| 1 | use crate::{ |
| 2 | civil::DateTime, |
| 3 | error::{err, Error}, |
| 4 | tz::{ |
| 5 | ambiguous::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned}, |
| 6 | offset::{Dst, Offset}, |
| 7 | }, |
| 8 | util::{array_str::ArrayStr, sync::Arc}, |
| 9 | Timestamp, Zoned, |
| 10 | }; |
| 11 | |
| 12 | #[cfg (feature = "alloc" )] |
| 13 | use crate::tz::posix::PosixTimeZoneOwned; |
| 14 | |
| 15 | use self::repr::Repr; |
| 16 | |
| 17 | /// A representation of a [time zone]. |
| 18 | /// |
| 19 | /// A time zone is a set of rules for determining the civil time, via an offset |
| 20 | /// from UTC, in a particular geographic region. In many cases, the offset |
| 21 | /// in a particular time zone can vary over the course of a year through |
| 22 | /// transitions into and out of [daylight saving time]. |
| 23 | /// |
| 24 | /// A `TimeZone` can be one of three possible representations: |
| 25 | /// |
| 26 | /// * An identifier from the [IANA Time Zone Database] and the rules associated |
| 27 | /// with that identifier. |
| 28 | /// * A fixed offset where there are never any time zone transitions. |
| 29 | /// * A [POSIX TZ] string that specifies a standard offset and an optional |
| 30 | /// daylight saving time offset along with a rule for when DST is in effect. |
| 31 | /// The rule applies for every year. Since POSIX TZ strings cannot capture the |
| 32 | /// full complexity of time zone rules, they generally should not be used. |
| 33 | /// |
| 34 | /// The most practical and useful representation is an IANA time zone. Namely, |
| 35 | /// it enjoys broad support and its database is regularly updated to reflect |
| 36 | /// real changes in time zone rules throughout the world. On Unix systems, |
| 37 | /// the time zone database is typically found at `/usr/share/zoneinfo`. For |
| 38 | /// more information on how Jiff interacts with The Time Zone Database, see |
| 39 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
| 40 | /// |
| 41 | /// In typical usage, users of Jiff shouldn't need to reference a `TimeZone` |
| 42 | /// directly. Instead, there are convenience APIs on datetime types that accept |
| 43 | /// IANA time zone identifiers and do automatic database lookups for you. For |
| 44 | /// example, to convert a timestamp to a zone aware datetime: |
| 45 | /// |
| 46 | /// ``` |
| 47 | /// use jiff::Timestamp; |
| 48 | /// |
| 49 | /// let ts = Timestamp::from_second(1_456_789_123)?; |
| 50 | /// let zdt = ts.in_tz("America/New_York" )?; |
| 51 | /// assert_eq!(zdt.to_string(), "2016-02-29T18:38:43-05:00[America/New_York]" ); |
| 52 | /// |
| 53 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 54 | /// ``` |
| 55 | /// |
| 56 | /// Or to convert a civil datetime to a zoned datetime corresponding to a |
| 57 | /// precise instant in time: |
| 58 | /// |
| 59 | /// ``` |
| 60 | /// use jiff::civil::date; |
| 61 | /// |
| 62 | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
| 63 | /// let zdt = dt.in_tz("America/New_York" )?; |
| 64 | /// assert_eq!(zdt.to_string(), "2024-07-15T21:27:00-04:00[America/New_York]" ); |
| 65 | /// |
| 66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 67 | /// ``` |
| 68 | /// |
| 69 | /// Or even converted a zoned datetime from one time zone to another: |
| 70 | /// |
| 71 | /// ``` |
| 72 | /// use jiff::civil::date; |
| 73 | /// |
| 74 | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
| 75 | /// let zdt1 = dt.in_tz("America/New_York" )?; |
| 76 | /// let zdt2 = zdt1.in_tz("Israel" )?; |
| 77 | /// assert_eq!(zdt2.to_string(), "2024-07-16T04:27:00+03:00[Israel]" ); |
| 78 | /// |
| 79 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 80 | /// ``` |
| 81 | /// |
| 82 | /// # The system time zone |
| 83 | /// |
| 84 | /// The system time zone can be retrieved via [`TimeZone::system`]. If it |
| 85 | /// couldn't be detected or if the `tz-system` crate feature is not enabled, |
| 86 | /// then [`TimeZone::UTC`] is returned. `TimeZone::system` is what's used |
| 87 | /// internally for retrieving the current zoned datetime via [`Zoned::now`]. |
| 88 | /// |
| 89 | /// While there is no platform independent way to detect your system's |
| 90 | /// "default" time zone, Jiff employs best-effort heuristics to determine it. |
| 91 | /// (For example, by examining `/etc/localtime` on Unix systems.) When the |
| 92 | /// heuristics fail, Jiff will emit a `WARN` level log. It can be viewed by |
| 93 | /// installing a `log` compatible logger, such as [`env_logger`]. |
| 94 | /// |
| 95 | /// # Custom time zones |
| 96 | /// |
| 97 | /// At present, Jiff doesn't provide any APIs for manually constructing a |
| 98 | /// custom time zone. However, [`TimeZone::tzif`] is provided for reading |
| 99 | /// any valid TZif formatted data, as specified by [RFC 8536]. This provides |
| 100 | /// an interoperable way of utilizing custom time zone rules. |
| 101 | /// |
| 102 | /// # A `TimeZone` is immutable |
| 103 | /// |
| 104 | /// Once a `TimeZone` is created, it is immutable. That is, its underlying |
| 105 | /// time zone transition rules will never change. This is true for system time |
| 106 | /// zones or even if the IANA Time Zone Database it was loaded from changes on |
| 107 | /// disk. The only way such changes can be observed is by re-requesting the |
| 108 | /// `TimeZone` from a `TimeZoneDatabase`. (Or, in the case of the system time |
| 109 | /// zone, by calling `TimeZone::system`.) |
| 110 | /// |
| 111 | /// # A `TimeZone` is cheap to clone |
| 112 | /// |
| 113 | /// A `TimeZone` can be cheaply cloned. It uses automic reference counting |
| 114 | /// internally. When `alloc` is disabled, cloning a `TimeZone` is still cheap |
| 115 | /// because POSIX time zones and TZif time zones are unsupported. Therefore, |
| 116 | /// cloning a time zone does a deep copy (since automic reference counting is |
| 117 | /// not available), but the data being copied is small. |
| 118 | /// |
| 119 | /// # Time zone equality |
| 120 | /// |
| 121 | /// `TimeZone` provides an imperfect notion of equality. That is, when two time |
| 122 | /// zones are equal, then it is guaranteed for them to have the same rules. |
| 123 | /// However, two time zones may compare unequal and yet still have the same |
| 124 | /// rules. |
| 125 | /// |
| 126 | /// The equality semantics are as follows: |
| 127 | /// |
| 128 | /// * Two fixed offset time zones are equal when their offsets are equal. |
| 129 | /// * Two POSIX time zones are equal when their original rule strings are |
| 130 | /// byte-for-byte identical. |
| 131 | /// * Two IANA time zones are equal when their identifiers are equal _and_ |
| 132 | /// checksums of their rules are equal. |
| 133 | /// * In all other cases, time zones are unequal. |
| 134 | /// |
| 135 | /// Time zone equality is, for example, used in APIs like [`Zoned::since`] |
| 136 | /// when asking for spans with calendar units. Namely, since days can be of |
| 137 | /// different lengths in different time zones, `Zoned::since` will return an |
| 138 | /// error when the two zoned datetimes are in different time zones and when |
| 139 | /// the caller requests units greater than hours. |
| 140 | /// |
| 141 | /// # Dealing with ambiguity |
| 142 | /// |
| 143 | /// The principal job of a `TimeZone` is to provide two different |
| 144 | /// transformations: |
| 145 | /// |
| 146 | /// * A conversion from a [`Timestamp`] to a civil time (also known as local, |
| 147 | /// naive or plain time). This conversion is always unambiguous. That is, |
| 148 | /// there is always precisely one representation of civil time for any |
| 149 | /// particular instant in time for a particular time zone. |
| 150 | /// * A conversion from a [`civil::DateTime`](crate::civil::DateTime) to an |
| 151 | /// instant in time. This conversion is sometimes ambiguous in that a civil |
| 152 | /// time might have either never appear on the clocks in a particular |
| 153 | /// time zone (a gap), or in that the civil time may have been repeated on the |
| 154 | /// clocks in a particular time zone (a fold). Typically, a transition to |
| 155 | /// daylight saving time is a gap, while a transition out of daylight saving |
| 156 | /// time is a fold. |
| 157 | /// |
| 158 | /// The timestamp-to-civil time conversion is done via |
| 159 | /// [`TimeZone::to_datetime`], or its lower level counterpart, |
| 160 | /// [`TimeZone::to_offset`]. The civil time-to-timestamp conversion is done |
| 161 | /// via one of the following routines: |
| 162 | /// |
| 163 | /// * [`TimeZone::to_zoned`] conveniently returns a [`Zoned`] and automatically |
| 164 | /// uses the |
| 165 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
| 166 | /// strategy if the given civil datetime is ambiguous in the time zone. |
| 167 | /// * [`TimeZone::to_ambiguous_zoned`] returns a potentially ambiguous |
| 168 | /// zoned datetime, [`AmbiguousZoned`], and provides fine-grained control over |
| 169 | /// how to resolve ambiguity, if it occurs. |
| 170 | /// * [`TimeZone::to_timestamp`] is like `TimeZone::to_zoned`, but returns |
| 171 | /// a [`Timestamp`] instead. |
| 172 | /// * [`TimeZone::to_ambiguous_timestamp`] is like |
| 173 | /// `TimeZone::to_ambiguous_zoned`, but returns an [`AmbiguousTimestamp`] |
| 174 | /// instead. |
| 175 | /// |
| 176 | /// Here is an example where we explore the different disambiguation strategies |
| 177 | /// for a fold in time, where in this case, the 1 o'clock hour is repeated: |
| 178 | /// |
| 179 | /// ``` |
| 180 | /// use jiff::{civil::date, tz::TimeZone}; |
| 181 | /// |
| 182 | /// let tz = TimeZone::get("America/New_York" )?; |
| 183 | /// let dt = date(2024, 11, 3).at(1, 30, 0, 0); |
| 184 | /// // It's ambiguous, so asking for an unambiguous instant presents an error! |
| 185 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
| 186 | /// // Gives you the earlier time in a fold, i.e., before DST ends: |
| 187 | /// assert_eq!( |
| 188 | /// tz.to_ambiguous_zoned(dt).earlier()?.to_string(), |
| 189 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
| 190 | /// ); |
| 191 | /// // Gives you the later time in a fold, i.e., after DST ends. |
| 192 | /// // Notice the offset change from the previous example! |
| 193 | /// assert_eq!( |
| 194 | /// tz.to_ambiguous_zoned(dt).later()?.to_string(), |
| 195 | /// "2024-11-03T01:30:00-05:00[America/New_York]" , |
| 196 | /// ); |
| 197 | /// // "Just give me something reasonable" |
| 198 | /// assert_eq!( |
| 199 | /// tz.to_ambiguous_zoned(dt).compatible()?.to_string(), |
| 200 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
| 201 | /// ); |
| 202 | /// |
| 203 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 204 | /// ``` |
| 205 | /// |
| 206 | /// # Serde integration |
| 207 | /// |
| 208 | /// At present, a `TimeZone` does not implement Serde's `Serialize` or |
| 209 | /// `Deserialize` traits directly. Nor does it implement `std::fmt::Display` |
| 210 | /// or `std::str::FromStr`. The reason for this is that it's not totally |
| 211 | /// clear if there is one single obvious behavior. Moreover, some `TimeZone` |
| 212 | /// values do not have an obvious succinct serialized representation. (For |
| 213 | /// example, when `/etc/localtime` on a Unix system is your system's time zone, |
| 214 | /// and it isn't a symlink to a TZif file in `/usr/share/zoneinfo`. In which |
| 215 | /// case, an IANA time zone identifier cannot easily be deduced by Jiff.) |
| 216 | /// |
| 217 | /// Instead, Jiff offers helpers for use with Serde's [`with` attribute] via |
| 218 | /// the [`fmt::serde`](crate::fmt::serde) module: |
| 219 | /// |
| 220 | /// ``` |
| 221 | /// use jiff::tz::TimeZone; |
| 222 | /// |
| 223 | /// #[derive(Debug, serde::Deserialize, serde::Serialize)] |
| 224 | /// struct Record { |
| 225 | /// #[serde(with = "jiff::fmt::serde::tz::optional" )] |
| 226 | /// tz: Option<TimeZone>, |
| 227 | /// } |
| 228 | /// |
| 229 | /// let json = r#"{"tz":"America/Nuuk"}"# ; |
| 230 | /// let got: Record = serde_json::from_str(&json)?; |
| 231 | /// assert_eq!(got.tz, Some(TimeZone::get("America/Nuuk" )?)); |
| 232 | /// assert_eq!(serde_json::to_string(&got)?, json); |
| 233 | /// |
| 234 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 235 | /// ``` |
| 236 | /// |
| 237 | /// Alternatively, you may use the |
| 238 | /// [`fmt::temporal::DateTimeParser::parse_time_zone`](crate::fmt::temporal::DateTimeParser::parse_time_zone) |
| 239 | /// or |
| 240 | /// [`fmt::temporal::DateTimePrinter::print_time_zone`](crate::fmt::temporal::DateTimePrinter::print_time_zone) |
| 241 | /// routines to parse or print `TimeZone` values without using Serde. |
| 242 | /// |
| 243 | /// [time zone]: https://en.wikipedia.org/wiki/Time_zone |
| 244 | /// [daylight saving time]: https://en.wikipedia.org/wiki/Daylight_saving_time |
| 245 | /// [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database |
| 246 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
| 247 | /// [`env_logger`]: https://docs.rs/env_logger |
| 248 | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
| 249 | /// [`with` attribute]: https://serde.rs/field-attrs.html#with |
| 250 | #[derive (Clone, Eq, PartialEq)] |
| 251 | pub struct TimeZone { |
| 252 | repr: Repr, |
| 253 | } |
| 254 | |
| 255 | impl TimeZone { |
| 256 | /// The UTC time zone. |
| 257 | /// |
| 258 | /// The offset of this time is `0` and never has any transitions. |
| 259 | pub const UTC: TimeZone = TimeZone { repr: Repr::utc() }; |
| 260 | |
| 261 | /// Returns the system configured time zone, if available. |
| 262 | /// |
| 263 | /// Detection of a system's default time zone is generally heuristic |
| 264 | /// based and platform specific. |
| 265 | /// |
| 266 | /// If callers need to know whether discovery of the system time zone |
| 267 | /// failed, then use [`TimeZone::try_system`]. |
| 268 | /// |
| 269 | /// # Fallback behavior |
| 270 | /// |
| 271 | /// If the system's default time zone could not be determined, or if |
| 272 | /// the `tz-system` crate feature is not enabled, then this returns |
| 273 | /// [`TimeZone::unknown`]. A `WARN` level log will also be emitted with |
| 274 | /// a message explaining why time zone detection failed. The fallback to |
| 275 | /// an unknown time zone is a practical trade-off, is what most other |
| 276 | /// systems tend to do and is also recommended by [relevant standards such |
| 277 | /// as freedesktop.org][freedesktop-org-localtime]. |
| 278 | /// |
| 279 | /// An unknown time zone _behaves_ like [`TimeZone::UTC`], but will |
| 280 | /// print as `Etc/Unknown` when converting a `Zoned` to a string. |
| 281 | /// |
| 282 | /// If you would instead like to fall back to UTC instead |
| 283 | /// of the special "unknown" time zone, then you can do |
| 284 | /// `TimeZone::try_system().unwrap_or(TimeZone::UTC)`. |
| 285 | /// |
| 286 | /// # Platform behavior |
| 287 | /// |
| 288 | /// This section is a "best effort" explanation of how the time zone is |
| 289 | /// detected on supported platforms. The behavior is subject to change. |
| 290 | /// |
| 291 | /// On all platforms, the `TZ` environment variable overrides any other |
| 292 | /// heuristic, and provides a way for end users to set the time zone for |
| 293 | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
| 294 | /// Here are some examples: |
| 295 | /// |
| 296 | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
| 297 | /// Database Identifier. |
| 298 | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
| 299 | /// by providing a file path to a TZif file directly. |
| 300 | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
| 301 | /// saving time transition rule. |
| 302 | /// |
| 303 | /// Otherwise, when `TZ` isn't set, then: |
| 304 | /// |
| 305 | /// On Unix non-Android systems, this inspects `/etc/localtime`. If it's |
| 306 | /// a symbolic link to an entry in `/usr/share/zoneinfo`, then the suffix |
| 307 | /// is considered an IANA Time Zone Database identifier. Otherwise, |
| 308 | /// `/etc/localtime` is read as a TZif file directly. |
| 309 | /// |
| 310 | /// On Android systems, this inspects the `persist.sys.timezone` property. |
| 311 | /// |
| 312 | /// On Windows, the system time zone is determined via |
| 313 | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
| 314 | /// IANA Time Zone Database identifier via Unicode's |
| 315 | /// [CLDR XML data]. |
| 316 | /// |
| 317 | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
| 318 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
| 319 | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
| 320 | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
| 321 | #[inline ] |
| 322 | pub fn system() -> TimeZone { |
| 323 | match TimeZone::try_system() { |
| 324 | Ok(tz) => tz, |
| 325 | Err(_err) => { |
| 326 | warn!( |
| 327 | "failed to get system time zone, \ |
| 328 | falling back to `Etc/Unknown` \ |
| 329 | (which behaves like UTC): {_err}" , |
| 330 | ); |
| 331 | TimeZone::unknown() |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | /// Returns the system configured time zone, if available. |
| 337 | /// |
| 338 | /// If the system's default time zone could not be determined, or if the |
| 339 | /// `tz-system` crate feature is not enabled, then this returns an error. |
| 340 | /// |
| 341 | /// Detection of a system's default time zone is generally heuristic |
| 342 | /// based and platform specific. |
| 343 | /// |
| 344 | /// Note that callers should generally prefer using [`TimeZone::system`]. |
| 345 | /// If a system time zone could not be found, then it falls |
| 346 | /// back to [`TimeZone::UTC`] automatically. This is often |
| 347 | /// what is recommended by [relevant standards such as |
| 348 | /// freedesktop.org][freedesktop-org-localtime]. Conversely, this routine |
| 349 | /// is useful if detection of a system's default time zone is critical. |
| 350 | /// |
| 351 | /// # Platform behavior |
| 352 | /// |
| 353 | /// This section is a "best effort" explanation of how the time zone is |
| 354 | /// detected on supported platforms. The behavior is subject to change. |
| 355 | /// |
| 356 | /// On all platforms, the `TZ` environment variable overrides any other |
| 357 | /// heuristic, and provides a way for end users to set the time zone for |
| 358 | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
| 359 | /// Here are some examples: |
| 360 | /// |
| 361 | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
| 362 | /// Database Identifier. |
| 363 | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
| 364 | /// by providing a file path to a TZif file directly. |
| 365 | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
| 366 | /// saving time transition rule. |
| 367 | /// |
| 368 | /// Otherwise, when `TZ` isn't set, then: |
| 369 | /// |
| 370 | /// On Unix systems, this inspects `/etc/localtime`. If it's a symbolic |
| 371 | /// link to an entry in `/usr/share/zoneinfo`, then the suffix is |
| 372 | /// considered an IANA Time Zone Database identifier. Otherwise, |
| 373 | /// `/etc/localtime` is read as a TZif file directly. |
| 374 | /// |
| 375 | /// On Windows, the system time zone is determined via |
| 376 | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
| 377 | /// IANA Time Zone Database identifier via Unicode's |
| 378 | /// [CLDR XML data]. |
| 379 | /// |
| 380 | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
| 381 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
| 382 | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
| 383 | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
| 384 | #[inline ] |
| 385 | pub fn try_system() -> Result<TimeZone, Error> { |
| 386 | #[cfg (not(feature = "tz-system" ))] |
| 387 | { |
| 388 | Err(err!( |
| 389 | "failed to get system time zone since 'tz-system' \ |
| 390 | crate feature is not enabled" , |
| 391 | )) |
| 392 | } |
| 393 | #[cfg (feature = "tz-system" )] |
| 394 | { |
| 395 | crate::tz::system::get(crate::tz::db()) |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | /// A convenience function for performing a time zone database lookup for |
| 400 | /// the given time zone identifier. It uses the default global time zone |
| 401 | /// database via [`tz::db()`](crate::tz::db()). |
| 402 | /// |
| 403 | /// # Errors |
| 404 | /// |
| 405 | /// This returns an error if the given time zone identifier could not be |
| 406 | /// found in the default [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
| 407 | /// |
| 408 | /// # Example |
| 409 | /// |
| 410 | /// ``` |
| 411 | /// use jiff::{tz::TimeZone, Timestamp}; |
| 412 | /// |
| 413 | /// let tz = TimeZone::get("Japan" )?; |
| 414 | /// assert_eq!( |
| 415 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
| 416 | /// "1970-01-01T09:00:00" , |
| 417 | /// ); |
| 418 | /// |
| 419 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 420 | /// ``` |
| 421 | #[inline ] |
| 422 | pub fn get(time_zone_name: &str) -> Result<TimeZone, Error> { |
| 423 | crate::tz::db().get(time_zone_name) |
| 424 | } |
| 425 | |
| 426 | /// Returns a time zone with a fixed offset. |
| 427 | /// |
| 428 | /// A fixed offset will never have any transitions and won't follow any |
| 429 | /// particular time zone rules. In general, one should avoid using fixed |
| 430 | /// offset time zones unless you have a specific need for them. Otherwise, |
| 431 | /// IANA time zones via [`TimeZone::get`] should be preferred, as they |
| 432 | /// more accurately model the actual time zone transitions rules used in |
| 433 | /// practice. |
| 434 | /// |
| 435 | /// # Example |
| 436 | /// |
| 437 | /// ``` |
| 438 | /// use jiff::{tz::{self, TimeZone}, Timestamp}; |
| 439 | /// |
| 440 | /// let tz = TimeZone::fixed(tz::offset(10)); |
| 441 | /// assert_eq!( |
| 442 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
| 443 | /// "1970-01-01T10:00:00" , |
| 444 | /// ); |
| 445 | /// |
| 446 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 447 | /// ``` |
| 448 | #[inline ] |
| 449 | pub const fn fixed(offset: Offset) -> TimeZone { |
| 450 | // Not doing `offset == Offset::UTC` because of `const`. |
| 451 | if offset.seconds_ranged().get_unchecked() == 0 { |
| 452 | return TimeZone::UTC; |
| 453 | } |
| 454 | let repr = Repr::fixed(offset); |
| 455 | TimeZone { repr } |
| 456 | } |
| 457 | |
| 458 | /// Creates a time zone from a [POSIX TZ] rule string. |
| 459 | /// |
| 460 | /// A POSIX time zone provides a way to tersely define a single daylight |
| 461 | /// saving time transition rule (or none at all) that applies for all |
| 462 | /// years. |
| 463 | /// |
| 464 | /// Users should avoid using this kind of time zone unless there is a |
| 465 | /// specific need for it. Namely, POSIX time zones cannot capture the full |
| 466 | /// complexity of time zone transition rules in the real world. (See the |
| 467 | /// example below.) |
| 468 | /// |
| 469 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
| 470 | /// |
| 471 | /// # Errors |
| 472 | /// |
| 473 | /// This returns an error if the given POSIX time zone string is invalid. |
| 474 | /// |
| 475 | /// # Example |
| 476 | /// |
| 477 | /// This example demonstrates how a POSIX time zone may be historically |
| 478 | /// inaccurate: |
| 479 | /// |
| 480 | /// ``` |
| 481 | /// use jiff::{civil::date, tz::TimeZone}; |
| 482 | /// |
| 483 | /// // The tzdb entry for America/New_York. |
| 484 | /// let iana = TimeZone::get("America/New_York" )?; |
| 485 | /// // The POSIX TZ string for New York DST that went into effect in 2007. |
| 486 | /// let posix = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0" )?; |
| 487 | /// |
| 488 | /// // New York entered DST on April 2, 2006 at 2am: |
| 489 | /// let dt = date(2006, 4, 2).at(2, 0, 0, 0); |
| 490 | /// // The IANA tzdb entry correctly reports it as ambiguous: |
| 491 | /// assert!(iana.to_ambiguous_timestamp(dt).is_ambiguous()); |
| 492 | /// // But the POSIX time zone does not: |
| 493 | /// assert!(!posix.to_ambiguous_timestamp(dt).is_ambiguous()); |
| 494 | /// |
| 495 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 496 | /// ``` |
| 497 | #[cfg (feature = "alloc" )] |
| 498 | pub fn posix(posix_tz_string: &str) -> Result<TimeZone, Error> { |
| 499 | let posix_tz = PosixTimeZoneOwned::parse(posix_tz_string)?; |
| 500 | Ok(TimeZone::from_posix_tz(posix_tz)) |
| 501 | } |
| 502 | |
| 503 | /// Creates a time zone from a POSIX tz. Expose so that other parts of Jiff |
| 504 | /// can create a `TimeZone` from a POSIX tz. (Kinda sloppy to be honest.) |
| 505 | #[cfg (feature = "alloc" )] |
| 506 | pub(crate) fn from_posix_tz(posix: PosixTimeZoneOwned) -> TimeZone { |
| 507 | let repr = Repr::arc_posix(Arc::new(posix)); |
| 508 | TimeZone { repr } |
| 509 | } |
| 510 | |
| 511 | /// Creates a time zone from TZif binary data, whose format is specified |
| 512 | /// in [RFC 8536]. All versions of TZif (up through version 4) are |
| 513 | /// supported. |
| 514 | /// |
| 515 | /// This constructor is typically not used, and instead, one should rely |
| 516 | /// on time zone lookups via time zone identifiers with routines like |
| 517 | /// [`TimeZone::get`]. However, this constructor does provide one way |
| 518 | /// of using custom time zones with Jiff. |
| 519 | /// |
| 520 | /// The name given should be a IANA time zone database identifier. |
| 521 | /// |
| 522 | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
| 523 | /// |
| 524 | /// # Errors |
| 525 | /// |
| 526 | /// This returns an error if the given data was not recognized as valid |
| 527 | /// TZif. |
| 528 | #[cfg (feature = "alloc" )] |
| 529 | pub fn tzif(name: &str, data: &[u8]) -> Result<TimeZone, Error> { |
| 530 | use alloc::string::ToString; |
| 531 | |
| 532 | let name = name.to_string(); |
| 533 | let tzif = crate::tz::tzif::Tzif::parse(Some(name), data)?; |
| 534 | let repr = Repr::arc_tzif(Arc::new(tzif)); |
| 535 | Ok(TimeZone { repr }) |
| 536 | } |
| 537 | |
| 538 | /// Returns a `TimeZone` that is specifially marked as "unknown." |
| 539 | /// |
| 540 | /// This corresponds to the Unicode CLDR identifier `Etc/Unknown`, which |
| 541 | /// is guaranteed to never be a valid IANA time zone identifier (as of |
| 542 | /// the `2025a` release of tzdb). |
| 543 | /// |
| 544 | /// This type of `TimeZone` is used in circumstances where one wants to |
| 545 | /// signal that discovering a time zone failed for some reason, but that |
| 546 | /// execution can reasonably continue. For example, [`TimeZone::system`] |
| 547 | /// returns this type of time zone when the system time zone could not be |
| 548 | /// discovered. |
| 549 | /// |
| 550 | /// # Example |
| 551 | /// |
| 552 | /// Jiff permits an "unknown" time zone to losslessly be transmitted |
| 553 | /// through serialization: |
| 554 | /// |
| 555 | /// ``` |
| 556 | /// use jiff::{civil::date, tz::TimeZone, Zoned}; |
| 557 | /// |
| 558 | /// let tz = TimeZone::unknown(); |
| 559 | /// let zdt = date(2025, 2, 1).at(17, 0, 0, 0).to_zoned(tz)?; |
| 560 | /// assert_eq!(zdt.to_string(), "2025-02-01T17:00:00Z[Etc/Unknown]" ); |
| 561 | /// let got: Zoned = "2025-02-01T17:00:00Z[Etc/Unknown]" .parse()?; |
| 562 | /// assert_eq!(got, zdt); |
| 563 | /// |
| 564 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 565 | /// ``` |
| 566 | /// |
| 567 | /// Note that not all systems support this. Some systems will reject |
| 568 | /// `Etc/Unknown` because it is not a valid IANA time zone identifier and |
| 569 | /// does not have an entry in the IANA time zone database. However, Jiff |
| 570 | /// takes this approach because it surfaces an error condition in detecting |
| 571 | /// the end user's time zone. Callers not wanting an "unknown" time zone |
| 572 | /// can use `TimeZone::try_system().unwrap_or(TimeZone::UTC)` instead of |
| 573 | /// `TimeZone::system`. (Where the latter falls back to the "unknown" time |
| 574 | /// zone when a system configured time zone could not be found.) |
| 575 | pub const fn unknown() -> TimeZone { |
| 576 | let repr = Repr::unknown(); |
| 577 | TimeZone { repr } |
| 578 | } |
| 579 | |
| 580 | /// This creates an unnamed TZif-backed `TimeZone`. |
| 581 | /// |
| 582 | /// At present, the only way for an unnamed TZif-backed `TimeZone` to be |
| 583 | /// created is when the system time zone has no identifiable name. For |
| 584 | /// example, when `/etc/localtime` is hard-linked to a TZif file instead |
| 585 | /// of being symlinked. In this case, there is no cheap and unambiguous |
| 586 | /// way to determine the time zone name. So we just let it be unnamed. |
| 587 | /// Since this is the only such case, and hopefully will only ever be the |
| 588 | /// only such case, we consider such unnamed TZif-back `TimeZone` values |
| 589 | /// as being the "system" time zone. |
| 590 | /// |
| 591 | /// When this is used to construct a `TimeZone`, the `TimeZone::name` |
| 592 | /// method will be "Local". This is... pretty unfortunate. I'm not sure |
| 593 | /// what else to do other than to make `TimeZone::name` return an |
| 594 | /// `Option<&str>`. But... we use it in a bunch of places and it just |
| 595 | /// seems bad for a time zone to not have a name. |
| 596 | /// |
| 597 | /// OK, because of the above, I renamed `TimeZone::name` to |
| 598 | /// `TimeZone::diagnostic_name`. This should make it clearer that you can't |
| 599 | /// really use the name to do anything interesting. This also makes more |
| 600 | /// sense for POSIX TZ strings too. |
| 601 | /// |
| 602 | /// In any case, this routine stays unexported because I don't want TZif |
| 603 | /// backed `TimeZone` values to proliferate. If you have a legitimate use |
| 604 | /// case otherwise, please file an issue. It will require API design. |
| 605 | /// |
| 606 | /// # Errors |
| 607 | /// |
| 608 | /// This returns an error if the given TZif data is invalid. |
| 609 | #[cfg (feature = "tz-system" )] |
| 610 | pub(crate) fn tzif_system(data: &[u8]) -> Result<TimeZone, Error> { |
| 611 | let tzif = crate::tz::tzif::Tzif::parse(None, data)?; |
| 612 | let repr = Repr::arc_tzif(Arc::new(tzif)); |
| 613 | Ok(TimeZone { repr }) |
| 614 | } |
| 615 | |
| 616 | #[inline ] |
| 617 | pub(crate) fn diagnostic_name(&self) -> DiagnosticName<'_> { |
| 618 | DiagnosticName(self) |
| 619 | } |
| 620 | |
| 621 | /// Returns true if and only if this `TimeZone` can be succinctly |
| 622 | /// serialized. |
| 623 | /// |
| 624 | /// Basically, this is only `false` when this `TimeZone` was created from |
| 625 | /// a `/etc/localtime` for which a valid IANA time zone identifier could |
| 626 | /// not be extracted. |
| 627 | #[cfg (feature = "serde" )] |
| 628 | #[inline ] |
| 629 | pub(crate) fn has_succinct_serialization(&self) -> bool { |
| 630 | repr::each! { |
| 631 | &self.repr, |
| 632 | UTC => true, |
| 633 | UNKNOWN => true, |
| 634 | FIXED(_offset) => true, |
| 635 | STATIC_TZIF(tzif) => tzif.name().is_some(), |
| 636 | ARC_TZIF(tzif) => tzif.name().is_some(), |
| 637 | ARC_POSIX(_posix) => true, |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /// When this time zone was loaded from an IANA time zone database entry, |
| 642 | /// then this returns the canonicalized name for that time zone. |
| 643 | /// |
| 644 | /// # Example |
| 645 | /// |
| 646 | /// ``` |
| 647 | /// use jiff::tz::TimeZone; |
| 648 | /// |
| 649 | /// let tz = TimeZone::get("america/NEW_YORK" )?; |
| 650 | /// assert_eq!(tz.iana_name(), Some("America/New_York" )); |
| 651 | /// |
| 652 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 653 | /// ``` |
| 654 | #[inline ] |
| 655 | pub fn iana_name(&self) -> Option<&str> { |
| 656 | repr::each! { |
| 657 | &self.repr, |
| 658 | UTC => Some("UTC" ), |
| 659 | // Note that while `Etc/Unknown` looks like an IANA time zone |
| 660 | // identifier, it is specifically and explicitly NOT an IANA time |
| 661 | // zone identifier. So we do not return it here if we have an |
| 662 | // unknown time zone identifier. |
| 663 | UNKNOWN => None, |
| 664 | FIXED(_offset) => None, |
| 665 | STATIC_TZIF(tzif) => tzif.name(), |
| 666 | ARC_TZIF(tzif) => tzif.name(), |
| 667 | ARC_POSIX(_posix) => None, |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | /// Returns true if and only if this time zone is unknown. |
| 672 | /// |
| 673 | /// This has the special internal identifier of `Etc/Unknown`, and this |
| 674 | /// is what will be used when converting a `Zoned` to a string. |
| 675 | /// |
| 676 | /// Note that while `Etc/Unknown` looks like an IANA time zone identifier, |
| 677 | /// it is specifically and explicitly not one. It is reserved and is |
| 678 | /// guaranteed to never be an IANA time zone identifier. |
| 679 | /// |
| 680 | /// An unknown time zone can be created via [`TimeZone::unknown`]. It is |
| 681 | /// also returned by [`TimeZone::system`] when a system configured time |
| 682 | /// zone could not be found. |
| 683 | /// |
| 684 | /// # Example |
| 685 | /// |
| 686 | /// ``` |
| 687 | /// use jiff::tz::TimeZone; |
| 688 | /// |
| 689 | /// let tz = TimeZone::unknown(); |
| 690 | /// assert_eq!(tz.iana_name(), None); |
| 691 | /// assert!(tz.is_unknown()); |
| 692 | /// ``` |
| 693 | #[inline ] |
| 694 | pub fn is_unknown(&self) -> bool { |
| 695 | self.repr.is_unknown() |
| 696 | } |
| 697 | |
| 698 | /// When this time zone is a POSIX time zone, return it. |
| 699 | /// |
| 700 | /// This doesn't attempt to convert other time zones that are representable |
| 701 | /// as POSIX time zones to POSIX time zones (e.g., fixed offset time |
| 702 | /// zones). Instead, this only returns something when the actual |
| 703 | /// representation of the time zone is a POSIX time zone. |
| 704 | #[cfg (feature = "alloc" )] |
| 705 | #[inline ] |
| 706 | pub(crate) fn posix_tz(&self) -> Option<&PosixTimeZoneOwned> { |
| 707 | repr::each! { |
| 708 | &self.repr, |
| 709 | UTC => None, |
| 710 | UNKNOWN => None, |
| 711 | FIXED(_offset) => None, |
| 712 | STATIC_TZIF(_tzif) => None, |
| 713 | ARC_TZIF(_tzif) => None, |
| 714 | ARC_POSIX(posix) => Some(posix), |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | /// Returns the civil datetime corresponding to the given timestamp in this |
| 719 | /// time zone. |
| 720 | /// |
| 721 | /// This operation is always unambiguous. That is, for any instant in time |
| 722 | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
| 723 | /// one civil datetime corresponding to that instant. |
| 724 | /// |
| 725 | /// Note that this is considered a lower level routine. Consider working |
| 726 | /// with zoned datetimes instead, and use [`Zoned::datetime`] to get its |
| 727 | /// civil time if necessary. |
| 728 | /// |
| 729 | /// # Example |
| 730 | /// |
| 731 | /// ``` |
| 732 | /// use jiff::{tz::TimeZone, Timestamp}; |
| 733 | /// |
| 734 | /// let tz = TimeZone::get("Europe/Rome" )?; |
| 735 | /// assert_eq!( |
| 736 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
| 737 | /// "1970-01-01T01:00:00" , |
| 738 | /// ); |
| 739 | /// |
| 740 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 741 | /// ``` |
| 742 | /// |
| 743 | /// As mentioned above, consider using `Zoned` instead: |
| 744 | /// |
| 745 | /// ``` |
| 746 | /// use jiff::{tz::TimeZone, Timestamp}; |
| 747 | /// |
| 748 | /// let zdt = Timestamp::UNIX_EPOCH.in_tz("Europe/Rome" )?; |
| 749 | /// assert_eq!(zdt.datetime().to_string(), "1970-01-01T01:00:00" ); |
| 750 | /// |
| 751 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 752 | /// ``` |
| 753 | #[inline ] |
| 754 | pub fn to_datetime(&self, timestamp: Timestamp) -> DateTime { |
| 755 | self.to_offset(timestamp).to_datetime(timestamp) |
| 756 | } |
| 757 | |
| 758 | /// Returns the offset corresponding to the given timestamp in this time |
| 759 | /// zone. |
| 760 | /// |
| 761 | /// This operation is always unambiguous. That is, for any instant in time |
| 762 | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
| 763 | /// one offset corresponding to that instant. |
| 764 | /// |
| 765 | /// Given an offset, one can use APIs like [`Offset::to_datetime`] to |
| 766 | /// create a civil datetime from a timestamp. |
| 767 | /// |
| 768 | /// This also returns whether this timestamp is considered to be in |
| 769 | /// "daylight saving time," as well as the abbreviation for the time zone |
| 770 | /// at this time. |
| 771 | /// |
| 772 | /// # Example |
| 773 | /// |
| 774 | /// ``` |
| 775 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
| 776 | /// |
| 777 | /// let tz = TimeZone::get("America/New_York" )?; |
| 778 | /// |
| 779 | /// // A timestamp in DST in New York. |
| 780 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
| 781 | /// let offset = tz.to_offset(ts); |
| 782 | /// assert_eq!(offset, tz::offset(-4)); |
| 783 | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-07-08T22:46:44" ); |
| 784 | /// |
| 785 | /// // A timestamp *not* in DST in New York. |
| 786 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
| 787 | /// let offset = tz.to_offset(ts); |
| 788 | /// assert_eq!(offset, tz::offset(-5)); |
| 789 | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-01-10T21:46:44" ); |
| 790 | /// |
| 791 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 792 | /// ``` |
| 793 | #[inline ] |
| 794 | pub fn to_offset(&self, timestamp: Timestamp) -> Offset { |
| 795 | repr::each! { |
| 796 | &self.repr, |
| 797 | UTC => Offset::UTC, |
| 798 | UNKNOWN => Offset::UTC, |
| 799 | FIXED(offset) => offset, |
| 800 | STATIC_TZIF(tzif) => tzif.to_offset(timestamp), |
| 801 | ARC_TZIF(tzif) => tzif.to_offset(timestamp), |
| 802 | ARC_POSIX(posix) => posix.to_offset(timestamp), |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | /// Returns the offset information corresponding to the given timestamp in |
| 807 | /// this time zone. This includes the offset along with daylight saving |
| 808 | /// time status and a time zone abbreviation. |
| 809 | /// |
| 810 | /// This is like [`TimeZone::to_offset`], but returns the aforementioned |
| 811 | /// extra data in addition to the offset. This data may, in some cases, be |
| 812 | /// more expensive to compute. |
| 813 | /// |
| 814 | /// # Example |
| 815 | /// |
| 816 | /// ``` |
| 817 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
| 818 | /// |
| 819 | /// let tz = TimeZone::get("America/New_York" )?; |
| 820 | /// |
| 821 | /// // A timestamp in DST in New York. |
| 822 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
| 823 | /// let info = tz.to_offset_info(ts); |
| 824 | /// assert_eq!(info.offset(), tz::offset(-4)); |
| 825 | /// assert_eq!(info.dst(), Dst::Yes); |
| 826 | /// assert_eq!(info.abbreviation(), "EDT" ); |
| 827 | /// assert_eq!( |
| 828 | /// info.offset().to_datetime(ts).to_string(), |
| 829 | /// "2024-07-08T22:46:44" , |
| 830 | /// ); |
| 831 | /// |
| 832 | /// // A timestamp *not* in DST in New York. |
| 833 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
| 834 | /// let info = tz.to_offset_info(ts); |
| 835 | /// assert_eq!(info.offset(), tz::offset(-5)); |
| 836 | /// assert_eq!(info.dst(), Dst::No); |
| 837 | /// assert_eq!(info.abbreviation(), "EST" ); |
| 838 | /// assert_eq!( |
| 839 | /// info.offset().to_datetime(ts).to_string(), |
| 840 | /// "2024-01-10T21:46:44" , |
| 841 | /// ); |
| 842 | /// |
| 843 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 844 | /// ``` |
| 845 | #[inline ] |
| 846 | pub fn to_offset_info<'t>( |
| 847 | &'t self, |
| 848 | timestamp: Timestamp, |
| 849 | ) -> TimeZoneOffsetInfo<'t> { |
| 850 | repr::each! { |
| 851 | &self.repr, |
| 852 | UTC => TimeZoneOffsetInfo { |
| 853 | offset: Offset::UTC, |
| 854 | dst: Dst::No, |
| 855 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC" ), |
| 856 | }, |
| 857 | UNKNOWN => TimeZoneOffsetInfo { |
| 858 | offset: Offset::UTC, |
| 859 | dst: Dst::No, |
| 860 | // It'd be kinda nice if this were just `ERR` to |
| 861 | // indicate an error, but I can't find any precedent |
| 862 | // for that. And CLDR says `Etc/Unknown` should behave |
| 863 | // like UTC, so... I guess we use UTC here. |
| 864 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC" ), |
| 865 | }, |
| 866 | FIXED(offset) => { |
| 867 | let abbreviation = |
| 868 | TimeZoneAbbreviation::Owned(offset.to_array_str()); |
| 869 | TimeZoneOffsetInfo { |
| 870 | offset, |
| 871 | dst: Dst::No, |
| 872 | abbreviation, |
| 873 | } |
| 874 | }, |
| 875 | STATIC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
| 876 | ARC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
| 877 | ARC_POSIX(posix) => posix.to_offset_info(timestamp), |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /// If this time zone is a fixed offset, then this returns the offset. |
| 882 | /// If this time zone is not a fixed offset, then an error is returned. |
| 883 | /// |
| 884 | /// If you just need an offset for a given timestamp, then you can use |
| 885 | /// [`TimeZone::to_offset`]. Or, if you need an offset for a civil |
| 886 | /// datetime, then you can use [`TimeZone::to_ambiguous_timestamp`] or |
| 887 | /// [`TimeZone::to_ambiguous_zoned`], although the result may be ambiguous. |
| 888 | /// |
| 889 | /// Generally, this routine is useful when you need to know whether the |
| 890 | /// time zone is fixed, and you want to get the offset without having to |
| 891 | /// specify a timestamp. This is sometimes required for interoperating with |
| 892 | /// other datetime systems that need to distinguish between time zones that |
| 893 | /// are fixed and time zones that are based on rules such as those found in |
| 894 | /// the IANA time zone database. |
| 895 | /// |
| 896 | /// # Example |
| 897 | /// |
| 898 | /// ``` |
| 899 | /// use jiff::tz::{Offset, TimeZone}; |
| 900 | /// |
| 901 | /// let tz = TimeZone::get("America/New_York" )?; |
| 902 | /// // A named time zone is not a fixed offset |
| 903 | /// // and so cannot be converted to an offset |
| 904 | /// // without a timestamp or civil datetime. |
| 905 | /// assert_eq!( |
| 906 | /// tz.to_fixed_offset().unwrap_err().to_string(), |
| 907 | /// "cannot convert non-fixed IANA time zone \ |
| 908 | /// to offset without timestamp or civil datetime" , |
| 909 | /// ); |
| 910 | /// |
| 911 | /// let tz = TimeZone::UTC; |
| 912 | /// // UTC is a fixed offset and so can be converted |
| 913 | /// // without a timestamp. |
| 914 | /// assert_eq!(tz.to_fixed_offset()?, Offset::UTC); |
| 915 | /// |
| 916 | /// // And of course, creating a time zone from a |
| 917 | /// // fixed offset results in a fixed offset time |
| 918 | /// // zone too: |
| 919 | /// let tz = TimeZone::fixed(jiff::tz::offset(-10)); |
| 920 | /// assert_eq!(tz.to_fixed_offset()?, jiff::tz::offset(-10)); |
| 921 | /// |
| 922 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 923 | /// ``` |
| 924 | #[inline ] |
| 925 | pub fn to_fixed_offset(&self) -> Result<Offset, Error> { |
| 926 | let mkerr = || { |
| 927 | err!( |
| 928 | "cannot convert non-fixed {kind} time zone to offset \ |
| 929 | without timestamp or civil datetime" , |
| 930 | kind = self.kind_description(), |
| 931 | ) |
| 932 | }; |
| 933 | repr::each! { |
| 934 | &self.repr, |
| 935 | UTC => Ok(Offset::UTC), |
| 936 | UNKNOWN => Ok(Offset::UTC), |
| 937 | FIXED(offset) => Ok(offset), |
| 938 | STATIC_TZIF(_tzif) => Err(mkerr()), |
| 939 | ARC_TZIF(_tzif) => Err(mkerr()), |
| 940 | ARC_POSIX(_posix) => Err(mkerr()), |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | /// Converts a civil datetime to a [`Zoned`] in this time zone. |
| 945 | /// |
| 946 | /// The given civil datetime may be ambiguous in this time zone. A civil |
| 947 | /// datetime is ambiguous when either of the following occurs: |
| 948 | /// |
| 949 | /// * When the civil datetime falls into a "gap." That is, when there is a |
| 950 | /// jump forward in time where a span of time does not appear on the clocks |
| 951 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
| 952 | /// into daylight saving time. |
| 953 | /// * When the civil datetime falls into a "fold." That is, when there is |
| 954 | /// a jump backward in time where a span of time is _repeated_ on the |
| 955 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
| 956 | /// backward out of daylight saving time. |
| 957 | /// |
| 958 | /// This routine automatically resolves both of the above ambiguities via |
| 959 | /// the |
| 960 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
| 961 | /// strategy. That in, the case of a gap, the time after the gap is used. |
| 962 | /// In the case of a fold, the first repetition of the clock time is used. |
| 963 | /// |
| 964 | /// # Example |
| 965 | /// |
| 966 | /// This example shows how disambiguation works: |
| 967 | /// |
| 968 | /// ``` |
| 969 | /// use jiff::{civil::date, tz::TimeZone}; |
| 970 | /// |
| 971 | /// let tz = TimeZone::get("America/New_York" )?; |
| 972 | /// |
| 973 | /// // This demonstrates disambiguation behavior for a gap. |
| 974 | /// let zdt = tz.to_zoned(date(2024, 3, 10).at(2, 30, 0, 0))?; |
| 975 | /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]" ); |
| 976 | /// // This demonstrates disambiguation behavior for a fold. |
| 977 | /// // Notice the offset: the -04 corresponds to the time while |
| 978 | /// // still in DST. The second repetition of the 1 o'clock hour |
| 979 | /// // occurs outside of DST, in "standard" time, with the offset -5. |
| 980 | /// let zdt = tz.to_zoned(date(2024, 11, 3).at(1, 30, 0, 0))?; |
| 981 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
| 982 | /// |
| 983 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 984 | /// ``` |
| 985 | #[inline ] |
| 986 | pub fn to_zoned(&self, dt: DateTime) -> Result<Zoned, Error> { |
| 987 | self.to_ambiguous_zoned(dt).compatible() |
| 988 | } |
| 989 | |
| 990 | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
| 991 | /// this time zone. |
| 992 | /// |
| 993 | /// The given civil datetime may be ambiguous in this time zone. A civil |
| 994 | /// datetime is ambiguous when either of the following occurs: |
| 995 | /// |
| 996 | /// * When the civil datetime falls into a "gap." That is, when there is a |
| 997 | /// jump forward in time where a span of time does not appear on the clocks |
| 998 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
| 999 | /// into daylight saving time. |
| 1000 | /// * When the civil datetime falls into a "fold." That is, when there is |
| 1001 | /// a jump backward in time where a span of time is _repeated_ on the |
| 1002 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
| 1003 | /// backward out of daylight saving time. |
| 1004 | /// |
| 1005 | /// Unlike [`TimeZone::to_zoned`], this method does not do any automatic |
| 1006 | /// disambiguation. Instead, callers are expected to use the methods on |
| 1007 | /// [`AmbiguousZoned`] to resolve any ambiguity, if it occurs. |
| 1008 | /// |
| 1009 | /// # Example |
| 1010 | /// |
| 1011 | /// This example shows how to return an error when the civil datetime given |
| 1012 | /// is ambiguous: |
| 1013 | /// |
| 1014 | /// ``` |
| 1015 | /// use jiff::{civil::date, tz::TimeZone}; |
| 1016 | /// |
| 1017 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1018 | /// |
| 1019 | /// // This is not ambiguous: |
| 1020 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
| 1021 | /// assert_eq!( |
| 1022 | /// tz.to_ambiguous_zoned(dt).unambiguous()?.to_string(), |
| 1023 | /// "2024-03-10T01:00:00-05:00[America/New_York]" , |
| 1024 | /// ); |
| 1025 | /// // But this is a gap, and thus ambiguous! So an error is returned. |
| 1026 | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
| 1027 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
| 1028 | /// // And so is this, because it's a fold. |
| 1029 | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
| 1030 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
| 1031 | /// |
| 1032 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1033 | /// ``` |
| 1034 | #[inline ] |
| 1035 | pub fn to_ambiguous_zoned(&self, dt: DateTime) -> AmbiguousZoned { |
| 1036 | self.clone().into_ambiguous_zoned(dt) |
| 1037 | } |
| 1038 | |
| 1039 | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
| 1040 | /// this time zone, and does so by assuming ownership of this `TimeZone`. |
| 1041 | /// |
| 1042 | /// This is identical to [`TimeZone::to_ambiguous_zoned`], but it avoids |
| 1043 | /// a `TimeZone::clone()` call. (Which are cheap, but not completely free.) |
| 1044 | /// |
| 1045 | /// # Example |
| 1046 | /// |
| 1047 | /// This example shows how to create a `Zoned` value from a `TimeZone` |
| 1048 | /// and a `DateTime` without cloning the `TimeZone`: |
| 1049 | /// |
| 1050 | /// ``` |
| 1051 | /// use jiff::{civil::date, tz::TimeZone}; |
| 1052 | /// |
| 1053 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1054 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
| 1055 | /// assert_eq!( |
| 1056 | /// tz.into_ambiguous_zoned(dt).unambiguous()?.to_string(), |
| 1057 | /// "2024-03-10T01:00:00-05:00[America/New_York]" , |
| 1058 | /// ); |
| 1059 | /// |
| 1060 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1061 | /// ``` |
| 1062 | #[inline ] |
| 1063 | pub fn into_ambiguous_zoned(self, dt: DateTime) -> AmbiguousZoned { |
| 1064 | self.to_ambiguous_timestamp(dt).into_ambiguous_zoned(self) |
| 1065 | } |
| 1066 | |
| 1067 | /// Converts a civil datetime to a [`Timestamp`] in this time zone. |
| 1068 | /// |
| 1069 | /// The given civil datetime may be ambiguous in this time zone. A civil |
| 1070 | /// datetime is ambiguous when either of the following occurs: |
| 1071 | /// |
| 1072 | /// * When the civil datetime falls into a "gap." That is, when there is a |
| 1073 | /// jump forward in time where a span of time does not appear on the clocks |
| 1074 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
| 1075 | /// into daylight saving time. |
| 1076 | /// * When the civil datetime falls into a "fold." That is, when there is |
| 1077 | /// a jump backward in time where a span of time is _repeated_ on the |
| 1078 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
| 1079 | /// backward out of daylight saving time. |
| 1080 | /// |
| 1081 | /// This routine automatically resolves both of the above ambiguities via |
| 1082 | /// the |
| 1083 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
| 1084 | /// strategy. That in, the case of a gap, the time after the gap is used. |
| 1085 | /// In the case of a fold, the first repetition of the clock time is used. |
| 1086 | /// |
| 1087 | /// This routine is identical to [`TimeZone::to_zoned`], except it returns |
| 1088 | /// a `Timestamp` instead of a zoned datetime. The benefit of this |
| 1089 | /// method is that it never requires cloning or consuming ownership of a |
| 1090 | /// `TimeZone`, and it doesn't require construction of `Zoned` which has |
| 1091 | /// a small but non-zero cost. (This is partially because a `Zoned` value |
| 1092 | /// contains a `TimeZone`, but of course, a `Timestamp` does not.) |
| 1093 | /// |
| 1094 | /// # Example |
| 1095 | /// |
| 1096 | /// This example shows how disambiguation works: |
| 1097 | /// |
| 1098 | /// ``` |
| 1099 | /// use jiff::{civil::date, tz::TimeZone}; |
| 1100 | /// |
| 1101 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1102 | /// |
| 1103 | /// // This demonstrates disambiguation behavior for a gap. |
| 1104 | /// let ts = tz.to_timestamp(date(2024, 3, 10).at(2, 30, 0, 0))?; |
| 1105 | /// assert_eq!(ts.to_string(), "2024-03-10T07:30:00Z" ); |
| 1106 | /// // This demonstrates disambiguation behavior for a fold. |
| 1107 | /// // Notice the offset: the -04 corresponds to the time while |
| 1108 | /// // still in DST. The second repetition of the 1 o'clock hour |
| 1109 | /// // occurs outside of DST, in "standard" time, with the offset -5. |
| 1110 | /// let ts = tz.to_timestamp(date(2024, 11, 3).at(1, 30, 0, 0))?; |
| 1111 | /// assert_eq!(ts.to_string(), "2024-11-03T05:30:00Z" ); |
| 1112 | /// |
| 1113 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1114 | /// ``` |
| 1115 | #[inline ] |
| 1116 | pub fn to_timestamp(&self, dt: DateTime) -> Result<Timestamp, Error> { |
| 1117 | self.to_ambiguous_timestamp(dt).compatible() |
| 1118 | } |
| 1119 | |
| 1120 | /// Converts a civil datetime to a possibly ambiguous timestamp in |
| 1121 | /// this time zone. |
| 1122 | /// |
| 1123 | /// The given civil datetime may be ambiguous in this time zone. A civil |
| 1124 | /// datetime is ambiguous when either of the following occurs: |
| 1125 | /// |
| 1126 | /// * When the civil datetime falls into a "gap." That is, when there is a |
| 1127 | /// jump forward in time where a span of time does not appear on the clocks |
| 1128 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
| 1129 | /// into daylight saving time. |
| 1130 | /// * When the civil datetime falls into a "fold." That is, when there is |
| 1131 | /// a jump backward in time where a span of time is _repeated_ on the |
| 1132 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
| 1133 | /// backward out of daylight saving time. |
| 1134 | /// |
| 1135 | /// Unlike [`TimeZone::to_timestamp`], this method does not do any |
| 1136 | /// automatic disambiguation. Instead, callers are expected to use the |
| 1137 | /// methods on [`AmbiguousTimestamp`] to resolve any ambiguity, if it |
| 1138 | /// occurs. |
| 1139 | /// |
| 1140 | /// This routine is identical to [`TimeZone::to_ambiguous_zoned`], except |
| 1141 | /// it returns an `AmbiguousTimestamp` instead of a `AmbiguousZoned`. The |
| 1142 | /// benefit of this method is that it never requires cloning or consuming |
| 1143 | /// ownership of a `TimeZone`, and it doesn't require construction of |
| 1144 | /// `Zoned` which has a small but non-zero cost. (This is partially because |
| 1145 | /// a `Zoned` value contains a `TimeZone`, but of course, a `Timestamp` |
| 1146 | /// does not.) |
| 1147 | /// |
| 1148 | /// # Example |
| 1149 | /// |
| 1150 | /// This example shows how to return an error when the civil datetime given |
| 1151 | /// is ambiguous: |
| 1152 | /// |
| 1153 | /// ``` |
| 1154 | /// use jiff::{civil::date, tz::TimeZone}; |
| 1155 | /// |
| 1156 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1157 | /// |
| 1158 | /// // This is not ambiguous: |
| 1159 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
| 1160 | /// assert_eq!( |
| 1161 | /// tz.to_ambiguous_timestamp(dt).unambiguous()?.to_string(), |
| 1162 | /// "2024-03-10T06:00:00Z" , |
| 1163 | /// ); |
| 1164 | /// // But this is a gap, and thus ambiguous! So an error is returned. |
| 1165 | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
| 1166 | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
| 1167 | /// // And so is this, because it's a fold. |
| 1168 | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
| 1169 | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
| 1170 | /// |
| 1171 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1172 | /// ``` |
| 1173 | #[inline ] |
| 1174 | pub fn to_ambiguous_timestamp(&self, dt: DateTime) -> AmbiguousTimestamp { |
| 1175 | let ambiguous_kind = repr::each! { |
| 1176 | &self.repr, |
| 1177 | UTC => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
| 1178 | UNKNOWN => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
| 1179 | FIXED(offset) => AmbiguousOffset::Unambiguous { offset }, |
| 1180 | STATIC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
| 1181 | ARC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
| 1182 | ARC_POSIX(posix) => posix.to_ambiguous_kind(dt), |
| 1183 | }; |
| 1184 | AmbiguousTimestamp::new(dt, ambiguous_kind) |
| 1185 | } |
| 1186 | |
| 1187 | /// Returns an iterator of time zone transitions preceding the given |
| 1188 | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
| 1189 | /// elements. |
| 1190 | /// |
| 1191 | /// The order of the iterator returned moves backward through time. If |
| 1192 | /// there is a previous transition, then the timestamp of that transition |
| 1193 | /// is guaranteed to be strictly less than the timestamp given. |
| 1194 | /// |
| 1195 | /// This is a low level API that you generally shouldn't need. It's |
| 1196 | /// useful in cases where you need to know something about the specific |
| 1197 | /// instants at which time zone transitions occur. For example, an embedded |
| 1198 | /// device might need to be explicitly programmed with daylight saving |
| 1199 | /// time transitions. APIs like this enable callers to explore those |
| 1200 | /// transitions. |
| 1201 | /// |
| 1202 | /// A time zone transition refers to a specific point in time when the |
| 1203 | /// offset from UTC for a particular geographical region changes. This |
| 1204 | /// is usually a result of daylight saving time, but it can also occur |
| 1205 | /// when a geographic region changes its permanent offset from UTC. |
| 1206 | /// |
| 1207 | /// The iterator returned is not guaranteed to yield any elements. For |
| 1208 | /// example, this occurs with a fixed offset time zone. Logically, it |
| 1209 | /// would also be possible for the iterator to be infinite, except that |
| 1210 | /// eventually the timestamp would overflow Jiff's minimum timestamp |
| 1211 | /// value, at which point, iteration stops. |
| 1212 | /// |
| 1213 | /// # Example: time since the previous transition |
| 1214 | /// |
| 1215 | /// This example shows how much time has passed since the previous time |
| 1216 | /// zone transition: |
| 1217 | /// |
| 1218 | /// ``` |
| 1219 | /// use jiff::{Unit, Zoned}; |
| 1220 | /// |
| 1221 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1222 | /// let trans = now.time_zone().preceding(now.timestamp()).next().unwrap(); |
| 1223 | /// let prev_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
| 1224 | /// let span = now.since((Unit::Year, &prev_at))?; |
| 1225 | /// assert_eq!(format!("{span:#}" ), "1mo 27d 17h 25m" ); |
| 1226 | /// |
| 1227 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1228 | /// ``` |
| 1229 | /// |
| 1230 | /// # Example: show the 5 previous time zone transitions |
| 1231 | /// |
| 1232 | /// This shows how to find the 5 preceding time zone transitions (from a |
| 1233 | /// particular datetime) for a particular time zone: |
| 1234 | /// |
| 1235 | /// ``` |
| 1236 | /// use jiff::{tz::offset, Zoned}; |
| 1237 | /// |
| 1238 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1239 | /// let transitions = now |
| 1240 | /// .time_zone() |
| 1241 | /// .preceding(now.timestamp()) |
| 1242 | /// .take(5) |
| 1243 | /// .map(|t| ( |
| 1244 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
| 1245 | /// t.offset(), |
| 1246 | /// t.abbreviation().to_string(), |
| 1247 | /// )) |
| 1248 | /// .collect::<Vec<_>>(); |
| 1249 | /// assert_eq!(transitions, vec![ |
| 1250 | /// ("2024-11-03 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1251 | /// ("2024-03-10 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1252 | /// ("2023-11-05 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1253 | /// ("2023-03-12 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1254 | /// ("2022-11-06 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1255 | /// ]); |
| 1256 | /// |
| 1257 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1258 | /// ``` |
| 1259 | #[inline ] |
| 1260 | pub fn preceding<'t>( |
| 1261 | &'t self, |
| 1262 | timestamp: Timestamp, |
| 1263 | ) -> TimeZonePrecedingTransitions<'t> { |
| 1264 | TimeZonePrecedingTransitions { tz: self, cur: timestamp } |
| 1265 | } |
| 1266 | |
| 1267 | /// Returns an iterator of time zone transitions following the given |
| 1268 | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
| 1269 | /// elements. |
| 1270 | /// |
| 1271 | /// The order of the iterator returned moves forward through time. If |
| 1272 | /// there is a following transition, then the timestamp of that transition |
| 1273 | /// is guaranteed to be strictly greater than the timestamp given. |
| 1274 | /// |
| 1275 | /// This is a low level API that you generally shouldn't need. It's |
| 1276 | /// useful in cases where you need to know something about the specific |
| 1277 | /// instants at which time zone transitions occur. For example, an embedded |
| 1278 | /// device might need to be explicitly programmed with daylight saving |
| 1279 | /// time transitions. APIs like this enable callers to explore those |
| 1280 | /// transitions. |
| 1281 | /// |
| 1282 | /// A time zone transition refers to a specific point in time when the |
| 1283 | /// offset from UTC for a particular geographical region changes. This |
| 1284 | /// is usually a result of daylight saving time, but it can also occur |
| 1285 | /// when a geographic region changes its permanent offset from UTC. |
| 1286 | /// |
| 1287 | /// The iterator returned is not guaranteed to yield any elements. For |
| 1288 | /// example, this occurs with a fixed offset time zone. Logically, it |
| 1289 | /// would also be possible for the iterator to be infinite, except that |
| 1290 | /// eventually the timestamp would overflow Jiff's maximum timestamp |
| 1291 | /// value, at which point, iteration stops. |
| 1292 | /// |
| 1293 | /// # Example: time until the next transition |
| 1294 | /// |
| 1295 | /// This example shows how much time is left until the next time zone |
| 1296 | /// transition: |
| 1297 | /// |
| 1298 | /// ``` |
| 1299 | /// use jiff::{Unit, Zoned}; |
| 1300 | /// |
| 1301 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1302 | /// let trans = now.time_zone().following(now.timestamp()).next().unwrap(); |
| 1303 | /// let next_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
| 1304 | /// let span = now.until((Unit::Year, &next_at))?; |
| 1305 | /// assert_eq!(format!("{span:#}" ), "2mo 8d 7h 35m" ); |
| 1306 | /// |
| 1307 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1308 | /// ``` |
| 1309 | /// |
| 1310 | /// # Example: show the 5 next time zone transitions |
| 1311 | /// |
| 1312 | /// This shows how to find the 5 following time zone transitions (from a |
| 1313 | /// particular datetime) for a particular time zone: |
| 1314 | /// |
| 1315 | /// ``` |
| 1316 | /// use jiff::{tz::offset, Zoned}; |
| 1317 | /// |
| 1318 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1319 | /// let transitions = now |
| 1320 | /// .time_zone() |
| 1321 | /// .following(now.timestamp()) |
| 1322 | /// .take(5) |
| 1323 | /// .map(|t| ( |
| 1324 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
| 1325 | /// t.offset(), |
| 1326 | /// t.abbreviation().to_string(), |
| 1327 | /// )) |
| 1328 | /// .collect::<Vec<_>>(); |
| 1329 | /// assert_eq!(transitions, vec![ |
| 1330 | /// ("2025-03-09 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1331 | /// ("2025-11-02 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1332 | /// ("2026-03-08 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1333 | /// ("2026-11-01 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1334 | /// ("2027-03-14 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1335 | /// ]); |
| 1336 | /// |
| 1337 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1338 | /// ``` |
| 1339 | #[inline ] |
| 1340 | pub fn following<'t>( |
| 1341 | &'t self, |
| 1342 | timestamp: Timestamp, |
| 1343 | ) -> TimeZoneFollowingTransitions<'t> { |
| 1344 | TimeZoneFollowingTransitions { tz: self, cur: timestamp } |
| 1345 | } |
| 1346 | |
| 1347 | /// Used by the "preceding transitions" iterator. |
| 1348 | #[inline ] |
| 1349 | fn previous_transition( |
| 1350 | &self, |
| 1351 | timestamp: Timestamp, |
| 1352 | ) -> Option<TimeZoneTransition> { |
| 1353 | repr::each! { |
| 1354 | &self.repr, |
| 1355 | UTC => None, |
| 1356 | UNKNOWN => None, |
| 1357 | FIXED(_offset) => None, |
| 1358 | STATIC_TZIF(tzif) => tzif.previous_transition(timestamp), |
| 1359 | ARC_TZIF(tzif) => tzif.previous_transition(timestamp), |
| 1360 | ARC_POSIX(posix) => posix.previous_transition(timestamp), |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | /// Used by the "following transitions" iterator. |
| 1365 | #[inline ] |
| 1366 | fn next_transition( |
| 1367 | &self, |
| 1368 | timestamp: Timestamp, |
| 1369 | ) -> Option<TimeZoneTransition> { |
| 1370 | repr::each! { |
| 1371 | &self.repr, |
| 1372 | UTC => None, |
| 1373 | UNKNOWN => None, |
| 1374 | FIXED(_offset) => None, |
| 1375 | STATIC_TZIF(tzif) => tzif.next_transition(timestamp), |
| 1376 | ARC_TZIF(tzif) => tzif.next_transition(timestamp), |
| 1377 | ARC_POSIX(posix) => posix.next_transition(timestamp), |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | /// Returns a short description about the kind of this time zone. |
| 1382 | /// |
| 1383 | /// This is useful in error messages. |
| 1384 | fn kind_description(&self) -> &str { |
| 1385 | repr::each! { |
| 1386 | &self.repr, |
| 1387 | UTC => "UTC" , |
| 1388 | UNKNOWN => "Etc/Unknown" , |
| 1389 | FIXED(_offset) => "fixed" , |
| 1390 | STATIC_TZIF(_tzif) => "IANA" , |
| 1391 | ARC_TZIF(_tzif) => "IANA" , |
| 1392 | ARC_POSIX(_posix) => "POSIX" , |
| 1393 | } |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | // Exposed APIs for Jiff's time zone proc macro. |
| 1398 | // |
| 1399 | // These are NOT part of Jiff's public API. There are *zero* semver guarantees |
| 1400 | // for them. |
| 1401 | #[doc (hidden)] |
| 1402 | impl TimeZone { |
| 1403 | pub const fn __internal_from_tzif( |
| 1404 | tzif: &'static crate::tz::tzif::TzifStatic, |
| 1405 | ) -> TimeZone { |
| 1406 | let repr = Repr::static_tzif(tzif); |
| 1407 | TimeZone { repr } |
| 1408 | } |
| 1409 | |
| 1410 | /// Returns a dumb copy of this `TimeZone`. |
| 1411 | /// |
| 1412 | /// # Safety |
| 1413 | /// |
| 1414 | /// Callers must ensure that this time zone is UTC, unknown, a fixed |
| 1415 | /// offset or created with `TimeZone::__internal_from_tzif`. |
| 1416 | /// |
| 1417 | /// Namely, this specifically does not increment the ref count for |
| 1418 | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
| 1419 | /// This means that incorrect usage of this routine can lead to |
| 1420 | /// use-after-free. |
| 1421 | #[inline ] |
| 1422 | pub const unsafe fn copy(&self) -> TimeZone { |
| 1423 | // SAFETY: Requirements are forwarded to the caller. |
| 1424 | unsafe { TimeZone { repr: self.repr.copy() } } |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | impl core::fmt::Debug for TimeZone { |
| 1429 | #[inline ] |
| 1430 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1431 | f.debug_tuple(name:"TimeZone" ).field(&self.repr).finish() |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | /// A representation a single time zone transition. |
| 1436 | /// |
| 1437 | /// A time zone transition is an instant in time the marks the beginning of |
| 1438 | /// a change in the offset from UTC that civil time is computed from in a |
| 1439 | /// particular time zone. For example, when daylight saving time comes into |
| 1440 | /// effect (or goes away). Another example is when a geographic region changes |
| 1441 | /// its permanent offset from UTC. |
| 1442 | /// |
| 1443 | /// This is a low level type that you generally shouldn't need. It's useful in |
| 1444 | /// cases where you need to know something about the specific instants at which |
| 1445 | /// time zone transitions occur. For example, an embedded device might need to |
| 1446 | /// be explicitly programmed with daylight saving time transitions. APIs like |
| 1447 | /// this enable callers to explore those transitions. |
| 1448 | /// |
| 1449 | /// This type is yielded by the iterators |
| 1450 | /// [`TimeZonePrecedingTransitions`] and |
| 1451 | /// [`TimeZoneFollowingTransitions`]. The iterators are created by |
| 1452 | /// [`TimeZone::preceding`] and [`TimeZone::following`], respectively. |
| 1453 | /// |
| 1454 | /// # Example |
| 1455 | /// |
| 1456 | /// This shows a somewhat silly example that finds all of the unique civil |
| 1457 | /// (or "clock" or "local") times at which a time zone transition has occurred |
| 1458 | /// in a particular time zone: |
| 1459 | /// |
| 1460 | /// ``` |
| 1461 | /// use std::collections::BTreeSet; |
| 1462 | /// use jiff::{civil, tz::TimeZone}; |
| 1463 | /// |
| 1464 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1465 | /// let now = civil::date(2024, 12, 31).at(18, 25, 0, 0).to_zoned(tz.clone())?; |
| 1466 | /// let mut set = BTreeSet::new(); |
| 1467 | /// for trans in tz.preceding(now.timestamp()) { |
| 1468 | /// let time = tz.to_datetime(trans.timestamp()).time(); |
| 1469 | /// set.insert(time); |
| 1470 | /// } |
| 1471 | /// assert_eq!(Vec::from_iter(set), vec![ |
| 1472 | /// civil::time(1, 0, 0, 0), // typical transition out of DST |
| 1473 | /// civil::time(3, 0, 0, 0), // typical transition into DST |
| 1474 | /// civil::time(12, 0, 0, 0), // from when IANA starts keeping track |
| 1475 | /// civil::time(19, 0, 0, 0), // from World War 2 |
| 1476 | /// ]); |
| 1477 | /// |
| 1478 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1479 | /// ``` |
| 1480 | #[derive (Clone, Debug)] |
| 1481 | pub struct TimeZoneTransition<'t> { |
| 1482 | // We don't currently do anything smart to make iterating over |
| 1483 | // transitions faster. We could if we pushed the iterator impl down into |
| 1484 | // the respective modules (`posix` and `tzif`), but it's not clear such |
| 1485 | // optimization is really worth it. However, this API should permit that |
| 1486 | // kind of optimization in the future. |
| 1487 | pub(crate) timestamp: Timestamp, |
| 1488 | pub(crate) offset: Offset, |
| 1489 | pub(crate) abbrev: &'t str, |
| 1490 | pub(crate) dst: Dst, |
| 1491 | } |
| 1492 | |
| 1493 | impl<'t> TimeZoneTransition<'t> { |
| 1494 | /// Returns the timestamp at which this transition began. |
| 1495 | /// |
| 1496 | /// # Example |
| 1497 | /// |
| 1498 | /// ``` |
| 1499 | /// use jiff::{civil, tz::TimeZone}; |
| 1500 | /// |
| 1501 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1502 | /// // Look for the first time zone transition in `US/Eastern` following |
| 1503 | /// // 2023-03-09 00:00:00. |
| 1504 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
| 1505 | /// let next = tz.following(start).next().unwrap(); |
| 1506 | /// assert_eq!( |
| 1507 | /// next.timestamp().to_zoned(tz.clone()).to_string(), |
| 1508 | /// "2024-03-10T03:00:00-04:00[US/Eastern]" , |
| 1509 | /// ); |
| 1510 | /// |
| 1511 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1512 | /// ``` |
| 1513 | #[inline ] |
| 1514 | pub fn timestamp(&self) -> Timestamp { |
| 1515 | self.timestamp |
| 1516 | } |
| 1517 | |
| 1518 | /// Returns the offset corresponding to this time zone transition. All |
| 1519 | /// instants at and following this transition's timestamp (and before the |
| 1520 | /// next transition's timestamp) need to apply this offset from UTC to get |
| 1521 | /// the civil or "local" time in the corresponding time zone. |
| 1522 | /// |
| 1523 | /// # Example |
| 1524 | /// |
| 1525 | /// ``` |
| 1526 | /// use jiff::{civil, tz::{TimeZone, offset}}; |
| 1527 | /// |
| 1528 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1529 | /// // Get the offset of the next transition after |
| 1530 | /// // 2023-03-09 00:00:00. |
| 1531 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
| 1532 | /// let next = tz.following(start).next().unwrap(); |
| 1533 | /// assert_eq!(next.offset(), offset(-4)); |
| 1534 | /// // Or go backwards to find the previous transition. |
| 1535 | /// let prev = tz.preceding(start).next().unwrap(); |
| 1536 | /// assert_eq!(prev.offset(), offset(-5)); |
| 1537 | /// |
| 1538 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1539 | /// ``` |
| 1540 | #[inline ] |
| 1541 | pub fn offset(&self) -> Offset { |
| 1542 | self.offset |
| 1543 | } |
| 1544 | |
| 1545 | /// Returns the time zone abbreviation corresponding to this time |
| 1546 | /// zone transition. All instants at and following this transition's |
| 1547 | /// timestamp (and before the next transition's timestamp) may use this |
| 1548 | /// abbreviation when creating a human readable string. For example, |
| 1549 | /// this is the abbreviation used with the `%Z` specifier with Jiff's |
| 1550 | /// [`fmt::strtime`](crate::fmt::strtime) module. |
| 1551 | /// |
| 1552 | /// Note that abbreviations can to be ambiguous. For example, the |
| 1553 | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
| 1554 | /// `America/Chicago` and `America/Havana`. |
| 1555 | /// |
| 1556 | /// The lifetime of the string returned is tied to this |
| 1557 | /// `TimeZoneTransition`, which may be shorter than `'t` (the lifetime of |
| 1558 | /// the time zone this transition was created from). |
| 1559 | /// |
| 1560 | /// # Example |
| 1561 | /// |
| 1562 | /// ``` |
| 1563 | /// use jiff::{civil, tz::TimeZone}; |
| 1564 | /// |
| 1565 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1566 | /// // Get the abbreviation of the next transition after |
| 1567 | /// // 2023-03-09 00:00:00. |
| 1568 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
| 1569 | /// let next = tz.following(start).next().unwrap(); |
| 1570 | /// assert_eq!(next.abbreviation(), "EDT" ); |
| 1571 | /// // Or go backwards to find the previous transition. |
| 1572 | /// let prev = tz.preceding(start).next().unwrap(); |
| 1573 | /// assert_eq!(prev.abbreviation(), "EST" ); |
| 1574 | /// |
| 1575 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1576 | /// ``` |
| 1577 | #[inline ] |
| 1578 | pub fn abbreviation<'a>(&'a self) -> &'a str { |
| 1579 | self.abbrev |
| 1580 | } |
| 1581 | |
| 1582 | /// Returns whether daylight saving time is enabled for this time zone |
| 1583 | /// transition. |
| 1584 | /// |
| 1585 | /// Callers should generally treat this as informational only. In |
| 1586 | /// particular, not all time zone transitions are related to daylight |
| 1587 | /// saving time. For example, some transitions are a result of a region |
| 1588 | /// permanently changing their offset from UTC. |
| 1589 | /// |
| 1590 | /// # Example |
| 1591 | /// |
| 1592 | /// ``` |
| 1593 | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
| 1594 | /// |
| 1595 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1596 | /// // Get the DST status of the next transition after |
| 1597 | /// // 2023-03-09 00:00:00. |
| 1598 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
| 1599 | /// let next = tz.following(start).next().unwrap(); |
| 1600 | /// assert_eq!(next.dst(), Dst::Yes); |
| 1601 | /// // Or go backwards to find the previous transition. |
| 1602 | /// let prev = tz.preceding(start).next().unwrap(); |
| 1603 | /// assert_eq!(prev.dst(), Dst::No); |
| 1604 | /// |
| 1605 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1606 | /// ``` |
| 1607 | #[inline ] |
| 1608 | pub fn dst(&self) -> Dst { |
| 1609 | self.dst |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | /// An offset along with DST status and a time zone abbreviation. |
| 1614 | /// |
| 1615 | /// This information can be computed from a [`TimeZone`] given a [`Timestamp`] |
| 1616 | /// via [`TimeZone::to_offset_info`]. |
| 1617 | /// |
| 1618 | /// Generally, the extra information associated with the offset is not commonly |
| 1619 | /// needed. And indeed, inspecting the daylight saving time status of a |
| 1620 | /// particular instant in a time zone _usually_ leads to bugs. For example, not |
| 1621 | /// all time zone transitions are the result of daylight saving time. Some are |
| 1622 | /// the result of permanent changes to the standard UTC offset of a region. |
| 1623 | /// |
| 1624 | /// This information is available via an API distinct from |
| 1625 | /// [`TimeZone::to_offset`] because it is not commonly needed and because it |
| 1626 | /// can sometimes be more expensive to compute. |
| 1627 | /// |
| 1628 | /// The main use case for daylight saving time status or time zone |
| 1629 | /// abbreviations is for formatting datetimes in an end user's locale. If you |
| 1630 | /// want this, consider using the [`icu`] crate via [`jiff-icu`]. |
| 1631 | /// |
| 1632 | /// The lifetime parameter `'t` corresponds to the lifetime of the `TimeZone` |
| 1633 | /// that this info was extracted from. |
| 1634 | /// |
| 1635 | /// # Example |
| 1636 | /// |
| 1637 | /// ``` |
| 1638 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
| 1639 | /// |
| 1640 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1641 | /// |
| 1642 | /// // A timestamp in DST in New York. |
| 1643 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
| 1644 | /// let info = tz.to_offset_info(ts); |
| 1645 | /// assert_eq!(info.offset(), tz::offset(-4)); |
| 1646 | /// assert_eq!(info.dst(), Dst::Yes); |
| 1647 | /// assert_eq!(info.abbreviation(), "EDT" ); |
| 1648 | /// assert_eq!( |
| 1649 | /// info.offset().to_datetime(ts).to_string(), |
| 1650 | /// "2024-07-08T22:46:44" , |
| 1651 | /// ); |
| 1652 | /// |
| 1653 | /// // A timestamp *not* in DST in New York. |
| 1654 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
| 1655 | /// let info = tz.to_offset_info(ts); |
| 1656 | /// assert_eq!(info.offset(), tz::offset(-5)); |
| 1657 | /// assert_eq!(info.dst(), Dst::No); |
| 1658 | /// assert_eq!(info.abbreviation(), "EST" ); |
| 1659 | /// assert_eq!( |
| 1660 | /// info.offset().to_datetime(ts).to_string(), |
| 1661 | /// "2024-01-10T21:46:44" , |
| 1662 | /// ); |
| 1663 | /// |
| 1664 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1665 | /// ``` |
| 1666 | /// |
| 1667 | /// [`icu`]: https://docs.rs/icu |
| 1668 | /// [`jiff-icu`]: https://docs.rs/jiff-icu |
| 1669 | #[derive (Clone, Debug, Eq, Hash, PartialEq)] |
| 1670 | pub struct TimeZoneOffsetInfo<'t> { |
| 1671 | pub(crate) offset: Offset, |
| 1672 | pub(crate) dst: Dst, |
| 1673 | pub(crate) abbreviation: TimeZoneAbbreviation<'t>, |
| 1674 | } |
| 1675 | |
| 1676 | impl<'t> TimeZoneOffsetInfo<'t> { |
| 1677 | /// Returns the offset. |
| 1678 | /// |
| 1679 | /// The offset is duration, from UTC, that should be used to offset the |
| 1680 | /// civil time in a particular location. |
| 1681 | /// |
| 1682 | /// # Example |
| 1683 | /// |
| 1684 | /// ``` |
| 1685 | /// use jiff::{civil, tz::{TimeZone, offset}}; |
| 1686 | /// |
| 1687 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1688 | /// // Get the offset for 2023-03-10 00:00:00. |
| 1689 | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
| 1690 | /// let info = tz.to_offset_info(start); |
| 1691 | /// assert_eq!(info.offset(), offset(-5)); |
| 1692 | /// // Go forward a day and notice the offset changes due to DST! |
| 1693 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
| 1694 | /// let info = tz.to_offset_info(start); |
| 1695 | /// assert_eq!(info.offset(), offset(-4)); |
| 1696 | /// |
| 1697 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1698 | /// ``` |
| 1699 | #[inline ] |
| 1700 | pub fn offset(&self) -> Offset { |
| 1701 | self.offset |
| 1702 | } |
| 1703 | |
| 1704 | /// Returns the time zone abbreviation corresponding to this offset info. |
| 1705 | /// |
| 1706 | /// Note that abbreviations can to be ambiguous. For example, the |
| 1707 | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
| 1708 | /// `America/Chicago` and `America/Havana`. |
| 1709 | /// |
| 1710 | /// The lifetime of the string returned is tied to this |
| 1711 | /// `TimeZoneOffsetInfo`, which may be shorter than `'t` (the lifetime of |
| 1712 | /// the time zone this transition was created from). |
| 1713 | /// |
| 1714 | /// # Example |
| 1715 | /// |
| 1716 | /// ``` |
| 1717 | /// use jiff::{civil, tz::TimeZone}; |
| 1718 | /// |
| 1719 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1720 | /// // Get the time zone abbreviation for 2023-03-10 00:00:00. |
| 1721 | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
| 1722 | /// let info = tz.to_offset_info(start); |
| 1723 | /// assert_eq!(info.abbreviation(), "EST" ); |
| 1724 | /// // Go forward a day and notice the abbreviation changes due to DST! |
| 1725 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
| 1726 | /// let info = tz.to_offset_info(start); |
| 1727 | /// assert_eq!(info.abbreviation(), "EDT" ); |
| 1728 | /// |
| 1729 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1730 | /// ``` |
| 1731 | #[inline ] |
| 1732 | pub fn abbreviation(&self) -> &str { |
| 1733 | self.abbreviation.as_str() |
| 1734 | } |
| 1735 | |
| 1736 | /// Returns whether daylight saving time is enabled for this offset |
| 1737 | /// info. |
| 1738 | /// |
| 1739 | /// Callers should generally treat this as informational only. In |
| 1740 | /// particular, not all time zone transitions are related to daylight |
| 1741 | /// saving time. For example, some transitions are a result of a region |
| 1742 | /// permanently changing their offset from UTC. |
| 1743 | /// |
| 1744 | /// # Example |
| 1745 | /// |
| 1746 | /// ``` |
| 1747 | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
| 1748 | /// |
| 1749 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1750 | /// // Get the DST status of 2023-03-11 00:00:00. |
| 1751 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
| 1752 | /// let info = tz.to_offset_info(start); |
| 1753 | /// assert_eq!(info.dst(), Dst::Yes); |
| 1754 | /// |
| 1755 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1756 | /// ``` |
| 1757 | #[inline ] |
| 1758 | pub fn dst(&self) -> Dst { |
| 1759 | self.dst |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | /// An iterator over time zone transitions going backward in time. |
| 1764 | /// |
| 1765 | /// This iterator is created by [`TimeZone::preceding`]. |
| 1766 | /// |
| 1767 | /// # Example: show the 5 previous time zone transitions |
| 1768 | /// |
| 1769 | /// This shows how to find the 5 preceding time zone transitions (from a |
| 1770 | /// particular datetime) for a particular time zone: |
| 1771 | /// |
| 1772 | /// ``` |
| 1773 | /// use jiff::{tz::offset, Zoned}; |
| 1774 | /// |
| 1775 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1776 | /// let transitions = now |
| 1777 | /// .time_zone() |
| 1778 | /// .preceding(now.timestamp()) |
| 1779 | /// .take(5) |
| 1780 | /// .map(|t| ( |
| 1781 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
| 1782 | /// t.offset(), |
| 1783 | /// t.abbreviation().to_string(), |
| 1784 | /// )) |
| 1785 | /// .collect::<Vec<_>>(); |
| 1786 | /// assert_eq!(transitions, vec![ |
| 1787 | /// ("2024-11-03 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1788 | /// ("2024-03-10 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1789 | /// ("2023-11-05 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1790 | /// ("2023-03-12 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1791 | /// ("2022-11-06 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1792 | /// ]); |
| 1793 | /// |
| 1794 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1795 | /// ``` |
| 1796 | #[derive (Clone, Debug)] |
| 1797 | pub struct TimeZonePrecedingTransitions<'t> { |
| 1798 | tz: &'t TimeZone, |
| 1799 | cur: Timestamp, |
| 1800 | } |
| 1801 | |
| 1802 | impl<'t> Iterator for TimeZonePrecedingTransitions<'t> { |
| 1803 | type Item = TimeZoneTransition<'t>; |
| 1804 | |
| 1805 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
| 1806 | let trans: TimeZoneTransition<'_> = self.tz.previous_transition(self.cur)?; |
| 1807 | self.cur = trans.timestamp(); |
| 1808 | Some(trans) |
| 1809 | } |
| 1810 | } |
| 1811 | |
| 1812 | impl<'t> core::iter::FusedIterator for TimeZonePrecedingTransitions<'t> {} |
| 1813 | |
| 1814 | /// An iterator over time zone transitions going forward in time. |
| 1815 | /// |
| 1816 | /// This iterator is created by [`TimeZone::following`]. |
| 1817 | /// |
| 1818 | /// # Example: show the 5 next time zone transitions |
| 1819 | /// |
| 1820 | /// This shows how to find the 5 following time zone transitions (from a |
| 1821 | /// particular datetime) for a particular time zone: |
| 1822 | /// |
| 1823 | /// ``` |
| 1824 | /// use jiff::{tz::offset, Zoned}; |
| 1825 | /// |
| 1826 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
| 1827 | /// let transitions = now |
| 1828 | /// .time_zone() |
| 1829 | /// .following(now.timestamp()) |
| 1830 | /// .take(5) |
| 1831 | /// .map(|t| ( |
| 1832 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
| 1833 | /// t.offset(), |
| 1834 | /// t.abbreviation().to_string(), |
| 1835 | /// )) |
| 1836 | /// .collect::<Vec<_>>(); |
| 1837 | /// assert_eq!(transitions, vec![ |
| 1838 | /// ("2025-03-09 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1839 | /// ("2025-11-02 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1840 | /// ("2026-03-08 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1841 | /// ("2026-11-01 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
| 1842 | /// ("2027-03-14 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
| 1843 | /// ]); |
| 1844 | /// |
| 1845 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1846 | /// ``` |
| 1847 | #[derive (Clone, Debug)] |
| 1848 | pub struct TimeZoneFollowingTransitions<'t> { |
| 1849 | tz: &'t TimeZone, |
| 1850 | cur: Timestamp, |
| 1851 | } |
| 1852 | |
| 1853 | impl<'t> Iterator for TimeZoneFollowingTransitions<'t> { |
| 1854 | type Item = TimeZoneTransition<'t>; |
| 1855 | |
| 1856 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
| 1857 | let trans: TimeZoneTransition<'_> = self.tz.next_transition(self.cur)?; |
| 1858 | self.cur = trans.timestamp(); |
| 1859 | Some(trans) |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | impl<'t> core::iter::FusedIterator for TimeZoneFollowingTransitions<'t> {} |
| 1864 | |
| 1865 | /// A helper type for converting a `TimeZone` to a succinct human readable |
| 1866 | /// description. |
| 1867 | /// |
| 1868 | /// This is principally used in error messages in various places. |
| 1869 | /// |
| 1870 | /// A previous iteration of this was just an `as_str() -> &str` method on |
| 1871 | /// `TimeZone`, but that's difficult to do without relying on dynamic memory |
| 1872 | /// allocation (or chunky arrays). |
| 1873 | pub(crate) struct DiagnosticName<'a>(&'a TimeZone); |
| 1874 | |
| 1875 | impl<'a> core::fmt::Display for DiagnosticName<'a> { |
| 1876 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1877 | repr::each! { |
| 1878 | &self.0.repr, |
| 1879 | UTC => write!(f, "UTC" ), |
| 1880 | UNKNOWN => write!(f, "Etc/Unknown" ), |
| 1881 | FIXED(offset) => write!(f, " {offset}" ), |
| 1882 | STATIC_TZIF(tzif) => write!(f, " {}" , tzif.name().unwrap_or("Local" )), |
| 1883 | ARC_TZIF(tzif) => write!(f, " {}" , tzif.name().unwrap_or("Local" )), |
| 1884 | ARC_POSIX(posix) => write!(f, " {posix}" ), |
| 1885 | } |
| 1886 | } |
| 1887 | } |
| 1888 | |
| 1889 | /// A light abstraction over different representations of a time zone |
| 1890 | /// abbreviation. |
| 1891 | /// |
| 1892 | /// The lifetime parameter `'t` corresponds to the lifetime of the time zone |
| 1893 | /// that produced this abbreviation. |
| 1894 | #[derive (Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] |
| 1895 | pub(crate) enum TimeZoneAbbreviation<'t> { |
| 1896 | /// For when the abbreviation is borrowed directly from other data. For |
| 1897 | /// example, from TZif or from POSIX TZ strings. |
| 1898 | Borrowed(&'t str), |
| 1899 | /// For when the abbreviation has to be derived from other data. For |
| 1900 | /// example, from a fixed offset. |
| 1901 | /// |
| 1902 | /// The idea here is that a `TimeZone` shouldn't need to store the |
| 1903 | /// string representation of a fixed offset. Particularly in core-only |
| 1904 | /// environments, this is quite wasteful. So we make the string on-demand |
| 1905 | /// only when it's requested. |
| 1906 | /// |
| 1907 | /// An alternative design is to just implement `Display` and reuse |
| 1908 | /// `Offset`'s `Display` impl, but then we couldn't offer a `-> &str` API. |
| 1909 | /// I feel like that's just a bit overkill, and really just comes from the |
| 1910 | /// core-only straight-jacket. |
| 1911 | Owned(ArrayStr<9>), |
| 1912 | } |
| 1913 | |
| 1914 | impl<'t> TimeZoneAbbreviation<'t> { |
| 1915 | /// Returns this abbreviation as a string borrowed from `self`. |
| 1916 | /// |
| 1917 | /// Notice that, like `Cow`, the lifetime of the string returned is |
| 1918 | /// tied to `self` and thus may be shorter than `'t`. |
| 1919 | fn as_str<'a>(&'a self) -> &'a str { |
| 1920 | match *self { |
| 1921 | TimeZoneAbbreviation::Borrowed(s: &str) => s, |
| 1922 | TimeZoneAbbreviation::Owned(ref s: &ArrayStr<9>) => s.as_str(), |
| 1923 | } |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | /// This module defines the internal representation of a `TimeZone`. |
| 1928 | /// |
| 1929 | /// This module exists to _encapsulate_ the representation rigorously and |
| 1930 | /// expose a safe and sound API. |
| 1931 | mod repr { |
| 1932 | use core::mem::ManuallyDrop; |
| 1933 | |
| 1934 | use crate::{ |
| 1935 | tz::tzif::TzifStatic, |
| 1936 | util::{constant::unwrap, t}, |
| 1937 | }; |
| 1938 | #[cfg (feature = "alloc" )] |
| 1939 | use crate::{ |
| 1940 | tz::{posix::PosixTimeZoneOwned, tzif::TzifOwned}, |
| 1941 | util::sync::Arc, |
| 1942 | }; |
| 1943 | |
| 1944 | use super::Offset; |
| 1945 | |
| 1946 | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
| 1947 | #[allow (unused_imports)] |
| 1948 | use self::polyfill::{without_provenance, StrictProvenancePolyfill}; |
| 1949 | |
| 1950 | /// A macro for "matching" over the time zone representation variants. |
| 1951 | /// |
| 1952 | /// This macro is safe to use. |
| 1953 | /// |
| 1954 | /// Note that the `ARC_TZIF` and `ARC_POSIX` branches are automatically |
| 1955 | /// removed when `alloc` isn't enabled. Users of this macro needn't handle |
| 1956 | /// the `cfg` themselves. |
| 1957 | macro_rules! each { |
| 1958 | ( |
| 1959 | $repr:expr, |
| 1960 | UTC => $utc:expr, |
| 1961 | UNKNOWN => $unknown:expr, |
| 1962 | FIXED($offset:ident) => $fixed:expr, |
| 1963 | STATIC_TZIF($static_tzif:ident) => $static_tzif_block:expr, |
| 1964 | ARC_TZIF($arc_tzif:ident) => $arc_tzif_block:expr, |
| 1965 | ARC_POSIX($arc_posix:ident) => $arc_posix_block:expr, |
| 1966 | ) => {{ |
| 1967 | let repr = $repr; |
| 1968 | match repr.tag() { |
| 1969 | Repr::UTC => $utc, |
| 1970 | Repr::UNKNOWN => $unknown, |
| 1971 | Repr::FIXED => { |
| 1972 | // SAFETY: We've ensured our pointer tag is correct. |
| 1973 | let $offset = unsafe { repr.get_fixed() }; |
| 1974 | $fixed |
| 1975 | } |
| 1976 | Repr::STATIC_TZIF => { |
| 1977 | // SAFETY: We've ensured our pointer tag is correct. |
| 1978 | let $static_tzif = unsafe { repr.get_static_tzif() }; |
| 1979 | $static_tzif_block |
| 1980 | } |
| 1981 | #[cfg(feature = "alloc" )] |
| 1982 | Repr::ARC_TZIF => { |
| 1983 | // SAFETY: We've ensured our pointer tag is correct. |
| 1984 | let $arc_tzif = unsafe { repr.get_arc_tzif() }; |
| 1985 | $arc_tzif_block |
| 1986 | } |
| 1987 | #[cfg(feature = "alloc" )] |
| 1988 | Repr::ARC_POSIX => { |
| 1989 | // SAFETY: We've ensured our pointer tag is correct. |
| 1990 | let $arc_posix = unsafe { repr.get_arc_posix() }; |
| 1991 | $arc_posix_block |
| 1992 | } |
| 1993 | _ => { |
| 1994 | debug_assert!(false, "each: invalid time zone repr tag!" ); |
| 1995 | // SAFETY: The constructors for `Repr` guarantee that the |
| 1996 | // tag is always one of the values matched above. |
| 1997 | unsafe { |
| 1998 | core::hint::unreachable_unchecked(); |
| 1999 | } |
| 2000 | } |
| 2001 | } |
| 2002 | }}; |
| 2003 | } |
| 2004 | pub(super) use each; |
| 2005 | |
| 2006 | /// The internal representation of a `TimeZone`. |
| 2007 | /// |
| 2008 | /// It has 6 different possible variants: `UTC`, `Etc/Unknown`, fixed |
| 2009 | /// offset, `static` TZif, `Arc` TZif or `Arc` POSIX time zone. |
| 2010 | /// |
| 2011 | /// This design uses pointer tagging so that: |
| 2012 | /// |
| 2013 | /// * The size of a `TimeZone` stays no bigger than a single word. |
| 2014 | /// * In core-only environments, a `TimeZone` can be created from |
| 2015 | /// compile-time TZif data without allocating. |
| 2016 | /// * UTC, unknown and fixed offset time zone does not require allocating. |
| 2017 | /// * We can still alloc for TZif and POSIX time zones created at runtime. |
| 2018 | /// (Allocating for TZif at runtime is the intended common case, and |
| 2019 | /// corresponds to reading `/usr/share/zoneinfo` entries.) |
| 2020 | /// |
| 2021 | /// We achieve this through pointer tagging and careful use of a strict |
| 2022 | /// provenance polyfill (because of MSRV). We use the lower 4 bits of a |
| 2023 | /// pointer to indicate which variant we have. This is sound because we |
| 2024 | /// require all types that we allocate for to have a minimum alignment of |
| 2025 | /// 8 bytes. |
| 2026 | pub(super) struct Repr { |
| 2027 | ptr: *const u8, |
| 2028 | } |
| 2029 | |
| 2030 | impl Repr { |
| 2031 | const BITS: usize = 0b111; |
| 2032 | pub(super) const UTC: usize = 1; |
| 2033 | pub(super) const UNKNOWN: usize = 2; |
| 2034 | pub(super) const FIXED: usize = 3; |
| 2035 | pub(super) const STATIC_TZIF: usize = 0; |
| 2036 | pub(super) const ARC_TZIF: usize = 4; |
| 2037 | pub(super) const ARC_POSIX: usize = 5; |
| 2038 | |
| 2039 | // The minimum alignment required for any heap allocated time zone |
| 2040 | // variants. This is related to the number of tags. We have 6 distinct |
| 2041 | // values above, which means we need an alignment of at least 6. Since |
| 2042 | // alignment must be a power of 2, the smallest possible alignment |
| 2043 | // is 8. |
| 2044 | const ALIGN: usize = 8; |
| 2045 | |
| 2046 | /// Creates a representation for a `UTC` time zone. |
| 2047 | #[inline ] |
| 2048 | pub(super) const fn utc() -> Repr { |
| 2049 | let ptr = without_provenance(Repr::UTC); |
| 2050 | Repr { ptr } |
| 2051 | } |
| 2052 | |
| 2053 | /// Creates a representation for a `Etc/Unknown` time zone. |
| 2054 | #[inline ] |
| 2055 | pub(super) const fn unknown() -> Repr { |
| 2056 | let ptr = without_provenance(Repr::UNKNOWN); |
| 2057 | Repr { ptr } |
| 2058 | } |
| 2059 | |
| 2060 | /// Creates a representation for a fixed offset time zone. |
| 2061 | #[inline ] |
| 2062 | pub(super) const fn fixed(offset: Offset) -> Repr { |
| 2063 | let seconds = offset.seconds_ranged().get_unchecked(); |
| 2064 | // OK because offset is in -93599..=93599. |
| 2065 | let shifted = unwrap!( |
| 2066 | seconds.checked_shl(4), |
| 2067 | "offset small enough for left shift by 4 bits" , |
| 2068 | ); |
| 2069 | assert!(usize::MAX >= 4_294_967_295); |
| 2070 | // usize cast is okay because Jiff requires 32-bit. |
| 2071 | let ptr = without_provenance((shifted as usize) | Repr::FIXED); |
| 2072 | Repr { ptr } |
| 2073 | } |
| 2074 | |
| 2075 | /// Creates a representation for a created-at-compile-time TZif time |
| 2076 | /// zone. |
| 2077 | /// |
| 2078 | /// This can only be correctly called by the `jiff-static` proc macro. |
| 2079 | #[inline ] |
| 2080 | pub(super) const fn static_tzif(tzif: &'static TzifStatic) -> Repr { |
| 2081 | assert!(core::mem::align_of::<TzifStatic>() >= Repr::ALIGN); |
| 2082 | let tzif = (tzif as *const TzifStatic).cast::<u8>(); |
| 2083 | // We very specifically do no materialize the pointer address here |
| 2084 | // because 1) it's UB and 2) the compiler generally prevents. This |
| 2085 | // is because in a const context, the specific pointer address |
| 2086 | // cannot be relied upon. Yet, we still want to do pointer tagging. |
| 2087 | // |
| 2088 | // Thankfully, this is the only variant that is a pointer that |
| 2089 | // we want to create in a const context. So we just make this |
| 2090 | // variant's tag `0`, and thus, no explicit pointer tagging is |
| 2091 | // required. (Becuase we ensure the alignment is at least 4, and |
| 2092 | // thus the least significant 3 bits are 0.) |
| 2093 | // |
| 2094 | // If this ends up not working out or if we need to support |
| 2095 | // another `static` variant, then we could perhaps to pointer |
| 2096 | // tagging with pointer arithmetic (like what the `tagged-pointer` |
| 2097 | // crate does). I haven't tried it though and I'm unclear if it |
| 2098 | // work. |
| 2099 | Repr { ptr: tzif } |
| 2100 | } |
| 2101 | |
| 2102 | /// Creates a representation for a TZif time zone. |
| 2103 | #[cfg (feature = "alloc" )] |
| 2104 | #[inline ] |
| 2105 | pub(super) fn arc_tzif(tzif: Arc<TzifOwned>) -> Repr { |
| 2106 | assert!(core::mem::align_of::<TzifOwned>() >= Repr::ALIGN); |
| 2107 | let tzif = Arc::into_raw(tzif).cast::<u8>(); |
| 2108 | assert!(tzif.addr() % 4 == 0); |
| 2109 | let ptr = tzif.map_addr(|addr| addr | Repr::ARC_TZIF); |
| 2110 | Repr { ptr } |
| 2111 | } |
| 2112 | |
| 2113 | /// Creates a representation for a POSIX time zone. |
| 2114 | #[cfg (feature = "alloc" )] |
| 2115 | #[inline ] |
| 2116 | pub(super) fn arc_posix(posix_tz: Arc<PosixTimeZoneOwned>) -> Repr { |
| 2117 | assert!( |
| 2118 | core::mem::align_of::<PosixTimeZoneOwned>() >= Repr::ALIGN |
| 2119 | ); |
| 2120 | let posix_tz = Arc::into_raw(posix_tz).cast::<u8>(); |
| 2121 | assert!(posix_tz.addr() % 4 == 0); |
| 2122 | let ptr = posix_tz.map_addr(|addr| addr | Repr::ARC_POSIX); |
| 2123 | Repr { ptr } |
| 2124 | } |
| 2125 | |
| 2126 | /// Gets the offset representation. |
| 2127 | /// |
| 2128 | /// # Safety |
| 2129 | /// |
| 2130 | /// Callers must ensure that the pointer tag is `FIXED`. |
| 2131 | #[inline ] |
| 2132 | pub(super) unsafe fn get_fixed(&self) -> Offset { |
| 2133 | #[allow (unstable_name_collisions)] |
| 2134 | let addr = self.ptr.addr(); |
| 2135 | // NOTE: Because of sign extension, we need to case to `i32` |
| 2136 | // before shifting. |
| 2137 | let seconds = t::SpanZoneOffset::new_unchecked((addr as i32) >> 4); |
| 2138 | Offset::from_seconds_ranged(seconds) |
| 2139 | } |
| 2140 | |
| 2141 | /// Returns true if and only if this representation corresponds to the |
| 2142 | /// `Etc/Unknown` time zone. |
| 2143 | #[inline ] |
| 2144 | pub(super) fn is_unknown(&self) -> bool { |
| 2145 | self.tag() == Repr::UNKNOWN |
| 2146 | } |
| 2147 | |
| 2148 | /// Gets the static TZif representation. |
| 2149 | /// |
| 2150 | /// # Safety |
| 2151 | /// |
| 2152 | /// Callers must ensure that the pointer tag is `STATIC_TZIF`. |
| 2153 | #[inline ] |
| 2154 | pub(super) unsafe fn get_static_tzif(&self) -> &'static TzifStatic { |
| 2155 | #[allow (unstable_name_collisions)] |
| 2156 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2157 | // SAFETY: Getting a `STATIC_TZIF` tag is only possible when |
| 2158 | // `self.ptr` was constructed from a valid and aligned (to at least |
| 2159 | // 4 bytes) `&TzifStatic` borrow. Which must be guaranteed by the |
| 2160 | // caller. We've also removed the tag bits above, so we must now |
| 2161 | // have the original pointer. |
| 2162 | unsafe { &*ptr.cast::<TzifStatic>() } |
| 2163 | } |
| 2164 | |
| 2165 | /// Gets the `Arc` TZif representation. |
| 2166 | /// |
| 2167 | /// # Safety |
| 2168 | /// |
| 2169 | /// Callers must ensure that the pointer tag is `ARC_TZIF`. |
| 2170 | #[cfg (feature = "alloc" )] |
| 2171 | #[inline ] |
| 2172 | pub(super) unsafe fn get_arc_tzif<'a>(&'a self) -> &'a TzifOwned { |
| 2173 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2174 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
| 2175 | // `self.ptr` was constructed from a valid and aligned |
| 2176 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
| 2177 | // the tag bits above, so we must now have the original |
| 2178 | // pointer. |
| 2179 | let arc = ManuallyDrop::new(unsafe { |
| 2180 | Arc::from_raw(ptr.cast::<TzifOwned>()) |
| 2181 | }); |
| 2182 | // SAFETY: The lifetime of the pointer returned is always |
| 2183 | // valid as long as the strong count on `arc` is at least |
| 2184 | // 1. Since the lifetime is no longer than `Repr` itself, |
| 2185 | // and a `Repr` being alive implies there is at least 1 |
| 2186 | // for the strong `Arc` count, it follows that the lifetime |
| 2187 | // returned here is correct. |
| 2188 | unsafe { &*Arc::as_ptr(&arc) } |
| 2189 | } |
| 2190 | |
| 2191 | /// Gets the `Arc` POSIX time zone representation. |
| 2192 | /// |
| 2193 | /// # Safety |
| 2194 | /// |
| 2195 | /// Callers must ensure that the pointer tag is `ARC_POSIX`. |
| 2196 | #[cfg (feature = "alloc" )] |
| 2197 | #[inline ] |
| 2198 | pub(super) unsafe fn get_arc_posix<'a>( |
| 2199 | &'a self, |
| 2200 | ) -> &'a PosixTimeZoneOwned { |
| 2201 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2202 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
| 2203 | // `self.ptr` was constructed from a valid and aligned (to at least |
| 2204 | // 4 bytes) `Arc<PosixTimeZoneOwned>`. We've removed the tag |
| 2205 | // bits above, so we must now have the original pointer. |
| 2206 | let arc = ManuallyDrop::new(unsafe { |
| 2207 | Arc::from_raw(ptr.cast::<PosixTimeZoneOwned>()) |
| 2208 | }); |
| 2209 | // SAFETY: The lifetime of the pointer returned is always |
| 2210 | // valid as long as the strong count on `arc` is at least |
| 2211 | // 1. Since the lifetime is no longer than `Repr` itself, |
| 2212 | // and a `Repr` being alive implies there is at least 1 |
| 2213 | // for the strong `Arc` count, it follows that the lifetime |
| 2214 | // returned here is correct. |
| 2215 | unsafe { &*Arc::as_ptr(&arc) } |
| 2216 | } |
| 2217 | |
| 2218 | /// Returns the tag on the representation's pointer. |
| 2219 | /// |
| 2220 | /// The value is guaranteed to be one of the constant tag values. |
| 2221 | #[inline ] |
| 2222 | pub(super) fn tag(&self) -> usize { |
| 2223 | #[allow (unstable_name_collisions)] |
| 2224 | { |
| 2225 | self.ptr.addr() & Repr::BITS |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | /// Returns a dumb copy of this representation. |
| 2230 | /// |
| 2231 | /// # Safety |
| 2232 | /// |
| 2233 | /// Callers must ensure that this representation's tag is UTC, |
| 2234 | /// UNKNOWN, FIXED or STATIC_TZIF. |
| 2235 | /// |
| 2236 | /// Namely, this specifically does not increment the ref count for |
| 2237 | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
| 2238 | /// This means that incorrect usage of this routine can lead to |
| 2239 | /// use-after-free. |
| 2240 | /// |
| 2241 | /// NOTE: It would be nice if we could make this `copy` routine safe, |
| 2242 | /// or at least panic if it's misused. But to do that, you need to know |
| 2243 | /// the time zone variant. And to know the time zone variant, you need |
| 2244 | /// to "look" at the tag in the pointer. And looking at the address of |
| 2245 | /// a pointer in a `const` context is precarious. |
| 2246 | #[inline ] |
| 2247 | pub(super) const unsafe fn copy(&self) -> Repr { |
| 2248 | Repr { ptr: self.ptr } |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | // SAFETY: We use automic reference counting. |
| 2253 | unsafe impl Send for Repr {} |
| 2254 | // SAFETY: We don't use an interior mutability and otherwise don't permit |
| 2255 | // any kind of mutation (other than for an `Arc` managing its ref counts) |
| 2256 | // of a `Repr`. |
| 2257 | unsafe impl Sync for Repr {} |
| 2258 | |
| 2259 | impl core::fmt::Debug for Repr { |
| 2260 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2261 | each! { |
| 2262 | self, |
| 2263 | UTC => write!(f, "UTC" ), |
| 2264 | UNKNOWN => write!(f, "Etc/Unknown" ), |
| 2265 | FIXED(offset) => write!(f, " {offset:?}" ), |
| 2266 | STATIC_TZIF(tzif) => { |
| 2267 | // The full debug output is a bit much, so constrain it. |
| 2268 | let field = tzif.name().unwrap_or("Local" ); |
| 2269 | f.debug_tuple("TZif" ).field(&field).finish() |
| 2270 | }, |
| 2271 | ARC_TZIF(tzif) => { |
| 2272 | // The full debug output is a bit much, so constrain it. |
| 2273 | let field = tzif.name().unwrap_or("Local" ); |
| 2274 | f.debug_tuple("TZif" ).field(&field).finish() |
| 2275 | }, |
| 2276 | ARC_POSIX(posix) => write!(f, "Posix( {posix})" ), |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | |
| 2281 | impl Clone for Repr { |
| 2282 | #[inline ] |
| 2283 | fn clone(&self) -> Repr { |
| 2284 | // This `match` is written in an exhaustive fashion so that if |
| 2285 | // a new tag is added, it should be explicitly considered here. |
| 2286 | match self.tag() { |
| 2287 | // These are all `Copy` and can just be memcpy'd as-is. |
| 2288 | Repr::UTC |
| 2289 | | Repr::UNKNOWN |
| 2290 | | Repr::FIXED |
| 2291 | | Repr::STATIC_TZIF => Repr { ptr: self.ptr }, |
| 2292 | #[cfg (feature = "alloc" )] |
| 2293 | Repr::ARC_TZIF => { |
| 2294 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2295 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
| 2296 | // `self.ptr` was constructed from a valid and aligned |
| 2297 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
| 2298 | // the tag bits above, so we must now have the original |
| 2299 | // pointer. |
| 2300 | unsafe { |
| 2301 | Arc::increment_strong_count(ptr.cast::<TzifOwned>()); |
| 2302 | } |
| 2303 | Repr { ptr: self.ptr } |
| 2304 | } |
| 2305 | #[cfg (feature = "alloc" )] |
| 2306 | Repr::ARC_POSIX => { |
| 2307 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2308 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
| 2309 | // `self.ptr` was constructed from a valid and aligned (to |
| 2310 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
| 2311 | // removed the tag bits above, so we must now have the |
| 2312 | // original pointer. |
| 2313 | unsafe { |
| 2314 | Arc::increment_strong_count( |
| 2315 | ptr.cast::<PosixTimeZoneOwned>(), |
| 2316 | ); |
| 2317 | } |
| 2318 | Repr { ptr: self.ptr } |
| 2319 | } |
| 2320 | _ => { |
| 2321 | debug_assert!(false, "clone: invalid time zone repr tag!" ); |
| 2322 | // SAFETY: The constructors for `Repr` guarantee that the |
| 2323 | // tag is always one of the values matched above. |
| 2324 | unsafe { |
| 2325 | core::hint::unreachable_unchecked(); |
| 2326 | } |
| 2327 | } |
| 2328 | } |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | impl Drop for Repr { |
| 2333 | #[inline ] |
| 2334 | fn drop(&mut self) { |
| 2335 | // This `match` is written in an exhaustive fashion so that if |
| 2336 | // a new tag is added, it should be explicitly considered here. |
| 2337 | match self.tag() { |
| 2338 | // These are all `Copy` and have no destructor. |
| 2339 | Repr::UTC |
| 2340 | | Repr::UNKNOWN |
| 2341 | | Repr::FIXED |
| 2342 | | Repr::STATIC_TZIF => {} |
| 2343 | #[cfg (feature = "alloc" )] |
| 2344 | Repr::ARC_TZIF => { |
| 2345 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2346 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
| 2347 | // `self.ptr` was constructed from a valid and aligned |
| 2348 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
| 2349 | // the tag bits above, so we must now have the original |
| 2350 | // pointer. |
| 2351 | unsafe { |
| 2352 | Arc::decrement_strong_count(ptr.cast::<TzifOwned>()); |
| 2353 | } |
| 2354 | } |
| 2355 | #[cfg (feature = "alloc" )] |
| 2356 | Repr::ARC_POSIX => { |
| 2357 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
| 2358 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
| 2359 | // `self.ptr` was constructed from a valid and aligned (to |
| 2360 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
| 2361 | // removed the tag bits above, so we must now have the |
| 2362 | // original pointer. |
| 2363 | unsafe { |
| 2364 | Arc::decrement_strong_count( |
| 2365 | ptr.cast::<PosixTimeZoneOwned>(), |
| 2366 | ); |
| 2367 | } |
| 2368 | } |
| 2369 | _ => { |
| 2370 | debug_assert!(false, "drop: invalid time zone repr tag!" ); |
| 2371 | // SAFETY: The constructors for `Repr` guarantee that the |
| 2372 | // tag is always one of the values matched above. |
| 2373 | unsafe { |
| 2374 | core::hint::unreachable_unchecked(); |
| 2375 | } |
| 2376 | } |
| 2377 | } |
| 2378 | } |
| 2379 | } |
| 2380 | |
| 2381 | impl Eq for Repr {} |
| 2382 | |
| 2383 | impl PartialEq for Repr { |
| 2384 | fn eq(&self, other: &Repr) -> bool { |
| 2385 | if self.tag() != other.tag() { |
| 2386 | return false; |
| 2387 | } |
| 2388 | each! { |
| 2389 | self, |
| 2390 | UTC => true, |
| 2391 | UNKNOWN => true, |
| 2392 | // SAFETY: OK, because we know the tags are equivalent and |
| 2393 | // `self` has a `FIXED` tag. |
| 2394 | FIXED(offset) => offset == unsafe { other.get_fixed() }, |
| 2395 | // SAFETY: OK, because we know the tags are equivalent and |
| 2396 | // `self` has a `STATIC_TZIF` tag. |
| 2397 | STATIC_TZIF(tzif) => tzif == unsafe { other.get_static_tzif() }, |
| 2398 | // SAFETY: OK, because we know the tags are equivalent and |
| 2399 | // `self` has an `ARC_TZIF` tag. |
| 2400 | ARC_TZIF(tzif) => tzif == unsafe { other.get_arc_tzif() }, |
| 2401 | // SAFETY: OK, because we know the tags are equivalent and |
| 2402 | // `self` has an `ARC_POSIX` tag. |
| 2403 | ARC_POSIX(posix) => posix == unsafe { other.get_arc_posix() }, |
| 2404 | } |
| 2405 | } |
| 2406 | } |
| 2407 | |
| 2408 | /// This is a polyfill for a small subset of std's strict provenance APIs. |
| 2409 | /// |
| 2410 | /// The strict provenance APIs in `core` were stabilized in Rust 1.84, |
| 2411 | /// but it will likely be a while before Jiff can use them. (At time of |
| 2412 | /// writing, 2025-02-24, Jiff's MSRV is Rust 1.70.) |
| 2413 | /// |
| 2414 | /// The `const` requirement is also why these are non-generic free |
| 2415 | /// functions and not defined via an extension trait. It's also why we |
| 2416 | /// don't have the useful `map_addr` routine (which is directly relevant to |
| 2417 | /// our pointer tagging use case). |
| 2418 | mod polyfill { |
| 2419 | pub(super) const fn without_provenance(addr: usize) -> *const u8 { |
| 2420 | // SAFETY: Every valid `usize` is also a valid pointer (but not |
| 2421 | // necessarily legal to dereference). |
| 2422 | // |
| 2423 | // MSRV(1.84): We *really* ought to be using |
| 2424 | // `core::ptr::without_provenance` here, but Jiff's MSRV prevents |
| 2425 | // us. |
| 2426 | unsafe { core::mem::transmute(addr) } |
| 2427 | } |
| 2428 | |
| 2429 | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
| 2430 | #[allow (dead_code)] |
| 2431 | pub(super) trait StrictProvenancePolyfill: |
| 2432 | Sized + Clone + Copy |
| 2433 | { |
| 2434 | fn addr(&self) -> usize; |
| 2435 | fn with_addr(&self, addr: usize) -> Self; |
| 2436 | fn map_addr(&self, map: impl FnOnce(usize) -> usize) -> Self { |
| 2437 | self.with_addr(map(self.addr())) |
| 2438 | } |
| 2439 | } |
| 2440 | |
| 2441 | impl StrictProvenancePolyfill for *const u8 { |
| 2442 | fn addr(&self) -> usize { |
| 2443 | // SAFETY: Pointer-to-integer transmutes are valid (if you are |
| 2444 | // okay with losing the provenance). |
| 2445 | // |
| 2446 | // The implementation in std says that this isn't guaranteed to |
| 2447 | // be sound outside of std, but I'm not sure how else to do it. |
| 2448 | // In practice, this seems likely fine? |
| 2449 | unsafe { core::mem::transmute(self.cast::<()>()) } |
| 2450 | } |
| 2451 | |
| 2452 | fn with_addr(&self, address: usize) -> Self { |
| 2453 | let self_addr = self.addr() as isize; |
| 2454 | let dest_addr = address as isize; |
| 2455 | let offset = dest_addr.wrapping_sub(self_addr); |
| 2456 | self.wrapping_offset(offset) |
| 2457 | } |
| 2458 | } |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | #[cfg (test)] |
| 2463 | mod tests { |
| 2464 | #[cfg (feature = "alloc" )] |
| 2465 | use crate::tz::testdata::TzifTestFile; |
| 2466 | use crate::{civil::date, tz::offset}; |
| 2467 | |
| 2468 | use super::*; |
| 2469 | |
| 2470 | fn unambiguous(offset_hours: i8) -> AmbiguousOffset { |
| 2471 | let offset = offset(offset_hours); |
| 2472 | o_unambiguous(offset) |
| 2473 | } |
| 2474 | |
| 2475 | fn gap( |
| 2476 | earlier_offset_hours: i8, |
| 2477 | later_offset_hours: i8, |
| 2478 | ) -> AmbiguousOffset { |
| 2479 | let earlier = offset(earlier_offset_hours); |
| 2480 | let later = offset(later_offset_hours); |
| 2481 | o_gap(earlier, later) |
| 2482 | } |
| 2483 | |
| 2484 | fn fold( |
| 2485 | earlier_offset_hours: i8, |
| 2486 | later_offset_hours: i8, |
| 2487 | ) -> AmbiguousOffset { |
| 2488 | let earlier = offset(earlier_offset_hours); |
| 2489 | let later = offset(later_offset_hours); |
| 2490 | o_fold(earlier, later) |
| 2491 | } |
| 2492 | |
| 2493 | fn o_unambiguous(offset: Offset) -> AmbiguousOffset { |
| 2494 | AmbiguousOffset::Unambiguous { offset } |
| 2495 | } |
| 2496 | |
| 2497 | fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset { |
| 2498 | AmbiguousOffset::Gap { before: earlier, after: later } |
| 2499 | } |
| 2500 | |
| 2501 | fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset { |
| 2502 | AmbiguousOffset::Fold { before: earlier, after: later } |
| 2503 | } |
| 2504 | |
| 2505 | #[cfg (feature = "alloc" )] |
| 2506 | #[test ] |
| 2507 | fn time_zone_tzif_to_ambiguous_timestamp() { |
| 2508 | let tests: &[(&str, &[_])] = &[ |
| 2509 | ( |
| 2510 | "America/New_York" , |
| 2511 | &[ |
| 2512 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
| 2513 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
| 2514 | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
| 2515 | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
| 2516 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
| 2517 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
| 2518 | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
| 2519 | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
| 2520 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
| 2521 | ], |
| 2522 | ), |
| 2523 | ( |
| 2524 | "Europe/Dublin" , |
| 2525 | &[ |
| 2526 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)), |
| 2527 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
| 2528 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
| 2529 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
| 2530 | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
| 2531 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
| 2532 | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
| 2533 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
| 2534 | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
| 2535 | ], |
| 2536 | ), |
| 2537 | ( |
| 2538 | "Australia/Tasmania" , |
| 2539 | &[ |
| 2540 | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
| 2541 | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
| 2542 | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
| 2543 | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
| 2544 | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
| 2545 | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
| 2546 | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
| 2547 | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
| 2548 | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
| 2549 | ], |
| 2550 | ), |
| 2551 | ( |
| 2552 | "Antarctica/Troll" , |
| 2553 | &[ |
| 2554 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
| 2555 | // test the gap |
| 2556 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
| 2557 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
| 2558 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
| 2559 | // still in the gap! |
| 2560 | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
| 2561 | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
| 2562 | // finally out |
| 2563 | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
| 2564 | // test the fold |
| 2565 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
| 2566 | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
| 2567 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
| 2568 | // still in the fold! |
| 2569 | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
| 2570 | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
| 2571 | // finally out |
| 2572 | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
| 2573 | ], |
| 2574 | ), |
| 2575 | ( |
| 2576 | "America/St_Johns" , |
| 2577 | &[ |
| 2578 | ( |
| 2579 | (1969, 12, 31, 20, 30, 0, 0), |
| 2580 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 2581 | ), |
| 2582 | ( |
| 2583 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
| 2584 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 2585 | ), |
| 2586 | ( |
| 2587 | (2024, 3, 10, 2, 0, 0, 0), |
| 2588 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
| 2589 | ), |
| 2590 | ( |
| 2591 | (2024, 3, 10, 2, 59, 59, 999_999_999), |
| 2592 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
| 2593 | ), |
| 2594 | ( |
| 2595 | (2024, 3, 10, 3, 0, 0, 0), |
| 2596 | o_unambiguous(-Offset::hms(2, 30, 0)), |
| 2597 | ), |
| 2598 | ( |
| 2599 | (2024, 11, 3, 0, 59, 59, 999_999_999), |
| 2600 | o_unambiguous(-Offset::hms(2, 30, 0)), |
| 2601 | ), |
| 2602 | ( |
| 2603 | (2024, 11, 3, 1, 0, 0, 0), |
| 2604 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
| 2605 | ), |
| 2606 | ( |
| 2607 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
| 2608 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
| 2609 | ), |
| 2610 | ( |
| 2611 | (2024, 11, 3, 2, 0, 0, 0), |
| 2612 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 2613 | ), |
| 2614 | ], |
| 2615 | ), |
| 2616 | // This time zone has an interesting transition where it jumps |
| 2617 | // backwards a full day at 1867-10-19T15:30:00. |
| 2618 | ( |
| 2619 | "America/Sitka" , |
| 2620 | &[ |
| 2621 | ((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)), |
| 2622 | ( |
| 2623 | (-9999, 1, 2, 16, 58, 46, 0), |
| 2624 | o_unambiguous(Offset::hms(14, 58, 47)), |
| 2625 | ), |
| 2626 | ( |
| 2627 | (1867, 10, 18, 15, 29, 59, 0), |
| 2628 | o_unambiguous(Offset::hms(14, 58, 47)), |
| 2629 | ), |
| 2630 | ( |
| 2631 | (1867, 10, 18, 15, 30, 0, 0), |
| 2632 | // A fold of 24 hours!!! |
| 2633 | o_fold( |
| 2634 | Offset::hms(14, 58, 47), |
| 2635 | -Offset::hms(9, 1, 13), |
| 2636 | ), |
| 2637 | ), |
| 2638 | ( |
| 2639 | (1867, 10, 19, 15, 29, 59, 999_999_999), |
| 2640 | // Still in the fold... |
| 2641 | o_fold( |
| 2642 | Offset::hms(14, 58, 47), |
| 2643 | -Offset::hms(9, 1, 13), |
| 2644 | ), |
| 2645 | ), |
| 2646 | ( |
| 2647 | (1867, 10, 19, 15, 30, 0, 0), |
| 2648 | // Finally out. |
| 2649 | o_unambiguous(-Offset::hms(9, 1, 13)), |
| 2650 | ), |
| 2651 | ], |
| 2652 | ), |
| 2653 | // As with to_datetime, we test every possible transition |
| 2654 | // point here since this time zone has a small number of them. |
| 2655 | ( |
| 2656 | "Pacific/Honolulu" , |
| 2657 | &[ |
| 2658 | ( |
| 2659 | (1896, 1, 13, 11, 59, 59, 0), |
| 2660 | o_unambiguous(-Offset::hms(10, 31, 26)), |
| 2661 | ), |
| 2662 | ( |
| 2663 | (1896, 1, 13, 12, 0, 0, 0), |
| 2664 | o_gap( |
| 2665 | -Offset::hms(10, 31, 26), |
| 2666 | -Offset::hms(10, 30, 0), |
| 2667 | ), |
| 2668 | ), |
| 2669 | ( |
| 2670 | (1896, 1, 13, 12, 1, 25, 0), |
| 2671 | o_gap( |
| 2672 | -Offset::hms(10, 31, 26), |
| 2673 | -Offset::hms(10, 30, 0), |
| 2674 | ), |
| 2675 | ), |
| 2676 | ( |
| 2677 | (1896, 1, 13, 12, 1, 26, 0), |
| 2678 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2679 | ), |
| 2680 | ( |
| 2681 | (1933, 4, 30, 1, 59, 59, 0), |
| 2682 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2683 | ), |
| 2684 | ( |
| 2685 | (1933, 4, 30, 2, 0, 0, 0), |
| 2686 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
| 2687 | ), |
| 2688 | ( |
| 2689 | (1933, 4, 30, 2, 59, 59, 0), |
| 2690 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
| 2691 | ), |
| 2692 | ( |
| 2693 | (1933, 4, 30, 3, 0, 0, 0), |
| 2694 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2695 | ), |
| 2696 | ( |
| 2697 | (1933, 5, 21, 10, 59, 59, 0), |
| 2698 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2699 | ), |
| 2700 | ( |
| 2701 | (1933, 5, 21, 11, 0, 0, 0), |
| 2702 | o_fold( |
| 2703 | -Offset::hms(9, 30, 0), |
| 2704 | -Offset::hms(10, 30, 0), |
| 2705 | ), |
| 2706 | ), |
| 2707 | ( |
| 2708 | (1933, 5, 21, 11, 59, 59, 0), |
| 2709 | o_fold( |
| 2710 | -Offset::hms(9, 30, 0), |
| 2711 | -Offset::hms(10, 30, 0), |
| 2712 | ), |
| 2713 | ), |
| 2714 | ( |
| 2715 | (1933, 5, 21, 12, 0, 0, 0), |
| 2716 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2717 | ), |
| 2718 | ( |
| 2719 | (1942, 2, 9, 1, 59, 59, 0), |
| 2720 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2721 | ), |
| 2722 | ( |
| 2723 | (1942, 2, 9, 2, 0, 0, 0), |
| 2724 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
| 2725 | ), |
| 2726 | ( |
| 2727 | (1942, 2, 9, 2, 59, 59, 0), |
| 2728 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
| 2729 | ), |
| 2730 | ( |
| 2731 | (1942, 2, 9, 3, 0, 0, 0), |
| 2732 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2733 | ), |
| 2734 | ( |
| 2735 | (1945, 8, 14, 13, 29, 59, 0), |
| 2736 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2737 | ), |
| 2738 | ( |
| 2739 | (1945, 8, 14, 13, 30, 0, 0), |
| 2740 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2741 | ), |
| 2742 | ( |
| 2743 | (1945, 8, 14, 13, 30, 1, 0), |
| 2744 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2745 | ), |
| 2746 | ( |
| 2747 | (1945, 9, 30, 0, 59, 59, 0), |
| 2748 | o_unambiguous(-Offset::hms(9, 30, 0)), |
| 2749 | ), |
| 2750 | ( |
| 2751 | (1945, 9, 30, 1, 0, 0, 0), |
| 2752 | o_fold( |
| 2753 | -Offset::hms(9, 30, 0), |
| 2754 | -Offset::hms(10, 30, 0), |
| 2755 | ), |
| 2756 | ), |
| 2757 | ( |
| 2758 | (1945, 9, 30, 1, 59, 59, 0), |
| 2759 | o_fold( |
| 2760 | -Offset::hms(9, 30, 0), |
| 2761 | -Offset::hms(10, 30, 0), |
| 2762 | ), |
| 2763 | ), |
| 2764 | ( |
| 2765 | (1945, 9, 30, 2, 0, 0, 0), |
| 2766 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2767 | ), |
| 2768 | ( |
| 2769 | (1947, 6, 8, 1, 59, 59, 0), |
| 2770 | o_unambiguous(-Offset::hms(10, 30, 0)), |
| 2771 | ), |
| 2772 | ( |
| 2773 | (1947, 6, 8, 2, 0, 0, 0), |
| 2774 | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
| 2775 | ), |
| 2776 | ( |
| 2777 | (1947, 6, 8, 2, 29, 59, 0), |
| 2778 | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
| 2779 | ), |
| 2780 | ((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)), |
| 2781 | ], |
| 2782 | ), |
| 2783 | ]; |
| 2784 | for &(tzname, datetimes_to_ambiguous) in tests { |
| 2785 | let test_file = TzifTestFile::get(tzname); |
| 2786 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
| 2787 | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
| 2788 | let (year, month, day, hour, min, sec, nano) = datetime; |
| 2789 | let dt = date(year, month, day).at(hour, min, sec, nano); |
| 2790 | let got = tz.to_ambiguous_zoned(dt); |
| 2791 | assert_eq!( |
| 2792 | got.offset(), |
| 2793 | ambiguous_kind, |
| 2794 | " \nTZ: {tzname} \ndatetime: \ |
| 2795 | {year:04}-{month:02}-{day:02}T\ |
| 2796 | {hour:02}:{min:02}:{sec:02}.{nano:09}" , |
| 2797 | ); |
| 2798 | } |
| 2799 | } |
| 2800 | } |
| 2801 | |
| 2802 | #[cfg (feature = "alloc" )] |
| 2803 | #[test ] |
| 2804 | fn time_zone_tzif_to_datetime() { |
| 2805 | let o = |hours| offset(hours); |
| 2806 | let tests: &[(&str, &[_])] = &[ |
| 2807 | ( |
| 2808 | "America/New_York" , |
| 2809 | &[ |
| 2810 | ((0, 0), o(-5), "EST" , (1969, 12, 31, 19, 0, 0, 0)), |
| 2811 | ( |
| 2812 | (1710052200, 0), |
| 2813 | o(-5), |
| 2814 | "EST" , |
| 2815 | (2024, 3, 10, 1, 30, 0, 0), |
| 2816 | ), |
| 2817 | ( |
| 2818 | (1710053999, 999_999_999), |
| 2819 | o(-5), |
| 2820 | "EST" , |
| 2821 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
| 2822 | ), |
| 2823 | ((1710054000, 0), o(-4), "EDT" , (2024, 3, 10, 3, 0, 0, 0)), |
| 2824 | ( |
| 2825 | (1710055800, 0), |
| 2826 | o(-4), |
| 2827 | "EDT" , |
| 2828 | (2024, 3, 10, 3, 30, 0, 0), |
| 2829 | ), |
| 2830 | ((1730610000, 0), o(-4), "EDT" , (2024, 11, 3, 1, 0, 0, 0)), |
| 2831 | ( |
| 2832 | (1730611800, 0), |
| 2833 | o(-4), |
| 2834 | "EDT" , |
| 2835 | (2024, 11, 3, 1, 30, 0, 0), |
| 2836 | ), |
| 2837 | ( |
| 2838 | (1730613599, 999_999_999), |
| 2839 | o(-4), |
| 2840 | "EDT" , |
| 2841 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
| 2842 | ), |
| 2843 | ((1730613600, 0), o(-5), "EST" , (2024, 11, 3, 1, 0, 0, 0)), |
| 2844 | ( |
| 2845 | (1730615400, 0), |
| 2846 | o(-5), |
| 2847 | "EST" , |
| 2848 | (2024, 11, 3, 1, 30, 0, 0), |
| 2849 | ), |
| 2850 | ], |
| 2851 | ), |
| 2852 | ( |
| 2853 | "Australia/Tasmania" , |
| 2854 | &[ |
| 2855 | ((0, 0), o(11), "AEDT" , (1970, 1, 1, 11, 0, 0, 0)), |
| 2856 | ( |
| 2857 | (1728142200, 0), |
| 2858 | o(10), |
| 2859 | "AEST" , |
| 2860 | (2024, 10, 6, 1, 30, 0, 0), |
| 2861 | ), |
| 2862 | ( |
| 2863 | (1728143999, 999_999_999), |
| 2864 | o(10), |
| 2865 | "AEST" , |
| 2866 | (2024, 10, 6, 1, 59, 59, 999_999_999), |
| 2867 | ), |
| 2868 | ( |
| 2869 | (1728144000, 0), |
| 2870 | o(11), |
| 2871 | "AEDT" , |
| 2872 | (2024, 10, 6, 3, 0, 0, 0), |
| 2873 | ), |
| 2874 | ( |
| 2875 | (1728145800, 0), |
| 2876 | o(11), |
| 2877 | "AEDT" , |
| 2878 | (2024, 10, 6, 3, 30, 0, 0), |
| 2879 | ), |
| 2880 | ((1712415600, 0), o(11), "AEDT" , (2024, 4, 7, 2, 0, 0, 0)), |
| 2881 | ( |
| 2882 | (1712417400, 0), |
| 2883 | o(11), |
| 2884 | "AEDT" , |
| 2885 | (2024, 4, 7, 2, 30, 0, 0), |
| 2886 | ), |
| 2887 | ( |
| 2888 | (1712419199, 999_999_999), |
| 2889 | o(11), |
| 2890 | "AEDT" , |
| 2891 | (2024, 4, 7, 2, 59, 59, 999_999_999), |
| 2892 | ), |
| 2893 | ((1712419200, 0), o(10), "AEST" , (2024, 4, 7, 2, 0, 0, 0)), |
| 2894 | ( |
| 2895 | (1712421000, 0), |
| 2896 | o(10), |
| 2897 | "AEST" , |
| 2898 | (2024, 4, 7, 2, 30, 0, 0), |
| 2899 | ), |
| 2900 | ], |
| 2901 | ), |
| 2902 | // Pacific/Honolulu is small eough that we just test every |
| 2903 | // possible instant before, at and after each transition. |
| 2904 | ( |
| 2905 | "Pacific/Honolulu" , |
| 2906 | &[ |
| 2907 | ( |
| 2908 | (-2334101315, 0), |
| 2909 | -Offset::hms(10, 31, 26), |
| 2910 | "LMT" , |
| 2911 | (1896, 1, 13, 11, 59, 59, 0), |
| 2912 | ), |
| 2913 | ( |
| 2914 | (-2334101314, 0), |
| 2915 | -Offset::hms(10, 30, 0), |
| 2916 | "HST" , |
| 2917 | (1896, 1, 13, 12, 1, 26, 0), |
| 2918 | ), |
| 2919 | ( |
| 2920 | (-2334101313, 0), |
| 2921 | -Offset::hms(10, 30, 0), |
| 2922 | "HST" , |
| 2923 | (1896, 1, 13, 12, 1, 27, 0), |
| 2924 | ), |
| 2925 | ( |
| 2926 | (-1157283001, 0), |
| 2927 | -Offset::hms(10, 30, 0), |
| 2928 | "HST" , |
| 2929 | (1933, 4, 30, 1, 59, 59, 0), |
| 2930 | ), |
| 2931 | ( |
| 2932 | (-1157283000, 0), |
| 2933 | -Offset::hms(9, 30, 0), |
| 2934 | "HDT" , |
| 2935 | (1933, 4, 30, 3, 0, 0, 0), |
| 2936 | ), |
| 2937 | ( |
| 2938 | (-1157282999, 0), |
| 2939 | -Offset::hms(9, 30, 0), |
| 2940 | "HDT" , |
| 2941 | (1933, 4, 30, 3, 0, 1, 0), |
| 2942 | ), |
| 2943 | ( |
| 2944 | (-1155436201, 0), |
| 2945 | -Offset::hms(9, 30, 0), |
| 2946 | "HDT" , |
| 2947 | (1933, 5, 21, 11, 59, 59, 0), |
| 2948 | ), |
| 2949 | ( |
| 2950 | (-1155436200, 0), |
| 2951 | -Offset::hms(10, 30, 0), |
| 2952 | "HST" , |
| 2953 | (1933, 5, 21, 11, 0, 0, 0), |
| 2954 | ), |
| 2955 | ( |
| 2956 | (-1155436199, 0), |
| 2957 | -Offset::hms(10, 30, 0), |
| 2958 | "HST" , |
| 2959 | (1933, 5, 21, 11, 0, 1, 0), |
| 2960 | ), |
| 2961 | ( |
| 2962 | (-880198201, 0), |
| 2963 | -Offset::hms(10, 30, 0), |
| 2964 | "HST" , |
| 2965 | (1942, 2, 9, 1, 59, 59, 0), |
| 2966 | ), |
| 2967 | ( |
| 2968 | (-880198200, 0), |
| 2969 | -Offset::hms(9, 30, 0), |
| 2970 | "HWT" , |
| 2971 | (1942, 2, 9, 3, 0, 0, 0), |
| 2972 | ), |
| 2973 | ( |
| 2974 | (-880198199, 0), |
| 2975 | -Offset::hms(9, 30, 0), |
| 2976 | "HWT" , |
| 2977 | (1942, 2, 9, 3, 0, 1, 0), |
| 2978 | ), |
| 2979 | ( |
| 2980 | (-769395601, 0), |
| 2981 | -Offset::hms(9, 30, 0), |
| 2982 | "HWT" , |
| 2983 | (1945, 8, 14, 13, 29, 59, 0), |
| 2984 | ), |
| 2985 | ( |
| 2986 | (-769395600, 0), |
| 2987 | -Offset::hms(9, 30, 0), |
| 2988 | "HPT" , |
| 2989 | (1945, 8, 14, 13, 30, 0, 0), |
| 2990 | ), |
| 2991 | ( |
| 2992 | (-769395599, 0), |
| 2993 | -Offset::hms(9, 30, 0), |
| 2994 | "HPT" , |
| 2995 | (1945, 8, 14, 13, 30, 1, 0), |
| 2996 | ), |
| 2997 | ( |
| 2998 | (-765376201, 0), |
| 2999 | -Offset::hms(9, 30, 0), |
| 3000 | "HPT" , |
| 3001 | (1945, 9, 30, 1, 59, 59, 0), |
| 3002 | ), |
| 3003 | ( |
| 3004 | (-765376200, 0), |
| 3005 | -Offset::hms(10, 30, 0), |
| 3006 | "HST" , |
| 3007 | (1945, 9, 30, 1, 0, 0, 0), |
| 3008 | ), |
| 3009 | ( |
| 3010 | (-765376199, 0), |
| 3011 | -Offset::hms(10, 30, 0), |
| 3012 | "HST" , |
| 3013 | (1945, 9, 30, 1, 0, 1, 0), |
| 3014 | ), |
| 3015 | ( |
| 3016 | (-712150201, 0), |
| 3017 | -Offset::hms(10, 30, 0), |
| 3018 | "HST" , |
| 3019 | (1947, 6, 8, 1, 59, 59, 0), |
| 3020 | ), |
| 3021 | // At this point, we hit the last transition and the POSIX |
| 3022 | // TZ string takes over. |
| 3023 | ( |
| 3024 | (-712150200, 0), |
| 3025 | -Offset::hms(10, 0, 0), |
| 3026 | "HST" , |
| 3027 | (1947, 6, 8, 2, 30, 0, 0), |
| 3028 | ), |
| 3029 | ( |
| 3030 | (-712150199, 0), |
| 3031 | -Offset::hms(10, 0, 0), |
| 3032 | "HST" , |
| 3033 | (1947, 6, 8, 2, 30, 1, 0), |
| 3034 | ), |
| 3035 | ], |
| 3036 | ), |
| 3037 | // This time zone has an interesting transition where it jumps |
| 3038 | // backwards a full day at 1867-10-19T15:30:00. |
| 3039 | ( |
| 3040 | "America/Sitka" , |
| 3041 | &[ |
| 3042 | ((0, 0), o(-8), "PST" , (1969, 12, 31, 16, 0, 0, 0)), |
| 3043 | ( |
| 3044 | (-377705023201, 0), |
| 3045 | Offset::hms(14, 58, 47), |
| 3046 | "LMT" , |
| 3047 | (-9999, 1, 2, 16, 58, 46, 0), |
| 3048 | ), |
| 3049 | ( |
| 3050 | (-3225223728, 0), |
| 3051 | Offset::hms(14, 58, 47), |
| 3052 | "LMT" , |
| 3053 | (1867, 10, 19, 15, 29, 59, 0), |
| 3054 | ), |
| 3055 | // Notice the 24 hour time jump backwards a whole day! |
| 3056 | ( |
| 3057 | (-3225223727, 0), |
| 3058 | -Offset::hms(9, 1, 13), |
| 3059 | "LMT" , |
| 3060 | (1867, 10, 18, 15, 30, 0, 0), |
| 3061 | ), |
| 3062 | ( |
| 3063 | (-3225223726, 0), |
| 3064 | -Offset::hms(9, 1, 13), |
| 3065 | "LMT" , |
| 3066 | (1867, 10, 18, 15, 30, 1, 0), |
| 3067 | ), |
| 3068 | ], |
| 3069 | ), |
| 3070 | ]; |
| 3071 | for &(tzname, timestamps_to_datetimes) in tests { |
| 3072 | let test_file = TzifTestFile::get(tzname); |
| 3073 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
| 3074 | for &((unix_sec, unix_nano), offset, abbrev, datetime) in |
| 3075 | timestamps_to_datetimes |
| 3076 | { |
| 3077 | let (year, month, day, hour, min, sec, nano) = datetime; |
| 3078 | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
| 3079 | let info = tz.to_offset_info(timestamp); |
| 3080 | assert_eq!( |
| 3081 | info.offset(), |
| 3082 | offset, |
| 3083 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
| 3084 | ); |
| 3085 | assert_eq!( |
| 3086 | info.abbreviation(), |
| 3087 | abbrev, |
| 3088 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
| 3089 | ); |
| 3090 | assert_eq!( |
| 3091 | info.offset().to_datetime(timestamp), |
| 3092 | date(year, month, day).at(hour, min, sec, nano), |
| 3093 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
| 3094 | ); |
| 3095 | } |
| 3096 | } |
| 3097 | } |
| 3098 | |
| 3099 | #[cfg (feature = "alloc" )] |
| 3100 | #[test ] |
| 3101 | fn time_zone_posix_to_ambiguous_timestamp() { |
| 3102 | let tests: &[(&str, &[_])] = &[ |
| 3103 | // America/New_York, but a utopia in which DST is abolished. |
| 3104 | ( |
| 3105 | "EST5" , |
| 3106 | &[ |
| 3107 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
| 3108 | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
| 3109 | ], |
| 3110 | ), |
| 3111 | // The standard DST rule for America/New_York. |
| 3112 | ( |
| 3113 | "EST5EDT,M3.2.0,M11.1.0" , |
| 3114 | &[ |
| 3115 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
| 3116 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
| 3117 | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
| 3118 | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
| 3119 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
| 3120 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
| 3121 | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
| 3122 | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
| 3123 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
| 3124 | ], |
| 3125 | ), |
| 3126 | // A bit of a nonsensical America/New_York that has DST, but whose |
| 3127 | // offset is equivalent to standard time. Having the same offset |
| 3128 | // means there's never any ambiguity. |
| 3129 | ( |
| 3130 | "EST5EDT5,M3.2.0,M11.1.0" , |
| 3131 | &[ |
| 3132 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
| 3133 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
| 3134 | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
| 3135 | ((2024, 3, 10, 2, 59, 59, 999_999_999), unambiguous(-5)), |
| 3136 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-5)), |
| 3137 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-5)), |
| 3138 | ((2024, 11, 3, 1, 0, 0, 0), unambiguous(-5)), |
| 3139 | ((2024, 11, 3, 1, 59, 59, 999_999_999), unambiguous(-5)), |
| 3140 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
| 3141 | ], |
| 3142 | ), |
| 3143 | // This is Europe/Dublin's rule. It's interesting because its |
| 3144 | // DST is an offset behind standard time. (DST is usually one hour |
| 3145 | // ahead of standard time.) |
| 3146 | ( |
| 3147 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
| 3148 | &[ |
| 3149 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
| 3150 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
| 3151 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
| 3152 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
| 3153 | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
| 3154 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
| 3155 | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
| 3156 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
| 3157 | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
| 3158 | ], |
| 3159 | ), |
| 3160 | // This is Australia/Tasmania's rule. We chose this because it's |
| 3161 | // in the southern hemisphere where DST still skips ahead one hour, |
| 3162 | // but it usually starts in the fall and ends in the spring. |
| 3163 | ( |
| 3164 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
| 3165 | &[ |
| 3166 | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
| 3167 | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
| 3168 | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
| 3169 | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
| 3170 | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
| 3171 | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
| 3172 | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
| 3173 | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
| 3174 | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
| 3175 | ], |
| 3176 | ), |
| 3177 | // This is Antarctica/Troll's rule. We chose this one because its |
| 3178 | // DST transition is 2 hours instead of the standard 1 hour. This |
| 3179 | // means gaps and folds are twice as long as they usually are. And |
| 3180 | // it means there are 22 hour and 26 hour days, respectively. Wow! |
| 3181 | ( |
| 3182 | "<+00>0<+02>-2,M3.5.0/1,M10.5.0/3" , |
| 3183 | &[ |
| 3184 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
| 3185 | // test the gap |
| 3186 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
| 3187 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
| 3188 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
| 3189 | // still in the gap! |
| 3190 | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
| 3191 | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
| 3192 | // finally out |
| 3193 | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
| 3194 | // test the fold |
| 3195 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
| 3196 | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
| 3197 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
| 3198 | // still in the fold! |
| 3199 | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
| 3200 | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
| 3201 | // finally out |
| 3202 | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
| 3203 | ], |
| 3204 | ), |
| 3205 | // This is America/St_Johns' rule, which has an offset with |
| 3206 | // non-zero minutes *and* a DST transition rule. (Indian Standard |
| 3207 | // Time is the one I'm more familiar with, but it turns out IST |
| 3208 | // does not have DST!) |
| 3209 | ( |
| 3210 | "NST3:30NDT,M3.2.0,M11.1.0" , |
| 3211 | &[ |
| 3212 | ( |
| 3213 | (1969, 12, 31, 20, 30, 0, 0), |
| 3214 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 3215 | ), |
| 3216 | ( |
| 3217 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
| 3218 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 3219 | ), |
| 3220 | ( |
| 3221 | (2024, 3, 10, 2, 0, 0, 0), |
| 3222 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
| 3223 | ), |
| 3224 | ( |
| 3225 | (2024, 3, 10, 2, 59, 59, 999_999_999), |
| 3226 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
| 3227 | ), |
| 3228 | ( |
| 3229 | (2024, 3, 10, 3, 0, 0, 0), |
| 3230 | o_unambiguous(-Offset::hms(2, 30, 0)), |
| 3231 | ), |
| 3232 | ( |
| 3233 | (2024, 11, 3, 0, 59, 59, 999_999_999), |
| 3234 | o_unambiguous(-Offset::hms(2, 30, 0)), |
| 3235 | ), |
| 3236 | ( |
| 3237 | (2024, 11, 3, 1, 0, 0, 0), |
| 3238 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
| 3239 | ), |
| 3240 | ( |
| 3241 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
| 3242 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
| 3243 | ), |
| 3244 | ( |
| 3245 | (2024, 11, 3, 2, 0, 0, 0), |
| 3246 | o_unambiguous(-Offset::hms(3, 30, 0)), |
| 3247 | ), |
| 3248 | ], |
| 3249 | ), |
| 3250 | ]; |
| 3251 | for &(posix_tz, datetimes_to_ambiguous) in tests { |
| 3252 | let tz = TimeZone::posix(posix_tz).unwrap(); |
| 3253 | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
| 3254 | let (year, month, day, hour, min, sec, nano) = datetime; |
| 3255 | let dt = date(year, month, day).at(hour, min, sec, nano); |
| 3256 | let got = tz.to_ambiguous_zoned(dt); |
| 3257 | assert_eq!( |
| 3258 | got.offset(), |
| 3259 | ambiguous_kind, |
| 3260 | " \nTZ: {posix_tz} \ndatetime: \ |
| 3261 | {year:04}-{month:02}-{day:02}T\ |
| 3262 | {hour:02}:{min:02}:{sec:02}.{nano:09}" , |
| 3263 | ); |
| 3264 | } |
| 3265 | } |
| 3266 | } |
| 3267 | |
| 3268 | #[cfg (feature = "alloc" )] |
| 3269 | #[test ] |
| 3270 | fn time_zone_posix_to_datetime() { |
| 3271 | let o = |hours| offset(hours); |
| 3272 | let tests: &[(&str, &[_])] = &[ |
| 3273 | ("EST5" , &[((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0))]), |
| 3274 | ( |
| 3275 | // From America/New_York |
| 3276 | "EST5EDT,M3.2.0,M11.1.0" , |
| 3277 | &[ |
| 3278 | ((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0)), |
| 3279 | ((1710052200, 0), o(-5), (2024, 3, 10, 1, 30, 0, 0)), |
| 3280 | ( |
| 3281 | (1710053999, 999_999_999), |
| 3282 | o(-5), |
| 3283 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
| 3284 | ), |
| 3285 | ((1710054000, 0), o(-4), (2024, 3, 10, 3, 0, 0, 0)), |
| 3286 | ((1710055800, 0), o(-4), (2024, 3, 10, 3, 30, 0, 0)), |
| 3287 | ((1730610000, 0), o(-4), (2024, 11, 3, 1, 0, 0, 0)), |
| 3288 | ((1730611800, 0), o(-4), (2024, 11, 3, 1, 30, 0, 0)), |
| 3289 | ( |
| 3290 | (1730613599, 999_999_999), |
| 3291 | o(-4), |
| 3292 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
| 3293 | ), |
| 3294 | ((1730613600, 0), o(-5), (2024, 11, 3, 1, 0, 0, 0)), |
| 3295 | ((1730615400, 0), o(-5), (2024, 11, 3, 1, 30, 0, 0)), |
| 3296 | ], |
| 3297 | ), |
| 3298 | ( |
| 3299 | // From Australia/Tasmania |
| 3300 | // |
| 3301 | // We chose this because it's a time zone in the southern |
| 3302 | // hemisphere with DST. Unlike the northern hemisphere, its DST |
| 3303 | // starts in the fall and ends in the spring. In the northern |
| 3304 | // hemisphere, we typically start DST in the spring and end it |
| 3305 | // in the fall. |
| 3306 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
| 3307 | &[ |
| 3308 | ((0, 0), o(11), (1970, 1, 1, 11, 0, 0, 0)), |
| 3309 | ((1728142200, 0), o(10), (2024, 10, 6, 1, 30, 0, 0)), |
| 3310 | ( |
| 3311 | (1728143999, 999_999_999), |
| 3312 | o(10), |
| 3313 | (2024, 10, 6, 1, 59, 59, 999_999_999), |
| 3314 | ), |
| 3315 | ((1728144000, 0), o(11), (2024, 10, 6, 3, 0, 0, 0)), |
| 3316 | ((1728145800, 0), o(11), (2024, 10, 6, 3, 30, 0, 0)), |
| 3317 | ((1712415600, 0), o(11), (2024, 4, 7, 2, 0, 0, 0)), |
| 3318 | ((1712417400, 0), o(11), (2024, 4, 7, 2, 30, 0, 0)), |
| 3319 | ( |
| 3320 | (1712419199, 999_999_999), |
| 3321 | o(11), |
| 3322 | (2024, 4, 7, 2, 59, 59, 999_999_999), |
| 3323 | ), |
| 3324 | ((1712419200, 0), o(10), (2024, 4, 7, 2, 0, 0, 0)), |
| 3325 | ((1712421000, 0), o(10), (2024, 4, 7, 2, 30, 0, 0)), |
| 3326 | ], |
| 3327 | ), |
| 3328 | ( |
| 3329 | // Uses the maximum possible offset. A sloppy read of POSIX |
| 3330 | // seems to indicate the maximum offset is 24:59:59, but since |
| 3331 | // DST defaults to 1 hour ahead of standard time, it's possible |
| 3332 | // to use 24:59:59 for standard time, omit the DST offset, and |
| 3333 | // thus get a DST offset of 25:59:59. |
| 3334 | "XXX-24:59:59YYY,M3.2.0,M11.1.0" , |
| 3335 | &[ |
| 3336 | // 2024-01-05T00:00:00+00 |
| 3337 | ( |
| 3338 | (1704412800, 0), |
| 3339 | Offset::hms(24, 59, 59), |
| 3340 | (2024, 1, 6, 0, 59, 59, 0), |
| 3341 | ), |
| 3342 | // 2024-06-05T00:00:00+00 (DST) |
| 3343 | ( |
| 3344 | (1717545600, 0), |
| 3345 | Offset::hms(25, 59, 59), |
| 3346 | (2024, 6, 6, 1, 59, 59, 0), |
| 3347 | ), |
| 3348 | ], |
| 3349 | ), |
| 3350 | ]; |
| 3351 | for &(posix_tz, timestamps_to_datetimes) in tests { |
| 3352 | let tz = TimeZone::posix(posix_tz).unwrap(); |
| 3353 | for &((unix_sec, unix_nano), offset, datetime) in |
| 3354 | timestamps_to_datetimes |
| 3355 | { |
| 3356 | let (year, month, day, hour, min, sec, nano) = datetime; |
| 3357 | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
| 3358 | assert_eq!( |
| 3359 | tz.to_offset(timestamp), |
| 3360 | offset, |
| 3361 | " \ntimestamp({unix_sec}, {unix_nano})" , |
| 3362 | ); |
| 3363 | assert_eq!( |
| 3364 | tz.to_datetime(timestamp), |
| 3365 | date(year, month, day).at(hour, min, sec, nano), |
| 3366 | " \ntimestamp({unix_sec}, {unix_nano})" , |
| 3367 | ); |
| 3368 | } |
| 3369 | } |
| 3370 | } |
| 3371 | |
| 3372 | #[test ] |
| 3373 | fn time_zone_fixed_to_datetime() { |
| 3374 | let tz = offset(-5).to_time_zone(); |
| 3375 | let unix_epoch = Timestamp::new(0, 0).unwrap(); |
| 3376 | assert_eq!( |
| 3377 | tz.to_datetime(unix_epoch), |
| 3378 | date(1969, 12, 31).at(19, 0, 0, 0), |
| 3379 | ); |
| 3380 | |
| 3381 | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
| 3382 | let timestamp = Timestamp::new(253402207200, 999_999_999).unwrap(); |
| 3383 | assert_eq!( |
| 3384 | tz.to_datetime(timestamp), |
| 3385 | date(9999, 12, 31).at(23, 59, 59, 999_999_999), |
| 3386 | ); |
| 3387 | |
| 3388 | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
| 3389 | let timestamp = Timestamp::new(-377705023201, 0).unwrap(); |
| 3390 | assert_eq!( |
| 3391 | tz.to_datetime(timestamp), |
| 3392 | date(-9999, 1, 1).at(0, 0, 0, 0), |
| 3393 | ); |
| 3394 | } |
| 3395 | |
| 3396 | #[test ] |
| 3397 | fn time_zone_fixed_to_timestamp() { |
| 3398 | let tz = offset(-5).to_time_zone(); |
| 3399 | let dt = date(1969, 12, 31).at(19, 0, 0, 0); |
| 3400 | assert_eq!( |
| 3401 | tz.to_zoned(dt).unwrap().timestamp(), |
| 3402 | Timestamp::new(0, 0).unwrap() |
| 3403 | ); |
| 3404 | |
| 3405 | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
| 3406 | let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999); |
| 3407 | assert_eq!( |
| 3408 | tz.to_zoned(dt).unwrap().timestamp(), |
| 3409 | Timestamp::new(253402207200, 999_999_999).unwrap(), |
| 3410 | ); |
| 3411 | let tz = Offset::from_seconds(93_598).unwrap().to_time_zone(); |
| 3412 | assert!(tz.to_zoned(dt).is_err()); |
| 3413 | |
| 3414 | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
| 3415 | let dt = date(-9999, 1, 1).at(0, 0, 0, 0); |
| 3416 | assert_eq!( |
| 3417 | tz.to_zoned(dt).unwrap().timestamp(), |
| 3418 | Timestamp::new(-377705023201, 0).unwrap(), |
| 3419 | ); |
| 3420 | let tz = Offset::from_seconds(-93_598).unwrap().to_time_zone(); |
| 3421 | assert!(tz.to_zoned(dt).is_err()); |
| 3422 | } |
| 3423 | |
| 3424 | #[cfg (feature = "alloc" )] |
| 3425 | #[test ] |
| 3426 | fn time_zone_tzif_previous_transition() { |
| 3427 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
| 3428 | ( |
| 3429 | "UTC" , |
| 3430 | &[ |
| 3431 | ("1969-12-31T19Z" , None), |
| 3432 | ("2024-03-10T02Z" , None), |
| 3433 | ("-009999-12-01 00Z" , None), |
| 3434 | ("9999-12-01 00Z" , None), |
| 3435 | ], |
| 3436 | ), |
| 3437 | ( |
| 3438 | "America/New_York" , |
| 3439 | &[ |
| 3440 | ("2024-03-10 08Z" , Some("2024-03-10 07Z" )), |
| 3441 | ("2024-03-10 07:00:00.000000001Z" , Some("2024-03-10 07Z" )), |
| 3442 | ("2024-03-10 07Z" , Some("2023-11-05 06Z" )), |
| 3443 | ("2023-11-05 06Z" , Some("2023-03-12 07Z" )), |
| 3444 | ("-009999-01-31 00Z" , None), |
| 3445 | ("9999-12-01 00Z" , Some("9999-11-07 06Z" )), |
| 3446 | // While at present we have "fat" TZif files for our |
| 3447 | // testdata, it's conceivable they could be swapped to |
| 3448 | // "slim." In which case, the tests above will mostly just |
| 3449 | // be testing POSIX TZ strings and not the TZif logic. So |
| 3450 | // below, we include times that will be in slim (i.e., |
| 3451 | // historical times the precede the current DST rule). |
| 3452 | ("1969-12-31 19Z" , Some("1969-10-26 06Z" )), |
| 3453 | ("2000-04-02 08Z" , Some("2000-04-02 07Z" )), |
| 3454 | ("2000-04-02 07:00:00.000000001Z" , Some("2000-04-02 07Z" )), |
| 3455 | ("2000-04-02 07Z" , Some("1999-10-31 06Z" )), |
| 3456 | ("1999-10-31 06Z" , Some("1999-04-04 07Z" )), |
| 3457 | ], |
| 3458 | ), |
| 3459 | ( |
| 3460 | "Australia/Tasmania" , |
| 3461 | &[ |
| 3462 | ("2010-04-03 17Z" , Some("2010-04-03 16Z" )), |
| 3463 | ("2010-04-03 16:00:00.000000001Z" , Some("2010-04-03 16Z" )), |
| 3464 | ("2010-04-03 16Z" , Some("2009-10-03 16Z" )), |
| 3465 | ("2009-10-03 16Z" , Some("2009-04-04 16Z" )), |
| 3466 | ("-009999-01-31 00Z" , None), |
| 3467 | ("9999-12-01 00Z" , Some("9999-10-02 16Z" )), |
| 3468 | // Tests for historical data from tzdb. No POSIX TZ. |
| 3469 | ("2000-03-25 17Z" , Some("2000-03-25 16Z" )), |
| 3470 | ("2000-03-25 16:00:00.000000001Z" , Some("2000-03-25 16Z" )), |
| 3471 | ("2000-03-25 16Z" , Some("1999-10-02 16Z" )), |
| 3472 | ("1999-10-02 16Z" , Some("1999-03-27 16Z" )), |
| 3473 | ], |
| 3474 | ), |
| 3475 | // This is Europe/Dublin's rule. It's interesting because its |
| 3476 | // DST is an offset behind standard time. (DST is usually one hour |
| 3477 | // ahead of standard time.) |
| 3478 | ( |
| 3479 | "Europe/Dublin" , |
| 3480 | &[ |
| 3481 | ("2010-03-28 02Z" , Some("2010-03-28 01Z" )), |
| 3482 | ("2010-03-28 01:00:00.000000001Z" , Some("2010-03-28 01Z" )), |
| 3483 | ("2010-03-28 01Z" , Some("2009-10-25 01Z" )), |
| 3484 | ("2009-10-25 01Z" , Some("2009-03-29 01Z" )), |
| 3485 | ("-009999-01-31 00Z" , None), |
| 3486 | ("9999-12-01 00Z" , Some("9999-10-31 01Z" )), |
| 3487 | // Tests for historical data from tzdb. No POSIX TZ. |
| 3488 | ("1990-03-25 02Z" , Some("1990-03-25 01Z" )), |
| 3489 | ("1990-03-25 01:00:00.000000001Z" , Some("1990-03-25 01Z" )), |
| 3490 | ("1990-03-25 01Z" , Some("1989-10-29 01Z" )), |
| 3491 | ("1989-10-25 01Z" , Some("1989-03-26 01Z" )), |
| 3492 | ], |
| 3493 | ), |
| 3494 | ( |
| 3495 | // Sao Paulo eliminated DST in 2019, so the previous transition |
| 3496 | // from 2024 is several years back. |
| 3497 | "America/Sao_Paulo" , |
| 3498 | &[("2024-03-10 08Z" , Some("2019-02-17 02Z" ))], |
| 3499 | ), |
| 3500 | ]; |
| 3501 | for &(tzname, prev_trans) in tests { |
| 3502 | if tzname != "America/Sao_Paulo" { |
| 3503 | continue; |
| 3504 | } |
| 3505 | let test_file = TzifTestFile::get(tzname); |
| 3506 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
| 3507 | for (given, expected) in prev_trans { |
| 3508 | let given: Timestamp = given.parse().unwrap(); |
| 3509 | let expected = |
| 3510 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
| 3511 | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
| 3512 | assert_eq!(got, expected, " \nTZ: {tzname} \ngiven: {given}" ); |
| 3513 | } |
| 3514 | } |
| 3515 | } |
| 3516 | |
| 3517 | #[cfg (feature = "alloc" )] |
| 3518 | #[test ] |
| 3519 | fn time_zone_tzif_next_transition() { |
| 3520 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
| 3521 | ( |
| 3522 | "UTC" , |
| 3523 | &[ |
| 3524 | ("1969-12-31T19Z" , None), |
| 3525 | ("2024-03-10T02Z" , None), |
| 3526 | ("-009999-12-01 00Z" , None), |
| 3527 | ("9999-12-01 00Z" , None), |
| 3528 | ], |
| 3529 | ), |
| 3530 | ( |
| 3531 | "America/New_York" , |
| 3532 | &[ |
| 3533 | ("2024-03-10 06Z" , Some("2024-03-10 07Z" )), |
| 3534 | ("2024-03-10 06:59:59.999999999Z" , Some("2024-03-10 07Z" )), |
| 3535 | ("2024-03-10 07Z" , Some("2024-11-03 06Z" )), |
| 3536 | ("2024-11-03 06Z" , Some("2025-03-09 07Z" )), |
| 3537 | ("-009999-12-01 00Z" , Some("1883-11-18 17Z" )), |
| 3538 | ("9999-12-01 00Z" , None), |
| 3539 | // While at present we have "fat" TZif files for our |
| 3540 | // testdata, it's conceivable they could be swapped to |
| 3541 | // "slim." In which case, the tests above will mostly just |
| 3542 | // be testing POSIX TZ strings and not the TZif logic. So |
| 3543 | // below, we include times that will be in slim (i.e., |
| 3544 | // historical times the precede the current DST rule). |
| 3545 | ("1969-12-31 19Z" , Some("1970-04-26 07Z" )), |
| 3546 | ("2000-04-02 06Z" , Some("2000-04-02 07Z" )), |
| 3547 | ("2000-04-02 06:59:59.999999999Z" , Some("2000-04-02 07Z" )), |
| 3548 | ("2000-04-02 07Z" , Some("2000-10-29 06Z" )), |
| 3549 | ("2000-10-29 06Z" , Some("2001-04-01 07Z" )), |
| 3550 | ], |
| 3551 | ), |
| 3552 | ( |
| 3553 | "Australia/Tasmania" , |
| 3554 | &[ |
| 3555 | ("2010-04-03 15Z" , Some("2010-04-03 16Z" )), |
| 3556 | ("2010-04-03 15:59:59.999999999Z" , Some("2010-04-03 16Z" )), |
| 3557 | ("2010-04-03 16Z" , Some("2010-10-02 16Z" )), |
| 3558 | ("2010-10-02 16Z" , Some("2011-04-02 16Z" )), |
| 3559 | ("-009999-12-01 00Z" , Some("1895-08-31 14:10:44Z" )), |
| 3560 | ("9999-12-01 00Z" , None), |
| 3561 | // Tests for historical data from tzdb. No POSIX TZ. |
| 3562 | ("2000-03-25 15Z" , Some("2000-03-25 16Z" )), |
| 3563 | ("2000-03-25 15:59:59.999999999Z" , Some("2000-03-25 16Z" )), |
| 3564 | ("2000-03-25 16Z" , Some("2000-08-26 16Z" )), |
| 3565 | ("2000-08-26 16Z" , Some("2001-03-24 16Z" )), |
| 3566 | ], |
| 3567 | ), |
| 3568 | ( |
| 3569 | "Europe/Dublin" , |
| 3570 | &[ |
| 3571 | ("2010-03-28 00Z" , Some("2010-03-28 01Z" )), |
| 3572 | ("2010-03-28 00:59:59.999999999Z" , Some("2010-03-28 01Z" )), |
| 3573 | ("2010-03-28 01Z" , Some("2010-10-31 01Z" )), |
| 3574 | ("2010-10-31 01Z" , Some("2011-03-27 01Z" )), |
| 3575 | ("-009999-12-01 00Z" , Some("1880-08-02 00:25:21Z" )), |
| 3576 | ("9999-12-01 00Z" , None), |
| 3577 | // Tests for historical data from tzdb. No POSIX TZ. |
| 3578 | ("1990-03-25 00Z" , Some("1990-03-25 01Z" )), |
| 3579 | ("1990-03-25 00:59:59.999999999Z" , Some("1990-03-25 01Z" )), |
| 3580 | ("1990-03-25 01Z" , Some("1990-10-28 01Z" )), |
| 3581 | ("1990-10-28 01Z" , Some("1991-03-31 01Z" )), |
| 3582 | ], |
| 3583 | ), |
| 3584 | ( |
| 3585 | // Sao Paulo eliminated DST in 2019, so the next transition |
| 3586 | // from 2024 no longer exists. |
| 3587 | "America/Sao_Paulo" , |
| 3588 | &[("2024-03-10 08Z" , None)], |
| 3589 | ), |
| 3590 | ]; |
| 3591 | for &(tzname, next_trans) in tests { |
| 3592 | let test_file = TzifTestFile::get(tzname); |
| 3593 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
| 3594 | for (given, expected) in next_trans { |
| 3595 | let given: Timestamp = given.parse().unwrap(); |
| 3596 | let expected = |
| 3597 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
| 3598 | let got = tz.next_transition(given).map(|t| t.timestamp()); |
| 3599 | assert_eq!(got, expected, " \nTZ: {tzname} \ngiven: {given}" ); |
| 3600 | } |
| 3601 | } |
| 3602 | } |
| 3603 | |
| 3604 | #[cfg (feature = "alloc" )] |
| 3605 | #[test ] |
| 3606 | fn time_zone_posix_previous_transition() { |
| 3607 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
| 3608 | // America/New_York, but a utopia in which DST is abolished. There |
| 3609 | // are no time zone transitions, so next_transition always returns |
| 3610 | // None. |
| 3611 | ( |
| 3612 | "EST5" , |
| 3613 | &[ |
| 3614 | ("1969-12-31T19Z" , None), |
| 3615 | ("2024-03-10T02Z" , None), |
| 3616 | ("-009999-12-01 00Z" , None), |
| 3617 | ("9999-12-01 00Z" , None), |
| 3618 | ], |
| 3619 | ), |
| 3620 | // The standard DST rule for America/New_York. |
| 3621 | ( |
| 3622 | "EST5EDT,M3.2.0,M11.1.0" , |
| 3623 | &[ |
| 3624 | ("1969-12-31 19Z" , Some("1969-11-02 06Z" )), |
| 3625 | ("2024-03-10 08Z" , Some("2024-03-10 07Z" )), |
| 3626 | ("2024-03-10 07:00:00.000000001Z" , Some("2024-03-10 07Z" )), |
| 3627 | ("2024-03-10 07Z" , Some("2023-11-05 06Z" )), |
| 3628 | ("2023-11-05 06Z" , Some("2023-03-12 07Z" )), |
| 3629 | ("-009999-01-31 00Z" , None), |
| 3630 | ("9999-12-01 00Z" , Some("9999-11-07 06Z" )), |
| 3631 | ], |
| 3632 | ), |
| 3633 | ( |
| 3634 | // From Australia/Tasmania |
| 3635 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
| 3636 | &[ |
| 3637 | ("2010-04-03 17Z" , Some("2010-04-03 16Z" )), |
| 3638 | ("2010-04-03 16:00:00.000000001Z" , Some("2010-04-03 16Z" )), |
| 3639 | ("2010-04-03 16Z" , Some("2009-10-03 16Z" )), |
| 3640 | ("2009-10-03 16Z" , Some("2009-04-04 16Z" )), |
| 3641 | ("-009999-01-31 00Z" , None), |
| 3642 | ("9999-12-01 00Z" , Some("9999-10-02 16Z" )), |
| 3643 | ], |
| 3644 | ), |
| 3645 | // This is Europe/Dublin's rule. It's interesting because its |
| 3646 | // DST is an offset behind standard time. (DST is usually one hour |
| 3647 | // ahead of standard time.) |
| 3648 | ( |
| 3649 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
| 3650 | &[ |
| 3651 | ("2010-03-28 02Z" , Some("2010-03-28 01Z" )), |
| 3652 | ("2010-03-28 01:00:00.000000001Z" , Some("2010-03-28 01Z" )), |
| 3653 | ("2010-03-28 01Z" , Some("2009-10-25 01Z" )), |
| 3654 | ("2009-10-25 01Z" , Some("2009-03-29 01Z" )), |
| 3655 | ("-009999-01-31 00Z" , None), |
| 3656 | ("9999-12-01 00Z" , Some("9999-10-31 01Z" )), |
| 3657 | ], |
| 3658 | ), |
| 3659 | ]; |
| 3660 | for &(posix_tz, prev_trans) in tests { |
| 3661 | let tz = TimeZone::posix(posix_tz).unwrap(); |
| 3662 | for (given, expected) in prev_trans { |
| 3663 | let given: Timestamp = given.parse().unwrap(); |
| 3664 | let expected = |
| 3665 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
| 3666 | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
| 3667 | assert_eq!(got, expected, " \nTZ: {posix_tz} \ngiven: {given}" ); |
| 3668 | } |
| 3669 | } |
| 3670 | } |
| 3671 | |
| 3672 | #[cfg (feature = "alloc" )] |
| 3673 | #[test ] |
| 3674 | fn time_zone_posix_next_transition() { |
| 3675 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
| 3676 | // America/New_York, but a utopia in which DST is abolished. There |
| 3677 | // are no time zone transitions, so next_transition always returns |
| 3678 | // None. |
| 3679 | ( |
| 3680 | "EST5" , |
| 3681 | &[ |
| 3682 | ("1969-12-31T19Z" , None), |
| 3683 | ("2024-03-10T02Z" , None), |
| 3684 | ("-009999-12-01 00Z" , None), |
| 3685 | ("9999-12-01 00Z" , None), |
| 3686 | ], |
| 3687 | ), |
| 3688 | // The standard DST rule for America/New_York. |
| 3689 | ( |
| 3690 | "EST5EDT,M3.2.0,M11.1.0" , |
| 3691 | &[ |
| 3692 | ("1969-12-31 19Z" , Some("1970-03-08 07Z" )), |
| 3693 | ("2024-03-10 06Z" , Some("2024-03-10 07Z" )), |
| 3694 | ("2024-03-10 06:59:59.999999999Z" , Some("2024-03-10 07Z" )), |
| 3695 | ("2024-03-10 07Z" , Some("2024-11-03 06Z" )), |
| 3696 | ("2024-11-03 06Z" , Some("2025-03-09 07Z" )), |
| 3697 | ("-009999-12-01 00Z" , Some("-009998-03-10 07Z" )), |
| 3698 | ("9999-12-01 00Z" , None), |
| 3699 | ], |
| 3700 | ), |
| 3701 | ( |
| 3702 | // From Australia/Tasmania |
| 3703 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
| 3704 | &[ |
| 3705 | ("2010-04-03 15Z" , Some("2010-04-03 16Z" )), |
| 3706 | ("2010-04-03 15:59:59.999999999Z" , Some("2010-04-03 16Z" )), |
| 3707 | ("2010-04-03 16Z" , Some("2010-10-02 16Z" )), |
| 3708 | ("2010-10-02 16Z" , Some("2011-04-02 16Z" )), |
| 3709 | ("-009999-12-01 00Z" , Some("-009998-04-06 16Z" )), |
| 3710 | ("9999-12-01 00Z" , None), |
| 3711 | ], |
| 3712 | ), |
| 3713 | // This is Europe/Dublin's rule. It's interesting because its |
| 3714 | // DST is an offset behind standard time. (DST is usually one hour |
| 3715 | // ahead of standard time.) |
| 3716 | ( |
| 3717 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
| 3718 | &[ |
| 3719 | ("2010-03-28 00Z" , Some("2010-03-28 01Z" )), |
| 3720 | ("2010-03-28 00:59:59.999999999Z" , Some("2010-03-28 01Z" )), |
| 3721 | ("2010-03-28 01Z" , Some("2010-10-31 01Z" )), |
| 3722 | ("2010-10-31 01Z" , Some("2011-03-27 01Z" )), |
| 3723 | ("-009999-12-01 00Z" , Some("-009998-03-31 01Z" )), |
| 3724 | ("9999-12-01 00Z" , None), |
| 3725 | ], |
| 3726 | ), |
| 3727 | ]; |
| 3728 | for &(posix_tz, next_trans) in tests { |
| 3729 | let tz = TimeZone::posix(posix_tz).unwrap(); |
| 3730 | for (given, expected) in next_trans { |
| 3731 | let given: Timestamp = given.parse().unwrap(); |
| 3732 | let expected = |
| 3733 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
| 3734 | let got = tz.next_transition(given).map(|t| t.timestamp()); |
| 3735 | assert_eq!(got, expected, " \nTZ: {posix_tz} \ngiven: {given}" ); |
| 3736 | } |
| 3737 | } |
| 3738 | } |
| 3739 | |
| 3740 | /// This tests that the size of a time zone is kept at a single word. |
| 3741 | /// |
| 3742 | /// This is important because every jiff::Zoned has a TimeZone inside of |
| 3743 | /// it, and we want to keep its size as small as we can. |
| 3744 | #[test ] |
| 3745 | fn time_zone_size() { |
| 3746 | #[cfg (feature = "alloc" )] |
| 3747 | { |
| 3748 | let word = core::mem::size_of::<usize>(); |
| 3749 | assert_eq!(word, core::mem::size_of::<TimeZone>()); |
| 3750 | } |
| 3751 | #[cfg (all(target_pointer_width = "64" , not(feature = "alloc" )))] |
| 3752 | { |
| 3753 | #[cfg (debug_assertions)] |
| 3754 | { |
| 3755 | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
| 3756 | } |
| 3757 | #[cfg (not(debug_assertions))] |
| 3758 | { |
| 3759 | // This asserts the same value as the alloc value above, but |
| 3760 | // it wasn't always this way, which is why it's written out |
| 3761 | // separately. Moreover, in theory, I'd be open to regressing |
| 3762 | // this value if it led to an improvement in alloc-mode. But |
| 3763 | // more likely, it would be nice to decrease this size in |
| 3764 | // non-alloc modes. |
| 3765 | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
| 3766 | } |
| 3767 | } |
| 3768 | } |
| 3769 | |
| 3770 | /// This tests a few other cases for `TimeZone::to_offset` that |
| 3771 | /// probably aren't worth showing in doctest examples. |
| 3772 | #[test ] |
| 3773 | fn time_zone_to_offset() { |
| 3774 | let ts = Timestamp::from_second(123456789).unwrap(); |
| 3775 | |
| 3776 | let tz = TimeZone::fixed(offset(-5)); |
| 3777 | let info = tz.to_offset_info(ts); |
| 3778 | assert_eq!(info.offset(), offset(-5)); |
| 3779 | assert_eq!(info.dst(), Dst::No); |
| 3780 | assert_eq!(info.abbreviation(), "-05" ); |
| 3781 | |
| 3782 | let tz = TimeZone::fixed(offset(5)); |
| 3783 | let info = tz.to_offset_info(ts); |
| 3784 | assert_eq!(info.offset(), offset(5)); |
| 3785 | assert_eq!(info.dst(), Dst::No); |
| 3786 | assert_eq!(info.abbreviation(), "+05" ); |
| 3787 | |
| 3788 | let tz = TimeZone::fixed(offset(-12)); |
| 3789 | let info = tz.to_offset_info(ts); |
| 3790 | assert_eq!(info.offset(), offset(-12)); |
| 3791 | assert_eq!(info.dst(), Dst::No); |
| 3792 | assert_eq!(info.abbreviation(), "-12" ); |
| 3793 | |
| 3794 | let tz = TimeZone::fixed(offset(12)); |
| 3795 | let info = tz.to_offset_info(ts); |
| 3796 | assert_eq!(info.offset(), offset(12)); |
| 3797 | assert_eq!(info.dst(), Dst::No); |
| 3798 | assert_eq!(info.abbreviation(), "+12" ); |
| 3799 | |
| 3800 | let tz = TimeZone::fixed(offset(0)); |
| 3801 | let info = tz.to_offset_info(ts); |
| 3802 | assert_eq!(info.offset(), offset(0)); |
| 3803 | assert_eq!(info.dst(), Dst::No); |
| 3804 | assert_eq!(info.abbreviation(), "UTC" ); |
| 3805 | } |
| 3806 | |
| 3807 | /// This tests a few other cases for `TimeZone::to_fixed_offset` that |
| 3808 | /// probably aren't worth showing in doctest examples. |
| 3809 | #[test ] |
| 3810 | fn time_zone_to_fixed_offset() { |
| 3811 | let tz = TimeZone::UTC; |
| 3812 | assert_eq!(tz.to_fixed_offset().unwrap(), Offset::UTC); |
| 3813 | |
| 3814 | let offset = Offset::from_hours(1).unwrap(); |
| 3815 | let tz = TimeZone::fixed(offset); |
| 3816 | assert_eq!(tz.to_fixed_offset().unwrap(), offset); |
| 3817 | |
| 3818 | #[cfg (feature = "alloc" )] |
| 3819 | { |
| 3820 | let tz = TimeZone::posix("EST5" ).unwrap(); |
| 3821 | assert!(tz.to_fixed_offset().is_err()); |
| 3822 | |
| 3823 | let test_file = TzifTestFile::get("America/New_York" ); |
| 3824 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
| 3825 | assert!(tz.to_fixed_offset().is_err()); |
| 3826 | } |
| 3827 | } |
| 3828 | } |
| 3829 | |