1 | use std::cell::{Cell, UnsafeCell}; |
2 | use std::cmp; |
3 | use std::fmt; |
4 | use std::marker::PhantomData; |
5 | use std::mem::{self, MaybeUninit}; |
6 | use std::ptr; |
7 | use std::slice; |
8 | use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering}; |
9 | use std::sync::Arc; |
10 | |
11 | use crossbeam_epoch::{self as epoch, Atomic, Owned}; |
12 | use crossbeam_utils::{Backoff, CachePadded}; |
13 | |
14 | // Minimum buffer capacity. |
15 | const MIN_CAP: usize = 64; |
16 | // Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`. |
17 | const MAX_BATCH: usize = 32; |
18 | // If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets |
19 | // deallocated as soon as possible. |
20 | const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; |
21 | |
22 | /// A buffer that holds tasks in a worker queue. |
23 | /// |
24 | /// This is just a pointer to the buffer and its length - dropping an instance of this struct will |
25 | /// *not* deallocate the buffer. |
26 | struct Buffer<T> { |
27 | /// Pointer to the allocated memory. |
28 | ptr: *mut T, |
29 | |
30 | /// Capacity of the buffer. Always a power of two. |
31 | cap: usize, |
32 | } |
33 | |
34 | unsafe impl<T> Send for Buffer<T> {} |
35 | |
36 | impl<T> Buffer<T> { |
37 | /// Allocates a new buffer with the specified capacity. |
38 | fn alloc(cap: usize) -> Buffer<T> { |
39 | debug_assert_eq!(cap, cap.next_power_of_two()); |
40 | |
41 | let ptr = Box::into_raw( |
42 | (0..cap) |
43 | .map(|_| MaybeUninit::<T>::uninit()) |
44 | .collect::<Box<[_]>>(), |
45 | ) |
46 | .cast::<T>(); |
47 | |
48 | Buffer { ptr, cap } |
49 | } |
50 | |
51 | /// Deallocates the buffer. |
52 | unsafe fn dealloc(self) { |
53 | drop(Box::from_raw(slice::from_raw_parts_mut( |
54 | self.ptr.cast::<MaybeUninit<T>>(), |
55 | self.cap, |
56 | ))); |
57 | } |
58 | |
59 | /// Returns a pointer to the task at the specified `index`. |
60 | unsafe fn at(&self, index: isize) -> *mut T { |
61 | // `self.cap` is always a power of two. |
62 | // We do all the loads at `MaybeUninit` because we might realize, after loading, that we |
63 | // don't actually have the right to access this memory. |
64 | self.ptr.offset(index & (self.cap - 1) as isize) |
65 | } |
66 | |
67 | /// Writes `task` into the specified `index`. |
68 | /// |
69 | /// This method might be concurrently called with another `read` at the same index, which is |
70 | /// technically speaking a data race and therefore UB. We should use an atomic store here, but |
71 | /// that would be more expensive and difficult to implement generically for all types `T`. |
72 | /// Hence, as a hack, we use a volatile write instead. |
73 | unsafe fn write(&self, index: isize, task: MaybeUninit<T>) { |
74 | ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task) |
75 | } |
76 | |
77 | /// Reads a task from the specified `index`. |
78 | /// |
79 | /// This method might be concurrently called with another `write` at the same index, which is |
80 | /// technically speaking a data race and therefore UB. We should use an atomic load here, but |
81 | /// that would be more expensive and difficult to implement generically for all types `T`. |
82 | /// Hence, as a hack, we use a volatile load instead. |
83 | unsafe fn read(&self, index: isize) -> MaybeUninit<T> { |
84 | ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>()) |
85 | } |
86 | } |
87 | |
88 | impl<T> Clone for Buffer<T> { |
89 | fn clone(&self) -> Buffer<T> { |
90 | *self |
91 | } |
92 | } |
93 | |
94 | impl<T> Copy for Buffer<T> {} |
95 | |
96 | /// Internal queue data shared between the worker and stealers. |
97 | /// |
98 | /// The implementation is based on the following work: |
99 | /// |
100 | /// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] |
101 | /// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. |
102 | /// PPoPP 2013.][weak-mem] |
103 | /// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ |
104 | /// atomics. OOPSLA 2013.][checker] |
105 | /// |
106 | /// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 |
107 | /// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 |
108 | /// [checker]: https://dl.acm.org/citation.cfm?id=2509514 |
109 | struct Inner<T> { |
110 | /// The front index. |
111 | front: AtomicIsize, |
112 | |
113 | /// The back index. |
114 | back: AtomicIsize, |
115 | |
116 | /// The underlying buffer. |
117 | buffer: CachePadded<Atomic<Buffer<T>>>, |
118 | } |
119 | |
120 | impl<T> Drop for Inner<T> { |
121 | fn drop(&mut self) { |
122 | // Load the back index, front index, and buffer. |
123 | let b: isize = *self.back.get_mut(); |
124 | let f: isize = *self.front.get_mut(); |
125 | |
126 | unsafe { |
127 | let buffer: Shared<'_, Buffer> = self.buffer.load(ord:Ordering::Relaxed, epoch::unprotected()); |
128 | |
129 | // Go through the buffer from front to back and drop all tasks in the queue. |
130 | let mut i: isize = f; |
131 | while i != b { |
132 | buffer.deref().at(index:i).drop_in_place(); |
133 | i = i.wrapping_add(1); |
134 | } |
135 | |
136 | // Free the memory allocated by the buffer. |
137 | buffer.into_owned().into_box().dealloc(); |
138 | } |
139 | } |
140 | } |
141 | |
142 | /// Worker queue flavor: FIFO or LIFO. |
143 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
144 | enum Flavor { |
145 | /// The first-in first-out flavor. |
146 | Fifo, |
147 | |
148 | /// The last-in first-out flavor. |
149 | Lifo, |
150 | } |
151 | |
152 | /// A worker queue. |
153 | /// |
154 | /// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal |
155 | /// tasks from it. Task schedulers typically create a single worker queue per thread. |
156 | /// |
157 | /// # Examples |
158 | /// |
159 | /// A FIFO worker: |
160 | /// |
161 | /// ``` |
162 | /// use crossbeam_deque::{Steal, Worker}; |
163 | /// |
164 | /// let w = Worker::new_fifo(); |
165 | /// let s = w.stealer(); |
166 | /// |
167 | /// w.push(1); |
168 | /// w.push(2); |
169 | /// w.push(3); |
170 | /// |
171 | /// assert_eq!(s.steal(), Steal::Success(1)); |
172 | /// assert_eq!(w.pop(), Some(2)); |
173 | /// assert_eq!(w.pop(), Some(3)); |
174 | /// ``` |
175 | /// |
176 | /// A LIFO worker: |
177 | /// |
178 | /// ``` |
179 | /// use crossbeam_deque::{Steal, Worker}; |
180 | /// |
181 | /// let w = Worker::new_lifo(); |
182 | /// let s = w.stealer(); |
183 | /// |
184 | /// w.push(1); |
185 | /// w.push(2); |
186 | /// w.push(3); |
187 | /// |
188 | /// assert_eq!(s.steal(), Steal::Success(1)); |
189 | /// assert_eq!(w.pop(), Some(3)); |
190 | /// assert_eq!(w.pop(), Some(2)); |
191 | /// ``` |
192 | pub struct Worker<T> { |
193 | /// A reference to the inner representation of the queue. |
194 | inner: Arc<CachePadded<Inner<T>>>, |
195 | |
196 | /// A copy of `inner.buffer` for quick access. |
197 | buffer: Cell<Buffer<T>>, |
198 | |
199 | /// The flavor of the queue. |
200 | flavor: Flavor, |
201 | |
202 | /// Indicates that the worker cannot be shared among threads. |
203 | _marker: PhantomData<*mut ()>, // !Send + !Sync |
204 | } |
205 | |
206 | unsafe impl<T: Send> Send for Worker<T> {} |
207 | |
208 | impl<T> Worker<T> { |
209 | /// Creates a FIFO worker queue. |
210 | /// |
211 | /// Tasks are pushed and popped from opposite ends. |
212 | /// |
213 | /// # Examples |
214 | /// |
215 | /// ``` |
216 | /// use crossbeam_deque::Worker; |
217 | /// |
218 | /// let w = Worker::<i32>::new_fifo(); |
219 | /// ``` |
220 | pub fn new_fifo() -> Worker<T> { |
221 | let buffer = Buffer::alloc(MIN_CAP); |
222 | |
223 | let inner = Arc::new(CachePadded::new(Inner { |
224 | front: AtomicIsize::new(0), |
225 | back: AtomicIsize::new(0), |
226 | buffer: CachePadded::new(Atomic::new(buffer)), |
227 | })); |
228 | |
229 | Worker { |
230 | inner, |
231 | buffer: Cell::new(buffer), |
232 | flavor: Flavor::Fifo, |
233 | _marker: PhantomData, |
234 | } |
235 | } |
236 | |
237 | /// Creates a LIFO worker queue. |
238 | /// |
239 | /// Tasks are pushed and popped from the same end. |
240 | /// |
241 | /// # Examples |
242 | /// |
243 | /// ``` |
244 | /// use crossbeam_deque::Worker; |
245 | /// |
246 | /// let w = Worker::<i32>::new_lifo(); |
247 | /// ``` |
248 | pub fn new_lifo() -> Worker<T> { |
249 | let buffer = Buffer::alloc(MIN_CAP); |
250 | |
251 | let inner = Arc::new(CachePadded::new(Inner { |
252 | front: AtomicIsize::new(0), |
253 | back: AtomicIsize::new(0), |
254 | buffer: CachePadded::new(Atomic::new(buffer)), |
255 | })); |
256 | |
257 | Worker { |
258 | inner, |
259 | buffer: Cell::new(buffer), |
260 | flavor: Flavor::Lifo, |
261 | _marker: PhantomData, |
262 | } |
263 | } |
264 | |
265 | /// Creates a stealer for this queue. |
266 | /// |
267 | /// The returned stealer can be shared among threads and cloned. |
268 | /// |
269 | /// # Examples |
270 | /// |
271 | /// ``` |
272 | /// use crossbeam_deque::Worker; |
273 | /// |
274 | /// let w = Worker::<i32>::new_lifo(); |
275 | /// let s = w.stealer(); |
276 | /// ``` |
277 | pub fn stealer(&self) -> Stealer<T> { |
278 | Stealer { |
279 | inner: self.inner.clone(), |
280 | flavor: self.flavor, |
281 | } |
282 | } |
283 | |
284 | /// Resizes the internal buffer to the new capacity of `new_cap`. |
285 | #[cold ] |
286 | unsafe fn resize(&self, new_cap: usize) { |
287 | // Load the back index, front index, and buffer. |
288 | let b = self.inner.back.load(Ordering::Relaxed); |
289 | let f = self.inner.front.load(Ordering::Relaxed); |
290 | let buffer = self.buffer.get(); |
291 | |
292 | // Allocate a new buffer and copy data from the old buffer to the new one. |
293 | let new = Buffer::alloc(new_cap); |
294 | let mut i = f; |
295 | while i != b { |
296 | ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1); |
297 | i = i.wrapping_add(1); |
298 | } |
299 | |
300 | let guard = &epoch::pin(); |
301 | |
302 | // Replace the old buffer with the new one. |
303 | self.buffer.replace(new); |
304 | let old = |
305 | self.inner |
306 | .buffer |
307 | .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard); |
308 | |
309 | // Destroy the old buffer later. |
310 | guard.defer_unchecked(move || old.into_owned().into_box().dealloc()); |
311 | |
312 | // If the buffer is very large, then flush the thread-local garbage in order to deallocate |
313 | // it as soon as possible. |
314 | if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { |
315 | guard.flush(); |
316 | } |
317 | } |
318 | |
319 | /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the |
320 | /// buffer. |
321 | fn reserve(&self, reserve_cap: usize) { |
322 | if reserve_cap > 0 { |
323 | // Compute the current length. |
324 | let b = self.inner.back.load(Ordering::Relaxed); |
325 | let f = self.inner.front.load(Ordering::SeqCst); |
326 | let len = b.wrapping_sub(f) as usize; |
327 | |
328 | // The current capacity. |
329 | let cap = self.buffer.get().cap; |
330 | |
331 | // Is there enough capacity to push `reserve_cap` tasks? |
332 | if cap - len < reserve_cap { |
333 | // Keep doubling the capacity as much as is needed. |
334 | let mut new_cap = cap * 2; |
335 | while new_cap - len < reserve_cap { |
336 | new_cap *= 2; |
337 | } |
338 | |
339 | // Resize the buffer. |
340 | unsafe { |
341 | self.resize(new_cap); |
342 | } |
343 | } |
344 | } |
345 | } |
346 | |
347 | /// Returns `true` if the queue is empty. |
348 | /// |
349 | /// ``` |
350 | /// use crossbeam_deque::Worker; |
351 | /// |
352 | /// let w = Worker::new_lifo(); |
353 | /// |
354 | /// assert!(w.is_empty()); |
355 | /// w.push(1); |
356 | /// assert!(!w.is_empty()); |
357 | /// ``` |
358 | pub fn is_empty(&self) -> bool { |
359 | let b = self.inner.back.load(Ordering::Relaxed); |
360 | let f = self.inner.front.load(Ordering::SeqCst); |
361 | b.wrapping_sub(f) <= 0 |
362 | } |
363 | |
364 | /// Returns the number of tasks in the deque. |
365 | /// |
366 | /// ``` |
367 | /// use crossbeam_deque::Worker; |
368 | /// |
369 | /// let w = Worker::new_lifo(); |
370 | /// |
371 | /// assert_eq!(w.len(), 0); |
372 | /// w.push(1); |
373 | /// assert_eq!(w.len(), 1); |
374 | /// w.push(1); |
375 | /// assert_eq!(w.len(), 2); |
376 | /// ``` |
377 | pub fn len(&self) -> usize { |
378 | let b = self.inner.back.load(Ordering::Relaxed); |
379 | let f = self.inner.front.load(Ordering::SeqCst); |
380 | b.wrapping_sub(f).max(0) as usize |
381 | } |
382 | |
383 | /// Pushes a task into the queue. |
384 | /// |
385 | /// # Examples |
386 | /// |
387 | /// ``` |
388 | /// use crossbeam_deque::Worker; |
389 | /// |
390 | /// let w = Worker::new_lifo(); |
391 | /// w.push(1); |
392 | /// w.push(2); |
393 | /// ``` |
394 | pub fn push(&self, task: T) { |
395 | // Load the back index, front index, and buffer. |
396 | let b = self.inner.back.load(Ordering::Relaxed); |
397 | let f = self.inner.front.load(Ordering::Acquire); |
398 | let mut buffer = self.buffer.get(); |
399 | |
400 | // Calculate the length of the queue. |
401 | let len = b.wrapping_sub(f); |
402 | |
403 | // Is the queue full? |
404 | if len >= buffer.cap as isize { |
405 | // Yes. Grow the underlying buffer. |
406 | unsafe { |
407 | self.resize(2 * buffer.cap); |
408 | } |
409 | buffer = self.buffer.get(); |
410 | } |
411 | |
412 | // Write `task` into the slot. |
413 | unsafe { |
414 | buffer.write(b, MaybeUninit::new(task)); |
415 | } |
416 | |
417 | atomic::fence(Ordering::Release); |
418 | |
419 | // Increment the back index. |
420 | // |
421 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
422 | // races because it doesn't understand fences. |
423 | self.inner.back.store(b.wrapping_add(1), Ordering::Release); |
424 | } |
425 | |
426 | /// Pops a task from the queue. |
427 | /// |
428 | /// # Examples |
429 | /// |
430 | /// ``` |
431 | /// use crossbeam_deque::Worker; |
432 | /// |
433 | /// let w = Worker::new_fifo(); |
434 | /// w.push(1); |
435 | /// w.push(2); |
436 | /// |
437 | /// assert_eq!(w.pop(), Some(1)); |
438 | /// assert_eq!(w.pop(), Some(2)); |
439 | /// assert_eq!(w.pop(), None); |
440 | /// ``` |
441 | pub fn pop(&self) -> Option<T> { |
442 | // Load the back and front index. |
443 | let b = self.inner.back.load(Ordering::Relaxed); |
444 | let f = self.inner.front.load(Ordering::Relaxed); |
445 | |
446 | // Calculate the length of the queue. |
447 | let len = b.wrapping_sub(f); |
448 | |
449 | // Is the queue empty? |
450 | if len <= 0 { |
451 | return None; |
452 | } |
453 | |
454 | match self.flavor { |
455 | // Pop from the front of the queue. |
456 | Flavor::Fifo => { |
457 | // Try incrementing the front index to pop the task. |
458 | let f = self.inner.front.fetch_add(1, Ordering::SeqCst); |
459 | let new_f = f.wrapping_add(1); |
460 | |
461 | if b.wrapping_sub(new_f) < 0 { |
462 | self.inner.front.store(f, Ordering::Relaxed); |
463 | return None; |
464 | } |
465 | |
466 | unsafe { |
467 | // Read the popped task. |
468 | let buffer = self.buffer.get(); |
469 | let task = buffer.read(f).assume_init(); |
470 | |
471 | // Shrink the buffer if `len - 1` is less than one fourth of the capacity. |
472 | if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 { |
473 | self.resize(buffer.cap / 2); |
474 | } |
475 | |
476 | Some(task) |
477 | } |
478 | } |
479 | |
480 | // Pop from the back of the queue. |
481 | Flavor::Lifo => { |
482 | // Decrement the back index. |
483 | let b = b.wrapping_sub(1); |
484 | self.inner.back.store(b, Ordering::Relaxed); |
485 | |
486 | atomic::fence(Ordering::SeqCst); |
487 | |
488 | // Load the front index. |
489 | let f = self.inner.front.load(Ordering::Relaxed); |
490 | |
491 | // Compute the length after the back index was decremented. |
492 | let len = b.wrapping_sub(f); |
493 | |
494 | if len < 0 { |
495 | // The queue is empty. Restore the back index to the original task. |
496 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
497 | None |
498 | } else { |
499 | // Read the task to be popped. |
500 | let buffer = self.buffer.get(); |
501 | let mut task = unsafe { Some(buffer.read(b)) }; |
502 | |
503 | // Are we popping the last task from the queue? |
504 | if len == 0 { |
505 | // Try incrementing the front index. |
506 | if self |
507 | .inner |
508 | .front |
509 | .compare_exchange( |
510 | f, |
511 | f.wrapping_add(1), |
512 | Ordering::SeqCst, |
513 | Ordering::Relaxed, |
514 | ) |
515 | .is_err() |
516 | { |
517 | // Failed. We didn't pop anything. Reset to `None`. |
518 | task.take(); |
519 | } |
520 | |
521 | // Restore the back index to the original task. |
522 | self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed); |
523 | } else { |
524 | // Shrink the buffer if `len` is less than one fourth of the capacity. |
525 | if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 { |
526 | unsafe { |
527 | self.resize(buffer.cap / 2); |
528 | } |
529 | } |
530 | } |
531 | |
532 | task.map(|t| unsafe { t.assume_init() }) |
533 | } |
534 | } |
535 | } |
536 | } |
537 | } |
538 | |
539 | impl<T> fmt::Debug for Worker<T> { |
540 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
541 | f.pad("Worker { .. }" ) |
542 | } |
543 | } |
544 | |
545 | /// A stealer handle of a worker queue. |
546 | /// |
547 | /// Stealers can be shared among threads. |
548 | /// |
549 | /// Task schedulers typically have a single worker queue per worker thread. |
550 | /// |
551 | /// # Examples |
552 | /// |
553 | /// ``` |
554 | /// use crossbeam_deque::{Steal, Worker}; |
555 | /// |
556 | /// let w = Worker::new_lifo(); |
557 | /// w.push(1); |
558 | /// w.push(2); |
559 | /// |
560 | /// let s = w.stealer(); |
561 | /// assert_eq!(s.steal(), Steal::Success(1)); |
562 | /// assert_eq!(s.steal(), Steal::Success(2)); |
563 | /// assert_eq!(s.steal(), Steal::Empty); |
564 | /// ``` |
565 | pub struct Stealer<T> { |
566 | /// A reference to the inner representation of the queue. |
567 | inner: Arc<CachePadded<Inner<T>>>, |
568 | |
569 | /// The flavor of the queue. |
570 | flavor: Flavor, |
571 | } |
572 | |
573 | unsafe impl<T: Send> Send for Stealer<T> {} |
574 | unsafe impl<T: Send> Sync for Stealer<T> {} |
575 | |
576 | impl<T> Stealer<T> { |
577 | /// Returns `true` if the queue is empty. |
578 | /// |
579 | /// ``` |
580 | /// use crossbeam_deque::Worker; |
581 | /// |
582 | /// let w = Worker::new_lifo(); |
583 | /// let s = w.stealer(); |
584 | /// |
585 | /// assert!(s.is_empty()); |
586 | /// w.push(1); |
587 | /// assert!(!s.is_empty()); |
588 | /// ``` |
589 | pub fn is_empty(&self) -> bool { |
590 | let f = self.inner.front.load(Ordering::Acquire); |
591 | atomic::fence(Ordering::SeqCst); |
592 | let b = self.inner.back.load(Ordering::Acquire); |
593 | b.wrapping_sub(f) <= 0 |
594 | } |
595 | |
596 | /// Returns the number of tasks in the deque. |
597 | /// |
598 | /// ``` |
599 | /// use crossbeam_deque::Worker; |
600 | /// |
601 | /// let w = Worker::new_lifo(); |
602 | /// let s = w.stealer(); |
603 | /// |
604 | /// assert_eq!(s.len(), 0); |
605 | /// w.push(1); |
606 | /// assert_eq!(s.len(), 1); |
607 | /// w.push(2); |
608 | /// assert_eq!(s.len(), 2); |
609 | /// ``` |
610 | pub fn len(&self) -> usize { |
611 | let f = self.inner.front.load(Ordering::Acquire); |
612 | atomic::fence(Ordering::SeqCst); |
613 | let b = self.inner.back.load(Ordering::Acquire); |
614 | b.wrapping_sub(f).max(0) as usize |
615 | } |
616 | |
617 | /// Steals a task from the queue. |
618 | /// |
619 | /// # Examples |
620 | /// |
621 | /// ``` |
622 | /// use crossbeam_deque::{Steal, Worker}; |
623 | /// |
624 | /// let w = Worker::new_lifo(); |
625 | /// w.push(1); |
626 | /// w.push(2); |
627 | /// |
628 | /// let s = w.stealer(); |
629 | /// assert_eq!(s.steal(), Steal::Success(1)); |
630 | /// assert_eq!(s.steal(), Steal::Success(2)); |
631 | /// ``` |
632 | pub fn steal(&self) -> Steal<T> { |
633 | // Load the front index. |
634 | let f = self.inner.front.load(Ordering::Acquire); |
635 | |
636 | // A SeqCst fence is needed here. |
637 | // |
638 | // If the current thread is already pinned (reentrantly), we must manually issue the |
639 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
640 | // have to. |
641 | if epoch::is_pinned() { |
642 | atomic::fence(Ordering::SeqCst); |
643 | } |
644 | |
645 | let guard = &epoch::pin(); |
646 | |
647 | // Load the back index. |
648 | let b = self.inner.back.load(Ordering::Acquire); |
649 | |
650 | // Is the queue empty? |
651 | if b.wrapping_sub(f) <= 0 { |
652 | return Steal::Empty; |
653 | } |
654 | |
655 | // Load the buffer and read the task at the front. |
656 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
657 | let task = unsafe { buffer.deref().read(f) }; |
658 | |
659 | // Try incrementing the front index to steal the task. |
660 | // If the buffer has been swapped or the increment fails, we retry. |
661 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
662 | || self |
663 | .inner |
664 | .front |
665 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
666 | .is_err() |
667 | { |
668 | // We didn't steal this task, forget it. |
669 | return Steal::Retry; |
670 | } |
671 | |
672 | // Return the stolen task. |
673 | Steal::Success(unsafe { task.assume_init() }) |
674 | } |
675 | |
676 | /// Steals a batch of tasks and pushes them into another worker. |
677 | /// |
678 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
679 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
680 | /// |
681 | /// # Examples |
682 | /// |
683 | /// ``` |
684 | /// use crossbeam_deque::Worker; |
685 | /// |
686 | /// let w1 = Worker::new_fifo(); |
687 | /// w1.push(1); |
688 | /// w1.push(2); |
689 | /// w1.push(3); |
690 | /// w1.push(4); |
691 | /// |
692 | /// let s = w1.stealer(); |
693 | /// let w2 = Worker::new_fifo(); |
694 | /// |
695 | /// let _ = s.steal_batch(&w2); |
696 | /// assert_eq!(w2.pop(), Some(1)); |
697 | /// assert_eq!(w2.pop(), Some(2)); |
698 | /// ``` |
699 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
700 | self.steal_batch_with_limit(dest, MAX_BATCH) |
701 | } |
702 | |
703 | /// Steals no more than `limit` of tasks and pushes them into another worker. |
704 | /// |
705 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
706 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
707 | /// |
708 | /// # Examples |
709 | /// |
710 | /// ``` |
711 | /// use crossbeam_deque::Worker; |
712 | /// |
713 | /// let w1 = Worker::new_fifo(); |
714 | /// w1.push(1); |
715 | /// w1.push(2); |
716 | /// w1.push(3); |
717 | /// w1.push(4); |
718 | /// w1.push(5); |
719 | /// w1.push(6); |
720 | /// |
721 | /// let s = w1.stealer(); |
722 | /// let w2 = Worker::new_fifo(); |
723 | /// |
724 | /// let _ = s.steal_batch_with_limit(&w2, 2); |
725 | /// assert_eq!(w2.pop(), Some(1)); |
726 | /// assert_eq!(w2.pop(), Some(2)); |
727 | /// assert_eq!(w2.pop(), None); |
728 | /// |
729 | /// w1.push(7); |
730 | /// w1.push(8); |
731 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
732 | /// // half of the elements are currently popped, but the number of popped elements is considered |
733 | /// // an implementation detail that may be changed in the future. |
734 | /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX); |
735 | /// assert_eq!(w2.len(), 3); |
736 | /// ``` |
737 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
738 | assert!(limit > 0); |
739 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
740 | if dest.is_empty() { |
741 | return Steal::Empty; |
742 | } else { |
743 | return Steal::Success(()); |
744 | } |
745 | } |
746 | |
747 | // Load the front index. |
748 | let mut f = self.inner.front.load(Ordering::Acquire); |
749 | |
750 | // A SeqCst fence is needed here. |
751 | // |
752 | // If the current thread is already pinned (reentrantly), we must manually issue the |
753 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
754 | // have to. |
755 | if epoch::is_pinned() { |
756 | atomic::fence(Ordering::SeqCst); |
757 | } |
758 | |
759 | let guard = &epoch::pin(); |
760 | |
761 | // Load the back index. |
762 | let b = self.inner.back.load(Ordering::Acquire); |
763 | |
764 | // Is the queue empty? |
765 | let len = b.wrapping_sub(f); |
766 | if len <= 0 { |
767 | return Steal::Empty; |
768 | } |
769 | |
770 | // Reserve capacity for the stolen batch. |
771 | let batch_size = cmp::min((len as usize + 1) / 2, limit); |
772 | dest.reserve(batch_size); |
773 | let mut batch_size = batch_size as isize; |
774 | |
775 | // Get the destination buffer and back index. |
776 | let dest_buffer = dest.buffer.get(); |
777 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
778 | |
779 | // Load the buffer. |
780 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
781 | |
782 | match self.flavor { |
783 | // Steal a batch of tasks from the front at once. |
784 | Flavor::Fifo => { |
785 | // Copy the batch from the source to the destination buffer. |
786 | match dest.flavor { |
787 | Flavor::Fifo => { |
788 | for i in 0..batch_size { |
789 | unsafe { |
790 | let task = buffer.deref().read(f.wrapping_add(i)); |
791 | dest_buffer.write(dest_b.wrapping_add(i), task); |
792 | } |
793 | } |
794 | } |
795 | Flavor::Lifo => { |
796 | for i in 0..batch_size { |
797 | unsafe { |
798 | let task = buffer.deref().read(f.wrapping_add(i)); |
799 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
800 | } |
801 | } |
802 | } |
803 | } |
804 | |
805 | // Try incrementing the front index to steal the batch. |
806 | // If the buffer has been swapped or the increment fails, we retry. |
807 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
808 | || self |
809 | .inner |
810 | .front |
811 | .compare_exchange( |
812 | f, |
813 | f.wrapping_add(batch_size), |
814 | Ordering::SeqCst, |
815 | Ordering::Relaxed, |
816 | ) |
817 | .is_err() |
818 | { |
819 | return Steal::Retry; |
820 | } |
821 | |
822 | dest_b = dest_b.wrapping_add(batch_size); |
823 | } |
824 | |
825 | // Steal a batch of tasks from the front one by one. |
826 | Flavor::Lifo => { |
827 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
828 | // Use a new variable to avoid the warning, and to make it clear we aren't |
829 | // modifying the loop exit condition during iteration. |
830 | let original_batch_size = batch_size; |
831 | |
832 | for i in 0..original_batch_size { |
833 | // If this is not the first steal, check whether the queue is empty. |
834 | if i > 0 { |
835 | // We've already got the current front index. Now execute the fence to |
836 | // synchronize with other threads. |
837 | atomic::fence(Ordering::SeqCst); |
838 | |
839 | // Load the back index. |
840 | let b = self.inner.back.load(Ordering::Acquire); |
841 | |
842 | // Is the queue empty? |
843 | if b.wrapping_sub(f) <= 0 { |
844 | batch_size = i; |
845 | break; |
846 | } |
847 | } |
848 | |
849 | // Read the task at the front. |
850 | let task = unsafe { buffer.deref().read(f) }; |
851 | |
852 | // Try incrementing the front index to steal the task. |
853 | // If the buffer has been swapped or the increment fails, we retry. |
854 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
855 | || self |
856 | .inner |
857 | .front |
858 | .compare_exchange( |
859 | f, |
860 | f.wrapping_add(1), |
861 | Ordering::SeqCst, |
862 | Ordering::Relaxed, |
863 | ) |
864 | .is_err() |
865 | { |
866 | // We didn't steal this task, forget it and break from the loop. |
867 | batch_size = i; |
868 | break; |
869 | } |
870 | |
871 | // Write the stolen task into the destination buffer. |
872 | unsafe { |
873 | dest_buffer.write(dest_b, task); |
874 | } |
875 | |
876 | // Move the source front index and the destination back index one step forward. |
877 | f = f.wrapping_add(1); |
878 | dest_b = dest_b.wrapping_add(1); |
879 | } |
880 | |
881 | // If we didn't steal anything, the operation needs to be retried. |
882 | if batch_size == 0 { |
883 | return Steal::Retry; |
884 | } |
885 | |
886 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
887 | if dest.flavor == Flavor::Fifo { |
888 | for i in 0..batch_size / 2 { |
889 | unsafe { |
890 | let i1 = dest_b.wrapping_sub(batch_size - i); |
891 | let i2 = dest_b.wrapping_sub(i + 1); |
892 | let t1 = dest_buffer.read(i1); |
893 | let t2 = dest_buffer.read(i2); |
894 | dest_buffer.write(i1, t2); |
895 | dest_buffer.write(i2, t1); |
896 | } |
897 | } |
898 | } |
899 | } |
900 | } |
901 | |
902 | atomic::fence(Ordering::Release); |
903 | |
904 | // Update the back index in the destination queue. |
905 | // |
906 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
907 | // races because it doesn't understand fences. |
908 | dest.inner.back.store(dest_b, Ordering::Release); |
909 | |
910 | // Return with success. |
911 | Steal::Success(()) |
912 | } |
913 | |
914 | /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker. |
915 | /// |
916 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
917 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
918 | /// |
919 | /// # Examples |
920 | /// |
921 | /// ``` |
922 | /// use crossbeam_deque::{Steal, Worker}; |
923 | /// |
924 | /// let w1 = Worker::new_fifo(); |
925 | /// w1.push(1); |
926 | /// w1.push(2); |
927 | /// w1.push(3); |
928 | /// w1.push(4); |
929 | /// |
930 | /// let s = w1.stealer(); |
931 | /// let w2 = Worker::new_fifo(); |
932 | /// |
933 | /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1)); |
934 | /// assert_eq!(w2.pop(), Some(2)); |
935 | /// ``` |
936 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
937 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH) |
938 | } |
939 | |
940 | /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from |
941 | /// that worker. |
942 | /// |
943 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
944 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
945 | /// |
946 | /// # Examples |
947 | /// |
948 | /// ``` |
949 | /// use crossbeam_deque::{Steal, Worker}; |
950 | /// |
951 | /// let w1 = Worker::new_fifo(); |
952 | /// w1.push(1); |
953 | /// w1.push(2); |
954 | /// w1.push(3); |
955 | /// w1.push(4); |
956 | /// w1.push(5); |
957 | /// w1.push(6); |
958 | /// |
959 | /// let s = w1.stealer(); |
960 | /// let w2 = Worker::new_fifo(); |
961 | /// |
962 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1)); |
963 | /// assert_eq!(w2.pop(), Some(2)); |
964 | /// assert_eq!(w2.pop(), None); |
965 | /// |
966 | /// w1.push(7); |
967 | /// w1.push(8); |
968 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
969 | /// // half of the elements are currently popped, but the number of popped elements is considered |
970 | /// // an implementation detail that may be changed in the future. |
971 | /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3)); |
972 | /// assert_eq!(w2.pop(), Some(4)); |
973 | /// assert_eq!(w2.pop(), Some(5)); |
974 | /// assert_eq!(w2.pop(), None); |
975 | /// ``` |
976 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
977 | assert!(limit > 0); |
978 | if Arc::ptr_eq(&self.inner, &dest.inner) { |
979 | match dest.pop() { |
980 | None => return Steal::Empty, |
981 | Some(task) => return Steal::Success(task), |
982 | } |
983 | } |
984 | |
985 | // Load the front index. |
986 | let mut f = self.inner.front.load(Ordering::Acquire); |
987 | |
988 | // A SeqCst fence is needed here. |
989 | // |
990 | // If the current thread is already pinned (reentrantly), we must manually issue the |
991 | // fence. Otherwise, the following pinning will issue the fence anyway, so we don't |
992 | // have to. |
993 | if epoch::is_pinned() { |
994 | atomic::fence(Ordering::SeqCst); |
995 | } |
996 | |
997 | let guard = &epoch::pin(); |
998 | |
999 | // Load the back index. |
1000 | let b = self.inner.back.load(Ordering::Acquire); |
1001 | |
1002 | // Is the queue empty? |
1003 | let len = b.wrapping_sub(f); |
1004 | if len <= 0 { |
1005 | return Steal::Empty; |
1006 | } |
1007 | |
1008 | // Reserve capacity for the stolen batch. |
1009 | let batch_size = cmp::min((len as usize - 1) / 2, limit - 1); |
1010 | dest.reserve(batch_size); |
1011 | let mut batch_size = batch_size as isize; |
1012 | |
1013 | // Get the destination buffer and back index. |
1014 | let dest_buffer = dest.buffer.get(); |
1015 | let mut dest_b = dest.inner.back.load(Ordering::Relaxed); |
1016 | |
1017 | // Load the buffer |
1018 | let buffer = self.inner.buffer.load(Ordering::Acquire, guard); |
1019 | |
1020 | // Read the task at the front. |
1021 | let mut task = unsafe { buffer.deref().read(f) }; |
1022 | |
1023 | match self.flavor { |
1024 | // Steal a batch of tasks from the front at once. |
1025 | Flavor::Fifo => { |
1026 | // Copy the batch from the source to the destination buffer. |
1027 | match dest.flavor { |
1028 | Flavor::Fifo => { |
1029 | for i in 0..batch_size { |
1030 | unsafe { |
1031 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1032 | dest_buffer.write(dest_b.wrapping_add(i), task); |
1033 | } |
1034 | } |
1035 | } |
1036 | Flavor::Lifo => { |
1037 | for i in 0..batch_size { |
1038 | unsafe { |
1039 | let task = buffer.deref().read(f.wrapping_add(i + 1)); |
1040 | dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task); |
1041 | } |
1042 | } |
1043 | } |
1044 | } |
1045 | |
1046 | // Try incrementing the front index to steal the task. |
1047 | // If the buffer has been swapped or the increment fails, we retry. |
1048 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1049 | || self |
1050 | .inner |
1051 | .front |
1052 | .compare_exchange( |
1053 | f, |
1054 | f.wrapping_add(batch_size + 1), |
1055 | Ordering::SeqCst, |
1056 | Ordering::Relaxed, |
1057 | ) |
1058 | .is_err() |
1059 | { |
1060 | // We didn't steal this task, forget it. |
1061 | return Steal::Retry; |
1062 | } |
1063 | |
1064 | dest_b = dest_b.wrapping_add(batch_size); |
1065 | } |
1066 | |
1067 | // Steal a batch of tasks from the front one by one. |
1068 | Flavor::Lifo => { |
1069 | // Try incrementing the front index to steal the task. |
1070 | if self |
1071 | .inner |
1072 | .front |
1073 | .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed) |
1074 | .is_err() |
1075 | { |
1076 | // We didn't steal this task, forget it. |
1077 | return Steal::Retry; |
1078 | } |
1079 | |
1080 | // Move the front index one step forward. |
1081 | f = f.wrapping_add(1); |
1082 | |
1083 | // Repeat the same procedure for the batch steals. |
1084 | // |
1085 | // This loop may modify the batch_size, which triggers a clippy lint warning. |
1086 | // Use a new variable to avoid the warning, and to make it clear we aren't |
1087 | // modifying the loop exit condition during iteration. |
1088 | let original_batch_size = batch_size; |
1089 | for i in 0..original_batch_size { |
1090 | // We've already got the current front index. Now execute the fence to |
1091 | // synchronize with other threads. |
1092 | atomic::fence(Ordering::SeqCst); |
1093 | |
1094 | // Load the back index. |
1095 | let b = self.inner.back.load(Ordering::Acquire); |
1096 | |
1097 | // Is the queue empty? |
1098 | if b.wrapping_sub(f) <= 0 { |
1099 | batch_size = i; |
1100 | break; |
1101 | } |
1102 | |
1103 | // Read the task at the front. |
1104 | let tmp = unsafe { buffer.deref().read(f) }; |
1105 | |
1106 | // Try incrementing the front index to steal the task. |
1107 | // If the buffer has been swapped or the increment fails, we retry. |
1108 | if self.inner.buffer.load(Ordering::Acquire, guard) != buffer |
1109 | || self |
1110 | .inner |
1111 | .front |
1112 | .compare_exchange( |
1113 | f, |
1114 | f.wrapping_add(1), |
1115 | Ordering::SeqCst, |
1116 | Ordering::Relaxed, |
1117 | ) |
1118 | .is_err() |
1119 | { |
1120 | // We didn't steal this task, forget it and break from the loop. |
1121 | batch_size = i; |
1122 | break; |
1123 | } |
1124 | |
1125 | // Write the previously stolen task into the destination buffer. |
1126 | unsafe { |
1127 | dest_buffer.write(dest_b, mem::replace(&mut task, tmp)); |
1128 | } |
1129 | |
1130 | // Move the source front index and the destination back index one step forward. |
1131 | f = f.wrapping_add(1); |
1132 | dest_b = dest_b.wrapping_add(1); |
1133 | } |
1134 | |
1135 | // If stealing into a FIFO queue, stolen tasks need to be reversed. |
1136 | if dest.flavor == Flavor::Fifo { |
1137 | for i in 0..batch_size / 2 { |
1138 | unsafe { |
1139 | let i1 = dest_b.wrapping_sub(batch_size - i); |
1140 | let i2 = dest_b.wrapping_sub(i + 1); |
1141 | let t1 = dest_buffer.read(i1); |
1142 | let t2 = dest_buffer.read(i2); |
1143 | dest_buffer.write(i1, t2); |
1144 | dest_buffer.write(i2, t1); |
1145 | } |
1146 | } |
1147 | } |
1148 | } |
1149 | } |
1150 | |
1151 | atomic::fence(Ordering::Release); |
1152 | |
1153 | // Update the back index in the destination queue. |
1154 | // |
1155 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data |
1156 | // races because it doesn't understand fences. |
1157 | dest.inner.back.store(dest_b, Ordering::Release); |
1158 | |
1159 | // Return with success. |
1160 | Steal::Success(unsafe { task.assume_init() }) |
1161 | } |
1162 | } |
1163 | |
1164 | impl<T> Clone for Stealer<T> { |
1165 | fn clone(&self) -> Stealer<T> { |
1166 | Stealer { |
1167 | inner: self.inner.clone(), |
1168 | flavor: self.flavor, |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | impl<T> fmt::Debug for Stealer<T> { |
1174 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1175 | f.pad("Stealer { .. }" ) |
1176 | } |
1177 | } |
1178 | |
1179 | // Bits indicating the state of a slot: |
1180 | // * If a task has been written into the slot, `WRITE` is set. |
1181 | // * If a task has been read from the slot, `READ` is set. |
1182 | // * If the block is being destroyed, `DESTROY` is set. |
1183 | const WRITE: usize = 1; |
1184 | const READ: usize = 2; |
1185 | const DESTROY: usize = 4; |
1186 | |
1187 | // Each block covers one "lap" of indices. |
1188 | const LAP: usize = 64; |
1189 | // The maximum number of values a block can hold. |
1190 | const BLOCK_CAP: usize = LAP - 1; |
1191 | // How many lower bits are reserved for metadata. |
1192 | const SHIFT: usize = 1; |
1193 | // Indicates that the block is not the last one. |
1194 | const HAS_NEXT: usize = 1; |
1195 | |
1196 | /// A slot in a block. |
1197 | struct Slot<T> { |
1198 | /// The task. |
1199 | task: UnsafeCell<MaybeUninit<T>>, |
1200 | |
1201 | /// The state of the slot. |
1202 | state: AtomicUsize, |
1203 | } |
1204 | |
1205 | impl<T> Slot<T> { |
1206 | const UNINIT: Self = Self { |
1207 | task: UnsafeCell::new(MaybeUninit::uninit()), |
1208 | state: AtomicUsize::new(0), |
1209 | }; |
1210 | |
1211 | /// Waits until a task is written into the slot. |
1212 | fn wait_write(&self) { |
1213 | let backoff: Backoff = Backoff::new(); |
1214 | while self.state.load(order:Ordering::Acquire) & WRITE == 0 { |
1215 | backoff.snooze(); |
1216 | } |
1217 | } |
1218 | } |
1219 | |
1220 | /// A block in a linked list. |
1221 | /// |
1222 | /// Each block in the list can hold up to `BLOCK_CAP` values. |
1223 | struct Block<T> { |
1224 | /// The next block in the linked list. |
1225 | next: AtomicPtr<Block<T>>, |
1226 | |
1227 | /// Slots for values. |
1228 | slots: [Slot<T>; BLOCK_CAP], |
1229 | } |
1230 | |
1231 | impl<T> Block<T> { |
1232 | /// Creates an empty block that starts at `start_index`. |
1233 | fn new() -> Block<T> { |
1234 | Self { |
1235 | next: AtomicPtr::new(ptr::null_mut()), |
1236 | slots: [Slot::UNINIT; BLOCK_CAP], |
1237 | } |
1238 | } |
1239 | |
1240 | /// Waits until the next pointer is set. |
1241 | fn wait_next(&self) -> *mut Block<T> { |
1242 | let backoff = Backoff::new(); |
1243 | loop { |
1244 | let next = self.next.load(Ordering::Acquire); |
1245 | if !next.is_null() { |
1246 | return next; |
1247 | } |
1248 | backoff.snooze(); |
1249 | } |
1250 | } |
1251 | |
1252 | /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. |
1253 | unsafe fn destroy(this: *mut Block<T>, count: usize) { |
1254 | // It is not necessary to set the `DESTROY` bit in the last slot because that slot has |
1255 | // begun destruction of the block. |
1256 | for i in (0..count).rev() { |
1257 | let slot = (*this).slots.get_unchecked(i); |
1258 | |
1259 | // Mark the `DESTROY` bit if a thread is still using the slot. |
1260 | if slot.state.load(Ordering::Acquire) & READ == 0 |
1261 | && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 |
1262 | { |
1263 | // If a thread is still using the slot, it will continue destruction of the block. |
1264 | return; |
1265 | } |
1266 | } |
1267 | |
1268 | // No thread is using the block, now it is safe to destroy it. |
1269 | drop(Box::from_raw(this)); |
1270 | } |
1271 | } |
1272 | |
1273 | /// A position in a queue. |
1274 | struct Position<T> { |
1275 | /// The index in the queue. |
1276 | index: AtomicUsize, |
1277 | |
1278 | /// The block in the linked list. |
1279 | block: AtomicPtr<Block<T>>, |
1280 | } |
1281 | |
1282 | /// An injector queue. |
1283 | /// |
1284 | /// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have |
1285 | /// a single injector queue, which is the entry point for new tasks. |
1286 | /// |
1287 | /// # Examples |
1288 | /// |
1289 | /// ``` |
1290 | /// use crossbeam_deque::{Injector, Steal}; |
1291 | /// |
1292 | /// let q = Injector::new(); |
1293 | /// q.push(1); |
1294 | /// q.push(2); |
1295 | /// |
1296 | /// assert_eq!(q.steal(), Steal::Success(1)); |
1297 | /// assert_eq!(q.steal(), Steal::Success(2)); |
1298 | /// assert_eq!(q.steal(), Steal::Empty); |
1299 | /// ``` |
1300 | pub struct Injector<T> { |
1301 | /// The head of the queue. |
1302 | head: CachePadded<Position<T>>, |
1303 | |
1304 | /// The tail of the queue. |
1305 | tail: CachePadded<Position<T>>, |
1306 | |
1307 | /// Indicates that dropping a `Injector<T>` may drop values of type `T`. |
1308 | _marker: PhantomData<T>, |
1309 | } |
1310 | |
1311 | unsafe impl<T: Send> Send for Injector<T> {} |
1312 | unsafe impl<T: Send> Sync for Injector<T> {} |
1313 | |
1314 | impl<T> Default for Injector<T> { |
1315 | fn default() -> Self { |
1316 | let block: *mut Block = Box::into_raw(Box::new(Block::<T>::new())); |
1317 | Self { |
1318 | head: CachePadded::new(Position { |
1319 | block: AtomicPtr::new(block), |
1320 | index: AtomicUsize::new(0), |
1321 | }), |
1322 | tail: CachePadded::new(Position { |
1323 | block: AtomicPtr::new(block), |
1324 | index: AtomicUsize::new(0), |
1325 | }), |
1326 | _marker: PhantomData, |
1327 | } |
1328 | } |
1329 | } |
1330 | |
1331 | impl<T> Injector<T> { |
1332 | /// Creates a new injector queue. |
1333 | /// |
1334 | /// # Examples |
1335 | /// |
1336 | /// ``` |
1337 | /// use crossbeam_deque::Injector; |
1338 | /// |
1339 | /// let q = Injector::<i32>::new(); |
1340 | /// ``` |
1341 | pub fn new() -> Injector<T> { |
1342 | Self::default() |
1343 | } |
1344 | |
1345 | /// Pushes a task into the queue. |
1346 | /// |
1347 | /// # Examples |
1348 | /// |
1349 | /// ``` |
1350 | /// use crossbeam_deque::Injector; |
1351 | /// |
1352 | /// let w = Injector::new(); |
1353 | /// w.push(1); |
1354 | /// w.push(2); |
1355 | /// ``` |
1356 | pub fn push(&self, task: T) { |
1357 | let backoff = Backoff::new(); |
1358 | let mut tail = self.tail.index.load(Ordering::Acquire); |
1359 | let mut block = self.tail.block.load(Ordering::Acquire); |
1360 | let mut next_block = None; |
1361 | |
1362 | loop { |
1363 | // Calculate the offset of the index into the block. |
1364 | let offset = (tail >> SHIFT) % LAP; |
1365 | |
1366 | // If we reached the end of the block, wait until the next one is installed. |
1367 | if offset == BLOCK_CAP { |
1368 | backoff.snooze(); |
1369 | tail = self.tail.index.load(Ordering::Acquire); |
1370 | block = self.tail.block.load(Ordering::Acquire); |
1371 | continue; |
1372 | } |
1373 | |
1374 | // If we're going to have to install the next block, allocate it in advance in order to |
1375 | // make the wait for other threads as short as possible. |
1376 | if offset + 1 == BLOCK_CAP && next_block.is_none() { |
1377 | next_block = Some(Box::new(Block::<T>::new())); |
1378 | } |
1379 | |
1380 | let new_tail = tail + (1 << SHIFT); |
1381 | |
1382 | // Try advancing the tail forward. |
1383 | match self.tail.index.compare_exchange_weak( |
1384 | tail, |
1385 | new_tail, |
1386 | Ordering::SeqCst, |
1387 | Ordering::Acquire, |
1388 | ) { |
1389 | Ok(_) => unsafe { |
1390 | // If we've reached the end of the block, install the next one. |
1391 | if offset + 1 == BLOCK_CAP { |
1392 | let next_block = Box::into_raw(next_block.unwrap()); |
1393 | let next_index = new_tail.wrapping_add(1 << SHIFT); |
1394 | |
1395 | self.tail.block.store(next_block, Ordering::Release); |
1396 | self.tail.index.store(next_index, Ordering::Release); |
1397 | (*block).next.store(next_block, Ordering::Release); |
1398 | } |
1399 | |
1400 | // Write the task into the slot. |
1401 | let slot = (*block).slots.get_unchecked(offset); |
1402 | slot.task.get().write(MaybeUninit::new(task)); |
1403 | slot.state.fetch_or(WRITE, Ordering::Release); |
1404 | |
1405 | return; |
1406 | }, |
1407 | Err(t) => { |
1408 | tail = t; |
1409 | block = self.tail.block.load(Ordering::Acquire); |
1410 | backoff.spin(); |
1411 | } |
1412 | } |
1413 | } |
1414 | } |
1415 | |
1416 | /// Steals a task from the queue. |
1417 | /// |
1418 | /// # Examples |
1419 | /// |
1420 | /// ``` |
1421 | /// use crossbeam_deque::{Injector, Steal}; |
1422 | /// |
1423 | /// let q = Injector::new(); |
1424 | /// q.push(1); |
1425 | /// q.push(2); |
1426 | /// |
1427 | /// assert_eq!(q.steal(), Steal::Success(1)); |
1428 | /// assert_eq!(q.steal(), Steal::Success(2)); |
1429 | /// assert_eq!(q.steal(), Steal::Empty); |
1430 | /// ``` |
1431 | pub fn steal(&self) -> Steal<T> { |
1432 | let mut head; |
1433 | let mut block; |
1434 | let mut offset; |
1435 | |
1436 | let backoff = Backoff::new(); |
1437 | loop { |
1438 | head = self.head.index.load(Ordering::Acquire); |
1439 | block = self.head.block.load(Ordering::Acquire); |
1440 | |
1441 | // Calculate the offset of the index into the block. |
1442 | offset = (head >> SHIFT) % LAP; |
1443 | |
1444 | // If we reached the end of the block, wait until the next one is installed. |
1445 | if offset == BLOCK_CAP { |
1446 | backoff.snooze(); |
1447 | } else { |
1448 | break; |
1449 | } |
1450 | } |
1451 | |
1452 | let mut new_head = head + (1 << SHIFT); |
1453 | |
1454 | if new_head & HAS_NEXT == 0 { |
1455 | atomic::fence(Ordering::SeqCst); |
1456 | let tail = self.tail.index.load(Ordering::Relaxed); |
1457 | |
1458 | // If the tail equals the head, that means the queue is empty. |
1459 | if head >> SHIFT == tail >> SHIFT { |
1460 | return Steal::Empty; |
1461 | } |
1462 | |
1463 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1464 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1465 | new_head |= HAS_NEXT; |
1466 | } |
1467 | } |
1468 | |
1469 | // Try moving the head index forward. |
1470 | if self |
1471 | .head |
1472 | .index |
1473 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1474 | .is_err() |
1475 | { |
1476 | return Steal::Retry; |
1477 | } |
1478 | |
1479 | unsafe { |
1480 | // If we've reached the end of the block, move to the next one. |
1481 | if offset + 1 == BLOCK_CAP { |
1482 | let next = (*block).wait_next(); |
1483 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1484 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1485 | next_index |= HAS_NEXT; |
1486 | } |
1487 | |
1488 | self.head.block.store(next, Ordering::Release); |
1489 | self.head.index.store(next_index, Ordering::Release); |
1490 | } |
1491 | |
1492 | // Read the task. |
1493 | let slot = (*block).slots.get_unchecked(offset); |
1494 | slot.wait_write(); |
1495 | let task = slot.task.get().read().assume_init(); |
1496 | |
1497 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1498 | // but couldn't because we were busy reading from the slot. |
1499 | if (offset + 1 == BLOCK_CAP) |
1500 | || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0) |
1501 | { |
1502 | Block::destroy(block, offset); |
1503 | } |
1504 | |
1505 | Steal::Success(task) |
1506 | } |
1507 | } |
1508 | |
1509 | /// Steals a batch of tasks and pushes them into a worker. |
1510 | /// |
1511 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1512 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1513 | /// |
1514 | /// # Examples |
1515 | /// |
1516 | /// ``` |
1517 | /// use crossbeam_deque::{Injector, Worker}; |
1518 | /// |
1519 | /// let q = Injector::new(); |
1520 | /// q.push(1); |
1521 | /// q.push(2); |
1522 | /// q.push(3); |
1523 | /// q.push(4); |
1524 | /// |
1525 | /// let w = Worker::new_fifo(); |
1526 | /// let _ = q.steal_batch(&w); |
1527 | /// assert_eq!(w.pop(), Some(1)); |
1528 | /// assert_eq!(w.pop(), Some(2)); |
1529 | /// ``` |
1530 | pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> { |
1531 | self.steal_batch_with_limit(dest, MAX_BATCH) |
1532 | } |
1533 | |
1534 | /// Steals no more than of tasks and pushes them into a worker. |
1535 | /// |
1536 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1537 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1538 | /// |
1539 | /// # Examples |
1540 | /// |
1541 | /// ``` |
1542 | /// use crossbeam_deque::{Injector, Worker}; |
1543 | /// |
1544 | /// let q = Injector::new(); |
1545 | /// q.push(1); |
1546 | /// q.push(2); |
1547 | /// q.push(3); |
1548 | /// q.push(4); |
1549 | /// q.push(5); |
1550 | /// q.push(6); |
1551 | /// |
1552 | /// let w = Worker::new_fifo(); |
1553 | /// let _ = q.steal_batch_with_limit(&w, 2); |
1554 | /// assert_eq!(w.pop(), Some(1)); |
1555 | /// assert_eq!(w.pop(), Some(2)); |
1556 | /// assert_eq!(w.pop(), None); |
1557 | /// |
1558 | /// q.push(7); |
1559 | /// q.push(8); |
1560 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1561 | /// // half of the elements are currently popped, but the number of popped elements is considered |
1562 | /// // an implementation detail that may be changed in the future. |
1563 | /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX); |
1564 | /// assert_eq!(w.len(), 3); |
1565 | /// ``` |
1566 | pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> { |
1567 | assert!(limit > 0); |
1568 | let mut head; |
1569 | let mut block; |
1570 | let mut offset; |
1571 | |
1572 | let backoff = Backoff::new(); |
1573 | loop { |
1574 | head = self.head.index.load(Ordering::Acquire); |
1575 | block = self.head.block.load(Ordering::Acquire); |
1576 | |
1577 | // Calculate the offset of the index into the block. |
1578 | offset = (head >> SHIFT) % LAP; |
1579 | |
1580 | // If we reached the end of the block, wait until the next one is installed. |
1581 | if offset == BLOCK_CAP { |
1582 | backoff.snooze(); |
1583 | } else { |
1584 | break; |
1585 | } |
1586 | } |
1587 | |
1588 | let mut new_head = head; |
1589 | let advance; |
1590 | |
1591 | if new_head & HAS_NEXT == 0 { |
1592 | atomic::fence(Ordering::SeqCst); |
1593 | let tail = self.tail.index.load(Ordering::Relaxed); |
1594 | |
1595 | // If the tail equals the head, that means the queue is empty. |
1596 | if head >> SHIFT == tail >> SHIFT { |
1597 | return Steal::Empty; |
1598 | } |
1599 | |
1600 | // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate |
1601 | // the right batch size to steal. |
1602 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1603 | new_head |= HAS_NEXT; |
1604 | // We can steal all tasks till the end of the block. |
1605 | advance = (BLOCK_CAP - offset).min(limit); |
1606 | } else { |
1607 | let len = (tail - head) >> SHIFT; |
1608 | // Steal half of the available tasks. |
1609 | advance = ((len + 1) / 2).min(limit); |
1610 | } |
1611 | } else { |
1612 | // We can steal all tasks till the end of the block. |
1613 | advance = (BLOCK_CAP - offset).min(limit); |
1614 | } |
1615 | |
1616 | new_head += advance << SHIFT; |
1617 | let new_offset = offset + advance; |
1618 | |
1619 | // Try moving the head index forward. |
1620 | if self |
1621 | .head |
1622 | .index |
1623 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1624 | .is_err() |
1625 | { |
1626 | return Steal::Retry; |
1627 | } |
1628 | |
1629 | // Reserve capacity for the stolen batch. |
1630 | let batch_size = new_offset - offset; |
1631 | dest.reserve(batch_size); |
1632 | |
1633 | // Get the destination buffer and back index. |
1634 | let dest_buffer = dest.buffer.get(); |
1635 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1636 | |
1637 | unsafe { |
1638 | // If we've reached the end of the block, move to the next one. |
1639 | if new_offset == BLOCK_CAP { |
1640 | let next = (*block).wait_next(); |
1641 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1642 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1643 | next_index |= HAS_NEXT; |
1644 | } |
1645 | |
1646 | self.head.block.store(next, Ordering::Release); |
1647 | self.head.index.store(next_index, Ordering::Release); |
1648 | } |
1649 | |
1650 | // Copy values from the injector into the destination queue. |
1651 | match dest.flavor { |
1652 | Flavor::Fifo => { |
1653 | for i in 0..batch_size { |
1654 | // Read the task. |
1655 | let slot = (*block).slots.get_unchecked(offset + i); |
1656 | slot.wait_write(); |
1657 | let task = slot.task.get().read(); |
1658 | |
1659 | // Write it into the destination queue. |
1660 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1661 | } |
1662 | } |
1663 | |
1664 | Flavor::Lifo => { |
1665 | for i in 0..batch_size { |
1666 | // Read the task. |
1667 | let slot = (*block).slots.get_unchecked(offset + i); |
1668 | slot.wait_write(); |
1669 | let task = slot.task.get().read(); |
1670 | |
1671 | // Write it into the destination queue. |
1672 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1673 | } |
1674 | } |
1675 | } |
1676 | |
1677 | atomic::fence(Ordering::Release); |
1678 | |
1679 | // Update the back index in the destination queue. |
1680 | // |
1681 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1682 | // data races because it doesn't understand fences. |
1683 | dest.inner |
1684 | .back |
1685 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1686 | |
1687 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1688 | // but couldn't because we were busy reading from the slot. |
1689 | if new_offset == BLOCK_CAP { |
1690 | Block::destroy(block, offset); |
1691 | } else { |
1692 | for i in offset..new_offset { |
1693 | let slot = (*block).slots.get_unchecked(i); |
1694 | |
1695 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1696 | Block::destroy(block, offset); |
1697 | break; |
1698 | } |
1699 | } |
1700 | } |
1701 | |
1702 | Steal::Success(()) |
1703 | } |
1704 | } |
1705 | |
1706 | /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker. |
1707 | /// |
1708 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1709 | /// steal around half of the tasks in the queue, but also not more than some constant limit. |
1710 | /// |
1711 | /// # Examples |
1712 | /// |
1713 | /// ``` |
1714 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1715 | /// |
1716 | /// let q = Injector::new(); |
1717 | /// q.push(1); |
1718 | /// q.push(2); |
1719 | /// q.push(3); |
1720 | /// q.push(4); |
1721 | /// |
1722 | /// let w = Worker::new_fifo(); |
1723 | /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1)); |
1724 | /// assert_eq!(w.pop(), Some(2)); |
1725 | /// ``` |
1726 | pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> { |
1727 | // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly |
1728 | // better, but we may change it in the future to be compatible with the same method in Stealer. |
1729 | self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1) |
1730 | } |
1731 | |
1732 | /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker. |
1733 | /// |
1734 | /// How many tasks exactly will be stolen is not specified. That said, this method will try to |
1735 | /// steal around half of the tasks in the queue, but also not more than the given limit. |
1736 | /// |
1737 | /// # Examples |
1738 | /// |
1739 | /// ``` |
1740 | /// use crossbeam_deque::{Injector, Steal, Worker}; |
1741 | /// |
1742 | /// let q = Injector::new(); |
1743 | /// q.push(1); |
1744 | /// q.push(2); |
1745 | /// q.push(3); |
1746 | /// q.push(4); |
1747 | /// q.push(5); |
1748 | /// q.push(6); |
1749 | /// |
1750 | /// let w = Worker::new_fifo(); |
1751 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1)); |
1752 | /// assert_eq!(w.pop(), Some(2)); |
1753 | /// assert_eq!(w.pop(), None); |
1754 | /// |
1755 | /// q.push(7); |
1756 | /// // Setting a large limit does not guarantee that all elements will be popped. In this case, |
1757 | /// // half of the elements are currently popped, but the number of popped elements is considered |
1758 | /// // an implementation detail that may be changed in the future. |
1759 | /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3)); |
1760 | /// assert_eq!(w.pop(), Some(4)); |
1761 | /// assert_eq!(w.pop(), Some(5)); |
1762 | /// assert_eq!(w.pop(), None); |
1763 | /// ``` |
1764 | pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> { |
1765 | assert!(limit > 0); |
1766 | let mut head; |
1767 | let mut block; |
1768 | let mut offset; |
1769 | |
1770 | let backoff = Backoff::new(); |
1771 | loop { |
1772 | head = self.head.index.load(Ordering::Acquire); |
1773 | block = self.head.block.load(Ordering::Acquire); |
1774 | |
1775 | // Calculate the offset of the index into the block. |
1776 | offset = (head >> SHIFT) % LAP; |
1777 | |
1778 | // If we reached the end of the block, wait until the next one is installed. |
1779 | if offset == BLOCK_CAP { |
1780 | backoff.snooze(); |
1781 | } else { |
1782 | break; |
1783 | } |
1784 | } |
1785 | |
1786 | let mut new_head = head; |
1787 | let advance; |
1788 | |
1789 | if new_head & HAS_NEXT == 0 { |
1790 | atomic::fence(Ordering::SeqCst); |
1791 | let tail = self.tail.index.load(Ordering::Relaxed); |
1792 | |
1793 | // If the tail equals the head, that means the queue is empty. |
1794 | if head >> SHIFT == tail >> SHIFT { |
1795 | return Steal::Empty; |
1796 | } |
1797 | |
1798 | // If head and tail are not in the same block, set `HAS_NEXT` in head. |
1799 | if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { |
1800 | new_head |= HAS_NEXT; |
1801 | // We can steal all tasks till the end of the block. |
1802 | advance = (BLOCK_CAP - offset).min(limit); |
1803 | } else { |
1804 | let len = (tail - head) >> SHIFT; |
1805 | // Steal half of the available tasks. |
1806 | advance = ((len + 1) / 2).min(limit); |
1807 | } |
1808 | } else { |
1809 | // We can steal all tasks till the end of the block. |
1810 | advance = (BLOCK_CAP - offset).min(limit); |
1811 | } |
1812 | |
1813 | new_head += advance << SHIFT; |
1814 | let new_offset = offset + advance; |
1815 | |
1816 | // Try moving the head index forward. |
1817 | if self |
1818 | .head |
1819 | .index |
1820 | .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire) |
1821 | .is_err() |
1822 | { |
1823 | return Steal::Retry; |
1824 | } |
1825 | |
1826 | // Reserve capacity for the stolen batch. |
1827 | let batch_size = new_offset - offset - 1; |
1828 | dest.reserve(batch_size); |
1829 | |
1830 | // Get the destination buffer and back index. |
1831 | let dest_buffer = dest.buffer.get(); |
1832 | let dest_b = dest.inner.back.load(Ordering::Relaxed); |
1833 | |
1834 | unsafe { |
1835 | // If we've reached the end of the block, move to the next one. |
1836 | if new_offset == BLOCK_CAP { |
1837 | let next = (*block).wait_next(); |
1838 | let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); |
1839 | if !(*next).next.load(Ordering::Relaxed).is_null() { |
1840 | next_index |= HAS_NEXT; |
1841 | } |
1842 | |
1843 | self.head.block.store(next, Ordering::Release); |
1844 | self.head.index.store(next_index, Ordering::Release); |
1845 | } |
1846 | |
1847 | // Read the task. |
1848 | let slot = (*block).slots.get_unchecked(offset); |
1849 | slot.wait_write(); |
1850 | let task = slot.task.get().read(); |
1851 | |
1852 | match dest.flavor { |
1853 | Flavor::Fifo => { |
1854 | // Copy values from the injector into the destination queue. |
1855 | for i in 0..batch_size { |
1856 | // Read the task. |
1857 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1858 | slot.wait_write(); |
1859 | let task = slot.task.get().read(); |
1860 | |
1861 | // Write it into the destination queue. |
1862 | dest_buffer.write(dest_b.wrapping_add(i as isize), task); |
1863 | } |
1864 | } |
1865 | |
1866 | Flavor::Lifo => { |
1867 | // Copy values from the injector into the destination queue. |
1868 | for i in 0..batch_size { |
1869 | // Read the task. |
1870 | let slot = (*block).slots.get_unchecked(offset + i + 1); |
1871 | slot.wait_write(); |
1872 | let task = slot.task.get().read(); |
1873 | |
1874 | // Write it into the destination queue. |
1875 | dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task); |
1876 | } |
1877 | } |
1878 | } |
1879 | |
1880 | atomic::fence(Ordering::Release); |
1881 | |
1882 | // Update the back index in the destination queue. |
1883 | // |
1884 | // This ordering could be `Relaxed`, but then thread sanitizer would falsely report |
1885 | // data races because it doesn't understand fences. |
1886 | dest.inner |
1887 | .back |
1888 | .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release); |
1889 | |
1890 | // Destroy the block if we've reached the end, or if another thread wanted to destroy |
1891 | // but couldn't because we were busy reading from the slot. |
1892 | if new_offset == BLOCK_CAP { |
1893 | Block::destroy(block, offset); |
1894 | } else { |
1895 | for i in offset..new_offset { |
1896 | let slot = (*block).slots.get_unchecked(i); |
1897 | |
1898 | if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { |
1899 | Block::destroy(block, offset); |
1900 | break; |
1901 | } |
1902 | } |
1903 | } |
1904 | |
1905 | Steal::Success(task.assume_init()) |
1906 | } |
1907 | } |
1908 | |
1909 | /// Returns `true` if the queue is empty. |
1910 | /// |
1911 | /// # Examples |
1912 | /// |
1913 | /// ``` |
1914 | /// use crossbeam_deque::Injector; |
1915 | /// |
1916 | /// let q = Injector::new(); |
1917 | /// |
1918 | /// assert!(q.is_empty()); |
1919 | /// q.push(1); |
1920 | /// assert!(!q.is_empty()); |
1921 | /// ``` |
1922 | pub fn is_empty(&self) -> bool { |
1923 | let head = self.head.index.load(Ordering::SeqCst); |
1924 | let tail = self.tail.index.load(Ordering::SeqCst); |
1925 | head >> SHIFT == tail >> SHIFT |
1926 | } |
1927 | |
1928 | /// Returns the number of tasks in the queue. |
1929 | /// |
1930 | /// # Examples |
1931 | /// |
1932 | /// ``` |
1933 | /// use crossbeam_deque::Injector; |
1934 | /// |
1935 | /// let q = Injector::new(); |
1936 | /// |
1937 | /// assert_eq!(q.len(), 0); |
1938 | /// q.push(1); |
1939 | /// assert_eq!(q.len(), 1); |
1940 | /// q.push(1); |
1941 | /// assert_eq!(q.len(), 2); |
1942 | /// ``` |
1943 | pub fn len(&self) -> usize { |
1944 | loop { |
1945 | // Load the tail index, then load the head index. |
1946 | let mut tail = self.tail.index.load(Ordering::SeqCst); |
1947 | let mut head = self.head.index.load(Ordering::SeqCst); |
1948 | |
1949 | // If the tail index didn't change, we've got consistent indices to work with. |
1950 | if self.tail.index.load(Ordering::SeqCst) == tail { |
1951 | // Erase the lower bits. |
1952 | tail &= !((1 << SHIFT) - 1); |
1953 | head &= !((1 << SHIFT) - 1); |
1954 | |
1955 | // Fix up indices if they fall onto block ends. |
1956 | if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { |
1957 | tail = tail.wrapping_add(1 << SHIFT); |
1958 | } |
1959 | if (head >> SHIFT) & (LAP - 1) == LAP - 1 { |
1960 | head = head.wrapping_add(1 << SHIFT); |
1961 | } |
1962 | |
1963 | // Rotate indices so that head falls into the first block. |
1964 | let lap = (head >> SHIFT) / LAP; |
1965 | tail = tail.wrapping_sub((lap * LAP) << SHIFT); |
1966 | head = head.wrapping_sub((lap * LAP) << SHIFT); |
1967 | |
1968 | // Remove the lower bits. |
1969 | tail >>= SHIFT; |
1970 | head >>= SHIFT; |
1971 | |
1972 | // Return the difference minus the number of blocks between tail and head. |
1973 | return tail - head - tail / LAP; |
1974 | } |
1975 | } |
1976 | } |
1977 | } |
1978 | |
1979 | impl<T> Drop for Injector<T> { |
1980 | fn drop(&mut self) { |
1981 | let mut head = *self.head.index.get_mut(); |
1982 | let mut tail = *self.tail.index.get_mut(); |
1983 | let mut block = *self.head.block.get_mut(); |
1984 | |
1985 | // Erase the lower bits. |
1986 | head &= !((1 << SHIFT) - 1); |
1987 | tail &= !((1 << SHIFT) - 1); |
1988 | |
1989 | unsafe { |
1990 | // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. |
1991 | while head != tail { |
1992 | let offset = (head >> SHIFT) % LAP; |
1993 | |
1994 | if offset < BLOCK_CAP { |
1995 | // Drop the task in the slot. |
1996 | let slot = (*block).slots.get_unchecked(offset); |
1997 | (*slot.task.get()).assume_init_drop(); |
1998 | } else { |
1999 | // Deallocate the block and move to the next one. |
2000 | let next = *(*block).next.get_mut(); |
2001 | drop(Box::from_raw(block)); |
2002 | block = next; |
2003 | } |
2004 | |
2005 | head = head.wrapping_add(1 << SHIFT); |
2006 | } |
2007 | |
2008 | // Deallocate the last remaining block. |
2009 | drop(Box::from_raw(block)); |
2010 | } |
2011 | } |
2012 | } |
2013 | |
2014 | impl<T> fmt::Debug for Injector<T> { |
2015 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2016 | f.pad("Worker { .. }" ) |
2017 | } |
2018 | } |
2019 | |
2020 | /// Possible outcomes of a steal operation. |
2021 | /// |
2022 | /// # Examples |
2023 | /// |
2024 | /// There are lots of ways to chain results of steal operations together: |
2025 | /// |
2026 | /// ``` |
2027 | /// use crossbeam_deque::Steal::{self, Empty, Retry, Success}; |
2028 | /// |
2029 | /// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>(); |
2030 | /// |
2031 | /// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty); |
2032 | /// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry); |
2033 | /// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1)); |
2034 | /// |
2035 | /// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry); |
2036 | /// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1)); |
2037 | /// ``` |
2038 | #[must_use ] |
2039 | #[derive (PartialEq, Eq, Copy, Clone)] |
2040 | pub enum Steal<T> { |
2041 | /// The queue was empty at the time of stealing. |
2042 | Empty, |
2043 | |
2044 | /// At least one task was successfully stolen. |
2045 | Success(T), |
2046 | |
2047 | /// The steal operation needs to be retried. |
2048 | Retry, |
2049 | } |
2050 | |
2051 | impl<T> Steal<T> { |
2052 | /// Returns `true` if the queue was empty at the time of stealing. |
2053 | /// |
2054 | /// # Examples |
2055 | /// |
2056 | /// ``` |
2057 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2058 | /// |
2059 | /// assert!(!Success(7).is_empty()); |
2060 | /// assert!(!Retry::<i32>.is_empty()); |
2061 | /// |
2062 | /// assert!(Empty::<i32>.is_empty()); |
2063 | /// ``` |
2064 | pub fn is_empty(&self) -> bool { |
2065 | match self { |
2066 | Steal::Empty => true, |
2067 | _ => false, |
2068 | } |
2069 | } |
2070 | |
2071 | /// Returns `true` if at least one task was stolen. |
2072 | /// |
2073 | /// # Examples |
2074 | /// |
2075 | /// ``` |
2076 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2077 | /// |
2078 | /// assert!(!Empty::<i32>.is_success()); |
2079 | /// assert!(!Retry::<i32>.is_success()); |
2080 | /// |
2081 | /// assert!(Success(7).is_success()); |
2082 | /// ``` |
2083 | pub fn is_success(&self) -> bool { |
2084 | match self { |
2085 | Steal::Success(_) => true, |
2086 | _ => false, |
2087 | } |
2088 | } |
2089 | |
2090 | /// Returns `true` if the steal operation needs to be retried. |
2091 | /// |
2092 | /// # Examples |
2093 | /// |
2094 | /// ``` |
2095 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2096 | /// |
2097 | /// assert!(!Empty::<i32>.is_retry()); |
2098 | /// assert!(!Success(7).is_retry()); |
2099 | /// |
2100 | /// assert!(Retry::<i32>.is_retry()); |
2101 | /// ``` |
2102 | pub fn is_retry(&self) -> bool { |
2103 | match self { |
2104 | Steal::Retry => true, |
2105 | _ => false, |
2106 | } |
2107 | } |
2108 | |
2109 | /// Returns the result of the operation, if successful. |
2110 | /// |
2111 | /// # Examples |
2112 | /// |
2113 | /// ``` |
2114 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2115 | /// |
2116 | /// assert_eq!(Empty::<i32>.success(), None); |
2117 | /// assert_eq!(Retry::<i32>.success(), None); |
2118 | /// |
2119 | /// assert_eq!(Success(7).success(), Some(7)); |
2120 | /// ``` |
2121 | pub fn success(self) -> Option<T> { |
2122 | match self { |
2123 | Steal::Success(res) => Some(res), |
2124 | _ => None, |
2125 | } |
2126 | } |
2127 | |
2128 | /// If no task was stolen, attempts another steal operation. |
2129 | /// |
2130 | /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then: |
2131 | /// |
2132 | /// * If the second steal resulted in `Success`, it is returned. |
2133 | /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned. |
2134 | /// * If both resulted in `None`, then `None` is returned. |
2135 | /// |
2136 | /// # Examples |
2137 | /// |
2138 | /// ``` |
2139 | /// use crossbeam_deque::Steal::{Empty, Retry, Success}; |
2140 | /// |
2141 | /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1)); |
2142 | /// assert_eq!(Retry.or_else(|| Success(2)), Success(2)); |
2143 | /// |
2144 | /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>); |
2145 | /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>); |
2146 | /// |
2147 | /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>); |
2148 | /// ``` |
2149 | pub fn or_else<F>(self, f: F) -> Steal<T> |
2150 | where |
2151 | F: FnOnce() -> Steal<T>, |
2152 | { |
2153 | match self { |
2154 | Steal::Empty => f(), |
2155 | Steal::Success(_) => self, |
2156 | Steal::Retry => { |
2157 | if let Steal::Success(res) = f() { |
2158 | Steal::Success(res) |
2159 | } else { |
2160 | Steal::Retry |
2161 | } |
2162 | } |
2163 | } |
2164 | } |
2165 | } |
2166 | |
2167 | impl<T> fmt::Debug for Steal<T> { |
2168 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
2169 | match self { |
2170 | Steal::Empty => f.pad("Empty" ), |
2171 | Steal::Success(_) => f.pad("Success(..)" ), |
2172 | Steal::Retry => f.pad("Retry" ), |
2173 | } |
2174 | } |
2175 | } |
2176 | |
2177 | impl<T> FromIterator<Steal<T>> for Steal<T> { |
2178 | /// Consumes items until a `Success` is found and returns it. |
2179 | /// |
2180 | /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`. |
2181 | /// Otherwise, `Empty` is returned. |
2182 | fn from_iter<I>(iter: I) -> Steal<T> |
2183 | where |
2184 | I: IntoIterator<Item = Steal<T>>, |
2185 | { |
2186 | let mut retry = false; |
2187 | for s in iter { |
2188 | match &s { |
2189 | Steal::Empty => {} |
2190 | Steal::Success(_) => return s, |
2191 | Steal::Retry => retry = true, |
2192 | } |
2193 | } |
2194 | |
2195 | if retry { |
2196 | Steal::Retry |
2197 | } else { |
2198 | Steal::Empty |
2199 | } |
2200 | } |
2201 | } |
2202 | |