| 1 | /*! |
| 2 | A hybrid format derived from [RFC 3339], [RFC 9557] and [ISO 8601]. |
| 3 | |
| 4 | This module provides an implementation of the [Temporal ISO 8601 grammar]. The |
| 5 | API is spread out over parsers and printers for datetimes and spans. |
| 6 | |
| 7 | Note that for most use cases, you should be using the corresponding |
| 8 | [`Display`](std::fmt::Display) or [`FromStr`](std::str::FromStr) trait |
| 9 | implementations for printing and parsing respectively. This module provides |
| 10 | a "lower level" API for configuring the behavior of printing and parsing, |
| 11 | including the ability to parse from byte strings (i.e., `&[u8]`). |
| 12 | |
| 13 | # Date and time format |
| 14 | |
| 15 | The specific format supported depends on what kind of type you're trying to |
| 16 | parse into. Here are some examples to give a general idea: |
| 17 | |
| 18 | * `02:21:58` parses into a [`civil::Time`]. |
| 19 | * `2020-08-21` parses into a [`civil::Date`]. |
| 20 | * `2020-08-21T02:21:58` and `2020-08-21 02:21:58` both parse into a |
| 21 | [`civil::DateTime`]. |
| 22 | * `2020-08-21T02:21:58-04` parses into an [`Timestamp`]. |
| 23 | * `2020-08-21T02:21:58-04[America/New_York]` parses into a [`Zoned`]. |
| 24 | |
| 25 | Smaller types can generally be parsed from strings representing a bigger type. |
| 26 | For example, a `civil::Date` can be parsed from `2020-08-21T02:21:58`. |
| 27 | |
| 28 | As mentioned above, the datetime format supported by Jiff is a hybrid of the |
| 29 | "best" parts of [RFC 3339], [RFC 9557] and [ISO 8601]. Generally speaking, [RFC |
| 30 | 3339] and [RFC 9557] are supported in their entirety, but not all of ISO 8601 |
| 31 | is. For example, `2024-06-16T10.5` is a valid ISO 8601 datetime, but isn't |
| 32 | supported by Jiff. (Only fractional seconds are supported.) |
| 33 | |
| 34 | Some additional details worth noting: |
| 35 | |
| 36 | * Parsing `Zoned` values requires a datetime string with a time zone |
| 37 | annotation like `[America/New_York]` or `[-07:00]`. If you need to parse a |
| 38 | datetime without a time zone annotation (but with an offset), then you should |
| 39 | parse it as an [`Timestamp`]. From there, it can be converted to a `Zoned` via |
| 40 | [`Timestamp::to_zoned`]. |
| 41 | * When parsing `Zoned` values, ambiguous datetimes are handled via the |
| 42 | [`DateTimeParser::disambiguation`] configuration. By default, a "compatible" |
| 43 | mode is used where the earlier time is selected in a backward transition, while |
| 44 | the later time is selected in a forward transition. |
| 45 | * When parsing `Zoned` values, conflicts between the offset and the time zone |
| 46 | in the datetime string are handled via the [`DateTimeParser::offset_conflict`] |
| 47 | configuration. By default, any inconsistency between the offset and the time |
| 48 | zone results in a parse error. |
| 49 | * When parsing civil types like `civil::DateTime`, it's always an error if the |
| 50 | datetime string has a `Z` (Zulu) offset. It's an error since interpreting such |
| 51 | strings as civil time is usually a bug. |
| 52 | * In all cases, the `T` designator separating the date and time may be an ASCII |
| 53 | space instead. |
| 54 | |
| 55 | The complete datetime format supported is described by the |
| 56 | [Temporal ISO 8601 grammar]. |
| 57 | |
| 58 | # Span format |
| 59 | |
| 60 | To a first approximation, the span format supported roughly corresponds to this |
| 61 | regular expression: |
| 62 | |
| 63 | ```text |
| 64 | P(\d+y)?(\d+m)?(\d+w)?(\d+d)?(T(\d+h)?(\d+m)?(\d+s)?)? |
| 65 | ``` |
| 66 | |
| 67 | But there are some details not easily captured by a simple regular expression: |
| 68 | |
| 69 | * At least one unit must be specified. To write a zero span, specify `0` for |
| 70 | any unit. For example, `P0d` and `PT0s` are equivalent. |
| 71 | * The format is case insensitive. The printer will by default capitalize all |
| 72 | designators, but the unit designators can be configured to use lowercase with |
| 73 | [`SpanPrinter::lowercase`]. For example, `P3y1m10dT5h` instead of |
| 74 | `P3Y1M10DT5H`. You might prefer lowercase since you may find it easier to read. |
| 75 | However, it is an extension to ISO 8601 and isn't as broadly supported. |
| 76 | * Hours, minutes or seconds may be fractional. And the only units that may be |
| 77 | fractional are the lowest units. |
| 78 | * A span like `P99999999999y` is invalid because it exceeds the allowable range |
| 79 | of time representable by a [`Span`]. |
| 80 | |
| 81 | This is, roughly speaking, a subset of what [ISO 8601] specifies. It isn't |
| 82 | strictly speaking a subset since Jiff (like Temporal) permits week units to be |
| 83 | mixed with other units. |
| 84 | |
| 85 | Here are some examples: |
| 86 | |
| 87 | ``` |
| 88 | use jiff::{Span, ToSpan}; |
| 89 | |
| 90 | let spans = [ |
| 91 | ("P40D" , 40.days()), |
| 92 | ("P1y1d" , 1.year().days(1)), |
| 93 | ("P3dT4h59m" , 3.days().hours(4).minutes(59)), |
| 94 | ("PT2H30M" , 2.hours().minutes(30)), |
| 95 | ("P1m" , 1.month()), |
| 96 | ("P1w" , 1.week()), |
| 97 | ("P1w4d" , 1.week().days(4)), |
| 98 | ("PT1m" , 1.minute()), |
| 99 | ("PT0.0021s" , 2.milliseconds().microseconds(100)), |
| 100 | ("PT0s" , 0.seconds()), |
| 101 | ("P0d" , 0.seconds()), |
| 102 | ( |
| 103 | "P1y1m1dT1h1m1.1s" , |
| 104 | 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 105 | ), |
| 106 | ]; |
| 107 | for (string, span) in spans { |
| 108 | let parsed: Span = string.parse()?; |
| 109 | assert_eq!( |
| 110 | span.fieldwise(), |
| 111 | parsed.fieldwise(), |
| 112 | "result of parsing {string:?}" , |
| 113 | ); |
| 114 | } |
| 115 | |
| 116 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 117 | ``` |
| 118 | |
| 119 | One can also parse ISO 8601 durations into a [`SignedDuration`], but units are |
| 120 | limited to hours or smaller: |
| 121 | |
| 122 | ``` |
| 123 | use jiff::SignedDuration; |
| 124 | |
| 125 | let durations = [ |
| 126 | ("PT2H30M" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 127 | ("PT2.5h" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 128 | ("PT1m" , SignedDuration::from_mins(1)), |
| 129 | ("PT1.5m" , SignedDuration::from_secs(90)), |
| 130 | ("PT0.0021s" , SignedDuration::new(0, 2_100_000)), |
| 131 | ("PT0s" , SignedDuration::ZERO), |
| 132 | ("PT0.000000001s" , SignedDuration::from_nanos(1)), |
| 133 | ]; |
| 134 | for (string, duration) in durations { |
| 135 | let parsed: SignedDuration = string.parse()?; |
| 136 | assert_eq!(duration, parsed, "result of parsing {string:?}" ); |
| 137 | } |
| 138 | |
| 139 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 140 | ``` |
| 141 | |
| 142 | The complete span format supported is described by the [Temporal ISO 8601 |
| 143 | grammar]. |
| 144 | |
| 145 | # Differences with Temporal |
| 146 | |
| 147 | Jiff implements Temporal's grammar pretty closely, but there are a few |
| 148 | differences at the time of writing. It is a specific goal that all differences |
| 149 | should be rooted in what Jiff itself supports, and not in the grammar itself. |
| 150 | |
| 151 | * The maximum UTC offset value expressible is `25:59:59` in Jiff, where as in |
| 152 | Temporal it's `23:59:59.999999999`. Jiff supports a slightly bigger maximum |
| 153 | to account for all valid values of POSIX time zone strings. Jiff also lacks |
| 154 | nanosecond precision for UTC offsets, as it's not clear how useful that is in |
| 155 | practice. |
| 156 | * Jiff doesn't support a datetime range as big as Temporal. For example, |
| 157 | in Temporal, `+202024-06-14T17:30[America/New_York]` is valid. But in Jiff, |
| 158 | since the maximum supported year is `9999`, parsing will fail. Jiff's datetime |
| 159 | range may be expanded in the future, but it is a non-goal to match Temporal's |
| 160 | range precisely. |
| 161 | * Jiff doesn't support RFC 9557 calendar annotations because Jiff only supports |
| 162 | the Gregorian calendar. |
| 163 | |
| 164 | There is some more [background on Temporal's format] available. |
| 165 | |
| 166 | [Temporal ISO 8601 grammar]: https://tc39.es/proposal-temporal/#sec-temporal-iso8601grammar |
| 167 | [RFC 3339]: https://www.rfc-editor.org/rfc/rfc3339 |
| 168 | [RFC 9557]: https://www.rfc-editor.org/rfc/rfc9557.html |
| 169 | [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
| 170 | [background on Temporal's format]: https://github.com/tc39/proposal-temporal/issues/2843 |
| 171 | */ |
| 172 | |
| 173 | use crate::{ |
| 174 | civil, |
| 175 | error::Error, |
| 176 | fmt::Write, |
| 177 | span::Span, |
| 178 | tz::{Disambiguation, Offset, OffsetConflict, TimeZone, TimeZoneDatabase}, |
| 179 | SignedDuration, Timestamp, Zoned, |
| 180 | }; |
| 181 | |
| 182 | pub use self::pieces::{ |
| 183 | Pieces, PiecesNumericOffset, PiecesOffset, TimeZoneAnnotation, |
| 184 | TimeZoneAnnotationKind, TimeZoneAnnotationName, |
| 185 | }; |
| 186 | |
| 187 | mod parser; |
| 188 | mod pieces; |
| 189 | mod printer; |
| 190 | |
| 191 | /// The default date time parser that we use throughout Jiff. |
| 192 | pub(crate) static DEFAULT_DATETIME_PARSER: DateTimeParser = |
| 193 | DateTimeParser::new(); |
| 194 | |
| 195 | /// The default date time printer that we use throughout Jiff. |
| 196 | pub(crate) static DEFAULT_DATETIME_PRINTER: DateTimePrinter = |
| 197 | DateTimePrinter::new(); |
| 198 | |
| 199 | /// The default date time parser that we use throughout Jiff. |
| 200 | pub(crate) static DEFAULT_SPAN_PARSER: SpanParser = SpanParser::new(); |
| 201 | |
| 202 | /// The default date time printer that we use throughout Jiff. |
| 203 | pub(crate) static DEFAULT_SPAN_PRINTER: SpanPrinter = SpanPrinter::new(); |
| 204 | |
| 205 | /// A parser for Temporal datetimes. |
| 206 | /// |
| 207 | /// This parser converts a machine (but also human) readable format of a |
| 208 | /// datetime to the various types found in Jiff: [`Zoned`], [`Timestamp`], |
| 209 | /// [`civil::DateTime`], [`civil::Date`] or [`civil::Time`]. Note that all |
| 210 | /// of those types provide [`FromStr`](core::str::FromStr) implementations |
| 211 | /// that utilize the default configuration of this parser. However, this parser |
| 212 | /// can be configured to behave differently and can also parse directly from |
| 213 | /// a `&[u8]`. |
| 214 | /// |
| 215 | /// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for |
| 216 | /// more information on the specific format used. |
| 217 | /// |
| 218 | /// # Example |
| 219 | /// |
| 220 | /// This example shows how to parse a `Zoned` datetime from a byte string. |
| 221 | /// (That is, `&[u8]` and not a `&str`.) |
| 222 | /// |
| 223 | /// ``` |
| 224 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 225 | /// |
| 226 | /// // A parser can be created in a const context. |
| 227 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 228 | /// |
| 229 | /// let zdt = PARSER.parse_zoned(b"2024-06-15T07-04[America/New_York]" )?; |
| 230 | /// assert_eq!(zdt.datetime(), date(2024, 6, 15).at(7, 0, 0, 0)); |
| 231 | /// assert_eq!(zdt.time_zone(), &tz::db().get("America/New_York" )?); |
| 232 | /// |
| 233 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 234 | /// ``` |
| 235 | /// |
| 236 | /// Note that an ASCII space instead of the `T` separator is automatically |
| 237 | /// supported too: |
| 238 | /// |
| 239 | /// ``` |
| 240 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 241 | /// |
| 242 | /// // A parser can be created in a const context. |
| 243 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 244 | /// |
| 245 | /// let zdt = PARSER.parse_zoned(b"2024-06-15 07-04[America/New_York]" )?; |
| 246 | /// assert_eq!(zdt.datetime(), date(2024, 6, 15).at(7, 0, 0, 0)); |
| 247 | /// assert_eq!(zdt.time_zone(), &tz::db().get("America/New_York" )?); |
| 248 | /// |
| 249 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 250 | /// ``` |
| 251 | #[derive (Debug)] |
| 252 | pub struct DateTimeParser { |
| 253 | p: parser::DateTimeParser, |
| 254 | offset_conflict: OffsetConflict, |
| 255 | disambiguation: Disambiguation, |
| 256 | } |
| 257 | |
| 258 | impl DateTimeParser { |
| 259 | /// Create a new Temporal datetime parser with the default configuration. |
| 260 | #[inline ] |
| 261 | pub const fn new() -> DateTimeParser { |
| 262 | DateTimeParser { |
| 263 | p: parser::DateTimeParser::new(), |
| 264 | offset_conflict: OffsetConflict::Reject, |
| 265 | disambiguation: Disambiguation::Compatible, |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /// Set the conflict resolution strategy for when an offset in a datetime |
| 270 | /// string is inconsistent with the time zone. |
| 271 | /// |
| 272 | /// See the documentation on [`OffsetConflict`] for more details about the |
| 273 | /// different strategies one can choose. |
| 274 | /// |
| 275 | /// This only applies when parsing [`Zoned`] values. |
| 276 | /// |
| 277 | /// The default is [`OffsetConflict::Reject`], which results in an error |
| 278 | /// whenever parsing a datetime with an offset that is inconsistent with |
| 279 | /// the time zone. |
| 280 | /// |
| 281 | /// # Example: respecting offsets even when they're invalid |
| 282 | /// |
| 283 | /// ``` |
| 284 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 285 | /// |
| 286 | /// static PARSER: DateTimeParser = DateTimeParser::new() |
| 287 | /// .offset_conflict(tz::OffsetConflict::AlwaysOffset); |
| 288 | /// |
| 289 | /// let zdt = PARSER.parse_zoned("2024-06-09T07:00-05[America/New_York]" )?; |
| 290 | /// // Notice that the time *and* offset have been corrected. The offset |
| 291 | /// // given was invalid for `America/New_York` at the given time, so |
| 292 | /// // it cannot be kept, but the instant returned is equivalent to |
| 293 | /// // `2024-06-09T07:00-05`. It is just adjusted automatically to be |
| 294 | /// // correct in the `America/New_York` time zone. |
| 295 | /// assert_eq!(zdt.datetime(), date(2024, 6, 9).at(8, 0, 0, 0)); |
| 296 | /// assert_eq!(zdt.offset(), tz::offset(-4)); |
| 297 | /// |
| 298 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 299 | /// ``` |
| 300 | /// |
| 301 | /// # Example: all offsets are invalid for gaps in civil time by default |
| 302 | /// |
| 303 | /// When parsing a datetime with an offset for a gap in civil time, the |
| 304 | /// offset is treated as invalid. This results in parsing failing. For |
| 305 | /// example, some parts of Indiana in the US didn't start using daylight |
| 306 | /// saving time until 2006. If a datetime for 2006 were serialized before |
| 307 | /// the updated daylight saving time rules were known, then this parse |
| 308 | /// error will prevent you from silently changing the originally intended |
| 309 | /// time: |
| 310 | /// |
| 311 | /// ``` |
| 312 | /// use jiff::{fmt::temporal::DateTimeParser}; |
| 313 | /// |
| 314 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 315 | /// |
| 316 | /// // DST in Indiana/Vevay began at 2006-04-02T02:00 local time. |
| 317 | /// // The last time Indiana/Vevay observed DST was in 1972. |
| 318 | /// let result = PARSER.parse_zoned( |
| 319 | /// "2006-04-02T02:30-05[America/Indiana/Vevay]" , |
| 320 | /// ); |
| 321 | /// assert_eq!( |
| 322 | /// result.unwrap_err().to_string(), |
| 323 | /// "parsing \"2006-04-02T02:30-05[America/Indiana/Vevay] \" failed: \ |
| 324 | /// datetime 2006-04-02T02:30:00 could not resolve to timestamp \ |
| 325 | /// since 'reject' conflict resolution was chosen, and because \ |
| 326 | /// datetime has offset -05, but the time zone America/Indiana/Vevay \ |
| 327 | /// for the given datetime falls in a gap \ |
| 328 | /// (between offsets -05 and -04), \ |
| 329 | /// and all offsets for a gap are regarded as invalid" , |
| 330 | /// ); |
| 331 | /// ``` |
| 332 | /// |
| 333 | /// If one doesn't want an error here, then you can either prioritize the |
| 334 | /// instant in time by respecting the offset: |
| 335 | /// |
| 336 | /// ``` |
| 337 | /// use jiff::{fmt::temporal::DateTimeParser, tz}; |
| 338 | /// |
| 339 | /// static PARSER: DateTimeParser = DateTimeParser::new() |
| 340 | /// .offset_conflict(tz::OffsetConflict::AlwaysOffset); |
| 341 | /// |
| 342 | /// let zdt = PARSER.parse_zoned( |
| 343 | /// "2006-04-02T02:30-05[America/Indiana/Vevay]" , |
| 344 | /// )?; |
| 345 | /// assert_eq!( |
| 346 | /// zdt.to_string(), |
| 347 | /// "2006-04-02T03:30:00-04:00[America/Indiana/Vevay]" , |
| 348 | /// ); |
| 349 | /// |
| 350 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 351 | /// ``` |
| 352 | /// |
| 353 | /// or you can force your own disambiguation rules, e.g., by taking the |
| 354 | /// earlier time: |
| 355 | /// |
| 356 | /// ``` |
| 357 | /// use jiff::{fmt::temporal::DateTimeParser, tz}; |
| 358 | /// |
| 359 | /// static PARSER: DateTimeParser = DateTimeParser::new() |
| 360 | /// .disambiguation(tz::Disambiguation::Earlier) |
| 361 | /// .offset_conflict(tz::OffsetConflict::AlwaysTimeZone); |
| 362 | /// |
| 363 | /// let zdt = PARSER.parse_zoned( |
| 364 | /// "2006-04-02T02:30-05[America/Indiana/Vevay]" , |
| 365 | /// )?; |
| 366 | /// assert_eq!( |
| 367 | /// zdt.to_string(), |
| 368 | /// "2006-04-02T01:30:00-05:00[America/Indiana/Vevay]" , |
| 369 | /// ); |
| 370 | /// |
| 371 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 372 | /// ``` |
| 373 | /// |
| 374 | /// # Example: a `Z` never results in an offset conflict |
| 375 | /// |
| 376 | /// [RFC 9557] specifies that `Z` indicates that the offset from UTC to |
| 377 | /// get local time is unknown. Since it doesn't prescribe a particular |
| 378 | /// offset, when a `Z` is parsed with a time zone annotation, the |
| 379 | /// `OffsetConflict::ALwaysOffset` strategy is used regardless of what |
| 380 | /// is set here. For example: |
| 381 | /// |
| 382 | /// ``` |
| 383 | /// use jiff::fmt::temporal::DateTimeParser; |
| 384 | /// |
| 385 | /// // NOTE: The default is reject. |
| 386 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 387 | /// |
| 388 | /// let zdt = PARSER.parse_zoned( |
| 389 | /// "2025-06-20T17:30Z[America/New_York]" , |
| 390 | /// )?; |
| 391 | /// assert_eq!( |
| 392 | /// zdt.to_string(), |
| 393 | /// "2025-06-20T13:30:00-04:00[America/New_York]" , |
| 394 | /// ); |
| 395 | /// |
| 396 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 397 | /// ``` |
| 398 | /// |
| 399 | /// Conversely, if the `+00:00` offset was used, then an error would |
| 400 | /// occur because of the offset conflict: |
| 401 | /// |
| 402 | /// ``` |
| 403 | /// use jiff::fmt::temporal::DateTimeParser; |
| 404 | /// |
| 405 | /// // NOTE: The default is reject. |
| 406 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 407 | /// |
| 408 | /// let result = PARSER.parse_zoned( |
| 409 | /// "2025-06-20T17:30+00[America/New_York]" , |
| 410 | /// ); |
| 411 | /// assert_eq!( |
| 412 | /// result.unwrap_err().to_string(), |
| 413 | /// "parsing \"2025-06-20T17:30+00[America/New_York] \" failed: \ |
| 414 | /// datetime 2025-06-20T17:30:00 could not resolve to a timestamp \ |
| 415 | /// since 'reject' conflict resolution was chosen, and because \ |
| 416 | /// datetime has offset +00, but the time zone America/New_York \ |
| 417 | /// for the given datetime unambiguously has offset -04" , |
| 418 | /// ); |
| 419 | /// ``` |
| 420 | /// |
| 421 | /// [RFC 9557]: https://datatracker.ietf.org/doc/rfc9557/ |
| 422 | #[inline ] |
| 423 | pub const fn offset_conflict( |
| 424 | self, |
| 425 | strategy: OffsetConflict, |
| 426 | ) -> DateTimeParser { |
| 427 | DateTimeParser { offset_conflict: strategy, ..self } |
| 428 | } |
| 429 | |
| 430 | /// Set the disambiguation strategy for when a datetime falls into a time |
| 431 | /// zone transition "fold" or "gap." |
| 432 | /// |
| 433 | /// The most common manifestation of such time zone transitions is daylight |
| 434 | /// saving time. In most cases, the transition into daylight saving time |
| 435 | /// moves the civil time ("the time you see on the clock") ahead one hour. |
| 436 | /// This is called a "gap" because an hour on the clock is skipped. While |
| 437 | /// the transition out of daylight saving time moves the civil time back |
| 438 | /// one hour. This is called a "fold" because an hour on the clock is |
| 439 | /// repeated. |
| 440 | /// |
| 441 | /// In the case of a gap, an ambiguous datetime manifests as a time that |
| 442 | /// never appears on a clock. (For example, `02:30` on `2024-03-10` in New |
| 443 | /// York.) In the case of a fold, an ambiguous datetime manifests as a |
| 444 | /// time that repeats itself. (For example, `01:30` on `2024-11-03` in New |
| 445 | /// York.) So when a fold occurs, you don't know whether it's the "first" |
| 446 | /// occurrence of that time or the "second." |
| 447 | /// |
| 448 | /// Time zone transitions are not just limited to daylight saving time, |
| 449 | /// although those are the most common. In other cases, a transition occurs |
| 450 | /// because of a change in the offset of the time zone itself. (See the |
| 451 | /// examples below.) |
| 452 | /// |
| 453 | /// # Example |
| 454 | /// |
| 455 | /// This example shows how to set the disambiguation configuration while |
| 456 | /// parsing a [`Zoned`] datetime. In this example, we always prefer the |
| 457 | /// earlier time. |
| 458 | /// |
| 459 | /// ``` |
| 460 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 461 | /// |
| 462 | /// static PARSER: DateTimeParser = DateTimeParser::new() |
| 463 | /// .disambiguation(tz::Disambiguation::Earlier); |
| 464 | /// |
| 465 | /// let zdt = PARSER.parse_zoned("2024-03-10T02:05[America/New_York]" )?; |
| 466 | /// assert_eq!(zdt.datetime(), date(2024, 3, 10).at(1, 5, 0, 0)); |
| 467 | /// assert_eq!(zdt.offset(), tz::offset(-5)); |
| 468 | /// |
| 469 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 470 | /// ``` |
| 471 | /// |
| 472 | /// # Example: time zone offset change |
| 473 | /// |
| 474 | /// In this example, we explore a time zone offset change in Hawaii that |
| 475 | /// occurred on `1947-06-08`. Namely, Hawaii went from a `-10:30` offset |
| 476 | /// to a `-10:00` offset at `02:00`. This results in a 30 minute gap in |
| 477 | /// civil time. |
| 478 | /// |
| 479 | /// ``` |
| 480 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz, ToSpan}; |
| 481 | /// |
| 482 | /// static PARSER: DateTimeParser = DateTimeParser::new() |
| 483 | /// .disambiguation(tz::Disambiguation::Later); |
| 484 | /// |
| 485 | /// // 02:05 didn't exist on clocks on 1947-06-08. |
| 486 | /// let zdt = PARSER.parse_zoned( |
| 487 | /// "1947-06-08T02:05[Pacific/Honolulu]" , |
| 488 | /// )?; |
| 489 | /// // Our parser is configured to select the later time, so we jump to |
| 490 | /// // 02:35. But if we used `Disambiguation::Earlier`, then we'd get |
| 491 | /// // 01:35. |
| 492 | /// assert_eq!(zdt.datetime(), date(1947, 6, 8).at(2, 35, 0, 0)); |
| 493 | /// assert_eq!(zdt.offset(), tz::offset(-10)); |
| 494 | /// |
| 495 | /// // If we subtract 10 minutes from 02:35, notice that we (correctly) |
| 496 | /// // jump to 01:55 *and* our offset is corrected to -10:30. |
| 497 | /// let zdt = zdt.checked_sub(10.minutes())?; |
| 498 | /// assert_eq!(zdt.datetime(), date(1947, 6, 8).at(1, 55, 0, 0)); |
| 499 | /// assert_eq!(zdt.offset(), tz::offset(-10).saturating_sub(30.minutes())); |
| 500 | /// |
| 501 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 502 | /// ``` |
| 503 | #[inline ] |
| 504 | pub const fn disambiguation( |
| 505 | self, |
| 506 | strategy: Disambiguation, |
| 507 | ) -> DateTimeParser { |
| 508 | DateTimeParser { disambiguation: strategy, ..self } |
| 509 | } |
| 510 | |
| 511 | /// Parse a datetime string with a time zone annotation into a [`Zoned`] |
| 512 | /// value using the system time zone database. |
| 513 | /// |
| 514 | /// # Errors |
| 515 | /// |
| 516 | /// This returns an error if the datetime string given is invalid or if it |
| 517 | /// is valid but doesn't fit in the datetime range supported by Jiff. |
| 518 | /// |
| 519 | /// The [`DateTimeParser::offset_conflict`] and |
| 520 | /// [`DateTimeParser::disambiguation`] settings can also influence |
| 521 | /// whether an error occurs or not. Namely, if [`OffsetConflict::Reject`] |
| 522 | /// is used (which is the default), then an error occurs when there |
| 523 | /// is an inconsistency between the offset and the time zone. And if |
| 524 | /// [`Disambiguation::Reject`] is used, then an error occurs when the civil |
| 525 | /// time in the string is ambiguous. |
| 526 | /// |
| 527 | /// # Example: parsing without an IANA time zone |
| 528 | /// |
| 529 | /// Note that when parsing a `Zoned` value, it is required for the datetime |
| 530 | /// string to contain a time zone annotation in brackets. For example, |
| 531 | /// this fails to parse even though it refers to a precise instant in time: |
| 532 | /// |
| 533 | /// ``` |
| 534 | /// use jiff::fmt::temporal::DateTimeParser; |
| 535 | /// |
| 536 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 537 | /// |
| 538 | /// assert!(PARSER.parse_zoned("2024-06-08T07:00-04" ).is_err()); |
| 539 | /// ``` |
| 540 | /// |
| 541 | /// While it is better to include a time zone name, if the only thing |
| 542 | /// that's available is an offset, the offset can be repeated as a time |
| 543 | /// zone annotation: |
| 544 | /// |
| 545 | /// ``` |
| 546 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 547 | /// |
| 548 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 549 | /// |
| 550 | /// let zdt = PARSER.parse_zoned("2024-06-08T07:00-04[-04]" )?; |
| 551 | /// assert_eq!(zdt.datetime(), date(2024, 6, 8).at(7, 0, 0, 0)); |
| 552 | /// assert_eq!(zdt.offset(), tz::offset(-4)); |
| 553 | /// |
| 554 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 555 | /// ``` |
| 556 | /// |
| 557 | /// Otherwise, if you need to be able to parse something like |
| 558 | /// `2024-06-08T07:00-04` as-is, you should parse it into an [`Timestamp`]: |
| 559 | /// |
| 560 | /// ``` |
| 561 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz}; |
| 562 | /// |
| 563 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 564 | /// |
| 565 | /// let timestamp = PARSER.parse_timestamp("2024-06-08T07:00-04" )?; |
| 566 | /// let zdt = timestamp.to_zoned(tz::TimeZone::UTC); |
| 567 | /// assert_eq!(zdt.datetime(), date(2024, 6, 8).at(11, 0, 0, 0)); |
| 568 | /// assert_eq!(zdt.offset(), tz::offset(0)); |
| 569 | /// |
| 570 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 571 | /// ``` |
| 572 | /// |
| 573 | /// If you _really_ need to parse something like `2024-06-08T07:00-04` |
| 574 | /// into a `Zoned` with a fixed offset of `-04:00` as its `TimeZone`, |
| 575 | /// then you'll need to use lower level parsing routines. See the |
| 576 | /// documentation on [`Pieces`] for a case study of how to achieve this. |
| 577 | pub fn parse_zoned<I: AsRef<[u8]>>( |
| 578 | &self, |
| 579 | input: I, |
| 580 | ) -> Result<Zoned, Error> { |
| 581 | self.parse_zoned_with(crate::tz::db(), input) |
| 582 | } |
| 583 | |
| 584 | /// Parse a datetime string with a time zone annotation into a [`Zoned`] |
| 585 | /// value using the time zone database given. |
| 586 | /// |
| 587 | /// # Errors |
| 588 | /// |
| 589 | /// This returns an error if the datetime string given is invalid or if it |
| 590 | /// is valid but doesn't fit in the datetime range supported by Jiff. |
| 591 | /// |
| 592 | /// The [`DateTimeParser::offset_conflict`] and |
| 593 | /// [`DateTimeParser::disambiguation`] settings can also influence |
| 594 | /// whether an error occurs or not. Namely, if [`OffsetConflict::Reject`] |
| 595 | /// is used (which is the default), then an error occurs when there |
| 596 | /// is an inconsistency between the offset and the time zone. And if |
| 597 | /// [`Disambiguation::Reject`] is used, then an error occurs when the civil |
| 598 | /// time in the string is ambiguous. |
| 599 | /// |
| 600 | /// # Example |
| 601 | /// |
| 602 | /// This example demonstrates the utility of this routine by parsing a |
| 603 | /// datetime using an older copy of the IANA Time Zone Database. This |
| 604 | /// example leverages the fact that the 2018 copy of `tzdb` preceded |
| 605 | /// Brazil's announcement that daylight saving time would be abolished. |
| 606 | /// This meant that datetimes in the future, when parsed with the older |
| 607 | /// copy of `tzdb`, would still follow the old daylight saving time rules. |
| 608 | /// But a mere update of `tzdb` would otherwise change the meaning of the |
| 609 | /// datetime. |
| 610 | /// |
| 611 | /// This scenario can come up if one stores datetimes in the future. |
| 612 | /// This is also why the default offset conflict resolution strategy |
| 613 | /// is [`OffsetConflict::Reject`], which prevents one from silently |
| 614 | /// re-interpreting datetimes to a different timestamp. |
| 615 | /// |
| 616 | /// ```no_run |
| 617 | /// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZoneDatabase}}; |
| 618 | /// |
| 619 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 620 | /// |
| 621 | /// // Open a version of tzdb from before Brazil announced its abolition |
| 622 | /// // of daylight saving time. |
| 623 | /// let tzdb2018 = TimeZoneDatabase::from_dir("path/to/tzdb-2018b" )?; |
| 624 | /// // Open the system tzdb. |
| 625 | /// let tzdb = tz::db(); |
| 626 | /// |
| 627 | /// // Parse the same datetime string with the same parser, but using two |
| 628 | /// // different versions of tzdb. |
| 629 | /// let dt = "2020-01-15T12:00[America/Sao_Paulo]" ; |
| 630 | /// let zdt2018 = PARSER.parse_zoned_with(&tzdb2018, dt)?; |
| 631 | /// let zdt = PARSER.parse_zoned_with(tzdb, dt)?; |
| 632 | /// |
| 633 | /// // Before DST was abolished, 2020-01-15 was in DST, which corresponded |
| 634 | /// // to UTC offset -02. Since DST rules applied to datetimes in the |
| 635 | /// // future, the 2018 version of tzdb would lead one to interpret |
| 636 | /// // 2020-01-15 as being in DST. |
| 637 | /// assert_eq!(zdt2018.offset(), tz::offset(-2)); |
| 638 | /// // But DST was abolished in 2019, which means that 2020-01-15 was no |
| 639 | /// // no longer in DST. So after a tzdb update, the same datetime as above |
| 640 | /// // now has a different offset. |
| 641 | /// assert_eq!(zdt.offset(), tz::offset(-3)); |
| 642 | /// |
| 643 | /// // So if you try to parse a datetime serialized from an older copy of |
| 644 | /// // tzdb, you'll get an error under the default configuration because |
| 645 | /// // of `OffsetConflict::Reject`. This would succeed if you parsed it |
| 646 | /// // using tzdb2018! |
| 647 | /// assert!(PARSER.parse_zoned_with(tzdb, zdt2018.to_string()).is_err()); |
| 648 | /// |
| 649 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 650 | /// ``` |
| 651 | pub fn parse_zoned_with<I: AsRef<[u8]>>( |
| 652 | &self, |
| 653 | db: &TimeZoneDatabase, |
| 654 | input: I, |
| 655 | ) -> Result<Zoned, Error> { |
| 656 | let input = input.as_ref(); |
| 657 | let parsed = self.p.parse_temporal_datetime(input)?; |
| 658 | let dt = parsed.into_full()?; |
| 659 | let zoned = |
| 660 | dt.to_zoned(db, self.offset_conflict, self.disambiguation)?; |
| 661 | Ok(zoned) |
| 662 | } |
| 663 | |
| 664 | /// Parse a datetime string into a [`Timestamp`]. |
| 665 | /// |
| 666 | /// The datetime string must correspond to a specific instant in time. This |
| 667 | /// requires an offset in the datetime string. |
| 668 | /// |
| 669 | /// # Errors |
| 670 | /// |
| 671 | /// This returns an error if the datetime string given is invalid or if it |
| 672 | /// is valid but doesn't fit in the datetime range supported by Jiff. |
| 673 | /// |
| 674 | /// # Example |
| 675 | /// |
| 676 | /// This shows a basic example of parsing an `Timestamp`. |
| 677 | /// |
| 678 | /// ``` |
| 679 | /// use jiff::fmt::temporal::DateTimeParser; |
| 680 | /// |
| 681 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 682 | /// |
| 683 | /// let timestamp = PARSER.parse_timestamp("2024-03-10T02:05-04" )?; |
| 684 | /// assert_eq!(timestamp.to_string(), "2024-03-10T06:05:00Z" ); |
| 685 | /// |
| 686 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 687 | /// ``` |
| 688 | /// |
| 689 | /// # Example: parsing a timestamp from a datetime with a time zone |
| 690 | /// |
| 691 | /// A timestamp can also be parsed fron a time zone aware datetime string. |
| 692 | /// The time zone is ignored and the offset is always used. |
| 693 | /// |
| 694 | /// ``` |
| 695 | /// use jiff::fmt::temporal::DateTimeParser; |
| 696 | /// |
| 697 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 698 | /// |
| 699 | /// let timestamp = PARSER.parse_timestamp( |
| 700 | /// "2024-03-10T02:05-04[America/New_York]" , |
| 701 | /// )?; |
| 702 | /// assert_eq!(timestamp.to_string(), "2024-03-10T06:05:00Z" ); |
| 703 | /// |
| 704 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 705 | /// ``` |
| 706 | pub fn parse_timestamp<I: AsRef<[u8]>>( |
| 707 | &self, |
| 708 | input: I, |
| 709 | ) -> Result<Timestamp, Error> { |
| 710 | let input = input.as_ref(); |
| 711 | let parsed = self.p.parse_temporal_datetime(input)?; |
| 712 | let dt = parsed.into_full()?; |
| 713 | let timestamp = dt.to_timestamp()?; |
| 714 | Ok(timestamp) |
| 715 | } |
| 716 | |
| 717 | /// Parse a civil datetime string into a [`civil::DateTime`]. |
| 718 | /// |
| 719 | /// A civil datetime can be parsed from anything that contains a datetime. |
| 720 | /// For example, a time zone aware string. |
| 721 | /// |
| 722 | /// # Errors |
| 723 | /// |
| 724 | /// This returns an error if the datetime string given is invalid or if it |
| 725 | /// is valid but doesn't fit in the datetime range supported by Jiff. |
| 726 | /// |
| 727 | /// This also returns an error if a `Z` (Zulu) offset is found, since |
| 728 | /// interpreting such strings as civil time is usually a bug. |
| 729 | /// |
| 730 | /// # Example |
| 731 | /// |
| 732 | /// This shows a basic example of parsing a `civil::DateTime`. |
| 733 | /// |
| 734 | /// ``` |
| 735 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser}; |
| 736 | /// |
| 737 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 738 | /// |
| 739 | /// let datetime = PARSER.parse_datetime("2024-03-10T02:05" )?; |
| 740 | /// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0)); |
| 741 | /// |
| 742 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 743 | /// ``` |
| 744 | /// |
| 745 | /// # Example: parsing fails if a `Z` (Zulu) offset is encountered |
| 746 | /// |
| 747 | /// Because parsing a datetime with a `Z` offset and interpreting it as |
| 748 | /// a civil time is usually a bug, it is forbidden: |
| 749 | /// |
| 750 | /// ``` |
| 751 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser}; |
| 752 | /// |
| 753 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 754 | /// |
| 755 | /// assert!(PARSER.parse_datetime("2024-03-10T02:05Z" ).is_err()); |
| 756 | /// |
| 757 | /// // Note though that -00 and +00 offsets parse successfully. |
| 758 | /// let datetime = PARSER.parse_datetime("2024-03-10T02:05+00" )?; |
| 759 | /// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0)); |
| 760 | /// let datetime = PARSER.parse_datetime("2024-03-10T02:05-00" )?; |
| 761 | /// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0)); |
| 762 | /// |
| 763 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 764 | /// ``` |
| 765 | pub fn parse_datetime<I: AsRef<[u8]>>( |
| 766 | &self, |
| 767 | input: I, |
| 768 | ) -> Result<civil::DateTime, Error> { |
| 769 | let input = input.as_ref(); |
| 770 | let parsed = self.p.parse_temporal_datetime(input)?; |
| 771 | let dt = parsed.into_full()?; |
| 772 | let datetime = dt.to_datetime()?; |
| 773 | Ok(datetime) |
| 774 | } |
| 775 | |
| 776 | /// Parse a civil date string into a [`civil::Date`]. |
| 777 | /// |
| 778 | /// A civil date can be parsed from anything that contains a date. For |
| 779 | /// example, a time zone aware string. |
| 780 | /// |
| 781 | /// # Errors |
| 782 | /// |
| 783 | /// This returns an error if the date string given is invalid or if it |
| 784 | /// is valid but doesn't fit in the date range supported by Jiff. |
| 785 | /// |
| 786 | /// This also returns an error if a `Z` (Zulu) offset is found, since |
| 787 | /// interpreting such strings as civil date or time is usually a bug. |
| 788 | /// |
| 789 | /// # Example |
| 790 | /// |
| 791 | /// This shows a basic example of parsing a `civil::Date`. |
| 792 | /// |
| 793 | /// ``` |
| 794 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser}; |
| 795 | /// |
| 796 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 797 | /// |
| 798 | /// let d = PARSER.parse_date("2024-03-10" )?; |
| 799 | /// assert_eq!(d, date(2024, 3, 10)); |
| 800 | /// |
| 801 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 802 | /// ``` |
| 803 | /// |
| 804 | /// # Example: parsing fails if a `Z` (Zulu) offset is encountered |
| 805 | /// |
| 806 | /// Because parsing a date with a `Z` offset and interpreting it as |
| 807 | /// a civil date or time is usually a bug, it is forbidden: |
| 808 | /// |
| 809 | /// ``` |
| 810 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser}; |
| 811 | /// |
| 812 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 813 | /// |
| 814 | /// assert!(PARSER.parse_date("2024-03-10T00:00:00Z" ).is_err()); |
| 815 | /// |
| 816 | /// // Note though that -00 and +00 offsets parse successfully. |
| 817 | /// let d = PARSER.parse_date("2024-03-10T00:00:00+00" )?; |
| 818 | /// assert_eq!(d, date(2024, 3, 10)); |
| 819 | /// let d = PARSER.parse_date("2024-03-10T00:00:00-00" )?; |
| 820 | /// assert_eq!(d, date(2024, 3, 10)); |
| 821 | /// |
| 822 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 823 | /// ``` |
| 824 | pub fn parse_date<I: AsRef<[u8]>>( |
| 825 | &self, |
| 826 | input: I, |
| 827 | ) -> Result<civil::Date, Error> { |
| 828 | let input = input.as_ref(); |
| 829 | let parsed = self.p.parse_temporal_datetime(input)?; |
| 830 | let dt = parsed.into_full()?; |
| 831 | let date = dt.to_date()?; |
| 832 | Ok(date) |
| 833 | } |
| 834 | |
| 835 | /// Parse a civil time string into a [`civil::Time`]. |
| 836 | /// |
| 837 | /// A civil time can be parsed from anything that contains a time. |
| 838 | /// For example, a time zone aware string. |
| 839 | /// |
| 840 | /// # Errors |
| 841 | /// |
| 842 | /// This returns an error if the time string given is invalid or if it |
| 843 | /// is valid but doesn't fit in the time range supported by Jiff. |
| 844 | /// |
| 845 | /// This also returns an error if a `Z` (Zulu) offset is found, since |
| 846 | /// interpreting such strings as civil time is usually a bug. |
| 847 | /// |
| 848 | /// # Example |
| 849 | /// |
| 850 | /// This shows a basic example of parsing a `civil::Time`. |
| 851 | /// |
| 852 | /// ``` |
| 853 | /// use jiff::{civil::time, fmt::temporal::DateTimeParser}; |
| 854 | /// |
| 855 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 856 | /// |
| 857 | /// let t = PARSER.parse_time("02:05" )?; |
| 858 | /// assert_eq!(t, time(2, 5, 0, 0)); |
| 859 | /// |
| 860 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 861 | /// ``` |
| 862 | /// |
| 863 | /// # Example: parsing fails if a `Z` (Zulu) offset is encountered |
| 864 | /// |
| 865 | /// Because parsing a time with a `Z` offset and interpreting it as |
| 866 | /// a civil time is usually a bug, it is forbidden: |
| 867 | /// |
| 868 | /// ``` |
| 869 | /// use jiff::{civil::time, fmt::temporal::DateTimeParser}; |
| 870 | /// |
| 871 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 872 | /// |
| 873 | /// assert!(PARSER.parse_time("02:05Z" ).is_err()); |
| 874 | /// |
| 875 | /// // Note though that -00 and +00 offsets parse successfully. |
| 876 | /// let t = PARSER.parse_time("02:05+00" )?; |
| 877 | /// assert_eq!(t, time(2, 5, 0, 0)); |
| 878 | /// let t = PARSER.parse_time("02:05-00" )?; |
| 879 | /// assert_eq!(t, time(2, 5, 0, 0)); |
| 880 | /// |
| 881 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 882 | /// ``` |
| 883 | pub fn parse_time<I: AsRef<[u8]>>( |
| 884 | &self, |
| 885 | input: I, |
| 886 | ) -> Result<civil::Time, Error> { |
| 887 | let input = input.as_ref(); |
| 888 | let parsed = self.p.parse_temporal_time(input)?; |
| 889 | let parsed_time = parsed.into_full()?; |
| 890 | let time = parsed_time.to_time(); |
| 891 | Ok(time) |
| 892 | } |
| 893 | |
| 894 | /// Parses a string representing a time zone into a [`TimeZone`]. |
| 895 | /// |
| 896 | /// This will parse one of three different categories of strings: |
| 897 | /// |
| 898 | /// 1. An IANA Time Zone Database identifier. For example, |
| 899 | /// `America/New_York` or `UTC`. |
| 900 | /// 2. A fixed offset. For example, `-05:00` or `-00:44:30`. |
| 901 | /// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`. |
| 902 | /// |
| 903 | /// # Example |
| 904 | /// |
| 905 | /// This shows a few examples of parsing different kinds of time zones: |
| 906 | /// |
| 907 | /// ``` |
| 908 | /// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZone}}; |
| 909 | /// |
| 910 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 911 | /// |
| 912 | /// assert_eq!( |
| 913 | /// PARSER.parse_time_zone("-05:00" )?, |
| 914 | /// TimeZone::fixed(tz::offset(-5)), |
| 915 | /// ); |
| 916 | /// assert_eq!( |
| 917 | /// PARSER.parse_time_zone("+05:00:01" )?, |
| 918 | /// TimeZone::fixed(tz::Offset::from_seconds(5 * 60 * 60 + 1).unwrap()), |
| 919 | /// ); |
| 920 | /// assert_eq!( |
| 921 | /// PARSER.parse_time_zone("America/New_York" )?, |
| 922 | /// TimeZone::get("America/New_York" )?, |
| 923 | /// ); |
| 924 | /// assert_eq!( |
| 925 | /// PARSER.parse_time_zone("Israel" )?, |
| 926 | /// TimeZone::get("Israel" )?, |
| 927 | /// ); |
| 928 | /// assert_eq!( |
| 929 | /// PARSER.parse_time_zone("EST5EDT,M3.2.0,M11.1.0" )?, |
| 930 | /// TimeZone::posix("EST5EDT,M3.2.0,M11.1.0" )?, |
| 931 | /// ); |
| 932 | /// |
| 933 | /// // Some error cases! |
| 934 | /// assert!(PARSER.parse_time_zone("Z" ).is_err()); |
| 935 | /// assert!(PARSER.parse_time_zone("05:00" ).is_err()); |
| 936 | /// assert!(PARSER.parse_time_zone("+05:00:01.5" ).is_err()); |
| 937 | /// assert!(PARSER.parse_time_zone("Does/Not/Exist" ).is_err()); |
| 938 | /// |
| 939 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 940 | /// ``` |
| 941 | pub fn parse_time_zone<'i, I: AsRef<[u8]>>( |
| 942 | &self, |
| 943 | input: I, |
| 944 | ) -> Result<TimeZone, Error> { |
| 945 | self.parse_time_zone_with(crate::tz::db(), input) |
| 946 | } |
| 947 | |
| 948 | /// Parses a string representing a time zone into a [`TimeZone`] and |
| 949 | /// performs any time zone database lookups using the [`TimeZoneDatabase`] |
| 950 | /// given. |
| 951 | /// |
| 952 | /// This is like [`DateTimeParser::parse_time_zone`], but uses the time |
| 953 | /// zone database given instead of the implicit global time zone database. |
| 954 | /// |
| 955 | /// This will parse one of three different categories of strings: |
| 956 | /// |
| 957 | /// 1. An IANA Time Zone Database identifier. For example, |
| 958 | /// `America/New_York` or `UTC`. |
| 959 | /// 2. A fixed offset. For example, `-05:00` or `-00:44:30`. |
| 960 | /// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`. |
| 961 | /// |
| 962 | /// # Example |
| 963 | /// |
| 964 | /// ``` |
| 965 | /// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZone}}; |
| 966 | /// |
| 967 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 968 | /// |
| 969 | /// let db = jiff::tz::db(); |
| 970 | /// assert_eq!( |
| 971 | /// PARSER.parse_time_zone_with(db, "America/New_York" )?, |
| 972 | /// TimeZone::get("America/New_York" )?, |
| 973 | /// ); |
| 974 | /// |
| 975 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 976 | /// ``` |
| 977 | /// |
| 978 | /// See also the example for [`DateTimeParser::parse_zoned_with`] for a |
| 979 | /// more interesting example using a time zone database other than the |
| 980 | /// default. |
| 981 | pub fn parse_time_zone_with<'i, I: AsRef<[u8]>>( |
| 982 | &self, |
| 983 | db: &TimeZoneDatabase, |
| 984 | input: I, |
| 985 | ) -> Result<TimeZone, Error> { |
| 986 | let input = input.as_ref(); |
| 987 | let parsed = self.p.parse_time_zone(input)?.into_full()?; |
| 988 | parsed.into_time_zone(db) |
| 989 | } |
| 990 | |
| 991 | /// Parse a Temporal datetime string into [`Pieces`]. |
| 992 | /// |
| 993 | /// This is a lower level routine meant to give callers raw access to the |
| 994 | /// individual "pieces" of a parsed Temporal ISO 8601 datetime string. |
| 995 | /// Note that this only includes strings that have a date component. |
| 996 | /// |
| 997 | /// The benefit of this routine is that it only checks that the datetime |
| 998 | /// is itself valid. It doesn't do any automatic diambiguation, offset |
| 999 | /// conflict resolution or attempt to prevent you from shooting yourself |
| 1000 | /// in the foot. For example, this routine will let you parse a fixed |
| 1001 | /// offset datetime into a `Zoned` without a time zone abbreviation. |
| 1002 | /// |
| 1003 | /// Note that when using this routine, the |
| 1004 | /// [`DateTimeParser::offset_conflict`] and |
| 1005 | /// [`DateTimeParser::disambiguation`] configuration knobs are completely |
| 1006 | /// ignored. This is because with the lower level `Pieces`, callers must |
| 1007 | /// handle offset conflict resolution (if they want it) themselves. See |
| 1008 | /// the [`Pieces`] documentation for a case study on how to do this if |
| 1009 | /// you need it. |
| 1010 | /// |
| 1011 | /// # Errors |
| 1012 | /// |
| 1013 | /// This returns an error if the datetime string given is invalid or if it |
| 1014 | /// is valid but doesn't fit in the date range supported by Jiff. |
| 1015 | /// |
| 1016 | /// # Example |
| 1017 | /// |
| 1018 | /// This shows how to parse a fixed offset timestamp into a `Zoned`. |
| 1019 | /// |
| 1020 | /// ``` |
| 1021 | /// use jiff::{fmt::temporal::DateTimeParser, tz::TimeZone}; |
| 1022 | /// |
| 1023 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 1024 | /// |
| 1025 | /// let timestamp = "2025-01-02T15:13-05" ; |
| 1026 | /// |
| 1027 | /// // Normally this operation will fail. |
| 1028 | /// assert_eq!( |
| 1029 | /// PARSER.parse_zoned(timestamp).unwrap_err().to_string(), |
| 1030 | /// "failed to find time zone in square brackets in \ |
| 1031 | /// \"2025-01-02T15:13-05 \", which is required for \ |
| 1032 | /// parsing a zoned instant" , |
| 1033 | /// ); |
| 1034 | /// |
| 1035 | /// // But you can work-around this with `Pieces`, which gives you direct |
| 1036 | /// // access to the components parsed from the string. |
| 1037 | /// let pieces = PARSER.parse_pieces(timestamp)?; |
| 1038 | /// let time = pieces.time().unwrap_or_else(jiff::civil::Time::midnight); |
| 1039 | /// let dt = pieces.date().to_datetime(time); |
| 1040 | /// let tz = match pieces.to_time_zone()? { |
| 1041 | /// Some(tz) => tz, |
| 1042 | /// None => { |
| 1043 | /// let Some(offset) = pieces.to_numeric_offset() else { |
| 1044 | /// let msg = format!( |
| 1045 | /// "timestamp `{timestamp}` has no time zone \ |
| 1046 | /// or offset, and thus cannot be parsed into \ |
| 1047 | /// an instant" , |
| 1048 | /// ); |
| 1049 | /// return Err(msg.into()); |
| 1050 | /// }; |
| 1051 | /// TimeZone::fixed(offset) |
| 1052 | /// } |
| 1053 | /// }; |
| 1054 | /// // We don't bother with offset conflict resolution. And note that |
| 1055 | /// // this uses automatic "compatible" disambiguation in the case of |
| 1056 | /// // discontinuities. Of course, this is all moot if `TimeZone` is |
| 1057 | /// // fixed. The above code handles the case where it isn't! |
| 1058 | /// let zdt = tz.to_zoned(dt)?; |
| 1059 | /// assert_eq!(zdt.to_string(), "2025-01-02T15:13:00-05:00[-05:00]" ); |
| 1060 | /// |
| 1061 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1062 | /// ``` |
| 1063 | /// |
| 1064 | /// # Example: work around errors when a `Z` (Zulu) offset is encountered |
| 1065 | /// |
| 1066 | /// Because parsing a date with a `Z` offset and interpreting it as |
| 1067 | /// a civil date or time is usually a bug, it is forbidden: |
| 1068 | /// |
| 1069 | /// ``` |
| 1070 | /// use jiff::{civil::date, fmt::temporal::DateTimeParser}; |
| 1071 | /// |
| 1072 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 1073 | /// |
| 1074 | /// assert_eq!( |
| 1075 | /// PARSER.parse_date("2024-03-10T00:00:00Z" ).unwrap_err().to_string(), |
| 1076 | /// "cannot parse civil date from string with a Zulu offset, \ |
| 1077 | /// parse as a `Timestamp` and convert to a civil date instead" , |
| 1078 | /// ); |
| 1079 | /// |
| 1080 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1081 | /// ``` |
| 1082 | /// |
| 1083 | /// But this sort of error checking doesn't happen when you parse into a |
| 1084 | /// [`Pieces`]. You just get what was parsed, which lets you extract a |
| 1085 | /// date even if the higher level APIs forbid it: |
| 1086 | /// |
| 1087 | /// ``` |
| 1088 | /// use jiff::{civil, fmt::temporal::DateTimeParser, tz::Offset}; |
| 1089 | /// |
| 1090 | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
| 1091 | /// |
| 1092 | /// let pieces = PARSER.parse_pieces("2024-03-10T00:00:00Z" )?; |
| 1093 | /// assert_eq!(pieces.date(), civil::date(2024, 3, 10)); |
| 1094 | /// assert_eq!(pieces.time(), Some(civil::time(0, 0, 0, 0))); |
| 1095 | /// assert_eq!(pieces.to_numeric_offset(), Some(Offset::UTC)); |
| 1096 | /// assert_eq!(pieces.to_time_zone()?, None); |
| 1097 | /// |
| 1098 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1099 | /// ``` |
| 1100 | /// |
| 1101 | /// This is usually not the right thing to do. It isn't even suggested in |
| 1102 | /// the error message above. But if you know it's the right thing, then |
| 1103 | /// `Pieces` will let you do it. |
| 1104 | pub fn parse_pieces<'i, I: ?Sized + AsRef<[u8]> + 'i>( |
| 1105 | &self, |
| 1106 | input: &'i I, |
| 1107 | ) -> Result<Pieces<'i>, Error> { |
| 1108 | let input = input.as_ref(); |
| 1109 | let parsed = self.p.parse_temporal_datetime(input)?.into_full()?; |
| 1110 | let pieces = parsed.to_pieces()?; |
| 1111 | Ok(pieces) |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | /// A printer for Temporal datetimes. |
| 1116 | /// |
| 1117 | /// This printer converts an in memory representation of a datetime related |
| 1118 | /// type to a machine (but also human) readable format. Using this printer, one |
| 1119 | /// can convert [`Zoned`], [`Timestamp`], [`civil::DateTime`], [`civil::Date`] |
| 1120 | /// or [`civil::Time`] values to a string. Note that all of those types provide |
| 1121 | /// [`Diplay`](core::fmt::Display) implementations that utilize the default |
| 1122 | /// configuration of this printer. However, this printer can be configured to |
| 1123 | /// behave differently and can also print directly to anything that implements |
| 1124 | /// the [`fmt::Write`](Write) trait. |
| 1125 | /// |
| 1126 | /// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for |
| 1127 | /// more information on the specific format used. Note that the Temporal |
| 1128 | /// datetime parser is strictly more flexible than what is supported by this |
| 1129 | /// printer. For example, parsing `2024-06-15T07:00-04[America/New_York]` will |
| 1130 | /// work just fine, even though the seconds are omitted. However, this printer |
| 1131 | /// provides no way to write a datetime without the second component. |
| 1132 | /// |
| 1133 | /// # Example |
| 1134 | /// |
| 1135 | /// This example shows how to print a `Zoned` value with a space separating |
| 1136 | /// the date and time instead of the more standard `T` separator. |
| 1137 | /// |
| 1138 | /// ``` |
| 1139 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1140 | /// |
| 1141 | /// // A printer can be created in a const context. |
| 1142 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new().separator(b' ' ); |
| 1143 | /// |
| 1144 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 123456789).in_tz("America/New_York" )?; |
| 1145 | /// |
| 1146 | /// let mut buf = String::new(); |
| 1147 | /// // Printing to a `String` can never fail. |
| 1148 | /// PRINTER.print_zoned(&zdt, &mut buf).unwrap(); |
| 1149 | /// assert_eq!(buf, "2024-06-15 07:00:00.123456789-04:00[America/New_York]" ); |
| 1150 | /// |
| 1151 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1152 | /// ``` |
| 1153 | /// |
| 1154 | /// # Example: using adapters with `std::io::Write` and `std::fmt::Write` |
| 1155 | /// |
| 1156 | /// By using the [`StdIoWrite`](super::StdIoWrite) and |
| 1157 | /// [`StdFmtWrite`](super::StdFmtWrite) adapters, one can print datetimes |
| 1158 | /// directly to implementations of `std::io::Write` and `std::fmt::Write`, |
| 1159 | /// respectively. The example below demonstrates writing to anything |
| 1160 | /// that implements `std::io::Write`. Similar code can be written for |
| 1161 | /// `std::fmt::Write`. |
| 1162 | /// |
| 1163 | /// ```no_run |
| 1164 | /// use std::{fs::File, io::{BufWriter, Write}, path::Path}; |
| 1165 | /// |
| 1166 | /// use jiff::{civil::date, fmt::{StdIoWrite, temporal::DateTimePrinter}}; |
| 1167 | /// |
| 1168 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 1169 | /// |
| 1170 | /// let path = Path::new("/tmp/output" ); |
| 1171 | /// let mut file = BufWriter::new(File::create(path)?); |
| 1172 | /// DateTimePrinter::new().print_zoned(&zdt, StdIoWrite(&mut file)).unwrap(); |
| 1173 | /// file.flush()?; |
| 1174 | /// assert_eq!( |
| 1175 | /// std::fs::read_to_string(path)?, |
| 1176 | /// "2024-06-15T07:00:00-04:00[America/New_York]" , |
| 1177 | /// ); |
| 1178 | /// |
| 1179 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1180 | /// ``` |
| 1181 | #[derive (Debug)] |
| 1182 | pub struct DateTimePrinter { |
| 1183 | p: printer::DateTimePrinter, |
| 1184 | } |
| 1185 | |
| 1186 | impl DateTimePrinter { |
| 1187 | /// Create a new Temporal datetime printer with the default configuration. |
| 1188 | pub const fn new() -> DateTimePrinter { |
| 1189 | DateTimePrinter { p: printer::DateTimePrinter::new() } |
| 1190 | } |
| 1191 | |
| 1192 | /// Use lowercase for the datetime separator and the `Z` (Zulu) UTC offset. |
| 1193 | /// |
| 1194 | /// This is disabled by default. |
| 1195 | /// |
| 1196 | /// # Example |
| 1197 | /// |
| 1198 | /// This example shows how to print a `Zoned` value with a lowercase |
| 1199 | /// datetime separator. |
| 1200 | /// |
| 1201 | /// ``` |
| 1202 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1203 | /// |
| 1204 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new().lowercase(true); |
| 1205 | /// |
| 1206 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 1207 | /// |
| 1208 | /// let mut buf = String::new(); |
| 1209 | /// // Printing to a `String` can never fail. |
| 1210 | /// PRINTER.print_zoned(&zdt, &mut buf).unwrap(); |
| 1211 | /// assert_eq!(buf, "2024-06-15t07:00:00-04:00[America/New_York]" ); |
| 1212 | /// |
| 1213 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1214 | /// ``` |
| 1215 | #[inline ] |
| 1216 | pub const fn lowercase(mut self, yes: bool) -> DateTimePrinter { |
| 1217 | self.p = self.p.lowercase(yes); |
| 1218 | self |
| 1219 | } |
| 1220 | |
| 1221 | /// Use the given ASCII character to separate the date and time when |
| 1222 | /// printing [`Zoned`], [`Timestamp`] or [`civil::DateTime`] values. |
| 1223 | /// |
| 1224 | /// This is set to `T` by default. |
| 1225 | /// |
| 1226 | /// # Example |
| 1227 | /// |
| 1228 | /// This example shows how to print a `Zoned` value with a different |
| 1229 | /// datetime separator. |
| 1230 | /// |
| 1231 | /// ``` |
| 1232 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1233 | /// |
| 1234 | /// // We use a weird non-standard character here, but typically one would |
| 1235 | /// // use this method with an ASCII space. |
| 1236 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new().separator(b'~' ); |
| 1237 | /// |
| 1238 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 1239 | /// |
| 1240 | /// let mut buf = String::new(); |
| 1241 | /// // Printing to a `String` can never fail. |
| 1242 | /// PRINTER.print_zoned(&zdt, &mut buf).unwrap(); |
| 1243 | /// assert_eq!(buf, "2024-06-15~07:00:00-04:00[America/New_York]" ); |
| 1244 | /// |
| 1245 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1246 | /// ``` |
| 1247 | #[inline ] |
| 1248 | pub const fn separator(mut self, ascii_char: u8) -> DateTimePrinter { |
| 1249 | self.p = self.p.separator(ascii_char); |
| 1250 | self |
| 1251 | } |
| 1252 | |
| 1253 | /// Set the precision to use for formatting the fractional second component |
| 1254 | /// of a time. |
| 1255 | /// |
| 1256 | /// The default is `None`, which will automatically set the precision based |
| 1257 | /// on the value. |
| 1258 | /// |
| 1259 | /// When the precision is set to `N`, you'll always get precisely `N` |
| 1260 | /// digits after a decimal point (unless `N==0`, then no fractional |
| 1261 | /// component is printed), even if they are `0`. |
| 1262 | /// |
| 1263 | /// # Example |
| 1264 | /// |
| 1265 | /// ``` |
| 1266 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1267 | /// |
| 1268 | /// const PRINTER: DateTimePrinter = |
| 1269 | /// DateTimePrinter::new().precision(Some(3)); |
| 1270 | /// |
| 1271 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_456_789).in_tz("US/Eastern" )?; |
| 1272 | /// |
| 1273 | /// let mut buf = String::new(); |
| 1274 | /// // Printing to a `String` can never fail. |
| 1275 | /// PRINTER.print_zoned(&zdt, &mut buf).unwrap(); |
| 1276 | /// assert_eq!(buf, "2024-06-15T07:00:00.123-04:00[US/Eastern]" ); |
| 1277 | /// |
| 1278 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1279 | /// ``` |
| 1280 | /// |
| 1281 | /// # Example: available via formatting machinery |
| 1282 | /// |
| 1283 | /// When formatting datetime types that may contain a fractional second |
| 1284 | /// component, this can be set via Rust's formatting DSL. Specifically, |
| 1285 | /// it corresponds to the [`std::fmt::Formatter::precision`] setting. |
| 1286 | /// |
| 1287 | /// ``` |
| 1288 | /// use jiff::civil::date; |
| 1289 | /// |
| 1290 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern" )?; |
| 1291 | /// assert_eq!( |
| 1292 | /// format!("{zdt:.6}" ), |
| 1293 | /// "2024-06-15T07:00:00.123000-04:00[US/Eastern]" , |
| 1294 | /// ); |
| 1295 | /// // Precision values greater than 9 are clamped to 9. |
| 1296 | /// assert_eq!( |
| 1297 | /// format!("{zdt:.300}" ), |
| 1298 | /// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]" , |
| 1299 | /// ); |
| 1300 | /// // A precision of 0 implies the entire fractional |
| 1301 | /// // component is always truncated. |
| 1302 | /// assert_eq!( |
| 1303 | /// format!("{zdt:.0}" ), |
| 1304 | /// "2024-06-15T07:00:00-04:00[US/Eastern]" , |
| 1305 | /// ); |
| 1306 | /// |
| 1307 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1308 | /// ``` |
| 1309 | #[inline ] |
| 1310 | pub const fn precision( |
| 1311 | mut self, |
| 1312 | precision: Option<u8>, |
| 1313 | ) -> DateTimePrinter { |
| 1314 | self.p = self.p.precision(precision); |
| 1315 | self |
| 1316 | } |
| 1317 | |
| 1318 | /// Format a `Zoned` datetime into a string. |
| 1319 | /// |
| 1320 | /// This is a convenience routine for [`DateTimePrinter::print_zoned`] with |
| 1321 | /// a `String`. |
| 1322 | /// |
| 1323 | /// # Example |
| 1324 | /// |
| 1325 | /// ``` |
| 1326 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1327 | /// |
| 1328 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1329 | /// |
| 1330 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 1331 | /// assert_eq!( |
| 1332 | /// PRINTER.zoned_to_string(&zdt), |
| 1333 | /// "2024-06-15T07:00:00-04:00[America/New_York]" , |
| 1334 | /// ); |
| 1335 | /// |
| 1336 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1337 | /// ``` |
| 1338 | #[cfg (feature = "alloc" )] |
| 1339 | pub fn zoned_to_string(&self, zdt: &Zoned) -> alloc::string::String { |
| 1340 | let mut buf = alloc::string::String::with_capacity(4); |
| 1341 | // OK because writing to `String` never fails. |
| 1342 | self.print_zoned(zdt, &mut buf).unwrap(); |
| 1343 | buf |
| 1344 | } |
| 1345 | |
| 1346 | /// Format a `Timestamp` datetime into a string. |
| 1347 | /// |
| 1348 | /// This will always return an RFC 3339 compatible string with a `Z` or |
| 1349 | /// Zulu offset. Zulu is chosen in accordance with RFC 9557's update to |
| 1350 | /// RFC 3339 that establishes the `-00:00` offset as equivalent to Zulu: |
| 1351 | /// |
| 1352 | /// > If the time in UTC is known, but the offset to local time is |
| 1353 | /// > unknown, this can be represented with an offset of "Z". (The |
| 1354 | /// > original version of this specification provided -00:00 for this |
| 1355 | /// > purpose, which is not allowed by ISO8601:2000 and therefore is |
| 1356 | /// > less interoperable; Section 3.3 of RFC5322 describes a related |
| 1357 | /// > convention for email, which does not have this problem). This |
| 1358 | /// > differs semantically from an offset of +00:00, which implies that |
| 1359 | /// > UTC is the preferred reference point for the specified time. |
| 1360 | /// |
| 1361 | /// In other words, both Zulu time and `-00:00` mean "the time in UTC is |
| 1362 | /// known, but the offset to local time is unknown." |
| 1363 | /// |
| 1364 | /// If you need to format an RFC 3339 timestamp with a specific offset, |
| 1365 | /// use [`DateTimePrinter::timestamp_with_offset_to_string`]. |
| 1366 | /// |
| 1367 | /// This is a convenience routine for [`DateTimePrinter::print_timestamp`] |
| 1368 | /// with a `String`. |
| 1369 | /// |
| 1370 | /// # Example |
| 1371 | /// |
| 1372 | /// ``` |
| 1373 | /// use jiff::{fmt::temporal::DateTimePrinter, Timestamp}; |
| 1374 | /// |
| 1375 | /// let timestamp = Timestamp::new(0, 1) |
| 1376 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1377 | /// assert_eq!( |
| 1378 | /// DateTimePrinter::new().timestamp_to_string(×tamp), |
| 1379 | /// "1970-01-01T00:00:00.000000001Z" , |
| 1380 | /// ); |
| 1381 | /// ``` |
| 1382 | #[cfg (feature = "alloc" )] |
| 1383 | pub fn timestamp_to_string( |
| 1384 | &self, |
| 1385 | timestamp: &Timestamp, |
| 1386 | ) -> alloc::string::String { |
| 1387 | let mut buf = alloc::string::String::with_capacity(4); |
| 1388 | // OK because writing to `String` never fails. |
| 1389 | self.print_timestamp(timestamp, &mut buf).unwrap(); |
| 1390 | buf |
| 1391 | } |
| 1392 | |
| 1393 | /// Format a `Timestamp` datetime into a string with the given offset. |
| 1394 | /// |
| 1395 | /// This will always return an RFC 3339 compatible string with an offset. |
| 1396 | /// |
| 1397 | /// This will never use either `Z` (for Zulu time) or `-00:00` as an |
| 1398 | /// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC |
| 1399 | /// is known, but the offset to local time is unknown." Since this routine |
| 1400 | /// accepts an explicit offset, the offset is known. For example, |
| 1401 | /// `Offset::UTC` will be formatted as `+00:00`. |
| 1402 | /// |
| 1403 | /// To format an RFC 3339 string in Zulu time, use |
| 1404 | /// [`DateTimePrinter::timestamp_to_string`]. |
| 1405 | /// |
| 1406 | /// This is a convenience routine for |
| 1407 | /// [`DateTimePrinter::print_timestamp_with_offset`] with a `String`. |
| 1408 | /// |
| 1409 | /// # Example |
| 1410 | /// |
| 1411 | /// ``` |
| 1412 | /// use jiff::{fmt::temporal::DateTimePrinter, tz, Timestamp}; |
| 1413 | /// |
| 1414 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1415 | /// |
| 1416 | /// let timestamp = Timestamp::new(0, 1) |
| 1417 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1418 | /// assert_eq!( |
| 1419 | /// PRINTER.timestamp_with_offset_to_string(×tamp, tz::offset(-5)), |
| 1420 | /// "1969-12-31T19:00:00.000000001-05:00" , |
| 1421 | /// ); |
| 1422 | /// ``` |
| 1423 | /// |
| 1424 | /// # Example: `Offset::UTC` formats as `+00:00` |
| 1425 | /// |
| 1426 | /// ``` |
| 1427 | /// use jiff::{fmt::temporal::DateTimePrinter, tz::Offset, Timestamp}; |
| 1428 | /// |
| 1429 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1430 | /// |
| 1431 | /// let timestamp = Timestamp::new(0, 1) |
| 1432 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1433 | /// assert_eq!( |
| 1434 | /// PRINTER.timestamp_with_offset_to_string(×tamp, Offset::UTC), |
| 1435 | /// "1970-01-01T00:00:00.000000001+00:00" , |
| 1436 | /// ); |
| 1437 | /// ``` |
| 1438 | #[cfg (feature = "alloc" )] |
| 1439 | pub fn timestamp_with_offset_to_string( |
| 1440 | &self, |
| 1441 | timestamp: &Timestamp, |
| 1442 | offset: Offset, |
| 1443 | ) -> alloc::string::String { |
| 1444 | let mut buf = alloc::string::String::with_capacity(4); |
| 1445 | // OK because writing to `String` never fails. |
| 1446 | self.print_timestamp_with_offset(timestamp, offset, &mut buf).unwrap(); |
| 1447 | buf |
| 1448 | } |
| 1449 | |
| 1450 | /// Format a `civil::DateTime` into a string. |
| 1451 | /// |
| 1452 | /// This is a convenience routine for [`DateTimePrinter::print_datetime`] |
| 1453 | /// with a `String`. |
| 1454 | /// |
| 1455 | /// # Example |
| 1456 | /// |
| 1457 | /// ``` |
| 1458 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1459 | /// |
| 1460 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1461 | /// |
| 1462 | /// let dt = date(2024, 6, 15).at(7, 0, 0, 0); |
| 1463 | /// assert_eq!(PRINTER.datetime_to_string(&dt), "2024-06-15T07:00:00" ); |
| 1464 | /// ``` |
| 1465 | #[cfg (feature = "alloc" )] |
| 1466 | pub fn datetime_to_string( |
| 1467 | &self, |
| 1468 | dt: &civil::DateTime, |
| 1469 | ) -> alloc::string::String { |
| 1470 | let mut buf = alloc::string::String::with_capacity(4); |
| 1471 | // OK because writing to `String` never fails. |
| 1472 | self.print_datetime(dt, &mut buf).unwrap(); |
| 1473 | buf |
| 1474 | } |
| 1475 | |
| 1476 | /// Format a `civil::Date` into a string. |
| 1477 | /// |
| 1478 | /// This is a convenience routine for [`DateTimePrinter::print_date`] |
| 1479 | /// with a `String`. |
| 1480 | /// |
| 1481 | /// # Example |
| 1482 | /// |
| 1483 | /// ``` |
| 1484 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1485 | /// |
| 1486 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1487 | /// |
| 1488 | /// let d = date(2024, 6, 15); |
| 1489 | /// assert_eq!(PRINTER.date_to_string(&d), "2024-06-15" ); |
| 1490 | /// ``` |
| 1491 | #[cfg (feature = "alloc" )] |
| 1492 | pub fn date_to_string(&self, date: &civil::Date) -> alloc::string::String { |
| 1493 | let mut buf = alloc::string::String::with_capacity(4); |
| 1494 | // OK because writing to `String` never fails. |
| 1495 | self.print_date(date, &mut buf).unwrap(); |
| 1496 | buf |
| 1497 | } |
| 1498 | |
| 1499 | /// Format a `civil::Time` into a string. |
| 1500 | /// |
| 1501 | /// This is a convenience routine for [`DateTimePrinter::print_time`] |
| 1502 | /// with a `String`. |
| 1503 | /// |
| 1504 | /// # Example |
| 1505 | /// |
| 1506 | /// ``` |
| 1507 | /// use jiff::{civil::time, fmt::temporal::DateTimePrinter}; |
| 1508 | /// |
| 1509 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1510 | /// |
| 1511 | /// let t = time(7, 0, 0, 0); |
| 1512 | /// assert_eq!(PRINTER.time_to_string(&t), "07:00:00" ); |
| 1513 | /// ``` |
| 1514 | #[cfg (feature = "alloc" )] |
| 1515 | pub fn time_to_string(&self, time: &civil::Time) -> alloc::string::String { |
| 1516 | let mut buf = alloc::string::String::with_capacity(4); |
| 1517 | // OK because writing to `String` never fails. |
| 1518 | self.print_time(time, &mut buf).unwrap(); |
| 1519 | buf |
| 1520 | } |
| 1521 | |
| 1522 | /// Format a `TimeZone` into a string. |
| 1523 | /// |
| 1524 | /// This is a convenience routine for [`DateTimePrinter::print_time_zone`]. |
| 1525 | /// |
| 1526 | /// # Errors |
| 1527 | /// |
| 1528 | /// In some rare cases, serialization may fail when there is no succinct |
| 1529 | /// representation of a time zone. One specific case in which this |
| 1530 | /// occurs is when `TimeZone` is a user's system time zone derived from |
| 1531 | /// `/etc/localtime`, but where an IANA time zone identifier could not |
| 1532 | /// be found. This can occur, for example, when `/etc/localtime` is not |
| 1533 | /// symlinked to an entry in `/usr/share/zoneinfo`. |
| 1534 | /// |
| 1535 | /// # Example |
| 1536 | /// |
| 1537 | /// ``` |
| 1538 | /// use jiff::{fmt::temporal::DateTimePrinter, tz::{self, TimeZone}}; |
| 1539 | /// |
| 1540 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1541 | /// |
| 1542 | /// // IANA time zone |
| 1543 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1544 | /// assert_eq!(PRINTER.time_zone_to_string(&tz)?, "US/Eastern" ); |
| 1545 | /// |
| 1546 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1547 | /// ``` |
| 1548 | #[cfg (feature = "alloc" )] |
| 1549 | pub fn time_zone_to_string( |
| 1550 | &self, |
| 1551 | tz: &TimeZone, |
| 1552 | ) -> Result<alloc::string::String, Error> { |
| 1553 | let mut buf = alloc::string::String::with_capacity(4); |
| 1554 | // Writing to a `String` itself will never fail, but this could fail |
| 1555 | // as described above in the docs. |
| 1556 | self.print_time_zone(tz, &mut buf)?; |
| 1557 | Ok(buf) |
| 1558 | } |
| 1559 | |
| 1560 | /// Format `Pieces` of a Temporal datetime. |
| 1561 | /// |
| 1562 | /// This is a convenience routine for [`DateTimePrinter::print_pieces`] |
| 1563 | /// with a `String`. |
| 1564 | /// |
| 1565 | /// # Example |
| 1566 | /// |
| 1567 | /// ``` |
| 1568 | /// use jiff::{ |
| 1569 | /// fmt::temporal::{DateTimePrinter, Pieces}, |
| 1570 | /// tz::offset, |
| 1571 | /// Timestamp, |
| 1572 | /// }; |
| 1573 | /// |
| 1574 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1575 | /// |
| 1576 | /// let pieces = Pieces::from(Timestamp::UNIX_EPOCH); |
| 1577 | /// assert_eq!( |
| 1578 | /// PRINTER.pieces_to_string(&pieces), |
| 1579 | /// "1970-01-01T00:00:00Z" , |
| 1580 | /// ); |
| 1581 | /// |
| 1582 | /// let pieces = Pieces::from((Timestamp::UNIX_EPOCH, offset(0))); |
| 1583 | /// assert_eq!( |
| 1584 | /// PRINTER.pieces_to_string(&pieces), |
| 1585 | /// "1970-01-01T00:00:00+00:00" , |
| 1586 | /// ); |
| 1587 | /// |
| 1588 | /// let pieces = Pieces::from((Timestamp::UNIX_EPOCH, offset(-5))); |
| 1589 | /// assert_eq!( |
| 1590 | /// PRINTER.pieces_to_string(&pieces), |
| 1591 | /// "1969-12-31T19:00:00-05:00" , |
| 1592 | /// ); |
| 1593 | /// |
| 1594 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1595 | /// ``` |
| 1596 | #[cfg (feature = "alloc" )] |
| 1597 | pub fn pieces_to_string(&self, pieces: &Pieces) -> alloc::string::String { |
| 1598 | let mut buf = alloc::string::String::with_capacity(4); |
| 1599 | // OK because writing to `String` never fails. |
| 1600 | self.print_pieces(pieces, &mut buf).unwrap(); |
| 1601 | buf |
| 1602 | } |
| 1603 | |
| 1604 | /// Print a `Zoned` datetime to the given writer. |
| 1605 | /// |
| 1606 | /// # Errors |
| 1607 | /// |
| 1608 | /// This only returns an error when writing to the given [`Write`] |
| 1609 | /// implementation would fail. Some such implementations, like for `String` |
| 1610 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1611 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1612 | /// |
| 1613 | /// # Example |
| 1614 | /// |
| 1615 | /// ``` |
| 1616 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1617 | /// |
| 1618 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1619 | /// |
| 1620 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 1621 | /// |
| 1622 | /// let mut buf = String::new(); |
| 1623 | /// // Printing to a `String` can never fail. |
| 1624 | /// PRINTER.print_zoned(&zdt, &mut buf).unwrap(); |
| 1625 | /// assert_eq!(buf, "2024-06-15T07:00:00-04:00[America/New_York]" ); |
| 1626 | /// |
| 1627 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1628 | /// ``` |
| 1629 | pub fn print_zoned<W: Write>( |
| 1630 | &self, |
| 1631 | zdt: &Zoned, |
| 1632 | wtr: W, |
| 1633 | ) -> Result<(), Error> { |
| 1634 | self.p.print_zoned(zdt, wtr) |
| 1635 | } |
| 1636 | |
| 1637 | /// Print a `Timestamp` datetime to the given writer. |
| 1638 | /// |
| 1639 | /// This will always write an RFC 3339 compatible string with a `Z` or |
| 1640 | /// Zulu offset. Zulu is chosen in accordance with RFC 9557's update to |
| 1641 | /// RFC 3339 that establishes the `-00:00` offset as equivalent to Zulu: |
| 1642 | /// |
| 1643 | /// > If the time in UTC is known, but the offset to local time is |
| 1644 | /// > unknown, this can be represented with an offset of "Z". (The |
| 1645 | /// > original version of this specification provided -00:00 for this |
| 1646 | /// > purpose, which is not allowed by ISO8601:2000 and therefore is |
| 1647 | /// > less interoperable; Section 3.3 of RFC5322 describes a related |
| 1648 | /// > convention for email, which does not have this problem). This |
| 1649 | /// > differs semantically from an offset of +00:00, which implies that |
| 1650 | /// > UTC is the preferred reference point for the specified time. |
| 1651 | /// |
| 1652 | /// In other words, both Zulu time and `-00:00` mean "the time in UTC is |
| 1653 | /// known, but the offset to local time is unknown." |
| 1654 | /// |
| 1655 | /// If you need to write an RFC 3339 timestamp with a specific offset, |
| 1656 | /// use [`DateTimePrinter::print_timestamp_with_offset`]. |
| 1657 | /// |
| 1658 | /// # Errors |
| 1659 | /// |
| 1660 | /// This only returns an error when writing to the given [`Write`] |
| 1661 | /// implementation would fail. Some such implementations, like for `String` |
| 1662 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1663 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1664 | /// |
| 1665 | /// # Example |
| 1666 | /// |
| 1667 | /// ``` |
| 1668 | /// use jiff::{fmt::temporal::DateTimePrinter, Timestamp}; |
| 1669 | /// |
| 1670 | /// let timestamp = Timestamp::new(0, 1) |
| 1671 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1672 | /// |
| 1673 | /// let mut buf = String::new(); |
| 1674 | /// // Printing to a `String` can never fail. |
| 1675 | /// DateTimePrinter::new().print_timestamp(×tamp, &mut buf).unwrap(); |
| 1676 | /// assert_eq!(buf, "1970-01-01T00:00:00.000000001Z" ); |
| 1677 | /// |
| 1678 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1679 | /// ``` |
| 1680 | pub fn print_timestamp<W: Write>( |
| 1681 | &self, |
| 1682 | timestamp: &Timestamp, |
| 1683 | wtr: W, |
| 1684 | ) -> Result<(), Error> { |
| 1685 | self.p.print_timestamp(timestamp, None, wtr) |
| 1686 | } |
| 1687 | |
| 1688 | /// Print a `Timestamp` datetime to the given writer with the given offset. |
| 1689 | /// |
| 1690 | /// This will always write an RFC 3339 compatible string with an offset. |
| 1691 | /// |
| 1692 | /// This will never write either `Z` (for Zulu time) or `-00:00` as an |
| 1693 | /// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC |
| 1694 | /// is known, but the offset to local time is unknown." Since this routine |
| 1695 | /// accepts an explicit offset, the offset is known. For example, |
| 1696 | /// `Offset::UTC` will be formatted as `+00:00`. |
| 1697 | /// |
| 1698 | /// To write an RFC 3339 string in Zulu time, use |
| 1699 | /// [`DateTimePrinter::print_timestamp`]. |
| 1700 | /// |
| 1701 | /// # Errors |
| 1702 | /// |
| 1703 | /// This only returns an error when writing to the given [`Write`] |
| 1704 | /// implementation would fail. Some such implementations, like for `String` |
| 1705 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1706 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1707 | /// |
| 1708 | /// # Example |
| 1709 | /// |
| 1710 | /// ``` |
| 1711 | /// use jiff::{fmt::temporal::DateTimePrinter, tz, Timestamp}; |
| 1712 | /// |
| 1713 | /// let timestamp = Timestamp::new(0, 1) |
| 1714 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1715 | /// |
| 1716 | /// let mut buf = String::new(); |
| 1717 | /// // Printing to a `String` can never fail. |
| 1718 | /// DateTimePrinter::new().print_timestamp_with_offset( |
| 1719 | /// ×tamp, |
| 1720 | /// tz::offset(-5), |
| 1721 | /// &mut buf, |
| 1722 | /// ).unwrap(); |
| 1723 | /// assert_eq!(buf, "1969-12-31T19:00:00.000000001-05:00" ); |
| 1724 | /// |
| 1725 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1726 | /// ``` |
| 1727 | /// |
| 1728 | /// # Example: `Offset::UTC` formats as `+00:00` |
| 1729 | /// |
| 1730 | /// ``` |
| 1731 | /// use jiff::{fmt::temporal::DateTimePrinter, tz::Offset, Timestamp}; |
| 1732 | /// |
| 1733 | /// let timestamp = Timestamp::new(0, 1) |
| 1734 | /// .expect("one nanosecond after Unix epoch is always valid" ); |
| 1735 | /// |
| 1736 | /// let mut buf = String::new(); |
| 1737 | /// // Printing to a `String` can never fail. |
| 1738 | /// DateTimePrinter::new().print_timestamp_with_offset( |
| 1739 | /// ×tamp, |
| 1740 | /// Offset::UTC, // equivalent to `Offset::from_hours(0)` |
| 1741 | /// &mut buf, |
| 1742 | /// ).unwrap(); |
| 1743 | /// assert_eq!(buf, "1970-01-01T00:00:00.000000001+00:00" ); |
| 1744 | /// |
| 1745 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1746 | /// ``` |
| 1747 | pub fn print_timestamp_with_offset<W: Write>( |
| 1748 | &self, |
| 1749 | timestamp: &Timestamp, |
| 1750 | offset: Offset, |
| 1751 | wtr: W, |
| 1752 | ) -> Result<(), Error> { |
| 1753 | self.p.print_timestamp(timestamp, Some(offset), wtr) |
| 1754 | } |
| 1755 | |
| 1756 | /// Print a `civil::DateTime` to the given writer. |
| 1757 | /// |
| 1758 | /// # Errors |
| 1759 | /// |
| 1760 | /// This only returns an error when writing to the given [`Write`] |
| 1761 | /// implementation would fail. Some such implementations, like for `String` |
| 1762 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1763 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1764 | /// |
| 1765 | /// # Example |
| 1766 | /// |
| 1767 | /// ``` |
| 1768 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1769 | /// |
| 1770 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1771 | /// |
| 1772 | /// let d = date(2024, 6, 15).at(7, 0, 0, 0); |
| 1773 | /// |
| 1774 | /// let mut buf = String::new(); |
| 1775 | /// // Printing to a `String` can never fail. |
| 1776 | /// PRINTER.print_datetime(&d, &mut buf).unwrap(); |
| 1777 | /// assert_eq!(buf, "2024-06-15T07:00:00" ); |
| 1778 | /// |
| 1779 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1780 | /// ``` |
| 1781 | pub fn print_datetime<W: Write>( |
| 1782 | &self, |
| 1783 | dt: &civil::DateTime, |
| 1784 | wtr: W, |
| 1785 | ) -> Result<(), Error> { |
| 1786 | self.p.print_datetime(dt, wtr) |
| 1787 | } |
| 1788 | |
| 1789 | /// Print a `civil::Date` to the given writer. |
| 1790 | /// |
| 1791 | /// # Errors |
| 1792 | /// |
| 1793 | /// This only returns an error when writing to the given [`Write`] |
| 1794 | /// implementation would fail. Some such implementations, like for `String` |
| 1795 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1796 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1797 | /// |
| 1798 | /// # Example |
| 1799 | /// |
| 1800 | /// ``` |
| 1801 | /// use jiff::{civil::date, fmt::temporal::DateTimePrinter}; |
| 1802 | /// |
| 1803 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1804 | /// |
| 1805 | /// let d = date(2024, 6, 15); |
| 1806 | /// |
| 1807 | /// let mut buf = String::new(); |
| 1808 | /// // Printing to a `String` can never fail. |
| 1809 | /// PRINTER.print_date(&d, &mut buf).unwrap(); |
| 1810 | /// assert_eq!(buf, "2024-06-15" ); |
| 1811 | /// |
| 1812 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1813 | /// ``` |
| 1814 | pub fn print_date<W: Write>( |
| 1815 | &self, |
| 1816 | date: &civil::Date, |
| 1817 | wtr: W, |
| 1818 | ) -> Result<(), Error> { |
| 1819 | self.p.print_date(date, wtr) |
| 1820 | } |
| 1821 | |
| 1822 | /// Print a `civil::Time` to the given writer. |
| 1823 | /// |
| 1824 | /// # Errors |
| 1825 | /// |
| 1826 | /// This only returns an error when writing to the given [`Write`] |
| 1827 | /// implementation would fail. Some such implementations, like for `String` |
| 1828 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1829 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1830 | /// |
| 1831 | /// # Example |
| 1832 | /// |
| 1833 | /// ``` |
| 1834 | /// use jiff::{civil::time, fmt::temporal::DateTimePrinter}; |
| 1835 | /// |
| 1836 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1837 | /// |
| 1838 | /// let t = time(7, 0, 0, 0); |
| 1839 | /// |
| 1840 | /// let mut buf = String::new(); |
| 1841 | /// // Printing to a `String` can never fail. |
| 1842 | /// PRINTER.print_time(&t, &mut buf).unwrap(); |
| 1843 | /// assert_eq!(buf, "07:00:00" ); |
| 1844 | /// |
| 1845 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1846 | /// ``` |
| 1847 | pub fn print_time<W: Write>( |
| 1848 | &self, |
| 1849 | time: &civil::Time, |
| 1850 | wtr: W, |
| 1851 | ) -> Result<(), Error> { |
| 1852 | self.p.print_time(time, wtr) |
| 1853 | } |
| 1854 | |
| 1855 | /// Print a `TimeZone`. |
| 1856 | /// |
| 1857 | /// This will emit one of three different categories of strings: |
| 1858 | /// |
| 1859 | /// 1. An IANA Time Zone Database identifier. For example, |
| 1860 | /// `America/New_York` or `UTC`. |
| 1861 | /// 2. A fixed offset. For example, `-05:00` or `-00:44:30`. |
| 1862 | /// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`. |
| 1863 | /// |
| 1864 | /// # Differences with RFC 9557 annotations |
| 1865 | /// |
| 1866 | /// Jiff's [`Offset`] has second precision. If a `TimeZone` is a fixed |
| 1867 | /// offset and has fractional minutes, then they will be expressed in the |
| 1868 | /// `[+-]HH:MM:SS` format. Otherwise, the `:SS` will be omitted. |
| 1869 | /// |
| 1870 | /// This differs from RFC 3339 and RFC 9557 because neither support |
| 1871 | /// sub-minute resolution in UTC offsets. Indeed, if one were to format |
| 1872 | /// a `Zoned` with an offset that contains fractional minutes, the offset |
| 1873 | /// would be rounded to the nearest minute to preserve compatibility with |
| 1874 | /// RFC 3339 and RFC 9557. However, this routine does no such rounding. |
| 1875 | /// This is because there is no RFC standardizing the serialization of |
| 1876 | /// a lone time zone, and there is otherwise no need to reduce an offset's |
| 1877 | /// precision. |
| 1878 | /// |
| 1879 | /// # Errors |
| 1880 | /// |
| 1881 | /// In some rare cases, serialization may fail when there is no succinct |
| 1882 | /// representation of a time zone. One specific case in which this |
| 1883 | /// occurs is when `TimeZone` is a user's system time zone derived from |
| 1884 | /// `/etc/localtime`, but where an IANA time zone identifier could not |
| 1885 | /// be found. This can occur, for example, when `/etc/localtime` is not |
| 1886 | /// symlinked to an entry in `/usr/share/zoneinfo`. |
| 1887 | /// |
| 1888 | /// An error can also occur when writing to the given [`Write`] |
| 1889 | /// implementation would fail. Some such implementations, like for `String` |
| 1890 | /// and `Vec<u8>`, never fail (unless memory allocation fails). |
| 1891 | /// |
| 1892 | /// # Example |
| 1893 | /// |
| 1894 | /// ``` |
| 1895 | /// use jiff::{fmt::temporal::DateTimePrinter, tz::{self, TimeZone}}; |
| 1896 | /// |
| 1897 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1898 | /// |
| 1899 | /// // IANA time zone |
| 1900 | /// let tz = TimeZone::get("US/Eastern" )?; |
| 1901 | /// let mut buf = String::new(); |
| 1902 | /// PRINTER.print_time_zone(&tz, &mut buf)?; |
| 1903 | /// assert_eq!(buf, "US/Eastern" ); |
| 1904 | /// |
| 1905 | /// // Fixed offset |
| 1906 | /// let tz = TimeZone::fixed(tz::offset(-5)); |
| 1907 | /// let mut buf = String::new(); |
| 1908 | /// PRINTER.print_time_zone(&tz, &mut buf)?; |
| 1909 | /// assert_eq!(buf, "-05:00" ); |
| 1910 | /// |
| 1911 | /// // POSIX time zone |
| 1912 | /// let tz = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0" )?; |
| 1913 | /// let mut buf = String::new(); |
| 1914 | /// PRINTER.print_time_zone(&tz, &mut buf)?; |
| 1915 | /// assert_eq!(buf, "EST5EDT,M3.2.0,M11.1.0" ); |
| 1916 | /// |
| 1917 | /// // The error case for a time zone that doesn't fall |
| 1918 | /// // into one of the three categories about is not easy |
| 1919 | /// // to create artificially. The only way, at time of |
| 1920 | /// // writing, to produce it is via `TimeZone::system()` |
| 1921 | /// // with a non-symlinked `/etc/timezone`. (Or `TZ` set |
| 1922 | /// // to the path of a similar file.) |
| 1923 | /// |
| 1924 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1925 | /// ``` |
| 1926 | pub fn print_time_zone<W: Write>( |
| 1927 | &self, |
| 1928 | tz: &TimeZone, |
| 1929 | wtr: W, |
| 1930 | ) -> Result<(), Error> { |
| 1931 | self.p.print_time_zone(tz, wtr) |
| 1932 | } |
| 1933 | |
| 1934 | /// Print the `Pieces` of a Temporal datetime. |
| 1935 | /// |
| 1936 | /// # Errors |
| 1937 | /// |
| 1938 | /// This only returns an error when writing to the given [`Write`] |
| 1939 | /// implementation would fail. Some such implementations, like for `String` |
| 1940 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 1941 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 1942 | /// |
| 1943 | /// # Example |
| 1944 | /// |
| 1945 | /// ``` |
| 1946 | /// use jiff::{civil::date, fmt::temporal::{DateTimePrinter, Pieces}}; |
| 1947 | /// |
| 1948 | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
| 1949 | /// |
| 1950 | /// let pieces = Pieces::from(date(2024, 6, 15)) |
| 1951 | /// .with_time_zone_name("US/Eastern" ); |
| 1952 | /// |
| 1953 | /// let mut buf = String::new(); |
| 1954 | /// // Printing to a `String` can never fail. |
| 1955 | /// PRINTER.print_pieces(&pieces, &mut buf).unwrap(); |
| 1956 | /// assert_eq!(buf, "2024-06-15[US/Eastern]" ); |
| 1957 | /// |
| 1958 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1959 | /// ``` |
| 1960 | pub fn print_pieces<W: Write>( |
| 1961 | &self, |
| 1962 | pieces: &Pieces, |
| 1963 | wtr: W, |
| 1964 | ) -> Result<(), Error> { |
| 1965 | self.p.print_pieces(pieces, wtr) |
| 1966 | } |
| 1967 | } |
| 1968 | |
| 1969 | /// A parser for Temporal durations. |
| 1970 | /// |
| 1971 | /// Note that in Jiff, a "Temporal duration" is called a "span." |
| 1972 | /// |
| 1973 | /// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for |
| 1974 | /// more information on the specific format used. |
| 1975 | /// |
| 1976 | /// # Example |
| 1977 | /// |
| 1978 | /// This example shows how to parse a [`Span`] from a byte string. (That is, |
| 1979 | /// `&[u8]` and not a `&str`.) |
| 1980 | /// |
| 1981 | /// ``` |
| 1982 | /// use jiff::{fmt::temporal::SpanParser, ToSpan}; |
| 1983 | /// |
| 1984 | /// // A parser can be created in a const context. |
| 1985 | /// static PARSER: SpanParser = SpanParser::new(); |
| 1986 | /// |
| 1987 | /// let span = PARSER.parse_span(b"P3y7m25dT7h36m" )?; |
| 1988 | /// assert_eq!( |
| 1989 | /// span, |
| 1990 | /// 3.years().months(7).days(25).hours(7).minutes(36).fieldwise(), |
| 1991 | /// ); |
| 1992 | /// |
| 1993 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1994 | /// ``` |
| 1995 | #[derive (Debug)] |
| 1996 | pub struct SpanParser { |
| 1997 | p: parser::SpanParser, |
| 1998 | } |
| 1999 | |
| 2000 | impl SpanParser { |
| 2001 | /// Create a new Temporal datetime printer with the default configuration. |
| 2002 | #[inline ] |
| 2003 | pub const fn new() -> SpanParser { |
| 2004 | SpanParser { p: parser::SpanParser::new() } |
| 2005 | } |
| 2006 | |
| 2007 | /// Parse a span string into a [`Span`] value. |
| 2008 | /// |
| 2009 | /// # Errors |
| 2010 | /// |
| 2011 | /// This returns an error if the span string given is invalid or if it |
| 2012 | /// is valid but doesn't fit in the span range supported by Jiff. |
| 2013 | /// |
| 2014 | /// # Example |
| 2015 | /// |
| 2016 | /// This shows a basic example of using this routine. |
| 2017 | /// |
| 2018 | /// ``` |
| 2019 | /// use jiff::{fmt::temporal::SpanParser, ToSpan}; |
| 2020 | /// |
| 2021 | /// static PARSER: SpanParser = SpanParser::new(); |
| 2022 | /// |
| 2023 | /// let span = PARSER.parse_span(b"PT48m" )?; |
| 2024 | /// assert_eq!(span, 48.minutes().fieldwise()); |
| 2025 | /// |
| 2026 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2027 | /// ``` |
| 2028 | /// |
| 2029 | /// Note that unless you need to parse a span from a byte string, |
| 2030 | /// at time of writing, there is no other advantage to using this |
| 2031 | /// parser directly. It is likely more convenient to just use the |
| 2032 | /// [`FromStr`](std::str::FromStr) trait implementation on [`Span`]: |
| 2033 | /// |
| 2034 | /// ``` |
| 2035 | /// use jiff::{Span, ToSpan}; |
| 2036 | /// |
| 2037 | /// let span = "PT48m" .parse::<Span>()?; |
| 2038 | /// assert_eq!(span, 48.minutes().fieldwise()); |
| 2039 | /// |
| 2040 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2041 | /// ``` |
| 2042 | pub fn parse_span<I: AsRef<[u8]>>(&self, input: I) -> Result<Span, Error> { |
| 2043 | let input = input.as_ref(); |
| 2044 | let parsed = self.p.parse_temporal_duration(input)?; |
| 2045 | let span = parsed.into_full()?; |
| 2046 | Ok(span) |
| 2047 | } |
| 2048 | |
| 2049 | /// Parse an ISO 8601 duration string into a [`SignedDuration`] value. |
| 2050 | /// |
| 2051 | /// # Errors |
| 2052 | /// |
| 2053 | /// This returns an error if the span string given is invalid or if it is |
| 2054 | /// valid but can't be converted to a `SignedDuration`. This can occur |
| 2055 | /// when the parsed time exceeds the minimum and maximum `SignedDuration` |
| 2056 | /// values, or if there are any non-zero units greater than hours. |
| 2057 | /// |
| 2058 | /// # Example |
| 2059 | /// |
| 2060 | /// This shows a basic example of using this routine. |
| 2061 | /// |
| 2062 | /// ``` |
| 2063 | /// use jiff::{fmt::temporal::SpanParser, SignedDuration}; |
| 2064 | /// |
| 2065 | /// static PARSER: SpanParser = SpanParser::new(); |
| 2066 | /// |
| 2067 | /// let duration = PARSER.parse_duration(b"PT48m" )?; |
| 2068 | /// assert_eq!(duration, SignedDuration::from_mins(48)); |
| 2069 | /// |
| 2070 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2071 | /// ``` |
| 2072 | /// |
| 2073 | /// Note that unless you need to parse a span from a byte string, |
| 2074 | /// at time of writing, there is no other advantage to using this |
| 2075 | /// parser directly. It is likely more convenient to just use |
| 2076 | /// the [`FromStr`](std::str::FromStr) trait implementation on |
| 2077 | /// [`SignedDuration`]: |
| 2078 | /// |
| 2079 | /// ``` |
| 2080 | /// use jiff::SignedDuration; |
| 2081 | /// |
| 2082 | /// let duration = "PT48m" .parse::<SignedDuration>()?; |
| 2083 | /// assert_eq!(duration, SignedDuration::from_mins(48)); |
| 2084 | /// |
| 2085 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2086 | /// ``` |
| 2087 | pub fn parse_duration<I: AsRef<[u8]>>( |
| 2088 | &self, |
| 2089 | input: I, |
| 2090 | ) -> Result<SignedDuration, Error> { |
| 2091 | let input = input.as_ref(); |
| 2092 | let parsed = self.p.parse_signed_duration(input)?; |
| 2093 | let dur = parsed.into_full()?; |
| 2094 | Ok(dur) |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | /// A printer for Temporal durations. |
| 2099 | /// |
| 2100 | /// Note that in Jiff, a "Temporal duration" is called a "span." |
| 2101 | /// |
| 2102 | /// This printer converts an in memory representation of a duration of time |
| 2103 | /// to a machine (but also human) readable format. Using this printer, |
| 2104 | /// one can convert a [`Span`] to a string. Note that a `Span` provides a |
| 2105 | /// [`Display`](std::fmt::Display) trait implementation that utilize the |
| 2106 | /// default configuration of this printer. However, this printer can print |
| 2107 | /// directly to anything that implements the [`fmt::Write`](Write) trait. |
| 2108 | /// |
| 2109 | /// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for |
| 2110 | /// more information on the specific format used. |
| 2111 | /// |
| 2112 | /// # Example |
| 2113 | /// |
| 2114 | /// This is a basic example showing how to print a [`Span`] directly to a |
| 2115 | /// `Vec<u8>`. |
| 2116 | /// |
| 2117 | /// ``` |
| 2118 | /// use jiff::{fmt::temporal::SpanPrinter, ToSpan}; |
| 2119 | /// |
| 2120 | /// // A printer can be created in a const context. |
| 2121 | /// const PRINTER: SpanPrinter = SpanPrinter::new(); |
| 2122 | /// |
| 2123 | /// let span = 48.minutes(); |
| 2124 | /// let mut buf = vec![]; |
| 2125 | /// // Printing to a `Vec<u8>` can never fail. |
| 2126 | /// PRINTER.print_span(&span, &mut buf).unwrap(); |
| 2127 | /// assert_eq!(buf, "PT48M" .as_bytes()); |
| 2128 | /// ``` |
| 2129 | /// |
| 2130 | /// # Example: using adapters with `std::io::Write` and `std::fmt::Write` |
| 2131 | /// |
| 2132 | /// By using the [`StdIoWrite`](super::StdIoWrite) and |
| 2133 | /// [`StdFmtWrite`](super::StdFmtWrite) adapters, one can print spans |
| 2134 | /// directly to implementations of `std::io::Write` and `std::fmt::Write`, |
| 2135 | /// respectively. The example below demonstrates writing to anything |
| 2136 | /// that implements `std::io::Write`. Similar code can be written for |
| 2137 | /// `std::fmt::Write`. |
| 2138 | /// |
| 2139 | /// ```no_run |
| 2140 | /// use std::{fs::File, io::{BufWriter, Write}, path::Path}; |
| 2141 | /// |
| 2142 | /// use jiff::{fmt::{StdIoWrite, temporal::SpanPrinter}, ToSpan}; |
| 2143 | /// |
| 2144 | /// let span = 48.minutes(); |
| 2145 | /// |
| 2146 | /// let path = Path::new("/tmp/output" ); |
| 2147 | /// let mut file = BufWriter::new(File::create(path)?); |
| 2148 | /// SpanPrinter::new().print_span(&span, StdIoWrite(&mut file)).unwrap(); |
| 2149 | /// file.flush()?; |
| 2150 | /// assert_eq!(std::fs::read_to_string(path)?, "PT48m" ); |
| 2151 | /// |
| 2152 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2153 | /// ``` |
| 2154 | #[derive (Debug)] |
| 2155 | pub struct SpanPrinter { |
| 2156 | p: printer::SpanPrinter, |
| 2157 | } |
| 2158 | |
| 2159 | impl SpanPrinter { |
| 2160 | /// Create a new Temporal span printer with the default configuration. |
| 2161 | #[inline ] |
| 2162 | pub const fn new() -> SpanPrinter { |
| 2163 | SpanPrinter { p: printer::SpanPrinter::new() } |
| 2164 | } |
| 2165 | |
| 2166 | /// Use lowercase for unit designator labels. |
| 2167 | /// |
| 2168 | /// By default, unit designator labels are written in uppercase. |
| 2169 | /// |
| 2170 | /// # Example |
| 2171 | /// |
| 2172 | /// This shows the difference between the default (uppercase) and enabling |
| 2173 | /// lowercase. Lowercase unit designator labels tend to be easier to read |
| 2174 | /// (in this author's opinion), but they aren't as broadly supported since |
| 2175 | /// they are an extension to ISO 8601. |
| 2176 | /// |
| 2177 | /// ``` |
| 2178 | /// use jiff::{fmt::temporal::SpanPrinter, ToSpan}; |
| 2179 | /// |
| 2180 | /// let span = 5.years().days(10).hours(1); |
| 2181 | /// let printer = SpanPrinter::new(); |
| 2182 | /// assert_eq!(printer.span_to_string(&span), "P5Y10DT1H" ); |
| 2183 | /// assert_eq!(printer.lowercase(true).span_to_string(&span), "P5y10dT1h" ); |
| 2184 | /// ``` |
| 2185 | #[inline ] |
| 2186 | pub const fn lowercase(self, yes: bool) -> SpanPrinter { |
| 2187 | SpanPrinter { p: self.p.lowercase(yes) } |
| 2188 | } |
| 2189 | |
| 2190 | /// Format a `Span` into a string. |
| 2191 | /// |
| 2192 | /// This is a convenience routine for [`SpanPrinter::print_span`] with |
| 2193 | /// a `String`. |
| 2194 | /// |
| 2195 | /// # Example |
| 2196 | /// |
| 2197 | /// ``` |
| 2198 | /// use jiff::{fmt::temporal::SpanPrinter, ToSpan}; |
| 2199 | /// |
| 2200 | /// const PRINTER: SpanPrinter = SpanPrinter::new(); |
| 2201 | /// |
| 2202 | /// let span = 3.years().months(5); |
| 2203 | /// assert_eq!(PRINTER.span_to_string(&span), "P3Y5M" ); |
| 2204 | /// |
| 2205 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2206 | /// ``` |
| 2207 | #[cfg (feature = "alloc" )] |
| 2208 | pub fn span_to_string(&self, span: &Span) -> alloc::string::String { |
| 2209 | let mut buf = alloc::string::String::with_capacity(4); |
| 2210 | // OK because writing to `String` never fails. |
| 2211 | self.print_span(span, &mut buf).unwrap(); |
| 2212 | buf |
| 2213 | } |
| 2214 | |
| 2215 | /// Format a `SignedDuration` into a string. |
| 2216 | /// |
| 2217 | /// This balances the units of the duration up to at most hours |
| 2218 | /// automatically. |
| 2219 | /// |
| 2220 | /// This is a convenience routine for [`SpanPrinter::print_duration`] with |
| 2221 | /// a `String`. |
| 2222 | /// |
| 2223 | /// # Example |
| 2224 | /// |
| 2225 | /// ``` |
| 2226 | /// use jiff::{fmt::temporal::SpanPrinter, SignedDuration}; |
| 2227 | /// |
| 2228 | /// const PRINTER: SpanPrinter = SpanPrinter::new(); |
| 2229 | /// |
| 2230 | /// let dur = SignedDuration::new(86_525, 123_000_789); |
| 2231 | /// assert_eq!(PRINTER.duration_to_string(&dur), "PT24H2M5.123000789S" ); |
| 2232 | /// assert_eq!(PRINTER.duration_to_string(&-dur), "-PT24H2M5.123000789S" ); |
| 2233 | /// |
| 2234 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2235 | /// ``` |
| 2236 | #[cfg (feature = "alloc" )] |
| 2237 | pub fn duration_to_string( |
| 2238 | &self, |
| 2239 | duration: &SignedDuration, |
| 2240 | ) -> alloc::string::String { |
| 2241 | let mut buf = alloc::string::String::with_capacity(4); |
| 2242 | // OK because writing to `String` never fails. |
| 2243 | self.print_duration(duration, &mut buf).unwrap(); |
| 2244 | buf |
| 2245 | } |
| 2246 | |
| 2247 | /// Print a `Span` to the given writer. |
| 2248 | /// |
| 2249 | /// # Errors |
| 2250 | /// |
| 2251 | /// This only returns an error when writing to the given [`Write`] |
| 2252 | /// implementation would fail. Some such implementations, like for `String` |
| 2253 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 2254 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 2255 | /// |
| 2256 | /// # Example |
| 2257 | /// |
| 2258 | /// ``` |
| 2259 | /// use jiff::{fmt::temporal::SpanPrinter, ToSpan}; |
| 2260 | /// |
| 2261 | /// const PRINTER: SpanPrinter = SpanPrinter::new(); |
| 2262 | /// |
| 2263 | /// let span = 3.years().months(5); |
| 2264 | /// |
| 2265 | /// let mut buf = String::new(); |
| 2266 | /// // Printing to a `String` can never fail. |
| 2267 | /// PRINTER.print_span(&span, &mut buf).unwrap(); |
| 2268 | /// assert_eq!(buf, "P3Y5M" ); |
| 2269 | /// |
| 2270 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2271 | /// ``` |
| 2272 | pub fn print_span<W: Write>( |
| 2273 | &self, |
| 2274 | span: &Span, |
| 2275 | wtr: W, |
| 2276 | ) -> Result<(), Error> { |
| 2277 | self.p.print_span(span, wtr) |
| 2278 | } |
| 2279 | |
| 2280 | /// Print a `SignedDuration` to the given writer. |
| 2281 | /// |
| 2282 | /// This balances the units of the duration up to at most hours |
| 2283 | /// automatically. |
| 2284 | /// |
| 2285 | /// # Errors |
| 2286 | /// |
| 2287 | /// This only returns an error when writing to the given [`Write`] |
| 2288 | /// implementation would fail. Some such implementations, like for `String` |
| 2289 | /// and `Vec<u8>`, never fail (unless memory allocation fails). In such |
| 2290 | /// cases, it would be appropriate to call `unwrap()` on the result. |
| 2291 | /// |
| 2292 | /// # Example |
| 2293 | /// |
| 2294 | /// ``` |
| 2295 | /// use jiff::{fmt::temporal::SpanPrinter, SignedDuration}; |
| 2296 | /// |
| 2297 | /// const PRINTER: SpanPrinter = SpanPrinter::new(); |
| 2298 | /// |
| 2299 | /// let dur = SignedDuration::new(86_525, 123_000_789); |
| 2300 | /// |
| 2301 | /// let mut buf = String::new(); |
| 2302 | /// // Printing to a `String` can never fail. |
| 2303 | /// PRINTER.print_duration(&dur, &mut buf).unwrap(); |
| 2304 | /// assert_eq!(buf, "PT24H2M5.123000789S" ); |
| 2305 | /// |
| 2306 | /// // Negative durations are supported. |
| 2307 | /// buf.clear(); |
| 2308 | /// PRINTER.print_duration(&-dur, &mut buf).unwrap(); |
| 2309 | /// assert_eq!(buf, "-PT24H2M5.123000789S" ); |
| 2310 | /// |
| 2311 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2312 | /// ``` |
| 2313 | pub fn print_duration<W: Write>( |
| 2314 | &self, |
| 2315 | duration: &SignedDuration, |
| 2316 | wtr: W, |
| 2317 | ) -> Result<(), Error> { |
| 2318 | self.p.print_duration(duration, wtr) |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | #[cfg (test)] |
| 2323 | mod tests { |
| 2324 | use alloc::string::ToString; |
| 2325 | |
| 2326 | use crate::Unit; |
| 2327 | |
| 2328 | use super::*; |
| 2329 | |
| 2330 | // This test ensures that strings like `2024-07-15+02` fail to parse. |
| 2331 | // Note though that `2024-07-15[America/New_York]` is okay! |
| 2332 | #[test ] |
| 2333 | fn err_temporal_datetime_offset() { |
| 2334 | insta::assert_snapshot!( |
| 2335 | DateTimeParser::new().parse_date(b"2024-07-15+02" ).unwrap_err(), |
| 2336 | @r###"parsed value '2024-07-15', but unparsed input "+02" remains (expected no unparsed input)"### , |
| 2337 | ); |
| 2338 | insta::assert_snapshot!( |
| 2339 | DateTimeParser::new().parse_date(b"2024-07-15-02" ).unwrap_err(), |
| 2340 | @r###"parsed value '2024-07-15', but unparsed input "-02" remains (expected no unparsed input)"### , |
| 2341 | ); |
| 2342 | } |
| 2343 | |
| 2344 | #[test ] |
| 2345 | fn year_zero() { |
| 2346 | insta::assert_snapshot!( |
| 2347 | DateTimeParser::new().parse_date("0000-01-01" ).unwrap(), |
| 2348 | @"0000-01-01" , |
| 2349 | ); |
| 2350 | insta::assert_snapshot!( |
| 2351 | DateTimeParser::new().parse_date("+000000-01-01" ).unwrap(), |
| 2352 | @"0000-01-01" , |
| 2353 | ); |
| 2354 | insta::assert_snapshot!( |
| 2355 | DateTimeParser::new().parse_date("-000000-01-01" ).unwrap_err(), |
| 2356 | @r###"failed to parse year in date "-000000-01-01": year zero must be written without a sign or a positive sign, but not a negative sign"### , |
| 2357 | ); |
| 2358 | } |
| 2359 | |
| 2360 | // Regression test for: https://github.com/BurntSushi/jiff/issues/59 |
| 2361 | #[test ] |
| 2362 | fn fractional_duration_roundtrip() { |
| 2363 | let span1: Span = "Pt843517081,1H" .parse().unwrap(); |
| 2364 | let span2: Span = span1.to_string().parse().unwrap(); |
| 2365 | assert_eq!( |
| 2366 | span1.total(Unit::Hour).unwrap(), |
| 2367 | span2.total(Unit::Hour).unwrap() |
| 2368 | ); |
| 2369 | } |
| 2370 | } |
| 2371 | |