| 1 | use core::iter::FromIterator; |
| 2 | use core::mem::{self, ManuallyDrop, MaybeUninit}; |
| 3 | use core::ops::{Deref, DerefMut}; |
| 4 | use core::ptr::{self, NonNull}; |
| 5 | use core::{cmp, fmt, hash, isize, slice, usize}; |
| 6 | |
| 7 | use alloc::{ |
| 8 | borrow::{Borrow, BorrowMut}, |
| 9 | boxed::Box, |
| 10 | string::String, |
| 11 | vec, |
| 12 | vec::Vec, |
| 13 | }; |
| 14 | |
| 15 | use crate::buf::{IntoIter, UninitSlice}; |
| 16 | use crate::bytes::Vtable; |
| 17 | #[allow (unused)] |
| 18 | use crate::loom::sync::atomic::AtomicMut; |
| 19 | use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; |
| 20 | use crate::{offset_from, Buf, BufMut, Bytes, TryGetError}; |
| 21 | |
| 22 | /// A unique reference to a contiguous slice of memory. |
| 23 | /// |
| 24 | /// `BytesMut` represents a unique view into a potentially shared memory region. |
| 25 | /// Given the uniqueness guarantee, owners of `BytesMut` handles are able to |
| 26 | /// mutate the memory. |
| 27 | /// |
| 28 | /// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset |
| 29 | /// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the |
| 30 | /// same `buf` overlaps with its slice. That guarantee means that a write lock |
| 31 | /// is not required. |
| 32 | /// |
| 33 | /// # Growth |
| 34 | /// |
| 35 | /// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as |
| 36 | /// necessary. However, explicitly reserving the required space up-front before |
| 37 | /// a series of inserts will be more efficient. |
| 38 | /// |
| 39 | /// # Examples |
| 40 | /// |
| 41 | /// ``` |
| 42 | /// use bytes::{BytesMut, BufMut}; |
| 43 | /// |
| 44 | /// let mut buf = BytesMut::with_capacity(64); |
| 45 | /// |
| 46 | /// buf.put_u8(b'h' ); |
| 47 | /// buf.put_u8(b'e' ); |
| 48 | /// buf.put(&b"llo" [..]); |
| 49 | /// |
| 50 | /// assert_eq!(&buf[..], b"hello" ); |
| 51 | /// |
| 52 | /// // Freeze the buffer so that it can be shared |
| 53 | /// let a = buf.freeze(); |
| 54 | /// |
| 55 | /// // This does not allocate, instead `b` points to the same memory. |
| 56 | /// let b = a.clone(); |
| 57 | /// |
| 58 | /// assert_eq!(&a[..], b"hello" ); |
| 59 | /// assert_eq!(&b[..], b"hello" ); |
| 60 | /// ``` |
| 61 | pub struct BytesMut { |
| 62 | ptr: NonNull<u8>, |
| 63 | len: usize, |
| 64 | cap: usize, |
| 65 | data: *mut Shared, |
| 66 | } |
| 67 | |
| 68 | // Thread-safe reference-counted container for the shared storage. This mostly |
| 69 | // the same as `core::sync::Arc` but without the weak counter. The ref counting |
| 70 | // fns are based on the ones found in `std`. |
| 71 | // |
| 72 | // The main reason to use `Shared` instead of `core::sync::Arc` is that it ends |
| 73 | // up making the overall code simpler and easier to reason about. This is due to |
| 74 | // some of the logic around setting `Inner::arc` and other ways the `arc` field |
| 75 | // is used. Using `Arc` ended up requiring a number of funky transmutes and |
| 76 | // other shenanigans to make it work. |
| 77 | struct Shared { |
| 78 | vec: Vec<u8>, |
| 79 | original_capacity_repr: usize, |
| 80 | ref_count: AtomicUsize, |
| 81 | } |
| 82 | |
| 83 | // Assert that the alignment of `Shared` is divisible by 2. |
| 84 | // This is a necessary invariant since we depend on allocating `Shared` a |
| 85 | // shared object to implicitly carry the `KIND_ARC` flag in its pointer. |
| 86 | // This flag is set when the LSB is 0. |
| 87 | const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2. |
| 88 | |
| 89 | // Buffer storage strategy flags. |
| 90 | const KIND_ARC: usize = 0b0; |
| 91 | const KIND_VEC: usize = 0b1; |
| 92 | const KIND_MASK: usize = 0b1; |
| 93 | |
| 94 | // The max original capacity value. Any `Bytes` allocated with a greater initial |
| 95 | // capacity will default to this. |
| 96 | const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17; |
| 97 | // The original capacity algorithm will not take effect unless the originally |
| 98 | // allocated capacity was at least 1kb in size. |
| 99 | const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10; |
| 100 | // The original capacity is stored in powers of 2 starting at 1kb to a max of |
| 101 | // 64kb. Representing it as such requires only 3 bits of storage. |
| 102 | const ORIGINAL_CAPACITY_MASK: usize = 0b11100; |
| 103 | const ORIGINAL_CAPACITY_OFFSET: usize = 2; |
| 104 | |
| 105 | const VEC_POS_OFFSET: usize = 5; |
| 106 | // When the storage is in the `Vec` representation, the pointer can be advanced |
| 107 | // at most this value. This is due to the amount of storage available to track |
| 108 | // the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY |
| 109 | // bits. |
| 110 | const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET; |
| 111 | const NOT_VEC_POS_MASK: usize = 0b11111; |
| 112 | |
| 113 | #[cfg (target_pointer_width = "64" )] |
| 114 | const PTR_WIDTH: usize = 64; |
| 115 | #[cfg (target_pointer_width = "32" )] |
| 116 | const PTR_WIDTH: usize = 32; |
| 117 | |
| 118 | /* |
| 119 | * |
| 120 | * ===== BytesMut ===== |
| 121 | * |
| 122 | */ |
| 123 | |
| 124 | impl BytesMut { |
| 125 | /// Creates a new `BytesMut` with the specified capacity. |
| 126 | /// |
| 127 | /// The returned `BytesMut` will be able to hold at least `capacity` bytes |
| 128 | /// without reallocating. |
| 129 | /// |
| 130 | /// It is important to note that this function does not specify the length |
| 131 | /// of the returned `BytesMut`, but only the capacity. |
| 132 | /// |
| 133 | /// # Examples |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use bytes::{BytesMut, BufMut}; |
| 137 | /// |
| 138 | /// let mut bytes = BytesMut::with_capacity(64); |
| 139 | /// |
| 140 | /// // `bytes` contains no data, even though there is capacity |
| 141 | /// assert_eq!(bytes.len(), 0); |
| 142 | /// |
| 143 | /// bytes.put(&b"hello world" [..]); |
| 144 | /// |
| 145 | /// assert_eq!(&bytes[..], b"hello world" ); |
| 146 | /// ``` |
| 147 | #[inline ] |
| 148 | pub fn with_capacity(capacity: usize) -> BytesMut { |
| 149 | BytesMut::from_vec(Vec::with_capacity(capacity)) |
| 150 | } |
| 151 | |
| 152 | /// Creates a new `BytesMut` with default capacity. |
| 153 | /// |
| 154 | /// Resulting object has length 0 and unspecified capacity. |
| 155 | /// This function does not allocate. |
| 156 | /// |
| 157 | /// # Examples |
| 158 | /// |
| 159 | /// ``` |
| 160 | /// use bytes::{BytesMut, BufMut}; |
| 161 | /// |
| 162 | /// let mut bytes = BytesMut::new(); |
| 163 | /// |
| 164 | /// assert_eq!(0, bytes.len()); |
| 165 | /// |
| 166 | /// bytes.reserve(2); |
| 167 | /// bytes.put_slice(b"xy" ); |
| 168 | /// |
| 169 | /// assert_eq!(&b"xy" [..], &bytes[..]); |
| 170 | /// ``` |
| 171 | #[inline ] |
| 172 | pub fn new() -> BytesMut { |
| 173 | BytesMut::with_capacity(0) |
| 174 | } |
| 175 | |
| 176 | /// Returns the number of bytes contained in this `BytesMut`. |
| 177 | /// |
| 178 | /// # Examples |
| 179 | /// |
| 180 | /// ``` |
| 181 | /// use bytes::BytesMut; |
| 182 | /// |
| 183 | /// let b = BytesMut::from(&b"hello" [..]); |
| 184 | /// assert_eq!(b.len(), 5); |
| 185 | /// ``` |
| 186 | #[inline ] |
| 187 | pub fn len(&self) -> usize { |
| 188 | self.len |
| 189 | } |
| 190 | |
| 191 | /// Returns true if the `BytesMut` has a length of 0. |
| 192 | /// |
| 193 | /// # Examples |
| 194 | /// |
| 195 | /// ``` |
| 196 | /// use bytes::BytesMut; |
| 197 | /// |
| 198 | /// let b = BytesMut::with_capacity(64); |
| 199 | /// assert!(b.is_empty()); |
| 200 | /// ``` |
| 201 | #[inline ] |
| 202 | pub fn is_empty(&self) -> bool { |
| 203 | self.len == 0 |
| 204 | } |
| 205 | |
| 206 | /// Returns the number of bytes the `BytesMut` can hold without reallocating. |
| 207 | /// |
| 208 | /// # Examples |
| 209 | /// |
| 210 | /// ``` |
| 211 | /// use bytes::BytesMut; |
| 212 | /// |
| 213 | /// let b = BytesMut::with_capacity(64); |
| 214 | /// assert_eq!(b.capacity(), 64); |
| 215 | /// ``` |
| 216 | #[inline ] |
| 217 | pub fn capacity(&self) -> usize { |
| 218 | self.cap |
| 219 | } |
| 220 | |
| 221 | /// Converts `self` into an immutable `Bytes`. |
| 222 | /// |
| 223 | /// The conversion is zero cost and is used to indicate that the slice |
| 224 | /// referenced by the handle will no longer be mutated. Once the conversion |
| 225 | /// is done, the handle can be cloned and shared across threads. |
| 226 | /// |
| 227 | /// # Examples |
| 228 | /// |
| 229 | /// ``` |
| 230 | /// use bytes::{BytesMut, BufMut}; |
| 231 | /// use std::thread; |
| 232 | /// |
| 233 | /// let mut b = BytesMut::with_capacity(64); |
| 234 | /// b.put(&b"hello world" [..]); |
| 235 | /// let b1 = b.freeze(); |
| 236 | /// let b2 = b1.clone(); |
| 237 | /// |
| 238 | /// let th = thread::spawn(move || { |
| 239 | /// assert_eq!(&b1[..], b"hello world" ); |
| 240 | /// }); |
| 241 | /// |
| 242 | /// assert_eq!(&b2[..], b"hello world" ); |
| 243 | /// th.join().unwrap(); |
| 244 | /// ``` |
| 245 | #[inline ] |
| 246 | pub fn freeze(self) -> Bytes { |
| 247 | let bytes = ManuallyDrop::new(self); |
| 248 | if bytes.kind() == KIND_VEC { |
| 249 | // Just re-use `Bytes` internal Vec vtable |
| 250 | unsafe { |
| 251 | let off = bytes.get_vec_pos(); |
| 252 | let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off); |
| 253 | let mut b: Bytes = vec.into(); |
| 254 | b.advance(off); |
| 255 | b |
| 256 | } |
| 257 | } else { |
| 258 | debug_assert_eq!(bytes.kind(), KIND_ARC); |
| 259 | |
| 260 | let ptr = bytes.ptr.as_ptr(); |
| 261 | let len = bytes.len; |
| 262 | let data = AtomicPtr::new(bytes.data.cast()); |
| 263 | unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) } |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | /// Creates a new `BytesMut` containing `len` zeros. |
| 268 | /// |
| 269 | /// The resulting object has a length of `len` and a capacity greater |
| 270 | /// than or equal to `len`. The entire length of the object will be filled |
| 271 | /// with zeros. |
| 272 | /// |
| 273 | /// On some platforms or allocators this function may be faster than |
| 274 | /// a manual implementation. |
| 275 | /// |
| 276 | /// # Examples |
| 277 | /// |
| 278 | /// ``` |
| 279 | /// use bytes::BytesMut; |
| 280 | /// |
| 281 | /// let zeros = BytesMut::zeroed(42); |
| 282 | /// |
| 283 | /// assert!(zeros.capacity() >= 42); |
| 284 | /// assert_eq!(zeros.len(), 42); |
| 285 | /// zeros.into_iter().for_each(|x| assert_eq!(x, 0)); |
| 286 | /// ``` |
| 287 | pub fn zeroed(len: usize) -> BytesMut { |
| 288 | BytesMut::from_vec(vec![0; len]) |
| 289 | } |
| 290 | |
| 291 | /// Splits the bytes into two at the given index. |
| 292 | /// |
| 293 | /// Afterwards `self` contains elements `[0, at)`, and the returned |
| 294 | /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the |
| 295 | /// memory does not move, that is, the address of `self` does not change, |
| 296 | /// and the address of the returned slice is `at` bytes after that. |
| 297 | /// |
| 298 | /// This is an `O(1)` operation that just increases the reference count |
| 299 | /// and sets a few indices. |
| 300 | /// |
| 301 | /// # Examples |
| 302 | /// |
| 303 | /// ``` |
| 304 | /// use bytes::BytesMut; |
| 305 | /// |
| 306 | /// let mut a = BytesMut::from(&b"hello world" [..]); |
| 307 | /// let mut b = a.split_off(5); |
| 308 | /// |
| 309 | /// a[0] = b'j' ; |
| 310 | /// b[0] = b'!' ; |
| 311 | /// |
| 312 | /// assert_eq!(&a[..], b"jello" ); |
| 313 | /// assert_eq!(&b[..], b"!world" ); |
| 314 | /// ``` |
| 315 | /// |
| 316 | /// # Panics |
| 317 | /// |
| 318 | /// Panics if `at > capacity`. |
| 319 | #[must_use = "consider BytesMut::truncate if you don't need the other half" ] |
| 320 | pub fn split_off(&mut self, at: usize) -> BytesMut { |
| 321 | assert!( |
| 322 | at <= self.capacity(), |
| 323 | "split_off out of bounds: {:?} <= {:?}" , |
| 324 | at, |
| 325 | self.capacity(), |
| 326 | ); |
| 327 | unsafe { |
| 328 | let mut other = self.shallow_clone(); |
| 329 | // SAFETY: We've checked that `at` <= `self.capacity()` above. |
| 330 | other.advance_unchecked(at); |
| 331 | self.cap = at; |
| 332 | self.len = cmp::min(self.len, at); |
| 333 | other |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /// Removes the bytes from the current view, returning them in a new |
| 338 | /// `BytesMut` handle. |
| 339 | /// |
| 340 | /// Afterwards, `self` will be empty, but will retain any additional |
| 341 | /// capacity that it had before the operation. This is identical to |
| 342 | /// `self.split_to(self.len())`. |
| 343 | /// |
| 344 | /// This is an `O(1)` operation that just increases the reference count and |
| 345 | /// sets a few indices. |
| 346 | /// |
| 347 | /// # Examples |
| 348 | /// |
| 349 | /// ``` |
| 350 | /// use bytes::{BytesMut, BufMut}; |
| 351 | /// |
| 352 | /// let mut buf = BytesMut::with_capacity(1024); |
| 353 | /// buf.put(&b"hello world" [..]); |
| 354 | /// |
| 355 | /// let other = buf.split(); |
| 356 | /// |
| 357 | /// assert!(buf.is_empty()); |
| 358 | /// assert_eq!(1013, buf.capacity()); |
| 359 | /// |
| 360 | /// assert_eq!(other, b"hello world" [..]); |
| 361 | /// ``` |
| 362 | #[must_use = "consider BytesMut::clear if you don't need the other half" ] |
| 363 | pub fn split(&mut self) -> BytesMut { |
| 364 | let len = self.len(); |
| 365 | self.split_to(len) |
| 366 | } |
| 367 | |
| 368 | /// Splits the buffer into two at the given index. |
| 369 | /// |
| 370 | /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut` |
| 371 | /// contains elements `[0, at)`. |
| 372 | /// |
| 373 | /// This is an `O(1)` operation that just increases the reference count and |
| 374 | /// sets a few indices. |
| 375 | /// |
| 376 | /// # Examples |
| 377 | /// |
| 378 | /// ``` |
| 379 | /// use bytes::BytesMut; |
| 380 | /// |
| 381 | /// let mut a = BytesMut::from(&b"hello world" [..]); |
| 382 | /// let mut b = a.split_to(5); |
| 383 | /// |
| 384 | /// a[0] = b'!' ; |
| 385 | /// b[0] = b'j' ; |
| 386 | /// |
| 387 | /// assert_eq!(&a[..], b"!world" ); |
| 388 | /// assert_eq!(&b[..], b"jello" ); |
| 389 | /// ``` |
| 390 | /// |
| 391 | /// # Panics |
| 392 | /// |
| 393 | /// Panics if `at > len`. |
| 394 | #[must_use = "consider BytesMut::advance if you don't need the other half" ] |
| 395 | pub fn split_to(&mut self, at: usize) -> BytesMut { |
| 396 | assert!( |
| 397 | at <= self.len(), |
| 398 | "split_to out of bounds: {:?} <= {:?}" , |
| 399 | at, |
| 400 | self.len(), |
| 401 | ); |
| 402 | |
| 403 | unsafe { |
| 404 | let mut other = self.shallow_clone(); |
| 405 | // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <= |
| 406 | // `self.capacity()`. |
| 407 | self.advance_unchecked(at); |
| 408 | other.cap = at; |
| 409 | other.len = at; |
| 410 | other |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /// Shortens the buffer, keeping the first `len` bytes and dropping the |
| 415 | /// rest. |
| 416 | /// |
| 417 | /// If `len` is greater than the buffer's current length, this has no |
| 418 | /// effect. |
| 419 | /// |
| 420 | /// Existing underlying capacity is preserved. |
| 421 | /// |
| 422 | /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the |
| 423 | /// excess bytes to be returned instead of dropped. |
| 424 | /// |
| 425 | /// # Examples |
| 426 | /// |
| 427 | /// ``` |
| 428 | /// use bytes::BytesMut; |
| 429 | /// |
| 430 | /// let mut buf = BytesMut::from(&b"hello world" [..]); |
| 431 | /// buf.truncate(5); |
| 432 | /// assert_eq!(buf, b"hello" [..]); |
| 433 | /// ``` |
| 434 | pub fn truncate(&mut self, len: usize) { |
| 435 | if len <= self.len() { |
| 436 | // SAFETY: Shrinking the buffer cannot expose uninitialized bytes. |
| 437 | unsafe { self.set_len(len) }; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | /// Clears the buffer, removing all data. Existing capacity is preserved. |
| 442 | /// |
| 443 | /// # Examples |
| 444 | /// |
| 445 | /// ``` |
| 446 | /// use bytes::BytesMut; |
| 447 | /// |
| 448 | /// let mut buf = BytesMut::from(&b"hello world" [..]); |
| 449 | /// buf.clear(); |
| 450 | /// assert!(buf.is_empty()); |
| 451 | /// ``` |
| 452 | pub fn clear(&mut self) { |
| 453 | // SAFETY: Setting the length to zero cannot expose uninitialized bytes. |
| 454 | unsafe { self.set_len(0) }; |
| 455 | } |
| 456 | |
| 457 | /// Resizes the buffer so that `len` is equal to `new_len`. |
| 458 | /// |
| 459 | /// If `new_len` is greater than `len`, the buffer is extended by the |
| 460 | /// difference with each additional byte set to `value`. If `new_len` is |
| 461 | /// less than `len`, the buffer is simply truncated. |
| 462 | /// |
| 463 | /// # Examples |
| 464 | /// |
| 465 | /// ``` |
| 466 | /// use bytes::BytesMut; |
| 467 | /// |
| 468 | /// let mut buf = BytesMut::new(); |
| 469 | /// |
| 470 | /// buf.resize(3, 0x1); |
| 471 | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]); |
| 472 | /// |
| 473 | /// buf.resize(2, 0x2); |
| 474 | /// assert_eq!(&buf[..], &[0x1, 0x1]); |
| 475 | /// |
| 476 | /// buf.resize(4, 0x3); |
| 477 | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]); |
| 478 | /// ``` |
| 479 | pub fn resize(&mut self, new_len: usize, value: u8) { |
| 480 | let additional = if let Some(additional) = new_len.checked_sub(self.len()) { |
| 481 | additional |
| 482 | } else { |
| 483 | self.truncate(new_len); |
| 484 | return; |
| 485 | }; |
| 486 | |
| 487 | if additional == 0 { |
| 488 | return; |
| 489 | } |
| 490 | |
| 491 | self.reserve(additional); |
| 492 | let dst = self.spare_capacity_mut().as_mut_ptr(); |
| 493 | // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've |
| 494 | // reserved enough space to write `additional` bytes. |
| 495 | unsafe { ptr::write_bytes(dst, value, additional) }; |
| 496 | |
| 497 | // SAFETY: There are at least `new_len` initialized bytes in the buffer so no |
| 498 | // uninitialized bytes are being exposed. |
| 499 | unsafe { self.set_len(new_len) }; |
| 500 | } |
| 501 | |
| 502 | /// Sets the length of the buffer. |
| 503 | /// |
| 504 | /// This will explicitly set the size of the buffer without actually |
| 505 | /// modifying the data, so it is up to the caller to ensure that the data |
| 506 | /// has been initialized. |
| 507 | /// |
| 508 | /// # Examples |
| 509 | /// |
| 510 | /// ``` |
| 511 | /// use bytes::BytesMut; |
| 512 | /// |
| 513 | /// let mut b = BytesMut::from(&b"hello world" [..]); |
| 514 | /// |
| 515 | /// unsafe { |
| 516 | /// b.set_len(5); |
| 517 | /// } |
| 518 | /// |
| 519 | /// assert_eq!(&b[..], b"hello" ); |
| 520 | /// |
| 521 | /// unsafe { |
| 522 | /// b.set_len(11); |
| 523 | /// } |
| 524 | /// |
| 525 | /// assert_eq!(&b[..], b"hello world" ); |
| 526 | /// ``` |
| 527 | #[inline ] |
| 528 | pub unsafe fn set_len(&mut self, len: usize) { |
| 529 | debug_assert!(len <= self.cap, "set_len out of bounds" ); |
| 530 | self.len = len; |
| 531 | } |
| 532 | |
| 533 | /// Reserves capacity for at least `additional` more bytes to be inserted |
| 534 | /// into the given `BytesMut`. |
| 535 | /// |
| 536 | /// More than `additional` bytes may be reserved in order to avoid frequent |
| 537 | /// reallocations. A call to `reserve` may result in an allocation. |
| 538 | /// |
| 539 | /// Before allocating new buffer space, the function will attempt to reclaim |
| 540 | /// space in the existing buffer. If the current handle references a view |
| 541 | /// into a larger original buffer, and all other handles referencing part |
| 542 | /// of the same original buffer have been dropped, then the current view |
| 543 | /// can be copied/shifted to the front of the buffer and the handle can take |
| 544 | /// ownership of the full buffer, provided that the full buffer is large |
| 545 | /// enough to fit the requested additional capacity. |
| 546 | /// |
| 547 | /// This optimization will only happen if shifting the data from the current |
| 548 | /// view to the front of the buffer is not too expensive in terms of the |
| 549 | /// (amortized) time required. The precise condition is subject to change; |
| 550 | /// as of now, the length of the data being shifted needs to be at least as |
| 551 | /// large as the distance that it's shifted by. If the current view is empty |
| 552 | /// and the original buffer is large enough to fit the requested additional |
| 553 | /// capacity, then reallocations will never happen. |
| 554 | /// |
| 555 | /// # Examples |
| 556 | /// |
| 557 | /// In the following example, a new buffer is allocated. |
| 558 | /// |
| 559 | /// ``` |
| 560 | /// use bytes::BytesMut; |
| 561 | /// |
| 562 | /// let mut buf = BytesMut::from(&b"hello" [..]); |
| 563 | /// buf.reserve(64); |
| 564 | /// assert!(buf.capacity() >= 69); |
| 565 | /// ``` |
| 566 | /// |
| 567 | /// In the following example, the existing buffer is reclaimed. |
| 568 | /// |
| 569 | /// ``` |
| 570 | /// use bytes::{BytesMut, BufMut}; |
| 571 | /// |
| 572 | /// let mut buf = BytesMut::with_capacity(128); |
| 573 | /// buf.put(&[0; 64][..]); |
| 574 | /// |
| 575 | /// let ptr = buf.as_ptr(); |
| 576 | /// let other = buf.split(); |
| 577 | /// |
| 578 | /// assert!(buf.is_empty()); |
| 579 | /// assert_eq!(buf.capacity(), 64); |
| 580 | /// |
| 581 | /// drop(other); |
| 582 | /// buf.reserve(128); |
| 583 | /// |
| 584 | /// assert_eq!(buf.capacity(), 128); |
| 585 | /// assert_eq!(buf.as_ptr(), ptr); |
| 586 | /// ``` |
| 587 | /// |
| 588 | /// # Panics |
| 589 | /// |
| 590 | /// Panics if the new capacity overflows `usize`. |
| 591 | #[inline ] |
| 592 | pub fn reserve(&mut self, additional: usize) { |
| 593 | let len = self.len(); |
| 594 | let rem = self.capacity() - len; |
| 595 | |
| 596 | if additional <= rem { |
| 597 | // The handle can already store at least `additional` more bytes, so |
| 598 | // there is no further work needed to be done. |
| 599 | return; |
| 600 | } |
| 601 | |
| 602 | // will always succeed |
| 603 | let _ = self.reserve_inner(additional, true); |
| 604 | } |
| 605 | |
| 606 | // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to |
| 607 | // be inline-able. Significantly helps performance. Returns false if it did not succeed. |
| 608 | fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool { |
| 609 | let len = self.len(); |
| 610 | let kind = self.kind(); |
| 611 | |
| 612 | if kind == KIND_VEC { |
| 613 | // If there's enough free space before the start of the buffer, then |
| 614 | // just copy the data backwards and reuse the already-allocated |
| 615 | // space. |
| 616 | // |
| 617 | // Otherwise, since backed by a vector, use `Vec::reserve` |
| 618 | // |
| 619 | // We need to make sure that this optimization does not kill the |
| 620 | // amortized runtimes of BytesMut's operations. |
| 621 | unsafe { |
| 622 | let off = self.get_vec_pos(); |
| 623 | |
| 624 | // Only reuse space if we can satisfy the requested additional space. |
| 625 | // |
| 626 | // Also check if the value of `off` suggests that enough bytes |
| 627 | // have been read to account for the overhead of shifting all |
| 628 | // the data (in an amortized analysis). |
| 629 | // Hence the condition `off >= self.len()`. |
| 630 | // |
| 631 | // This condition also already implies that the buffer is going |
| 632 | // to be (at least) half-empty in the end; so we do not break |
| 633 | // the (amortized) runtime with future resizes of the underlying |
| 634 | // `Vec`. |
| 635 | // |
| 636 | // [For more details check issue #524, and PR #525.] |
| 637 | if self.capacity() - self.len() + off >= additional && off >= self.len() { |
| 638 | // There's enough space, and it's not too much overhead: |
| 639 | // reuse the space! |
| 640 | // |
| 641 | // Just move the pointer back to the start after copying |
| 642 | // data back. |
| 643 | let base_ptr = self.ptr.as_ptr().sub(off); |
| 644 | // Since `off >= self.len()`, the two regions don't overlap. |
| 645 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len); |
| 646 | self.ptr = vptr(base_ptr); |
| 647 | self.set_vec_pos(0); |
| 648 | |
| 649 | // Length stays constant, but since we moved backwards we |
| 650 | // can gain capacity back. |
| 651 | self.cap += off; |
| 652 | } else { |
| 653 | if !allocate { |
| 654 | return false; |
| 655 | } |
| 656 | // Not enough space, or reusing might be too much overhead: |
| 657 | // allocate more space! |
| 658 | let mut v = |
| 659 | ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off)); |
| 660 | v.reserve(additional); |
| 661 | |
| 662 | // Update the info |
| 663 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
| 664 | self.cap = v.capacity() - off; |
| 665 | debug_assert_eq!(self.len, v.len() - off); |
| 666 | } |
| 667 | |
| 668 | return true; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | debug_assert_eq!(kind, KIND_ARC); |
| 673 | let shared: *mut Shared = self.data; |
| 674 | |
| 675 | // Reserving involves abandoning the currently shared buffer and |
| 676 | // allocating a new vector with the requested capacity. |
| 677 | // |
| 678 | // Compute the new capacity |
| 679 | let mut new_cap = match len.checked_add(additional) { |
| 680 | Some(new_cap) => new_cap, |
| 681 | None if !allocate => return false, |
| 682 | None => panic!("overflow" ), |
| 683 | }; |
| 684 | |
| 685 | unsafe { |
| 686 | // First, try to reclaim the buffer. This is possible if the current |
| 687 | // handle is the only outstanding handle pointing to the buffer. |
| 688 | if (*shared).is_unique() { |
| 689 | // This is the only handle to the buffer. It can be reclaimed. |
| 690 | // However, before doing the work of copying data, check to make |
| 691 | // sure that the vector has enough capacity. |
| 692 | let v = &mut (*shared).vec; |
| 693 | |
| 694 | let v_capacity = v.capacity(); |
| 695 | let ptr = v.as_mut_ptr(); |
| 696 | |
| 697 | let offset = offset_from(self.ptr.as_ptr(), ptr); |
| 698 | |
| 699 | // Compare the condition in the `kind == KIND_VEC` case above |
| 700 | // for more details. |
| 701 | if v_capacity >= new_cap + offset { |
| 702 | self.cap = new_cap; |
| 703 | // no copy is necessary |
| 704 | } else if v_capacity >= new_cap && offset >= len { |
| 705 | // The capacity is sufficient, and copying is not too much |
| 706 | // overhead: reclaim the buffer! |
| 707 | |
| 708 | // `offset >= len` means: no overlap |
| 709 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len); |
| 710 | |
| 711 | self.ptr = vptr(ptr); |
| 712 | self.cap = v.capacity(); |
| 713 | } else { |
| 714 | if !allocate { |
| 715 | return false; |
| 716 | } |
| 717 | // calculate offset |
| 718 | let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize); |
| 719 | |
| 720 | // new_cap is calculated in terms of `BytesMut`, not the underlying |
| 721 | // `Vec`, so it does not take the offset into account. |
| 722 | // |
| 723 | // Thus we have to manually add it here. |
| 724 | new_cap = new_cap.checked_add(off).expect("overflow" ); |
| 725 | |
| 726 | // The vector capacity is not sufficient. The reserve request is |
| 727 | // asking for more than the initial buffer capacity. Allocate more |
| 728 | // than requested if `new_cap` is not much bigger than the current |
| 729 | // capacity. |
| 730 | // |
| 731 | // There are some situations, using `reserve_exact` that the |
| 732 | // buffer capacity could be below `original_capacity`, so do a |
| 733 | // check. |
| 734 | let double = v.capacity().checked_shl(1).unwrap_or(new_cap); |
| 735 | |
| 736 | new_cap = cmp::max(double, new_cap); |
| 737 | |
| 738 | // No space - allocate more |
| 739 | // |
| 740 | // The length field of `Shared::vec` is not used by the `BytesMut`; |
| 741 | // instead we use the `len` field in the `BytesMut` itself. However, |
| 742 | // when calling `reserve`, it doesn't guarantee that data stored in |
| 743 | // the unused capacity of the vector is copied over to the new |
| 744 | // allocation, so we need to ensure that we don't have any data we |
| 745 | // care about in the unused capacity before calling `reserve`. |
| 746 | debug_assert!(off + len <= v.capacity()); |
| 747 | v.set_len(off + len); |
| 748 | v.reserve(new_cap - v.len()); |
| 749 | |
| 750 | // Update the info |
| 751 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
| 752 | self.cap = v.capacity() - off; |
| 753 | } |
| 754 | |
| 755 | return true; |
| 756 | } |
| 757 | } |
| 758 | if !allocate { |
| 759 | return false; |
| 760 | } |
| 761 | |
| 762 | let original_capacity_repr = unsafe { (*shared).original_capacity_repr }; |
| 763 | let original_capacity = original_capacity_from_repr(original_capacity_repr); |
| 764 | |
| 765 | new_cap = cmp::max(new_cap, original_capacity); |
| 766 | |
| 767 | // Create a new vector to store the data |
| 768 | let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap)); |
| 769 | |
| 770 | // Copy the bytes |
| 771 | v.extend_from_slice(self.as_ref()); |
| 772 | |
| 773 | // Release the shared handle. This must be done *after* the bytes are |
| 774 | // copied. |
| 775 | unsafe { release_shared(shared) }; |
| 776 | |
| 777 | // Update self |
| 778 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
| 779 | self.data = invalid_ptr(data); |
| 780 | self.ptr = vptr(v.as_mut_ptr()); |
| 781 | self.cap = v.capacity(); |
| 782 | debug_assert_eq!(self.len, v.len()); |
| 783 | return true; |
| 784 | } |
| 785 | |
| 786 | /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more |
| 787 | /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded. |
| 788 | /// |
| 789 | /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage |
| 790 | /// and returns a `bool` indicating whether it was successful in doing so: |
| 791 | /// |
| 792 | /// `try_reclaim` returns false under these conditions: |
| 793 | /// - The spare capacity left is less than `additional` bytes AND |
| 794 | /// - The existing allocation cannot be reclaimed cheaply or it was less than |
| 795 | /// `additional` bytes in size |
| 796 | /// |
| 797 | /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding |
| 798 | /// references through other `BytesMut`s or `Bytes` which point to the same underlying |
| 799 | /// storage. |
| 800 | /// |
| 801 | /// # Examples |
| 802 | /// |
| 803 | /// ``` |
| 804 | /// use bytes::BytesMut; |
| 805 | /// |
| 806 | /// let mut buf = BytesMut::with_capacity(64); |
| 807 | /// assert_eq!(true, buf.try_reclaim(64)); |
| 808 | /// assert_eq!(64, buf.capacity()); |
| 809 | /// |
| 810 | /// buf.extend_from_slice(b"abcd" ); |
| 811 | /// let mut split = buf.split(); |
| 812 | /// assert_eq!(60, buf.capacity()); |
| 813 | /// assert_eq!(4, split.capacity()); |
| 814 | /// assert_eq!(false, split.try_reclaim(64)); |
| 815 | /// assert_eq!(false, buf.try_reclaim(64)); |
| 816 | /// // The split buffer is filled with "abcd" |
| 817 | /// assert_eq!(false, split.try_reclaim(4)); |
| 818 | /// // buf is empty and has capacity for 60 bytes |
| 819 | /// assert_eq!(true, buf.try_reclaim(60)); |
| 820 | /// |
| 821 | /// drop(buf); |
| 822 | /// assert_eq!(false, split.try_reclaim(64)); |
| 823 | /// |
| 824 | /// split.clear(); |
| 825 | /// assert_eq!(4, split.capacity()); |
| 826 | /// assert_eq!(true, split.try_reclaim(64)); |
| 827 | /// assert_eq!(64, split.capacity()); |
| 828 | /// ``` |
| 829 | // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined |
| 830 | // regardless with Rust 1.78.0 so probably not worth it |
| 831 | #[inline ] |
| 832 | #[must_use = "consider BytesMut::reserve if you need an infallible reservation" ] |
| 833 | pub fn try_reclaim(&mut self, additional: usize) -> bool { |
| 834 | let len = self.len(); |
| 835 | let rem = self.capacity() - len; |
| 836 | |
| 837 | if additional <= rem { |
| 838 | // The handle can already store at least `additional` more bytes, so |
| 839 | // there is no further work needed to be done. |
| 840 | return true; |
| 841 | } |
| 842 | |
| 843 | self.reserve_inner(additional, false) |
| 844 | } |
| 845 | |
| 846 | /// Appends given bytes to this `BytesMut`. |
| 847 | /// |
| 848 | /// If this `BytesMut` object does not have enough capacity, it is resized |
| 849 | /// first. |
| 850 | /// |
| 851 | /// # Examples |
| 852 | /// |
| 853 | /// ``` |
| 854 | /// use bytes::BytesMut; |
| 855 | /// |
| 856 | /// let mut buf = BytesMut::with_capacity(0); |
| 857 | /// buf.extend_from_slice(b"aaabbb" ); |
| 858 | /// buf.extend_from_slice(b"cccddd" ); |
| 859 | /// |
| 860 | /// assert_eq!(b"aaabbbcccddd" , &buf[..]); |
| 861 | /// ``` |
| 862 | #[inline ] |
| 863 | pub fn extend_from_slice(&mut self, extend: &[u8]) { |
| 864 | let cnt = extend.len(); |
| 865 | self.reserve(cnt); |
| 866 | |
| 867 | unsafe { |
| 868 | let dst = self.spare_capacity_mut(); |
| 869 | // Reserved above |
| 870 | debug_assert!(dst.len() >= cnt); |
| 871 | |
| 872 | ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt); |
| 873 | } |
| 874 | |
| 875 | unsafe { |
| 876 | self.advance_mut(cnt); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | /// Absorbs a `BytesMut` that was previously split off. |
| 881 | /// |
| 882 | /// If the two `BytesMut` objects were previously contiguous and not mutated |
| 883 | /// in a way that causes re-allocation i.e., if `other` was created by |
| 884 | /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation |
| 885 | /// that just decreases a reference count and sets a few indices. |
| 886 | /// Otherwise this method degenerates to |
| 887 | /// `self.extend_from_slice(other.as_ref())`. |
| 888 | /// |
| 889 | /// # Examples |
| 890 | /// |
| 891 | /// ``` |
| 892 | /// use bytes::BytesMut; |
| 893 | /// |
| 894 | /// let mut buf = BytesMut::with_capacity(64); |
| 895 | /// buf.extend_from_slice(b"aaabbbcccddd" ); |
| 896 | /// |
| 897 | /// let split = buf.split_off(6); |
| 898 | /// assert_eq!(b"aaabbb" , &buf[..]); |
| 899 | /// assert_eq!(b"cccddd" , &split[..]); |
| 900 | /// |
| 901 | /// buf.unsplit(split); |
| 902 | /// assert_eq!(b"aaabbbcccddd" , &buf[..]); |
| 903 | /// ``` |
| 904 | pub fn unsplit(&mut self, other: BytesMut) { |
| 905 | if self.is_empty() { |
| 906 | *self = other; |
| 907 | return; |
| 908 | } |
| 909 | |
| 910 | if let Err(other) = self.try_unsplit(other) { |
| 911 | self.extend_from_slice(other.as_ref()); |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | // private |
| 916 | |
| 917 | // For now, use a `Vec` to manage the memory for us, but we may want to |
| 918 | // change that in the future to some alternate allocator strategy. |
| 919 | // |
| 920 | // Thus, we don't expose an easy way to construct from a `Vec` since an |
| 921 | // internal change could make a simple pattern (`BytesMut::from(vec)`) |
| 922 | // suddenly a lot more expensive. |
| 923 | #[inline ] |
| 924 | pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut { |
| 925 | let mut vec = ManuallyDrop::new(vec); |
| 926 | let ptr = vptr(vec.as_mut_ptr()); |
| 927 | let len = vec.len(); |
| 928 | let cap = vec.capacity(); |
| 929 | |
| 930 | let original_capacity_repr = original_capacity_to_repr(cap); |
| 931 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
| 932 | |
| 933 | BytesMut { |
| 934 | ptr, |
| 935 | len, |
| 936 | cap, |
| 937 | data: invalid_ptr(data), |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | #[inline ] |
| 942 | fn as_slice(&self) -> &[u8] { |
| 943 | unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) } |
| 944 | } |
| 945 | |
| 946 | #[inline ] |
| 947 | fn as_slice_mut(&mut self) -> &mut [u8] { |
| 948 | unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) } |
| 949 | } |
| 950 | |
| 951 | /// Advance the buffer without bounds checking. |
| 952 | /// |
| 953 | /// # SAFETY |
| 954 | /// |
| 955 | /// The caller must ensure that `count` <= `self.cap`. |
| 956 | pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) { |
| 957 | // Setting the start to 0 is a no-op, so return early if this is the |
| 958 | // case. |
| 959 | if count == 0 { |
| 960 | return; |
| 961 | } |
| 962 | |
| 963 | debug_assert!(count <= self.cap, "internal: set_start out of bounds" ); |
| 964 | |
| 965 | let kind = self.kind(); |
| 966 | |
| 967 | if kind == KIND_VEC { |
| 968 | // Setting the start when in vec representation is a little more |
| 969 | // complicated. First, we have to track how far ahead the |
| 970 | // "start" of the byte buffer from the beginning of the vec. We |
| 971 | // also have to ensure that we don't exceed the maximum shift. |
| 972 | let pos = self.get_vec_pos() + count; |
| 973 | |
| 974 | if pos <= MAX_VEC_POS { |
| 975 | self.set_vec_pos(pos); |
| 976 | } else { |
| 977 | // The repr must be upgraded to ARC. This will never happen |
| 978 | // on 64 bit systems and will only happen on 32 bit systems |
| 979 | // when shifting past 134,217,727 bytes. As such, we don't |
| 980 | // worry too much about performance here. |
| 981 | self.promote_to_shared(/*ref_count = */ 1); |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | // Updating the start of the view is setting `ptr` to point to the |
| 986 | // new start and updating the `len` field to reflect the new length |
| 987 | // of the view. |
| 988 | self.ptr = vptr(self.ptr.as_ptr().add(count)); |
| 989 | self.len = self.len.checked_sub(count).unwrap_or(0); |
| 990 | self.cap -= count; |
| 991 | } |
| 992 | |
| 993 | fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> { |
| 994 | if other.capacity() == 0 { |
| 995 | return Ok(()); |
| 996 | } |
| 997 | |
| 998 | let ptr = unsafe { self.ptr.as_ptr().add(self.len) }; |
| 999 | if ptr == other.ptr.as_ptr() |
| 1000 | && self.kind() == KIND_ARC |
| 1001 | && other.kind() == KIND_ARC |
| 1002 | && self.data == other.data |
| 1003 | { |
| 1004 | // Contiguous blocks, just combine directly |
| 1005 | self.len += other.len; |
| 1006 | self.cap += other.cap; |
| 1007 | Ok(()) |
| 1008 | } else { |
| 1009 | Err(other) |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | #[inline ] |
| 1014 | fn kind(&self) -> usize { |
| 1015 | self.data as usize & KIND_MASK |
| 1016 | } |
| 1017 | |
| 1018 | unsafe fn promote_to_shared(&mut self, ref_cnt: usize) { |
| 1019 | debug_assert_eq!(self.kind(), KIND_VEC); |
| 1020 | debug_assert!(ref_cnt == 1 || ref_cnt == 2); |
| 1021 | |
| 1022 | let original_capacity_repr = |
| 1023 | (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET; |
| 1024 | |
| 1025 | // The vec offset cannot be concurrently mutated, so there |
| 1026 | // should be no danger reading it. |
| 1027 | let off = (self.data as usize) >> VEC_POS_OFFSET; |
| 1028 | |
| 1029 | // First, allocate a new `Shared` instance containing the |
| 1030 | // `Vec` fields. It's important to note that `ptr`, `len`, |
| 1031 | // and `cap` cannot be mutated without having `&mut self`. |
| 1032 | // This means that these fields will not be concurrently |
| 1033 | // updated and since the buffer hasn't been promoted to an |
| 1034 | // `Arc`, those three fields still are the components of the |
| 1035 | // vector. |
| 1036 | let shared = Box::new(Shared { |
| 1037 | vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off), |
| 1038 | original_capacity_repr, |
| 1039 | ref_count: AtomicUsize::new(ref_cnt), |
| 1040 | }); |
| 1041 | |
| 1042 | let shared = Box::into_raw(shared); |
| 1043 | |
| 1044 | // The pointer should be aligned, so this assert should |
| 1045 | // always succeed. |
| 1046 | debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC); |
| 1047 | |
| 1048 | self.data = shared; |
| 1049 | } |
| 1050 | |
| 1051 | /// Makes an exact shallow clone of `self`. |
| 1052 | /// |
| 1053 | /// The kind of `self` doesn't matter, but this is unsafe |
| 1054 | /// because the clone will have the same offsets. You must |
| 1055 | /// be sure the returned value to the user doesn't allow |
| 1056 | /// two views into the same range. |
| 1057 | #[inline ] |
| 1058 | unsafe fn shallow_clone(&mut self) -> BytesMut { |
| 1059 | if self.kind() == KIND_ARC { |
| 1060 | increment_shared(self.data); |
| 1061 | ptr::read(self) |
| 1062 | } else { |
| 1063 | self.promote_to_shared(/*ref_count = */ 2); |
| 1064 | ptr::read(self) |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | #[inline ] |
| 1069 | unsafe fn get_vec_pos(&self) -> usize { |
| 1070 | debug_assert_eq!(self.kind(), KIND_VEC); |
| 1071 | |
| 1072 | self.data as usize >> VEC_POS_OFFSET |
| 1073 | } |
| 1074 | |
| 1075 | #[inline ] |
| 1076 | unsafe fn set_vec_pos(&mut self, pos: usize) { |
| 1077 | debug_assert_eq!(self.kind(), KIND_VEC); |
| 1078 | debug_assert!(pos <= MAX_VEC_POS); |
| 1079 | |
| 1080 | self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK)); |
| 1081 | } |
| 1082 | |
| 1083 | /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`. |
| 1084 | /// |
| 1085 | /// The returned slice can be used to fill the buffer with data (e.g. by |
| 1086 | /// reading from a file) before marking the data as initialized using the |
| 1087 | /// [`set_len`] method. |
| 1088 | /// |
| 1089 | /// [`set_len`]: BytesMut::set_len |
| 1090 | /// |
| 1091 | /// # Examples |
| 1092 | /// |
| 1093 | /// ``` |
| 1094 | /// use bytes::BytesMut; |
| 1095 | /// |
| 1096 | /// // Allocate buffer big enough for 10 bytes. |
| 1097 | /// let mut buf = BytesMut::with_capacity(10); |
| 1098 | /// |
| 1099 | /// // Fill in the first 3 elements. |
| 1100 | /// let uninit = buf.spare_capacity_mut(); |
| 1101 | /// uninit[0].write(0); |
| 1102 | /// uninit[1].write(1); |
| 1103 | /// uninit[2].write(2); |
| 1104 | /// |
| 1105 | /// // Mark the first 3 bytes of the buffer as being initialized. |
| 1106 | /// unsafe { |
| 1107 | /// buf.set_len(3); |
| 1108 | /// } |
| 1109 | /// |
| 1110 | /// assert_eq!(&buf[..], &[0, 1, 2]); |
| 1111 | /// ``` |
| 1112 | #[inline ] |
| 1113 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] { |
| 1114 | unsafe { |
| 1115 | let ptr = self.ptr.as_ptr().add(self.len); |
| 1116 | let len = self.cap - self.len; |
| 1117 | |
| 1118 | slice::from_raw_parts_mut(ptr.cast(), len) |
| 1119 | } |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | impl Drop for BytesMut { |
| 1124 | fn drop(&mut self) { |
| 1125 | let kind: usize = self.kind(); |
| 1126 | |
| 1127 | if kind == KIND_VEC { |
| 1128 | unsafe { |
| 1129 | let off: usize = self.get_vec_pos(); |
| 1130 | |
| 1131 | // Vector storage, free the vector |
| 1132 | let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off); |
| 1133 | } |
| 1134 | } else if kind == KIND_ARC { |
| 1135 | unsafe { release_shared(self.data) }; |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | impl Buf for BytesMut { |
| 1141 | #[inline ] |
| 1142 | fn remaining(&self) -> usize { |
| 1143 | self.len() |
| 1144 | } |
| 1145 | |
| 1146 | #[inline ] |
| 1147 | fn chunk(&self) -> &[u8] { |
| 1148 | self.as_slice() |
| 1149 | } |
| 1150 | |
| 1151 | #[inline ] |
| 1152 | fn advance(&mut self, cnt: usize) { |
| 1153 | assert!( |
| 1154 | cnt <= self.remaining(), |
| 1155 | "cannot advance past `remaining`: {:?} <= {:?}" , |
| 1156 | cnt, |
| 1157 | self.remaining(), |
| 1158 | ); |
| 1159 | unsafe { |
| 1160 | // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that |
| 1161 | // `self.remaining()` <= `self.cap`. |
| 1162 | self.advance_unchecked(cnt); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | fn copy_to_bytes(&mut self, len: usize) -> Bytes { |
| 1167 | self.split_to(len).freeze() |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | unsafe impl BufMut for BytesMut { |
| 1172 | #[inline ] |
| 1173 | fn remaining_mut(&self) -> usize { |
| 1174 | usize::MAX - self.len() |
| 1175 | } |
| 1176 | |
| 1177 | #[inline ] |
| 1178 | unsafe fn advance_mut(&mut self, cnt: usize) { |
| 1179 | let remaining = self.cap - self.len(); |
| 1180 | if cnt > remaining { |
| 1181 | super::panic_advance(&TryGetError { |
| 1182 | requested: cnt, |
| 1183 | available: remaining, |
| 1184 | }); |
| 1185 | } |
| 1186 | // Addition won't overflow since it is at most `self.cap`. |
| 1187 | self.len = self.len() + cnt; |
| 1188 | } |
| 1189 | |
| 1190 | #[inline ] |
| 1191 | fn chunk_mut(&mut self) -> &mut UninitSlice { |
| 1192 | if self.capacity() == self.len() { |
| 1193 | self.reserve(64); |
| 1194 | } |
| 1195 | self.spare_capacity_mut().into() |
| 1196 | } |
| 1197 | |
| 1198 | // Specialize these methods so they can skip checking `remaining_mut` |
| 1199 | // and `advance_mut`. |
| 1200 | |
| 1201 | fn put<T: Buf>(&mut self, mut src: T) |
| 1202 | where |
| 1203 | Self: Sized, |
| 1204 | { |
| 1205 | while src.has_remaining() { |
| 1206 | let s = src.chunk(); |
| 1207 | let l = s.len(); |
| 1208 | self.extend_from_slice(s); |
| 1209 | src.advance(l); |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | fn put_slice(&mut self, src: &[u8]) { |
| 1214 | self.extend_from_slice(src); |
| 1215 | } |
| 1216 | |
| 1217 | fn put_bytes(&mut self, val: u8, cnt: usize) { |
| 1218 | self.reserve(cnt); |
| 1219 | unsafe { |
| 1220 | let dst = self.spare_capacity_mut(); |
| 1221 | // Reserved above |
| 1222 | debug_assert!(dst.len() >= cnt); |
| 1223 | |
| 1224 | ptr::write_bytes(dst.as_mut_ptr(), val, cnt); |
| 1225 | |
| 1226 | self.advance_mut(cnt); |
| 1227 | } |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | impl AsRef<[u8]> for BytesMut { |
| 1232 | #[inline ] |
| 1233 | fn as_ref(&self) -> &[u8] { |
| 1234 | self.as_slice() |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | impl Deref for BytesMut { |
| 1239 | type Target = [u8]; |
| 1240 | |
| 1241 | #[inline ] |
| 1242 | fn deref(&self) -> &[u8] { |
| 1243 | self.as_ref() |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | impl AsMut<[u8]> for BytesMut { |
| 1248 | #[inline ] |
| 1249 | fn as_mut(&mut self) -> &mut [u8] { |
| 1250 | self.as_slice_mut() |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | impl DerefMut for BytesMut { |
| 1255 | #[inline ] |
| 1256 | fn deref_mut(&mut self) -> &mut [u8] { |
| 1257 | self.as_mut() |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | impl<'a> From<&'a [u8]> for BytesMut { |
| 1262 | fn from(src: &'a [u8]) -> BytesMut { |
| 1263 | BytesMut::from_vec(src.to_vec()) |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | impl<'a> From<&'a str> for BytesMut { |
| 1268 | fn from(src: &'a str) -> BytesMut { |
| 1269 | BytesMut::from(src.as_bytes()) |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | impl From<BytesMut> for Bytes { |
| 1274 | fn from(src: BytesMut) -> Bytes { |
| 1275 | src.freeze() |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | impl PartialEq for BytesMut { |
| 1280 | fn eq(&self, other: &BytesMut) -> bool { |
| 1281 | self.as_slice() == other.as_slice() |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | impl PartialOrd for BytesMut { |
| 1286 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1287 | self.as_slice().partial_cmp(other.as_slice()) |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | impl Ord for BytesMut { |
| 1292 | fn cmp(&self, other: &BytesMut) -> cmp::Ordering { |
| 1293 | self.as_slice().cmp(other.as_slice()) |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | impl Eq for BytesMut {} |
| 1298 | |
| 1299 | impl Default for BytesMut { |
| 1300 | #[inline ] |
| 1301 | fn default() -> BytesMut { |
| 1302 | BytesMut::new() |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | impl hash::Hash for BytesMut { |
| 1307 | fn hash<H>(&self, state: &mut H) |
| 1308 | where |
| 1309 | H: hash::Hasher, |
| 1310 | { |
| 1311 | let s: &[u8] = self.as_ref(); |
| 1312 | s.hash(state); |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | impl Borrow<[u8]> for BytesMut { |
| 1317 | fn borrow(&self) -> &[u8] { |
| 1318 | self.as_ref() |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | impl BorrowMut<[u8]> for BytesMut { |
| 1323 | fn borrow_mut(&mut self) -> &mut [u8] { |
| 1324 | self.as_mut() |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | impl fmt::Write for BytesMut { |
| 1329 | #[inline ] |
| 1330 | fn write_str(&mut self, s: &str) -> fmt::Result { |
| 1331 | if self.remaining_mut() >= s.len() { |
| 1332 | self.put_slice(src:s.as_bytes()); |
| 1333 | Ok(()) |
| 1334 | } else { |
| 1335 | Err(fmt::Error) |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | #[inline ] |
| 1340 | fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result { |
| 1341 | fmt::write(self, args) |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | impl Clone for BytesMut { |
| 1346 | fn clone(&self) -> BytesMut { |
| 1347 | BytesMut::from(&self[..]) |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | impl IntoIterator for BytesMut { |
| 1352 | type Item = u8; |
| 1353 | type IntoIter = IntoIter<BytesMut>; |
| 1354 | |
| 1355 | fn into_iter(self) -> Self::IntoIter { |
| 1356 | IntoIter::new(self) |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | impl<'a> IntoIterator for &'a BytesMut { |
| 1361 | type Item = &'a u8; |
| 1362 | type IntoIter = core::slice::Iter<'a, u8>; |
| 1363 | |
| 1364 | fn into_iter(self) -> Self::IntoIter { |
| 1365 | self.as_ref().iter() |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | impl Extend<u8> for BytesMut { |
| 1370 | fn extend<T>(&mut self, iter: T) |
| 1371 | where |
| 1372 | T: IntoIterator<Item = u8>, |
| 1373 | { |
| 1374 | let iter: ::IntoIter = iter.into_iter(); |
| 1375 | |
| 1376 | let (lower: usize, _) = iter.size_hint(); |
| 1377 | self.reserve(additional:lower); |
| 1378 | |
| 1379 | // TODO: optimize |
| 1380 | // 1. If self.kind() == KIND_VEC, use Vec::extend |
| 1381 | for b: u8 in iter { |
| 1382 | self.put_u8(b); |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | impl<'a> Extend<&'a u8> for BytesMut { |
| 1388 | fn extend<T>(&mut self, iter: T) |
| 1389 | where |
| 1390 | T: IntoIterator<Item = &'a u8>, |
| 1391 | { |
| 1392 | self.extend(iter.into_iter().copied()) |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | impl Extend<Bytes> for BytesMut { |
| 1397 | fn extend<T>(&mut self, iter: T) |
| 1398 | where |
| 1399 | T: IntoIterator<Item = Bytes>, |
| 1400 | { |
| 1401 | for bytes: Bytes in iter { |
| 1402 | self.extend_from_slice(&bytes) |
| 1403 | } |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | impl FromIterator<u8> for BytesMut { |
| 1408 | fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { |
| 1409 | BytesMut::from_vec(Vec::from_iter(into_iter)) |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | impl<'a> FromIterator<&'a u8> for BytesMut { |
| 1414 | fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { |
| 1415 | BytesMut::from_iter(into_iter.into_iter().copied()) |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | /* |
| 1420 | * |
| 1421 | * ===== Inner ===== |
| 1422 | * |
| 1423 | */ |
| 1424 | |
| 1425 | unsafe fn increment_shared(ptr: *mut Shared) { |
| 1426 | let old_size: usize = (*ptr).ref_count.fetch_add(val:1, order:Ordering::Relaxed); |
| 1427 | |
| 1428 | if old_size > isize::MAX as usize { |
| 1429 | crate::abort(); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | unsafe fn release_shared(ptr: *mut Shared) { |
| 1434 | // `Shared` storage... follow the drop steps from Arc. |
| 1435 | if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 { |
| 1436 | return; |
| 1437 | } |
| 1438 | |
| 1439 | // This fence is needed to prevent reordering of use of the data and |
| 1440 | // deletion of the data. Because it is marked `Release`, the decreasing |
| 1441 | // of the reference count synchronizes with this `Acquire` fence. This |
| 1442 | // means that use of the data happens before decreasing the reference |
| 1443 | // count, which happens before this fence, which happens before the |
| 1444 | // deletion of the data. |
| 1445 | // |
| 1446 | // As explained in the [Boost documentation][1], |
| 1447 | // |
| 1448 | // > It is important to enforce any possible access to the object in one |
| 1449 | // > thread (through an existing reference) to *happen before* deleting |
| 1450 | // > the object in a different thread. This is achieved by a "release" |
| 1451 | // > operation after dropping a reference (any access to the object |
| 1452 | // > through this reference must obviously happened before), and an |
| 1453 | // > "acquire" operation before deleting the object. |
| 1454 | // |
| 1455 | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
| 1456 | // |
| 1457 | // Thread sanitizer does not support atomic fences. Use an atomic load |
| 1458 | // instead. |
| 1459 | (*ptr).ref_count.load(Ordering::Acquire); |
| 1460 | |
| 1461 | // Drop the data |
| 1462 | drop(Box::from_raw(ptr)); |
| 1463 | } |
| 1464 | |
| 1465 | impl Shared { |
| 1466 | fn is_unique(&self) -> bool { |
| 1467 | // The goal is to check if the current handle is the only handle |
| 1468 | // that currently has access to the buffer. This is done by |
| 1469 | // checking if the `ref_count` is currently 1. |
| 1470 | // |
| 1471 | // The `Acquire` ordering synchronizes with the `Release` as |
| 1472 | // part of the `fetch_sub` in `release_shared`. The `fetch_sub` |
| 1473 | // operation guarantees that any mutations done in other threads |
| 1474 | // are ordered before the `ref_count` is decremented. As such, |
| 1475 | // this `Acquire` will guarantee that those mutations are |
| 1476 | // visible to the current thread. |
| 1477 | self.ref_count.load(order:Ordering::Acquire) == 1 |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | #[inline ] |
| 1482 | fn original_capacity_to_repr(cap: usize) -> usize { |
| 1483 | let width: usize = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize); |
| 1484 | cmp::min( |
| 1485 | v1:width, |
| 1486 | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH, |
| 1487 | ) |
| 1488 | } |
| 1489 | |
| 1490 | fn original_capacity_from_repr(repr: usize) -> usize { |
| 1491 | if repr == 0 { |
| 1492 | return 0; |
| 1493 | } |
| 1494 | |
| 1495 | 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1)) |
| 1496 | } |
| 1497 | |
| 1498 | #[cfg (test)] |
| 1499 | mod tests { |
| 1500 | use super::*; |
| 1501 | |
| 1502 | #[test ] |
| 1503 | fn test_original_capacity_to_repr() { |
| 1504 | assert_eq!(original_capacity_to_repr(0), 0); |
| 1505 | |
| 1506 | let max_width = 32; |
| 1507 | |
| 1508 | for width in 1..(max_width + 1) { |
| 1509 | let cap = 1 << width - 1; |
| 1510 | |
| 1511 | let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH { |
| 1512 | 0 |
| 1513 | } else if width < MAX_ORIGINAL_CAPACITY_WIDTH { |
| 1514 | width - MIN_ORIGINAL_CAPACITY_WIDTH |
| 1515 | } else { |
| 1516 | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH |
| 1517 | }; |
| 1518 | |
| 1519 | assert_eq!(original_capacity_to_repr(cap), expected); |
| 1520 | |
| 1521 | if width > 1 { |
| 1522 | assert_eq!(original_capacity_to_repr(cap + 1), expected); |
| 1523 | } |
| 1524 | |
| 1525 | // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below |
| 1526 | if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 { |
| 1527 | assert_eq!(original_capacity_to_repr(cap - 24), expected - 1); |
| 1528 | assert_eq!(original_capacity_to_repr(cap + 76), expected); |
| 1529 | } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 { |
| 1530 | assert_eq!(original_capacity_to_repr(cap - 1), expected - 1); |
| 1531 | assert_eq!(original_capacity_to_repr(cap - 48), expected - 1); |
| 1532 | } |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | #[test ] |
| 1537 | fn test_original_capacity_from_repr() { |
| 1538 | assert_eq!(0, original_capacity_from_repr(0)); |
| 1539 | |
| 1540 | let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH; |
| 1541 | |
| 1542 | assert_eq!(min_cap, original_capacity_from_repr(1)); |
| 1543 | assert_eq!(min_cap * 2, original_capacity_from_repr(2)); |
| 1544 | assert_eq!(min_cap * 4, original_capacity_from_repr(3)); |
| 1545 | assert_eq!(min_cap * 8, original_capacity_from_repr(4)); |
| 1546 | assert_eq!(min_cap * 16, original_capacity_from_repr(5)); |
| 1547 | assert_eq!(min_cap * 32, original_capacity_from_repr(6)); |
| 1548 | assert_eq!(min_cap * 64, original_capacity_from_repr(7)); |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | unsafe impl Send for BytesMut {} |
| 1553 | unsafe impl Sync for BytesMut {} |
| 1554 | |
| 1555 | /* |
| 1556 | * |
| 1557 | * ===== PartialEq / PartialOrd ===== |
| 1558 | * |
| 1559 | */ |
| 1560 | |
| 1561 | impl PartialEq<[u8]> for BytesMut { |
| 1562 | fn eq(&self, other: &[u8]) -> bool { |
| 1563 | &**self == other |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | impl PartialOrd<[u8]> for BytesMut { |
| 1568 | fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { |
| 1569 | (**self).partial_cmp(other) |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | impl PartialEq<BytesMut> for [u8] { |
| 1574 | fn eq(&self, other: &BytesMut) -> bool { |
| 1575 | *other == *self |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | impl PartialOrd<BytesMut> for [u8] { |
| 1580 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1581 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | impl PartialEq<str> for BytesMut { |
| 1586 | fn eq(&self, other: &str) -> bool { |
| 1587 | &**self == other.as_bytes() |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | impl PartialOrd<str> for BytesMut { |
| 1592 | fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { |
| 1593 | (**self).partial_cmp(other.as_bytes()) |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | impl PartialEq<BytesMut> for str { |
| 1598 | fn eq(&self, other: &BytesMut) -> bool { |
| 1599 | *other == *self |
| 1600 | } |
| 1601 | } |
| 1602 | |
| 1603 | impl PartialOrd<BytesMut> for str { |
| 1604 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1605 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
| 1606 | } |
| 1607 | } |
| 1608 | |
| 1609 | impl PartialEq<Vec<u8>> for BytesMut { |
| 1610 | fn eq(&self, other: &Vec<u8>) -> bool { |
| 1611 | *self == other[..] |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | impl PartialOrd<Vec<u8>> for BytesMut { |
| 1616 | fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { |
| 1617 | (**self).partial_cmp(&other[..]) |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | impl PartialEq<BytesMut> for Vec<u8> { |
| 1622 | fn eq(&self, other: &BytesMut) -> bool { |
| 1623 | *other == *self |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | impl PartialOrd<BytesMut> for Vec<u8> { |
| 1628 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1629 | other.partial_cmp(self) |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | impl PartialEq<String> for BytesMut { |
| 1634 | fn eq(&self, other: &String) -> bool { |
| 1635 | *self == other[..] |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | impl PartialOrd<String> for BytesMut { |
| 1640 | fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { |
| 1641 | (**self).partial_cmp(other.as_bytes()) |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | impl PartialEq<BytesMut> for String { |
| 1646 | fn eq(&self, other: &BytesMut) -> bool { |
| 1647 | *other == *self |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | impl PartialOrd<BytesMut> for String { |
| 1652 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1653 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut |
| 1658 | where |
| 1659 | BytesMut: PartialEq<T>, |
| 1660 | { |
| 1661 | fn eq(&self, other: &&'a T) -> bool { |
| 1662 | *self == **other |
| 1663 | } |
| 1664 | } |
| 1665 | |
| 1666 | impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut |
| 1667 | where |
| 1668 | BytesMut: PartialOrd<T>, |
| 1669 | { |
| 1670 | fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { |
| 1671 | self.partial_cmp(*other) |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | impl PartialEq<BytesMut> for &[u8] { |
| 1676 | fn eq(&self, other: &BytesMut) -> bool { |
| 1677 | *other == *self |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | impl PartialOrd<BytesMut> for &[u8] { |
| 1682 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1683 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | impl PartialEq<BytesMut> for &str { |
| 1688 | fn eq(&self, other: &BytesMut) -> bool { |
| 1689 | *other == *self |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | impl PartialOrd<BytesMut> for &str { |
| 1694 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
| 1695 | other.partial_cmp(self) |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | impl PartialEq<BytesMut> for Bytes { |
| 1700 | fn eq(&self, other: &BytesMut) -> bool { |
| 1701 | other[..] == self[..] |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | impl PartialEq<Bytes> for BytesMut { |
| 1706 | fn eq(&self, other: &Bytes) -> bool { |
| 1707 | other[..] == self[..] |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | impl From<BytesMut> for Vec<u8> { |
| 1712 | fn from(bytes: BytesMut) -> Self { |
| 1713 | let kind = bytes.kind(); |
| 1714 | let bytes = ManuallyDrop::new(bytes); |
| 1715 | |
| 1716 | let mut vec = if kind == KIND_VEC { |
| 1717 | unsafe { |
| 1718 | let off = bytes.get_vec_pos(); |
| 1719 | rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off) |
| 1720 | } |
| 1721 | } else { |
| 1722 | let shared = bytes.data as *mut Shared; |
| 1723 | |
| 1724 | if unsafe { (*shared).is_unique() } { |
| 1725 | let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new()); |
| 1726 | |
| 1727 | unsafe { release_shared(shared) }; |
| 1728 | |
| 1729 | vec |
| 1730 | } else { |
| 1731 | return ManuallyDrop::into_inner(bytes).deref().to_vec(); |
| 1732 | } |
| 1733 | }; |
| 1734 | |
| 1735 | let len = bytes.len; |
| 1736 | |
| 1737 | unsafe { |
| 1738 | ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len); |
| 1739 | vec.set_len(len); |
| 1740 | } |
| 1741 | |
| 1742 | vec |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | #[inline ] |
| 1747 | fn vptr(ptr: *mut u8) -> NonNull<u8> { |
| 1748 | if cfg!(debug_assertions) { |
| 1749 | NonNull::new(ptr).expect(msg:"Vec pointer should be non-null" ) |
| 1750 | } else { |
| 1751 | unsafe { NonNull::new_unchecked(ptr) } |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | /// Returns a dangling pointer with the given address. This is used to store |
| 1756 | /// integer data in pointer fields. |
| 1757 | /// |
| 1758 | /// It is equivalent to `addr as *mut T`, but this fails on miri when strict |
| 1759 | /// provenance checking is enabled. |
| 1760 | #[inline ] |
| 1761 | fn invalid_ptr<T>(addr: usize) -> *mut T { |
| 1762 | let ptr: *mut u8 = core::ptr::null_mut::<u8>().wrapping_add(count:addr); |
| 1763 | debug_assert_eq!(ptr as usize, addr); |
| 1764 | ptr.cast::<T>() |
| 1765 | } |
| 1766 | |
| 1767 | unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> { |
| 1768 | let ptr: *mut u8 = ptr.sub(count:off); |
| 1769 | len += off; |
| 1770 | cap += off; |
| 1771 | |
| 1772 | Vec::from_raw_parts(ptr, length:len, capacity:cap) |
| 1773 | } |
| 1774 | |
| 1775 | // ===== impl SharedVtable ===== |
| 1776 | |
| 1777 | static SHARED_VTABLE: Vtable = Vtable { |
| 1778 | clone: shared_v_clone, |
| 1779 | to_vec: shared_v_to_vec, |
| 1780 | to_mut: shared_v_to_mut, |
| 1781 | is_unique: shared_v_is_unique, |
| 1782 | drop: shared_v_drop, |
| 1783 | }; |
| 1784 | |
| 1785 | unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
| 1786 | let shared: *mut Shared = data.load(order:Ordering::Relaxed) as *mut Shared; |
| 1787 | increment_shared(ptr:shared); |
| 1788 | |
| 1789 | let data: AtomicPtr<()> = AtomicPtr::new(shared as *mut ()); |
| 1790 | Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) |
| 1791 | } |
| 1792 | |
| 1793 | unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
| 1794 | let shared: *mut Shared = data.load(order:Ordering::Relaxed).cast(); |
| 1795 | |
| 1796 | if (*shared).is_unique() { |
| 1797 | let shared: &mut Shared = &mut *shared; |
| 1798 | |
| 1799 | // Drop shared |
| 1800 | let mut vec: Vec = mem::replace(&mut shared.vec, src:Vec::new()); |
| 1801 | release_shared(ptr:shared); |
| 1802 | |
| 1803 | // Copy back buffer |
| 1804 | ptr::copy(src:ptr, dst:vec.as_mut_ptr(), count:len); |
| 1805 | vec.set_len(len); |
| 1806 | |
| 1807 | vec |
| 1808 | } else { |
| 1809 | let v: Vec = slice::from_raw_parts(data:ptr, len).to_vec(); |
| 1810 | release_shared(ptr:shared); |
| 1811 | v |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut { |
| 1816 | let shared: *mut Shared = data.load(Ordering::Relaxed).cast(); |
| 1817 | |
| 1818 | if (*shared).is_unique() { |
| 1819 | let shared = &mut *shared; |
| 1820 | |
| 1821 | // The capacity is always the original capacity of the buffer |
| 1822 | // minus the offset from the start of the buffer |
| 1823 | let v = &mut shared.vec; |
| 1824 | let v_capacity = v.capacity(); |
| 1825 | let v_ptr = v.as_mut_ptr(); |
| 1826 | let offset = offset_from(ptr as *mut u8, v_ptr); |
| 1827 | let cap = v_capacity - offset; |
| 1828 | |
| 1829 | let ptr = vptr(ptr as *mut u8); |
| 1830 | |
| 1831 | BytesMut { |
| 1832 | ptr, |
| 1833 | len, |
| 1834 | cap, |
| 1835 | data: shared, |
| 1836 | } |
| 1837 | } else { |
| 1838 | let v = slice::from_raw_parts(ptr, len).to_vec(); |
| 1839 | release_shared(shared); |
| 1840 | BytesMut::from_vec(v) |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool { |
| 1845 | let shared: *mut () = data.load(order:Ordering::Acquire); |
| 1846 | let ref_count: usize = (*shared.cast::<Shared>()).ref_count.load(order:Ordering::Relaxed); |
| 1847 | ref_count == 1 |
| 1848 | } |
| 1849 | |
| 1850 | unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { |
| 1851 | data.with_mut(|shared: &mut *mut ()| { |
| 1852 | release_shared(*shared as *mut Shared); |
| 1853 | }); |
| 1854 | } |
| 1855 | |
| 1856 | // compile-fails |
| 1857 | |
| 1858 | /// ```compile_fail |
| 1859 | /// use bytes::BytesMut; |
| 1860 | /// #[deny(unused_must_use)] |
| 1861 | /// { |
| 1862 | /// let mut b1 = BytesMut::from("hello world" ); |
| 1863 | /// b1.split_to(6); |
| 1864 | /// } |
| 1865 | /// ``` |
| 1866 | fn _split_to_must_use() {} |
| 1867 | |
| 1868 | /// ```compile_fail |
| 1869 | /// use bytes::BytesMut; |
| 1870 | /// #[deny(unused_must_use)] |
| 1871 | /// { |
| 1872 | /// let mut b1 = BytesMut::from("hello world" ); |
| 1873 | /// b1.split_off(6); |
| 1874 | /// } |
| 1875 | /// ``` |
| 1876 | fn _split_off_must_use() {} |
| 1877 | |
| 1878 | /// ```compile_fail |
| 1879 | /// use bytes::BytesMut; |
| 1880 | /// #[deny(unused_must_use)] |
| 1881 | /// { |
| 1882 | /// let mut b1 = BytesMut::from("hello world" ); |
| 1883 | /// b1.split(); |
| 1884 | /// } |
| 1885 | /// ``` |
| 1886 | fn _split_must_use() {} |
| 1887 | |
| 1888 | // fuzz tests |
| 1889 | #[cfg (all(test, loom))] |
| 1890 | mod fuzz { |
| 1891 | use loom::sync::Arc; |
| 1892 | use loom::thread; |
| 1893 | |
| 1894 | use super::BytesMut; |
| 1895 | use crate::Bytes; |
| 1896 | |
| 1897 | #[test ] |
| 1898 | fn bytes_mut_cloning_frozen() { |
| 1899 | loom::model(|| { |
| 1900 | let a = BytesMut::from(&b"abcdefgh" [..]).split().freeze(); |
| 1901 | let addr = a.as_ptr() as usize; |
| 1902 | |
| 1903 | // test the Bytes::clone is Sync by putting it in an Arc |
| 1904 | let a1 = Arc::new(a); |
| 1905 | let a2 = a1.clone(); |
| 1906 | |
| 1907 | let t1 = thread::spawn(move || { |
| 1908 | let b: Bytes = (*a1).clone(); |
| 1909 | assert_eq!(b.as_ptr() as usize, addr); |
| 1910 | }); |
| 1911 | |
| 1912 | let t2 = thread::spawn(move || { |
| 1913 | let b: Bytes = (*a2).clone(); |
| 1914 | assert_eq!(b.as_ptr() as usize, addr); |
| 1915 | }); |
| 1916 | |
| 1917 | t1.join().unwrap(); |
| 1918 | t2.join().unwrap(); |
| 1919 | }); |
| 1920 | } |
| 1921 | } |
| 1922 | |