| 1 | use super::real; |
| 2 | use crate::geometry::Real; |
| 3 | use core::f32::consts::PI; |
| 4 | use core::ops::{Add, AddAssign, Neg, Sub, SubAssign}; |
| 5 | #[cfg (not(feature = "fixed_point" ))] |
| 6 | #[allow (unused_imports)] |
| 7 | use micromath::F32Ext; |
| 8 | |
| 9 | pub(crate) mod angle_consts { |
| 10 | use super::{real, Angle}; |
| 11 | |
| 12 | pub(crate) const ANGLE_90DEG: Angle = Angle(real::FRAC_PI_2); |
| 13 | pub(crate) const ANGLE_180DEG: Angle = Angle(real::PI); |
| 14 | pub(crate) const ANGLE_360DEG: Angle = Angle(real::TAU); |
| 15 | } |
| 16 | |
| 17 | /// Angle. |
| 18 | /// |
| 19 | /// `Angle` is used to define the value of an angle. |
| 20 | /// |
| 21 | /// # Examples |
| 22 | /// |
| 23 | /// ## Create an `Angle` from a value |
| 24 | /// |
| 25 | /// ```rust |
| 26 | /// use embedded_graphics::geometry::{Angle, AngleUnit}; |
| 27 | /// use core::f32::consts::PI; |
| 28 | /// |
| 29 | /// // Create an angle using the `from_degrees` constructor method |
| 30 | /// let angle_a = Angle::from_degrees(10.0); |
| 31 | /// let angle_b = Angle::from_radians(PI); |
| 32 | /// |
| 33 | /// // Angles can also be created using the [AngleUnit] trait |
| 34 | /// let angle_c = 30.0.deg(); |
| 35 | /// let angle_d = PI.rad(); |
| 36 | /// ``` |
| 37 | #[derive (Copy, Clone, PartialEq, PartialOrd, Debug)] |
| 38 | #[cfg_attr (feature = "defmt" , derive(::defmt::Format))] |
| 39 | pub struct Angle(Real); |
| 40 | |
| 41 | impl Angle { |
| 42 | /// Creates an angle defined in degrees. |
| 43 | pub fn from_degrees(angle: f32) -> Self { |
| 44 | Angle((angle * PI / 180.0).into()) |
| 45 | } |
| 46 | |
| 47 | /// Creates an angle defined in radians. |
| 48 | pub fn from_radians(angle: f32) -> Self { |
| 49 | Angle(angle.into()) |
| 50 | } |
| 51 | |
| 52 | /// Creates a zero degree angle. |
| 53 | pub fn zero() -> Self { |
| 54 | Angle(0.into()) |
| 55 | } |
| 56 | |
| 57 | /// Compute the absolute value of the angle. |
| 58 | pub fn abs(self) -> Self { |
| 59 | Angle(self.0.abs()) |
| 60 | } |
| 61 | |
| 62 | /// Normalize the angle to less than one full rotation (ie. in the range 0..360). |
| 63 | pub fn normalize(self) -> Self { |
| 64 | Angle(self.0.rem_euclid((2.0 * PI).into())) |
| 65 | } |
| 66 | |
| 67 | /// Return numerical value of the angle in degree |
| 68 | pub fn to_degrees(self) -> f32 { |
| 69 | let angle: f32 = self.0.into(); |
| 70 | 180.0 * angle / PI |
| 71 | } |
| 72 | |
| 73 | /// Return numerical value of the angle in radian |
| 74 | pub fn to_radians(self) -> f32 { |
| 75 | self.0.into() |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | /// AngleUnit trait. |
| 80 | /// |
| 81 | /// `AngleUnit` is a trait to convert numbers into angle by appending .deg() or .rad() |
| 82 | /// to the number as if it was a unit. |
| 83 | /// |
| 84 | /// # Examples |
| 85 | /// |
| 86 | /// ## Create an `Angle` from a value using `AngleUnit` |
| 87 | /// |
| 88 | /// ```rust |
| 89 | /// use embedded_graphics::geometry::AngleUnit; |
| 90 | /// use core::f32::consts::PI; |
| 91 | /// |
| 92 | /// // Create an angle using the `AngleUnit` methods |
| 93 | /// let angle_a = 30.0.deg(); |
| 94 | /// let angle_b = PI.rad(); |
| 95 | /// ``` |
| 96 | pub trait AngleUnit { |
| 97 | /// Convert a number (interpreted as degrees) to an `Angle`. |
| 98 | fn deg(self) -> Angle; |
| 99 | |
| 100 | /// Convert a number (interpreted as radians) to an `Angle`. |
| 101 | fn rad(self) -> Angle; |
| 102 | } |
| 103 | |
| 104 | impl AngleUnit for f32 { |
| 105 | fn deg(self) -> Angle { |
| 106 | Angle::from_degrees(self) |
| 107 | } |
| 108 | |
| 109 | fn rad(self) -> Angle { |
| 110 | Angle::from_radians(self) |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | pub(crate) trait Trigonometry { |
| 115 | /// Get the sine of the angle. |
| 116 | fn sin(self) -> Real; |
| 117 | |
| 118 | /// Get the cosine of the angle. |
| 119 | fn cos(self) -> Real; |
| 120 | |
| 121 | /// Get the tangent of the angle. |
| 122 | fn tan(self) -> Option<Real>; |
| 123 | } |
| 124 | |
| 125 | #[cfg (not(feature = "fixed_point" ))] |
| 126 | impl Trigonometry for Angle { |
| 127 | fn sin(self) -> Real { |
| 128 | let angle: f32 = self.0.into(); |
| 129 | angle.sin().into() |
| 130 | } |
| 131 | |
| 132 | fn cos(self) -> Real { |
| 133 | let angle: f32 = self.0.into(); |
| 134 | angle.cos().into() |
| 135 | } |
| 136 | |
| 137 | fn tan(self) -> Option<Real> { |
| 138 | let angle: f32 = self.0.into(); |
| 139 | let tan: f32 = angle.tan(); |
| 140 | // FRAC_PI_2.tan() has no value, but the approximate method used by micromath actually return a huge |
| 141 | // value which is > 20000000.0, so we check for this to decide that the angle was approximately |
| 142 | // FRAC_PI_2 and that tan() has actually no value. |
| 143 | if tan.is_nan() || tan.abs() > 20000000.0 { |
| 144 | None |
| 145 | } else { |
| 146 | Some(tan.into()) |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | #[cfg (feature = "fixed_point" )] |
| 152 | impl Trigonometry for Angle { |
| 153 | fn sin(self) -> Real { |
| 154 | use fixed::types::I16F16; |
| 155 | const SIN: [I16F16; 91] = [ |
| 156 | // Ideally we could make the compiler generate those values, but for now sin() is not a const fn, |
| 157 | // so it can't be used here. Here is how it would look like: |
| 158 | // I16F16::from_bits((0f64.sin() * (1 << 16) as f64).round()))), |
| 159 | I16F16::from_bits(0), |
| 160 | I16F16::from_bits(1144), |
| 161 | I16F16::from_bits(2287), |
| 162 | I16F16::from_bits(3430), |
| 163 | I16F16::from_bits(4572), |
| 164 | I16F16::from_bits(5712), |
| 165 | I16F16::from_bits(6850), |
| 166 | I16F16::from_bits(7987), |
| 167 | I16F16::from_bits(9121), |
| 168 | I16F16::from_bits(10252), |
| 169 | I16F16::from_bits(11380), |
| 170 | I16F16::from_bits(12505), |
| 171 | I16F16::from_bits(13626), |
| 172 | I16F16::from_bits(14742), |
| 173 | I16F16::from_bits(15855), |
| 174 | I16F16::from_bits(16962), |
| 175 | I16F16::from_bits(18064), |
| 176 | I16F16::from_bits(19161), |
| 177 | I16F16::from_bits(20252), |
| 178 | I16F16::from_bits(21336), |
| 179 | I16F16::from_bits(22415), |
| 180 | I16F16::from_bits(23486), |
| 181 | I16F16::from_bits(24550), |
| 182 | I16F16::from_bits(25607), |
| 183 | I16F16::from_bits(26656), |
| 184 | I16F16::from_bits(27697), |
| 185 | I16F16::from_bits(28729), |
| 186 | I16F16::from_bits(29753), |
| 187 | I16F16::from_bits(30767), |
| 188 | I16F16::from_bits(31772), |
| 189 | I16F16::from_bits(32768), |
| 190 | I16F16::from_bits(33754), |
| 191 | I16F16::from_bits(34729), |
| 192 | I16F16::from_bits(35693), |
| 193 | I16F16::from_bits(36647), |
| 194 | I16F16::from_bits(37590), |
| 195 | I16F16::from_bits(38521), |
| 196 | I16F16::from_bits(39441), |
| 197 | I16F16::from_bits(40348), |
| 198 | I16F16::from_bits(41243), |
| 199 | I16F16::from_bits(42126), |
| 200 | I16F16::from_bits(42995), |
| 201 | I16F16::from_bits(43852), |
| 202 | I16F16::from_bits(44695), |
| 203 | I16F16::from_bits(45525), |
| 204 | I16F16::from_bits(46341), |
| 205 | I16F16::from_bits(47143), |
| 206 | I16F16::from_bits(47930), |
| 207 | I16F16::from_bits(48703), |
| 208 | I16F16::from_bits(49461), |
| 209 | I16F16::from_bits(50203), |
| 210 | I16F16::from_bits(50931), |
| 211 | I16F16::from_bits(51643), |
| 212 | I16F16::from_bits(52339), |
| 213 | I16F16::from_bits(53020), |
| 214 | I16F16::from_bits(53684), |
| 215 | I16F16::from_bits(54332), |
| 216 | I16F16::from_bits(54963), |
| 217 | I16F16::from_bits(55578), |
| 218 | I16F16::from_bits(56175), |
| 219 | I16F16::from_bits(56756), |
| 220 | I16F16::from_bits(57319), |
| 221 | I16F16::from_bits(57865), |
| 222 | I16F16::from_bits(58393), |
| 223 | I16F16::from_bits(58903), |
| 224 | I16F16::from_bits(59396), |
| 225 | I16F16::from_bits(59870), |
| 226 | I16F16::from_bits(60326), |
| 227 | I16F16::from_bits(60764), |
| 228 | I16F16::from_bits(61183), |
| 229 | I16F16::from_bits(61584), |
| 230 | I16F16::from_bits(61966), |
| 231 | I16F16::from_bits(62328), |
| 232 | I16F16::from_bits(62672), |
| 233 | I16F16::from_bits(62997), |
| 234 | I16F16::from_bits(63303), |
| 235 | I16F16::from_bits(63589), |
| 236 | I16F16::from_bits(63856), |
| 237 | I16F16::from_bits(64104), |
| 238 | I16F16::from_bits(64332), |
| 239 | I16F16::from_bits(64540), |
| 240 | I16F16::from_bits(64729), |
| 241 | I16F16::from_bits(64898), |
| 242 | I16F16::from_bits(65048), |
| 243 | I16F16::from_bits(65177), |
| 244 | I16F16::from_bits(65287), |
| 245 | I16F16::from_bits(65376), |
| 246 | I16F16::from_bits(65446), |
| 247 | I16F16::from_bits(65496), |
| 248 | I16F16::from_bits(65526), |
| 249 | I16F16::from_bits(65536), |
| 250 | ]; |
| 251 | let degree: i32 = (Real::from(180) * self.0 / real::PI).round().into(); |
| 252 | let degree = degree.rem_euclid(360) as usize; |
| 253 | let sin = if degree <= 90 { |
| 254 | SIN[degree] |
| 255 | } else if degree <= 180 { |
| 256 | SIN[180 - degree] |
| 257 | } else if degree <= 270 { |
| 258 | -SIN[degree - 180] |
| 259 | } else { |
| 260 | -SIN[360 - degree] |
| 261 | }; |
| 262 | sin.into() |
| 263 | } |
| 264 | |
| 265 | fn cos(self) -> Real { |
| 266 | (self + angle_consts::ANGLE_90DEG).sin() |
| 267 | } |
| 268 | |
| 269 | fn tan(self) -> Option<Real> { |
| 270 | let cos = self.cos(); |
| 271 | if cos != Real::zero() { |
| 272 | Some(self.sin() / cos) |
| 273 | } else { |
| 274 | None |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | impl Add for Angle { |
| 280 | type Output = Angle; |
| 281 | |
| 282 | fn add(self, other: Angle) -> Angle { |
| 283 | Angle(self.0 + other.0) |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | impl AddAssign for Angle { |
| 288 | fn add_assign(&mut self, other: Angle) { |
| 289 | self.0 += other.0; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | impl Sub for Angle { |
| 294 | type Output = Angle; |
| 295 | |
| 296 | fn sub(self, other: Angle) -> Angle { |
| 297 | Angle(self.0 - other.0) |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | impl SubAssign for Angle { |
| 302 | fn sub_assign(&mut self, other: Angle) { |
| 303 | self.0 -= other.0; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | impl Neg for Angle { |
| 308 | type Output = Angle; |
| 309 | |
| 310 | fn neg(self) -> Angle { |
| 311 | Angle(-self.0) |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | #[cfg (test)] |
| 316 | mod tests { |
| 317 | use super::*; |
| 318 | use float_cmp::{approx_eq, ApproxEq, F32Margin}; |
| 319 | |
| 320 | impl ApproxEq for Angle { |
| 321 | type Margin = F32Margin; |
| 322 | |
| 323 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 324 | self.0.approx_eq(other.0, margin.into()) |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | #[test ] |
| 329 | fn angles_can_be_added() { |
| 330 | let left = Angle::from_degrees(10.0); |
| 331 | let right = Angle::from_degrees(30.0); |
| 332 | |
| 333 | assert!(approx_eq!( |
| 334 | Angle, |
| 335 | left + right, |
| 336 | Angle::from_degrees(40.0), |
| 337 | epsilon = 0.0001 |
| 338 | )); |
| 339 | } |
| 340 | |
| 341 | #[test ] |
| 342 | fn angles_can_be_subtracted() { |
| 343 | let left = Angle::from_degrees(30.0); |
| 344 | let right = Angle::from_degrees(10.0); |
| 345 | |
| 346 | assert!(approx_eq!( |
| 347 | Angle, |
| 348 | left - right, |
| 349 | Angle::from_degrees(20.0), |
| 350 | epsilon = 0.0001 |
| 351 | )); |
| 352 | } |
| 353 | |
| 354 | #[test ] |
| 355 | fn angles_can_be_absoluted() { |
| 356 | let angle = Angle::from_degrees(30.0).abs(); |
| 357 | assert_eq!(angle, Angle::from_degrees(30.0)); |
| 358 | |
| 359 | let angle = Angle::from_degrees(-30.0).abs(); |
| 360 | assert_eq!(angle, Angle::from_degrees(30.0)); |
| 361 | } |
| 362 | |
| 363 | #[test ] |
| 364 | fn angle_unit() { |
| 365 | assert_eq!(180.0.deg(), Angle::from_degrees(180.0)); |
| 366 | assert_eq!(PI.rad(), Angle::from_radians(PI)); |
| 367 | } |
| 368 | |
| 369 | #[test ] |
| 370 | fn from_radians() { |
| 371 | assert_eq!(Angle(PI.into()), Angle::from_radians(PI)); |
| 372 | } |
| 373 | |
| 374 | #[test ] |
| 375 | fn to_radians() { |
| 376 | let angle = Angle(PI.into()).to_radians(); |
| 377 | assert!(approx_eq!(f32, angle, PI, epsilon = 0.0001)); |
| 378 | } |
| 379 | |
| 380 | #[test ] |
| 381 | fn from_degrees() { |
| 382 | let angle = Angle::from_degrees(180.0); |
| 383 | assert!(approx_eq!(f32, angle.0.into(), PI, epsilon = 0.0001)); |
| 384 | } |
| 385 | |
| 386 | #[test ] |
| 387 | fn to_degrees() { |
| 388 | let angle = Angle(PI.into()).to_degrees(); |
| 389 | assert!(approx_eq!(f32, angle, 180.0, epsilon = 0.001)); |
| 390 | } |
| 391 | |
| 392 | #[test ] |
| 393 | fn sin_correct() { |
| 394 | let degree_sin_pairs = [ |
| 395 | (-90.0, -1.0), |
| 396 | (-60.0, -0.86602540), |
| 397 | (-45.0, -0.70710678), |
| 398 | (-30.0, -0.5), |
| 399 | (0.0, 0.0), |
| 400 | (30.0, 0.5), |
| 401 | (45.0, 0.70710678), |
| 402 | (60.0, 0.86602540), |
| 403 | (90.0, 1.0), |
| 404 | (120.0, 0.86602540), |
| 405 | (135.0, 0.70710678), |
| 406 | (150.0, 0.5), |
| 407 | (180.0, 0.0), |
| 408 | (210.0, -0.5), |
| 409 | (225.0, -0.70710678), |
| 410 | (240.0, -0.86602540), |
| 411 | (270.0, -1.0), |
| 412 | ]; |
| 413 | |
| 414 | for (angle, sin) in °ree_sin_pairs { |
| 415 | assert!(approx_eq!( |
| 416 | Real, |
| 417 | angle.deg().sin(), |
| 418 | (*sin).into(), |
| 419 | epsilon = 0.0001 |
| 420 | )); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | #[test ] |
| 425 | fn cos_correct() { |
| 426 | let degree_cos_pairs = [ |
| 427 | (-90.0, 0.0), |
| 428 | (-60.0, 0.5), |
| 429 | (-45.0, 0.70710678), |
| 430 | (-30.0, 0.86602540), |
| 431 | (0.0, 1.0), |
| 432 | (30.0, 0.86602540), |
| 433 | (45.0, 0.70710678), |
| 434 | (60.0, 0.5), |
| 435 | (90.0, 0.0), |
| 436 | (120.0, -0.5), |
| 437 | (135.0, -0.70710678), |
| 438 | (150.0, -0.86602540), |
| 439 | (180.0, -1.0), |
| 440 | (210.0, -0.86602540), |
| 441 | (225.0, -0.70710678), |
| 442 | (240.0, -0.5), |
| 443 | (270.0, -0.0), |
| 444 | ]; |
| 445 | |
| 446 | for (angle, cos) in °ree_cos_pairs { |
| 447 | assert!(approx_eq!( |
| 448 | Real, |
| 449 | angle.deg().cos(), |
| 450 | (*cos).into(), |
| 451 | epsilon = 0.0001 |
| 452 | )); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | #[test ] |
| 457 | fn tan_correct() { |
| 458 | let degree_tan_pairs = [ |
| 459 | (-60.0, -1.73205080), |
| 460 | (-45.0, -1.0), |
| 461 | (-30.0, -0.57735026), |
| 462 | (0.0, 0.0), |
| 463 | (30.0, 0.57735026), |
| 464 | (45.0, 1.0), |
| 465 | (60.0, 1.73205080), |
| 466 | ]; |
| 467 | |
| 468 | for (angle, tan) in °ree_tan_pairs { |
| 469 | assert!(approx_eq!( |
| 470 | Real, |
| 471 | angle.deg().tan().unwrap(), |
| 472 | (*tan).into(), |
| 473 | epsilon = 0.0001 |
| 474 | )); |
| 475 | } |
| 476 | |
| 477 | assert_eq!((-90.0.deg()).tan(), None); |
| 478 | assert_eq!(90.0.deg().tan(), None); |
| 479 | } |
| 480 | } |
| 481 | |