ptr(data); |
743 | self.ptr = vptr(v.as_mut_ptr()); |
744 | self.len = v.len(); |
745 | self.cap = v.capacity(); |
746 | } |
747 | |
748 | /// Appends given bytes to this `BytesMut`. |
749 | /// |
750 | /// If this `BytesMut` object does not have enough capacity, it is resized |
751 | /// first. |
752 | /// |
753 | /// # Examples |
754 | /// |
755 | /// ``` |
756 | /// use bytes::BytesMut; |
757 | /// |
758 | /// let mut buf = BytesMut::with_capacity(0); |
759 | /// buf.extend_from_slice(b"aaabbb" ); |
760 | /// buf.extend_from_slice(b"cccddd" ); |
761 | /// |
762 | /// assert_eq!(b"aaabbbcccddd" , &buf[..]); |
763 | /// ``` |
764 | #[inline ] |
765 | pub fn extend_from_slice(&mut self, extend: &[u8]) { |
766 | let cnt = extend.len(); |
767 | self.reserve(cnt); |
768 | |
769 | unsafe { |
770 | let dst = self.spare_capacity_mut(); |
771 | // Reserved above |
772 | debug_assert!(dst.len() >= cnt); |
773 | |
774 | ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt); |
775 | } |
776 | |
777 | unsafe { |
778 | self.advance_mut(cnt); |
779 | } |
780 | } |
781 | |
782 | /// Absorbs a `BytesMut` that was previously split off. |
783 | /// |
784 | /// If the two `BytesMut` objects were previously contiguous and not mutated |
785 | /// in a way that causes re-allocation i.e., if `other` was created by |
786 | /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation |
787 | /// that just decreases a reference count and sets a few indices. |
788 | /// Otherwise this method degenerates to |
789 | /// `self.extend_from_slice(other.as_ref())`. |
790 | /// |
791 | /// # Examples |
792 | /// |
793 | /// ``` |
794 | /// use bytes::BytesMut; |
795 | /// |
796 | /// let mut buf = BytesMut::with_capacity(64); |
797 | /// buf.extend_from_slice(b"aaabbbcccddd" ); |
798 | /// |
799 | /// let split = buf.split_off(6); |
800 | /// assert_eq!(b"aaabbb" , &buf[..]); |
801 | /// assert_eq!(b"cccddd" , &split[..]); |
802 | /// |
803 | /// buf.unsplit(split); |
804 | /// assert_eq!(b"aaabbbcccddd" , &buf[..]); |
805 | /// ``` |
806 | pub fn unsplit(&mut self, other: BytesMut) { |
807 | if self.is_empty() { |
808 | *self = other; |
809 | return; |
810 | } |
811 | |
812 | if let Err(other) = self.try_unsplit(other) { |
813 | self.extend_from_slice(other.as_ref()); |
814 | } |
815 | } |
816 | |
817 | // private |
818 | |
819 | // For now, use a `Vec` to manage the memory for us, but we may want to |
820 | // change that in the future to some alternate allocator strategy. |
821 | // |
822 | // Thus, we don't expose an easy way to construct from a `Vec` since an |
823 | // internal change could make a simple pattern (`BytesMut::from(vec)`) |
824 | // suddenly a lot more expensive. |
825 | #[inline ] |
826 | pub(crate) fn from_vec(mut vec: Vec<u8>) -> BytesMut { |
827 | let ptr = vptr(vec.as_mut_ptr()); |
828 | let len = vec.len(); |
829 | let cap = vec.capacity(); |
830 | mem::forget(vec); |
831 | |
832 | let original_capacity_repr = original_capacity_to_repr(cap); |
833 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
834 | |
835 | BytesMut { |
836 | ptr, |
837 | len, |
838 | cap, |
839 | data: invalid_ptr(data), |
840 | } |
841 | } |
842 | |
843 | #[inline ] |
844 | fn as_slice(&self) -> &[u8] { |
845 | unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) } |
846 | } |
847 | |
848 | #[inline ] |
849 | fn as_slice_mut(&mut self) -> &mut [u8] { |
850 | unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) } |
851 | } |
852 | |
853 | unsafe fn set_start(&mut self, start: usize) { |
854 | // Setting the start to 0 is a no-op, so return early if this is the |
855 | // case. |
856 | if start == 0 { |
857 | return; |
858 | } |
859 | |
860 | debug_assert!(start <= self.cap, "internal: set_start out of bounds" ); |
861 | |
862 | let kind = self.kind(); |
863 | |
864 | if kind == KIND_VEC { |
865 | // Setting the start when in vec representation is a little more |
866 | // complicated. First, we have to track how far ahead the |
867 | // "start" of the byte buffer from the beginning of the vec. We |
868 | // also have to ensure that we don't exceed the maximum shift. |
869 | let (mut pos, prev) = self.get_vec_pos(); |
870 | pos += start; |
871 | |
872 | if pos <= MAX_VEC_POS { |
873 | self.set_vec_pos(pos, prev); |
874 | } else { |
875 | // The repr must be upgraded to ARC. This will never happen |
876 | // on 64 bit systems and will only happen on 32 bit systems |
877 | // when shifting past 134,217,727 bytes. As such, we don't |
878 | // worry too much about performance here. |
879 | self.promote_to_shared(/*ref_count = */ 1); |
880 | } |
881 | } |
882 | |
883 | // Updating the start of the view is setting `ptr` to point to the |
884 | // new start and updating the `len` field to reflect the new length |
885 | // of the view. |
886 | self.ptr = vptr(self.ptr.as_ptr().add(start)); |
887 | |
888 | if self.len >= start { |
889 | self.len -= start; |
890 | } else { |
891 | self.len = 0; |
892 | } |
893 | |
894 | self.cap -= start; |
895 | } |
896 | |
897 | unsafe fn set_end(&mut self, end: usize) { |
898 | debug_assert_eq!(self.kind(), KIND_ARC); |
899 | assert!(end <= self.cap, "set_end out of bounds" ); |
900 | |
901 | self.cap = end; |
902 | self.len = cmp::min(self.len, end); |
903 | } |
904 | |
905 | fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> { |
906 | if other.capacity() == 0 { |
907 | return Ok(()); |
908 | } |
909 | |
910 | let ptr = unsafe { self.ptr.as_ptr().add(self.len) }; |
911 | if ptr == other.ptr.as_ptr() |
912 | && self.kind() == KIND_ARC |
913 | && other.kind() == KIND_ARC |
914 | && self.data == other.data |
915 | { |
916 | // Contiguous blocks, just combine directly |
917 | self.len += other.len; |
918 | self.cap += other.cap; |
919 | Ok(()) |
920 | } else { |
921 | Err(other) |
922 | } |
923 | } |
924 | |
925 | #[inline ] |
926 | fn kind(&self) -> usize { |
927 | self.data as usize & KIND_MASK |
928 | } |
929 | |
930 | unsafe fn promote_to_shared(&mut self, ref_cnt: usize) { |
931 | debug_assert_eq!(self.kind(), KIND_VEC); |
932 | debug_assert!(ref_cnt == 1 || ref_cnt == 2); |
933 | |
934 | let original_capacity_repr = |
935 | (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET; |
936 | |
937 | // The vec offset cannot be concurrently mutated, so there |
938 | // should be no danger reading it. |
939 | let off = (self.data as usize) >> VEC_POS_OFFSET; |
940 | |
941 | // First, allocate a new `Shared` instance containing the |
942 | // `Vec` fields. It's important to note that `ptr`, `len`, |
943 | // and `cap` cannot be mutated without having `&mut self`. |
944 | // This means that these fields will not be concurrently |
945 | // updated and since the buffer hasn't been promoted to an |
946 | // `Arc`, those three fields still are the components of the |
947 | // vector. |
948 | let shared = Box::new(Shared { |
949 | vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off), |
950 | original_capacity_repr, |
951 | ref_count: AtomicUsize::new(ref_cnt), |
952 | }); |
953 | |
954 | let shared = Box::into_raw(shared); |
955 | |
956 | // The pointer should be aligned, so this assert should |
957 | // always succeed. |
958 | debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC); |
959 | |
960 | self.data = shared; |
961 | } |
962 | |
963 | /// Makes an exact shallow clone of `self`. |
964 | /// |
965 | /// The kind of `self` doesn't matter, but this is unsafe |
966 | /// because the clone will have the same offsets. You must |
967 | /// be sure the returned value to the user doesn't allow |
968 | /// two views into the same range. |
969 | #[inline ] |
970 | unsafe fn shallow_clone(&mut self) -> BytesMut { |
971 | if self.kind() == KIND_ARC { |
972 | increment_shared(self.data); |
973 | ptr::read(self) |
974 | } else { |
975 | self.promote_to_shared(/*ref_count = */ 2); |
976 | ptr::read(self) |
977 | } |
978 | } |
979 | |
980 | #[inline ] |
981 | unsafe fn get_vec_pos(&mut self) -> (usize, usize) { |
982 | debug_assert_eq!(self.kind(), KIND_VEC); |
983 | |
984 | let prev = self.data as usize; |
985 | (prev >> VEC_POS_OFFSET, prev) |
986 | } |
987 | |
988 | #[inline ] |
989 | unsafe fn set_vec_pos(&mut self, pos: usize, prev: usize) { |
990 | debug_assert_eq!(self.kind(), KIND_VEC); |
991 | debug_assert!(pos <= MAX_VEC_POS); |
992 | |
993 | self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK)); |
994 | } |
995 | |
996 | /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`. |
997 | /// |
998 | /// The returned slice can be used to fill the buffer with data (e.g. by |
999 | /// reading from a file) before marking the data as initialized using the |
1000 | /// [`set_len`] method. |
1001 | /// |
1002 | /// [`set_len`]: BytesMut::set_len |
1003 | /// |
1004 | /// # Examples |
1005 | /// |
1006 | /// ``` |
1007 | /// use bytes::BytesMut; |
1008 | /// |
1009 | /// // Allocate buffer big enough for 10 bytes. |
1010 | /// let mut buf = BytesMut::with_capacity(10); |
1011 | /// |
1012 | /// // Fill in the first 3 elements. |
1013 | /// let uninit = buf.spare_capacity_mut(); |
1014 | /// uninit[0].write(0); |
1015 | /// uninit[1].write(1); |
1016 | /// uninit[2].write(2); |
1017 | /// |
1018 | /// // Mark the first 3 bytes of the buffer as being initialized. |
1019 | /// unsafe { |
1020 | /// buf.set_len(3); |
1021 | /// } |
1022 | /// |
1023 | /// assert_eq!(&buf[..], &[0, 1, 2]); |
1024 | /// ``` |
1025 | #[inline ] |
1026 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] { |
1027 | unsafe { |
1028 | let ptr = self.ptr.as_ptr().add(self.len); |
1029 | let len = self.cap - self.len; |
1030 | |
1031 | slice::from_raw_parts_mut(ptr.cast(), len) |
1032 | } |
1033 | } |
1034 | } |
1035 | |
1036 | impl Drop for BytesMut { |
1037 | fn drop(&mut self) { |
1038 | let kind: usize = self.kind(); |
1039 | |
1040 | if kind == KIND_VEC { |
1041 | unsafe { |
1042 | let (off: usize, _) = self.get_vec_pos(); |
1043 | |
1044 | // Vector storage, free the vector |
1045 | let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off); |
1046 | } |
1047 | } else if kind == KIND_ARC { |
1048 | unsafe { release_shared(self.data) }; |
1049 | } |
1050 | } |
1051 | } |
1052 | |
1053 | impl Buf for BytesMut { |
1054 | #[inline ] |
1055 | fn remaining(&self) -> usize { |
1056 | self.len() |
1057 | } |
1058 | |
1059 | #[inline ] |
1060 | fn chunk(&self) -> &[u8] { |
1061 | self.as_slice() |
1062 | } |
1063 | |
1064 | #[inline ] |
1065 | fn advance(&mut self, cnt: usize) { |
1066 | assert!( |
1067 | cnt <= self.remaining(), |
1068 | "cannot advance past `remaining`: {:?} <= {:?}" , |
1069 | cnt, |
1070 | self.remaining(), |
1071 | ); |
1072 | unsafe { |
1073 | self.set_start(cnt); |
1074 | } |
1075 | } |
1076 | |
1077 | fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes { |
1078 | self.split_to(len).freeze() |
1079 | } |
1080 | } |
1081 | |
1082 | unsafe impl BufMut for BytesMut { |
1083 | #[inline ] |
1084 | fn remaining_mut(&self) -> usize { |
1085 | usize::MAX - self.len() |
1086 | } |
1087 | |
1088 | #[inline ] |
1089 | unsafe fn advance_mut(&mut self, cnt: usize) { |
1090 | let new_len = self.len() + cnt; |
1091 | assert!( |
1092 | new_len <= self.cap, |
1093 | "new_len = {}; capacity = {}" , |
1094 | new_len, |
1095 | self.cap |
1096 | ); |
1097 | self.len = new_len; |
1098 | } |
1099 | |
1100 | #[inline ] |
1101 | fn chunk_mut(&mut self) -> &mut UninitSlice { |
1102 | if self.capacity() == self.len() { |
1103 | self.reserve(64); |
1104 | } |
1105 | self.spare_capacity_mut().into() |
1106 | } |
1107 | |
1108 | // Specialize these methods so they can skip checking `remaining_mut` |
1109 | // and `advance_mut`. |
1110 | |
1111 | fn put<T: crate::Buf>(&mut self, mut src: T) |
1112 | where |
1113 | Self: Sized, |
1114 | { |
1115 | while src.has_remaining() { |
1116 | let s = src.chunk(); |
1117 | let l = s.len(); |
1118 | self.extend_from_slice(s); |
1119 | src.advance(l); |
1120 | } |
1121 | } |
1122 | |
1123 | fn put_slice(&mut self, src: &[u8]) { |
1124 | self.extend_from_slice(src); |
1125 | } |
1126 | |
1127 | fn put_bytes(&mut self, val: u8, cnt: usize) { |
1128 | self.reserve(cnt); |
1129 | unsafe { |
1130 | let dst = self.spare_capacity_mut(); |
1131 | // Reserved above |
1132 | debug_assert!(dst.len() >= cnt); |
1133 | |
1134 | ptr::write_bytes(dst.as_mut_ptr(), val, cnt); |
1135 | |
1136 | self.advance_mut(cnt); |
1137 | } |
1138 | } |
1139 | } |
1140 | |
1141 | impl AsRef<[u8]> for BytesMut { |
1142 | #[inline ] |
1143 | fn as_ref(&self) -> &[u8] { |
1144 | self.as_slice() |
1145 | } |
1146 | } |
1147 | |
1148 | impl Deref for BytesMut { |
1149 | type Target = [u8]; |
1150 | |
1151 | #[inline ] |
1152 | fn deref(&self) -> &[u8] { |
1153 | self.as_ref() |
1154 | } |
1155 | } |
1156 | |
1157 | impl AsMut<[u8]> for BytesMut { |
1158 | #[inline ] |
1159 | fn as_mut(&mut self) -> &mut [u8] { |
1160 | self.as_slice_mut() |
1161 | } |
1162 | } |
1163 | |
1164 | impl DerefMut for BytesMut { |
1165 | #[inline ] |
1166 | fn deref_mut(&mut self) -> &mut [u8] { |
1167 | self.as_mut() |
1168 | } |
1169 | } |
1170 | |
1171 | impl<'a> From<&'a [u8]> for BytesMut { |
1172 | fn from(src: &'a [u8]) -> BytesMut { |
1173 | BytesMut::from_vec(src.to_vec()) |
1174 | } |
1175 | } |
1176 | |
1177 | impl<'a> From<&'a str> for BytesMut { |
1178 | fn from(src: &'a str) -> BytesMut { |
1179 | BytesMut::from(src.as_bytes()) |
1180 | } |
1181 | } |
1182 | |
1183 | impl From<BytesMut> for Bytes { |
1184 | fn from(src: BytesMut) -> Bytes { |
1185 | src.freeze() |
1186 | } |
1187 | } |
1188 | |
1189 | impl PartialEq for BytesMut { |
1190 | fn eq(&self, other: &BytesMut) -> bool { |
1191 | self.as_slice() == other.as_slice() |
1192 | } |
1193 | } |
1194 | |
1195 | impl PartialOrd for BytesMut { |
1196 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1197 | self.as_slice().partial_cmp(other.as_slice()) |
1198 | } |
1199 | } |
1200 | |
1201 | impl Ord for BytesMut { |
1202 | fn cmp(&self, other: &BytesMut) -> cmp::Ordering { |
1203 | self.as_slice().cmp(other.as_slice()) |
1204 | } |
1205 | } |
1206 | |
1207 | impl Eq for BytesMut {} |
1208 | |
1209 | impl Default for BytesMut { |
1210 | #[inline ] |
1211 | fn default() -> BytesMut { |
1212 | BytesMut::new() |
1213 | } |
1214 | } |
1215 | |
1216 | impl hash::Hash for BytesMut { |
1217 | fn hash<H>(&self, state: &mut H) |
1218 | where |
1219 | H: hash::Hasher, |
1220 | { |
1221 | let s: &[u8] = self.as_ref(); |
1222 | s.hash(state); |
1223 | } |
1224 | } |
1225 | |
1226 | impl Borrow<[u8]> for BytesMut { |
1227 | fn borrow(&self) -> &[u8] { |
1228 | self.as_ref() |
1229 | } |
1230 | } |
1231 | |
1232 | impl BorrowMut<[u8]> for BytesMut { |
1233 | fn borrow_mut(&mut self) -> &mut [u8] { |
1234 | self.as_mut() |
1235 | } |
1236 | } |
1237 | |
1238 | impl fmt::Write for BytesMut { |
1239 | #[inline ] |
1240 | fn write_str(&mut self, s: &str) -> fmt::Result { |
1241 | if self.remaining_mut() >= s.len() { |
1242 | self.put_slice(src:s.as_bytes()); |
1243 | Ok(()) |
1244 | } else { |
1245 | Err(fmt::Error) |
1246 | } |
1247 | } |
1248 | |
1249 | #[inline ] |
1250 | fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result { |
1251 | fmt::write(self, args) |
1252 | } |
1253 | } |
1254 | |
1255 | impl Clone for BytesMut { |
1256 | fn clone(&self) -> BytesMut { |
1257 | BytesMut::from(&self[..]) |
1258 | } |
1259 | } |
1260 | |
1261 | impl IntoIterator for BytesMut { |
1262 | type Item = u8; |
1263 | type IntoIter = IntoIter<BytesMut>; |
1264 | |
1265 | fn into_iter(self) -> Self::IntoIter { |
1266 | IntoIter::new(self) |
1267 | } |
1268 | } |
1269 | |
1270 | impl<'a> IntoIterator for &'a BytesMut { |
1271 | type Item = &'a u8; |
1272 | type IntoIter = core::slice::Iter<'a, u8>; |
1273 | |
1274 | fn into_iter(self) -> Self::IntoIter { |
1275 | self.as_ref().iter() |
1276 | } |
1277 | } |
1278 | |
1279 | impl Extend<u8> for BytesMut { |
1280 | fn extend<T>(&mut self, iter: T) |
1281 | where |
1282 | T: IntoIterator<Item = u8>, |
1283 | { |
1284 | let iter: ::IntoIter = iter.into_iter(); |
1285 | |
1286 | let (lower: usize, _) = iter.size_hint(); |
1287 | self.reserve(additional:lower); |
1288 | |
1289 | // TODO: optimize |
1290 | // 1. If self.kind() == KIND_VEC, use Vec::extend |
1291 | // 2. Make `reserve` inline-able |
1292 | for b: u8 in iter { |
1293 | self.reserve(additional:1); |
1294 | self.put_u8(b); |
1295 | } |
1296 | } |
1297 | } |
1298 | |
1299 | impl<'a> Extend<&'a u8> for BytesMut { |
1300 | fn extend<T>(&mut self, iter: T) |
1301 | where |
1302 | T: IntoIterator<Item = &'a u8>, |
1303 | { |
1304 | self.extend(iter:iter.into_iter().copied()) |
1305 | } |
1306 | } |
1307 | |
1308 | impl Extend<Bytes> for BytesMut { |
1309 | fn extend<T>(&mut self, iter: T) |
1310 | where |
1311 | T: IntoIterator<Item = Bytes>, |
1312 | { |
1313 | for bytes: Bytes in iter { |
1314 | self.extend_from_slice(&bytes) |
1315 | } |
1316 | } |
1317 | } |
1318 | |
1319 | impl FromIterator<u8> for BytesMut { |
1320 | fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { |
1321 | BytesMut::from_vec(Vec::from_iter(into_iter)) |
1322 | } |
1323 | } |
1324 | |
1325 | impl<'a> FromIterator<&'a u8> for BytesMut { |
1326 | fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { |
1327 | BytesMut::from_iter(into_iter.into_iter().copied()) |
1328 | } |
1329 | } |
1330 | |
1331 | /* |
1332 | * |
1333 | * ===== Inner ===== |
1334 | * |
1335 | */ |
1336 | |
1337 | unsafe fn increment_shared(ptr: *mut Shared) { |
1338 | let old_size: usize = (*ptr).ref_count.fetch_add(val:1, order:Ordering::Relaxed); |
1339 | |
1340 | if old_size > isize::MAX as usize { |
1341 | crate::abort(); |
1342 | } |
1343 | } |
1344 | |
1345 | unsafe fn release_shared(ptr: *mut Shared) { |
1346 | // `Shared` storage... follow the drop steps from Arc. |
1347 | if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 { |
1348 | return; |
1349 | } |
1350 | |
1351 | // This fence is needed to prevent reordering of use of the data and |
1352 | // deletion of the data. Because it is marked `Release`, the decreasing |
1353 | // of the reference count synchronizes with this `Acquire` fence. This |
1354 | // means that use of the data happens before decreasing the reference |
1355 | // count, which happens before this fence, which happens before the |
1356 | // deletion of the data. |
1357 | // |
1358 | // As explained in the [Boost documentation][1], |
1359 | // |
1360 | // > It is important to enforce any possible access to the object in one |
1361 | // > thread (through an existing reference) to *happen before* deleting |
1362 | // > the object in a different thread. This is achieved by a "release" |
1363 | // > operation after dropping a reference (any access to the object |
1364 | // > through this reference must obviously happened before), and an |
1365 | // > "acquire" operation before deleting the object. |
1366 | // |
1367 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
1368 | // |
1369 | // Thread sanitizer does not support atomic fences. Use an atomic load |
1370 | // instead. |
1371 | (*ptr).ref_count.load(Ordering::Acquire); |
1372 | |
1373 | // Drop the data |
1374 | drop(Box::from_raw(ptr)); |
1375 | } |
1376 | |
1377 | impl Shared { |
1378 | fn is_unique(&self) -> bool { |
1379 | // The goal is to check if the current handle is the only handle |
1380 | // that currently has access to the buffer. This is done by |
1381 | // checking if the `ref_count` is currently 1. |
1382 | // |
1383 | // The `Acquire` ordering synchronizes with the `Release` as |
1384 | // part of the `fetch_sub` in `release_shared`. The `fetch_sub` |
1385 | // operation guarantees that any mutations done in other threads |
1386 | // are ordered before the `ref_count` is decremented. As such, |
1387 | // this `Acquire` will guarantee that those mutations are |
1388 | // visible to the current thread. |
1389 | self.ref_count.load(order:Ordering::Acquire) == 1 |
1390 | } |
1391 | } |
1392 | |
1393 | #[inline ] |
1394 | fn original_capacity_to_repr(cap: usize) -> usize { |
1395 | let width: usize = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize); |
1396 | cmp::min( |
1397 | v1:width, |
1398 | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH, |
1399 | ) |
1400 | } |
1401 | |
1402 | fn original_capacity_from_repr(repr: usize) -> usize { |
1403 | if repr == 0 { |
1404 | return 0; |
1405 | } |
1406 | |
1407 | 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1)) |
1408 | } |
1409 | |
1410 | /* |
1411 | #[test] |
1412 | fn test_original_capacity_to_repr() { |
1413 | assert_eq!(original_capacity_to_repr(0), 0); |
1414 | |
1415 | let max_width = 32; |
1416 | |
1417 | for width in 1..(max_width + 1) { |
1418 | let cap = 1 << width - 1; |
1419 | |
1420 | let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH { |
1421 | 0 |
1422 | } else if width < MAX_ORIGINAL_CAPACITY_WIDTH { |
1423 | width - MIN_ORIGINAL_CAPACITY_WIDTH |
1424 | } else { |
1425 | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH |
1426 | }; |
1427 | |
1428 | assert_eq!(original_capacity_to_repr(cap), expected); |
1429 | |
1430 | if width > 1 { |
1431 | assert_eq!(original_capacity_to_repr(cap + 1), expected); |
1432 | } |
1433 | |
1434 | // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below |
1435 | if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 { |
1436 | assert_eq!(original_capacity_to_repr(cap - 24), expected - 1); |
1437 | assert_eq!(original_capacity_to_repr(cap + 76), expected); |
1438 | } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 { |
1439 | assert_eq!(original_capacity_to_repr(cap - 1), expected - 1); |
1440 | assert_eq!(original_capacity_to_repr(cap - 48), expected - 1); |
1441 | } |
1442 | } |
1443 | } |
1444 | |
1445 | #[test] |
1446 | fn test_original_capacity_from_repr() { |
1447 | assert_eq!(0, original_capacity_from_repr(0)); |
1448 | |
1449 | let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH; |
1450 | |
1451 | assert_eq!(min_cap, original_capacity_from_repr(1)); |
1452 | assert_eq!(min_cap * 2, original_capacity_from_repr(2)); |
1453 | assert_eq!(min_cap * 4, original_capacity_from_repr(3)); |
1454 | assert_eq!(min_cap * 8, original_capacity_from_repr(4)); |
1455 | assert_eq!(min_cap * 16, original_capacity_from_repr(5)); |
1456 | assert_eq!(min_cap * 32, original_capacity_from_repr(6)); |
1457 | assert_eq!(min_cap * 64, original_capacity_from_repr(7)); |
1458 | } |
1459 | */ |
1460 | |
1461 | unsafe impl Send for BytesMut {} |
1462 | unsafe impl Sync for BytesMut {} |
1463 | |
1464 | /* |
1465 | * |
1466 | * ===== PartialEq / PartialOrd ===== |
1467 | * |
1468 | */ |
1469 | |
1470 | impl PartialEq<[u8]> for BytesMut { |
1471 | fn eq(&self, other: &[u8]) -> bool { |
1472 | &**self == other |
1473 | } |
1474 | } |
1475 | |
1476 | impl PartialOrd<[u8]> for BytesMut { |
1477 | fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { |
1478 | (**self).partial_cmp(other) |
1479 | } |
1480 | } |
1481 | |
1482 | impl PartialEq<BytesMut> for [u8] { |
1483 | fn eq(&self, other: &BytesMut) -> bool { |
1484 | *other == *self |
1485 | } |
1486 | } |
1487 | |
1488 | impl PartialOrd<BytesMut> for [u8] { |
1489 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1490 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
1491 | } |
1492 | } |
1493 | |
1494 | impl PartialEq<str> for BytesMut { |
1495 | fn eq(&self, other: &str) -> bool { |
1496 | &**self == other.as_bytes() |
1497 | } |
1498 | } |
1499 | |
1500 | impl PartialOrd<str> for BytesMut { |
1501 | fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { |
1502 | (**self).partial_cmp(other.as_bytes()) |
1503 | } |
1504 | } |
1505 | |
1506 | impl PartialEq<BytesMut> for str { |
1507 | fn eq(&self, other: &BytesMut) -> bool { |
1508 | *other == *self |
1509 | } |
1510 | } |
1511 | |
1512 | impl PartialOrd<BytesMut> for str { |
1513 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1514 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
1515 | } |
1516 | } |
1517 | |
1518 | impl PartialEq<Vec<u8>> for BytesMut { |
1519 | fn eq(&self, other: &Vec<u8>) -> bool { |
1520 | *self == other[..] |
1521 | } |
1522 | } |
1523 | |
1524 | impl PartialOrd<Vec<u8>> for BytesMut { |
1525 | fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { |
1526 | (**self).partial_cmp(&other[..]) |
1527 | } |
1528 | } |
1529 | |
1530 | impl PartialEq<BytesMut> for Vec<u8> { |
1531 | fn eq(&self, other: &BytesMut) -> bool { |
1532 | *other == *self |
1533 | } |
1534 | } |
1535 | |
1536 | impl PartialOrd<BytesMut> for Vec<u8> { |
1537 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1538 | other.partial_cmp(self) |
1539 | } |
1540 | } |
1541 | |
1542 | impl PartialEq<String> for BytesMut { |
1543 | fn eq(&self, other: &String) -> bool { |
1544 | *self == other[..] |
1545 | } |
1546 | } |
1547 | |
1548 | impl PartialOrd<String> for BytesMut { |
1549 | fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { |
1550 | (**self).partial_cmp(other.as_bytes()) |
1551 | } |
1552 | } |
1553 | |
1554 | impl PartialEq<BytesMut> for String { |
1555 | fn eq(&self, other: &BytesMut) -> bool { |
1556 | *other == *self |
1557 | } |
1558 | } |
1559 | |
1560 | impl PartialOrd<BytesMut> for String { |
1561 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1562 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
1563 | } |
1564 | } |
1565 | |
1566 | impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut |
1567 | where |
1568 | BytesMut: PartialEq<T>, |
1569 | { |
1570 | fn eq(&self, other: &&'a T) -> bool { |
1571 | *self == **other |
1572 | } |
1573 | } |
1574 | |
1575 | impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut |
1576 | where |
1577 | BytesMut: PartialOrd<T>, |
1578 | { |
1579 | fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { |
1580 | self.partial_cmp(*other) |
1581 | } |
1582 | } |
1583 | |
1584 | impl PartialEq<BytesMut> for &[u8] { |
1585 | fn eq(&self, other: &BytesMut) -> bool { |
1586 | *other == *self |
1587 | } |
1588 | } |
1589 | |
1590 | impl PartialOrd<BytesMut> for &[u8] { |
1591 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1592 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
1593 | } |
1594 | } |
1595 | |
1596 | impl PartialEq<BytesMut> for &str { |
1597 | fn eq(&self, other: &BytesMut) -> bool { |
1598 | *other == *self |
1599 | } |
1600 | } |
1601 | |
1602 | impl PartialOrd<BytesMut> for &str { |
1603 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1604 | other.partial_cmp(self) |
1605 | } |
1606 | } |
1607 | |
1608 | impl PartialEq<BytesMut> for Bytes { |
1609 | fn eq(&self, other: &BytesMut) -> bool { |
1610 | other[..] == self[..] |
1611 | } |
1612 | } |
1613 | |
1614 | impl PartialEq<Bytes> for BytesMut { |
1615 | fn eq(&self, other: &Bytes) -> bool { |
1616 | other[..] == self[..] |
1617 | } |
1618 | } |
1619 | |
1620 | impl From<BytesMut> for Vec<u8> { |
1621 | fn from(mut bytes: BytesMut) -> Self { |
1622 | let kind = bytes.kind(); |
1623 | |
1624 | let mut vec = if kind == KIND_VEC { |
1625 | unsafe { |
1626 | let (off, _) = bytes.get_vec_pos(); |
1627 | rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off) |
1628 | } |
1629 | } else if kind == KIND_ARC { |
1630 | let shared = bytes.data as *mut Shared; |
1631 | |
1632 | if unsafe { (*shared).is_unique() } { |
1633 | let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new()); |
1634 | |
1635 | unsafe { release_shared(shared) }; |
1636 | |
1637 | vec |
1638 | } else { |
1639 | return bytes.deref().to_vec(); |
1640 | } |
1641 | } else { |
1642 | return bytes.deref().to_vec(); |
1643 | }; |
1644 | |
1645 | let len = bytes.len; |
1646 | |
1647 | unsafe { |
1648 | ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len); |
1649 | vec.set_len(len); |
1650 | } |
1651 | |
1652 | mem::forget(bytes); |
1653 | |
1654 | vec |
1655 | } |
1656 | } |
1657 | |
1658 | #[inline ] |
1659 | fn vptr(ptr: *mut u8) -> NonNull<u8> { |
1660 | if cfg!(debug_assertions) { |
1661 | NonNull::new(ptr).expect(msg:"Vec pointer should be non-null" ) |
1662 | } else { |
1663 | unsafe { NonNull::new_unchecked(ptr) } |
1664 | } |
1665 | } |
1666 | |
1667 | /// Returns a dangling pointer with the given address. This is used to store |
1668 | /// integer data in pointer fields. |
1669 | /// |
1670 | /// It is equivalent to `addr as *mut T`, but this fails on miri when strict |
1671 | /// provenance checking is enabled. |
1672 | #[inline ] |
1673 | fn invalid_ptr<T>(addr: usize) -> *mut T { |
1674 | let ptr: *mut u8 = core::ptr::null_mut::<u8>().wrapping_add(count:addr); |
1675 | debug_assert_eq!(ptr as usize, addr); |
1676 | ptr.cast::<T>() |
1677 | } |
1678 | |
1679 | /// Precondition: dst >= original |
1680 | /// |
1681 | /// The following line is equivalent to: |
1682 | /// |
1683 | /// ```rust,ignore |
1684 | /// self.ptr.as_ptr().offset_from(ptr) as usize; |
1685 | /// ``` |
1686 | /// |
1687 | /// But due to min rust is 1.39 and it is only stablised |
1688 | /// in 1.47, we cannot use it. |
1689 | #[inline ] |
1690 | fn offset_from(dst: *mut u8, original: *mut u8) -> usize { |
1691 | debug_assert!(dst >= original); |
1692 | |
1693 | dst as usize - original as usize |
1694 | } |
1695 | |
1696 | unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> { |
1697 | let ptr: *mut u8 = ptr.offset(-(off as isize)); |
1698 | len += off; |
1699 | cap += off; |
1700 | |
1701 | Vec::from_raw_parts(ptr, length:len, capacity:cap) |
1702 | } |
1703 | |
1704 | // ===== impl SharedVtable ===== |
1705 | |
1706 | static SHARED_VTABLE: Vtable = Vtable { |
1707 | clone: shared_v_clone, |
1708 | to_vec: shared_v_to_vec, |
1709 | drop: shared_v_drop, |
1710 | }; |
1711 | |
1712 | unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
1713 | let shared: *mut Shared = data.load(order:Ordering::Relaxed) as *mut Shared; |
1714 | increment_shared(ptr:shared); |
1715 | |
1716 | let data: AtomicPtr<()> = AtomicPtr::new(shared as *mut ()); |
1717 | Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) |
1718 | } |
1719 | |
1720 | unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
1721 | let shared: *mut Shared = data.load(order:Ordering::Relaxed).cast(); |
1722 | |
1723 | if (*shared).is_unique() { |
1724 | let shared: &mut Shared = &mut *shared; |
1725 | |
1726 | // Drop shared |
1727 | let mut vec: Vec = mem::replace(&mut shared.vec, src:Vec::new()); |
1728 | release_shared(ptr:shared); |
1729 | |
1730 | // Copy back buffer |
1731 | ptr::copy(src:ptr, dst:vec.as_mut_ptr(), count:len); |
1732 | vec.set_len(new_len:len); |
1733 | |
1734 | vec |
1735 | } else { |
1736 | let v: Vec = slice::from_raw_parts(data:ptr, len).to_vec(); |
1737 | release_shared(ptr:shared); |
1738 | v |
1739 | } |
1740 | } |
1741 | |
1742 | unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { |
1743 | data.with_mut(|shared: &mut *mut ()| { |
1744 | release_shared(*shared as *mut Shared); |
1745 | }); |
1746 | } |
1747 | |
1748 | // compile-fails |
1749 | |
1750 | /// ```compile_fail |
1751 | /// use bytes::BytesMut; |
1752 | /// #[deny(unused_must_use)] |
1753 | /// { |
1754 | /// let mut b1 = BytesMut::from("hello world" ); |
1755 | /// b1.split_to(6); |
1756 | /// } |
1757 | /// ``` |
1758 | fn _split_to_must_use() {} |
1759 | |
1760 | /// ```compile_fail |
1761 | /// use bytes::BytesMut; |
1762 | /// #[deny(unused_must_use)] |
1763 | /// { |
1764 | /// let mut b1 = BytesMut::from("hello world" ); |
1765 | /// b1.split_off(6); |
1766 | /// } |
1767 | /// ``` |
1768 | fn _split_off_must_use() {} |
1769 | |
1770 | /// ```compile_fail |
1771 | /// use bytes::BytesMut; |
1772 | /// #[deny(unused_must_use)] |
1773 | /// { |
1774 | /// let mut b1 = BytesMut::from("hello world" ); |
1775 | /// b1.split(); |
1776 | /// } |
1777 | /// ``` |
1778 | fn _split_must_use() {} |
1779 | |
1780 | // fuzz tests |
1781 | #[cfg (all(test, loom))] |
1782 | mod fuzz { |
1783 | use loom::sync::Arc; |
1784 | use loom::thread; |
1785 | |
1786 | use super::BytesMut; |
1787 | use crate::Bytes; |
1788 | |
1789 | #[test ] |
1790 | fn bytes_mut_cloning_frozen() { |
1791 | loom::model(|| { |
1792 | let a = BytesMut::from(&b"abcdefgh" [..]).split().freeze(); |
1793 | let addr = a.as_ptr() as usize; |
1794 | |
1795 | // test the Bytes::clone is Sync by putting it in an Arc |
1796 | let a1 = Arc::new(a); |
1797 | let a2 = a1.clone(); |
1798 | |
1799 | let t1 = thread::spawn(move || { |
1800 | let b: Bytes = (*a1).clone(); |
1801 | assert_eq!(b.as_ptr() as usize, addr); |
1802 | }); |
1803 | |
1804 | let t2 = thread::spawn(move || { |
1805 | let b: Bytes = (*a2).clone(); |
1806 | assert_eq!(b.as_ptr() as usize, addr); |
1807 | }); |
1808 | |
1809 | t1.join().unwrap(); |
1810 | t2.join().unwrap(); |
1811 | }); |
1812 | } |
1813 | } |
1814 | |