1 | use crate::{ |
2 | civil::DateTime, |
3 | error::{err, Error}, |
4 | tz::{ |
5 | ambiguous::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned}, |
6 | offset::{Dst, Offset}, |
7 | }, |
8 | util::{array_str::ArrayStr, sync::Arc}, |
9 | Timestamp, Zoned, |
10 | }; |
11 | |
12 | #[cfg (feature = "alloc" )] |
13 | use crate::tz::posix::PosixTimeZoneOwned; |
14 | |
15 | use self::repr::Repr; |
16 | |
17 | /// A representation of a [time zone]. |
18 | /// |
19 | /// A time zone is a set of rules for determining the civil time, via an offset |
20 | /// from UTC, in a particular geographic region. In many cases, the offset |
21 | /// in a particular time zone can vary over the course of a year through |
22 | /// transitions into and out of [daylight saving time]. |
23 | /// |
24 | /// A `TimeZone` can be one of three possible representations: |
25 | /// |
26 | /// * An identifier from the [IANA Time Zone Database] and the rules associated |
27 | /// with that identifier. |
28 | /// * A fixed offset where there are never any time zone transitions. |
29 | /// * A [POSIX TZ] string that specifies a standard offset and an optional |
30 | /// daylight saving time offset along with a rule for when DST is in effect. |
31 | /// The rule applies for every year. Since POSIX TZ strings cannot capture the |
32 | /// full complexity of time zone rules, they generally should not be used. |
33 | /// |
34 | /// The most practical and useful representation is an IANA time zone. Namely, |
35 | /// it enjoys broad support and its database is regularly updated to reflect |
36 | /// real changes in time zone rules throughout the world. On Unix systems, |
37 | /// the time zone database is typically found at `/usr/share/zoneinfo`. For |
38 | /// more information on how Jiff interacts with The Time Zone Database, see |
39 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
40 | /// |
41 | /// In typical usage, users of Jiff shouldn't need to reference a `TimeZone` |
42 | /// directly. Instead, there are convenience APIs on datetime types that accept |
43 | /// IANA time zone identifiers and do automatic database lookups for you. For |
44 | /// example, to convert a timestamp to a zone aware datetime: |
45 | /// |
46 | /// ``` |
47 | /// use jiff::Timestamp; |
48 | /// |
49 | /// let ts = Timestamp::from_second(1_456_789_123)?; |
50 | /// let zdt = ts.in_tz("America/New_York" )?; |
51 | /// assert_eq!(zdt.to_string(), "2016-02-29T18:38:43-05:00[America/New_York]" ); |
52 | /// |
53 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
54 | /// ``` |
55 | /// |
56 | /// Or to convert a civil datetime to a zoned datetime corresponding to a |
57 | /// precise instant in time: |
58 | /// |
59 | /// ``` |
60 | /// use jiff::civil::date; |
61 | /// |
62 | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
63 | /// let zdt = dt.in_tz("America/New_York" )?; |
64 | /// assert_eq!(zdt.to_string(), "2024-07-15T21:27:00-04:00[America/New_York]" ); |
65 | /// |
66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
67 | /// ``` |
68 | /// |
69 | /// Or even converted a zoned datetime from one time zone to another: |
70 | /// |
71 | /// ``` |
72 | /// use jiff::civil::date; |
73 | /// |
74 | /// let dt = date(2024, 7, 15).at(21, 27, 0, 0); |
75 | /// let zdt1 = dt.in_tz("America/New_York" )?; |
76 | /// let zdt2 = zdt1.in_tz("Israel" )?; |
77 | /// assert_eq!(zdt2.to_string(), "2024-07-16T04:27:00+03:00[Israel]" ); |
78 | /// |
79 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
80 | /// ``` |
81 | /// |
82 | /// # The system time zone |
83 | /// |
84 | /// The system time zone can be retrieved via [`TimeZone::system`]. If it |
85 | /// couldn't be detected or if the `tz-system` crate feature is not enabled, |
86 | /// then [`TimeZone::UTC`] is returned. `TimeZone::system` is what's used |
87 | /// internally for retrieving the current zoned datetime via [`Zoned::now`]. |
88 | /// |
89 | /// While there is no platform independent way to detect your system's |
90 | /// "default" time zone, Jiff employs best-effort heuristics to determine it. |
91 | /// (For example, by examining `/etc/localtime` on Unix systems.) When the |
92 | /// heuristics fail, Jiff will emit a `WARN` level log. It can be viewed by |
93 | /// installing a `log` compatible logger, such as [`env_logger`]. |
94 | /// |
95 | /// # Custom time zones |
96 | /// |
97 | /// At present, Jiff doesn't provide any APIs for manually constructing a |
98 | /// custom time zone. However, [`TimeZone::tzif`] is provided for reading |
99 | /// any valid TZif formatted data, as specified by [RFC 8536]. This provides |
100 | /// an interoperable way of utilizing custom time zone rules. |
101 | /// |
102 | /// # A `TimeZone` is immutable |
103 | /// |
104 | /// Once a `TimeZone` is created, it is immutable. That is, its underlying |
105 | /// time zone transition rules will never change. This is true for system time |
106 | /// zones or even if the IANA Time Zone Database it was loaded from changes on |
107 | /// disk. The only way such changes can be observed is by re-requesting the |
108 | /// `TimeZone` from a `TimeZoneDatabase`. (Or, in the case of the system time |
109 | /// zone, by calling `TimeZone::system`.) |
110 | /// |
111 | /// # A `TimeZone` is cheap to clone |
112 | /// |
113 | /// A `TimeZone` can be cheaply cloned. It uses automic reference counting |
114 | /// internally. When `alloc` is disabled, cloning a `TimeZone` is still cheap |
115 | /// because POSIX time zones and TZif time zones are unsupported. Therefore, |
116 | /// cloning a time zone does a deep copy (since automic reference counting is |
117 | /// not available), but the data being copied is small. |
118 | /// |
119 | /// # Time zone equality |
120 | /// |
121 | /// `TimeZone` provides an imperfect notion of equality. That is, when two time |
122 | /// zones are equal, then it is guaranteed for them to have the same rules. |
123 | /// However, two time zones may compare unequal and yet still have the same |
124 | /// rules. |
125 | /// |
126 | /// The equality semantics are as follows: |
127 | /// |
128 | /// * Two fixed offset time zones are equal when their offsets are equal. |
129 | /// * Two POSIX time zones are equal when their original rule strings are |
130 | /// byte-for-byte identical. |
131 | /// * Two IANA time zones are equal when their identifiers are equal _and_ |
132 | /// checksums of their rules are equal. |
133 | /// * In all other cases, time zones are unequal. |
134 | /// |
135 | /// Time zone equality is, for example, used in APIs like [`Zoned::since`] |
136 | /// when asking for spans with calendar units. Namely, since days can be of |
137 | /// different lengths in different time zones, `Zoned::since` will return an |
138 | /// error when the two zoned datetimes are in different time zones and when |
139 | /// the caller requests units greater than hours. |
140 | /// |
141 | /// # Dealing with ambiguity |
142 | /// |
143 | /// The principal job of a `TimeZone` is to provide two different |
144 | /// transformations: |
145 | /// |
146 | /// * A conversion from a [`Timestamp`] to a civil time (also known as local, |
147 | /// naive or plain time). This conversion is always unambiguous. That is, |
148 | /// there is always precisely one representation of civil time for any |
149 | /// particular instant in time for a particular time zone. |
150 | /// * A conversion from a [`civil::DateTime`](crate::civil::DateTime) to an |
151 | /// instant in time. This conversion is sometimes ambiguous in that a civil |
152 | /// time might have either never appear on the clocks in a particular |
153 | /// time zone (a gap), or in that the civil time may have been repeated on the |
154 | /// clocks in a particular time zone (a fold). Typically, a transition to |
155 | /// daylight saving time is a gap, while a transition out of daylight saving |
156 | /// time is a fold. |
157 | /// |
158 | /// The timestamp-to-civil time conversion is done via |
159 | /// [`TimeZone::to_datetime`], or its lower level counterpart, |
160 | /// [`TimeZone::to_offset`]. The civil time-to-timestamp conversion is done |
161 | /// via one of the following routines: |
162 | /// |
163 | /// * [`TimeZone::to_zoned`] conveniently returns a [`Zoned`] and automatically |
164 | /// uses the |
165 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
166 | /// strategy if the given civil datetime is ambiguous in the time zone. |
167 | /// * [`TimeZone::to_ambiguous_zoned`] returns a potentially ambiguous |
168 | /// zoned datetime, [`AmbiguousZoned`], and provides fine-grained control over |
169 | /// how to resolve ambiguity, if it occurs. |
170 | /// * [`TimeZone::to_timestamp`] is like `TimeZone::to_zoned`, but returns |
171 | /// a [`Timestamp`] instead. |
172 | /// * [`TimeZone::to_ambiguous_timestamp`] is like |
173 | /// `TimeZone::to_ambiguous_zoned`, but returns an [`AmbiguousTimestamp`] |
174 | /// instead. |
175 | /// |
176 | /// Here is an example where we explore the different disambiguation strategies |
177 | /// for a fold in time, where in this case, the 1 o'clock hour is repeated: |
178 | /// |
179 | /// ``` |
180 | /// use jiff::{civil::date, tz::TimeZone}; |
181 | /// |
182 | /// let tz = TimeZone::get("America/New_York" )?; |
183 | /// let dt = date(2024, 11, 3).at(1, 30, 0, 0); |
184 | /// // It's ambiguous, so asking for an unambiguous instant presents an error! |
185 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
186 | /// // Gives you the earlier time in a fold, i.e., before DST ends: |
187 | /// assert_eq!( |
188 | /// tz.to_ambiguous_zoned(dt).earlier()?.to_string(), |
189 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
190 | /// ); |
191 | /// // Gives you the later time in a fold, i.e., after DST ends. |
192 | /// // Notice the offset change from the previous example! |
193 | /// assert_eq!( |
194 | /// tz.to_ambiguous_zoned(dt).later()?.to_string(), |
195 | /// "2024-11-03T01:30:00-05:00[America/New_York]" , |
196 | /// ); |
197 | /// // "Just give me something reasonable" |
198 | /// assert_eq!( |
199 | /// tz.to_ambiguous_zoned(dt).compatible()?.to_string(), |
200 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
201 | /// ); |
202 | /// |
203 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
204 | /// ``` |
205 | /// |
206 | /// # Serde integration |
207 | /// |
208 | /// At present, a `TimeZone` does not implement Serde's `Serialize` or |
209 | /// `Deserialize` traits directly. Nor does it implement `std::fmt::Display` |
210 | /// or `std::str::FromStr`. The reason for this is that it's not totally |
211 | /// clear if there is one single obvious behavior. Moreover, some `TimeZone` |
212 | /// values do not have an obvious succinct serialized representation. (For |
213 | /// example, when `/etc/localtime` on a Unix system is your system's time zone, |
214 | /// and it isn't a symlink to a TZif file in `/usr/share/zoneinfo`. In which |
215 | /// case, an IANA time zone identifier cannot easily be deduced by Jiff.) |
216 | /// |
217 | /// Instead, Jiff offers helpers for use with Serde's [`with` attribute] via |
218 | /// the [`fmt::serde`](crate::fmt::serde) module: |
219 | /// |
220 | /// ``` |
221 | /// use jiff::tz::TimeZone; |
222 | /// |
223 | /// #[derive(Debug, serde::Deserialize, serde::Serialize)] |
224 | /// struct Record { |
225 | /// #[serde(with = "jiff::fmt::serde::tz::optional" )] |
226 | /// tz: Option<TimeZone>, |
227 | /// } |
228 | /// |
229 | /// let json = r#"{"tz":"America/Nuuk"}"# ; |
230 | /// let got: Record = serde_json::from_str(&json)?; |
231 | /// assert_eq!(got.tz, Some(TimeZone::get("America/Nuuk" )?)); |
232 | /// assert_eq!(serde_json::to_string(&got)?, json); |
233 | /// |
234 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
235 | /// ``` |
236 | /// |
237 | /// Alternatively, you may use the |
238 | /// [`fmt::temporal::DateTimeParser::parse_time_zone`](crate::fmt::temporal::DateTimeParser::parse_time_zone) |
239 | /// or |
240 | /// [`fmt::temporal::DateTimePrinter::print_time_zone`](crate::fmt::temporal::DateTimePrinter::print_time_zone) |
241 | /// routines to parse or print `TimeZone` values without using Serde. |
242 | /// |
243 | /// [time zone]: https://en.wikipedia.org/wiki/Time_zone |
244 | /// [daylight saving time]: https://en.wikipedia.org/wiki/Daylight_saving_time |
245 | /// [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database |
246 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
247 | /// [`env_logger`]: https://docs.rs/env_logger |
248 | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
249 | /// [`with` attribute]: https://serde.rs/field-attrs.html#with |
250 | #[derive (Clone, Eq, PartialEq)] |
251 | pub struct TimeZone { |
252 | repr: Repr, |
253 | } |
254 | |
255 | impl TimeZone { |
256 | /// The UTC time zone. |
257 | /// |
258 | /// The offset of this time is `0` and never has any transitions. |
259 | pub const UTC: TimeZone = TimeZone { repr: Repr::utc() }; |
260 | |
261 | /// Returns the system configured time zone, if available. |
262 | /// |
263 | /// Detection of a system's default time zone is generally heuristic |
264 | /// based and platform specific. |
265 | /// |
266 | /// If callers need to know whether discovery of the system time zone |
267 | /// failed, then use [`TimeZone::try_system`]. |
268 | /// |
269 | /// # Fallback behavior |
270 | /// |
271 | /// If the system's default time zone could not be determined, or if |
272 | /// the `tz-system` crate feature is not enabled, then this returns |
273 | /// [`TimeZone::unknown`]. A `WARN` level log will also be emitted with |
274 | /// a message explaining why time zone detection failed. The fallback to |
275 | /// an unknown time zone is a practical trade-off, is what most other |
276 | /// systems tend to do and is also recommended by [relevant standards such |
277 | /// as freedesktop.org][freedesktop-org-localtime]. |
278 | /// |
279 | /// An unknown time zone _behaves_ like [`TimeZone::UTC`], but will |
280 | /// print as `Etc/Unknown` when converting a `Zoned` to a string. |
281 | /// |
282 | /// If you would instead like to fall back to UTC instead |
283 | /// of the special "unknown" time zone, then you can do |
284 | /// `TimeZone::try_system().unwrap_or(TimeZone::UTC)`. |
285 | /// |
286 | /// # Platform behavior |
287 | /// |
288 | /// This section is a "best effort" explanation of how the time zone is |
289 | /// detected on supported platforms. The behavior is subject to change. |
290 | /// |
291 | /// On all platforms, the `TZ` environment variable overrides any other |
292 | /// heuristic, and provides a way for end users to set the time zone for |
293 | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
294 | /// Here are some examples: |
295 | /// |
296 | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
297 | /// Database Identifier. |
298 | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
299 | /// by providing a file path to a TZif file directly. |
300 | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
301 | /// saving time transition rule. |
302 | /// |
303 | /// Otherwise, when `TZ` isn't set, then: |
304 | /// |
305 | /// On Unix non-Android systems, this inspects `/etc/localtime`. If it's |
306 | /// a symbolic link to an entry in `/usr/share/zoneinfo`, then the suffix |
307 | /// is considered an IANA Time Zone Database identifier. Otherwise, |
308 | /// `/etc/localtime` is read as a TZif file directly. |
309 | /// |
310 | /// On Android systems, this inspects the `persist.sys.timezone` property. |
311 | /// |
312 | /// On Windows, the system time zone is determined via |
313 | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
314 | /// IANA Time Zone Database identifier via Unicode's |
315 | /// [CLDR XML data]. |
316 | /// |
317 | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
318 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
319 | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
320 | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
321 | #[inline ] |
322 | pub fn system() -> TimeZone { |
323 | match TimeZone::try_system() { |
324 | Ok(tz) => tz, |
325 | Err(_err) => { |
326 | warn!( |
327 | "failed to get system time zone, \ |
328 | falling back to `Etc/Unknown` \ |
329 | (which behaves like UTC): {_err}" , |
330 | ); |
331 | TimeZone::unknown() |
332 | } |
333 | } |
334 | } |
335 | |
336 | /// Returns the system configured time zone, if available. |
337 | /// |
338 | /// If the system's default time zone could not be determined, or if the |
339 | /// `tz-system` crate feature is not enabled, then this returns an error. |
340 | /// |
341 | /// Detection of a system's default time zone is generally heuristic |
342 | /// based and platform specific. |
343 | /// |
344 | /// Note that callers should generally prefer using [`TimeZone::system`]. |
345 | /// If a system time zone could not be found, then it falls |
346 | /// back to [`TimeZone::UTC`] automatically. This is often |
347 | /// what is recommended by [relevant standards such as |
348 | /// freedesktop.org][freedesktop-org-localtime]. Conversely, this routine |
349 | /// is useful if detection of a system's default time zone is critical. |
350 | /// |
351 | /// # Platform behavior |
352 | /// |
353 | /// This section is a "best effort" explanation of how the time zone is |
354 | /// detected on supported platforms. The behavior is subject to change. |
355 | /// |
356 | /// On all platforms, the `TZ` environment variable overrides any other |
357 | /// heuristic, and provides a way for end users to set the time zone for |
358 | /// specific use cases. In general, Jiff respects the [POSIX TZ] rules. |
359 | /// Here are some examples: |
360 | /// |
361 | /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone |
362 | /// Database Identifier. |
363 | /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone |
364 | /// by providing a file path to a TZif file directly. |
365 | /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight |
366 | /// saving time transition rule. |
367 | /// |
368 | /// Otherwise, when `TZ` isn't set, then: |
369 | /// |
370 | /// On Unix systems, this inspects `/etc/localtime`. If it's a symbolic |
371 | /// link to an entry in `/usr/share/zoneinfo`, then the suffix is |
372 | /// considered an IANA Time Zone Database identifier. Otherwise, |
373 | /// `/etc/localtime` is read as a TZif file directly. |
374 | /// |
375 | /// On Windows, the system time zone is determined via |
376 | /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an |
377 | /// IANA Time Zone Database identifier via Unicode's |
378 | /// [CLDR XML data]. |
379 | /// |
380 | /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html |
381 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
382 | /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation |
383 | /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml |
384 | #[inline ] |
385 | pub fn try_system() -> Result<TimeZone, Error> { |
386 | #[cfg (not(feature = "tz-system" ))] |
387 | { |
388 | Err(err!( |
389 | "failed to get system time zone since 'tz-system' \ |
390 | crate feature is not enabled" , |
391 | )) |
392 | } |
393 | #[cfg (feature = "tz-system" )] |
394 | { |
395 | crate::tz::system::get(crate::tz::db()) |
396 | } |
397 | } |
398 | |
399 | /// A convenience function for performing a time zone database lookup for |
400 | /// the given time zone identifier. It uses the default global time zone |
401 | /// database via [`tz::db()`](crate::tz::db()). |
402 | /// |
403 | /// # Errors |
404 | /// |
405 | /// This returns an error if the given time zone identifier could not be |
406 | /// found in the default [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
407 | /// |
408 | /// # Example |
409 | /// |
410 | /// ``` |
411 | /// use jiff::{tz::TimeZone, Timestamp}; |
412 | /// |
413 | /// let tz = TimeZone::get("Japan" )?; |
414 | /// assert_eq!( |
415 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
416 | /// "1970-01-01T09:00:00" , |
417 | /// ); |
418 | /// |
419 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
420 | /// ``` |
421 | #[inline ] |
422 | pub fn get(time_zone_name: &str) -> Result<TimeZone, Error> { |
423 | crate::tz::db().get(time_zone_name) |
424 | } |
425 | |
426 | /// Returns a time zone with a fixed offset. |
427 | /// |
428 | /// A fixed offset will never have any transitions and won't follow any |
429 | /// particular time zone rules. In general, one should avoid using fixed |
430 | /// offset time zones unless you have a specific need for them. Otherwise, |
431 | /// IANA time zones via [`TimeZone::get`] should be preferred, as they |
432 | /// more accurately model the actual time zone transitions rules used in |
433 | /// practice. |
434 | /// |
435 | /// # Example |
436 | /// |
437 | /// ``` |
438 | /// use jiff::{tz::{self, TimeZone}, Timestamp}; |
439 | /// |
440 | /// let tz = TimeZone::fixed(tz::offset(10)); |
441 | /// assert_eq!( |
442 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
443 | /// "1970-01-01T10:00:00" , |
444 | /// ); |
445 | /// |
446 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
447 | /// ``` |
448 | #[inline ] |
449 | pub const fn fixed(offset: Offset) -> TimeZone { |
450 | // Not doing `offset == Offset::UTC` because of `const`. |
451 | if offset.seconds_ranged().get_unchecked() == 0 { |
452 | return TimeZone::UTC; |
453 | } |
454 | let repr = Repr::fixed(offset); |
455 | TimeZone { repr } |
456 | } |
457 | |
458 | /// Creates a time zone from a [POSIX TZ] rule string. |
459 | /// |
460 | /// A POSIX time zone provides a way to tersely define a single daylight |
461 | /// saving time transition rule (or none at all) that applies for all |
462 | /// years. |
463 | /// |
464 | /// Users should avoid using this kind of time zone unless there is a |
465 | /// specific need for it. Namely, POSIX time zones cannot capture the full |
466 | /// complexity of time zone transition rules in the real world. (See the |
467 | /// example below.) |
468 | /// |
469 | /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html |
470 | /// |
471 | /// # Errors |
472 | /// |
473 | /// This returns an error if the given POSIX time zone string is invalid. |
474 | /// |
475 | /// # Example |
476 | /// |
477 | /// This example demonstrates how a POSIX time zone may be historically |
478 | /// inaccurate: |
479 | /// |
480 | /// ``` |
481 | /// use jiff::{civil::date, tz::TimeZone}; |
482 | /// |
483 | /// // The tzdb entry for America/New_York. |
484 | /// let iana = TimeZone::get("America/New_York" )?; |
485 | /// // The POSIX TZ string for New York DST that went into effect in 2007. |
486 | /// let posix = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0" )?; |
487 | /// |
488 | /// // New York entered DST on April 2, 2006 at 2am: |
489 | /// let dt = date(2006, 4, 2).at(2, 0, 0, 0); |
490 | /// // The IANA tzdb entry correctly reports it as ambiguous: |
491 | /// assert!(iana.to_ambiguous_timestamp(dt).is_ambiguous()); |
492 | /// // But the POSIX time zone does not: |
493 | /// assert!(!posix.to_ambiguous_timestamp(dt).is_ambiguous()); |
494 | /// |
495 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
496 | /// ``` |
497 | #[cfg (feature = "alloc" )] |
498 | pub fn posix(posix_tz_string: &str) -> Result<TimeZone, Error> { |
499 | let posix_tz = PosixTimeZoneOwned::parse(posix_tz_string)?; |
500 | Ok(TimeZone::from_posix_tz(posix_tz)) |
501 | } |
502 | |
503 | /// Creates a time zone from a POSIX tz. Expose so that other parts of Jiff |
504 | /// can create a `TimeZone` from a POSIX tz. (Kinda sloppy to be honest.) |
505 | #[cfg (feature = "alloc" )] |
506 | pub(crate) fn from_posix_tz(posix: PosixTimeZoneOwned) -> TimeZone { |
507 | let repr = Repr::arc_posix(Arc::new(posix)); |
508 | TimeZone { repr } |
509 | } |
510 | |
511 | /// Creates a time zone from TZif binary data, whose format is specified |
512 | /// in [RFC 8536]. All versions of TZif (up through version 4) are |
513 | /// supported. |
514 | /// |
515 | /// This constructor is typically not used, and instead, one should rely |
516 | /// on time zone lookups via time zone identifiers with routines like |
517 | /// [`TimeZone::get`]. However, this constructor does provide one way |
518 | /// of using custom time zones with Jiff. |
519 | /// |
520 | /// The name given should be a IANA time zone database identifier. |
521 | /// |
522 | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
523 | /// |
524 | /// # Errors |
525 | /// |
526 | /// This returns an error if the given data was not recognized as valid |
527 | /// TZif. |
528 | #[cfg (feature = "alloc" )] |
529 | pub fn tzif(name: &str, data: &[u8]) -> Result<TimeZone, Error> { |
530 | use alloc::string::ToString; |
531 | |
532 | let name = name.to_string(); |
533 | let tzif = crate::tz::tzif::Tzif::parse(Some(name), data)?; |
534 | let repr = Repr::arc_tzif(Arc::new(tzif)); |
535 | Ok(TimeZone { repr }) |
536 | } |
537 | |
538 | /// Returns a `TimeZone` that is specifially marked as "unknown." |
539 | /// |
540 | /// This corresponds to the Unicode CLDR identifier `Etc/Unknown`, which |
541 | /// is guaranteed to never be a valid IANA time zone identifier (as of |
542 | /// the `2025a` release of tzdb). |
543 | /// |
544 | /// This type of `TimeZone` is used in circumstances where one wants to |
545 | /// signal that discovering a time zone failed for some reason, but that |
546 | /// execution can reasonably continue. For example, [`TimeZone::system`] |
547 | /// returns this type of time zone when the system time zone could not be |
548 | /// discovered. |
549 | /// |
550 | /// # Example |
551 | /// |
552 | /// Jiff permits an "unknown" time zone to losslessly be transmitted |
553 | /// through serialization: |
554 | /// |
555 | /// ``` |
556 | /// use jiff::{civil::date, tz::TimeZone, Zoned}; |
557 | /// |
558 | /// let tz = TimeZone::unknown(); |
559 | /// let zdt = date(2025, 2, 1).at(17, 0, 0, 0).to_zoned(tz)?; |
560 | /// assert_eq!(zdt.to_string(), "2025-02-01T17:00:00Z[Etc/Unknown]" ); |
561 | /// let got: Zoned = "2025-02-01T17:00:00Z[Etc/Unknown]" .parse()?; |
562 | /// assert_eq!(got, zdt); |
563 | /// |
564 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
565 | /// ``` |
566 | /// |
567 | /// Note that not all systems support this. Some systems will reject |
568 | /// `Etc/Unknown` because it is not a valid IANA time zone identifier and |
569 | /// does not have an entry in the IANA time zone database. However, Jiff |
570 | /// takes this approach because it surfaces an error condition in detecting |
571 | /// the end user's time zone. Callers not wanting an "unknown" time zone |
572 | /// can use `TimeZone::try_system().unwrap_or(TimeZone::UTC)` instead of |
573 | /// `TimeZone::system`. (Where the latter falls back to the "unknown" time |
574 | /// zone when a system configured time zone could not be found.) |
575 | pub const fn unknown() -> TimeZone { |
576 | let repr = Repr::unknown(); |
577 | TimeZone { repr } |
578 | } |
579 | |
580 | /// This creates an unnamed TZif-backed `TimeZone`. |
581 | /// |
582 | /// At present, the only way for an unnamed TZif-backed `TimeZone` to be |
583 | /// created is when the system time zone has no identifiable name. For |
584 | /// example, when `/etc/localtime` is hard-linked to a TZif file instead |
585 | /// of being symlinked. In this case, there is no cheap and unambiguous |
586 | /// way to determine the time zone name. So we just let it be unnamed. |
587 | /// Since this is the only such case, and hopefully will only ever be the |
588 | /// only such case, we consider such unnamed TZif-back `TimeZone` values |
589 | /// as being the "system" time zone. |
590 | /// |
591 | /// When this is used to construct a `TimeZone`, the `TimeZone::name` |
592 | /// method will be "Local". This is... pretty unfortunate. I'm not sure |
593 | /// what else to do other than to make `TimeZone::name` return an |
594 | /// `Option<&str>`. But... we use it in a bunch of places and it just |
595 | /// seems bad for a time zone to not have a name. |
596 | /// |
597 | /// OK, because of the above, I renamed `TimeZone::name` to |
598 | /// `TimeZone::diagnostic_name`. This should make it clearer that you can't |
599 | /// really use the name to do anything interesting. This also makes more |
600 | /// sense for POSIX TZ strings too. |
601 | /// |
602 | /// In any case, this routine stays unexported because I don't want TZif |
603 | /// backed `TimeZone` values to proliferate. If you have a legitimate use |
604 | /// case otherwise, please file an issue. It will require API design. |
605 | /// |
606 | /// # Errors |
607 | /// |
608 | /// This returns an error if the given TZif data is invalid. |
609 | #[cfg (feature = "tz-system" )] |
610 | pub(crate) fn tzif_system(data: &[u8]) -> Result<TimeZone, Error> { |
611 | let tzif = crate::tz::tzif::Tzif::parse(None, data)?; |
612 | let repr = Repr::arc_tzif(Arc::new(tzif)); |
613 | Ok(TimeZone { repr }) |
614 | } |
615 | |
616 | #[inline ] |
617 | pub(crate) fn diagnostic_name(&self) -> DiagnosticName<'_> { |
618 | DiagnosticName(self) |
619 | } |
620 | |
621 | /// Returns true if and only if this `TimeZone` can be succinctly |
622 | /// serialized. |
623 | /// |
624 | /// Basically, this is only `false` when this `TimeZone` was created from |
625 | /// a `/etc/localtime` for which a valid IANA time zone identifier could |
626 | /// not be extracted. |
627 | #[cfg (feature = "serde" )] |
628 | #[inline ] |
629 | pub(crate) fn has_succinct_serialization(&self) -> bool { |
630 | repr::each! { |
631 | &self.repr, |
632 | UTC => true, |
633 | UNKNOWN => true, |
634 | FIXED(_offset) => true, |
635 | STATIC_TZIF(tzif) => tzif.name().is_some(), |
636 | ARC_TZIF(tzif) => tzif.name().is_some(), |
637 | ARC_POSIX(_posix) => true, |
638 | } |
639 | } |
640 | |
641 | /// When this time zone was loaded from an IANA time zone database entry, |
642 | /// then this returns the canonicalized name for that time zone. |
643 | /// |
644 | /// # Example |
645 | /// |
646 | /// ``` |
647 | /// use jiff::tz::TimeZone; |
648 | /// |
649 | /// let tz = TimeZone::get("america/NEW_YORK" )?; |
650 | /// assert_eq!(tz.iana_name(), Some("America/New_York" )); |
651 | /// |
652 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
653 | /// ``` |
654 | #[inline ] |
655 | pub fn iana_name(&self) -> Option<&str> { |
656 | repr::each! { |
657 | &self.repr, |
658 | UTC => Some("UTC" ), |
659 | // Note that while `Etc/Unknown` looks like an IANA time zone |
660 | // identifier, it is specifically and explicitly NOT an IANA time |
661 | // zone identifier. So we do not return it here if we have an |
662 | // unknown time zone identifier. |
663 | UNKNOWN => None, |
664 | FIXED(_offset) => None, |
665 | STATIC_TZIF(tzif) => tzif.name(), |
666 | ARC_TZIF(tzif) => tzif.name(), |
667 | ARC_POSIX(_posix) => None, |
668 | } |
669 | } |
670 | |
671 | /// Returns true if and only if this time zone is unknown. |
672 | /// |
673 | /// This has the special internal identifier of `Etc/Unknown`, and this |
674 | /// is what will be used when converting a `Zoned` to a string. |
675 | /// |
676 | /// Note that while `Etc/Unknown` looks like an IANA time zone identifier, |
677 | /// it is specifically and explicitly not one. It is reserved and is |
678 | /// guaranteed to never be an IANA time zone identifier. |
679 | /// |
680 | /// An unknown time zone can be created via [`TimeZone::unknown`]. It is |
681 | /// also returned by [`TimeZone::system`] when a system configured time |
682 | /// zone could not be found. |
683 | /// |
684 | /// # Example |
685 | /// |
686 | /// ``` |
687 | /// use jiff::tz::TimeZone; |
688 | /// |
689 | /// let tz = TimeZone::unknown(); |
690 | /// assert_eq!(tz.iana_name(), None); |
691 | /// assert!(tz.is_unknown()); |
692 | /// ``` |
693 | #[inline ] |
694 | pub fn is_unknown(&self) -> bool { |
695 | self.repr.is_unknown() |
696 | } |
697 | |
698 | /// When this time zone is a POSIX time zone, return it. |
699 | /// |
700 | /// This doesn't attempt to convert other time zones that are representable |
701 | /// as POSIX time zones to POSIX time zones (e.g., fixed offset time |
702 | /// zones). Instead, this only returns something when the actual |
703 | /// representation of the time zone is a POSIX time zone. |
704 | #[cfg (feature = "alloc" )] |
705 | #[inline ] |
706 | pub(crate) fn posix_tz(&self) -> Option<&PosixTimeZoneOwned> { |
707 | repr::each! { |
708 | &self.repr, |
709 | UTC => None, |
710 | UNKNOWN => None, |
711 | FIXED(_offset) => None, |
712 | STATIC_TZIF(_tzif) => None, |
713 | ARC_TZIF(_tzif) => None, |
714 | ARC_POSIX(posix) => Some(posix), |
715 | } |
716 | } |
717 | |
718 | /// Returns the civil datetime corresponding to the given timestamp in this |
719 | /// time zone. |
720 | /// |
721 | /// This operation is always unambiguous. That is, for any instant in time |
722 | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
723 | /// one civil datetime corresponding to that instant. |
724 | /// |
725 | /// Note that this is considered a lower level routine. Consider working |
726 | /// with zoned datetimes instead, and use [`Zoned::datetime`] to get its |
727 | /// civil time if necessary. |
728 | /// |
729 | /// # Example |
730 | /// |
731 | /// ``` |
732 | /// use jiff::{tz::TimeZone, Timestamp}; |
733 | /// |
734 | /// let tz = TimeZone::get("Europe/Rome" )?; |
735 | /// assert_eq!( |
736 | /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(), |
737 | /// "1970-01-01T01:00:00" , |
738 | /// ); |
739 | /// |
740 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
741 | /// ``` |
742 | /// |
743 | /// As mentioned above, consider using `Zoned` instead: |
744 | /// |
745 | /// ``` |
746 | /// use jiff::{tz::TimeZone, Timestamp}; |
747 | /// |
748 | /// let zdt = Timestamp::UNIX_EPOCH.in_tz("Europe/Rome" )?; |
749 | /// assert_eq!(zdt.datetime().to_string(), "1970-01-01T01:00:00" ); |
750 | /// |
751 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
752 | /// ``` |
753 | #[inline ] |
754 | pub fn to_datetime(&self, timestamp: Timestamp) -> DateTime { |
755 | self.to_offset(timestamp).to_datetime(timestamp) |
756 | } |
757 | |
758 | /// Returns the offset corresponding to the given timestamp in this time |
759 | /// zone. |
760 | /// |
761 | /// This operation is always unambiguous. That is, for any instant in time |
762 | /// supported by Jiff (that is, a `Timestamp`), there is always precisely |
763 | /// one offset corresponding to that instant. |
764 | /// |
765 | /// Given an offset, one can use APIs like [`Offset::to_datetime`] to |
766 | /// create a civil datetime from a timestamp. |
767 | /// |
768 | /// This also returns whether this timestamp is considered to be in |
769 | /// "daylight saving time," as well as the abbreviation for the time zone |
770 | /// at this time. |
771 | /// |
772 | /// # Example |
773 | /// |
774 | /// ``` |
775 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
776 | /// |
777 | /// let tz = TimeZone::get("America/New_York" )?; |
778 | /// |
779 | /// // A timestamp in DST in New York. |
780 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
781 | /// let offset = tz.to_offset(ts); |
782 | /// assert_eq!(offset, tz::offset(-4)); |
783 | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-07-08T22:46:44" ); |
784 | /// |
785 | /// // A timestamp *not* in DST in New York. |
786 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
787 | /// let offset = tz.to_offset(ts); |
788 | /// assert_eq!(offset, tz::offset(-5)); |
789 | /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-01-10T21:46:44" ); |
790 | /// |
791 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
792 | /// ``` |
793 | #[inline ] |
794 | pub fn to_offset(&self, timestamp: Timestamp) -> Offset { |
795 | repr::each! { |
796 | &self.repr, |
797 | UTC => Offset::UTC, |
798 | UNKNOWN => Offset::UTC, |
799 | FIXED(offset) => offset, |
800 | STATIC_TZIF(tzif) => tzif.to_offset(timestamp), |
801 | ARC_TZIF(tzif) => tzif.to_offset(timestamp), |
802 | ARC_POSIX(posix) => posix.to_offset(timestamp), |
803 | } |
804 | } |
805 | |
806 | /// Returns the offset information corresponding to the given timestamp in |
807 | /// this time zone. This includes the offset along with daylight saving |
808 | /// time status and a time zone abbreviation. |
809 | /// |
810 | /// This is like [`TimeZone::to_offset`], but returns the aforementioned |
811 | /// extra data in addition to the offset. This data may, in some cases, be |
812 | /// more expensive to compute. |
813 | /// |
814 | /// # Example |
815 | /// |
816 | /// ``` |
817 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
818 | /// |
819 | /// let tz = TimeZone::get("America/New_York" )?; |
820 | /// |
821 | /// // A timestamp in DST in New York. |
822 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
823 | /// let info = tz.to_offset_info(ts); |
824 | /// assert_eq!(info.offset(), tz::offset(-4)); |
825 | /// assert_eq!(info.dst(), Dst::Yes); |
826 | /// assert_eq!(info.abbreviation(), "EDT" ); |
827 | /// assert_eq!( |
828 | /// info.offset().to_datetime(ts).to_string(), |
829 | /// "2024-07-08T22:46:44" , |
830 | /// ); |
831 | /// |
832 | /// // A timestamp *not* in DST in New York. |
833 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
834 | /// let info = tz.to_offset_info(ts); |
835 | /// assert_eq!(info.offset(), tz::offset(-5)); |
836 | /// assert_eq!(info.dst(), Dst::No); |
837 | /// assert_eq!(info.abbreviation(), "EST" ); |
838 | /// assert_eq!( |
839 | /// info.offset().to_datetime(ts).to_string(), |
840 | /// "2024-01-10T21:46:44" , |
841 | /// ); |
842 | /// |
843 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
844 | /// ``` |
845 | #[inline ] |
846 | pub fn to_offset_info<'t>( |
847 | &'t self, |
848 | timestamp: Timestamp, |
849 | ) -> TimeZoneOffsetInfo<'t> { |
850 | repr::each! { |
851 | &self.repr, |
852 | UTC => TimeZoneOffsetInfo { |
853 | offset: Offset::UTC, |
854 | dst: Dst::No, |
855 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC" ), |
856 | }, |
857 | UNKNOWN => TimeZoneOffsetInfo { |
858 | offset: Offset::UTC, |
859 | dst: Dst::No, |
860 | // It'd be kinda nice if this were just `ERR` to |
861 | // indicate an error, but I can't find any precedent |
862 | // for that. And CLDR says `Etc/Unknown` should behave |
863 | // like UTC, so... I guess we use UTC here. |
864 | abbreviation: TimeZoneAbbreviation::Borrowed("UTC" ), |
865 | }, |
866 | FIXED(offset) => { |
867 | let abbreviation = |
868 | TimeZoneAbbreviation::Owned(offset.to_array_str()); |
869 | TimeZoneOffsetInfo { |
870 | offset, |
871 | dst: Dst::No, |
872 | abbreviation, |
873 | } |
874 | }, |
875 | STATIC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
876 | ARC_TZIF(tzif) => tzif.to_offset_info(timestamp), |
877 | ARC_POSIX(posix) => posix.to_offset_info(timestamp), |
878 | } |
879 | } |
880 | |
881 | /// If this time zone is a fixed offset, then this returns the offset. |
882 | /// If this time zone is not a fixed offset, then an error is returned. |
883 | /// |
884 | /// If you just need an offset for a given timestamp, then you can use |
885 | /// [`TimeZone::to_offset`]. Or, if you need an offset for a civil |
886 | /// datetime, then you can use [`TimeZone::to_ambiguous_timestamp`] or |
887 | /// [`TimeZone::to_ambiguous_zoned`], although the result may be ambiguous. |
888 | /// |
889 | /// Generally, this routine is useful when you need to know whether the |
890 | /// time zone is fixed, and you want to get the offset without having to |
891 | /// specify a timestamp. This is sometimes required for interoperating with |
892 | /// other datetime systems that need to distinguish between time zones that |
893 | /// are fixed and time zones that are based on rules such as those found in |
894 | /// the IANA time zone database. |
895 | /// |
896 | /// # Example |
897 | /// |
898 | /// ``` |
899 | /// use jiff::tz::{Offset, TimeZone}; |
900 | /// |
901 | /// let tz = TimeZone::get("America/New_York" )?; |
902 | /// // A named time zone is not a fixed offset |
903 | /// // and so cannot be converted to an offset |
904 | /// // without a timestamp or civil datetime. |
905 | /// assert_eq!( |
906 | /// tz.to_fixed_offset().unwrap_err().to_string(), |
907 | /// "cannot convert non-fixed IANA time zone \ |
908 | /// to offset without timestamp or civil datetime" , |
909 | /// ); |
910 | /// |
911 | /// let tz = TimeZone::UTC; |
912 | /// // UTC is a fixed offset and so can be converted |
913 | /// // without a timestamp. |
914 | /// assert_eq!(tz.to_fixed_offset()?, Offset::UTC); |
915 | /// |
916 | /// // And of course, creating a time zone from a |
917 | /// // fixed offset results in a fixed offset time |
918 | /// // zone too: |
919 | /// let tz = TimeZone::fixed(jiff::tz::offset(-10)); |
920 | /// assert_eq!(tz.to_fixed_offset()?, jiff::tz::offset(-10)); |
921 | /// |
922 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
923 | /// ``` |
924 | #[inline ] |
925 | pub fn to_fixed_offset(&self) -> Result<Offset, Error> { |
926 | let mkerr = || { |
927 | err!( |
928 | "cannot convert non-fixed {kind} time zone to offset \ |
929 | without timestamp or civil datetime" , |
930 | kind = self.kind_description(), |
931 | ) |
932 | }; |
933 | repr::each! { |
934 | &self.repr, |
935 | UTC => Ok(Offset::UTC), |
936 | UNKNOWN => Ok(Offset::UTC), |
937 | FIXED(offset) => Ok(offset), |
938 | STATIC_TZIF(_tzif) => Err(mkerr()), |
939 | ARC_TZIF(_tzif) => Err(mkerr()), |
940 | ARC_POSIX(_posix) => Err(mkerr()), |
941 | } |
942 | } |
943 | |
944 | /// Converts a civil datetime to a [`Zoned`] in this time zone. |
945 | /// |
946 | /// The given civil datetime may be ambiguous in this time zone. A civil |
947 | /// datetime is ambiguous when either of the following occurs: |
948 | /// |
949 | /// * When the civil datetime falls into a "gap." That is, when there is a |
950 | /// jump forward in time where a span of time does not appear on the clocks |
951 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
952 | /// into daylight saving time. |
953 | /// * When the civil datetime falls into a "fold." That is, when there is |
954 | /// a jump backward in time where a span of time is _repeated_ on the |
955 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
956 | /// backward out of daylight saving time. |
957 | /// |
958 | /// This routine automatically resolves both of the above ambiguities via |
959 | /// the |
960 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
961 | /// strategy. That in, the case of a gap, the time after the gap is used. |
962 | /// In the case of a fold, the first repetition of the clock time is used. |
963 | /// |
964 | /// # Example |
965 | /// |
966 | /// This example shows how disambiguation works: |
967 | /// |
968 | /// ``` |
969 | /// use jiff::{civil::date, tz::TimeZone}; |
970 | /// |
971 | /// let tz = TimeZone::get("America/New_York" )?; |
972 | /// |
973 | /// // This demonstrates disambiguation behavior for a gap. |
974 | /// let zdt = tz.to_zoned(date(2024, 3, 10).at(2, 30, 0, 0))?; |
975 | /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]" ); |
976 | /// // This demonstrates disambiguation behavior for a fold. |
977 | /// // Notice the offset: the -04 corresponds to the time while |
978 | /// // still in DST. The second repetition of the 1 o'clock hour |
979 | /// // occurs outside of DST, in "standard" time, with the offset -5. |
980 | /// let zdt = tz.to_zoned(date(2024, 11, 3).at(1, 30, 0, 0))?; |
981 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
982 | /// |
983 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
984 | /// ``` |
985 | #[inline ] |
986 | pub fn to_zoned(&self, dt: DateTime) -> Result<Zoned, Error> { |
987 | self.to_ambiguous_zoned(dt).compatible() |
988 | } |
989 | |
990 | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
991 | /// this time zone. |
992 | /// |
993 | /// The given civil datetime may be ambiguous in this time zone. A civil |
994 | /// datetime is ambiguous when either of the following occurs: |
995 | /// |
996 | /// * When the civil datetime falls into a "gap." That is, when there is a |
997 | /// jump forward in time where a span of time does not appear on the clocks |
998 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
999 | /// into daylight saving time. |
1000 | /// * When the civil datetime falls into a "fold." That is, when there is |
1001 | /// a jump backward in time where a span of time is _repeated_ on the |
1002 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1003 | /// backward out of daylight saving time. |
1004 | /// |
1005 | /// Unlike [`TimeZone::to_zoned`], this method does not do any automatic |
1006 | /// disambiguation. Instead, callers are expected to use the methods on |
1007 | /// [`AmbiguousZoned`] to resolve any ambiguity, if it occurs. |
1008 | /// |
1009 | /// # Example |
1010 | /// |
1011 | /// This example shows how to return an error when the civil datetime given |
1012 | /// is ambiguous: |
1013 | /// |
1014 | /// ``` |
1015 | /// use jiff::{civil::date, tz::TimeZone}; |
1016 | /// |
1017 | /// let tz = TimeZone::get("America/New_York" )?; |
1018 | /// |
1019 | /// // This is not ambiguous: |
1020 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1021 | /// assert_eq!( |
1022 | /// tz.to_ambiguous_zoned(dt).unambiguous()?.to_string(), |
1023 | /// "2024-03-10T01:00:00-05:00[America/New_York]" , |
1024 | /// ); |
1025 | /// // But this is a gap, and thus ambiguous! So an error is returned. |
1026 | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
1027 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
1028 | /// // And so is this, because it's a fold. |
1029 | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
1030 | /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err()); |
1031 | /// |
1032 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1033 | /// ``` |
1034 | #[inline ] |
1035 | pub fn to_ambiguous_zoned(&self, dt: DateTime) -> AmbiguousZoned { |
1036 | self.clone().into_ambiguous_zoned(dt) |
1037 | } |
1038 | |
1039 | /// Converts a civil datetime to a possibly ambiguous zoned datetime in |
1040 | /// this time zone, and does so by assuming ownership of this `TimeZone`. |
1041 | /// |
1042 | /// This is identical to [`TimeZone::to_ambiguous_zoned`], but it avoids |
1043 | /// a `TimeZone::clone()` call. (Which are cheap, but not completely free.) |
1044 | /// |
1045 | /// # Example |
1046 | /// |
1047 | /// This example shows how to create a `Zoned` value from a `TimeZone` |
1048 | /// and a `DateTime` without cloning the `TimeZone`: |
1049 | /// |
1050 | /// ``` |
1051 | /// use jiff::{civil::date, tz::TimeZone}; |
1052 | /// |
1053 | /// let tz = TimeZone::get("America/New_York" )?; |
1054 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1055 | /// assert_eq!( |
1056 | /// tz.into_ambiguous_zoned(dt).unambiguous()?.to_string(), |
1057 | /// "2024-03-10T01:00:00-05:00[America/New_York]" , |
1058 | /// ); |
1059 | /// |
1060 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1061 | /// ``` |
1062 | #[inline ] |
1063 | pub fn into_ambiguous_zoned(self, dt: DateTime) -> AmbiguousZoned { |
1064 | self.to_ambiguous_timestamp(dt).into_ambiguous_zoned(self) |
1065 | } |
1066 | |
1067 | /// Converts a civil datetime to a [`Timestamp`] in this time zone. |
1068 | /// |
1069 | /// The given civil datetime may be ambiguous in this time zone. A civil |
1070 | /// datetime is ambiguous when either of the following occurs: |
1071 | /// |
1072 | /// * When the civil datetime falls into a "gap." That is, when there is a |
1073 | /// jump forward in time where a span of time does not appear on the clocks |
1074 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
1075 | /// into daylight saving time. |
1076 | /// * When the civil datetime falls into a "fold." That is, when there is |
1077 | /// a jump backward in time where a span of time is _repeated_ on the |
1078 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1079 | /// backward out of daylight saving time. |
1080 | /// |
1081 | /// This routine automatically resolves both of the above ambiguities via |
1082 | /// the |
1083 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
1084 | /// strategy. That in, the case of a gap, the time after the gap is used. |
1085 | /// In the case of a fold, the first repetition of the clock time is used. |
1086 | /// |
1087 | /// This routine is identical to [`TimeZone::to_zoned`], except it returns |
1088 | /// a `Timestamp` instead of a zoned datetime. The benefit of this |
1089 | /// method is that it never requires cloning or consuming ownership of a |
1090 | /// `TimeZone`, and it doesn't require construction of `Zoned` which has |
1091 | /// a small but non-zero cost. (This is partially because a `Zoned` value |
1092 | /// contains a `TimeZone`, but of course, a `Timestamp` does not.) |
1093 | /// |
1094 | /// # Example |
1095 | /// |
1096 | /// This example shows how disambiguation works: |
1097 | /// |
1098 | /// ``` |
1099 | /// use jiff::{civil::date, tz::TimeZone}; |
1100 | /// |
1101 | /// let tz = TimeZone::get("America/New_York" )?; |
1102 | /// |
1103 | /// // This demonstrates disambiguation behavior for a gap. |
1104 | /// let ts = tz.to_timestamp(date(2024, 3, 10).at(2, 30, 0, 0))?; |
1105 | /// assert_eq!(ts.to_string(), "2024-03-10T07:30:00Z" ); |
1106 | /// // This demonstrates disambiguation behavior for a fold. |
1107 | /// // Notice the offset: the -04 corresponds to the time while |
1108 | /// // still in DST. The second repetition of the 1 o'clock hour |
1109 | /// // occurs outside of DST, in "standard" time, with the offset -5. |
1110 | /// let ts = tz.to_timestamp(date(2024, 11, 3).at(1, 30, 0, 0))?; |
1111 | /// assert_eq!(ts.to_string(), "2024-11-03T05:30:00Z" ); |
1112 | /// |
1113 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1114 | /// ``` |
1115 | #[inline ] |
1116 | pub fn to_timestamp(&self, dt: DateTime) -> Result<Timestamp, Error> { |
1117 | self.to_ambiguous_timestamp(dt).compatible() |
1118 | } |
1119 | |
1120 | /// Converts a civil datetime to a possibly ambiguous timestamp in |
1121 | /// this time zone. |
1122 | /// |
1123 | /// The given civil datetime may be ambiguous in this time zone. A civil |
1124 | /// datetime is ambiguous when either of the following occurs: |
1125 | /// |
1126 | /// * When the civil datetime falls into a "gap." That is, when there is a |
1127 | /// jump forward in time where a span of time does not appear on the clocks |
1128 | /// in this time zone. This _typically_ manifests as a 1 hour jump forward |
1129 | /// into daylight saving time. |
1130 | /// * When the civil datetime falls into a "fold." That is, when there is |
1131 | /// a jump backward in time where a span of time is _repeated_ on the |
1132 | /// clocks in this time zone. This _typically_ manifests as a 1 hour jump |
1133 | /// backward out of daylight saving time. |
1134 | /// |
1135 | /// Unlike [`TimeZone::to_timestamp`], this method does not do any |
1136 | /// automatic disambiguation. Instead, callers are expected to use the |
1137 | /// methods on [`AmbiguousTimestamp`] to resolve any ambiguity, if it |
1138 | /// occurs. |
1139 | /// |
1140 | /// This routine is identical to [`TimeZone::to_ambiguous_zoned`], except |
1141 | /// it returns an `AmbiguousTimestamp` instead of a `AmbiguousZoned`. The |
1142 | /// benefit of this method is that it never requires cloning or consuming |
1143 | /// ownership of a `TimeZone`, and it doesn't require construction of |
1144 | /// `Zoned` which has a small but non-zero cost. (This is partially because |
1145 | /// a `Zoned` value contains a `TimeZone`, but of course, a `Timestamp` |
1146 | /// does not.) |
1147 | /// |
1148 | /// # Example |
1149 | /// |
1150 | /// This example shows how to return an error when the civil datetime given |
1151 | /// is ambiguous: |
1152 | /// |
1153 | /// ``` |
1154 | /// use jiff::{civil::date, tz::TimeZone}; |
1155 | /// |
1156 | /// let tz = TimeZone::get("America/New_York" )?; |
1157 | /// |
1158 | /// // This is not ambiguous: |
1159 | /// let dt = date(2024, 3, 10).at(1, 0, 0, 0); |
1160 | /// assert_eq!( |
1161 | /// tz.to_ambiguous_timestamp(dt).unambiguous()?.to_string(), |
1162 | /// "2024-03-10T06:00:00Z" , |
1163 | /// ); |
1164 | /// // But this is a gap, and thus ambiguous! So an error is returned. |
1165 | /// let dt = date(2024, 3, 10).at(2, 0, 0, 0); |
1166 | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
1167 | /// // And so is this, because it's a fold. |
1168 | /// let dt = date(2024, 11, 3).at(1, 0, 0, 0); |
1169 | /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err()); |
1170 | /// |
1171 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1172 | /// ``` |
1173 | #[inline ] |
1174 | pub fn to_ambiguous_timestamp(&self, dt: DateTime) -> AmbiguousTimestamp { |
1175 | let ambiguous_kind = repr::each! { |
1176 | &self.repr, |
1177 | UTC => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
1178 | UNKNOWN => AmbiguousOffset::Unambiguous { offset: Offset::UTC }, |
1179 | FIXED(offset) => AmbiguousOffset::Unambiguous { offset }, |
1180 | STATIC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
1181 | ARC_TZIF(tzif) => tzif.to_ambiguous_kind(dt), |
1182 | ARC_POSIX(posix) => posix.to_ambiguous_kind(dt), |
1183 | }; |
1184 | AmbiguousTimestamp::new(dt, ambiguous_kind) |
1185 | } |
1186 | |
1187 | /// Returns an iterator of time zone transitions preceding the given |
1188 | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
1189 | /// elements. |
1190 | /// |
1191 | /// The order of the iterator returned moves backward through time. If |
1192 | /// there is a previous transition, then the timestamp of that transition |
1193 | /// is guaranteed to be strictly less than the timestamp given. |
1194 | /// |
1195 | /// This is a low level API that you generally shouldn't need. It's |
1196 | /// useful in cases where you need to know something about the specific |
1197 | /// instants at which time zone transitions occur. For example, an embedded |
1198 | /// device might need to be explicitly programmed with daylight saving |
1199 | /// time transitions. APIs like this enable callers to explore those |
1200 | /// transitions. |
1201 | /// |
1202 | /// A time zone transition refers to a specific point in time when the |
1203 | /// offset from UTC for a particular geographical region changes. This |
1204 | /// is usually a result of daylight saving time, but it can also occur |
1205 | /// when a geographic region changes its permanent offset from UTC. |
1206 | /// |
1207 | /// The iterator returned is not guaranteed to yield any elements. For |
1208 | /// example, this occurs with a fixed offset time zone. Logically, it |
1209 | /// would also be possible for the iterator to be infinite, except that |
1210 | /// eventually the timestamp would overflow Jiff's minimum timestamp |
1211 | /// value, at which point, iteration stops. |
1212 | /// |
1213 | /// # Example: time since the previous transition |
1214 | /// |
1215 | /// This example shows how much time has passed since the previous time |
1216 | /// zone transition: |
1217 | /// |
1218 | /// ``` |
1219 | /// use jiff::{Unit, Zoned}; |
1220 | /// |
1221 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1222 | /// let trans = now.time_zone().preceding(now.timestamp()).next().unwrap(); |
1223 | /// let prev_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
1224 | /// let span = now.since((Unit::Year, &prev_at))?; |
1225 | /// assert_eq!(format!("{span:#}" ), "1mo 27d 17h 25m" ); |
1226 | /// |
1227 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1228 | /// ``` |
1229 | /// |
1230 | /// # Example: show the 5 previous time zone transitions |
1231 | /// |
1232 | /// This shows how to find the 5 preceding time zone transitions (from a |
1233 | /// particular datetime) for a particular time zone: |
1234 | /// |
1235 | /// ``` |
1236 | /// use jiff::{tz::offset, Zoned}; |
1237 | /// |
1238 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1239 | /// let transitions = now |
1240 | /// .time_zone() |
1241 | /// .preceding(now.timestamp()) |
1242 | /// .take(5) |
1243 | /// .map(|t| ( |
1244 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1245 | /// t.offset(), |
1246 | /// t.abbreviation().to_string(), |
1247 | /// )) |
1248 | /// .collect::<Vec<_>>(); |
1249 | /// assert_eq!(transitions, vec![ |
1250 | /// ("2024-11-03 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1251 | /// ("2024-03-10 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1252 | /// ("2023-11-05 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1253 | /// ("2023-03-12 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1254 | /// ("2022-11-06 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1255 | /// ]); |
1256 | /// |
1257 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1258 | /// ``` |
1259 | #[inline ] |
1260 | pub fn preceding<'t>( |
1261 | &'t self, |
1262 | timestamp: Timestamp, |
1263 | ) -> TimeZonePrecedingTransitions<'t> { |
1264 | TimeZonePrecedingTransitions { tz: self, cur: timestamp } |
1265 | } |
1266 | |
1267 | /// Returns an iterator of time zone transitions following the given |
1268 | /// timestamp. The iterator returned yields [`TimeZoneTransition`] |
1269 | /// elements. |
1270 | /// |
1271 | /// The order of the iterator returned moves forward through time. If |
1272 | /// there is a following transition, then the timestamp of that transition |
1273 | /// is guaranteed to be strictly greater than the timestamp given. |
1274 | /// |
1275 | /// This is a low level API that you generally shouldn't need. It's |
1276 | /// useful in cases where you need to know something about the specific |
1277 | /// instants at which time zone transitions occur. For example, an embedded |
1278 | /// device might need to be explicitly programmed with daylight saving |
1279 | /// time transitions. APIs like this enable callers to explore those |
1280 | /// transitions. |
1281 | /// |
1282 | /// A time zone transition refers to a specific point in time when the |
1283 | /// offset from UTC for a particular geographical region changes. This |
1284 | /// is usually a result of daylight saving time, but it can also occur |
1285 | /// when a geographic region changes its permanent offset from UTC. |
1286 | /// |
1287 | /// The iterator returned is not guaranteed to yield any elements. For |
1288 | /// example, this occurs with a fixed offset time zone. Logically, it |
1289 | /// would also be possible for the iterator to be infinite, except that |
1290 | /// eventually the timestamp would overflow Jiff's maximum timestamp |
1291 | /// value, at which point, iteration stops. |
1292 | /// |
1293 | /// # Example: time until the next transition |
1294 | /// |
1295 | /// This example shows how much time is left until the next time zone |
1296 | /// transition: |
1297 | /// |
1298 | /// ``` |
1299 | /// use jiff::{Unit, Zoned}; |
1300 | /// |
1301 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1302 | /// let trans = now.time_zone().following(now.timestamp()).next().unwrap(); |
1303 | /// let next_at = trans.timestamp().to_zoned(now.time_zone().clone()); |
1304 | /// let span = now.until((Unit::Year, &next_at))?; |
1305 | /// assert_eq!(format!("{span:#}" ), "2mo 8d 7h 35m" ); |
1306 | /// |
1307 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1308 | /// ``` |
1309 | /// |
1310 | /// # Example: show the 5 next time zone transitions |
1311 | /// |
1312 | /// This shows how to find the 5 following time zone transitions (from a |
1313 | /// particular datetime) for a particular time zone: |
1314 | /// |
1315 | /// ``` |
1316 | /// use jiff::{tz::offset, Zoned}; |
1317 | /// |
1318 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1319 | /// let transitions = now |
1320 | /// .time_zone() |
1321 | /// .following(now.timestamp()) |
1322 | /// .take(5) |
1323 | /// .map(|t| ( |
1324 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1325 | /// t.offset(), |
1326 | /// t.abbreviation().to_string(), |
1327 | /// )) |
1328 | /// .collect::<Vec<_>>(); |
1329 | /// assert_eq!(transitions, vec![ |
1330 | /// ("2025-03-09 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1331 | /// ("2025-11-02 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1332 | /// ("2026-03-08 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1333 | /// ("2026-11-01 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1334 | /// ("2027-03-14 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1335 | /// ]); |
1336 | /// |
1337 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1338 | /// ``` |
1339 | #[inline ] |
1340 | pub fn following<'t>( |
1341 | &'t self, |
1342 | timestamp: Timestamp, |
1343 | ) -> TimeZoneFollowingTransitions<'t> { |
1344 | TimeZoneFollowingTransitions { tz: self, cur: timestamp } |
1345 | } |
1346 | |
1347 | /// Used by the "preceding transitions" iterator. |
1348 | #[inline ] |
1349 | fn previous_transition( |
1350 | &self, |
1351 | timestamp: Timestamp, |
1352 | ) -> Option<TimeZoneTransition> { |
1353 | repr::each! { |
1354 | &self.repr, |
1355 | UTC => None, |
1356 | UNKNOWN => None, |
1357 | FIXED(_offset) => None, |
1358 | STATIC_TZIF(tzif) => tzif.previous_transition(timestamp), |
1359 | ARC_TZIF(tzif) => tzif.previous_transition(timestamp), |
1360 | ARC_POSIX(posix) => posix.previous_transition(timestamp), |
1361 | } |
1362 | } |
1363 | |
1364 | /// Used by the "following transitions" iterator. |
1365 | #[inline ] |
1366 | fn next_transition( |
1367 | &self, |
1368 | timestamp: Timestamp, |
1369 | ) -> Option<TimeZoneTransition> { |
1370 | repr::each! { |
1371 | &self.repr, |
1372 | UTC => None, |
1373 | UNKNOWN => None, |
1374 | FIXED(_offset) => None, |
1375 | STATIC_TZIF(tzif) => tzif.next_transition(timestamp), |
1376 | ARC_TZIF(tzif) => tzif.next_transition(timestamp), |
1377 | ARC_POSIX(posix) => posix.next_transition(timestamp), |
1378 | } |
1379 | } |
1380 | |
1381 | /// Returns a short description about the kind of this time zone. |
1382 | /// |
1383 | /// This is useful in error messages. |
1384 | fn kind_description(&self) -> &str { |
1385 | repr::each! { |
1386 | &self.repr, |
1387 | UTC => "UTC" , |
1388 | UNKNOWN => "Etc/Unknown" , |
1389 | FIXED(_offset) => "fixed" , |
1390 | STATIC_TZIF(_tzif) => "IANA" , |
1391 | ARC_TZIF(_tzif) => "IANA" , |
1392 | ARC_POSIX(_posix) => "POSIX" , |
1393 | } |
1394 | } |
1395 | } |
1396 | |
1397 | // Exposed APIs for Jiff's time zone proc macro. |
1398 | // |
1399 | // These are NOT part of Jiff's public API. There are *zero* semver guarantees |
1400 | // for them. |
1401 | #[doc (hidden)] |
1402 | impl TimeZone { |
1403 | pub const fn __internal_from_tzif( |
1404 | tzif: &'static crate::tz::tzif::TzifStatic, |
1405 | ) -> TimeZone { |
1406 | let repr = Repr::static_tzif(tzif); |
1407 | TimeZone { repr } |
1408 | } |
1409 | |
1410 | /// Returns a dumb copy of this `TimeZone`. |
1411 | /// |
1412 | /// # Safety |
1413 | /// |
1414 | /// Callers must ensure that this time zone is UTC, unknown, a fixed |
1415 | /// offset or created with `TimeZone::__internal_from_tzif`. |
1416 | /// |
1417 | /// Namely, this specifically does not increment the ref count for |
1418 | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
1419 | /// This means that incorrect usage of this routine can lead to |
1420 | /// use-after-free. |
1421 | #[inline ] |
1422 | pub const unsafe fn copy(&self) -> TimeZone { |
1423 | // SAFETY: Requirements are forwarded to the caller. |
1424 | unsafe { TimeZone { repr: self.repr.copy() } } |
1425 | } |
1426 | } |
1427 | |
1428 | impl core::fmt::Debug for TimeZone { |
1429 | #[inline ] |
1430 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1431 | f.debug_tuple(name:"TimeZone" ).field(&self.repr).finish() |
1432 | } |
1433 | } |
1434 | |
1435 | /// A representation a single time zone transition. |
1436 | /// |
1437 | /// A time zone transition is an instant in time the marks the beginning of |
1438 | /// a change in the offset from UTC that civil time is computed from in a |
1439 | /// particular time zone. For example, when daylight saving time comes into |
1440 | /// effect (or goes away). Another example is when a geographic region changes |
1441 | /// its permanent offset from UTC. |
1442 | /// |
1443 | /// This is a low level type that you generally shouldn't need. It's useful in |
1444 | /// cases where you need to know something about the specific instants at which |
1445 | /// time zone transitions occur. For example, an embedded device might need to |
1446 | /// be explicitly programmed with daylight saving time transitions. APIs like |
1447 | /// this enable callers to explore those transitions. |
1448 | /// |
1449 | /// This type is yielded by the iterators |
1450 | /// [`TimeZonePrecedingTransitions`] and |
1451 | /// [`TimeZoneFollowingTransitions`]. The iterators are created by |
1452 | /// [`TimeZone::preceding`] and [`TimeZone::following`], respectively. |
1453 | /// |
1454 | /// # Example |
1455 | /// |
1456 | /// This shows a somewhat silly example that finds all of the unique civil |
1457 | /// (or "clock" or "local") times at which a time zone transition has occurred |
1458 | /// in a particular time zone: |
1459 | /// |
1460 | /// ``` |
1461 | /// use std::collections::BTreeSet; |
1462 | /// use jiff::{civil, tz::TimeZone}; |
1463 | /// |
1464 | /// let tz = TimeZone::get("America/New_York" )?; |
1465 | /// let now = civil::date(2024, 12, 31).at(18, 25, 0, 0).to_zoned(tz.clone())?; |
1466 | /// let mut set = BTreeSet::new(); |
1467 | /// for trans in tz.preceding(now.timestamp()) { |
1468 | /// let time = tz.to_datetime(trans.timestamp()).time(); |
1469 | /// set.insert(time); |
1470 | /// } |
1471 | /// assert_eq!(Vec::from_iter(set), vec![ |
1472 | /// civil::time(1, 0, 0, 0), // typical transition out of DST |
1473 | /// civil::time(3, 0, 0, 0), // typical transition into DST |
1474 | /// civil::time(12, 0, 0, 0), // from when IANA starts keeping track |
1475 | /// civil::time(19, 0, 0, 0), // from World War 2 |
1476 | /// ]); |
1477 | /// |
1478 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1479 | /// ``` |
1480 | #[derive (Clone, Debug)] |
1481 | pub struct TimeZoneTransition<'t> { |
1482 | // We don't currently do anything smart to make iterating over |
1483 | // transitions faster. We could if we pushed the iterator impl down into |
1484 | // the respective modules (`posix` and `tzif`), but it's not clear such |
1485 | // optimization is really worth it. However, this API should permit that |
1486 | // kind of optimization in the future. |
1487 | pub(crate) timestamp: Timestamp, |
1488 | pub(crate) offset: Offset, |
1489 | pub(crate) abbrev: &'t str, |
1490 | pub(crate) dst: Dst, |
1491 | } |
1492 | |
1493 | impl<'t> TimeZoneTransition<'t> { |
1494 | /// Returns the timestamp at which this transition began. |
1495 | /// |
1496 | /// # Example |
1497 | /// |
1498 | /// ``` |
1499 | /// use jiff::{civil, tz::TimeZone}; |
1500 | /// |
1501 | /// let tz = TimeZone::get("US/Eastern" )?; |
1502 | /// // Look for the first time zone transition in `US/Eastern` following |
1503 | /// // 2023-03-09 00:00:00. |
1504 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1505 | /// let next = tz.following(start).next().unwrap(); |
1506 | /// assert_eq!( |
1507 | /// next.timestamp().to_zoned(tz.clone()).to_string(), |
1508 | /// "2024-03-10T03:00:00-04:00[US/Eastern]" , |
1509 | /// ); |
1510 | /// |
1511 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1512 | /// ``` |
1513 | #[inline ] |
1514 | pub fn timestamp(&self) -> Timestamp { |
1515 | self.timestamp |
1516 | } |
1517 | |
1518 | /// Returns the offset corresponding to this time zone transition. All |
1519 | /// instants at and following this transition's timestamp (and before the |
1520 | /// next transition's timestamp) need to apply this offset from UTC to get |
1521 | /// the civil or "local" time in the corresponding time zone. |
1522 | /// |
1523 | /// # Example |
1524 | /// |
1525 | /// ``` |
1526 | /// use jiff::{civil, tz::{TimeZone, offset}}; |
1527 | /// |
1528 | /// let tz = TimeZone::get("US/Eastern" )?; |
1529 | /// // Get the offset of the next transition after |
1530 | /// // 2023-03-09 00:00:00. |
1531 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1532 | /// let next = tz.following(start).next().unwrap(); |
1533 | /// assert_eq!(next.offset(), offset(-4)); |
1534 | /// // Or go backwards to find the previous transition. |
1535 | /// let prev = tz.preceding(start).next().unwrap(); |
1536 | /// assert_eq!(prev.offset(), offset(-5)); |
1537 | /// |
1538 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1539 | /// ``` |
1540 | #[inline ] |
1541 | pub fn offset(&self) -> Offset { |
1542 | self.offset |
1543 | } |
1544 | |
1545 | /// Returns the time zone abbreviation corresponding to this time |
1546 | /// zone transition. All instants at and following this transition's |
1547 | /// timestamp (and before the next transition's timestamp) may use this |
1548 | /// abbreviation when creating a human readable string. For example, |
1549 | /// this is the abbreviation used with the `%Z` specifier with Jiff's |
1550 | /// [`fmt::strtime`](crate::fmt::strtime) module. |
1551 | /// |
1552 | /// Note that abbreviations can to be ambiguous. For example, the |
1553 | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
1554 | /// `America/Chicago` and `America/Havana`. |
1555 | /// |
1556 | /// The lifetime of the string returned is tied to this |
1557 | /// `TimeZoneTransition`, which may be shorter than `'t` (the lifetime of |
1558 | /// the time zone this transition was created from). |
1559 | /// |
1560 | /// # Example |
1561 | /// |
1562 | /// ``` |
1563 | /// use jiff::{civil, tz::TimeZone}; |
1564 | /// |
1565 | /// let tz = TimeZone::get("US/Eastern" )?; |
1566 | /// // Get the abbreviation of the next transition after |
1567 | /// // 2023-03-09 00:00:00. |
1568 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1569 | /// let next = tz.following(start).next().unwrap(); |
1570 | /// assert_eq!(next.abbreviation(), "EDT" ); |
1571 | /// // Or go backwards to find the previous transition. |
1572 | /// let prev = tz.preceding(start).next().unwrap(); |
1573 | /// assert_eq!(prev.abbreviation(), "EST" ); |
1574 | /// |
1575 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1576 | /// ``` |
1577 | #[inline ] |
1578 | pub fn abbreviation<'a>(&'a self) -> &'a str { |
1579 | self.abbrev |
1580 | } |
1581 | |
1582 | /// Returns whether daylight saving time is enabled for this time zone |
1583 | /// transition. |
1584 | /// |
1585 | /// Callers should generally treat this as informational only. In |
1586 | /// particular, not all time zone transitions are related to daylight |
1587 | /// saving time. For example, some transitions are a result of a region |
1588 | /// permanently changing their offset from UTC. |
1589 | /// |
1590 | /// # Example |
1591 | /// |
1592 | /// ``` |
1593 | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
1594 | /// |
1595 | /// let tz = TimeZone::get("US/Eastern" )?; |
1596 | /// // Get the DST status of the next transition after |
1597 | /// // 2023-03-09 00:00:00. |
1598 | /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp(); |
1599 | /// let next = tz.following(start).next().unwrap(); |
1600 | /// assert_eq!(next.dst(), Dst::Yes); |
1601 | /// // Or go backwards to find the previous transition. |
1602 | /// let prev = tz.preceding(start).next().unwrap(); |
1603 | /// assert_eq!(prev.dst(), Dst::No); |
1604 | /// |
1605 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1606 | /// ``` |
1607 | #[inline ] |
1608 | pub fn dst(&self) -> Dst { |
1609 | self.dst |
1610 | } |
1611 | } |
1612 | |
1613 | /// An offset along with DST status and a time zone abbreviation. |
1614 | /// |
1615 | /// This information can be computed from a [`TimeZone`] given a [`Timestamp`] |
1616 | /// via [`TimeZone::to_offset_info`]. |
1617 | /// |
1618 | /// Generally, the extra information associated with the offset is not commonly |
1619 | /// needed. And indeed, inspecting the daylight saving time status of a |
1620 | /// particular instant in a time zone _usually_ leads to bugs. For example, not |
1621 | /// all time zone transitions are the result of daylight saving time. Some are |
1622 | /// the result of permanent changes to the standard UTC offset of a region. |
1623 | /// |
1624 | /// This information is available via an API distinct from |
1625 | /// [`TimeZone::to_offset`] because it is not commonly needed and because it |
1626 | /// can sometimes be more expensive to compute. |
1627 | /// |
1628 | /// The main use case for daylight saving time status or time zone |
1629 | /// abbreviations is for formatting datetimes in an end user's locale. If you |
1630 | /// want this, consider using the [`icu`] crate via [`jiff-icu`]. |
1631 | /// |
1632 | /// The lifetime parameter `'t` corresponds to the lifetime of the `TimeZone` |
1633 | /// that this info was extracted from. |
1634 | /// |
1635 | /// # Example |
1636 | /// |
1637 | /// ``` |
1638 | /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp}; |
1639 | /// |
1640 | /// let tz = TimeZone::get("America/New_York" )?; |
1641 | /// |
1642 | /// // A timestamp in DST in New York. |
1643 | /// let ts = Timestamp::from_second(1_720_493_204)?; |
1644 | /// let info = tz.to_offset_info(ts); |
1645 | /// assert_eq!(info.offset(), tz::offset(-4)); |
1646 | /// assert_eq!(info.dst(), Dst::Yes); |
1647 | /// assert_eq!(info.abbreviation(), "EDT" ); |
1648 | /// assert_eq!( |
1649 | /// info.offset().to_datetime(ts).to_string(), |
1650 | /// "2024-07-08T22:46:44" , |
1651 | /// ); |
1652 | /// |
1653 | /// // A timestamp *not* in DST in New York. |
1654 | /// let ts = Timestamp::from_second(1_704_941_204)?; |
1655 | /// let info = tz.to_offset_info(ts); |
1656 | /// assert_eq!(info.offset(), tz::offset(-5)); |
1657 | /// assert_eq!(info.dst(), Dst::No); |
1658 | /// assert_eq!(info.abbreviation(), "EST" ); |
1659 | /// assert_eq!( |
1660 | /// info.offset().to_datetime(ts).to_string(), |
1661 | /// "2024-01-10T21:46:44" , |
1662 | /// ); |
1663 | /// |
1664 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1665 | /// ``` |
1666 | /// |
1667 | /// [`icu`]: https://docs.rs/icu |
1668 | /// [`jiff-icu`]: https://docs.rs/jiff-icu |
1669 | #[derive (Clone, Debug, Eq, Hash, PartialEq)] |
1670 | pub struct TimeZoneOffsetInfo<'t> { |
1671 | pub(crate) offset: Offset, |
1672 | pub(crate) dst: Dst, |
1673 | pub(crate) abbreviation: TimeZoneAbbreviation<'t>, |
1674 | } |
1675 | |
1676 | impl<'t> TimeZoneOffsetInfo<'t> { |
1677 | /// Returns the offset. |
1678 | /// |
1679 | /// The offset is duration, from UTC, that should be used to offset the |
1680 | /// civil time in a particular location. |
1681 | /// |
1682 | /// # Example |
1683 | /// |
1684 | /// ``` |
1685 | /// use jiff::{civil, tz::{TimeZone, offset}}; |
1686 | /// |
1687 | /// let tz = TimeZone::get("US/Eastern" )?; |
1688 | /// // Get the offset for 2023-03-10 00:00:00. |
1689 | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
1690 | /// let info = tz.to_offset_info(start); |
1691 | /// assert_eq!(info.offset(), offset(-5)); |
1692 | /// // Go forward a day and notice the offset changes due to DST! |
1693 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1694 | /// let info = tz.to_offset_info(start); |
1695 | /// assert_eq!(info.offset(), offset(-4)); |
1696 | /// |
1697 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1698 | /// ``` |
1699 | #[inline ] |
1700 | pub fn offset(&self) -> Offset { |
1701 | self.offset |
1702 | } |
1703 | |
1704 | /// Returns the time zone abbreviation corresponding to this offset info. |
1705 | /// |
1706 | /// Note that abbreviations can to be ambiguous. For example, the |
1707 | /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`, |
1708 | /// `America/Chicago` and `America/Havana`. |
1709 | /// |
1710 | /// The lifetime of the string returned is tied to this |
1711 | /// `TimeZoneOffsetInfo`, which may be shorter than `'t` (the lifetime of |
1712 | /// the time zone this transition was created from). |
1713 | /// |
1714 | /// # Example |
1715 | /// |
1716 | /// ``` |
1717 | /// use jiff::{civil, tz::TimeZone}; |
1718 | /// |
1719 | /// let tz = TimeZone::get("US/Eastern" )?; |
1720 | /// // Get the time zone abbreviation for 2023-03-10 00:00:00. |
1721 | /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp(); |
1722 | /// let info = tz.to_offset_info(start); |
1723 | /// assert_eq!(info.abbreviation(), "EST" ); |
1724 | /// // Go forward a day and notice the abbreviation changes due to DST! |
1725 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1726 | /// let info = tz.to_offset_info(start); |
1727 | /// assert_eq!(info.abbreviation(), "EDT" ); |
1728 | /// |
1729 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1730 | /// ``` |
1731 | #[inline ] |
1732 | pub fn abbreviation(&self) -> &str { |
1733 | self.abbreviation.as_str() |
1734 | } |
1735 | |
1736 | /// Returns whether daylight saving time is enabled for this offset |
1737 | /// info. |
1738 | /// |
1739 | /// Callers should generally treat this as informational only. In |
1740 | /// particular, not all time zone transitions are related to daylight |
1741 | /// saving time. For example, some transitions are a result of a region |
1742 | /// permanently changing their offset from UTC. |
1743 | /// |
1744 | /// # Example |
1745 | /// |
1746 | /// ``` |
1747 | /// use jiff::{civil, tz::{Dst, TimeZone}}; |
1748 | /// |
1749 | /// let tz = TimeZone::get("US/Eastern" )?; |
1750 | /// // Get the DST status of 2023-03-11 00:00:00. |
1751 | /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp(); |
1752 | /// let info = tz.to_offset_info(start); |
1753 | /// assert_eq!(info.dst(), Dst::Yes); |
1754 | /// |
1755 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1756 | /// ``` |
1757 | #[inline ] |
1758 | pub fn dst(&self) -> Dst { |
1759 | self.dst |
1760 | } |
1761 | } |
1762 | |
1763 | /// An iterator over time zone transitions going backward in time. |
1764 | /// |
1765 | /// This iterator is created by [`TimeZone::preceding`]. |
1766 | /// |
1767 | /// # Example: show the 5 previous time zone transitions |
1768 | /// |
1769 | /// This shows how to find the 5 preceding time zone transitions (from a |
1770 | /// particular datetime) for a particular time zone: |
1771 | /// |
1772 | /// ``` |
1773 | /// use jiff::{tz::offset, Zoned}; |
1774 | /// |
1775 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1776 | /// let transitions = now |
1777 | /// .time_zone() |
1778 | /// .preceding(now.timestamp()) |
1779 | /// .take(5) |
1780 | /// .map(|t| ( |
1781 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1782 | /// t.offset(), |
1783 | /// t.abbreviation().to_string(), |
1784 | /// )) |
1785 | /// .collect::<Vec<_>>(); |
1786 | /// assert_eq!(transitions, vec![ |
1787 | /// ("2024-11-03 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1788 | /// ("2024-03-10 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1789 | /// ("2023-11-05 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1790 | /// ("2023-03-12 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1791 | /// ("2022-11-06 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1792 | /// ]); |
1793 | /// |
1794 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1795 | /// ``` |
1796 | #[derive (Clone, Debug)] |
1797 | pub struct TimeZonePrecedingTransitions<'t> { |
1798 | tz: &'t TimeZone, |
1799 | cur: Timestamp, |
1800 | } |
1801 | |
1802 | impl<'t> Iterator for TimeZonePrecedingTransitions<'t> { |
1803 | type Item = TimeZoneTransition<'t>; |
1804 | |
1805 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
1806 | let trans: TimeZoneTransition<'_> = self.tz.previous_transition(self.cur)?; |
1807 | self.cur = trans.timestamp(); |
1808 | Some(trans) |
1809 | } |
1810 | } |
1811 | |
1812 | impl<'t> core::iter::FusedIterator for TimeZonePrecedingTransitions<'t> {} |
1813 | |
1814 | /// An iterator over time zone transitions going forward in time. |
1815 | /// |
1816 | /// This iterator is created by [`TimeZone::following`]. |
1817 | /// |
1818 | /// # Example: show the 5 next time zone transitions |
1819 | /// |
1820 | /// This shows how to find the 5 following time zone transitions (from a |
1821 | /// particular datetime) for a particular time zone: |
1822 | /// |
1823 | /// ``` |
1824 | /// use jiff::{tz::offset, Zoned}; |
1825 | /// |
1826 | /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]" .parse()?; |
1827 | /// let transitions = now |
1828 | /// .time_zone() |
1829 | /// .following(now.timestamp()) |
1830 | /// .take(5) |
1831 | /// .map(|t| ( |
1832 | /// t.timestamp().to_zoned(now.time_zone().clone()), |
1833 | /// t.offset(), |
1834 | /// t.abbreviation().to_string(), |
1835 | /// )) |
1836 | /// .collect::<Vec<_>>(); |
1837 | /// assert_eq!(transitions, vec![ |
1838 | /// ("2025-03-09 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1839 | /// ("2025-11-02 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1840 | /// ("2026-03-08 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1841 | /// ("2026-11-01 01:00-05[US/Eastern]" .parse()?, offset(-5), "EST" .to_string()), |
1842 | /// ("2027-03-14 03:00-04[US/Eastern]" .parse()?, offset(-4), "EDT" .to_string()), |
1843 | /// ]); |
1844 | /// |
1845 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1846 | /// ``` |
1847 | #[derive (Clone, Debug)] |
1848 | pub struct TimeZoneFollowingTransitions<'t> { |
1849 | tz: &'t TimeZone, |
1850 | cur: Timestamp, |
1851 | } |
1852 | |
1853 | impl<'t> Iterator for TimeZoneFollowingTransitions<'t> { |
1854 | type Item = TimeZoneTransition<'t>; |
1855 | |
1856 | fn next(&mut self) -> Option<TimeZoneTransition<'t>> { |
1857 | let trans: TimeZoneTransition<'_> = self.tz.next_transition(self.cur)?; |
1858 | self.cur = trans.timestamp(); |
1859 | Some(trans) |
1860 | } |
1861 | } |
1862 | |
1863 | impl<'t> core::iter::FusedIterator for TimeZoneFollowingTransitions<'t> {} |
1864 | |
1865 | /// A helper type for converting a `TimeZone` to a succinct human readable |
1866 | /// description. |
1867 | /// |
1868 | /// This is principally used in error messages in various places. |
1869 | /// |
1870 | /// A previous iteration of this was just an `as_str() -> &str` method on |
1871 | /// `TimeZone`, but that's difficult to do without relying on dynamic memory |
1872 | /// allocation (or chunky arrays). |
1873 | pub(crate) struct DiagnosticName<'a>(&'a TimeZone); |
1874 | |
1875 | impl<'a> core::fmt::Display for DiagnosticName<'a> { |
1876 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1877 | repr::each! { |
1878 | &self.0.repr, |
1879 | UTC => write!(f, "UTC" ), |
1880 | UNKNOWN => write!(f, "Etc/Unknown" ), |
1881 | FIXED(offset) => write!(f, " {offset}" ), |
1882 | STATIC_TZIF(tzif) => write!(f, " {}" , tzif.name().unwrap_or("Local" )), |
1883 | ARC_TZIF(tzif) => write!(f, " {}" , tzif.name().unwrap_or("Local" )), |
1884 | ARC_POSIX(posix) => write!(f, " {posix}" ), |
1885 | } |
1886 | } |
1887 | } |
1888 | |
1889 | /// A light abstraction over different representations of a time zone |
1890 | /// abbreviation. |
1891 | /// |
1892 | /// The lifetime parameter `'t` corresponds to the lifetime of the time zone |
1893 | /// that produced this abbreviation. |
1894 | #[derive (Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] |
1895 | pub(crate) enum TimeZoneAbbreviation<'t> { |
1896 | /// For when the abbreviation is borrowed directly from other data. For |
1897 | /// example, from TZif or from POSIX TZ strings. |
1898 | Borrowed(&'t str), |
1899 | /// For when the abbreviation has to be derived from other data. For |
1900 | /// example, from a fixed offset. |
1901 | /// |
1902 | /// The idea here is that a `TimeZone` shouldn't need to store the |
1903 | /// string representation of a fixed offset. Particularly in core-only |
1904 | /// environments, this is quite wasteful. So we make the string on-demand |
1905 | /// only when it's requested. |
1906 | /// |
1907 | /// An alternative design is to just implement `Display` and reuse |
1908 | /// `Offset`'s `Display` impl, but then we couldn't offer a `-> &str` API. |
1909 | /// I feel like that's just a bit overkill, and really just comes from the |
1910 | /// core-only straight-jacket. |
1911 | Owned(ArrayStr<9>), |
1912 | } |
1913 | |
1914 | impl<'t> TimeZoneAbbreviation<'t> { |
1915 | /// Returns this abbreviation as a string borrowed from `self`. |
1916 | /// |
1917 | /// Notice that, like `Cow`, the lifetime of the string returned is |
1918 | /// tied to `self` and thus may be shorter than `'t`. |
1919 | fn as_str<'a>(&'a self) -> &'a str { |
1920 | match *self { |
1921 | TimeZoneAbbreviation::Borrowed(s: &str) => s, |
1922 | TimeZoneAbbreviation::Owned(ref s: &ArrayStr<9>) => s.as_str(), |
1923 | } |
1924 | } |
1925 | } |
1926 | |
1927 | /// This module defines the internal representation of a `TimeZone`. |
1928 | /// |
1929 | /// This module exists to _encapsulate_ the representation rigorously and |
1930 | /// expose a safe and sound API. |
1931 | mod repr { |
1932 | use core::mem::ManuallyDrop; |
1933 | |
1934 | use crate::{ |
1935 | tz::tzif::TzifStatic, |
1936 | util::{constant::unwrap, t}, |
1937 | }; |
1938 | #[cfg (feature = "alloc" )] |
1939 | use crate::{ |
1940 | tz::{posix::PosixTimeZoneOwned, tzif::TzifOwned}, |
1941 | util::sync::Arc, |
1942 | }; |
1943 | |
1944 | use super::Offset; |
1945 | |
1946 | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
1947 | #[allow (unused_imports)] |
1948 | use self::polyfill::{without_provenance, StrictProvenancePolyfill}; |
1949 | |
1950 | /// A macro for "matching" over the time zone representation variants. |
1951 | /// |
1952 | /// This macro is safe to use. |
1953 | /// |
1954 | /// Note that the `ARC_TZIF` and `ARC_POSIX` branches are automatically |
1955 | /// removed when `alloc` isn't enabled. Users of this macro needn't handle |
1956 | /// the `cfg` themselves. |
1957 | macro_rules! each { |
1958 | ( |
1959 | $repr:expr, |
1960 | UTC => $utc:expr, |
1961 | UNKNOWN => $unknown:expr, |
1962 | FIXED($offset:ident) => $fixed:expr, |
1963 | STATIC_TZIF($static_tzif:ident) => $static_tzif_block:expr, |
1964 | ARC_TZIF($arc_tzif:ident) => $arc_tzif_block:expr, |
1965 | ARC_POSIX($arc_posix:ident) => $arc_posix_block:expr, |
1966 | ) => {{ |
1967 | let repr = $repr; |
1968 | match repr.tag() { |
1969 | Repr::UTC => $utc, |
1970 | Repr::UNKNOWN => $unknown, |
1971 | Repr::FIXED => { |
1972 | // SAFETY: We've ensured our pointer tag is correct. |
1973 | let $offset = unsafe { repr.get_fixed() }; |
1974 | $fixed |
1975 | } |
1976 | Repr::STATIC_TZIF => { |
1977 | // SAFETY: We've ensured our pointer tag is correct. |
1978 | let $static_tzif = unsafe { repr.get_static_tzif() }; |
1979 | $static_tzif_block |
1980 | } |
1981 | #[cfg(feature = "alloc" )] |
1982 | Repr::ARC_TZIF => { |
1983 | // SAFETY: We've ensured our pointer tag is correct. |
1984 | let $arc_tzif = unsafe { repr.get_arc_tzif() }; |
1985 | $arc_tzif_block |
1986 | } |
1987 | #[cfg(feature = "alloc" )] |
1988 | Repr::ARC_POSIX => { |
1989 | // SAFETY: We've ensured our pointer tag is correct. |
1990 | let $arc_posix = unsafe { repr.get_arc_posix() }; |
1991 | $arc_posix_block |
1992 | } |
1993 | _ => { |
1994 | debug_assert!(false, "each: invalid time zone repr tag!" ); |
1995 | // SAFETY: The constructors for `Repr` guarantee that the |
1996 | // tag is always one of the values matched above. |
1997 | unsafe { |
1998 | core::hint::unreachable_unchecked(); |
1999 | } |
2000 | } |
2001 | } |
2002 | }}; |
2003 | } |
2004 | pub(super) use each; |
2005 | |
2006 | /// The internal representation of a `TimeZone`. |
2007 | /// |
2008 | /// It has 6 different possible variants: `UTC`, `Etc/Unknown`, fixed |
2009 | /// offset, `static` TZif, `Arc` TZif or `Arc` POSIX time zone. |
2010 | /// |
2011 | /// This design uses pointer tagging so that: |
2012 | /// |
2013 | /// * The size of a `TimeZone` stays no bigger than a single word. |
2014 | /// * In core-only environments, a `TimeZone` can be created from |
2015 | /// compile-time TZif data without allocating. |
2016 | /// * UTC, unknown and fixed offset time zone does not require allocating. |
2017 | /// * We can still alloc for TZif and POSIX time zones created at runtime. |
2018 | /// (Allocating for TZif at runtime is the intended common case, and |
2019 | /// corresponds to reading `/usr/share/zoneinfo` entries.) |
2020 | /// |
2021 | /// We achieve this through pointer tagging and careful use of a strict |
2022 | /// provenance polyfill (because of MSRV). We use the lower 4 bits of a |
2023 | /// pointer to indicate which variant we have. This is sound because we |
2024 | /// require all types that we allocate for to have a minimum alignment of |
2025 | /// 8 bytes. |
2026 | pub(super) struct Repr { |
2027 | ptr: *const u8, |
2028 | } |
2029 | |
2030 | impl Repr { |
2031 | const BITS: usize = 0b111; |
2032 | pub(super) const UTC: usize = 1; |
2033 | pub(super) const UNKNOWN: usize = 2; |
2034 | pub(super) const FIXED: usize = 3; |
2035 | pub(super) const STATIC_TZIF: usize = 0; |
2036 | pub(super) const ARC_TZIF: usize = 4; |
2037 | pub(super) const ARC_POSIX: usize = 5; |
2038 | |
2039 | // The minimum alignment required for any heap allocated time zone |
2040 | // variants. This is related to the number of tags. We have 6 distinct |
2041 | // values above, which means we need an alignment of at least 6. Since |
2042 | // alignment must be a power of 2, the smallest possible alignment |
2043 | // is 8. |
2044 | const ALIGN: usize = 8; |
2045 | |
2046 | /// Creates a representation for a `UTC` time zone. |
2047 | #[inline ] |
2048 | pub(super) const fn utc() -> Repr { |
2049 | let ptr = without_provenance(Repr::UTC); |
2050 | Repr { ptr } |
2051 | } |
2052 | |
2053 | /// Creates a representation for a `Etc/Unknown` time zone. |
2054 | #[inline ] |
2055 | pub(super) const fn unknown() -> Repr { |
2056 | let ptr = without_provenance(Repr::UNKNOWN); |
2057 | Repr { ptr } |
2058 | } |
2059 | |
2060 | /// Creates a representation for a fixed offset time zone. |
2061 | #[inline ] |
2062 | pub(super) const fn fixed(offset: Offset) -> Repr { |
2063 | let seconds = offset.seconds_ranged().get_unchecked(); |
2064 | // OK because offset is in -93599..=93599. |
2065 | let shifted = unwrap!( |
2066 | seconds.checked_shl(4), |
2067 | "offset small enough for left shift by 4 bits" , |
2068 | ); |
2069 | assert!(usize::MAX >= 4_294_967_295); |
2070 | // usize cast is okay because Jiff requires 32-bit. |
2071 | let ptr = without_provenance((shifted as usize) | Repr::FIXED); |
2072 | Repr { ptr } |
2073 | } |
2074 | |
2075 | /// Creates a representation for a created-at-compile-time TZif time |
2076 | /// zone. |
2077 | /// |
2078 | /// This can only be correctly called by the `jiff-static` proc macro. |
2079 | #[inline ] |
2080 | pub(super) const fn static_tzif(tzif: &'static TzifStatic) -> Repr { |
2081 | assert!(core::mem::align_of::<TzifStatic>() >= Repr::ALIGN); |
2082 | let tzif = (tzif as *const TzifStatic).cast::<u8>(); |
2083 | // We very specifically do no materialize the pointer address here |
2084 | // because 1) it's UB and 2) the compiler generally prevents. This |
2085 | // is because in a const context, the specific pointer address |
2086 | // cannot be relied upon. Yet, we still want to do pointer tagging. |
2087 | // |
2088 | // Thankfully, this is the only variant that is a pointer that |
2089 | // we want to create in a const context. So we just make this |
2090 | // variant's tag `0`, and thus, no explicit pointer tagging is |
2091 | // required. (Becuase we ensure the alignment is at least 4, and |
2092 | // thus the least significant 3 bits are 0.) |
2093 | // |
2094 | // If this ends up not working out or if we need to support |
2095 | // another `static` variant, then we could perhaps to pointer |
2096 | // tagging with pointer arithmetic (like what the `tagged-pointer` |
2097 | // crate does). I haven't tried it though and I'm unclear if it |
2098 | // work. |
2099 | Repr { ptr: tzif } |
2100 | } |
2101 | |
2102 | /// Creates a representation for a TZif time zone. |
2103 | #[cfg (feature = "alloc" )] |
2104 | #[inline ] |
2105 | pub(super) fn arc_tzif(tzif: Arc<TzifOwned>) -> Repr { |
2106 | assert!(core::mem::align_of::<TzifOwned>() >= Repr::ALIGN); |
2107 | let tzif = Arc::into_raw(tzif).cast::<u8>(); |
2108 | assert!(tzif.addr() % 4 == 0); |
2109 | let ptr = tzif.map_addr(|addr| addr | Repr::ARC_TZIF); |
2110 | Repr { ptr } |
2111 | } |
2112 | |
2113 | /// Creates a representation for a POSIX time zone. |
2114 | #[cfg (feature = "alloc" )] |
2115 | #[inline ] |
2116 | pub(super) fn arc_posix(posix_tz: Arc<PosixTimeZoneOwned>) -> Repr { |
2117 | assert!( |
2118 | core::mem::align_of::<PosixTimeZoneOwned>() >= Repr::ALIGN |
2119 | ); |
2120 | let posix_tz = Arc::into_raw(posix_tz).cast::<u8>(); |
2121 | assert!(posix_tz.addr() % 4 == 0); |
2122 | let ptr = posix_tz.map_addr(|addr| addr | Repr::ARC_POSIX); |
2123 | Repr { ptr } |
2124 | } |
2125 | |
2126 | /// Gets the offset representation. |
2127 | /// |
2128 | /// # Safety |
2129 | /// |
2130 | /// Callers must ensure that the pointer tag is `FIXED`. |
2131 | #[inline ] |
2132 | pub(super) unsafe fn get_fixed(&self) -> Offset { |
2133 | #[allow (unstable_name_collisions)] |
2134 | let addr = self.ptr.addr(); |
2135 | // NOTE: Because of sign extension, we need to case to `i32` |
2136 | // before shifting. |
2137 | let seconds = t::SpanZoneOffset::new_unchecked((addr as i32) >> 4); |
2138 | Offset::from_seconds_ranged(seconds) |
2139 | } |
2140 | |
2141 | /// Returns true if and only if this representation corresponds to the |
2142 | /// `Etc/Unknown` time zone. |
2143 | #[inline ] |
2144 | pub(super) fn is_unknown(&self) -> bool { |
2145 | self.tag() == Repr::UNKNOWN |
2146 | } |
2147 | |
2148 | /// Gets the static TZif representation. |
2149 | /// |
2150 | /// # Safety |
2151 | /// |
2152 | /// Callers must ensure that the pointer tag is `STATIC_TZIF`. |
2153 | #[inline ] |
2154 | pub(super) unsafe fn get_static_tzif(&self) -> &'static TzifStatic { |
2155 | #[allow (unstable_name_collisions)] |
2156 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2157 | // SAFETY: Getting a `STATIC_TZIF` tag is only possible when |
2158 | // `self.ptr` was constructed from a valid and aligned (to at least |
2159 | // 4 bytes) `&TzifStatic` borrow. Which must be guaranteed by the |
2160 | // caller. We've also removed the tag bits above, so we must now |
2161 | // have the original pointer. |
2162 | unsafe { &*ptr.cast::<TzifStatic>() } |
2163 | } |
2164 | |
2165 | /// Gets the `Arc` TZif representation. |
2166 | /// |
2167 | /// # Safety |
2168 | /// |
2169 | /// Callers must ensure that the pointer tag is `ARC_TZIF`. |
2170 | #[cfg (feature = "alloc" )] |
2171 | #[inline ] |
2172 | pub(super) unsafe fn get_arc_tzif<'a>(&'a self) -> &'a TzifOwned { |
2173 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2174 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2175 | // `self.ptr` was constructed from a valid and aligned |
2176 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2177 | // the tag bits above, so we must now have the original |
2178 | // pointer. |
2179 | let arc = ManuallyDrop::new(unsafe { |
2180 | Arc::from_raw(ptr.cast::<TzifOwned>()) |
2181 | }); |
2182 | // SAFETY: The lifetime of the pointer returned is always |
2183 | // valid as long as the strong count on `arc` is at least |
2184 | // 1. Since the lifetime is no longer than `Repr` itself, |
2185 | // and a `Repr` being alive implies there is at least 1 |
2186 | // for the strong `Arc` count, it follows that the lifetime |
2187 | // returned here is correct. |
2188 | unsafe { &*Arc::as_ptr(&arc) } |
2189 | } |
2190 | |
2191 | /// Gets the `Arc` POSIX time zone representation. |
2192 | /// |
2193 | /// # Safety |
2194 | /// |
2195 | /// Callers must ensure that the pointer tag is `ARC_POSIX`. |
2196 | #[cfg (feature = "alloc" )] |
2197 | #[inline ] |
2198 | pub(super) unsafe fn get_arc_posix<'a>( |
2199 | &'a self, |
2200 | ) -> &'a PosixTimeZoneOwned { |
2201 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2202 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2203 | // `self.ptr` was constructed from a valid and aligned (to at least |
2204 | // 4 bytes) `Arc<PosixTimeZoneOwned>`. We've removed the tag |
2205 | // bits above, so we must now have the original pointer. |
2206 | let arc = ManuallyDrop::new(unsafe { |
2207 | Arc::from_raw(ptr.cast::<PosixTimeZoneOwned>()) |
2208 | }); |
2209 | // SAFETY: The lifetime of the pointer returned is always |
2210 | // valid as long as the strong count on `arc` is at least |
2211 | // 1. Since the lifetime is no longer than `Repr` itself, |
2212 | // and a `Repr` being alive implies there is at least 1 |
2213 | // for the strong `Arc` count, it follows that the lifetime |
2214 | // returned here is correct. |
2215 | unsafe { &*Arc::as_ptr(&arc) } |
2216 | } |
2217 | |
2218 | /// Returns the tag on the representation's pointer. |
2219 | /// |
2220 | /// The value is guaranteed to be one of the constant tag values. |
2221 | #[inline ] |
2222 | pub(super) fn tag(&self) -> usize { |
2223 | #[allow (unstable_name_collisions)] |
2224 | { |
2225 | self.ptr.addr() & Repr::BITS |
2226 | } |
2227 | } |
2228 | |
2229 | /// Returns a dumb copy of this representation. |
2230 | /// |
2231 | /// # Safety |
2232 | /// |
2233 | /// Callers must ensure that this representation's tag is UTC, |
2234 | /// UNKNOWN, FIXED or STATIC_TZIF. |
2235 | /// |
2236 | /// Namely, this specifically does not increment the ref count for |
2237 | /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`. |
2238 | /// This means that incorrect usage of this routine can lead to |
2239 | /// use-after-free. |
2240 | /// |
2241 | /// NOTE: It would be nice if we could make this `copy` routine safe, |
2242 | /// or at least panic if it's misused. But to do that, you need to know |
2243 | /// the time zone variant. And to know the time zone variant, you need |
2244 | /// to "look" at the tag in the pointer. And looking at the address of |
2245 | /// a pointer in a `const` context is precarious. |
2246 | #[inline ] |
2247 | pub(super) const unsafe fn copy(&self) -> Repr { |
2248 | Repr { ptr: self.ptr } |
2249 | } |
2250 | } |
2251 | |
2252 | // SAFETY: We use automic reference counting. |
2253 | unsafe impl Send for Repr {} |
2254 | // SAFETY: We don't use an interior mutability and otherwise don't permit |
2255 | // any kind of mutation (other than for an `Arc` managing its ref counts) |
2256 | // of a `Repr`. |
2257 | unsafe impl Sync for Repr {} |
2258 | |
2259 | impl core::fmt::Debug for Repr { |
2260 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2261 | each! { |
2262 | self, |
2263 | UTC => write!(f, "UTC" ), |
2264 | UNKNOWN => write!(f, "Etc/Unknown" ), |
2265 | FIXED(offset) => write!(f, " {offset:?}" ), |
2266 | STATIC_TZIF(tzif) => { |
2267 | // The full debug output is a bit much, so constrain it. |
2268 | let field = tzif.name().unwrap_or("Local" ); |
2269 | f.debug_tuple("TZif" ).field(&field).finish() |
2270 | }, |
2271 | ARC_TZIF(tzif) => { |
2272 | // The full debug output is a bit much, so constrain it. |
2273 | let field = tzif.name().unwrap_or("Local" ); |
2274 | f.debug_tuple("TZif" ).field(&field).finish() |
2275 | }, |
2276 | ARC_POSIX(posix) => write!(f, "Posix( {posix})" ), |
2277 | } |
2278 | } |
2279 | } |
2280 | |
2281 | impl Clone for Repr { |
2282 | #[inline ] |
2283 | fn clone(&self) -> Repr { |
2284 | // This `match` is written in an exhaustive fashion so that if |
2285 | // a new tag is added, it should be explicitly considered here. |
2286 | match self.tag() { |
2287 | // These are all `Copy` and can just be memcpy'd as-is. |
2288 | Repr::UTC |
2289 | | Repr::UNKNOWN |
2290 | | Repr::FIXED |
2291 | | Repr::STATIC_TZIF => Repr { ptr: self.ptr }, |
2292 | #[cfg (feature = "alloc" )] |
2293 | Repr::ARC_TZIF => { |
2294 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2295 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2296 | // `self.ptr` was constructed from a valid and aligned |
2297 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2298 | // the tag bits above, so we must now have the original |
2299 | // pointer. |
2300 | unsafe { |
2301 | Arc::increment_strong_count(ptr.cast::<TzifOwned>()); |
2302 | } |
2303 | Repr { ptr: self.ptr } |
2304 | } |
2305 | #[cfg (feature = "alloc" )] |
2306 | Repr::ARC_POSIX => { |
2307 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2308 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2309 | // `self.ptr` was constructed from a valid and aligned (to |
2310 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
2311 | // removed the tag bits above, so we must now have the |
2312 | // original pointer. |
2313 | unsafe { |
2314 | Arc::increment_strong_count( |
2315 | ptr.cast::<PosixTimeZoneOwned>(), |
2316 | ); |
2317 | } |
2318 | Repr { ptr: self.ptr } |
2319 | } |
2320 | _ => { |
2321 | debug_assert!(false, "clone: invalid time zone repr tag!" ); |
2322 | // SAFETY: The constructors for `Repr` guarantee that the |
2323 | // tag is always one of the values matched above. |
2324 | unsafe { |
2325 | core::hint::unreachable_unchecked(); |
2326 | } |
2327 | } |
2328 | } |
2329 | } |
2330 | } |
2331 | |
2332 | impl Drop for Repr { |
2333 | #[inline ] |
2334 | fn drop(&mut self) { |
2335 | // This `match` is written in an exhaustive fashion so that if |
2336 | // a new tag is added, it should be explicitly considered here. |
2337 | match self.tag() { |
2338 | // These are all `Copy` and have no destructor. |
2339 | Repr::UTC |
2340 | | Repr::UNKNOWN |
2341 | | Repr::FIXED |
2342 | | Repr::STATIC_TZIF => {} |
2343 | #[cfg (feature = "alloc" )] |
2344 | Repr::ARC_TZIF => { |
2345 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2346 | // SAFETY: Getting a `ARC_TZIF` tag is only possible when |
2347 | // `self.ptr` was constructed from a valid and aligned |
2348 | // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed |
2349 | // the tag bits above, so we must now have the original |
2350 | // pointer. |
2351 | unsafe { |
2352 | Arc::decrement_strong_count(ptr.cast::<TzifOwned>()); |
2353 | } |
2354 | } |
2355 | #[cfg (feature = "alloc" )] |
2356 | Repr::ARC_POSIX => { |
2357 | let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS); |
2358 | // SAFETY: Getting a `ARC_POSIX` tag is only possible when |
2359 | // `self.ptr` was constructed from a valid and aligned (to |
2360 | // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've |
2361 | // removed the tag bits above, so we must now have the |
2362 | // original pointer. |
2363 | unsafe { |
2364 | Arc::decrement_strong_count( |
2365 | ptr.cast::<PosixTimeZoneOwned>(), |
2366 | ); |
2367 | } |
2368 | } |
2369 | _ => { |
2370 | debug_assert!(false, "drop: invalid time zone repr tag!" ); |
2371 | // SAFETY: The constructors for `Repr` guarantee that the |
2372 | // tag is always one of the values matched above. |
2373 | unsafe { |
2374 | core::hint::unreachable_unchecked(); |
2375 | } |
2376 | } |
2377 | } |
2378 | } |
2379 | } |
2380 | |
2381 | impl Eq for Repr {} |
2382 | |
2383 | impl PartialEq for Repr { |
2384 | fn eq(&self, other: &Repr) -> bool { |
2385 | if self.tag() != other.tag() { |
2386 | return false; |
2387 | } |
2388 | each! { |
2389 | self, |
2390 | UTC => true, |
2391 | UNKNOWN => true, |
2392 | // SAFETY: OK, because we know the tags are equivalent and |
2393 | // `self` has a `FIXED` tag. |
2394 | FIXED(offset) => offset == unsafe { other.get_fixed() }, |
2395 | // SAFETY: OK, because we know the tags are equivalent and |
2396 | // `self` has a `STATIC_TZIF` tag. |
2397 | STATIC_TZIF(tzif) => tzif == unsafe { other.get_static_tzif() }, |
2398 | // SAFETY: OK, because we know the tags are equivalent and |
2399 | // `self` has an `ARC_TZIF` tag. |
2400 | ARC_TZIF(tzif) => tzif == unsafe { other.get_arc_tzif() }, |
2401 | // SAFETY: OK, because we know the tags are equivalent and |
2402 | // `self` has an `ARC_POSIX` tag. |
2403 | ARC_POSIX(posix) => posix == unsafe { other.get_arc_posix() }, |
2404 | } |
2405 | } |
2406 | } |
2407 | |
2408 | /// This is a polyfill for a small subset of std's strict provenance APIs. |
2409 | /// |
2410 | /// The strict provenance APIs in `core` were stabilized in Rust 1.84, |
2411 | /// but it will likely be a while before Jiff can use them. (At time of |
2412 | /// writing, 2025-02-24, Jiff's MSRV is Rust 1.70.) |
2413 | /// |
2414 | /// The `const` requirement is also why these are non-generic free |
2415 | /// functions and not defined via an extension trait. It's also why we |
2416 | /// don't have the useful `map_addr` routine (which is directly relevant to |
2417 | /// our pointer tagging use case). |
2418 | mod polyfill { |
2419 | pub(super) const fn without_provenance(addr: usize) -> *const u8 { |
2420 | // SAFETY: Every valid `usize` is also a valid pointer (but not |
2421 | // necessarily legal to dereference). |
2422 | // |
2423 | // MSRV(1.84): We *really* ought to be using |
2424 | // `core::ptr::without_provenance` here, but Jiff's MSRV prevents |
2425 | // us. |
2426 | unsafe { core::mem::transmute(addr) } |
2427 | } |
2428 | |
2429 | // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used. |
2430 | #[allow (dead_code)] |
2431 | pub(super) trait StrictProvenancePolyfill: |
2432 | Sized + Clone + Copy |
2433 | { |
2434 | fn addr(&self) -> usize; |
2435 | fn with_addr(&self, addr: usize) -> Self; |
2436 | fn map_addr(&self, map: impl FnOnce(usize) -> usize) -> Self { |
2437 | self.with_addr(map(self.addr())) |
2438 | } |
2439 | } |
2440 | |
2441 | impl StrictProvenancePolyfill for *const u8 { |
2442 | fn addr(&self) -> usize { |
2443 | // SAFETY: Pointer-to-integer transmutes are valid (if you are |
2444 | // okay with losing the provenance). |
2445 | // |
2446 | // The implementation in std says that this isn't guaranteed to |
2447 | // be sound outside of std, but I'm not sure how else to do it. |
2448 | // In practice, this seems likely fine? |
2449 | unsafe { core::mem::transmute(self.cast::<()>()) } |
2450 | } |
2451 | |
2452 | fn with_addr(&self, address: usize) -> Self { |
2453 | let self_addr = self.addr() as isize; |
2454 | let dest_addr = address as isize; |
2455 | let offset = dest_addr.wrapping_sub(self_addr); |
2456 | self.wrapping_offset(offset) |
2457 | } |
2458 | } |
2459 | } |
2460 | } |
2461 | |
2462 | #[cfg (test)] |
2463 | mod tests { |
2464 | #[cfg (feature = "alloc" )] |
2465 | use crate::tz::testdata::TzifTestFile; |
2466 | use crate::{civil::date, tz::offset}; |
2467 | |
2468 | use super::*; |
2469 | |
2470 | fn unambiguous(offset_hours: i8) -> AmbiguousOffset { |
2471 | let offset = offset(offset_hours); |
2472 | o_unambiguous(offset) |
2473 | } |
2474 | |
2475 | fn gap( |
2476 | earlier_offset_hours: i8, |
2477 | later_offset_hours: i8, |
2478 | ) -> AmbiguousOffset { |
2479 | let earlier = offset(earlier_offset_hours); |
2480 | let later = offset(later_offset_hours); |
2481 | o_gap(earlier, later) |
2482 | } |
2483 | |
2484 | fn fold( |
2485 | earlier_offset_hours: i8, |
2486 | later_offset_hours: i8, |
2487 | ) -> AmbiguousOffset { |
2488 | let earlier = offset(earlier_offset_hours); |
2489 | let later = offset(later_offset_hours); |
2490 | o_fold(earlier, later) |
2491 | } |
2492 | |
2493 | fn o_unambiguous(offset: Offset) -> AmbiguousOffset { |
2494 | AmbiguousOffset::Unambiguous { offset } |
2495 | } |
2496 | |
2497 | fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset { |
2498 | AmbiguousOffset::Gap { before: earlier, after: later } |
2499 | } |
2500 | |
2501 | fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset { |
2502 | AmbiguousOffset::Fold { before: earlier, after: later } |
2503 | } |
2504 | |
2505 | #[cfg (feature = "alloc" )] |
2506 | #[test ] |
2507 | fn time_zone_tzif_to_ambiguous_timestamp() { |
2508 | let tests: &[(&str, &[_])] = &[ |
2509 | ( |
2510 | "America/New_York" , |
2511 | &[ |
2512 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
2513 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
2514 | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
2515 | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
2516 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
2517 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
2518 | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
2519 | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
2520 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
2521 | ], |
2522 | ), |
2523 | ( |
2524 | "Europe/Dublin" , |
2525 | &[ |
2526 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)), |
2527 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
2528 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
2529 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
2530 | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
2531 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
2532 | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
2533 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
2534 | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
2535 | ], |
2536 | ), |
2537 | ( |
2538 | "Australia/Tasmania" , |
2539 | &[ |
2540 | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
2541 | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
2542 | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
2543 | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
2544 | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
2545 | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
2546 | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
2547 | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
2548 | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
2549 | ], |
2550 | ), |
2551 | ( |
2552 | "Antarctica/Troll" , |
2553 | &[ |
2554 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
2555 | // test the gap |
2556 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
2557 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
2558 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
2559 | // still in the gap! |
2560 | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
2561 | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
2562 | // finally out |
2563 | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
2564 | // test the fold |
2565 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
2566 | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
2567 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
2568 | // still in the fold! |
2569 | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
2570 | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
2571 | // finally out |
2572 | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
2573 | ], |
2574 | ), |
2575 | ( |
2576 | "America/St_Johns" , |
2577 | &[ |
2578 | ( |
2579 | (1969, 12, 31, 20, 30, 0, 0), |
2580 | o_unambiguous(-Offset::hms(3, 30, 0)), |
2581 | ), |
2582 | ( |
2583 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
2584 | o_unambiguous(-Offset::hms(3, 30, 0)), |
2585 | ), |
2586 | ( |
2587 | (2024, 3, 10, 2, 0, 0, 0), |
2588 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
2589 | ), |
2590 | ( |
2591 | (2024, 3, 10, 2, 59, 59, 999_999_999), |
2592 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
2593 | ), |
2594 | ( |
2595 | (2024, 3, 10, 3, 0, 0, 0), |
2596 | o_unambiguous(-Offset::hms(2, 30, 0)), |
2597 | ), |
2598 | ( |
2599 | (2024, 11, 3, 0, 59, 59, 999_999_999), |
2600 | o_unambiguous(-Offset::hms(2, 30, 0)), |
2601 | ), |
2602 | ( |
2603 | (2024, 11, 3, 1, 0, 0, 0), |
2604 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
2605 | ), |
2606 | ( |
2607 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
2608 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
2609 | ), |
2610 | ( |
2611 | (2024, 11, 3, 2, 0, 0, 0), |
2612 | o_unambiguous(-Offset::hms(3, 30, 0)), |
2613 | ), |
2614 | ], |
2615 | ), |
2616 | // This time zone has an interesting transition where it jumps |
2617 | // backwards a full day at 1867-10-19T15:30:00. |
2618 | ( |
2619 | "America/Sitka" , |
2620 | &[ |
2621 | ((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)), |
2622 | ( |
2623 | (-9999, 1, 2, 16, 58, 46, 0), |
2624 | o_unambiguous(Offset::hms(14, 58, 47)), |
2625 | ), |
2626 | ( |
2627 | (1867, 10, 18, 15, 29, 59, 0), |
2628 | o_unambiguous(Offset::hms(14, 58, 47)), |
2629 | ), |
2630 | ( |
2631 | (1867, 10, 18, 15, 30, 0, 0), |
2632 | // A fold of 24 hours!!! |
2633 | o_fold( |
2634 | Offset::hms(14, 58, 47), |
2635 | -Offset::hms(9, 1, 13), |
2636 | ), |
2637 | ), |
2638 | ( |
2639 | (1867, 10, 19, 15, 29, 59, 999_999_999), |
2640 | // Still in the fold... |
2641 | o_fold( |
2642 | Offset::hms(14, 58, 47), |
2643 | -Offset::hms(9, 1, 13), |
2644 | ), |
2645 | ), |
2646 | ( |
2647 | (1867, 10, 19, 15, 30, 0, 0), |
2648 | // Finally out. |
2649 | o_unambiguous(-Offset::hms(9, 1, 13)), |
2650 | ), |
2651 | ], |
2652 | ), |
2653 | // As with to_datetime, we test every possible transition |
2654 | // point here since this time zone has a small number of them. |
2655 | ( |
2656 | "Pacific/Honolulu" , |
2657 | &[ |
2658 | ( |
2659 | (1896, 1, 13, 11, 59, 59, 0), |
2660 | o_unambiguous(-Offset::hms(10, 31, 26)), |
2661 | ), |
2662 | ( |
2663 | (1896, 1, 13, 12, 0, 0, 0), |
2664 | o_gap( |
2665 | -Offset::hms(10, 31, 26), |
2666 | -Offset::hms(10, 30, 0), |
2667 | ), |
2668 | ), |
2669 | ( |
2670 | (1896, 1, 13, 12, 1, 25, 0), |
2671 | o_gap( |
2672 | -Offset::hms(10, 31, 26), |
2673 | -Offset::hms(10, 30, 0), |
2674 | ), |
2675 | ), |
2676 | ( |
2677 | (1896, 1, 13, 12, 1, 26, 0), |
2678 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2679 | ), |
2680 | ( |
2681 | (1933, 4, 30, 1, 59, 59, 0), |
2682 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2683 | ), |
2684 | ( |
2685 | (1933, 4, 30, 2, 0, 0, 0), |
2686 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2687 | ), |
2688 | ( |
2689 | (1933, 4, 30, 2, 59, 59, 0), |
2690 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2691 | ), |
2692 | ( |
2693 | (1933, 4, 30, 3, 0, 0, 0), |
2694 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2695 | ), |
2696 | ( |
2697 | (1933, 5, 21, 10, 59, 59, 0), |
2698 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2699 | ), |
2700 | ( |
2701 | (1933, 5, 21, 11, 0, 0, 0), |
2702 | o_fold( |
2703 | -Offset::hms(9, 30, 0), |
2704 | -Offset::hms(10, 30, 0), |
2705 | ), |
2706 | ), |
2707 | ( |
2708 | (1933, 5, 21, 11, 59, 59, 0), |
2709 | o_fold( |
2710 | -Offset::hms(9, 30, 0), |
2711 | -Offset::hms(10, 30, 0), |
2712 | ), |
2713 | ), |
2714 | ( |
2715 | (1933, 5, 21, 12, 0, 0, 0), |
2716 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2717 | ), |
2718 | ( |
2719 | (1942, 2, 9, 1, 59, 59, 0), |
2720 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2721 | ), |
2722 | ( |
2723 | (1942, 2, 9, 2, 0, 0, 0), |
2724 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2725 | ), |
2726 | ( |
2727 | (1942, 2, 9, 2, 59, 59, 0), |
2728 | o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)), |
2729 | ), |
2730 | ( |
2731 | (1942, 2, 9, 3, 0, 0, 0), |
2732 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2733 | ), |
2734 | ( |
2735 | (1945, 8, 14, 13, 29, 59, 0), |
2736 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2737 | ), |
2738 | ( |
2739 | (1945, 8, 14, 13, 30, 0, 0), |
2740 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2741 | ), |
2742 | ( |
2743 | (1945, 8, 14, 13, 30, 1, 0), |
2744 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2745 | ), |
2746 | ( |
2747 | (1945, 9, 30, 0, 59, 59, 0), |
2748 | o_unambiguous(-Offset::hms(9, 30, 0)), |
2749 | ), |
2750 | ( |
2751 | (1945, 9, 30, 1, 0, 0, 0), |
2752 | o_fold( |
2753 | -Offset::hms(9, 30, 0), |
2754 | -Offset::hms(10, 30, 0), |
2755 | ), |
2756 | ), |
2757 | ( |
2758 | (1945, 9, 30, 1, 59, 59, 0), |
2759 | o_fold( |
2760 | -Offset::hms(9, 30, 0), |
2761 | -Offset::hms(10, 30, 0), |
2762 | ), |
2763 | ), |
2764 | ( |
2765 | (1945, 9, 30, 2, 0, 0, 0), |
2766 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2767 | ), |
2768 | ( |
2769 | (1947, 6, 8, 1, 59, 59, 0), |
2770 | o_unambiguous(-Offset::hms(10, 30, 0)), |
2771 | ), |
2772 | ( |
2773 | (1947, 6, 8, 2, 0, 0, 0), |
2774 | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
2775 | ), |
2776 | ( |
2777 | (1947, 6, 8, 2, 29, 59, 0), |
2778 | o_gap(-Offset::hms(10, 30, 0), -offset(10)), |
2779 | ), |
2780 | ((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)), |
2781 | ], |
2782 | ), |
2783 | ]; |
2784 | for &(tzname, datetimes_to_ambiguous) in tests { |
2785 | let test_file = TzifTestFile::get(tzname); |
2786 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
2787 | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
2788 | let (year, month, day, hour, min, sec, nano) = datetime; |
2789 | let dt = date(year, month, day).at(hour, min, sec, nano); |
2790 | let got = tz.to_ambiguous_zoned(dt); |
2791 | assert_eq!( |
2792 | got.offset(), |
2793 | ambiguous_kind, |
2794 | " \nTZ: {tzname} \ndatetime: \ |
2795 | {year:04}-{month:02}-{day:02}T\ |
2796 | {hour:02}:{min:02}:{sec:02}.{nano:09}" , |
2797 | ); |
2798 | } |
2799 | } |
2800 | } |
2801 | |
2802 | #[cfg (feature = "alloc" )] |
2803 | #[test ] |
2804 | fn time_zone_tzif_to_datetime() { |
2805 | let o = |hours| offset(hours); |
2806 | let tests: &[(&str, &[_])] = &[ |
2807 | ( |
2808 | "America/New_York" , |
2809 | &[ |
2810 | ((0, 0), o(-5), "EST" , (1969, 12, 31, 19, 0, 0, 0)), |
2811 | ( |
2812 | (1710052200, 0), |
2813 | o(-5), |
2814 | "EST" , |
2815 | (2024, 3, 10, 1, 30, 0, 0), |
2816 | ), |
2817 | ( |
2818 | (1710053999, 999_999_999), |
2819 | o(-5), |
2820 | "EST" , |
2821 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
2822 | ), |
2823 | ((1710054000, 0), o(-4), "EDT" , (2024, 3, 10, 3, 0, 0, 0)), |
2824 | ( |
2825 | (1710055800, 0), |
2826 | o(-4), |
2827 | "EDT" , |
2828 | (2024, 3, 10, 3, 30, 0, 0), |
2829 | ), |
2830 | ((1730610000, 0), o(-4), "EDT" , (2024, 11, 3, 1, 0, 0, 0)), |
2831 | ( |
2832 | (1730611800, 0), |
2833 | o(-4), |
2834 | "EDT" , |
2835 | (2024, 11, 3, 1, 30, 0, 0), |
2836 | ), |
2837 | ( |
2838 | (1730613599, 999_999_999), |
2839 | o(-4), |
2840 | "EDT" , |
2841 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
2842 | ), |
2843 | ((1730613600, 0), o(-5), "EST" , (2024, 11, 3, 1, 0, 0, 0)), |
2844 | ( |
2845 | (1730615400, 0), |
2846 | o(-5), |
2847 | "EST" , |
2848 | (2024, 11, 3, 1, 30, 0, 0), |
2849 | ), |
2850 | ], |
2851 | ), |
2852 | ( |
2853 | "Australia/Tasmania" , |
2854 | &[ |
2855 | ((0, 0), o(11), "AEDT" , (1970, 1, 1, 11, 0, 0, 0)), |
2856 | ( |
2857 | (1728142200, 0), |
2858 | o(10), |
2859 | "AEST" , |
2860 | (2024, 10, 6, 1, 30, 0, 0), |
2861 | ), |
2862 | ( |
2863 | (1728143999, 999_999_999), |
2864 | o(10), |
2865 | "AEST" , |
2866 | (2024, 10, 6, 1, 59, 59, 999_999_999), |
2867 | ), |
2868 | ( |
2869 | (1728144000, 0), |
2870 | o(11), |
2871 | "AEDT" , |
2872 | (2024, 10, 6, 3, 0, 0, 0), |
2873 | ), |
2874 | ( |
2875 | (1728145800, 0), |
2876 | o(11), |
2877 | "AEDT" , |
2878 | (2024, 10, 6, 3, 30, 0, 0), |
2879 | ), |
2880 | ((1712415600, 0), o(11), "AEDT" , (2024, 4, 7, 2, 0, 0, 0)), |
2881 | ( |
2882 | (1712417400, 0), |
2883 | o(11), |
2884 | "AEDT" , |
2885 | (2024, 4, 7, 2, 30, 0, 0), |
2886 | ), |
2887 | ( |
2888 | (1712419199, 999_999_999), |
2889 | o(11), |
2890 | "AEDT" , |
2891 | (2024, 4, 7, 2, 59, 59, 999_999_999), |
2892 | ), |
2893 | ((1712419200, 0), o(10), "AEST" , (2024, 4, 7, 2, 0, 0, 0)), |
2894 | ( |
2895 | (1712421000, 0), |
2896 | o(10), |
2897 | "AEST" , |
2898 | (2024, 4, 7, 2, 30, 0, 0), |
2899 | ), |
2900 | ], |
2901 | ), |
2902 | // Pacific/Honolulu is small eough that we just test every |
2903 | // possible instant before, at and after each transition. |
2904 | ( |
2905 | "Pacific/Honolulu" , |
2906 | &[ |
2907 | ( |
2908 | (-2334101315, 0), |
2909 | -Offset::hms(10, 31, 26), |
2910 | "LMT" , |
2911 | (1896, 1, 13, 11, 59, 59, 0), |
2912 | ), |
2913 | ( |
2914 | (-2334101314, 0), |
2915 | -Offset::hms(10, 30, 0), |
2916 | "HST" , |
2917 | (1896, 1, 13, 12, 1, 26, 0), |
2918 | ), |
2919 | ( |
2920 | (-2334101313, 0), |
2921 | -Offset::hms(10, 30, 0), |
2922 | "HST" , |
2923 | (1896, 1, 13, 12, 1, 27, 0), |
2924 | ), |
2925 | ( |
2926 | (-1157283001, 0), |
2927 | -Offset::hms(10, 30, 0), |
2928 | "HST" , |
2929 | (1933, 4, 30, 1, 59, 59, 0), |
2930 | ), |
2931 | ( |
2932 | (-1157283000, 0), |
2933 | -Offset::hms(9, 30, 0), |
2934 | "HDT" , |
2935 | (1933, 4, 30, 3, 0, 0, 0), |
2936 | ), |
2937 | ( |
2938 | (-1157282999, 0), |
2939 | -Offset::hms(9, 30, 0), |
2940 | "HDT" , |
2941 | (1933, 4, 30, 3, 0, 1, 0), |
2942 | ), |
2943 | ( |
2944 | (-1155436201, 0), |
2945 | -Offset::hms(9, 30, 0), |
2946 | "HDT" , |
2947 | (1933, 5, 21, 11, 59, 59, 0), |
2948 | ), |
2949 | ( |
2950 | (-1155436200, 0), |
2951 | -Offset::hms(10, 30, 0), |
2952 | "HST" , |
2953 | (1933, 5, 21, 11, 0, 0, 0), |
2954 | ), |
2955 | ( |
2956 | (-1155436199, 0), |
2957 | -Offset::hms(10, 30, 0), |
2958 | "HST" , |
2959 | (1933, 5, 21, 11, 0, 1, 0), |
2960 | ), |
2961 | ( |
2962 | (-880198201, 0), |
2963 | -Offset::hms(10, 30, 0), |
2964 | "HST" , |
2965 | (1942, 2, 9, 1, 59, 59, 0), |
2966 | ), |
2967 | ( |
2968 | (-880198200, 0), |
2969 | -Offset::hms(9, 30, 0), |
2970 | "HWT" , |
2971 | (1942, 2, 9, 3, 0, 0, 0), |
2972 | ), |
2973 | ( |
2974 | (-880198199, 0), |
2975 | -Offset::hms(9, 30, 0), |
2976 | "HWT" , |
2977 | (1942, 2, 9, 3, 0, 1, 0), |
2978 | ), |
2979 | ( |
2980 | (-769395601, 0), |
2981 | -Offset::hms(9, 30, 0), |
2982 | "HWT" , |
2983 | (1945, 8, 14, 13, 29, 59, 0), |
2984 | ), |
2985 | ( |
2986 | (-769395600, 0), |
2987 | -Offset::hms(9, 30, 0), |
2988 | "HPT" , |
2989 | (1945, 8, 14, 13, 30, 0, 0), |
2990 | ), |
2991 | ( |
2992 | (-769395599, 0), |
2993 | -Offset::hms(9, 30, 0), |
2994 | "HPT" , |
2995 | (1945, 8, 14, 13, 30, 1, 0), |
2996 | ), |
2997 | ( |
2998 | (-765376201, 0), |
2999 | -Offset::hms(9, 30, 0), |
3000 | "HPT" , |
3001 | (1945, 9, 30, 1, 59, 59, 0), |
3002 | ), |
3003 | ( |
3004 | (-765376200, 0), |
3005 | -Offset::hms(10, 30, 0), |
3006 | "HST" , |
3007 | (1945, 9, 30, 1, 0, 0, 0), |
3008 | ), |
3009 | ( |
3010 | (-765376199, 0), |
3011 | -Offset::hms(10, 30, 0), |
3012 | "HST" , |
3013 | (1945, 9, 30, 1, 0, 1, 0), |
3014 | ), |
3015 | ( |
3016 | (-712150201, 0), |
3017 | -Offset::hms(10, 30, 0), |
3018 | "HST" , |
3019 | (1947, 6, 8, 1, 59, 59, 0), |
3020 | ), |
3021 | // At this point, we hit the last transition and the POSIX |
3022 | // TZ string takes over. |
3023 | ( |
3024 | (-712150200, 0), |
3025 | -Offset::hms(10, 0, 0), |
3026 | "HST" , |
3027 | (1947, 6, 8, 2, 30, 0, 0), |
3028 | ), |
3029 | ( |
3030 | (-712150199, 0), |
3031 | -Offset::hms(10, 0, 0), |
3032 | "HST" , |
3033 | (1947, 6, 8, 2, 30, 1, 0), |
3034 | ), |
3035 | ], |
3036 | ), |
3037 | // This time zone has an interesting transition where it jumps |
3038 | // backwards a full day at 1867-10-19T15:30:00. |
3039 | ( |
3040 | "America/Sitka" , |
3041 | &[ |
3042 | ((0, 0), o(-8), "PST" , (1969, 12, 31, 16, 0, 0, 0)), |
3043 | ( |
3044 | (-377705023201, 0), |
3045 | Offset::hms(14, 58, 47), |
3046 | "LMT" , |
3047 | (-9999, 1, 2, 16, 58, 46, 0), |
3048 | ), |
3049 | ( |
3050 | (-3225223728, 0), |
3051 | Offset::hms(14, 58, 47), |
3052 | "LMT" , |
3053 | (1867, 10, 19, 15, 29, 59, 0), |
3054 | ), |
3055 | // Notice the 24 hour time jump backwards a whole day! |
3056 | ( |
3057 | (-3225223727, 0), |
3058 | -Offset::hms(9, 1, 13), |
3059 | "LMT" , |
3060 | (1867, 10, 18, 15, 30, 0, 0), |
3061 | ), |
3062 | ( |
3063 | (-3225223726, 0), |
3064 | -Offset::hms(9, 1, 13), |
3065 | "LMT" , |
3066 | (1867, 10, 18, 15, 30, 1, 0), |
3067 | ), |
3068 | ], |
3069 | ), |
3070 | ]; |
3071 | for &(tzname, timestamps_to_datetimes) in tests { |
3072 | let test_file = TzifTestFile::get(tzname); |
3073 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3074 | for &((unix_sec, unix_nano), offset, abbrev, datetime) in |
3075 | timestamps_to_datetimes |
3076 | { |
3077 | let (year, month, day, hour, min, sec, nano) = datetime; |
3078 | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
3079 | let info = tz.to_offset_info(timestamp); |
3080 | assert_eq!( |
3081 | info.offset(), |
3082 | offset, |
3083 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
3084 | ); |
3085 | assert_eq!( |
3086 | info.abbreviation(), |
3087 | abbrev, |
3088 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
3089 | ); |
3090 | assert_eq!( |
3091 | info.offset().to_datetime(timestamp), |
3092 | date(year, month, day).at(hour, min, sec, nano), |
3093 | " \nTZ={tzname}, timestamp({unix_sec}, {unix_nano})" , |
3094 | ); |
3095 | } |
3096 | } |
3097 | } |
3098 | |
3099 | #[cfg (feature = "alloc" )] |
3100 | #[test ] |
3101 | fn time_zone_posix_to_ambiguous_timestamp() { |
3102 | let tests: &[(&str, &[_])] = &[ |
3103 | // America/New_York, but a utopia in which DST is abolished. |
3104 | ( |
3105 | "EST5" , |
3106 | &[ |
3107 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3108 | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
3109 | ], |
3110 | ), |
3111 | // The standard DST rule for America/New_York. |
3112 | ( |
3113 | "EST5EDT,M3.2.0,M11.1.0" , |
3114 | &[ |
3115 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3116 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3117 | ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)), |
3118 | ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)), |
3119 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)), |
3120 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)), |
3121 | ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)), |
3122 | ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)), |
3123 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
3124 | ], |
3125 | ), |
3126 | // A bit of a nonsensical America/New_York that has DST, but whose |
3127 | // offset is equivalent to standard time. Having the same offset |
3128 | // means there's never any ambiguity. |
3129 | ( |
3130 | "EST5EDT5,M3.2.0,M11.1.0" , |
3131 | &[ |
3132 | ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)), |
3133 | ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3134 | ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)), |
3135 | ((2024, 3, 10, 2, 59, 59, 999_999_999), unambiguous(-5)), |
3136 | ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-5)), |
3137 | ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-5)), |
3138 | ((2024, 11, 3, 1, 0, 0, 0), unambiguous(-5)), |
3139 | ((2024, 11, 3, 1, 59, 59, 999_999_999), unambiguous(-5)), |
3140 | ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)), |
3141 | ], |
3142 | ), |
3143 | // This is Europe/Dublin's rule. It's interesting because its |
3144 | // DST is an offset behind standard time. (DST is usually one hour |
3145 | // ahead of standard time.) |
3146 | ( |
3147 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
3148 | &[ |
3149 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
3150 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
3151 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)), |
3152 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)), |
3153 | ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)), |
3154 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)), |
3155 | ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)), |
3156 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)), |
3157 | ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)), |
3158 | ], |
3159 | ), |
3160 | // This is Australia/Tasmania's rule. We chose this because it's |
3161 | // in the southern hemisphere where DST still skips ahead one hour, |
3162 | // but it usually starts in the fall and ends in the spring. |
3163 | ( |
3164 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
3165 | &[ |
3166 | ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)), |
3167 | ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)), |
3168 | ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)), |
3169 | ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)), |
3170 | ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)), |
3171 | ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)), |
3172 | ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)), |
3173 | ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)), |
3174 | ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)), |
3175 | ], |
3176 | ), |
3177 | // This is Antarctica/Troll's rule. We chose this one because its |
3178 | // DST transition is 2 hours instead of the standard 1 hour. This |
3179 | // means gaps and folds are twice as long as they usually are. And |
3180 | // it means there are 22 hour and 26 hour days, respectively. Wow! |
3181 | ( |
3182 | "<+00>0<+02>-2,M3.5.0/1,M10.5.0/3" , |
3183 | &[ |
3184 | ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)), |
3185 | // test the gap |
3186 | ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)), |
3187 | ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)), |
3188 | ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)), |
3189 | // still in the gap! |
3190 | ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)), |
3191 | ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)), |
3192 | // finally out |
3193 | ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)), |
3194 | // test the fold |
3195 | ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)), |
3196 | ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)), |
3197 | ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)), |
3198 | // still in the fold! |
3199 | ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)), |
3200 | ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)), |
3201 | // finally out |
3202 | ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)), |
3203 | ], |
3204 | ), |
3205 | // This is America/St_Johns' rule, which has an offset with |
3206 | // non-zero minutes *and* a DST transition rule. (Indian Standard |
3207 | // Time is the one I'm more familiar with, but it turns out IST |
3208 | // does not have DST!) |
3209 | ( |
3210 | "NST3:30NDT,M3.2.0,M11.1.0" , |
3211 | &[ |
3212 | ( |
3213 | (1969, 12, 31, 20, 30, 0, 0), |
3214 | o_unambiguous(-Offset::hms(3, 30, 0)), |
3215 | ), |
3216 | ( |
3217 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
3218 | o_unambiguous(-Offset::hms(3, 30, 0)), |
3219 | ), |
3220 | ( |
3221 | (2024, 3, 10, 2, 0, 0, 0), |
3222 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
3223 | ), |
3224 | ( |
3225 | (2024, 3, 10, 2, 59, 59, 999_999_999), |
3226 | o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)), |
3227 | ), |
3228 | ( |
3229 | (2024, 3, 10, 3, 0, 0, 0), |
3230 | o_unambiguous(-Offset::hms(2, 30, 0)), |
3231 | ), |
3232 | ( |
3233 | (2024, 11, 3, 0, 59, 59, 999_999_999), |
3234 | o_unambiguous(-Offset::hms(2, 30, 0)), |
3235 | ), |
3236 | ( |
3237 | (2024, 11, 3, 1, 0, 0, 0), |
3238 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
3239 | ), |
3240 | ( |
3241 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
3242 | o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)), |
3243 | ), |
3244 | ( |
3245 | (2024, 11, 3, 2, 0, 0, 0), |
3246 | o_unambiguous(-Offset::hms(3, 30, 0)), |
3247 | ), |
3248 | ], |
3249 | ), |
3250 | ]; |
3251 | for &(posix_tz, datetimes_to_ambiguous) in tests { |
3252 | let tz = TimeZone::posix(posix_tz).unwrap(); |
3253 | for &(datetime, ambiguous_kind) in datetimes_to_ambiguous { |
3254 | let (year, month, day, hour, min, sec, nano) = datetime; |
3255 | let dt = date(year, month, day).at(hour, min, sec, nano); |
3256 | let got = tz.to_ambiguous_zoned(dt); |
3257 | assert_eq!( |
3258 | got.offset(), |
3259 | ambiguous_kind, |
3260 | " \nTZ: {posix_tz} \ndatetime: \ |
3261 | {year:04}-{month:02}-{day:02}T\ |
3262 | {hour:02}:{min:02}:{sec:02}.{nano:09}" , |
3263 | ); |
3264 | } |
3265 | } |
3266 | } |
3267 | |
3268 | #[cfg (feature = "alloc" )] |
3269 | #[test ] |
3270 | fn time_zone_posix_to_datetime() { |
3271 | let o = |hours| offset(hours); |
3272 | let tests: &[(&str, &[_])] = &[ |
3273 | ("EST5" , &[((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0))]), |
3274 | ( |
3275 | // From America/New_York |
3276 | "EST5EDT,M3.2.0,M11.1.0" , |
3277 | &[ |
3278 | ((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0)), |
3279 | ((1710052200, 0), o(-5), (2024, 3, 10, 1, 30, 0, 0)), |
3280 | ( |
3281 | (1710053999, 999_999_999), |
3282 | o(-5), |
3283 | (2024, 3, 10, 1, 59, 59, 999_999_999), |
3284 | ), |
3285 | ((1710054000, 0), o(-4), (2024, 3, 10, 3, 0, 0, 0)), |
3286 | ((1710055800, 0), o(-4), (2024, 3, 10, 3, 30, 0, 0)), |
3287 | ((1730610000, 0), o(-4), (2024, 11, 3, 1, 0, 0, 0)), |
3288 | ((1730611800, 0), o(-4), (2024, 11, 3, 1, 30, 0, 0)), |
3289 | ( |
3290 | (1730613599, 999_999_999), |
3291 | o(-4), |
3292 | (2024, 11, 3, 1, 59, 59, 999_999_999), |
3293 | ), |
3294 | ((1730613600, 0), o(-5), (2024, 11, 3, 1, 0, 0, 0)), |
3295 | ((1730615400, 0), o(-5), (2024, 11, 3, 1, 30, 0, 0)), |
3296 | ], |
3297 | ), |
3298 | ( |
3299 | // From Australia/Tasmania |
3300 | // |
3301 | // We chose this because it's a time zone in the southern |
3302 | // hemisphere with DST. Unlike the northern hemisphere, its DST |
3303 | // starts in the fall and ends in the spring. In the northern |
3304 | // hemisphere, we typically start DST in the spring and end it |
3305 | // in the fall. |
3306 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
3307 | &[ |
3308 | ((0, 0), o(11), (1970, 1, 1, 11, 0, 0, 0)), |
3309 | ((1728142200, 0), o(10), (2024, 10, 6, 1, 30, 0, 0)), |
3310 | ( |
3311 | (1728143999, 999_999_999), |
3312 | o(10), |
3313 | (2024, 10, 6, 1, 59, 59, 999_999_999), |
3314 | ), |
3315 | ((1728144000, 0), o(11), (2024, 10, 6, 3, 0, 0, 0)), |
3316 | ((1728145800, 0), o(11), (2024, 10, 6, 3, 30, 0, 0)), |
3317 | ((1712415600, 0), o(11), (2024, 4, 7, 2, 0, 0, 0)), |
3318 | ((1712417400, 0), o(11), (2024, 4, 7, 2, 30, 0, 0)), |
3319 | ( |
3320 | (1712419199, 999_999_999), |
3321 | o(11), |
3322 | (2024, 4, 7, 2, 59, 59, 999_999_999), |
3323 | ), |
3324 | ((1712419200, 0), o(10), (2024, 4, 7, 2, 0, 0, 0)), |
3325 | ((1712421000, 0), o(10), (2024, 4, 7, 2, 30, 0, 0)), |
3326 | ], |
3327 | ), |
3328 | ( |
3329 | // Uses the maximum possible offset. A sloppy read of POSIX |
3330 | // seems to indicate the maximum offset is 24:59:59, but since |
3331 | // DST defaults to 1 hour ahead of standard time, it's possible |
3332 | // to use 24:59:59 for standard time, omit the DST offset, and |
3333 | // thus get a DST offset of 25:59:59. |
3334 | "XXX-24:59:59YYY,M3.2.0,M11.1.0" , |
3335 | &[ |
3336 | // 2024-01-05T00:00:00+00 |
3337 | ( |
3338 | (1704412800, 0), |
3339 | Offset::hms(24, 59, 59), |
3340 | (2024, 1, 6, 0, 59, 59, 0), |
3341 | ), |
3342 | // 2024-06-05T00:00:00+00 (DST) |
3343 | ( |
3344 | (1717545600, 0), |
3345 | Offset::hms(25, 59, 59), |
3346 | (2024, 6, 6, 1, 59, 59, 0), |
3347 | ), |
3348 | ], |
3349 | ), |
3350 | ]; |
3351 | for &(posix_tz, timestamps_to_datetimes) in tests { |
3352 | let tz = TimeZone::posix(posix_tz).unwrap(); |
3353 | for &((unix_sec, unix_nano), offset, datetime) in |
3354 | timestamps_to_datetimes |
3355 | { |
3356 | let (year, month, day, hour, min, sec, nano) = datetime; |
3357 | let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap(); |
3358 | assert_eq!( |
3359 | tz.to_offset(timestamp), |
3360 | offset, |
3361 | " \ntimestamp({unix_sec}, {unix_nano})" , |
3362 | ); |
3363 | assert_eq!( |
3364 | tz.to_datetime(timestamp), |
3365 | date(year, month, day).at(hour, min, sec, nano), |
3366 | " \ntimestamp({unix_sec}, {unix_nano})" , |
3367 | ); |
3368 | } |
3369 | } |
3370 | } |
3371 | |
3372 | #[test ] |
3373 | fn time_zone_fixed_to_datetime() { |
3374 | let tz = offset(-5).to_time_zone(); |
3375 | let unix_epoch = Timestamp::new(0, 0).unwrap(); |
3376 | assert_eq!( |
3377 | tz.to_datetime(unix_epoch), |
3378 | date(1969, 12, 31).at(19, 0, 0, 0), |
3379 | ); |
3380 | |
3381 | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
3382 | let timestamp = Timestamp::new(253402207200, 999_999_999).unwrap(); |
3383 | assert_eq!( |
3384 | tz.to_datetime(timestamp), |
3385 | date(9999, 12, 31).at(23, 59, 59, 999_999_999), |
3386 | ); |
3387 | |
3388 | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
3389 | let timestamp = Timestamp::new(-377705023201, 0).unwrap(); |
3390 | assert_eq!( |
3391 | tz.to_datetime(timestamp), |
3392 | date(-9999, 1, 1).at(0, 0, 0, 0), |
3393 | ); |
3394 | } |
3395 | |
3396 | #[test ] |
3397 | fn time_zone_fixed_to_timestamp() { |
3398 | let tz = offset(-5).to_time_zone(); |
3399 | let dt = date(1969, 12, 31).at(19, 0, 0, 0); |
3400 | assert_eq!( |
3401 | tz.to_zoned(dt).unwrap().timestamp(), |
3402 | Timestamp::new(0, 0).unwrap() |
3403 | ); |
3404 | |
3405 | let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
3406 | let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999); |
3407 | assert_eq!( |
3408 | tz.to_zoned(dt).unwrap().timestamp(), |
3409 | Timestamp::new(253402207200, 999_999_999).unwrap(), |
3410 | ); |
3411 | let tz = Offset::from_seconds(93_598).unwrap().to_time_zone(); |
3412 | assert!(tz.to_zoned(dt).is_err()); |
3413 | |
3414 | let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone(); |
3415 | let dt = date(-9999, 1, 1).at(0, 0, 0, 0); |
3416 | assert_eq!( |
3417 | tz.to_zoned(dt).unwrap().timestamp(), |
3418 | Timestamp::new(-377705023201, 0).unwrap(), |
3419 | ); |
3420 | let tz = Offset::from_seconds(-93_598).unwrap().to_time_zone(); |
3421 | assert!(tz.to_zoned(dt).is_err()); |
3422 | } |
3423 | |
3424 | #[cfg (feature = "alloc" )] |
3425 | #[test ] |
3426 | fn time_zone_tzif_previous_transition() { |
3427 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3428 | ( |
3429 | "UTC" , |
3430 | &[ |
3431 | ("1969-12-31T19Z" , None), |
3432 | ("2024-03-10T02Z" , None), |
3433 | ("-009999-12-01 00Z" , None), |
3434 | ("9999-12-01 00Z" , None), |
3435 | ], |
3436 | ), |
3437 | ( |
3438 | "America/New_York" , |
3439 | &[ |
3440 | ("2024-03-10 08Z" , Some("2024-03-10 07Z" )), |
3441 | ("2024-03-10 07:00:00.000000001Z" , Some("2024-03-10 07Z" )), |
3442 | ("2024-03-10 07Z" , Some("2023-11-05 06Z" )), |
3443 | ("2023-11-05 06Z" , Some("2023-03-12 07Z" )), |
3444 | ("-009999-01-31 00Z" , None), |
3445 | ("9999-12-01 00Z" , Some("9999-11-07 06Z" )), |
3446 | // While at present we have "fat" TZif files for our |
3447 | // testdata, it's conceivable they could be swapped to |
3448 | // "slim." In which case, the tests above will mostly just |
3449 | // be testing POSIX TZ strings and not the TZif logic. So |
3450 | // below, we include times that will be in slim (i.e., |
3451 | // historical times the precede the current DST rule). |
3452 | ("1969-12-31 19Z" , Some("1969-10-26 06Z" )), |
3453 | ("2000-04-02 08Z" , Some("2000-04-02 07Z" )), |
3454 | ("2000-04-02 07:00:00.000000001Z" , Some("2000-04-02 07Z" )), |
3455 | ("2000-04-02 07Z" , Some("1999-10-31 06Z" )), |
3456 | ("1999-10-31 06Z" , Some("1999-04-04 07Z" )), |
3457 | ], |
3458 | ), |
3459 | ( |
3460 | "Australia/Tasmania" , |
3461 | &[ |
3462 | ("2010-04-03 17Z" , Some("2010-04-03 16Z" )), |
3463 | ("2010-04-03 16:00:00.000000001Z" , Some("2010-04-03 16Z" )), |
3464 | ("2010-04-03 16Z" , Some("2009-10-03 16Z" )), |
3465 | ("2009-10-03 16Z" , Some("2009-04-04 16Z" )), |
3466 | ("-009999-01-31 00Z" , None), |
3467 | ("9999-12-01 00Z" , Some("9999-10-02 16Z" )), |
3468 | // Tests for historical data from tzdb. No POSIX TZ. |
3469 | ("2000-03-25 17Z" , Some("2000-03-25 16Z" )), |
3470 | ("2000-03-25 16:00:00.000000001Z" , Some("2000-03-25 16Z" )), |
3471 | ("2000-03-25 16Z" , Some("1999-10-02 16Z" )), |
3472 | ("1999-10-02 16Z" , Some("1999-03-27 16Z" )), |
3473 | ], |
3474 | ), |
3475 | // This is Europe/Dublin's rule. It's interesting because its |
3476 | // DST is an offset behind standard time. (DST is usually one hour |
3477 | // ahead of standard time.) |
3478 | ( |
3479 | "Europe/Dublin" , |
3480 | &[ |
3481 | ("2010-03-28 02Z" , Some("2010-03-28 01Z" )), |
3482 | ("2010-03-28 01:00:00.000000001Z" , Some("2010-03-28 01Z" )), |
3483 | ("2010-03-28 01Z" , Some("2009-10-25 01Z" )), |
3484 | ("2009-10-25 01Z" , Some("2009-03-29 01Z" )), |
3485 | ("-009999-01-31 00Z" , None), |
3486 | ("9999-12-01 00Z" , Some("9999-10-31 01Z" )), |
3487 | // Tests for historical data from tzdb. No POSIX TZ. |
3488 | ("1990-03-25 02Z" , Some("1990-03-25 01Z" )), |
3489 | ("1990-03-25 01:00:00.000000001Z" , Some("1990-03-25 01Z" )), |
3490 | ("1990-03-25 01Z" , Some("1989-10-29 01Z" )), |
3491 | ("1989-10-25 01Z" , Some("1989-03-26 01Z" )), |
3492 | ], |
3493 | ), |
3494 | ( |
3495 | // Sao Paulo eliminated DST in 2019, so the previous transition |
3496 | // from 2024 is several years back. |
3497 | "America/Sao_Paulo" , |
3498 | &[("2024-03-10 08Z" , Some("2019-02-17 02Z" ))], |
3499 | ), |
3500 | ]; |
3501 | for &(tzname, prev_trans) in tests { |
3502 | if tzname != "America/Sao_Paulo" { |
3503 | continue; |
3504 | } |
3505 | let test_file = TzifTestFile::get(tzname); |
3506 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3507 | for (given, expected) in prev_trans { |
3508 | let given: Timestamp = given.parse().unwrap(); |
3509 | let expected = |
3510 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3511 | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
3512 | assert_eq!(got, expected, " \nTZ: {tzname} \ngiven: {given}" ); |
3513 | } |
3514 | } |
3515 | } |
3516 | |
3517 | #[cfg (feature = "alloc" )] |
3518 | #[test ] |
3519 | fn time_zone_tzif_next_transition() { |
3520 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3521 | ( |
3522 | "UTC" , |
3523 | &[ |
3524 | ("1969-12-31T19Z" , None), |
3525 | ("2024-03-10T02Z" , None), |
3526 | ("-009999-12-01 00Z" , None), |
3527 | ("9999-12-01 00Z" , None), |
3528 | ], |
3529 | ), |
3530 | ( |
3531 | "America/New_York" , |
3532 | &[ |
3533 | ("2024-03-10 06Z" , Some("2024-03-10 07Z" )), |
3534 | ("2024-03-10 06:59:59.999999999Z" , Some("2024-03-10 07Z" )), |
3535 | ("2024-03-10 07Z" , Some("2024-11-03 06Z" )), |
3536 | ("2024-11-03 06Z" , Some("2025-03-09 07Z" )), |
3537 | ("-009999-12-01 00Z" , Some("1883-11-18 17Z" )), |
3538 | ("9999-12-01 00Z" , None), |
3539 | // While at present we have "fat" TZif files for our |
3540 | // testdata, it's conceivable they could be swapped to |
3541 | // "slim." In which case, the tests above will mostly just |
3542 | // be testing POSIX TZ strings and not the TZif logic. So |
3543 | // below, we include times that will be in slim (i.e., |
3544 | // historical times the precede the current DST rule). |
3545 | ("1969-12-31 19Z" , Some("1970-04-26 07Z" )), |
3546 | ("2000-04-02 06Z" , Some("2000-04-02 07Z" )), |
3547 | ("2000-04-02 06:59:59.999999999Z" , Some("2000-04-02 07Z" )), |
3548 | ("2000-04-02 07Z" , Some("2000-10-29 06Z" )), |
3549 | ("2000-10-29 06Z" , Some("2001-04-01 07Z" )), |
3550 | ], |
3551 | ), |
3552 | ( |
3553 | "Australia/Tasmania" , |
3554 | &[ |
3555 | ("2010-04-03 15Z" , Some("2010-04-03 16Z" )), |
3556 | ("2010-04-03 15:59:59.999999999Z" , Some("2010-04-03 16Z" )), |
3557 | ("2010-04-03 16Z" , Some("2010-10-02 16Z" )), |
3558 | ("2010-10-02 16Z" , Some("2011-04-02 16Z" )), |
3559 | ("-009999-12-01 00Z" , Some("1895-08-31 14:10:44Z" )), |
3560 | ("9999-12-01 00Z" , None), |
3561 | // Tests for historical data from tzdb. No POSIX TZ. |
3562 | ("2000-03-25 15Z" , Some("2000-03-25 16Z" )), |
3563 | ("2000-03-25 15:59:59.999999999Z" , Some("2000-03-25 16Z" )), |
3564 | ("2000-03-25 16Z" , Some("2000-08-26 16Z" )), |
3565 | ("2000-08-26 16Z" , Some("2001-03-24 16Z" )), |
3566 | ], |
3567 | ), |
3568 | ( |
3569 | "Europe/Dublin" , |
3570 | &[ |
3571 | ("2010-03-28 00Z" , Some("2010-03-28 01Z" )), |
3572 | ("2010-03-28 00:59:59.999999999Z" , Some("2010-03-28 01Z" )), |
3573 | ("2010-03-28 01Z" , Some("2010-10-31 01Z" )), |
3574 | ("2010-10-31 01Z" , Some("2011-03-27 01Z" )), |
3575 | ("-009999-12-01 00Z" , Some("1880-08-02 00:25:21Z" )), |
3576 | ("9999-12-01 00Z" , None), |
3577 | // Tests for historical data from tzdb. No POSIX TZ. |
3578 | ("1990-03-25 00Z" , Some("1990-03-25 01Z" )), |
3579 | ("1990-03-25 00:59:59.999999999Z" , Some("1990-03-25 01Z" )), |
3580 | ("1990-03-25 01Z" , Some("1990-10-28 01Z" )), |
3581 | ("1990-10-28 01Z" , Some("1991-03-31 01Z" )), |
3582 | ], |
3583 | ), |
3584 | ( |
3585 | // Sao Paulo eliminated DST in 2019, so the next transition |
3586 | // from 2024 no longer exists. |
3587 | "America/Sao_Paulo" , |
3588 | &[("2024-03-10 08Z" , None)], |
3589 | ), |
3590 | ]; |
3591 | for &(tzname, next_trans) in tests { |
3592 | let test_file = TzifTestFile::get(tzname); |
3593 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3594 | for (given, expected) in next_trans { |
3595 | let given: Timestamp = given.parse().unwrap(); |
3596 | let expected = |
3597 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3598 | let got = tz.next_transition(given).map(|t| t.timestamp()); |
3599 | assert_eq!(got, expected, " \nTZ: {tzname} \ngiven: {given}" ); |
3600 | } |
3601 | } |
3602 | } |
3603 | |
3604 | #[cfg (feature = "alloc" )] |
3605 | #[test ] |
3606 | fn time_zone_posix_previous_transition() { |
3607 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3608 | // America/New_York, but a utopia in which DST is abolished. There |
3609 | // are no time zone transitions, so next_transition always returns |
3610 | // None. |
3611 | ( |
3612 | "EST5" , |
3613 | &[ |
3614 | ("1969-12-31T19Z" , None), |
3615 | ("2024-03-10T02Z" , None), |
3616 | ("-009999-12-01 00Z" , None), |
3617 | ("9999-12-01 00Z" , None), |
3618 | ], |
3619 | ), |
3620 | // The standard DST rule for America/New_York. |
3621 | ( |
3622 | "EST5EDT,M3.2.0,M11.1.0" , |
3623 | &[ |
3624 | ("1969-12-31 19Z" , Some("1969-11-02 06Z" )), |
3625 | ("2024-03-10 08Z" , Some("2024-03-10 07Z" )), |
3626 | ("2024-03-10 07:00:00.000000001Z" , Some("2024-03-10 07Z" )), |
3627 | ("2024-03-10 07Z" , Some("2023-11-05 06Z" )), |
3628 | ("2023-11-05 06Z" , Some("2023-03-12 07Z" )), |
3629 | ("-009999-01-31 00Z" , None), |
3630 | ("9999-12-01 00Z" , Some("9999-11-07 06Z" )), |
3631 | ], |
3632 | ), |
3633 | ( |
3634 | // From Australia/Tasmania |
3635 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
3636 | &[ |
3637 | ("2010-04-03 17Z" , Some("2010-04-03 16Z" )), |
3638 | ("2010-04-03 16:00:00.000000001Z" , Some("2010-04-03 16Z" )), |
3639 | ("2010-04-03 16Z" , Some("2009-10-03 16Z" )), |
3640 | ("2009-10-03 16Z" , Some("2009-04-04 16Z" )), |
3641 | ("-009999-01-31 00Z" , None), |
3642 | ("9999-12-01 00Z" , Some("9999-10-02 16Z" )), |
3643 | ], |
3644 | ), |
3645 | // This is Europe/Dublin's rule. It's interesting because its |
3646 | // DST is an offset behind standard time. (DST is usually one hour |
3647 | // ahead of standard time.) |
3648 | ( |
3649 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
3650 | &[ |
3651 | ("2010-03-28 02Z" , Some("2010-03-28 01Z" )), |
3652 | ("2010-03-28 01:00:00.000000001Z" , Some("2010-03-28 01Z" )), |
3653 | ("2010-03-28 01Z" , Some("2009-10-25 01Z" )), |
3654 | ("2009-10-25 01Z" , Some("2009-03-29 01Z" )), |
3655 | ("-009999-01-31 00Z" , None), |
3656 | ("9999-12-01 00Z" , Some("9999-10-31 01Z" )), |
3657 | ], |
3658 | ), |
3659 | ]; |
3660 | for &(posix_tz, prev_trans) in tests { |
3661 | let tz = TimeZone::posix(posix_tz).unwrap(); |
3662 | for (given, expected) in prev_trans { |
3663 | let given: Timestamp = given.parse().unwrap(); |
3664 | let expected = |
3665 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3666 | let got = tz.previous_transition(given).map(|t| t.timestamp()); |
3667 | assert_eq!(got, expected, " \nTZ: {posix_tz} \ngiven: {given}" ); |
3668 | } |
3669 | } |
3670 | } |
3671 | |
3672 | #[cfg (feature = "alloc" )] |
3673 | #[test ] |
3674 | fn time_zone_posix_next_transition() { |
3675 | let tests: &[(&str, &[(&str, Option<&str>)])] = &[ |
3676 | // America/New_York, but a utopia in which DST is abolished. There |
3677 | // are no time zone transitions, so next_transition always returns |
3678 | // None. |
3679 | ( |
3680 | "EST5" , |
3681 | &[ |
3682 | ("1969-12-31T19Z" , None), |
3683 | ("2024-03-10T02Z" , None), |
3684 | ("-009999-12-01 00Z" , None), |
3685 | ("9999-12-01 00Z" , None), |
3686 | ], |
3687 | ), |
3688 | // The standard DST rule for America/New_York. |
3689 | ( |
3690 | "EST5EDT,M3.2.0,M11.1.0" , |
3691 | &[ |
3692 | ("1969-12-31 19Z" , Some("1970-03-08 07Z" )), |
3693 | ("2024-03-10 06Z" , Some("2024-03-10 07Z" )), |
3694 | ("2024-03-10 06:59:59.999999999Z" , Some("2024-03-10 07Z" )), |
3695 | ("2024-03-10 07Z" , Some("2024-11-03 06Z" )), |
3696 | ("2024-11-03 06Z" , Some("2025-03-09 07Z" )), |
3697 | ("-009999-12-01 00Z" , Some("-009998-03-10 07Z" )), |
3698 | ("9999-12-01 00Z" , None), |
3699 | ], |
3700 | ), |
3701 | ( |
3702 | // From Australia/Tasmania |
3703 | "AEST-10AEDT,M10.1.0,M4.1.0/3" , |
3704 | &[ |
3705 | ("2010-04-03 15Z" , Some("2010-04-03 16Z" )), |
3706 | ("2010-04-03 15:59:59.999999999Z" , Some("2010-04-03 16Z" )), |
3707 | ("2010-04-03 16Z" , Some("2010-10-02 16Z" )), |
3708 | ("2010-10-02 16Z" , Some("2011-04-02 16Z" )), |
3709 | ("-009999-12-01 00Z" , Some("-009998-04-06 16Z" )), |
3710 | ("9999-12-01 00Z" , None), |
3711 | ], |
3712 | ), |
3713 | // This is Europe/Dublin's rule. It's interesting because its |
3714 | // DST is an offset behind standard time. (DST is usually one hour |
3715 | // ahead of standard time.) |
3716 | ( |
3717 | "IST-1GMT0,M10.5.0,M3.5.0/1" , |
3718 | &[ |
3719 | ("2010-03-28 00Z" , Some("2010-03-28 01Z" )), |
3720 | ("2010-03-28 00:59:59.999999999Z" , Some("2010-03-28 01Z" )), |
3721 | ("2010-03-28 01Z" , Some("2010-10-31 01Z" )), |
3722 | ("2010-10-31 01Z" , Some("2011-03-27 01Z" )), |
3723 | ("-009999-12-01 00Z" , Some("-009998-03-31 01Z" )), |
3724 | ("9999-12-01 00Z" , None), |
3725 | ], |
3726 | ), |
3727 | ]; |
3728 | for &(posix_tz, next_trans) in tests { |
3729 | let tz = TimeZone::posix(posix_tz).unwrap(); |
3730 | for (given, expected) in next_trans { |
3731 | let given: Timestamp = given.parse().unwrap(); |
3732 | let expected = |
3733 | expected.map(|s| s.parse::<Timestamp>().unwrap()); |
3734 | let got = tz.next_transition(given).map(|t| t.timestamp()); |
3735 | assert_eq!(got, expected, " \nTZ: {posix_tz} \ngiven: {given}" ); |
3736 | } |
3737 | } |
3738 | } |
3739 | |
3740 | /// This tests that the size of a time zone is kept at a single word. |
3741 | /// |
3742 | /// This is important because every jiff::Zoned has a TimeZone inside of |
3743 | /// it, and we want to keep its size as small as we can. |
3744 | #[test ] |
3745 | fn time_zone_size() { |
3746 | #[cfg (feature = "alloc" )] |
3747 | { |
3748 | let word = core::mem::size_of::<usize>(); |
3749 | assert_eq!(word, core::mem::size_of::<TimeZone>()); |
3750 | } |
3751 | #[cfg (all(target_pointer_width = "64" , not(feature = "alloc" )))] |
3752 | { |
3753 | #[cfg (debug_assertions)] |
3754 | { |
3755 | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
3756 | } |
3757 | #[cfg (not(debug_assertions))] |
3758 | { |
3759 | // This asserts the same value as the alloc value above, but |
3760 | // it wasn't always this way, which is why it's written out |
3761 | // separately. Moreover, in theory, I'd be open to regressing |
3762 | // this value if it led to an improvement in alloc-mode. But |
3763 | // more likely, it would be nice to decrease this size in |
3764 | // non-alloc modes. |
3765 | assert_eq!(8, core::mem::size_of::<TimeZone>()); |
3766 | } |
3767 | } |
3768 | } |
3769 | |
3770 | /// This tests a few other cases for `TimeZone::to_offset` that |
3771 | /// probably aren't worth showing in doctest examples. |
3772 | #[test ] |
3773 | fn time_zone_to_offset() { |
3774 | let ts = Timestamp::from_second(123456789).unwrap(); |
3775 | |
3776 | let tz = TimeZone::fixed(offset(-5)); |
3777 | let info = tz.to_offset_info(ts); |
3778 | assert_eq!(info.offset(), offset(-5)); |
3779 | assert_eq!(info.dst(), Dst::No); |
3780 | assert_eq!(info.abbreviation(), "-05" ); |
3781 | |
3782 | let tz = TimeZone::fixed(offset(5)); |
3783 | let info = tz.to_offset_info(ts); |
3784 | assert_eq!(info.offset(), offset(5)); |
3785 | assert_eq!(info.dst(), Dst::No); |
3786 | assert_eq!(info.abbreviation(), "+05" ); |
3787 | |
3788 | let tz = TimeZone::fixed(offset(-12)); |
3789 | let info = tz.to_offset_info(ts); |
3790 | assert_eq!(info.offset(), offset(-12)); |
3791 | assert_eq!(info.dst(), Dst::No); |
3792 | assert_eq!(info.abbreviation(), "-12" ); |
3793 | |
3794 | let tz = TimeZone::fixed(offset(12)); |
3795 | let info = tz.to_offset_info(ts); |
3796 | assert_eq!(info.offset(), offset(12)); |
3797 | assert_eq!(info.dst(), Dst::No); |
3798 | assert_eq!(info.abbreviation(), "+12" ); |
3799 | |
3800 | let tz = TimeZone::fixed(offset(0)); |
3801 | let info = tz.to_offset_info(ts); |
3802 | assert_eq!(info.offset(), offset(0)); |
3803 | assert_eq!(info.dst(), Dst::No); |
3804 | assert_eq!(info.abbreviation(), "UTC" ); |
3805 | } |
3806 | |
3807 | /// This tests a few other cases for `TimeZone::to_fixed_offset` that |
3808 | /// probably aren't worth showing in doctest examples. |
3809 | #[test ] |
3810 | fn time_zone_to_fixed_offset() { |
3811 | let tz = TimeZone::UTC; |
3812 | assert_eq!(tz.to_fixed_offset().unwrap(), Offset::UTC); |
3813 | |
3814 | let offset = Offset::from_hours(1).unwrap(); |
3815 | let tz = TimeZone::fixed(offset); |
3816 | assert_eq!(tz.to_fixed_offset().unwrap(), offset); |
3817 | |
3818 | #[cfg (feature = "alloc" )] |
3819 | { |
3820 | let tz = TimeZone::posix("EST5" ).unwrap(); |
3821 | assert!(tz.to_fixed_offset().is_err()); |
3822 | |
3823 | let test_file = TzifTestFile::get("America/New_York" ); |
3824 | let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap(); |
3825 | assert!(tz.to_fixed_offset().is_err()); |
3826 | } |
3827 | } |
3828 | } |
3829 | |