1 | /*! |
2 | This module provides support for TZif binary files from the [Time Zone |
3 | Database]. |
4 | |
5 | These binary files are the ones commonly found in Unix distributions in the |
6 | `/usr/share/zoneinfo` directory. |
7 | |
8 | [Time Zone Database]: https://www.iana.org/time-zones |
9 | */ |
10 | |
11 | use core::ops::Range; |
12 | |
13 | #[cfg (feature = "alloc" )] |
14 | use alloc::{string::String, vec::Vec}; |
15 | |
16 | use crate::{ |
17 | civil::DateTime, |
18 | error::Error, |
19 | shared::{self, util::array_str::Abbreviation}, |
20 | timestamp::Timestamp, |
21 | tz::{ |
22 | posix::PosixTimeZone, timezone::TimeZoneAbbreviation, AmbiguousOffset, |
23 | Dst, Offset, TimeZoneOffsetInfo, TimeZoneTransition, |
24 | }, |
25 | }; |
26 | |
27 | /// The owned variant of `Tzif`. |
28 | #[cfg (feature = "alloc" )] |
29 | pub(crate) type TzifOwned = Tzif< |
30 | String, |
31 | Abbreviation, |
32 | Vec<shared::TzifLocalTimeType>, |
33 | Vec<i64>, |
34 | Vec<shared::TzifDateTime>, |
35 | Vec<shared::TzifDateTime>, |
36 | Vec<shared::TzifTransitionInfo>, |
37 | >; |
38 | |
39 | /// The static variant of `Tzif`. |
40 | pub(crate) type TzifStatic = Tzif< |
41 | &'static str, |
42 | &'static str, |
43 | &'static [shared::TzifLocalTimeType], |
44 | &'static [i64], |
45 | &'static [shared::TzifDateTime], |
46 | &'static [shared::TzifDateTime], |
47 | &'static [shared::TzifTransitionInfo], |
48 | >; |
49 | |
50 | /// A time zone based on IANA TZif formatted data. |
51 | /// |
52 | /// TZif is a binary format described by RFC 8536. Its typical structure is to |
53 | /// define a single time zone per file in the `/usr/share/zoneinfo` directory |
54 | /// on Unix systems. The name of a time zone is its file path with the |
55 | /// `/usr/share/zoneinfo/` prefix stripped from it. |
56 | /// |
57 | /// This type doesn't provide any facilities for dealing with files on disk |
58 | /// or the `/usr/share/zoneinfo` directory. This type is just for parsing the |
59 | /// contents of TZif formatted data in memory, and turning it into a data type |
60 | /// that can be used as a time zone. |
61 | #[derive (Debug)] |
62 | // not part of Jiff's public API |
63 | #[doc (hidden)] |
64 | // This ensures the alignment of this type is always *at least* 8 bytes. This |
65 | // is required for the pointer tagging inside of `TimeZone` to be sound. At |
66 | // time of writing (2024-02-24), this explicit `repr` isn't required on 64-bit |
67 | // systems since the type definition is such that it will have an alignment of |
68 | // at least 8 bytes anyway. But this *is* required for 32-bit systems, where |
69 | // the type definition at present only has an alignment of 4 bytes. |
70 | #[repr (align(8))] |
71 | pub struct Tzif<STR, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> { |
72 | inner: shared::Tzif<STR, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS>, |
73 | /// The POSIX time zone for this TZif data, if present. |
74 | /// |
75 | /// Note that this is also present on `shared::Tzif`, but uses the |
76 | /// `shared::PosixTimeZone` type, which isn't quite what we want here. |
77 | /// |
78 | /// For now we just duplicate it, which is slightly unfortunate. But this |
79 | /// is small and not a huge deal. Ideally we can clean this up later. |
80 | posix_tz: Option<PosixTimeZone<ABBREV>>, |
81 | } |
82 | |
83 | impl TzifStatic { |
84 | /// Converts from the shared-but-internal API for use in proc macros. |
85 | /// |
86 | /// This specifically works in a `const` context. And it requires that |
87 | /// caller to pass in the parsed `Tzif` in its fixed form along with the |
88 | /// variable length local time types and transitions. (Technically, the |
89 | /// TZ identifier and the designations are also variable length despite |
90 | /// being parsed of `TzifFixed`, but in practice they can be handled just |
91 | /// fine via `&'static str`.) |
92 | /// |
93 | /// Notice that the `types` and `transitions` are *not* from the `shared` |
94 | /// API, but rather, from the types defined in this module. They have to |
95 | /// be this way because there's a conversion step that occurs. In practice, |
96 | /// this sort of thing is embedded as a literal in source code via a proc |
97 | /// macro. Like this: |
98 | /// |
99 | /// ```text |
100 | /// static TZIF: Tzif<&str, &str, &[LocalTimeType], &[Transition]> = |
101 | /// Tzif::from_shared_const( |
102 | /// shared::TzifFixed { |
103 | /// name: Some("America/New_York"), |
104 | /// version: b'3', |
105 | /// checksum: 0xDEADBEEF, |
106 | /// designations: "ESTEDT", |
107 | /// posix_tz: None, |
108 | /// }, |
109 | /// &[ |
110 | /// shared::TzifLocalTimeType { |
111 | /// offset: -5 * 60 * 60, |
112 | /// is_dst: false, |
113 | /// designation: 0..3, |
114 | /// indicator: shared::TzifIndicator::LocalWall, |
115 | /// }.to_jiff(), |
116 | /// ], |
117 | /// &[ |
118 | /// shared::TzifTransition { |
119 | /// timestamp: 123456789, |
120 | /// type_index: 0, |
121 | /// }.to_jiff(-5, -5), |
122 | /// ], |
123 | /// ); |
124 | /// ``` |
125 | /// |
126 | /// Or something like that anyway. The point is, our `static` slices are |
127 | /// variable length and they need to be the right types. At least, I |
128 | /// couldn't see a simpler way to arrange this. |
129 | pub(crate) const fn from_shared_const( |
130 | sh: shared::TzifStatic, |
131 | ) -> TzifStatic { |
132 | let posix_tz = match sh.fixed.posix_tz { |
133 | None => None, |
134 | Some(posix_tz) => Some(PosixTimeZone::from_shared_const(posix_tz)), |
135 | }; |
136 | Tzif { inner: sh, posix_tz } |
137 | } |
138 | } |
139 | |
140 | #[cfg (feature = "alloc" )] |
141 | impl TzifOwned { |
142 | /// Parses the given data as a TZif formatted file. |
143 | /// |
144 | /// The name given is attached to the `Tzif` value returned, but is |
145 | /// otherwise not significant. |
146 | /// |
147 | /// If the given data is not recognized to be valid TZif, then an error is |
148 | /// returned. |
149 | /// |
150 | /// In general, callers may assume that it is safe to pass arbitrary or |
151 | /// even untrusted data to this function and count on it not panicking |
152 | /// or using resources that aren't limited to a small constant factor of |
153 | /// the size of the data itself. That is, callers can reliably limit the |
154 | /// resources used by limiting the size of the data given to this parse |
155 | /// function. |
156 | pub(crate) fn parse( |
157 | name: Option<String>, |
158 | bytes: &[u8], |
159 | ) -> Result<Self, Error> { |
160 | let sh = |
161 | shared::TzifOwned::parse(name, bytes).map_err(Error::shared)?; |
162 | Ok(TzifOwned::from_shared_owned(sh)) |
163 | } |
164 | |
165 | /// Converts from the shared-but-internal API for use in proc macros. |
166 | /// |
167 | /// This is not `const` since it accepts owned values on the heap for |
168 | /// variable length data inside `Tzif`. |
169 | pub(crate) fn from_shared_owned(sh: shared::TzifOwned) -> TzifOwned { |
170 | let posix_tz = match sh.fixed.posix_tz { |
171 | None => None, |
172 | Some(posix_tz) => Some(PosixTimeZone::from_shared_owned(posix_tz)), |
173 | }; |
174 | Tzif { inner: sh, posix_tz } |
175 | } |
176 | } |
177 | |
178 | impl< |
179 | STR: AsRef<str>, |
180 | ABBREV: AsRef<str>, |
181 | TYPES: AsRef<[shared::TzifLocalTimeType]>, |
182 | TIMESTAMPS: AsRef<[i64]>, |
183 | STARTS: AsRef<[shared::TzifDateTime]>, |
184 | ENDS: AsRef<[shared::TzifDateTime]>, |
185 | INFOS: AsRef<[shared::TzifTransitionInfo]>, |
186 | > Tzif<STR, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> |
187 | { |
188 | /// Returns the name given to this TZif data in its constructor. |
189 | pub(crate) fn name(&self) -> Option<&str> { |
190 | self.inner.fixed.name.as_ref().map(|n| n.as_ref()) |
191 | } |
192 | |
193 | /// Returns the appropriate time zone offset to use for the given |
194 | /// timestamp. |
195 | pub(crate) fn to_offset(&self, timestamp: Timestamp) -> Offset { |
196 | match self.to_local_time_type(timestamp) { |
197 | Ok(typ) => Offset::from_seconds_unchecked(typ.offset), |
198 | Err(tz) => tz.to_offset(timestamp), |
199 | } |
200 | } |
201 | |
202 | /// Returns the appropriate time zone offset to use for the given |
203 | /// timestamp. |
204 | /// |
205 | /// This also includes whether the offset returned should be considered to |
206 | /// be DST or not, along with the time zone abbreviation (e.g., EST for |
207 | /// standard time in New York, and EDT for DST in New York). |
208 | pub(crate) fn to_offset_info( |
209 | &self, |
210 | timestamp: Timestamp, |
211 | ) -> TimeZoneOffsetInfo<'_> { |
212 | let typ = match self.to_local_time_type(timestamp) { |
213 | Ok(typ) => typ, |
214 | Err(tz) => return tz.to_offset_info(timestamp), |
215 | }; |
216 | let abbreviation = |
217 | TimeZoneAbbreviation::Borrowed(self.designation(typ)); |
218 | TimeZoneOffsetInfo { |
219 | offset: Offset::from_seconds_unchecked(typ.offset), |
220 | dst: Dst::from(typ.is_dst), |
221 | abbreviation, |
222 | } |
223 | } |
224 | |
225 | /// Returns the local time type for the timestamp given. |
226 | /// |
227 | /// If one could not be found, then this implies that the caller should |
228 | /// use the POSIX time zone returned in the error variant. |
229 | fn to_local_time_type( |
230 | &self, |
231 | timestamp: Timestamp, |
232 | ) -> Result<&shared::TzifLocalTimeType, &PosixTimeZone<ABBREV>> { |
233 | let timestamp = timestamp.as_second(); |
234 | // This is guaranteed because we always push at least one transition. |
235 | // This isn't guaranteed by TZif since it might have 0 transitions, |
236 | // but we always add a "dummy" first transition with our minimum |
237 | // `Timestamp` value. TZif doesn't do this because there is no |
238 | // universal minimum timestamp. (`i64::MIN` is a candidate, but that's |
239 | // likely to cause overflow in readers that don't do error checking.) |
240 | // |
241 | // The result of the dummy transition is that the code below is simpler |
242 | // with fewer special cases. |
243 | let timestamps = self.timestamps(); |
244 | assert!(!timestamps.is_empty(), "transitions is non-empty" ); |
245 | let index = if timestamp > *timestamps.last().unwrap() { |
246 | timestamps.len() - 1 |
247 | } else { |
248 | let search = self.timestamps().binary_search(×tamp); |
249 | match search { |
250 | // Since the first transition is always Timestamp::MIN, it's |
251 | // impossible for any timestamp to sort before it. |
252 | Err(0) => { |
253 | unreachable!("impossible to come before Timestamp::MIN" ) |
254 | } |
255 | Ok(i) => i, |
256 | // i points to the position immediately after the matching |
257 | // timestamp. And since we know that i>0 because of the i==0 |
258 | // check above, we can safely subtract 1. |
259 | Err(i) => i.checked_sub(1).expect("i is non-zero" ), |
260 | } |
261 | }; |
262 | // Our index is always in bounds. The only way it couldn't be is if |
263 | // binary search returns an Err(len) for a time greater than the |
264 | // maximum transition. But we account for that above by converting |
265 | // Err(len) to Err(len-1). |
266 | debug_assert!(index < timestamps.len()); |
267 | // RFC 8536 says: "Local time for timestamps on or after the last |
268 | // transition is specified by the TZ string in the footer (Section 3.3) |
269 | // if present and nonempty; otherwise, it is unspecified." |
270 | // |
271 | // Subtracting 1 is OK because we know self.transitions is not empty. |
272 | let index = if index < timestamps.len() - 1 { |
273 | // This is the typical case in "fat" TZif files: we found a |
274 | // matching transition. |
275 | index |
276 | } else { |
277 | match self.posix_tz() { |
278 | // This is the typical case in "slim" TZif files, where the |
279 | // last transition is, as I understand it, the transition at |
280 | // which a consistent rule started that a POSIX TZ string can |
281 | // fully describe. For example, (as of 2024-03-27) the last |
282 | // transition in the "fat" America/New_York TZif file is |
283 | // in 2037, where as in the "slim" version it is 2007. |
284 | // |
285 | // This is likely why some things break with the "slim" |
286 | // version: they don't support POSIX TZ strings (or don't |
287 | // support them correctly). |
288 | Some(tz) => return Err(tz), |
289 | // This case is technically unspecified, but I think the |
290 | // typical thing to do is to just use the last transition. |
291 | // I'm not 100% sure on this one. |
292 | None => index, |
293 | } |
294 | }; |
295 | Ok(self.local_time_type(index)) |
296 | } |
297 | |
298 | /// Returns a possibly ambiguous timestamp for the given civil datetime. |
299 | /// |
300 | /// The given datetime should correspond to the "wall" clock time of what |
301 | /// humans use to tell time for this time zone. |
302 | /// |
303 | /// Note that "ambiguous timestamp" is represented by the possible |
304 | /// selection of offsets that could be applied to the given datetime. In |
305 | /// general, it is only ambiguous around transitions to-and-from DST. The |
306 | /// ambiguity can arise as a "fold" (when a particular wall clock time is |
307 | /// repeated) or as a "gap" (when a particular wall clock time is skipped |
308 | /// entirely). |
309 | pub(crate) fn to_ambiguous_kind(&self, dt: DateTime) -> AmbiguousOffset { |
310 | // This implementation very nearly mirrors `to_local_time_type` |
311 | // above in the beginning: we do a binary search to find transition |
312 | // applicable for the given datetime. Except, we do it on wall clock |
313 | // times instead of timestamps. And in particular, each transition |
314 | // begins with a possibly ambiguous range of wall clock times |
315 | // corresponding to either a "gap" or "fold" in time. |
316 | let dtt = shared::TzifDateTime::new( |
317 | dt.year(), |
318 | dt.month(), |
319 | dt.day(), |
320 | dt.hour(), |
321 | dt.minute(), |
322 | dt.second(), |
323 | ); |
324 | let (starts, ends) = (self.civil_starts(), self.civil_ends()); |
325 | assert!(!starts.is_empty(), "transitions is non-empty" ); |
326 | let this_index = match starts.binary_search(&dtt) { |
327 | Err(0) => unreachable!("impossible to come before DateTime::MIN" ), |
328 | Ok(i) => i, |
329 | Err(i) => i.checked_sub(1).expect("i is non-zero" ), |
330 | }; |
331 | debug_assert!(this_index < starts.len()); |
332 | |
333 | let this_offset = self.local_time_type(this_index).offset; |
334 | // This is a little tricky, but we need to check for ambiguous civil |
335 | // datetimes before possibly using the POSIX TZ string. Namely, a |
336 | // datetime could be ambiguous with respect to the last transition, |
337 | // and we should handle that according to the gap/fold determined for |
338 | // that transition. We cover this case in tests in tz/mod.rs for the |
339 | // Pacific/Honolulu time zone, whose last transition begins with a gap. |
340 | match self.transition_kind(this_index) { |
341 | shared::TzifTransitionKind::Gap if dtt < ends[this_index] => { |
342 | // A gap/fold can only appear when there exists a previous |
343 | // transition. |
344 | let prev_index = this_index.checked_sub(1).unwrap(); |
345 | let prev_offset = self.local_time_type(prev_index).offset; |
346 | return AmbiguousOffset::Gap { |
347 | before: Offset::from_seconds_unchecked(prev_offset), |
348 | after: Offset::from_seconds_unchecked(this_offset), |
349 | }; |
350 | } |
351 | shared::TzifTransitionKind::Fold if dtt < ends[this_index] => { |
352 | // A gap/fold can only appear when there exists a previous |
353 | // transition. |
354 | let prev_index = this_index.checked_sub(1).unwrap(); |
355 | let prev_offset = self.local_time_type(prev_index).offset; |
356 | return AmbiguousOffset::Fold { |
357 | before: Offset::from_seconds_unchecked(prev_offset), |
358 | after: Offset::from_seconds_unchecked(this_offset), |
359 | }; |
360 | } |
361 | _ => {} |
362 | } |
363 | // The datetime given is not ambiguous with respect to any of the |
364 | // transitions in the TZif data. But, if we matched at or after the |
365 | // last transition, then we need to use the POSIX TZ string (which |
366 | // could still return an ambiguous offset). |
367 | if this_index == starts.len() - 1 { |
368 | if let Some(tz) = self.posix_tz() { |
369 | return tz.to_ambiguous_kind(dt); |
370 | } |
371 | // This case is unspecified according to RFC 8536. It means that |
372 | // the given datetime exceeds all transitions *and* there is no |
373 | // POSIX TZ string. So this can happen in V1 files for example. |
374 | // But those should hopefully be essentially non-existent nowadays |
375 | // (2024-03). In any case, we just fall through to using the last |
376 | // transition, which does seem likely to be wrong ~half the time |
377 | // in time zones with DST. But there really isn't much else we can |
378 | // do I think. |
379 | } |
380 | AmbiguousOffset::Unambiguous { |
381 | offset: Offset::from_seconds_unchecked(this_offset), |
382 | } |
383 | } |
384 | |
385 | /// Returns the timestamp of the most recent time zone transition prior |
386 | /// to the timestamp given. If one doesn't exist, `None` is returned. |
387 | pub(crate) fn previous_transition( |
388 | &self, |
389 | ts: Timestamp, |
390 | ) -> Option<TimeZoneTransition> { |
391 | assert!(!self.timestamps().is_empty(), "transitions is non-empty" ); |
392 | let mut timestamp = ts.as_second(); |
393 | if ts.subsec_nanosecond() != 0 { |
394 | timestamp = timestamp.saturating_add(1); |
395 | } |
396 | let search = self.timestamps().binary_search(×tamp); |
397 | let index = match search { |
398 | Ok(i) | Err(i) => i.checked_sub(1)?, |
399 | }; |
400 | let index = if index == 0 { |
401 | // The first transition is a dummy that we insert, so if we land on |
402 | // it here, treat it as if it doesn't exist. |
403 | return None; |
404 | } else if index == self.timestamps().len() - 1 { |
405 | if let Some(ref posix_tz) = self.posix_tz() { |
406 | // Since the POSIX TZ must be consistent with the last |
407 | // transition, it must be the case that tzif_last <= |
408 | // posix_prev_trans in all cases. So the transition according |
409 | // to the POSIX TZ is always correct here. |
410 | // |
411 | // What if this returns `None` though? I'm not sure in which |
412 | // cases that could matter, and I think it might be a violation |
413 | // of the TZif format if it does. |
414 | // |
415 | // It can return `None`! In the case of a time zone that |
416 | // has eliminated DST, it might have historical time zone |
417 | // transitions but a POSIX time zone without DST. (For example, |
418 | // `America/Sao_Paulo`.) And thus, this would return `None`. |
419 | // So if it does, we pretend as if the POSIX time zone doesn't |
420 | // exist. |
421 | if let Some(trans) = posix_tz.previous_transition(ts) { |
422 | return Some(trans); |
423 | } |
424 | } |
425 | index |
426 | } else { |
427 | index |
428 | }; |
429 | let timestamp = self.timestamps()[index]; |
430 | let typ = self.local_time_type(index); |
431 | Some(TimeZoneTransition { |
432 | timestamp: Timestamp::constant(timestamp, 0), |
433 | offset: Offset::from_seconds_unchecked(typ.offset), |
434 | abbrev: self.designation(typ), |
435 | dst: Dst::from(typ.is_dst), |
436 | }) |
437 | } |
438 | |
439 | /// Returns the timestamp of the soonest time zone transition after the |
440 | /// timestamp given. If one doesn't exist, `None` is returned. |
441 | pub(crate) fn next_transition( |
442 | &self, |
443 | ts: Timestamp, |
444 | ) -> Option<TimeZoneTransition> { |
445 | assert!(!self.timestamps().is_empty(), "transitions is non-empty" ); |
446 | let timestamp = ts.as_second(); |
447 | let search = self.timestamps().binary_search(×tamp); |
448 | let index = match search { |
449 | Ok(i) => i.checked_add(1)?, |
450 | Err(i) => i, |
451 | }; |
452 | let index = if index == 0 { |
453 | // The first transition is a dummy that we insert, so if we land on |
454 | // it here, treat it as if it doesn't exist. |
455 | return None; |
456 | } else if index >= self.timestamps().len() - 1 { |
457 | if let Some(posix_tz) = self.posix_tz() { |
458 | // Since the POSIX TZ must be consistent with the last |
459 | // transition, it must be the case that next.timestamp <= |
460 | // posix_next_tans in all cases. So the transition according to |
461 | // the POSIX TZ is always correct here. |
462 | // |
463 | // What if this returns `None` though? I'm not sure in which |
464 | // cases that could matter, and I think it might be a violation |
465 | // of the TZif format if it does. |
466 | // |
467 | // In the "previous" case above, this could return `None` even |
468 | // when there are historical time zone transitions in the case |
469 | // of a time zone eliminating DST (e.g., `America/Sao_Paulo`). |
470 | // But unlike the previous case, if we get `None` here, then |
471 | // that is the real answer because there are no other known |
472 | // future time zone transitions. |
473 | return posix_tz.next_transition(ts); |
474 | } |
475 | self.timestamps().len() - 1 |
476 | } else { |
477 | index |
478 | }; |
479 | let timestamp = self.timestamps()[index]; |
480 | let typ = self.local_time_type(index); |
481 | Some(TimeZoneTransition { |
482 | timestamp: Timestamp::constant(timestamp, 0), |
483 | offset: Offset::from_seconds_unchecked(typ.offset), |
484 | abbrev: self.designation(typ), |
485 | dst: Dst::from(typ.is_dst), |
486 | }) |
487 | } |
488 | |
489 | fn designation(&self, typ: &shared::TzifLocalTimeType) -> &str { |
490 | // OK because we verify that the designation range on every local |
491 | // time type is a valid range into `self.designations`. |
492 | &self.designations()[typ.designation()] |
493 | } |
494 | |
495 | fn local_time_type( |
496 | &self, |
497 | transition_index: usize, |
498 | ) -> &shared::TzifLocalTimeType { |
499 | // OK because we require that `type_index` always points to a valid |
500 | // local time type. |
501 | &self.types()[usize::from(self.infos()[transition_index].type_index)] |
502 | } |
503 | |
504 | fn transition_kind( |
505 | &self, |
506 | transition_index: usize, |
507 | ) -> shared::TzifTransitionKind { |
508 | self.infos()[transition_index].kind |
509 | } |
510 | |
511 | fn posix_tz(&self) -> Option<&PosixTimeZone<ABBREV>> { |
512 | self.posix_tz.as_ref() |
513 | } |
514 | |
515 | fn designations(&self) -> &str { |
516 | self.inner.fixed.designations.as_ref() |
517 | } |
518 | |
519 | fn types(&self) -> &[shared::TzifLocalTimeType] { |
520 | self.inner.types.as_ref() |
521 | } |
522 | |
523 | fn timestamps(&self) -> &[i64] { |
524 | self.inner.transitions.timestamps.as_ref() |
525 | } |
526 | |
527 | fn civil_starts(&self) -> &[shared::TzifDateTime] { |
528 | self.inner.transitions.civil_starts.as_ref() |
529 | } |
530 | |
531 | fn civil_ends(&self) -> &[shared::TzifDateTime] { |
532 | self.inner.transitions.civil_ends.as_ref() |
533 | } |
534 | |
535 | fn infos(&self) -> &[shared::TzifTransitionInfo] { |
536 | self.inner.transitions.infos.as_ref() |
537 | } |
538 | } |
539 | |
540 | impl<STR: AsRef<str>, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> Eq |
541 | for Tzif<STR, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> |
542 | { |
543 | } |
544 | |
545 | impl<STR: AsRef<str>, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> PartialEq |
546 | for Tzif<STR, ABBREV, TYPES, TIMESTAMPS, STARTS, ENDS, INFOS> |
547 | { |
548 | fn eq(&self, rhs: &Self) -> bool { |
549 | self.inner.fixed.name.as_ref().map(|n: &STR| n.as_ref()) |
550 | == rhs.inner.fixed.name.as_ref().map(|n: &STR| n.as_ref()) |
551 | && self.inner.fixed.checksum == rhs.inner.fixed.checksum |
552 | } |
553 | } |
554 | |
555 | impl shared::TzifLocalTimeType { |
556 | fn designation(&self) -> Range<usize> { |
557 | usize::from(self.designation.0)..usize::from(self.designation.1) |
558 | } |
559 | } |
560 | |
561 | impl core::fmt::Display for shared::TzifIndicator { |
562 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
563 | match *self { |
564 | shared::TzifIndicator::LocalWall => write!(f, "local/wall" ), |
565 | shared::TzifIndicator::LocalStandard => write!(f, "local/std" ), |
566 | shared::TzifIndicator::UTStandard => write!(f, "ut/std" ), |
567 | } |
568 | } |
569 | } |
570 | |
571 | /// Does a quick check that returns true if the data might be in TZif format. |
572 | /// |
573 | /// It is possible that this returns true even if the given data is not in TZif |
574 | /// format. However, it is impossible for this to return false when the given |
575 | /// data is TZif. That is, a false positive is allowed but a false negative is |
576 | /// not. |
577 | #[cfg (feature = "tzdb-zoneinfo" )] |
578 | pub(crate) fn is_possibly_tzif(data: &[u8]) -> bool { |
579 | data.starts_with(b"TZif" ) |
580 | } |
581 | |
582 | #[cfg (all(test, feature = "alloc" ))] |
583 | mod tests { |
584 | use alloc::{string::ToString, vec}; |
585 | |
586 | #[cfg (not(miri))] |
587 | use crate::tz::testdata::TZIF_TEST_FILES; |
588 | |
589 | use super::*; |
590 | |
591 | /// This converts TZif data into a human readable format. |
592 | /// |
593 | /// This is useful for debugging (via `./scripts/jiff-debug tzif`), but we |
594 | /// also use it for snapshot testing to make reading the test output at |
595 | /// least *somewhat* comprehensible for humans. Otherwise, one needs to |
596 | /// read and understand Unix timestamps. That ain't going to fly. |
597 | /// |
598 | /// For this to work, we make sure everything in a `Tzif` value is |
599 | /// represented in some way in this output. |
600 | fn tzif_to_human_readable(tzif: &TzifOwned) -> String { |
601 | use std::io::Write; |
602 | |
603 | fn datetime(dt: shared::TzifDateTime) -> DateTime { |
604 | DateTime::constant( |
605 | dt.year(), |
606 | dt.month(), |
607 | dt.day(), |
608 | dt.hour(), |
609 | dt.minute(), |
610 | dt.second(), |
611 | 0, |
612 | ) |
613 | } |
614 | |
615 | let mut out = tabwriter::TabWriter::new(vec![]) |
616 | .alignment(tabwriter::Alignment::Left); |
617 | |
618 | writeln!(out, "TIME ZONE NAME" ).unwrap(); |
619 | writeln!(out, " {}" , tzif.name().unwrap_or("UNNAMED" )).unwrap(); |
620 | |
621 | writeln!(out, "TIME ZONE VERSION" ).unwrap(); |
622 | writeln!( |
623 | out, |
624 | " {}" , |
625 | char::try_from(tzif.inner.fixed.version).unwrap() |
626 | ) |
627 | .unwrap(); |
628 | |
629 | writeln!(out, "LOCAL TIME TYPES" ).unwrap(); |
630 | for (i, typ) in tzif.inner.types.iter().enumerate() { |
631 | writeln!( |
632 | out, |
633 | " {i:03}: \toffset={off} \t\ |
634 | designation={desig} \t{dst} \tindicator={ind}" , |
635 | off = Offset::from_seconds_unchecked(typ.offset), |
636 | desig = tzif.designation(&typ), |
637 | dst = if typ.is_dst { "dst" } else { "" }, |
638 | ind = typ.indicator, |
639 | ) |
640 | .unwrap(); |
641 | } |
642 | if !tzif.timestamps().is_empty() { |
643 | writeln!(out, "TRANSITIONS" ).unwrap(); |
644 | for i in 0..tzif.timestamps().len() { |
645 | let timestamp = Timestamp::constant(tzif.timestamps()[i], 0); |
646 | let dt = Offset::UTC.to_datetime(timestamp); |
647 | let typ = tzif.local_time_type(i); |
648 | let wall = |
649 | alloc::format!("{}" , datetime(tzif.civil_starts()[i])); |
650 | let ambiguous = match tzif.transition_kind(i) { |
651 | shared::TzifTransitionKind::Unambiguous => { |
652 | "unambiguous" .to_string() |
653 | } |
654 | shared::TzifTransitionKind::Gap => { |
655 | let end = datetime(tzif.civil_ends()[i]); |
656 | alloc::format!(" gap-until({end})" ) |
657 | } |
658 | shared::TzifTransitionKind::Fold => { |
659 | let end = datetime(tzif.civil_ends()[i]); |
660 | alloc::format!("fold-until({end})" ) |
661 | } |
662 | }; |
663 | |
664 | writeln!( |
665 | out, |
666 | " {i:04}: \t{dt:?}Z \tunix={ts} \twall={wall} \t\ |
667 | {ambiguous} \t\ |
668 | type={type_index} \t{off} \t\ |
669 | {desig} \t{dst}" , |
670 | ts = timestamp.as_second(), |
671 | type_index = tzif.infos()[i].type_index, |
672 | off = Offset::from_seconds_unchecked(typ.offset), |
673 | desig = tzif.designation(typ), |
674 | dst = if typ.is_dst { "dst" } else { "" }, |
675 | ) |
676 | .unwrap(); |
677 | } |
678 | } |
679 | if let Some(ref posix_tz) = tzif.posix_tz { |
680 | writeln!(out, "POSIX TIME ZONE STRING" ).unwrap(); |
681 | writeln!(out, " {}" , posix_tz).unwrap(); |
682 | } |
683 | String::from_utf8(out.into_inner().unwrap()).unwrap() |
684 | } |
685 | |
686 | /// DEBUG COMMAND |
687 | /// |
688 | /// Takes environment variable `JIFF_DEBUG_TZIF_PATH` as input, and treats |
689 | /// the value as a TZif file path. This test will open the file, parse it |
690 | /// as a TZif and then dump debug data about the file in a human readable |
691 | /// plain text format. |
692 | #[cfg (feature = "std" )] |
693 | #[test ] |
694 | fn debug_tzif() -> anyhow::Result<()> { |
695 | use anyhow::Context; |
696 | |
697 | let _ = crate::logging::Logger::init(); |
698 | |
699 | const ENV: &str = "JIFF_DEBUG_TZIF_PATH" ; |
700 | let Some(val) = std::env::var_os(ENV) else { return Ok(()) }; |
701 | let Ok(val) = val.into_string() else { |
702 | anyhow::bail!("{ENV} has invalid UTF-8" ) |
703 | }; |
704 | let bytes = |
705 | std::fs::read(&val).with_context(|| alloc::format!("{val:?}" ))?; |
706 | let tzif = Tzif::parse(Some(val.to_string()), &bytes)?; |
707 | std::eprint!("{}" , tzif_to_human_readable(&tzif)); |
708 | Ok(()) |
709 | } |
710 | |
711 | #[cfg (not(miri))] |
712 | #[test ] |
713 | fn tzif_parse_v2plus() { |
714 | for tzif_test in TZIF_TEST_FILES { |
715 | insta::assert_snapshot!( |
716 | alloc::format!("{}_v2+" , tzif_test.name), |
717 | tzif_to_human_readable(&tzif_test.parse()) |
718 | ); |
719 | } |
720 | } |
721 | |
722 | #[cfg (not(miri))] |
723 | #[test ] |
724 | fn tzif_parse_v1() { |
725 | for tzif_test in TZIF_TEST_FILES { |
726 | insta::assert_snapshot!( |
727 | alloc::format!("{}_v1" , tzif_test.name), |
728 | tzif_to_human_readable(&tzif_test.parse_v1()) |
729 | ); |
730 | } |
731 | } |
732 | |
733 | /// This tests walks the /usr/share/zoneinfo directory (if it exists) and |
734 | /// tries to parse every TZif formatted file it can find. We don't really |
735 | /// do much with it other than to ensure we don't panic or return an error. |
736 | /// That is, we check that we can parse each file, but not that we do so |
737 | /// correctly. |
738 | #[cfg (not(miri))] |
739 | #[cfg (feature = "tzdb-zoneinfo" )] |
740 | #[cfg (target_os = "linux" )] |
741 | #[test ] |
742 | fn zoneinfo() { |
743 | const TZDIR: &str = "/usr/share/zoneinfo" ; |
744 | |
745 | for result in walkdir::WalkDir::new(TZDIR) { |
746 | // Just skip if we got an error traversing the directory tree. |
747 | // These aren't related to our parsing, so it's some other problem |
748 | // (like the directory not existing). |
749 | let Ok(dent) = result else { continue }; |
750 | // This test can take some time in debug mode, so skip parsing |
751 | // some of the less frequently used TZif files. |
752 | let Some(name) = dent.path().to_str() else { continue }; |
753 | if name.contains("right/" ) || name.contains("posix/" ) { |
754 | continue; |
755 | } |
756 | // Again, skip if we can't read. Not my monkeys, not my circus. |
757 | let Ok(bytes) = std::fs::read(dent.path()) else { continue }; |
758 | if !is_possibly_tzif(&bytes) { |
759 | continue; |
760 | } |
761 | let tzname = dent |
762 | .path() |
763 | .strip_prefix(TZDIR) |
764 | .unwrap_or_else(|_| { |
765 | panic!("all paths in TZDIR have {TZDIR:?} prefix" ) |
766 | }) |
767 | .to_str() |
768 | .expect("all paths to be valid UTF-8" ) |
769 | .to_string(); |
770 | // OK at this point, we're pretty sure `bytes` should be a TZif |
771 | // binary file. So try to parse it and fail the test if it fails. |
772 | if let Err(err) = Tzif::parse(Some(tzname), &bytes) { |
773 | panic!("failed to parse TZif file {:?}: {err}" , dent.path()); |
774 | } |
775 | } |
776 | } |
777 | } |
778 | |