| 1 | use core::time::Duration as UnsignedDuration; |
| 2 | |
| 3 | use crate::{ |
| 4 | civil::{Date, DateTime}, |
| 5 | duration::{Duration, SDuration}, |
| 6 | error::{err, Error, ErrorContext}, |
| 7 | fmt::{ |
| 8 | self, |
| 9 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
| 10 | }, |
| 11 | shared::util::itime::{ITime, ITimeNanosecond, ITimeSecond}, |
| 12 | util::{ |
| 13 | rangeint::{self, Composite, RFrom, RInto, TryRFrom}, |
| 14 | round::increment, |
| 15 | t::{ |
| 16 | self, CivilDayNanosecond, CivilDaySecond, Hour, Microsecond, |
| 17 | Millisecond, Minute, Nanosecond, Second, SubsecNanosecond, C, |
| 18 | }, |
| 19 | }, |
| 20 | RoundMode, SignedDuration, Span, SpanRound, Unit, Zoned, |
| 21 | }; |
| 22 | |
| 23 | /// A representation of civil "wall clock" time. |
| 24 | /// |
| 25 | /// Conceptually, a `Time` value corresponds to the typical hours and minutes |
| 26 | /// that you might see on a clock. This type also contains the second and |
| 27 | /// fractional subsecond (to nanosecond precision) associated with a time. |
| 28 | /// |
| 29 | /// # Civil time |
| 30 | /// |
| 31 | /// A `Time` value behaves as if it corresponds precisely to a single |
| 32 | /// nanosecond within a day, where all days have `86,400` seconds. That is, |
| 33 | /// any given `Time` value corresponds to a nanosecond in the inclusive range |
| 34 | /// `[0, 86399999999999]`, where `0` corresponds to `00:00:00.000000000` |
| 35 | /// ([`Time::MIN`]) and `86399999999999` corresponds to `23:59:59.999999999` |
| 36 | /// ([`Time::MAX`]). Moreover, in civil time, all hours have the same number of |
| 37 | /// minutes, all minutes have the same number of seconds and all seconds have |
| 38 | /// the same number of nanoseconds. |
| 39 | /// |
| 40 | /// # Parsing and printing |
| 41 | /// |
| 42 | /// The `Time` type provides convenient trait implementations of |
| 43 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
| 44 | /// |
| 45 | /// ``` |
| 46 | /// use jiff::civil::Time; |
| 47 | /// |
| 48 | /// let t: Time = "15:22:45" .parse()?; |
| 49 | /// assert_eq!(t.to_string(), "15:22:45" ); |
| 50 | /// |
| 51 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 52 | /// ``` |
| 53 | /// |
| 54 | /// A civil `Time` can also be parsed from something that _contains_ a |
| 55 | /// time, but with perhaps other data (such as an offset or time zone): |
| 56 | /// |
| 57 | /// ``` |
| 58 | /// use jiff::civil::Time; |
| 59 | /// |
| 60 | /// let t: Time = "2024-06-19T15:22:45-04[America/New_York]" .parse()?; |
| 61 | /// assert_eq!(t.to_string(), "15:22:45" ); |
| 62 | /// |
| 63 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 64 | /// ``` |
| 65 | /// |
| 66 | /// For more information on the specific format supported, see the |
| 67 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
| 68 | /// |
| 69 | /// # Default value |
| 70 | /// |
| 71 | /// For convenience, this type implements the `Default` trait. Its default |
| 72 | /// value is midnight. i.e., `00:00:00.000000000`. |
| 73 | /// |
| 74 | /// # Leap seconds |
| 75 | /// |
| 76 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
| 77 | /// The only exception is that if one parses a time with a second component |
| 78 | /// of `60`, then it is automatically constrained to `59`: |
| 79 | /// |
| 80 | /// ``` |
| 81 | /// use jiff::civil::{Time, time}; |
| 82 | /// |
| 83 | /// let t: Time = "23:59:60" .parse()?; |
| 84 | /// assert_eq!(t, time(23, 59, 59, 0)); |
| 85 | /// |
| 86 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 87 | /// ``` |
| 88 | /// |
| 89 | /// # Comparisons |
| 90 | /// |
| 91 | /// The `Time` type provides both `Eq` and `Ord` trait implementations to |
| 92 | /// facilitate easy comparisons. When a time `t1` occurs before a time `t2`, |
| 93 | /// then `t1 < t2`. For example: |
| 94 | /// |
| 95 | /// ``` |
| 96 | /// use jiff::civil::time; |
| 97 | /// |
| 98 | /// let t1 = time(7, 30, 1, 0); |
| 99 | /// let t2 = time(8, 10, 0, 0); |
| 100 | /// assert!(t1 < t2); |
| 101 | /// ``` |
| 102 | /// |
| 103 | /// As mentioned above, `Time` values are not associated with timezones, and |
| 104 | /// thus transitions such as DST are not taken into account when comparing |
| 105 | /// `Time` values. |
| 106 | /// |
| 107 | /// # Arithmetic |
| 108 | /// |
| 109 | /// This type provides routines for adding and subtracting spans of time, as |
| 110 | /// well as computing the span of time between two `Time` values. |
| 111 | /// |
| 112 | /// For adding or subtracting spans of time, one can use any of the following |
| 113 | /// routines: |
| 114 | /// |
| 115 | /// * [`Time::wrapping_add`] or [`Time::wrapping_sub`] for wrapping arithmetic. |
| 116 | /// * [`Time::checked_add`] or [`Time::checked_sub`] for checked arithmetic. |
| 117 | /// * [`Time::saturating_add`] or [`Time::saturating_sub`] for saturating |
| 118 | /// arithmetic. |
| 119 | /// |
| 120 | /// Additionally, wrapping arithmetic is available via the `Add` and `Sub` |
| 121 | /// trait implementations: |
| 122 | /// |
| 123 | /// ``` |
| 124 | /// use jiff::{civil::time, ToSpan}; |
| 125 | /// |
| 126 | /// let t = time(20, 10, 1, 0); |
| 127 | /// let span = 1.hours().minutes(49).seconds(59); |
| 128 | /// assert_eq!(t + span, time(22, 0, 0, 0)); |
| 129 | /// |
| 130 | /// // Overflow will result in wrap-around unless using checked |
| 131 | /// // arithmetic explicitly. |
| 132 | /// let t = time(23, 59, 59, 999_999_999); |
| 133 | /// assert_eq!(time(0, 0, 0, 0), t + 1.nanoseconds()); |
| 134 | /// ``` |
| 135 | /// |
| 136 | /// Wrapping arithmetic is used by default because it corresponds to how clocks |
| 137 | /// showing the time of day behave in practice. |
| 138 | /// |
| 139 | /// One can compute the span of time between two times using either |
| 140 | /// [`Time::until`] or [`Time::since`]. It's also possible to subtract two |
| 141 | /// `Time` values directly via a `Sub` trait implementation: |
| 142 | /// |
| 143 | /// ``` |
| 144 | /// use jiff::{civil::time, ToSpan}; |
| 145 | /// |
| 146 | /// let time1 = time(22, 0, 0, 0); |
| 147 | /// let time2 = time(20, 10, 1, 0); |
| 148 | /// assert_eq!( |
| 149 | /// time1 - time2, |
| 150 | /// 1.hours().minutes(49).seconds(59).fieldwise(), |
| 151 | /// ); |
| 152 | /// ``` |
| 153 | /// |
| 154 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
| 155 | /// rounding the span returned. For example, the default largest unit is hours |
| 156 | /// (as exemplified above), but we can ask for smaller units: |
| 157 | /// |
| 158 | /// ``` |
| 159 | /// use jiff::{civil::time, ToSpan, Unit}; |
| 160 | /// |
| 161 | /// let time1 = time(23, 30, 0, 0); |
| 162 | /// let time2 = time(7, 0, 0, 0); |
| 163 | /// assert_eq!( |
| 164 | /// time1.since((Unit::Minute, time2))?, |
| 165 | /// 990.minutes().fieldwise(), |
| 166 | /// ); |
| 167 | /// |
| 168 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 169 | /// ``` |
| 170 | /// |
| 171 | /// Or even round the span returned: |
| 172 | /// |
| 173 | /// ``` |
| 174 | /// use jiff::{civil::{TimeDifference, time}, RoundMode, ToSpan, Unit}; |
| 175 | /// |
| 176 | /// let time1 = time(23, 30, 0, 0); |
| 177 | /// let time2 = time(23, 35, 59, 0); |
| 178 | /// assert_eq!( |
| 179 | /// time1.until( |
| 180 | /// TimeDifference::new(time2).smallest(Unit::Minute), |
| 181 | /// )?, |
| 182 | /// 5.minutes().fieldwise(), |
| 183 | /// ); |
| 184 | /// // `TimeDifference` uses truncation as a rounding mode by default, |
| 185 | /// // but you can set the rounding mode to break ties away from zero: |
| 186 | /// assert_eq!( |
| 187 | /// time1.until( |
| 188 | /// TimeDifference::new(time2) |
| 189 | /// .smallest(Unit::Minute) |
| 190 | /// .mode(RoundMode::HalfExpand), |
| 191 | /// )?, |
| 192 | /// // Rounds up to 6 minutes. |
| 193 | /// 6.minutes().fieldwise(), |
| 194 | /// ); |
| 195 | /// |
| 196 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 197 | /// ``` |
| 198 | /// |
| 199 | /// # Rounding |
| 200 | /// |
| 201 | /// A `Time` can be rounded based on a [`TimeRound`] configuration of smallest |
| 202 | /// units, rounding increment and rounding mode. Here's an example showing how |
| 203 | /// to round to the nearest third hour: |
| 204 | /// |
| 205 | /// ``` |
| 206 | /// use jiff::{civil::{TimeRound, time}, Unit}; |
| 207 | /// |
| 208 | /// let t = time(16, 27, 29, 999_999_999); |
| 209 | /// assert_eq!( |
| 210 | /// t.round(TimeRound::new().smallest(Unit::Hour).increment(3))?, |
| 211 | /// time(15, 0, 0, 0), |
| 212 | /// ); |
| 213 | /// // Or alternatively, make use of the `From<(Unit, i64)> for TimeRound` |
| 214 | /// // trait implementation: |
| 215 | /// assert_eq!(t.round((Unit::Hour, 3))?, time(15, 0, 0, 0)); |
| 216 | /// |
| 217 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 218 | /// ``` |
| 219 | /// |
| 220 | /// See [`Time::round`] for more details. |
| 221 | #[derive (Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)] |
| 222 | pub struct Time { |
| 223 | hour: Hour, |
| 224 | minute: Minute, |
| 225 | second: Second, |
| 226 | subsec_nanosecond: SubsecNanosecond, |
| 227 | } |
| 228 | |
| 229 | impl Time { |
| 230 | /// The minimum representable time value. |
| 231 | /// |
| 232 | /// This corresponds to `00:00:00.000000000`. |
| 233 | pub const MIN: Time = Time::midnight(); |
| 234 | |
| 235 | /// The maximum representable time value. |
| 236 | /// |
| 237 | /// This corresponds to `23:59:59.999999999`. |
| 238 | pub const MAX: Time = Time::constant(23, 59, 59, 999_999_999); |
| 239 | |
| 240 | /// Creates a new `Time` value from its component hour, minute, second and |
| 241 | /// fractional subsecond (up to nanosecond precision) values. |
| 242 | /// |
| 243 | /// To set the component values of a time after creating it, use |
| 244 | /// [`TimeWith`] via [`Time::with`] to build a new [`Time`] from the fields |
| 245 | /// of an existing time. |
| 246 | /// |
| 247 | /// # Errors |
| 248 | /// |
| 249 | /// This returns an error unless *all* of the following conditions are |
| 250 | /// true: |
| 251 | /// |
| 252 | /// * `0 <= hour <= 23` |
| 253 | /// * `0 <= minute <= 59` |
| 254 | /// * `0 <= second <= 59` |
| 255 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
| 256 | /// |
| 257 | /// # Example |
| 258 | /// |
| 259 | /// This shows an example of a valid time: |
| 260 | /// |
| 261 | /// ``` |
| 262 | /// use jiff::civil::Time; |
| 263 | /// |
| 264 | /// let t = Time::new(21, 30, 5, 123_456_789).unwrap(); |
| 265 | /// assert_eq!(t.hour(), 21); |
| 266 | /// assert_eq!(t.minute(), 30); |
| 267 | /// assert_eq!(t.second(), 5); |
| 268 | /// assert_eq!(t.millisecond(), 123); |
| 269 | /// assert_eq!(t.microsecond(), 456); |
| 270 | /// assert_eq!(t.nanosecond(), 789); |
| 271 | /// ``` |
| 272 | /// |
| 273 | /// This shows an example of an invalid time: |
| 274 | /// |
| 275 | /// ``` |
| 276 | /// use jiff::civil::Time; |
| 277 | /// |
| 278 | /// assert!(Time::new(21, 30, 60, 0).is_err()); |
| 279 | /// ``` |
| 280 | #[inline ] |
| 281 | pub fn new( |
| 282 | hour: i8, |
| 283 | minute: i8, |
| 284 | second: i8, |
| 285 | subsec_nanosecond: i32, |
| 286 | ) -> Result<Time, Error> { |
| 287 | let hour = Hour::try_new("hour" , hour)?; |
| 288 | let minute = Minute::try_new("minute" , minute)?; |
| 289 | let second = Second::try_new("second" , second)?; |
| 290 | let subsec_nanosecond = |
| 291 | SubsecNanosecond::try_new("subsec_nanosecond" , subsec_nanosecond)?; |
| 292 | Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond)) |
| 293 | } |
| 294 | |
| 295 | /// Creates a new `Time` value in a `const` context. |
| 296 | /// |
| 297 | /// # Panics |
| 298 | /// |
| 299 | /// This panics if the given values do not correspond to a valid `Time`. |
| 300 | /// All of the following conditions must be true: |
| 301 | /// |
| 302 | /// * `0 <= hour <= 23` |
| 303 | /// * `0 <= minute <= 59` |
| 304 | /// * `0 <= second <= 59` |
| 305 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
| 306 | /// |
| 307 | /// Similarly, when used in a const context, invalid parameters will |
| 308 | /// prevent your Rust program from compiling. |
| 309 | /// |
| 310 | /// # Example |
| 311 | /// |
| 312 | /// This shows an example of a valid time in a `const` context: |
| 313 | /// |
| 314 | /// ``` |
| 315 | /// use jiff::civil::Time; |
| 316 | /// |
| 317 | /// const BEDTIME: Time = Time::constant(21, 30, 5, 123_456_789); |
| 318 | /// assert_eq!(BEDTIME.hour(), 21); |
| 319 | /// assert_eq!(BEDTIME.minute(), 30); |
| 320 | /// assert_eq!(BEDTIME.second(), 5); |
| 321 | /// assert_eq!(BEDTIME.millisecond(), 123); |
| 322 | /// assert_eq!(BEDTIME.microsecond(), 456); |
| 323 | /// assert_eq!(BEDTIME.nanosecond(), 789); |
| 324 | /// assert_eq!(BEDTIME.subsec_nanosecond(), 123_456_789); |
| 325 | /// ``` |
| 326 | #[inline ] |
| 327 | pub const fn constant( |
| 328 | hour: i8, |
| 329 | minute: i8, |
| 330 | second: i8, |
| 331 | subsec_nanosecond: i32, |
| 332 | ) -> Time { |
| 333 | if !Hour::contains(hour) { |
| 334 | panic!("invalid hour" ); |
| 335 | } |
| 336 | if !Minute::contains(minute) { |
| 337 | panic!("invalid minute" ); |
| 338 | } |
| 339 | if !Second::contains(second) { |
| 340 | panic!("invalid second" ); |
| 341 | } |
| 342 | if !SubsecNanosecond::contains(subsec_nanosecond) { |
| 343 | panic!("invalid nanosecond" ); |
| 344 | } |
| 345 | let hour = Hour::new_unchecked(hour); |
| 346 | let minute = Minute::new_unchecked(minute); |
| 347 | let second = Second::new_unchecked(second); |
| 348 | let subsec_nanosecond = |
| 349 | SubsecNanosecond::new_unchecked(subsec_nanosecond); |
| 350 | Time { hour, minute, second, subsec_nanosecond } |
| 351 | } |
| 352 | |
| 353 | /// Returns the first moment of time in a day. |
| 354 | /// |
| 355 | /// Specifically, this has the `hour`, `minute`, `second`, `millisecond`, |
| 356 | /// `microsecond` and `nanosecond` fields all set to `0`. |
| 357 | /// |
| 358 | /// # Example |
| 359 | /// |
| 360 | /// ``` |
| 361 | /// use jiff::civil::Time; |
| 362 | /// |
| 363 | /// let t = Time::midnight(); |
| 364 | /// assert_eq!(t.hour(), 0); |
| 365 | /// assert_eq!(t.minute(), 0); |
| 366 | /// assert_eq!(t.second(), 0); |
| 367 | /// assert_eq!(t.millisecond(), 0); |
| 368 | /// assert_eq!(t.microsecond(), 0); |
| 369 | /// assert_eq!(t.nanosecond(), 0); |
| 370 | /// ``` |
| 371 | #[inline ] |
| 372 | pub const fn midnight() -> Time { |
| 373 | Time::constant(0, 0, 0, 0) |
| 374 | } |
| 375 | |
| 376 | /// Create a builder for constructing a `Time` from the fields of this |
| 377 | /// time. |
| 378 | /// |
| 379 | /// See the methods on [`TimeWith`] for the different ways one can set the |
| 380 | /// fields of a new `Time`. |
| 381 | /// |
| 382 | /// # Example |
| 383 | /// |
| 384 | /// Unlike [`Date`], a [`Time`] is valid for all possible valid values |
| 385 | /// of its fields. That is, there is no way for two valid field values |
| 386 | /// to combine into an invalid `Time`. So, for `Time`, this builder does |
| 387 | /// have as much of a benefit versus an API design with methods like |
| 388 | /// `Time::with_hour` and `Time::with_minute`. Nevertheless, this builder |
| 389 | /// permits settings multiple fields at the same time and performing only |
| 390 | /// one validity check. Moreover, this provides a consistent API with other |
| 391 | /// date and time types in this crate. |
| 392 | /// |
| 393 | /// ``` |
| 394 | /// use jiff::civil::time; |
| 395 | /// |
| 396 | /// let t1 = time(0, 0, 24, 0); |
| 397 | /// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?; |
| 398 | /// assert_eq!(t2, time(15, 30, 24, 10_000_000)); |
| 399 | /// |
| 400 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 401 | /// ``` |
| 402 | #[inline ] |
| 403 | pub fn with(self) -> TimeWith { |
| 404 | TimeWith::new(self) |
| 405 | } |
| 406 | |
| 407 | /// Returns the "hour" component of this time. |
| 408 | /// |
| 409 | /// The value returned is guaranteed to be in the range `0..=23`. |
| 410 | /// |
| 411 | /// # Example |
| 412 | /// |
| 413 | /// ``` |
| 414 | /// use jiff::civil::time; |
| 415 | /// |
| 416 | /// let t = time(13, 35, 56, 123_456_789); |
| 417 | /// assert_eq!(t.hour(), 13); |
| 418 | /// ``` |
| 419 | #[inline ] |
| 420 | pub fn hour(self) -> i8 { |
| 421 | self.hour_ranged().get() |
| 422 | } |
| 423 | |
| 424 | /// Returns the "minute" component of this time. |
| 425 | /// |
| 426 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 427 | /// |
| 428 | /// # Example |
| 429 | /// |
| 430 | /// ``` |
| 431 | /// use jiff::civil::time; |
| 432 | /// |
| 433 | /// let t = time(13, 35, 56, 123_456_789); |
| 434 | /// assert_eq!(t.minute(), 35); |
| 435 | /// ``` |
| 436 | #[inline ] |
| 437 | pub fn minute(self) -> i8 { |
| 438 | self.minute_ranged().get() |
| 439 | } |
| 440 | |
| 441 | /// Returns the "second" component of this time. |
| 442 | /// |
| 443 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 444 | /// |
| 445 | /// # Example |
| 446 | /// |
| 447 | /// ``` |
| 448 | /// use jiff::civil::time; |
| 449 | /// |
| 450 | /// let t = time(13, 35, 56, 123_456_789); |
| 451 | /// assert_eq!(t.second(), 56); |
| 452 | /// ``` |
| 453 | #[inline ] |
| 454 | pub fn second(self) -> i8 { |
| 455 | self.second_ranged().get() |
| 456 | } |
| 457 | |
| 458 | /// Returns the "millisecond" component of this time. |
| 459 | /// |
| 460 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 461 | /// |
| 462 | /// # Example |
| 463 | /// |
| 464 | /// ``` |
| 465 | /// use jiff::civil::time; |
| 466 | /// |
| 467 | /// let t = time(13, 35, 56, 123_456_789); |
| 468 | /// assert_eq!(t.millisecond(), 123); |
| 469 | /// ``` |
| 470 | #[inline ] |
| 471 | pub fn millisecond(self) -> i16 { |
| 472 | self.millisecond_ranged().get() |
| 473 | } |
| 474 | |
| 475 | /// Returns the "microsecond" component of this time. |
| 476 | /// |
| 477 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 478 | /// |
| 479 | /// # Example |
| 480 | /// |
| 481 | /// ``` |
| 482 | /// use jiff::civil::time; |
| 483 | /// |
| 484 | /// let t = time(13, 35, 56, 123_456_789); |
| 485 | /// assert_eq!(t.microsecond(), 456); |
| 486 | /// ``` |
| 487 | #[inline ] |
| 488 | pub fn microsecond(self) -> i16 { |
| 489 | self.microsecond_ranged().get() |
| 490 | } |
| 491 | |
| 492 | /// Returns the "nanosecond" component of this time. |
| 493 | /// |
| 494 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 495 | /// |
| 496 | /// # Example |
| 497 | /// |
| 498 | /// ``` |
| 499 | /// use jiff::civil::time; |
| 500 | /// |
| 501 | /// let t = time(13, 35, 56, 123_456_789); |
| 502 | /// assert_eq!(t.nanosecond(), 789); |
| 503 | /// ``` |
| 504 | #[inline ] |
| 505 | pub fn nanosecond(self) -> i16 { |
| 506 | self.nanosecond_ranged().get() |
| 507 | } |
| 508 | |
| 509 | /// Returns the fractional nanosecond for this `Time` value. |
| 510 | /// |
| 511 | /// If you want to set this value on `Time`, then use |
| 512 | /// [`TimeWith::subsec_nanosecond`] via [`Time::with`]. |
| 513 | /// |
| 514 | /// The value returned is guaranteed to be in the range `0..=999_999_999`. |
| 515 | /// |
| 516 | /// # Example |
| 517 | /// |
| 518 | /// This shows the relationship between constructing a `Time` value |
| 519 | /// with routines like `with().millisecond()` and accessing the entire |
| 520 | /// fractional part as a nanosecond: |
| 521 | /// |
| 522 | /// ``` |
| 523 | /// use jiff::civil::time; |
| 524 | /// |
| 525 | /// let t = time(15, 21, 35, 0).with().millisecond(987).build()?; |
| 526 | /// assert_eq!(t.subsec_nanosecond(), 987_000_000); |
| 527 | /// |
| 528 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 529 | /// ``` |
| 530 | /// |
| 531 | /// # Example: nanoseconds from a timestamp |
| 532 | /// |
| 533 | /// This shows how the fractional nanosecond part of a `Time` value |
| 534 | /// manifests from a specific timestamp. |
| 535 | /// |
| 536 | /// ``` |
| 537 | /// use jiff::{civil, Timestamp}; |
| 538 | /// |
| 539 | /// // 1,234 nanoseconds after the Unix epoch. |
| 540 | /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC" )?; |
| 541 | /// let time = zdt.datetime().time(); |
| 542 | /// assert_eq!(time.subsec_nanosecond(), 1_234); |
| 543 | /// |
| 544 | /// // 1,234 nanoseconds before the Unix epoch. |
| 545 | /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC" )?; |
| 546 | /// let time = zdt.datetime().time(); |
| 547 | /// // The nanosecond is equal to `1_000_000_000 - 1_234`. |
| 548 | /// assert_eq!(time.subsec_nanosecond(), 999998766); |
| 549 | /// // Looking at the other components of the time value might help. |
| 550 | /// assert_eq!(time.hour(), 23); |
| 551 | /// assert_eq!(time.minute(), 59); |
| 552 | /// assert_eq!(time.second(), 59); |
| 553 | /// |
| 554 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 555 | /// ``` |
| 556 | #[inline ] |
| 557 | pub fn subsec_nanosecond(self) -> i32 { |
| 558 | self.subsec_nanosecond_ranged().get() |
| 559 | } |
| 560 | |
| 561 | /// Given a [`Date`], this constructs a [`DateTime`] value with its time |
| 562 | /// component equal to this time. |
| 563 | /// |
| 564 | /// This is a convenience function for [`DateTime::from_parts`]. |
| 565 | /// |
| 566 | /// # Example |
| 567 | /// |
| 568 | /// ``` |
| 569 | /// use jiff::civil::{DateTime, date, time}; |
| 570 | /// |
| 571 | /// let d = date(2010, 3, 14); |
| 572 | /// let t = time(2, 30, 0, 0); |
| 573 | /// assert_eq!(DateTime::from_parts(d, t), t.to_datetime(d)); |
| 574 | /// ``` |
| 575 | #[inline ] |
| 576 | pub const fn to_datetime(self, date: Date) -> DateTime { |
| 577 | DateTime::from_parts(date, self) |
| 578 | } |
| 579 | |
| 580 | /// A convenience function for constructing a [`DateTime`] from this time |
| 581 | /// on the date given by its components. |
| 582 | /// |
| 583 | /// # Example |
| 584 | /// |
| 585 | /// ``` |
| 586 | /// use jiff::civil::time; |
| 587 | /// |
| 588 | /// assert_eq!( |
| 589 | /// time(2, 30, 0, 0).on(2010, 3, 14).to_string(), |
| 590 | /// "2010-03-14T02:30:00" , |
| 591 | /// ); |
| 592 | /// ``` |
| 593 | /// |
| 594 | /// One can also flip the order by making use of [`Date::at`]: |
| 595 | /// |
| 596 | /// ``` |
| 597 | /// use jiff::civil::date; |
| 598 | /// |
| 599 | /// assert_eq!( |
| 600 | /// date(2010, 3, 14).at(2, 30, 0, 0).to_string(), |
| 601 | /// "2010-03-14T02:30:00" , |
| 602 | /// ); |
| 603 | /// ``` |
| 604 | #[inline ] |
| 605 | pub const fn on(self, year: i16, month: i8, day: i8) -> DateTime { |
| 606 | DateTime::from_parts(Date::constant(year, month, day), self) |
| 607 | } |
| 608 | |
| 609 | /// Add the given span to this time and wrap around on overflow. |
| 610 | /// |
| 611 | /// This operation accepts three different duration types: [`Span`], |
| 612 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
| 613 | /// `From` trait implementations for the [`TimeArithmetic`] type. |
| 614 | /// |
| 615 | /// # Properties |
| 616 | /// |
| 617 | /// Given times `t1` and `t2`, and a span `s`, with `t2 = t1 + s`, it |
| 618 | /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum |
| 619 | /// to `t2`. |
| 620 | /// |
| 621 | /// In short, subtracting the given span from the sum returned by this |
| 622 | /// function is guaranteed to result in precisely the original time. |
| 623 | /// |
| 624 | /// # Example: available via addition operator |
| 625 | /// |
| 626 | /// This routine can be used via the `+` operator. |
| 627 | /// |
| 628 | /// ``` |
| 629 | /// use jiff::{civil::time, ToSpan}; |
| 630 | /// |
| 631 | /// let t = time(20, 10, 1, 0); |
| 632 | /// assert_eq!( |
| 633 | /// t + 1.hours().minutes(49).seconds(59), |
| 634 | /// time(22, 0, 0, 0), |
| 635 | /// ); |
| 636 | /// ``` |
| 637 | /// |
| 638 | /// # Example: add nanoseconds to a `Time` |
| 639 | /// |
| 640 | /// ``` |
| 641 | /// use jiff::{civil::time, ToSpan}; |
| 642 | /// |
| 643 | /// let t = time(22, 35, 1, 0); |
| 644 | /// assert_eq!( |
| 645 | /// time(22, 35, 3, 500_000_000), |
| 646 | /// t.wrapping_add(2_500_000_000i64.nanoseconds()), |
| 647 | /// ); |
| 648 | /// ``` |
| 649 | /// |
| 650 | /// # Example: add span with multiple units |
| 651 | /// |
| 652 | /// ``` |
| 653 | /// use jiff::{civil::time, ToSpan}; |
| 654 | /// |
| 655 | /// let t = time(20, 10, 1, 0); |
| 656 | /// assert_eq!( |
| 657 | /// time(22, 0, 0, 0), |
| 658 | /// t.wrapping_add(1.hours().minutes(49).seconds(59)), |
| 659 | /// ); |
| 660 | /// ``` |
| 661 | /// |
| 662 | /// # Example: adding an empty span is a no-op |
| 663 | /// |
| 664 | /// ``` |
| 665 | /// use jiff::{civil::time, Span}; |
| 666 | /// |
| 667 | /// let t = time(20, 10, 1, 0); |
| 668 | /// assert_eq!(t, t.wrapping_add(Span::new())); |
| 669 | /// ``` |
| 670 | /// |
| 671 | /// # Example: addition wraps on overflow |
| 672 | /// |
| 673 | /// ``` |
| 674 | /// use jiff::{civil::time, SignedDuration, ToSpan}; |
| 675 | /// |
| 676 | /// let t = time(23, 59, 59, 999_999_999); |
| 677 | /// assert_eq!( |
| 678 | /// t.wrapping_add(1.nanoseconds()), |
| 679 | /// time(0, 0, 0, 0), |
| 680 | /// ); |
| 681 | /// assert_eq!( |
| 682 | /// t.wrapping_add(SignedDuration::from_nanos(1)), |
| 683 | /// time(0, 0, 0, 0), |
| 684 | /// ); |
| 685 | /// assert_eq!( |
| 686 | /// t.wrapping_add(std::time::Duration::from_nanos(1)), |
| 687 | /// time(0, 0, 0, 0), |
| 688 | /// ); |
| 689 | /// ``` |
| 690 | /// |
| 691 | /// Similarly, if there are any non-zero units greater than hours in the |
| 692 | /// given span, then they also result in wrapping behavior (i.e., they are |
| 693 | /// ignored): |
| 694 | /// |
| 695 | /// ``` |
| 696 | /// use jiff::{civil::time, ToSpan}; |
| 697 | /// |
| 698 | /// // doesn't matter what our time value is in this example |
| 699 | /// let t = time(0, 0, 0, 0); |
| 700 | /// assert_eq!(t, t.wrapping_add(1.days())); |
| 701 | /// ``` |
| 702 | #[inline ] |
| 703 | pub fn wrapping_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time { |
| 704 | let duration: TimeArithmetic = duration.into(); |
| 705 | duration.wrapping_add(self) |
| 706 | } |
| 707 | |
| 708 | #[inline ] |
| 709 | fn wrapping_add_span(self, span: Span) -> Time { |
| 710 | let mut sum = self.to_nanosecond().without_bounds(); |
| 711 | sum = sum.wrapping_add( |
| 712 | span.get_hours_ranged() |
| 713 | .without_bounds() |
| 714 | .wrapping_mul(t::NANOS_PER_HOUR), |
| 715 | ); |
| 716 | sum = sum.wrapping_add( |
| 717 | span.get_minutes_ranged() |
| 718 | .without_bounds() |
| 719 | .wrapping_mul(t::NANOS_PER_MINUTE), |
| 720 | ); |
| 721 | sum = sum.wrapping_add( |
| 722 | span.get_seconds_ranged() |
| 723 | .without_bounds() |
| 724 | .wrapping_mul(t::NANOS_PER_SECOND), |
| 725 | ); |
| 726 | sum = sum.wrapping_add( |
| 727 | span.get_milliseconds_ranged() |
| 728 | .without_bounds() |
| 729 | .wrapping_mul(t::NANOS_PER_MILLI), |
| 730 | ); |
| 731 | sum = sum.wrapping_add( |
| 732 | span.get_microseconds_ranged() |
| 733 | .without_bounds() |
| 734 | .wrapping_mul(t::NANOS_PER_MICRO), |
| 735 | ); |
| 736 | sum = sum.wrapping_add(span.get_nanoseconds_ranged().without_bounds()); |
| 737 | let civil_day_nanosecond = sum % t::NANOS_PER_CIVIL_DAY; |
| 738 | Time::from_nanosecond(civil_day_nanosecond.rinto()) |
| 739 | } |
| 740 | |
| 741 | #[inline ] |
| 742 | fn wrapping_add_signed_duration(self, duration: SignedDuration) -> Time { |
| 743 | let start = t::NoUnits128::rfrom(self.to_nanosecond()); |
| 744 | let duration = t::NoUnits128::new_unchecked(duration.as_nanos()); |
| 745 | let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY; |
| 746 | Time::from_nanosecond(end.rinto()) |
| 747 | } |
| 748 | |
| 749 | #[inline ] |
| 750 | fn wrapping_add_unsigned_duration( |
| 751 | self, |
| 752 | duration: UnsignedDuration, |
| 753 | ) -> Time { |
| 754 | let start = t::NoUnits128::rfrom(self.to_nanosecond()); |
| 755 | // OK because 96-bit unsigned integer can't overflow i128. |
| 756 | let duration = i128::try_from(duration.as_nanos()).unwrap(); |
| 757 | let duration = t::NoUnits128::new_unchecked(duration); |
| 758 | let duration = duration % t::NANOS_PER_CIVIL_DAY; |
| 759 | let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY; |
| 760 | Time::from_nanosecond(end.rinto()) |
| 761 | } |
| 762 | |
| 763 | /// This routine is identical to [`Time::wrapping_add`] with the duration |
| 764 | /// negated. |
| 765 | /// |
| 766 | /// # Example |
| 767 | /// |
| 768 | /// ``` |
| 769 | /// use jiff::{civil::time, SignedDuration, ToSpan}; |
| 770 | /// |
| 771 | /// let t = time(0, 0, 0, 0); |
| 772 | /// assert_eq!( |
| 773 | /// t.wrapping_sub(1.nanoseconds()), |
| 774 | /// time(23, 59, 59, 999_999_999), |
| 775 | /// ); |
| 776 | /// assert_eq!( |
| 777 | /// t.wrapping_sub(SignedDuration::from_nanos(1)), |
| 778 | /// time(23, 59, 59, 999_999_999), |
| 779 | /// ); |
| 780 | /// assert_eq!( |
| 781 | /// t.wrapping_sub(std::time::Duration::from_nanos(1)), |
| 782 | /// time(23, 59, 59, 999_999_999), |
| 783 | /// ); |
| 784 | /// |
| 785 | /// assert_eq!( |
| 786 | /// t.wrapping_sub(SignedDuration::MIN), |
| 787 | /// time(15, 30, 8, 999_999_999), |
| 788 | /// ); |
| 789 | /// assert_eq!( |
| 790 | /// t.wrapping_sub(SignedDuration::MAX), |
| 791 | /// time(8, 29, 52, 1), |
| 792 | /// ); |
| 793 | /// assert_eq!( |
| 794 | /// t.wrapping_sub(std::time::Duration::MAX), |
| 795 | /// time(16, 59, 44, 1), |
| 796 | /// ); |
| 797 | /// ``` |
| 798 | #[inline ] |
| 799 | pub fn wrapping_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time { |
| 800 | let duration: TimeArithmetic = duration.into(); |
| 801 | duration.wrapping_sub(self) |
| 802 | } |
| 803 | |
| 804 | #[inline ] |
| 805 | fn wrapping_sub_unsigned_duration( |
| 806 | self, |
| 807 | duration: UnsignedDuration, |
| 808 | ) -> Time { |
| 809 | let start = t::NoUnits128::rfrom(self.to_nanosecond()); |
| 810 | // OK because 96-bit unsigned integer can't overflow i128. |
| 811 | let duration = i128::try_from(duration.as_nanos()).unwrap(); |
| 812 | let duration = t::NoUnits128::new_unchecked(duration); |
| 813 | let end = start.wrapping_sub(duration) % t::NANOS_PER_CIVIL_DAY; |
| 814 | Time::from_nanosecond(end.rinto()) |
| 815 | } |
| 816 | |
| 817 | /// Add the given span to this time and return an error if the result would |
| 818 | /// otherwise overflow. |
| 819 | /// |
| 820 | /// This operation accepts three different duration types: [`Span`], |
| 821 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
| 822 | /// `From` trait implementations for the [`TimeArithmetic`] type. |
| 823 | /// |
| 824 | /// # Properties |
| 825 | /// |
| 826 | /// Given a time `t1` and a span `s`, and assuming `t2 = t1 + s` exists, it |
| 827 | /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum |
| 828 | /// to a valid `t2`. |
| 829 | /// |
| 830 | /// In short, subtracting the given span from the sum returned by this |
| 831 | /// function is guaranteed to result in precisely the original time. |
| 832 | /// |
| 833 | /// # Errors |
| 834 | /// |
| 835 | /// If the sum would overflow the minimum or maximum timestamp values, then |
| 836 | /// an error is returned. |
| 837 | /// |
| 838 | /// If the given span has any non-zero units greater than hours, then an |
| 839 | /// error is returned. |
| 840 | /// |
| 841 | /// # Example: add nanoseconds to a `Time` |
| 842 | /// |
| 843 | /// ``` |
| 844 | /// use jiff::{civil::time, ToSpan}; |
| 845 | /// |
| 846 | /// let t = time(22, 35, 1, 0); |
| 847 | /// assert_eq!( |
| 848 | /// time(22, 35, 3, 500_000_000), |
| 849 | /// t.checked_add(2_500_000_000i64.nanoseconds())?, |
| 850 | /// ); |
| 851 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 852 | /// ``` |
| 853 | /// |
| 854 | /// # Example: add span with multiple units |
| 855 | /// |
| 856 | /// ``` |
| 857 | /// use jiff::{civil::time, ToSpan}; |
| 858 | /// |
| 859 | /// let t = time(20, 10, 1, 0); |
| 860 | /// assert_eq!( |
| 861 | /// time(22, 0, 0, 0), |
| 862 | /// t.checked_add(1.hours().minutes(49).seconds(59))?, |
| 863 | /// ); |
| 864 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 865 | /// ``` |
| 866 | /// |
| 867 | /// # Example: adding an empty span is a no-op |
| 868 | /// |
| 869 | /// ``` |
| 870 | /// use jiff::{civil::time, Span}; |
| 871 | /// |
| 872 | /// let t = time(20, 10, 1, 0); |
| 873 | /// assert_eq!(t, t.checked_add(Span::new())?); |
| 874 | /// |
| 875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 876 | /// ``` |
| 877 | /// |
| 878 | /// # Example: error on overflow |
| 879 | /// |
| 880 | /// ``` |
| 881 | /// use jiff::{civil::time, ToSpan}; |
| 882 | /// |
| 883 | /// // okay |
| 884 | /// let t = time(23, 59, 59, 999_999_998); |
| 885 | /// assert_eq!( |
| 886 | /// t.with().nanosecond(999).build()?, |
| 887 | /// t.checked_add(1.nanoseconds())?, |
| 888 | /// ); |
| 889 | /// |
| 890 | /// // not okay |
| 891 | /// let t = time(23, 59, 59, 999_999_999); |
| 892 | /// assert!(t.checked_add(1.nanoseconds()).is_err()); |
| 893 | /// |
| 894 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 895 | /// ``` |
| 896 | /// |
| 897 | /// Similarly, if there are any non-zero units greater than hours in the |
| 898 | /// given span, then they also result in overflow (and thus an error): |
| 899 | /// |
| 900 | /// ``` |
| 901 | /// use jiff::{civil::time, ToSpan}; |
| 902 | /// |
| 903 | /// // doesn't matter what our time value is in this example |
| 904 | /// let t = time(0, 0, 0, 0); |
| 905 | /// assert!(t.checked_add(1.days()).is_err()); |
| 906 | /// ``` |
| 907 | /// |
| 908 | /// # Example: adding absolute durations |
| 909 | /// |
| 910 | /// This shows how to add signed and unsigned absolute durations to a |
| 911 | /// `Time`. As with adding a `Span`, any overflow that occurs results in |
| 912 | /// an error. |
| 913 | /// |
| 914 | /// ``` |
| 915 | /// use std::time::Duration; |
| 916 | /// |
| 917 | /// use jiff::{civil::time, SignedDuration}; |
| 918 | /// |
| 919 | /// let t = time(23, 0, 0, 0); |
| 920 | /// |
| 921 | /// let dur = SignedDuration::from_mins(30); |
| 922 | /// assert_eq!(t.checked_add(dur)?, time(23, 30, 0, 0)); |
| 923 | /// assert_eq!(t.checked_add(-dur)?, time(22, 30, 0, 0)); |
| 924 | /// |
| 925 | /// let dur = Duration::new(0, 1); |
| 926 | /// assert_eq!(t.checked_add(dur)?, time(23, 0, 0, 1)); |
| 927 | /// |
| 928 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 929 | /// ``` |
| 930 | #[inline ] |
| 931 | pub fn checked_add<A: Into<TimeArithmetic>>( |
| 932 | self, |
| 933 | duration: A, |
| 934 | ) -> Result<Time, Error> { |
| 935 | let duration: TimeArithmetic = duration.into(); |
| 936 | duration.checked_add(self) |
| 937 | } |
| 938 | |
| 939 | #[inline ] |
| 940 | fn checked_add_span(self, span: Span) -> Result<Time, Error> { |
| 941 | let (time, span) = self.overflowing_add(span)?; |
| 942 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() { |
| 943 | return Err(err); |
| 944 | } |
| 945 | Ok(time) |
| 946 | } |
| 947 | |
| 948 | #[inline ] |
| 949 | fn checked_add_duration( |
| 950 | self, |
| 951 | duration: SignedDuration, |
| 952 | ) -> Result<Time, Error> { |
| 953 | let original = duration; |
| 954 | let start = t::NoUnits128::rfrom(self.to_nanosecond()); |
| 955 | let duration = t::NoUnits128::new_unchecked(duration.as_nanos()); |
| 956 | // This can never fail because the maximum duration fits into a |
| 957 | // 96-bit integer, and adding any 96-bit integer to any 64-bit |
| 958 | // integer can never overflow a 128-bit integer. |
| 959 | let end = start.try_checked_add("nanoseconds" , duration).unwrap(); |
| 960 | let end = CivilDayNanosecond::try_rfrom("nanoseconds" , end) |
| 961 | .with_context(|| { |
| 962 | err!( |
| 963 | "adding signed duration {duration:?}, equal to |
| 964 | {nanos} nanoseconds, to {time} overflowed" , |
| 965 | duration = original, |
| 966 | nanos = original.as_nanos(), |
| 967 | time = self, |
| 968 | ) |
| 969 | })?; |
| 970 | Ok(Time::from_nanosecond(end)) |
| 971 | } |
| 972 | |
| 973 | /// This routine is identical to [`Time::checked_add`] with the duration |
| 974 | /// negated. |
| 975 | /// |
| 976 | /// # Errors |
| 977 | /// |
| 978 | /// This has the same error conditions as [`Time::checked_add`]. |
| 979 | /// |
| 980 | /// # Example |
| 981 | /// |
| 982 | /// ``` |
| 983 | /// use std::time::Duration; |
| 984 | /// |
| 985 | /// use jiff::{civil::time, SignedDuration, ToSpan}; |
| 986 | /// |
| 987 | /// let t = time(22, 0, 0, 0); |
| 988 | /// assert_eq!( |
| 989 | /// t.checked_sub(1.hours().minutes(49).seconds(59))?, |
| 990 | /// time(20, 10, 1, 0), |
| 991 | /// ); |
| 992 | /// assert_eq!( |
| 993 | /// t.checked_sub(SignedDuration::from_hours(1))?, |
| 994 | /// time(21, 0, 0, 0), |
| 995 | /// ); |
| 996 | /// assert_eq!( |
| 997 | /// t.checked_sub(Duration::from_secs(60 * 60))?, |
| 998 | /// time(21, 0, 0, 0), |
| 999 | /// ); |
| 1000 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1001 | /// ``` |
| 1002 | #[inline ] |
| 1003 | pub fn checked_sub<A: Into<TimeArithmetic>>( |
| 1004 | self, |
| 1005 | duration: A, |
| 1006 | ) -> Result<Time, Error> { |
| 1007 | let duration: TimeArithmetic = duration.into(); |
| 1008 | duration.checked_neg().and_then(|ta| ta.checked_add(self)) |
| 1009 | } |
| 1010 | |
| 1011 | /// This routine is identical to [`Time::checked_add`], except the |
| 1012 | /// result saturates on overflow. That is, instead of overflow, either |
| 1013 | /// [`Time::MIN`] or [`Time::MAX`] is returned. |
| 1014 | /// |
| 1015 | /// # Example |
| 1016 | /// |
| 1017 | /// ``` |
| 1018 | /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan}; |
| 1019 | /// |
| 1020 | /// // no saturation |
| 1021 | /// let t = time(23, 59, 59, 999_999_998); |
| 1022 | /// assert_eq!( |
| 1023 | /// t.with().nanosecond(999).build()?, |
| 1024 | /// t.saturating_add(1.nanoseconds()), |
| 1025 | /// ); |
| 1026 | /// |
| 1027 | /// // saturates |
| 1028 | /// let t = time(23, 59, 59, 999_999_999); |
| 1029 | /// assert_eq!(Time::MAX, t.saturating_add(1.nanoseconds())); |
| 1030 | /// assert_eq!(Time::MAX, t.saturating_add(SignedDuration::MAX)); |
| 1031 | /// assert_eq!(Time::MIN, t.saturating_add(SignedDuration::MIN)); |
| 1032 | /// assert_eq!(Time::MAX, t.saturating_add(std::time::Duration::MAX)); |
| 1033 | /// |
| 1034 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1035 | /// ``` |
| 1036 | /// |
| 1037 | /// Similarly, if there are any non-zero units greater than hours in the |
| 1038 | /// given span, then they also result in overflow (and thus saturation): |
| 1039 | /// |
| 1040 | /// ``` |
| 1041 | /// use jiff::{civil::{Time, time}, ToSpan}; |
| 1042 | /// |
| 1043 | /// // doesn't matter what our time value is in this example |
| 1044 | /// let t = time(0, 0, 0, 0); |
| 1045 | /// assert_eq!(Time::MAX, t.saturating_add(1.days())); |
| 1046 | /// ``` |
| 1047 | #[inline ] |
| 1048 | pub fn saturating_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time { |
| 1049 | let duration: TimeArithmetic = duration.into(); |
| 1050 | self.checked_add(duration).unwrap_or_else(|_| { |
| 1051 | if duration.is_negative() { |
| 1052 | Time::MIN |
| 1053 | } else { |
| 1054 | Time::MAX |
| 1055 | } |
| 1056 | }) |
| 1057 | } |
| 1058 | |
| 1059 | /// This routine is identical to [`Time::saturating_add`] with the duration |
| 1060 | /// negated. |
| 1061 | /// |
| 1062 | /// # Example |
| 1063 | /// |
| 1064 | /// ``` |
| 1065 | /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan}; |
| 1066 | /// |
| 1067 | /// // no saturation |
| 1068 | /// let t = time(0, 0, 0, 1); |
| 1069 | /// assert_eq!( |
| 1070 | /// t.with().nanosecond(0).build()?, |
| 1071 | /// t.saturating_sub(1.nanoseconds()), |
| 1072 | /// ); |
| 1073 | /// |
| 1074 | /// // saturates |
| 1075 | /// let t = time(0, 0, 0, 0); |
| 1076 | /// assert_eq!(Time::MIN, t.saturating_sub(1.nanoseconds())); |
| 1077 | /// assert_eq!(Time::MIN, t.saturating_sub(SignedDuration::MAX)); |
| 1078 | /// assert_eq!(Time::MAX, t.saturating_sub(SignedDuration::MIN)); |
| 1079 | /// assert_eq!(Time::MIN, t.saturating_sub(std::time::Duration::MAX)); |
| 1080 | /// |
| 1081 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1082 | /// ``` |
| 1083 | #[inline ] |
| 1084 | pub fn saturating_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time { |
| 1085 | let duration: TimeArithmetic = duration.into(); |
| 1086 | let Ok(duration) = duration.checked_neg() else { return Time::MIN }; |
| 1087 | self.saturating_add(duration) |
| 1088 | } |
| 1089 | |
| 1090 | /// Adds the given span to the this time value, and returns the resulting |
| 1091 | /// time with any overflowing amount in the span returned. |
| 1092 | /// |
| 1093 | /// This isn't part of the public API because it seems a little odd, and |
| 1094 | /// I'm unsure of its use case. Overall this routine is a bit specialized |
| 1095 | /// and I'm not sure how generally useful it is. But it is used in crucial |
| 1096 | /// points in other parts of this crate. |
| 1097 | /// |
| 1098 | /// If you want this public, please file an issue and discuss your use |
| 1099 | /// case: https://github.com/BurntSushi/jiff/issues/new |
| 1100 | #[inline ] |
| 1101 | pub(crate) fn overflowing_add( |
| 1102 | self, |
| 1103 | span: Span, |
| 1104 | ) -> Result<(Time, Span), Error> { |
| 1105 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() { |
| 1106 | return Err(err); |
| 1107 | } |
| 1108 | let span_nanos = span.to_invariant_nanoseconds(); |
| 1109 | let time_nanos = self.to_nanosecond(); |
| 1110 | let sum = span_nanos + time_nanos; |
| 1111 | let days = t::SpanDays::try_new( |
| 1112 | "overflowing-days" , |
| 1113 | sum.div_floor(t::NANOS_PER_CIVIL_DAY), |
| 1114 | )?; |
| 1115 | let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY); |
| 1116 | let time = Time::from_nanosecond(time_nanos.rinto()); |
| 1117 | Ok((time, Span::new().days_ranged(days))) |
| 1118 | } |
| 1119 | |
| 1120 | /// Like `overflowing_add`, but with `SignedDuration`. |
| 1121 | /// |
| 1122 | /// This is used for datetime arithmetic, when adding to the time |
| 1123 | /// component overflows into days (always 24 hours). |
| 1124 | #[inline ] |
| 1125 | pub(crate) fn overflowing_add_duration( |
| 1126 | self, |
| 1127 | duration: SignedDuration, |
| 1128 | ) -> Result<(Time, SignedDuration), Error> { |
| 1129 | if self.subsec_nanosecond() != 0 || duration.subsec_nanos() != 0 { |
| 1130 | return self.overflowing_add_duration_general(duration); |
| 1131 | } |
| 1132 | let start = t::NoUnits::rfrom(self.to_second()); |
| 1133 | let duration_secs = t::NoUnits::new_unchecked(duration.as_secs()); |
| 1134 | // This can fail if the duration is near its min or max values, and |
| 1135 | // thus we fall back to the more general (but slower) implementation |
| 1136 | // that uses 128-bit integers. |
| 1137 | let Some(sum) = start.checked_add(duration_secs) else { |
| 1138 | return self.overflowing_add_duration_general(duration); |
| 1139 | }; |
| 1140 | let days = t::SpanDays::try_new( |
| 1141 | "overflowing-days" , |
| 1142 | sum.div_floor(t::SECONDS_PER_CIVIL_DAY), |
| 1143 | )?; |
| 1144 | let time_secs = sum.rem_floor(t::SECONDS_PER_CIVIL_DAY); |
| 1145 | let time = Time::from_second(time_secs.rinto()); |
| 1146 | // OK because of the constraint imposed by t::SpanDays. |
| 1147 | let hours = i64::from(days).checked_mul(24).unwrap(); |
| 1148 | Ok((time, SignedDuration::from_hours(hours))) |
| 1149 | } |
| 1150 | |
| 1151 | /// Like `overflowing_add`, but with `SignedDuration`. |
| 1152 | /// |
| 1153 | /// This is used for datetime arithmetic, when adding to the time |
| 1154 | /// component overflows into days (always 24 hours). |
| 1155 | #[inline (never)] |
| 1156 | #[cold ] |
| 1157 | fn overflowing_add_duration_general( |
| 1158 | self, |
| 1159 | duration: SignedDuration, |
| 1160 | ) -> Result<(Time, SignedDuration), Error> { |
| 1161 | let start = t::NoUnits128::rfrom(self.to_nanosecond()); |
| 1162 | let duration = t::NoUnits96::new_unchecked(duration.as_nanos()); |
| 1163 | // This can never fail because the maximum duration fits into a |
| 1164 | // 96-bit integer, and adding any 96-bit integer to any 64-bit |
| 1165 | // integer can never overflow a 128-bit integer. |
| 1166 | let sum = start.try_checked_add("nanoseconds" , duration).unwrap(); |
| 1167 | let days = t::SpanDays::try_new( |
| 1168 | "overflowing-days" , |
| 1169 | sum.div_floor(t::NANOS_PER_CIVIL_DAY), |
| 1170 | )?; |
| 1171 | let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY); |
| 1172 | let time = Time::from_nanosecond(time_nanos.rinto()); |
| 1173 | // OK because of the constraint imposed by t::SpanDays. |
| 1174 | let hours = i64::from(days).checked_mul(24).unwrap(); |
| 1175 | Ok((time, SignedDuration::from_hours(hours))) |
| 1176 | } |
| 1177 | |
| 1178 | /// Returns a span representing the elapsed time from this time until |
| 1179 | /// the given `other` time. |
| 1180 | /// |
| 1181 | /// When `other` is earlier than this time, the span returned will be |
| 1182 | /// negative. |
| 1183 | /// |
| 1184 | /// Depending on the input provided, the span returned is rounded. It may |
| 1185 | /// also be balanced down to smaller units than the default. By default, |
| 1186 | /// the span returned is balanced such that the biggest possible unit is |
| 1187 | /// hours. |
| 1188 | /// |
| 1189 | /// This operation is configured by providing a [`TimeDifference`] |
| 1190 | /// value. Since this routine accepts anything that implements |
| 1191 | /// `Into<TimeDifference>`, once can pass a `Time` directly. One |
| 1192 | /// can also pass a `(Unit, Time)`, where `Unit` is treated as |
| 1193 | /// [`TimeDifference::largest`]. |
| 1194 | /// |
| 1195 | /// # Properties |
| 1196 | /// |
| 1197 | /// As long as no rounding is requested, it is guaranteed that adding the |
| 1198 | /// span returned to the `other` time will always equal this time. |
| 1199 | /// |
| 1200 | /// # Errors |
| 1201 | /// |
| 1202 | /// An error can occur if `TimeDifference` is misconfigured. For example, |
| 1203 | /// if the smallest unit provided is bigger than the largest unit, or if |
| 1204 | /// the largest unit is bigger than [`Unit::Hour`]. |
| 1205 | /// |
| 1206 | /// It is guaranteed that if one provides a time with the default |
| 1207 | /// [`TimeDifference`] configuration, then this routine will never fail. |
| 1208 | /// |
| 1209 | /// # Examples |
| 1210 | /// |
| 1211 | /// ``` |
| 1212 | /// use jiff::{civil::time, ToSpan}; |
| 1213 | /// |
| 1214 | /// let t1 = time(22, 35, 1, 0); |
| 1215 | /// let t2 = time(22, 35, 3, 500_000_000); |
| 1216 | /// assert_eq!(t1.until(t2)?, 2.seconds().milliseconds(500).fieldwise()); |
| 1217 | /// // Flipping the dates is fine, but you'll get a negative span. |
| 1218 | /// assert_eq!(t2.until(t1)?, -2.seconds().milliseconds(500).fieldwise()); |
| 1219 | /// |
| 1220 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1221 | /// ``` |
| 1222 | /// |
| 1223 | /// # Example: using smaller units |
| 1224 | /// |
| 1225 | /// This example shows how to contract the span returned to smaller units. |
| 1226 | /// This makes use of a `From<(Unit, Time)> for TimeDifference` |
| 1227 | /// trait implementation. |
| 1228 | /// |
| 1229 | /// ``` |
| 1230 | /// use jiff::{civil::time, Unit, ToSpan}; |
| 1231 | /// |
| 1232 | /// let t1 = time(3, 24, 30, 3500); |
| 1233 | /// let t2 = time(15, 30, 0, 0); |
| 1234 | /// |
| 1235 | /// // The default limits spans to using "hours" as the biggest unit. |
| 1236 | /// let span = t1.until(t2)?; |
| 1237 | /// assert_eq!(span.to_string(), "PT12H5M29.9999965S" ); |
| 1238 | /// |
| 1239 | /// // But we can ask for smaller units, like capping the biggest unit |
| 1240 | /// // to minutes instead of hours. |
| 1241 | /// let span = t1.until((Unit::Minute, t2))?; |
| 1242 | /// assert_eq!(span.to_string(), "PT725M29.9999965S" ); |
| 1243 | /// |
| 1244 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1245 | /// ``` |
| 1246 | #[inline ] |
| 1247 | pub fn until<A: Into<TimeDifference>>( |
| 1248 | self, |
| 1249 | other: A, |
| 1250 | ) -> Result<Span, Error> { |
| 1251 | let args: TimeDifference = other.into(); |
| 1252 | let span = args.until_with_largest_unit(self)?; |
| 1253 | if args.rounding_may_change_span() { |
| 1254 | span.round(args.round) |
| 1255 | } else { |
| 1256 | Ok(span) |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | /// This routine is identical to [`Time::until`], but the order of the |
| 1261 | /// parameters is flipped. |
| 1262 | /// |
| 1263 | /// # Errors |
| 1264 | /// |
| 1265 | /// This has the same error conditions as [`Time::until`]. |
| 1266 | /// |
| 1267 | /// # Example |
| 1268 | /// |
| 1269 | /// This routine can be used via the `-` operator. Since the default |
| 1270 | /// configuration is used and because a `Span` can represent the difference |
| 1271 | /// between any two possible times, it will never panic. |
| 1272 | /// |
| 1273 | /// ``` |
| 1274 | /// use jiff::{civil::time, ToSpan}; |
| 1275 | /// |
| 1276 | /// let earlier = time(1, 0, 0, 0); |
| 1277 | /// let later = time(22, 30, 0, 0); |
| 1278 | /// assert_eq!(later - earlier, 21.hours().minutes(30).fieldwise()); |
| 1279 | /// ``` |
| 1280 | #[inline ] |
| 1281 | pub fn since<A: Into<TimeDifference>>( |
| 1282 | self, |
| 1283 | other: A, |
| 1284 | ) -> Result<Span, Error> { |
| 1285 | let args: TimeDifference = other.into(); |
| 1286 | let span = -args.until_with_largest_unit(self)?; |
| 1287 | if args.rounding_may_change_span() { |
| 1288 | span.round(args.round) |
| 1289 | } else { |
| 1290 | Ok(span) |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | /// Returns an absolute duration representing the elapsed time from this |
| 1295 | /// time until the given `other` time. |
| 1296 | /// |
| 1297 | /// When `other` occurs before this time, then the duration returned will |
| 1298 | /// be negative. |
| 1299 | /// |
| 1300 | /// Unlike [`Time::until`], this returns a duration corresponding to a |
| 1301 | /// 96-bit integer of nanoseconds between two times. In this case of |
| 1302 | /// computing durations between civil times where all days are assumed to |
| 1303 | /// be 24 hours long, the duration returned will always be less than 24 |
| 1304 | /// hours. |
| 1305 | /// |
| 1306 | /// # Fallibility |
| 1307 | /// |
| 1308 | /// This routine never panics or returns an error. Since there are no |
| 1309 | /// configuration options that can be incorrectly provided, no error is |
| 1310 | /// possible when calling this routine. In contrast, [`Time::until`] can |
| 1311 | /// return an error in some cases due to misconfiguration. But like this |
| 1312 | /// routine, [`Time::until`] never panics or returns an error in its |
| 1313 | /// default configuration. |
| 1314 | /// |
| 1315 | /// # When should I use this versus [`Time::until`]? |
| 1316 | /// |
| 1317 | /// See the type documentation for [`SignedDuration`] for the section on |
| 1318 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
| 1319 | /// In short, use `Span` (and therefore `Time::until`) unless you have a |
| 1320 | /// specific reason to do otherwise. |
| 1321 | /// |
| 1322 | /// # Example |
| 1323 | /// |
| 1324 | /// ``` |
| 1325 | /// use jiff::{civil::time, SignedDuration}; |
| 1326 | /// |
| 1327 | /// let t1 = time(22, 35, 1, 0); |
| 1328 | /// let t2 = time(22, 35, 3, 500_000_000); |
| 1329 | /// assert_eq!(t1.duration_until(t2), SignedDuration::new(2, 500_000_000)); |
| 1330 | /// // Flipping the time is fine, but you'll get a negative duration. |
| 1331 | /// assert_eq!(t2.duration_until(t1), -SignedDuration::new(2, 500_000_000)); |
| 1332 | /// ``` |
| 1333 | /// |
| 1334 | /// # Example: difference with [`Time::until`] |
| 1335 | /// |
| 1336 | /// Since the difference between two civil times is always expressed in |
| 1337 | /// units of hours or smaller, and units of hours or smaller are always |
| 1338 | /// uniform, there is no "expressive" difference between this routine and |
| 1339 | /// `Time::until`. The only difference is that this routine returns a |
| 1340 | /// `SignedDuration` and `Time::until` returns a [`Span`]. Moreover, since |
| 1341 | /// the difference is always less than 24 hours, the return values can |
| 1342 | /// always be infallibly and losslessly converted between each other: |
| 1343 | /// |
| 1344 | /// ``` |
| 1345 | /// use jiff::{civil::time, SignedDuration, Span}; |
| 1346 | /// |
| 1347 | /// let t1 = time(22, 35, 1, 0); |
| 1348 | /// let t2 = time(22, 35, 3, 500_000_000); |
| 1349 | /// let dur = t1.duration_until(t2); |
| 1350 | /// // Guaranteed to never fail because the duration |
| 1351 | /// // between two civil times never exceeds the limits |
| 1352 | /// // of a `Span`. |
| 1353 | /// let span = Span::try_from(dur).unwrap(); |
| 1354 | /// assert_eq!(span, Span::new().seconds(2).milliseconds(500).fieldwise()); |
| 1355 | /// // Guaranteed to succeed and always return the original |
| 1356 | /// // duration because the units are always hours or smaller, |
| 1357 | /// // and thus uniform. This means a relative datetime is |
| 1358 | /// // never required to do this conversion. |
| 1359 | /// let dur = SignedDuration::try_from(span).unwrap(); |
| 1360 | /// assert_eq!(dur, SignedDuration::new(2, 500_000_000)); |
| 1361 | /// ``` |
| 1362 | /// |
| 1363 | /// This conversion guarantee also applies to [`Time::until`] since it |
| 1364 | /// always returns a balanced span. That is, it never returns spans like |
| 1365 | /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to |
| 1366 | /// a `SignedDuration` since a `SignedDuration` is only represented as a |
| 1367 | /// single 96-bit integer of nanoseconds.) |
| 1368 | /// |
| 1369 | /// # Example: getting an unsigned duration |
| 1370 | /// |
| 1371 | /// If you're looking to find the duration between two times as a |
| 1372 | /// [`std::time::Duration`], you'll need to use this method to get a |
| 1373 | /// [`SignedDuration`] and then convert it to a `std::time::Duration`: |
| 1374 | /// |
| 1375 | /// ``` |
| 1376 | /// use std::time::Duration; |
| 1377 | /// |
| 1378 | /// use jiff::{civil::time, SignedDuration, Span}; |
| 1379 | /// |
| 1380 | /// let t1 = time(22, 35, 1, 0); |
| 1381 | /// let t2 = time(22, 35, 3, 500_000_000); |
| 1382 | /// let dur = Duration::try_from(t1.duration_until(t2))?;; |
| 1383 | /// assert_eq!(dur, Duration::new(2, 500_000_000)); |
| 1384 | /// |
| 1385 | /// // Note that unsigned durations cannot represent all |
| 1386 | /// // possible differences! If the duration would be negative, |
| 1387 | /// // then the conversion fails: |
| 1388 | /// assert!(Duration::try_from(t2.duration_until(t1)).is_err()); |
| 1389 | /// |
| 1390 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1391 | /// ``` |
| 1392 | #[inline ] |
| 1393 | pub fn duration_until(self, other: Time) -> SignedDuration { |
| 1394 | SignedDuration::time_until(self, other) |
| 1395 | } |
| 1396 | |
| 1397 | /// This routine is identical to [`Time::duration_until`], but the order of |
| 1398 | /// the parameters is flipped. |
| 1399 | /// |
| 1400 | /// # Example |
| 1401 | /// |
| 1402 | /// ``` |
| 1403 | /// use jiff::{civil::time, SignedDuration}; |
| 1404 | /// |
| 1405 | /// let earlier = time(1, 0, 0, 0); |
| 1406 | /// let later = time(22, 30, 0, 0); |
| 1407 | /// assert_eq!( |
| 1408 | /// later.duration_since(earlier), |
| 1409 | /// SignedDuration::from_secs((21 * 60 * 60) + (30 * 60)), |
| 1410 | /// ); |
| 1411 | /// ``` |
| 1412 | #[inline ] |
| 1413 | pub fn duration_since(self, other: Time) -> SignedDuration { |
| 1414 | SignedDuration::time_until(other, self) |
| 1415 | } |
| 1416 | |
| 1417 | /// Rounds this time according to the [`TimeRound`] configuration given. |
| 1418 | /// |
| 1419 | /// The principal option is [`TimeRound::smallest`], which allows one |
| 1420 | /// to configure the smallest units in the returned time. Rounding |
| 1421 | /// is what determines whether that unit should keep its current value |
| 1422 | /// or whether it should be incremented. Moreover, the amount it should |
| 1423 | /// be incremented can be configured via [`TimeRound::increment`]. |
| 1424 | /// Finally, the rounding strategy itself can be configured via |
| 1425 | /// [`TimeRound::mode`]. |
| 1426 | /// |
| 1427 | /// Note that this routine is generic and accepts anything that |
| 1428 | /// implements `Into<TimeRound>`. Some notable implementations are: |
| 1429 | /// |
| 1430 | /// * `From<Unit> for Round`, which will automatically create a |
| 1431 | /// `TimeRound::new().smallest(unit)` from the unit provided. |
| 1432 | /// * `From<(Unit, i64)> for Round`, which will automatically create a |
| 1433 | /// `TimeRound::new().smallest(unit).increment(number)` from the unit |
| 1434 | /// and increment provided. |
| 1435 | /// |
| 1436 | /// # Errors |
| 1437 | /// |
| 1438 | /// This returns an error if the smallest unit configured on the given |
| 1439 | /// [`TimeRound`] is bigger than hours. |
| 1440 | /// |
| 1441 | /// The rounding increment must divide evenly into the next highest unit |
| 1442 | /// after the smallest unit configured (and must not be equivalent to it). |
| 1443 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
| 1444 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
| 1445 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
| 1446 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
| 1447 | /// unit (microseconds). |
| 1448 | /// |
| 1449 | /// This can never fail because of overflow for any input. The only |
| 1450 | /// possible errors are "configuration" errors. |
| 1451 | /// |
| 1452 | /// # Example |
| 1453 | /// |
| 1454 | /// This is a basic example that demonstrates rounding a datetime to the |
| 1455 | /// nearest second. This also demonstrates calling this method with the |
| 1456 | /// smallest unit directly, instead of constructing a `TimeRound` manually. |
| 1457 | /// |
| 1458 | /// ``` |
| 1459 | /// use jiff::{civil::time, Unit}; |
| 1460 | /// |
| 1461 | /// let t = time(15, 45, 10, 123_456_789); |
| 1462 | /// assert_eq!( |
| 1463 | /// t.round(Unit::Second)?, |
| 1464 | /// time(15, 45, 10, 0), |
| 1465 | /// ); |
| 1466 | /// let t = time(15, 45, 10, 500_000_001); |
| 1467 | /// assert_eq!( |
| 1468 | /// t.round(Unit::Second)?, |
| 1469 | /// time(15, 45, 11, 0), |
| 1470 | /// ); |
| 1471 | /// |
| 1472 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1473 | /// ``` |
| 1474 | /// |
| 1475 | /// # Example: changing the rounding mode |
| 1476 | /// |
| 1477 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
| 1478 | /// breaks ties by rounding away from zero. But other modes like |
| 1479 | /// [`RoundMode::Trunc`] can be used too: |
| 1480 | /// |
| 1481 | /// ``` |
| 1482 | /// use jiff::{civil::{TimeRound, time}, RoundMode, Unit}; |
| 1483 | /// |
| 1484 | /// let t = time(15, 45, 10, 999_999_999); |
| 1485 | /// assert_eq!( |
| 1486 | /// t.round(Unit::Second)?, |
| 1487 | /// time(15, 45, 11, 0), |
| 1488 | /// ); |
| 1489 | /// // The default will round up to the next second for any fraction |
| 1490 | /// // greater than or equal to 0.5. But truncation will always round |
| 1491 | /// // toward zero. |
| 1492 | /// assert_eq!( |
| 1493 | /// t.round( |
| 1494 | /// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
| 1495 | /// )?, |
| 1496 | /// time(15, 45, 10, 0), |
| 1497 | /// ); |
| 1498 | /// |
| 1499 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1500 | /// ``` |
| 1501 | /// |
| 1502 | /// # Example: rounding to the nearest 5 minute increment |
| 1503 | /// |
| 1504 | /// ``` |
| 1505 | /// use jiff::{civil::time, Unit}; |
| 1506 | /// |
| 1507 | /// // rounds down |
| 1508 | /// let t = time(15, 27, 29, 999_999_999); |
| 1509 | /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 25, 0, 0)); |
| 1510 | /// // rounds up |
| 1511 | /// let t = time(15, 27, 30, 0); |
| 1512 | /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 30, 0, 0)); |
| 1513 | /// |
| 1514 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1515 | /// ``` |
| 1516 | /// |
| 1517 | /// # Example: rounding wraps around on overflow |
| 1518 | /// |
| 1519 | /// This example demonstrates that it's possible for this operation to |
| 1520 | /// overflow, and as a result, have the time wrap around. |
| 1521 | /// |
| 1522 | /// ``` |
| 1523 | /// use jiff::{civil::Time, Unit}; |
| 1524 | /// |
| 1525 | /// let t = Time::MAX; |
| 1526 | /// assert_eq!(t.round(Unit::Hour)?, Time::MIN); |
| 1527 | /// |
| 1528 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1529 | /// ``` |
| 1530 | #[inline ] |
| 1531 | pub fn round<R: Into<TimeRound>>(self, options: R) -> Result<Time, Error> { |
| 1532 | let options: TimeRound = options.into(); |
| 1533 | options.round(self) |
| 1534 | } |
| 1535 | |
| 1536 | /// Return an iterator of periodic times determined by the given span. |
| 1537 | /// |
| 1538 | /// The given span may be negative, in which case, the iterator will move |
| 1539 | /// backwards through time. The iterator won't stop until either the span |
| 1540 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
| 1541 | /// `Time` value. |
| 1542 | /// |
| 1543 | /// # Example: visiting every third hour |
| 1544 | /// |
| 1545 | /// This shows how to visit each third hour of a 24 hour time interval: |
| 1546 | /// |
| 1547 | /// ``` |
| 1548 | /// use jiff::{civil::{Time, time}, ToSpan}; |
| 1549 | /// |
| 1550 | /// let start = Time::MIN; |
| 1551 | /// let mut every_third_hour = vec![]; |
| 1552 | /// for t in start.series(3.hours()) { |
| 1553 | /// every_third_hour.push(t); |
| 1554 | /// } |
| 1555 | /// assert_eq!(every_third_hour, vec![ |
| 1556 | /// time(0, 0, 0, 0), |
| 1557 | /// time(3, 0, 0, 0), |
| 1558 | /// time(6, 0, 0, 0), |
| 1559 | /// time(9, 0, 0, 0), |
| 1560 | /// time(12, 0, 0, 0), |
| 1561 | /// time(15, 0, 0, 0), |
| 1562 | /// time(18, 0, 0, 0), |
| 1563 | /// time(21, 0, 0, 0), |
| 1564 | /// ]); |
| 1565 | /// ``` |
| 1566 | /// |
| 1567 | /// Or go backwards every 6.5 hours: |
| 1568 | /// |
| 1569 | /// ``` |
| 1570 | /// use jiff::{civil::{Time, time}, ToSpan}; |
| 1571 | /// |
| 1572 | /// let start = time(23, 0, 0, 0); |
| 1573 | /// let times: Vec<Time> = start.series(-6.hours().minutes(30)).collect(); |
| 1574 | /// assert_eq!(times, vec![ |
| 1575 | /// time(23, 0, 0, 0), |
| 1576 | /// time(16, 30, 0, 0), |
| 1577 | /// time(10, 0, 0, 0), |
| 1578 | /// time(3, 30, 0, 0), |
| 1579 | /// ]); |
| 1580 | /// ``` |
| 1581 | #[inline ] |
| 1582 | pub fn series(self, period: Span) -> TimeSeries { |
| 1583 | TimeSeries { start: self, period, step: 0 } |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | /// Parsing and formatting using a "printf"-style API. |
| 1588 | impl Time { |
| 1589 | /// Parses a civil time in `input` matching the given `format`. |
| 1590 | /// |
| 1591 | /// The format string uses a "printf"-style API where conversion |
| 1592 | /// specifiers can be used as place holders to match components of |
| 1593 | /// a datetime. For details on the specifiers supported, see the |
| 1594 | /// [`fmt::strtime`] module documentation. |
| 1595 | /// |
| 1596 | /// # Errors |
| 1597 | /// |
| 1598 | /// This returns an error when parsing failed. This might happen because |
| 1599 | /// the format string itself was invalid, or because the input didn't match |
| 1600 | /// the format string. |
| 1601 | /// |
| 1602 | /// This also returns an error if there wasn't sufficient information to |
| 1603 | /// construct a civil time. For example, if an offset wasn't parsed. |
| 1604 | /// |
| 1605 | /// # Example |
| 1606 | /// |
| 1607 | /// This example shows how to parse a civil time: |
| 1608 | /// |
| 1609 | /// ``` |
| 1610 | /// use jiff::civil::Time; |
| 1611 | /// |
| 1612 | /// // Parse with a 12-hour clock. |
| 1613 | /// let time = Time::strptime("%I:%M%P" , "4:30pm" )?; |
| 1614 | /// assert_eq!(time.to_string(), "16:30:00" ); |
| 1615 | /// |
| 1616 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1617 | /// ``` |
| 1618 | #[inline ] |
| 1619 | pub fn strptime( |
| 1620 | format: impl AsRef<[u8]>, |
| 1621 | input: impl AsRef<[u8]>, |
| 1622 | ) -> Result<Time, Error> { |
| 1623 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_time()) |
| 1624 | } |
| 1625 | |
| 1626 | /// Formats this civil time according to the given `format`. |
| 1627 | /// |
| 1628 | /// The format string uses a "printf"-style API where conversion |
| 1629 | /// specifiers can be used as place holders to format components of |
| 1630 | /// a datetime. For details on the specifiers supported, see the |
| 1631 | /// [`fmt::strtime`] module documentation. |
| 1632 | /// |
| 1633 | /// # Errors and panics |
| 1634 | /// |
| 1635 | /// While this routine itself does not error or panic, using the value |
| 1636 | /// returned may result in a panic if formatting fails. See the |
| 1637 | /// documentation on [`fmt::strtime::Display`] for more information. |
| 1638 | /// |
| 1639 | /// To format in a way that surfaces errors without panicking, use either |
| 1640 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
| 1641 | /// |
| 1642 | /// # Example |
| 1643 | /// |
| 1644 | /// This example shows how to format a civil time in a 12 hour clock with |
| 1645 | /// no padding for the hour: |
| 1646 | /// |
| 1647 | /// ``` |
| 1648 | /// use jiff::civil::time; |
| 1649 | /// |
| 1650 | /// let t = time(16, 30, 59, 0); |
| 1651 | /// let string = t.strftime("%-I:%M%P" ).to_string(); |
| 1652 | /// assert_eq!(string, "4:30pm" ); |
| 1653 | /// ``` |
| 1654 | /// |
| 1655 | /// Note that one can round a `Time` before formatting. For example, to |
| 1656 | /// round to the nearest minute: |
| 1657 | /// |
| 1658 | /// ``` |
| 1659 | /// use jiff::{civil::time, Unit}; |
| 1660 | /// |
| 1661 | /// let t = time(16, 30, 59, 0); |
| 1662 | /// let string = t.round(Unit::Minute)?.strftime("%-I:%M%P" ).to_string(); |
| 1663 | /// assert_eq!(string, "4:31pm" ); |
| 1664 | /// |
| 1665 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1666 | /// ``` |
| 1667 | #[inline ] |
| 1668 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
| 1669 | &self, |
| 1670 | format: &'f F, |
| 1671 | ) -> fmt::strtime::Display<'f> { |
| 1672 | fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() } |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | /// Crate internal APIs. |
| 1677 | /// |
| 1678 | /// Many of these are mirrors of the public API, but on ranged types. These |
| 1679 | /// are often much more convenient to use in composition with other parts of |
| 1680 | /// the crate that also use ranged integer types. And this often permits the |
| 1681 | /// routines to be infallible and (possibly) zero-cost. |
| 1682 | impl Time { |
| 1683 | #[inline ] |
| 1684 | pub(crate) fn new_ranged( |
| 1685 | hour: impl RInto<Hour>, |
| 1686 | minute: impl RInto<Minute>, |
| 1687 | second: impl RInto<Second>, |
| 1688 | subsec_nanosecond: impl RInto<SubsecNanosecond>, |
| 1689 | ) -> Time { |
| 1690 | Time { |
| 1691 | hour: hour.rinto(), |
| 1692 | minute: minute.rinto(), |
| 1693 | second: second.rinto(), |
| 1694 | subsec_nanosecond: subsec_nanosecond.rinto(), |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | /// Set the fractional parts of this time to the given units via ranged |
| 1699 | /// types. |
| 1700 | #[inline ] |
| 1701 | fn with_subsec_parts_ranged( |
| 1702 | self, |
| 1703 | millisecond: impl RInto<Millisecond>, |
| 1704 | microsecond: impl RInto<Microsecond>, |
| 1705 | nanosecond: impl RInto<Nanosecond>, |
| 1706 | ) -> Time { |
| 1707 | let millisecond = SubsecNanosecond::rfrom(millisecond.rinto()); |
| 1708 | let microsecond = SubsecNanosecond::rfrom(microsecond.rinto()); |
| 1709 | let nanosecond = SubsecNanosecond::rfrom(nanosecond.rinto()); |
| 1710 | let mut subsec_nanosecond = |
| 1711 | millisecond * t::MICROS_PER_MILLI * t::NANOS_PER_MICRO; |
| 1712 | subsec_nanosecond += microsecond * t::NANOS_PER_MICRO; |
| 1713 | subsec_nanosecond += nanosecond; |
| 1714 | Time { subsec_nanosecond: subsec_nanosecond.rinto(), ..self } |
| 1715 | } |
| 1716 | |
| 1717 | #[inline ] |
| 1718 | pub(crate) fn hour_ranged(self) -> Hour { |
| 1719 | self.hour |
| 1720 | } |
| 1721 | |
| 1722 | #[inline ] |
| 1723 | pub(crate) fn minute_ranged(self) -> Minute { |
| 1724 | self.minute |
| 1725 | } |
| 1726 | |
| 1727 | #[inline ] |
| 1728 | pub(crate) fn second_ranged(self) -> Second { |
| 1729 | self.second |
| 1730 | } |
| 1731 | |
| 1732 | #[inline ] |
| 1733 | pub(crate) fn millisecond_ranged(self) -> Millisecond { |
| 1734 | let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO; |
| 1735 | let millis = micros / t::MICROS_PER_MILLI; |
| 1736 | millis.rinto() |
| 1737 | } |
| 1738 | |
| 1739 | #[inline ] |
| 1740 | pub(crate) fn microsecond_ranged(self) -> Microsecond { |
| 1741 | let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO; |
| 1742 | let only_micros = micros % t::MICROS_PER_MILLI; |
| 1743 | only_micros.rinto() |
| 1744 | } |
| 1745 | |
| 1746 | #[inline ] |
| 1747 | pub(crate) fn nanosecond_ranged(self) -> Nanosecond { |
| 1748 | let only_nanos = self.subsec_nanosecond_ranged() % t::NANOS_PER_MICRO; |
| 1749 | only_nanos.rinto() |
| 1750 | } |
| 1751 | |
| 1752 | #[inline ] |
| 1753 | pub(crate) fn subsec_nanosecond_ranged(self) -> SubsecNanosecond { |
| 1754 | self.subsec_nanosecond |
| 1755 | } |
| 1756 | |
| 1757 | #[inline ] |
| 1758 | pub(crate) fn until_nanoseconds(self, other: Time) -> t::SpanNanoseconds { |
| 1759 | let t1 = t::SpanNanoseconds::rfrom(self.to_nanosecond()); |
| 1760 | let t2 = t::SpanNanoseconds::rfrom(other.to_nanosecond()); |
| 1761 | t2 - t1 |
| 1762 | } |
| 1763 | |
| 1764 | /// Converts this time value to the number of seconds that has elapsed |
| 1765 | /// since `00:00:00`. This completely ignores seconds. Callers should |
| 1766 | /// likely ensure that the fractional second component is zero. |
| 1767 | /// |
| 1768 | /// The maximum possible value that can be returned represents the time |
| 1769 | /// `23:59:59`. |
| 1770 | #[inline ] |
| 1771 | pub(crate) fn to_second(&self) -> CivilDaySecond { |
| 1772 | self.to_itime().map(|x| x.to_second().second).to_rint() |
| 1773 | } |
| 1774 | |
| 1775 | /// Converts the given second to a time value. The second should correspond |
| 1776 | /// to the number of seconds that have elapsed since `00:00:00`. The |
| 1777 | /// fractional second component of the `Time` returned is always `0`. |
| 1778 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1779 | pub(crate) fn from_second(second: CivilDaySecond) -> Time { |
| 1780 | let second = rangeint::composite!((second) => { |
| 1781 | ITimeSecond { second } |
| 1782 | }); |
| 1783 | Time::from_itime(second.map(|x| x.to_time())) |
| 1784 | } |
| 1785 | |
| 1786 | /// Converts this time value to the number of nanoseconds that has elapsed |
| 1787 | /// since `00:00:00.000000000`. |
| 1788 | /// |
| 1789 | /// The maximum possible value that can be returned represents the time |
| 1790 | /// `23:59:59.999999999`. |
| 1791 | #[inline ] |
| 1792 | pub(crate) fn to_nanosecond(&self) -> CivilDayNanosecond { |
| 1793 | self.to_itime().map(|x| x.to_nanosecond().nanosecond).to_rint() |
| 1794 | } |
| 1795 | |
| 1796 | /// Converts the given nanosecond to a time value. The nanosecond should |
| 1797 | /// correspond to the number of nanoseconds that have elapsed since |
| 1798 | /// `00:00:00.000000000`. |
| 1799 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1800 | pub(crate) fn from_nanosecond(nanosecond: CivilDayNanosecond) -> Time { |
| 1801 | let nano = rangeint::composite!((nanosecond) => { |
| 1802 | ITimeNanosecond { nanosecond } |
| 1803 | }); |
| 1804 | Time::from_itime(nano.map(|x| x.to_time())) |
| 1805 | } |
| 1806 | |
| 1807 | #[inline ] |
| 1808 | pub(crate) fn to_itime(&self) -> Composite<ITime> { |
| 1809 | rangeint::composite! { |
| 1810 | ( |
| 1811 | hour = self.hour, |
| 1812 | minute = self.minute, |
| 1813 | second = self.second, |
| 1814 | subsec_nanosecond = self.subsec_nanosecond, |
| 1815 | ) => { |
| 1816 | ITime { hour, minute, second, subsec_nanosecond } |
| 1817 | } |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | #[inline ] |
| 1822 | pub(crate) fn from_itime(itime: Composite<ITime>) -> Time { |
| 1823 | let (hour, minute, second, subsec_nanosecond) = rangeint::uncomposite!( |
| 1824 | itime, |
| 1825 | c => (c.hour, c.minute, c.second, c.subsec_nanosecond), |
| 1826 | ); |
| 1827 | Time { |
| 1828 | hour: hour.to_rint(), |
| 1829 | minute: minute.to_rint(), |
| 1830 | second: second.to_rint(), |
| 1831 | subsec_nanosecond: subsec_nanosecond.to_rint(), |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | #[inline ] |
| 1836 | pub(crate) const fn to_itime_const(&self) -> ITime { |
| 1837 | ITime { |
| 1838 | hour: self.hour.get_unchecked(), |
| 1839 | minute: self.minute.get_unchecked(), |
| 1840 | second: self.second.get_unchecked(), |
| 1841 | subsec_nanosecond: self.subsec_nanosecond.get_unchecked(), |
| 1842 | } |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | impl Default for Time { |
| 1847 | #[inline ] |
| 1848 | fn default() -> Time { |
| 1849 | Time::midnight() |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | /// Converts a `Time` into a human readable time string. |
| 1854 | /// |
| 1855 | /// (This `Debug` representation currently emits the same string as the |
| 1856 | /// `Display` representation, but this is not a guarantee.) |
| 1857 | /// |
| 1858 | /// Options currently supported: |
| 1859 | /// |
| 1860 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 1861 | /// of the fractional second component. |
| 1862 | /// |
| 1863 | /// # Example |
| 1864 | /// |
| 1865 | /// ``` |
| 1866 | /// use jiff::civil::time; |
| 1867 | /// |
| 1868 | /// let t = time(7, 0, 0, 123_000_000); |
| 1869 | /// assert_eq!(format!("{t:.6?}" ), "07:00:00.123000" ); |
| 1870 | /// // Precision values greater than 9 are clamped to 9. |
| 1871 | /// assert_eq!(format!("{t:.300?}" ), "07:00:00.123000000" ); |
| 1872 | /// // A precision of 0 implies the entire fractional |
| 1873 | /// // component is always truncated. |
| 1874 | /// assert_eq!(format!("{t:.0?}" ), "07:00:00" ); |
| 1875 | /// |
| 1876 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1877 | /// ``` |
| 1878 | impl core::fmt::Debug for Time { |
| 1879 | #[inline ] |
| 1880 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1881 | core::fmt::Display::fmt(self, f) |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | /// Converts a `Time` into an ISO 8601 compliant string. |
| 1886 | /// |
| 1887 | /// Options currently supported: |
| 1888 | /// |
| 1889 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 1890 | /// of the fractional second component. |
| 1891 | /// |
| 1892 | /// # Example |
| 1893 | /// |
| 1894 | /// ``` |
| 1895 | /// use jiff::civil::time; |
| 1896 | /// |
| 1897 | /// let t = time(7, 0, 0, 123_000_000); |
| 1898 | /// assert_eq!(format!("{t:.6}" ), "07:00:00.123000" ); |
| 1899 | /// // Precision values greater than 9 are clamped to 9. |
| 1900 | /// assert_eq!(format!("{t:.300}" ), "07:00:00.123000000" ); |
| 1901 | /// // A precision of 0 implies the entire fractional |
| 1902 | /// // component is always truncated. |
| 1903 | /// assert_eq!(format!("{t:.0}" ), "07:00:00" ); |
| 1904 | /// |
| 1905 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1906 | /// ``` |
| 1907 | impl core::fmt::Display for Time { |
| 1908 | #[inline ] |
| 1909 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1910 | use crate::fmt::StdFmtWrite; |
| 1911 | |
| 1912 | let precision: Option = |
| 1913 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
| 1914 | temporal::DateTimePrinter::new() |
| 1915 | .precision(precision) |
| 1916 | .print_time(self, StdFmtWrite(f)) |
| 1917 | .map_err(|_| core::fmt::Error) |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | impl core::str::FromStr for Time { |
| 1922 | type Err = Error; |
| 1923 | |
| 1924 | #[inline ] |
| 1925 | fn from_str(string: &str) -> Result<Time, Error> { |
| 1926 | DEFAULT_DATETIME_PARSER.parse_time(input:string) |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | /// Adds a span of time. This uses wrapping arithmetic. |
| 1931 | /// |
| 1932 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 1933 | impl core::ops::Add<Span> for Time { |
| 1934 | type Output = Time; |
| 1935 | |
| 1936 | #[inline ] |
| 1937 | fn add(self, rhs: Span) -> Time { |
| 1938 | self.wrapping_add(duration:rhs) |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | /// Adds a span of time in place. This uses wrapping arithmetic. |
| 1943 | /// |
| 1944 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 1945 | impl core::ops::AddAssign<Span> for Time { |
| 1946 | #[inline ] |
| 1947 | fn add_assign(&mut self, rhs: Span) { |
| 1948 | *self = *self + rhs; |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | /// Subtracts a span of time. This uses wrapping arithmetic. |
| 1953 | /// |
| 1954 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 1955 | impl core::ops::Sub<Span> for Time { |
| 1956 | type Output = Time; |
| 1957 | |
| 1958 | #[inline ] |
| 1959 | fn sub(self, rhs: Span) -> Time { |
| 1960 | self.wrapping_sub(duration:rhs) |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | /// Subtracts a span of time in place. This uses wrapping arithmetic. |
| 1965 | /// |
| 1966 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 1967 | impl core::ops::SubAssign<Span> for Time { |
| 1968 | #[inline ] |
| 1969 | fn sub_assign(&mut self, rhs: Span) { |
| 1970 | *self = *self - rhs; |
| 1971 | } |
| 1972 | } |
| 1973 | |
| 1974 | /// Computes the span of time between two times. |
| 1975 | /// |
| 1976 | /// This will return a negative span when the time being subtracted is greater. |
| 1977 | /// |
| 1978 | /// Since this uses the default configuration for calculating a span between |
| 1979 | /// two times (no rounding and largest units is hours), this will never panic |
| 1980 | /// or fail in any way. |
| 1981 | /// |
| 1982 | /// To configure the largest unit or enable rounding, use [`Time::since`]. |
| 1983 | impl core::ops::Sub for Time { |
| 1984 | type Output = Span; |
| 1985 | |
| 1986 | #[inline ] |
| 1987 | fn sub(self, rhs: Time) -> Span { |
| 1988 | self.since(rhs).expect(msg:"since never fails when given Time" ) |
| 1989 | } |
| 1990 | } |
| 1991 | |
| 1992 | /// Adds a signed duration of time. This uses wrapping arithmetic. |
| 1993 | /// |
| 1994 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 1995 | impl core::ops::Add<SignedDuration> for Time { |
| 1996 | type Output = Time; |
| 1997 | |
| 1998 | #[inline ] |
| 1999 | fn add(self, rhs: SignedDuration) -> Time { |
| 2000 | self.wrapping_add(duration:rhs) |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | /// Adds a signed duration of time in place. This uses wrapping arithmetic. |
| 2005 | /// |
| 2006 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 2007 | impl core::ops::AddAssign<SignedDuration> for Time { |
| 2008 | #[inline ] |
| 2009 | fn add_assign(&mut self, rhs: SignedDuration) { |
| 2010 | *self = *self + rhs; |
| 2011 | } |
| 2012 | } |
| 2013 | |
| 2014 | /// Subtracts a signed duration of time. This uses wrapping arithmetic. |
| 2015 | /// |
| 2016 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 2017 | impl core::ops::Sub<SignedDuration> for Time { |
| 2018 | type Output = Time; |
| 2019 | |
| 2020 | #[inline ] |
| 2021 | fn sub(self, rhs: SignedDuration) -> Time { |
| 2022 | self.wrapping_sub(duration:rhs) |
| 2023 | } |
| 2024 | } |
| 2025 | |
| 2026 | /// Subtracts a signed duration of time in place. This uses wrapping arithmetic. |
| 2027 | /// |
| 2028 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 2029 | impl core::ops::SubAssign<SignedDuration> for Time { |
| 2030 | #[inline ] |
| 2031 | fn sub_assign(&mut self, rhs: SignedDuration) { |
| 2032 | *self = *self - rhs; |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | /// Adds an unsigned duration of time. This uses wrapping arithmetic. |
| 2037 | /// |
| 2038 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 2039 | impl core::ops::Add<UnsignedDuration> for Time { |
| 2040 | type Output = Time; |
| 2041 | |
| 2042 | #[inline ] |
| 2043 | fn add(self, rhs: UnsignedDuration) -> Time { |
| 2044 | self.wrapping_add(duration:rhs) |
| 2045 | } |
| 2046 | } |
| 2047 | |
| 2048 | /// Adds an unsigned duration of time in place. This uses wrapping arithmetic. |
| 2049 | /// |
| 2050 | /// For checked arithmetic, see [`Time::checked_add`]. |
| 2051 | impl core::ops::AddAssign<UnsignedDuration> for Time { |
| 2052 | #[inline ] |
| 2053 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
| 2054 | *self = *self + rhs; |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | /// Subtracts an unsigned duration of time. This uses wrapping arithmetic. |
| 2059 | /// |
| 2060 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 2061 | impl core::ops::Sub<UnsignedDuration> for Time { |
| 2062 | type Output = Time; |
| 2063 | |
| 2064 | #[inline ] |
| 2065 | fn sub(self, rhs: UnsignedDuration) -> Time { |
| 2066 | self.wrapping_sub(duration:rhs) |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | /// Subtracts an unsigned duration of time in place. This uses wrapping |
| 2071 | /// arithmetic. |
| 2072 | /// |
| 2073 | /// For checked arithmetic, see [`Time::checked_sub`]. |
| 2074 | impl core::ops::SubAssign<UnsignedDuration> for Time { |
| 2075 | #[inline ] |
| 2076 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
| 2077 | *self = *self - rhs; |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | impl From<DateTime> for Time { |
| 2082 | #[inline ] |
| 2083 | fn from(dt: DateTime) -> Time { |
| 2084 | dt.time() |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | impl From<Zoned> for Time { |
| 2089 | #[inline ] |
| 2090 | fn from(zdt: Zoned) -> Time { |
| 2091 | zdt.datetime().time() |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | impl<'a> From<&'a Zoned> for Time { |
| 2096 | #[inline ] |
| 2097 | fn from(zdt: &'a Zoned) -> Time { |
| 2098 | zdt.datetime().time() |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | #[cfg (feature = "serde" )] |
| 2103 | impl serde::Serialize for Time { |
| 2104 | #[inline ] |
| 2105 | fn serialize<S: serde::Serializer>( |
| 2106 | &self, |
| 2107 | serializer: S, |
| 2108 | ) -> Result<S::Ok, S::Error> { |
| 2109 | serializer.collect_str(self) |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | #[cfg (feature = "serde" )] |
| 2114 | impl<'de> serde::Deserialize<'de> for Time { |
| 2115 | #[inline ] |
| 2116 | fn deserialize<D: serde::Deserializer<'de>>( |
| 2117 | deserializer: D, |
| 2118 | ) -> Result<Time, D::Error> { |
| 2119 | use serde::de; |
| 2120 | |
| 2121 | struct TimeVisitor; |
| 2122 | |
| 2123 | impl<'de> de::Visitor<'de> for TimeVisitor { |
| 2124 | type Value = Time; |
| 2125 | |
| 2126 | fn expecting( |
| 2127 | &self, |
| 2128 | f: &mut core::fmt::Formatter, |
| 2129 | ) -> core::fmt::Result { |
| 2130 | f.write_str("a time string" ) |
| 2131 | } |
| 2132 | |
| 2133 | #[inline ] |
| 2134 | fn visit_bytes<E: de::Error>( |
| 2135 | self, |
| 2136 | value: &[u8], |
| 2137 | ) -> Result<Time, E> { |
| 2138 | DEFAULT_DATETIME_PARSER |
| 2139 | .parse_time(value) |
| 2140 | .map_err(de::Error::custom) |
| 2141 | } |
| 2142 | |
| 2143 | #[inline ] |
| 2144 | fn visit_str<E: de::Error>(self, value: &str) -> Result<Time, E> { |
| 2145 | self.visit_bytes(value.as_bytes()) |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | deserializer.deserialize_str(TimeVisitor) |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | #[cfg (test)] |
| 2154 | impl quickcheck::Arbitrary for Time { |
| 2155 | fn arbitrary(g: &mut quickcheck::Gen) -> Time { |
| 2156 | let hour = Hour::arbitrary(g); |
| 2157 | let minute = Minute::arbitrary(g); |
| 2158 | let second = Second::arbitrary(g); |
| 2159 | let subsec_nanosecond = SubsecNanosecond::arbitrary(g); |
| 2160 | Time::new_ranged(hour, minute, second, subsec_nanosecond) |
| 2161 | } |
| 2162 | |
| 2163 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Time>> { |
| 2164 | alloc::boxed::Box::new( |
| 2165 | ( |
| 2166 | self.hour_ranged(), |
| 2167 | self.minute_ranged(), |
| 2168 | self.second_ranged(), |
| 2169 | self.subsec_nanosecond_ranged(), |
| 2170 | ) |
| 2171 | .shrink() |
| 2172 | .map( |
| 2173 | |(hour, minute, second, subsec_nanosecond)| { |
| 2174 | Time::new_ranged( |
| 2175 | hour, |
| 2176 | minute, |
| 2177 | second, |
| 2178 | subsec_nanosecond, |
| 2179 | ) |
| 2180 | }, |
| 2181 | ), |
| 2182 | ) |
| 2183 | } |
| 2184 | } |
| 2185 | |
| 2186 | /// An iterator over periodic times, created by [`Time::series`]. |
| 2187 | /// |
| 2188 | /// It is exhausted when the next value would exceed a [`Span`] or [`Time`] |
| 2189 | /// value. |
| 2190 | #[derive (Clone, Debug)] |
| 2191 | pub struct TimeSeries { |
| 2192 | start: Time, |
| 2193 | period: Span, |
| 2194 | step: i64, |
| 2195 | } |
| 2196 | |
| 2197 | impl Iterator for TimeSeries { |
| 2198 | type Item = Time; |
| 2199 | |
| 2200 | #[inline ] |
| 2201 | fn next(&mut self) -> Option<Time> { |
| 2202 | let span: Span = self.period.checked_mul(self.step).ok()?; |
| 2203 | self.step = self.step.checked_add(1)?; |
| 2204 | let time: Time = self.start.checked_add(duration:span).ok()?; |
| 2205 | Some(time) |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | /// Options for [`Time::checked_add`] and [`Time::checked_sub`]. |
| 2210 | /// |
| 2211 | /// This type provides a way to ergonomically add one of a few different |
| 2212 | /// duration types to a [`Time`]. |
| 2213 | /// |
| 2214 | /// The main way to construct values of this type is with its `From` trait |
| 2215 | /// implementations: |
| 2216 | /// |
| 2217 | /// * `From<Span> for TimeArithmetic` adds (or subtracts) the given span to the |
| 2218 | /// receiver time. |
| 2219 | /// * `From<SignedDuration> for TimeArithmetic` adds (or subtracts) |
| 2220 | /// the given signed duration to the receiver time. |
| 2221 | /// * `From<std::time::Duration> for TimeArithmetic` adds (or subtracts) |
| 2222 | /// the given unsigned duration to the receiver time. |
| 2223 | /// |
| 2224 | /// # Example |
| 2225 | /// |
| 2226 | /// ``` |
| 2227 | /// use std::time::Duration; |
| 2228 | /// |
| 2229 | /// use jiff::{civil::time, SignedDuration, ToSpan}; |
| 2230 | /// |
| 2231 | /// let t = time(0, 0, 0, 0); |
| 2232 | /// assert_eq!(t.checked_add(2.hours())?, time(2, 0, 0, 0)); |
| 2233 | /// assert_eq!(t.checked_add(SignedDuration::from_hours(2))?, time(2, 0, 0, 0)); |
| 2234 | /// assert_eq!(t.checked_add(Duration::from_secs(2 * 60 * 60))?, time(2, 0, 0, 0)); |
| 2235 | /// |
| 2236 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2237 | /// ``` |
| 2238 | #[derive (Clone, Copy, Debug)] |
| 2239 | pub struct TimeArithmetic { |
| 2240 | duration: Duration, |
| 2241 | } |
| 2242 | |
| 2243 | impl TimeArithmetic { |
| 2244 | #[inline ] |
| 2245 | fn wrapping_add(self, time: Time) -> Time { |
| 2246 | match self.duration { |
| 2247 | Duration::Span(span) => time.wrapping_add_span(span), |
| 2248 | Duration::Signed(sdur) => time.wrapping_add_signed_duration(sdur), |
| 2249 | Duration::Unsigned(udur) => { |
| 2250 | time.wrapping_add_unsigned_duration(udur) |
| 2251 | } |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | #[inline ] |
| 2256 | fn wrapping_sub(self, time: Time) -> Time { |
| 2257 | match self.duration { |
| 2258 | Duration::Span(span) => time.wrapping_add_span(span.negate()), |
| 2259 | Duration::Signed(sdur) => { |
| 2260 | if let Some(sdur) = sdur.checked_neg() { |
| 2261 | time.wrapping_add_signed_duration(sdur) |
| 2262 | } else { |
| 2263 | let udur = UnsignedDuration::new( |
| 2264 | i64::MIN.unsigned_abs(), |
| 2265 | sdur.subsec_nanos().unsigned_abs(), |
| 2266 | ); |
| 2267 | time.wrapping_add_unsigned_duration(udur) |
| 2268 | } |
| 2269 | } |
| 2270 | Duration::Unsigned(udur) => { |
| 2271 | time.wrapping_sub_unsigned_duration(udur) |
| 2272 | } |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | #[inline ] |
| 2277 | fn checked_add(self, time: Time) -> Result<Time, Error> { |
| 2278 | match self.duration.to_signed()? { |
| 2279 | SDuration::Span(span) => time.checked_add_span(span), |
| 2280 | SDuration::Absolute(sdur) => time.checked_add_duration(sdur), |
| 2281 | } |
| 2282 | } |
| 2283 | |
| 2284 | #[inline ] |
| 2285 | fn checked_neg(self) -> Result<TimeArithmetic, Error> { |
| 2286 | let duration = self.duration.checked_neg()?; |
| 2287 | Ok(TimeArithmetic { duration }) |
| 2288 | } |
| 2289 | |
| 2290 | #[inline ] |
| 2291 | fn is_negative(&self) -> bool { |
| 2292 | self.duration.is_negative() |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | impl From<Span> for TimeArithmetic { |
| 2297 | fn from(span: Span) -> TimeArithmetic { |
| 2298 | let duration: Duration = Duration::from(span); |
| 2299 | TimeArithmetic { duration } |
| 2300 | } |
| 2301 | } |
| 2302 | |
| 2303 | impl From<SignedDuration> for TimeArithmetic { |
| 2304 | fn from(sdur: SignedDuration) -> TimeArithmetic { |
| 2305 | let duration: Duration = Duration::from(sdur); |
| 2306 | TimeArithmetic { duration } |
| 2307 | } |
| 2308 | } |
| 2309 | |
| 2310 | impl From<UnsignedDuration> for TimeArithmetic { |
| 2311 | fn from(udur: UnsignedDuration) -> TimeArithmetic { |
| 2312 | let duration: Duration = Duration::from(udur); |
| 2313 | TimeArithmetic { duration } |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | impl<'a> From<&'a Span> for TimeArithmetic { |
| 2318 | fn from(span: &'a Span) -> TimeArithmetic { |
| 2319 | TimeArithmetic::from(*span) |
| 2320 | } |
| 2321 | } |
| 2322 | |
| 2323 | impl<'a> From<&'a SignedDuration> for TimeArithmetic { |
| 2324 | fn from(sdur: &'a SignedDuration) -> TimeArithmetic { |
| 2325 | TimeArithmetic::from(*sdur) |
| 2326 | } |
| 2327 | } |
| 2328 | |
| 2329 | impl<'a> From<&'a UnsignedDuration> for TimeArithmetic { |
| 2330 | fn from(udur: &'a UnsignedDuration) -> TimeArithmetic { |
| 2331 | TimeArithmetic::from(*udur) |
| 2332 | } |
| 2333 | } |
| 2334 | |
| 2335 | /// Options for [`Time::since`] and [`Time::until`]. |
| 2336 | /// |
| 2337 | /// This type provides a way to configure the calculation of spans between two |
| 2338 | /// [`Time`] values. In particular, both `Time::since` and `Time::until` accept |
| 2339 | /// anything that implements `Into<TimeDifference>`. There are a few key trait |
| 2340 | /// implementations that make this convenient: |
| 2341 | /// |
| 2342 | /// * `From<Time> for TimeDifference` will construct a configuration consisting |
| 2343 | /// of just the time. So for example, `time1.until(time2)` will return the span |
| 2344 | /// from `time1` to `time2`. |
| 2345 | /// * `From<DateTime> for TimeDifference` will construct a configuration |
| 2346 | /// consisting of just the time from the given datetime. So for example, |
| 2347 | /// `time.since(datetime)` returns the span from `datetime.time()` to `time`. |
| 2348 | /// * `From<(Unit, Time)>` is a convenient way to specify the largest units |
| 2349 | /// that should be present on the span returned. By default, the largest units |
| 2350 | /// are hours. Using this trait implementation is equivalent to |
| 2351 | /// `TimeDifference::new(time).largest(unit)`. |
| 2352 | /// * `From<(Unit, DateTime)>` is like the one above, but with the time from |
| 2353 | /// the given datetime. |
| 2354 | /// |
| 2355 | /// One can also provide a `TimeDifference` value directly. Doing so |
| 2356 | /// is necessary to use the rounding features of calculating a span. For |
| 2357 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
| 2358 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
| 2359 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
| 2360 | /// |
| 2361 | /// Rounding a span as part of calculating it is provided as a convenience. |
| 2362 | /// Callers may choose to round the span as a distinct step via |
| 2363 | /// [`Span::round`]. |
| 2364 | /// |
| 2365 | /// # Example |
| 2366 | /// |
| 2367 | /// This example shows how to round a span between two datetimes to the nearest |
| 2368 | /// half-hour, with ties breaking away from zero. |
| 2369 | /// |
| 2370 | /// ``` |
| 2371 | /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit}; |
| 2372 | /// |
| 2373 | /// let t1 = "08:14:00.123456789" .parse::<Time>()?; |
| 2374 | /// let t2 = "15:00" .parse::<Time>()?; |
| 2375 | /// let span = t1.until( |
| 2376 | /// TimeDifference::new(t2) |
| 2377 | /// .smallest(Unit::Minute) |
| 2378 | /// .mode(RoundMode::HalfExpand) |
| 2379 | /// .increment(30), |
| 2380 | /// )?; |
| 2381 | /// assert_eq!(span, 7.hours().fieldwise()); |
| 2382 | /// |
| 2383 | /// // One less minute, and because of the HalfExpand mode, the span would |
| 2384 | /// // get rounded down. |
| 2385 | /// let t2 = "14:59" .parse::<Time>()?; |
| 2386 | /// let span = t1.until( |
| 2387 | /// TimeDifference::new(t2) |
| 2388 | /// .smallest(Unit::Minute) |
| 2389 | /// .mode(RoundMode::HalfExpand) |
| 2390 | /// .increment(30), |
| 2391 | /// )?; |
| 2392 | /// assert_eq!(span, 6.hours().minutes(30).fieldwise()); |
| 2393 | /// |
| 2394 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2395 | /// ``` |
| 2396 | #[derive (Clone, Copy, Debug)] |
| 2397 | pub struct TimeDifference { |
| 2398 | time: Time, |
| 2399 | round: SpanRound<'static>, |
| 2400 | } |
| 2401 | |
| 2402 | impl TimeDifference { |
| 2403 | /// Create a new default configuration for computing the span between |
| 2404 | /// the given time and some other time (specified as the receiver in |
| 2405 | /// [`Time::since`] or [`Time::until`]). |
| 2406 | #[inline ] |
| 2407 | pub fn new(time: Time) -> TimeDifference { |
| 2408 | // We use truncation rounding by default since it seems that's |
| 2409 | // what is generally expected when computing the difference between |
| 2410 | // datetimes. |
| 2411 | // |
| 2412 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
| 2413 | let round = SpanRound::new().mode(RoundMode::Trunc); |
| 2414 | TimeDifference { time, round } |
| 2415 | } |
| 2416 | |
| 2417 | /// Set the smallest units allowed in the span returned. |
| 2418 | /// |
| 2419 | /// # Errors |
| 2420 | /// |
| 2421 | /// The smallest units must be no greater than the largest units. If this |
| 2422 | /// is violated, then computing a span with this configuration will result |
| 2423 | /// in an error. |
| 2424 | /// |
| 2425 | /// # Example |
| 2426 | /// |
| 2427 | /// This shows how to round a span between two times to units no less than |
| 2428 | /// seconds. |
| 2429 | /// |
| 2430 | /// ``` |
| 2431 | /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit}; |
| 2432 | /// |
| 2433 | /// let t1 = "08:14:02.5001" .parse::<Time>()?; |
| 2434 | /// let t2 = "08:30:03.0001" .parse::<Time>()?; |
| 2435 | /// let span = t1.until( |
| 2436 | /// TimeDifference::new(t2) |
| 2437 | /// .smallest(Unit::Second) |
| 2438 | /// .mode(RoundMode::HalfExpand), |
| 2439 | /// )?; |
| 2440 | /// assert_eq!(span, 16.minutes().seconds(1).fieldwise()); |
| 2441 | /// |
| 2442 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2443 | /// ``` |
| 2444 | #[inline ] |
| 2445 | pub fn smallest(self, unit: Unit) -> TimeDifference { |
| 2446 | TimeDifference { round: self.round.smallest(unit), ..self } |
| 2447 | } |
| 2448 | |
| 2449 | /// Set the largest units allowed in the span returned. |
| 2450 | /// |
| 2451 | /// When a largest unit is not specified, computing a span between times |
| 2452 | /// behaves as if it were set to [`Unit::Hour`]. |
| 2453 | /// |
| 2454 | /// # Errors |
| 2455 | /// |
| 2456 | /// The largest units, when set, must be at least as big as the smallest |
| 2457 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
| 2458 | /// then computing a span with this configuration will result in an error. |
| 2459 | /// |
| 2460 | /// # Example |
| 2461 | /// |
| 2462 | /// This shows how to round a span between two times to units no |
| 2463 | /// bigger than seconds. |
| 2464 | /// |
| 2465 | /// ``` |
| 2466 | /// use jiff::{civil::{Time, TimeDifference}, ToSpan, Unit}; |
| 2467 | /// |
| 2468 | /// let t1 = "08:14" .parse::<Time>()?; |
| 2469 | /// let t2 = "08:30" .parse::<Time>()?; |
| 2470 | /// let span = t1.until(TimeDifference::new(t2).largest(Unit::Second))?; |
| 2471 | /// assert_eq!(span, 960.seconds().fieldwise()); |
| 2472 | /// |
| 2473 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2474 | /// ``` |
| 2475 | #[inline ] |
| 2476 | pub fn largest(self, unit: Unit) -> TimeDifference { |
| 2477 | TimeDifference { round: self.round.largest(unit), ..self } |
| 2478 | } |
| 2479 | |
| 2480 | /// Set the rounding mode. |
| 2481 | /// |
| 2482 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
| 2483 | /// rounding "up" in the context of computing the span between two times |
| 2484 | /// could be surprising in a number of cases. The [`RoundMode::HalfExpand`] |
| 2485 | /// mode corresponds to typical rounding you might have learned about in |
| 2486 | /// school. But a variety of other rounding modes exist. |
| 2487 | /// |
| 2488 | /// # Example |
| 2489 | /// |
| 2490 | /// This shows how to always round "up" towards positive infinity. |
| 2491 | /// |
| 2492 | /// ``` |
| 2493 | /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit}; |
| 2494 | /// |
| 2495 | /// let t1 = "08:10" .parse::<Time>()?; |
| 2496 | /// let t2 = "08:11" .parse::<Time>()?; |
| 2497 | /// let span = t1.until( |
| 2498 | /// TimeDifference::new(t2) |
| 2499 | /// .smallest(Unit::Hour) |
| 2500 | /// .mode(RoundMode::Ceil), |
| 2501 | /// )?; |
| 2502 | /// // Only one minute elapsed, but we asked to always round up! |
| 2503 | /// assert_eq!(span, 1.hour().fieldwise()); |
| 2504 | /// |
| 2505 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
| 2506 | /// // flips for a negative span. |
| 2507 | /// let span = t1.since( |
| 2508 | /// TimeDifference::new(t2) |
| 2509 | /// .smallest(Unit::Hour) |
| 2510 | /// .mode(RoundMode::Ceil), |
| 2511 | /// )?; |
| 2512 | /// assert_eq!(span, 0.hour().fieldwise()); |
| 2513 | /// |
| 2514 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2515 | /// ``` |
| 2516 | #[inline ] |
| 2517 | pub fn mode(self, mode: RoundMode) -> TimeDifference { |
| 2518 | TimeDifference { round: self.round.mode(mode), ..self } |
| 2519 | } |
| 2520 | |
| 2521 | /// Set the rounding increment for the smallest unit. |
| 2522 | /// |
| 2523 | /// The default value is `1`. Other values permit rounding the smallest |
| 2524 | /// unit to the nearest integer increment specified. For example, if the |
| 2525 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 2526 | /// `30` would result in rounding in increments of a half hour. That is, |
| 2527 | /// the only minute value that could result would be `0` or `30`. |
| 2528 | /// |
| 2529 | /// # Errors |
| 2530 | /// |
| 2531 | /// The rounding increment must divide evenly into the next highest unit |
| 2532 | /// after the smallest unit configured (and must not be equivalent to it). |
| 2533 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
| 2534 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
| 2535 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
| 2536 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
| 2537 | /// unit (microseconds). |
| 2538 | /// |
| 2539 | /// The error will occur when computing the span, and not when setting |
| 2540 | /// the increment here. |
| 2541 | /// |
| 2542 | /// # Example |
| 2543 | /// |
| 2544 | /// This shows how to round the span between two times to the nearest 5 |
| 2545 | /// minute increment. |
| 2546 | /// |
| 2547 | /// ``` |
| 2548 | /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit}; |
| 2549 | /// |
| 2550 | /// let t1 = "08:19" .parse::<Time>()?; |
| 2551 | /// let t2 = "12:52" .parse::<Time>()?; |
| 2552 | /// let span = t1.until( |
| 2553 | /// TimeDifference::new(t2) |
| 2554 | /// .smallest(Unit::Minute) |
| 2555 | /// .increment(5) |
| 2556 | /// .mode(RoundMode::HalfExpand), |
| 2557 | /// )?; |
| 2558 | /// assert_eq!(span, 4.hour().minutes(35).fieldwise()); |
| 2559 | /// |
| 2560 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2561 | /// ``` |
| 2562 | #[inline ] |
| 2563 | pub fn increment(self, increment: i64) -> TimeDifference { |
| 2564 | TimeDifference { round: self.round.increment(increment), ..self } |
| 2565 | } |
| 2566 | |
| 2567 | /// Returns true if and only if this configuration could change the span |
| 2568 | /// via rounding. |
| 2569 | #[inline ] |
| 2570 | fn rounding_may_change_span(&self) -> bool { |
| 2571 | self.round.rounding_may_change_span_ignore_largest() |
| 2572 | } |
| 2573 | |
| 2574 | /// Returns the span of time from `t1` to the time in this configuration. |
| 2575 | /// The biggest units allowed are determined by the `smallest` and |
| 2576 | /// `largest` settings, but defaults to `Unit::Hour`. |
| 2577 | #[inline ] |
| 2578 | fn until_with_largest_unit(&self, t1: Time) -> Result<Span, Error> { |
| 2579 | let t2 = self.time; |
| 2580 | if t1 == t2 { |
| 2581 | return Ok(Span::new()); |
| 2582 | } |
| 2583 | let largest = self.round.get_largest().unwrap_or(Unit::Hour); |
| 2584 | if largest > Unit::Hour { |
| 2585 | return Err(err!( |
| 2586 | "rounding the span between two times must use hours \ |
| 2587 | or smaller for its units, but found {units}" , |
| 2588 | units = largest.plural(), |
| 2589 | )); |
| 2590 | } |
| 2591 | let start = t1.to_nanosecond(); |
| 2592 | let end = t2.to_nanosecond(); |
| 2593 | let span = |
| 2594 | Span::from_invariant_nanoseconds(largest, (end - start).rinto()) |
| 2595 | .expect("difference in civil times is always in bounds" ); |
| 2596 | Ok(span) |
| 2597 | } |
| 2598 | } |
| 2599 | |
| 2600 | impl From<Time> for TimeDifference { |
| 2601 | #[inline ] |
| 2602 | fn from(time: Time) -> TimeDifference { |
| 2603 | TimeDifference::new(time) |
| 2604 | } |
| 2605 | } |
| 2606 | |
| 2607 | impl From<DateTime> for TimeDifference { |
| 2608 | #[inline ] |
| 2609 | fn from(dt: DateTime) -> TimeDifference { |
| 2610 | TimeDifference::from(Time::from(dt)) |
| 2611 | } |
| 2612 | } |
| 2613 | |
| 2614 | impl From<Zoned> for TimeDifference { |
| 2615 | #[inline ] |
| 2616 | fn from(zdt: Zoned) -> TimeDifference { |
| 2617 | TimeDifference::from(Time::from(zdt)) |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | impl<'a> From<&'a Zoned> for TimeDifference { |
| 2622 | #[inline ] |
| 2623 | fn from(zdt: &'a Zoned) -> TimeDifference { |
| 2624 | TimeDifference::from(zdt.datetime()) |
| 2625 | } |
| 2626 | } |
| 2627 | |
| 2628 | impl From<(Unit, Time)> for TimeDifference { |
| 2629 | #[inline ] |
| 2630 | fn from((largest: Unit, time: Time): (Unit, Time)) -> TimeDifference { |
| 2631 | TimeDifference::from(time).largest(unit:largest) |
| 2632 | } |
| 2633 | } |
| 2634 | |
| 2635 | impl From<(Unit, DateTime)> for TimeDifference { |
| 2636 | #[inline ] |
| 2637 | fn from((largest: Unit, dt: DateTime): (Unit, DateTime)) -> TimeDifference { |
| 2638 | TimeDifference::from((largest, Time::from(dt))) |
| 2639 | } |
| 2640 | } |
| 2641 | |
| 2642 | impl From<(Unit, Zoned)> for TimeDifference { |
| 2643 | #[inline ] |
| 2644 | fn from((largest: Unit, zdt: Zoned): (Unit, Zoned)) -> TimeDifference { |
| 2645 | TimeDifference::from((largest, Time::from(zdt))) |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | impl<'a> From<(Unit, &'a Zoned)> for TimeDifference { |
| 2650 | #[inline ] |
| 2651 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> TimeDifference { |
| 2652 | TimeDifference::from((largest, zdt.datetime())) |
| 2653 | } |
| 2654 | } |
| 2655 | |
| 2656 | /// Options for [`Time::round`]. |
| 2657 | /// |
| 2658 | /// This type provides a way to configure the rounding of a civil time. |
| 2659 | /// In particular, `Time::round` accepts anything that implements the |
| 2660 | /// `Into<TimeRound>` trait. There are some trait implementations that |
| 2661 | /// therefore make calling `Time::round` in some common cases more ergonomic: |
| 2662 | /// |
| 2663 | /// * `From<Unit> for TimeRound` will construct a rounding configuration that |
| 2664 | /// rounds to the unit given. Specifically, `TimeRound::new().smallest(unit)`. |
| 2665 | /// * `From<(Unit, i64)> for TimeRound` is like the one above, but also |
| 2666 | /// specifies the rounding increment for [`TimeRound::increment`]. |
| 2667 | /// |
| 2668 | /// Note that in the default configuration, no rounding occurs. |
| 2669 | /// |
| 2670 | /// # Example |
| 2671 | /// |
| 2672 | /// This example shows how to round a time to the nearest second: |
| 2673 | /// |
| 2674 | /// ``` |
| 2675 | /// use jiff::{civil::{Time, time}, Unit}; |
| 2676 | /// |
| 2677 | /// let t: Time = "16:24:59.5" .parse()?; |
| 2678 | /// assert_eq!( |
| 2679 | /// t.round(Unit::Second)?, |
| 2680 | /// // The second rounds up and causes minutes to increase. |
| 2681 | /// time(16, 25, 0, 0), |
| 2682 | /// ); |
| 2683 | /// |
| 2684 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2685 | /// ``` |
| 2686 | /// |
| 2687 | /// The above makes use of the fact that `Unit` implements |
| 2688 | /// `Into<TimeRound>`. If you want to change the rounding mode to, say, |
| 2689 | /// truncation, then you'll need to construct a `TimeRound` explicitly |
| 2690 | /// since there are no convenience `Into` trait implementations for |
| 2691 | /// [`RoundMode`]. |
| 2692 | /// |
| 2693 | /// ``` |
| 2694 | /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit}; |
| 2695 | /// |
| 2696 | /// let t: Time = "2024-06-20 16:24:59.5" .parse()?; |
| 2697 | /// assert_eq!( |
| 2698 | /// t.round( |
| 2699 | /// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
| 2700 | /// )?, |
| 2701 | /// // The second just gets truncated as if it wasn't there. |
| 2702 | /// time(16, 24, 59, 0), |
| 2703 | /// ); |
| 2704 | /// |
| 2705 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2706 | /// ``` |
| 2707 | #[derive (Clone, Copy, Debug)] |
| 2708 | pub struct TimeRound { |
| 2709 | smallest: Unit, |
| 2710 | mode: RoundMode, |
| 2711 | increment: i64, |
| 2712 | } |
| 2713 | |
| 2714 | impl TimeRound { |
| 2715 | /// Create a new default configuration for rounding a [`Time`]. |
| 2716 | #[inline ] |
| 2717 | pub fn new() -> TimeRound { |
| 2718 | TimeRound { |
| 2719 | smallest: Unit::Nanosecond, |
| 2720 | mode: RoundMode::HalfExpand, |
| 2721 | increment: 1, |
| 2722 | } |
| 2723 | } |
| 2724 | |
| 2725 | /// Set the smallest units allowed in the time returned after rounding. |
| 2726 | /// |
| 2727 | /// Any units below the smallest configured unit will be used, along with |
| 2728 | /// the rounding increment and rounding mode, to determine the value of the |
| 2729 | /// smallest unit. For example, when rounding `03:25:30` to the |
| 2730 | /// nearest minute, the `30` second unit will result in rounding the minute |
| 2731 | /// unit of `25` up to `26` and zeroing out everything below minutes. |
| 2732 | /// |
| 2733 | /// This defaults to [`Unit::Nanosecond`]. |
| 2734 | /// |
| 2735 | /// # Errors |
| 2736 | /// |
| 2737 | /// The smallest units must be no greater than [`Unit::Hour`]. |
| 2738 | /// |
| 2739 | /// # Example |
| 2740 | /// |
| 2741 | /// ``` |
| 2742 | /// use jiff::{civil::{TimeRound, time}, Unit}; |
| 2743 | /// |
| 2744 | /// let t = time(3, 25, 30, 0); |
| 2745 | /// assert_eq!( |
| 2746 | /// t.round(TimeRound::new().smallest(Unit::Minute))?, |
| 2747 | /// time(3, 26, 0, 0), |
| 2748 | /// ); |
| 2749 | /// // Or, utilize the `From<Unit> for TimeRound` impl: |
| 2750 | /// assert_eq!(t.round(Unit::Minute)?, time(3, 26, 0, 0)); |
| 2751 | /// |
| 2752 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2753 | /// ``` |
| 2754 | #[inline ] |
| 2755 | pub fn smallest(self, unit: Unit) -> TimeRound { |
| 2756 | TimeRound { smallest: unit, ..self } |
| 2757 | } |
| 2758 | |
| 2759 | /// Set the rounding mode. |
| 2760 | /// |
| 2761 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
| 2762 | /// zero. It matches the kind of rounding you might have been taught in |
| 2763 | /// school. |
| 2764 | /// |
| 2765 | /// # Example |
| 2766 | /// |
| 2767 | /// This shows how to always round times up towards positive infinity. |
| 2768 | /// |
| 2769 | /// ``` |
| 2770 | /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit}; |
| 2771 | /// |
| 2772 | /// let t: Time = "03:25:01" .parse()?; |
| 2773 | /// assert_eq!( |
| 2774 | /// t.round( |
| 2775 | /// TimeRound::new() |
| 2776 | /// .smallest(Unit::Minute) |
| 2777 | /// .mode(RoundMode::Ceil), |
| 2778 | /// )?, |
| 2779 | /// time(3, 26, 0, 0), |
| 2780 | /// ); |
| 2781 | /// |
| 2782 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2783 | /// ``` |
| 2784 | #[inline ] |
| 2785 | pub fn mode(self, mode: RoundMode) -> TimeRound { |
| 2786 | TimeRound { mode, ..self } |
| 2787 | } |
| 2788 | |
| 2789 | /// Set the rounding increment for the smallest unit. |
| 2790 | /// |
| 2791 | /// The default value is `1`. Other values permit rounding the smallest |
| 2792 | /// unit to the nearest integer increment specified. For example, if the |
| 2793 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 2794 | /// `30` would result in rounding in increments of a half hour. That is, |
| 2795 | /// the only minute value that could result would be `0` or `30`. |
| 2796 | /// |
| 2797 | /// # Errors |
| 2798 | /// |
| 2799 | /// The rounding increment must divide evenly into the |
| 2800 | /// next highest unit above the smallest unit set. The rounding increment |
| 2801 | /// must also not be equal to the next highest unit. For example, if the |
| 2802 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 2803 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 2804 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 2805 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 2806 | /// |
| 2807 | /// # Example |
| 2808 | /// |
| 2809 | /// This example shows how to round a time to the nearest 10 minute |
| 2810 | /// increment. |
| 2811 | /// |
| 2812 | /// ``` |
| 2813 | /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit}; |
| 2814 | /// |
| 2815 | /// let t: Time = "03:24:59" .parse()?; |
| 2816 | /// assert_eq!(t.round((Unit::Minute, 10))?, time(3, 20, 0, 0)); |
| 2817 | /// |
| 2818 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2819 | /// ``` |
| 2820 | #[inline ] |
| 2821 | pub fn increment(self, increment: i64) -> TimeRound { |
| 2822 | TimeRound { increment, ..self } |
| 2823 | } |
| 2824 | |
| 2825 | /// Does the actual rounding. |
| 2826 | pub(crate) fn round(&self, t: Time) -> Result<Time, Error> { |
| 2827 | let increment = increment::for_time(self.smallest, self.increment)?; |
| 2828 | let nanos = t.to_nanosecond(); |
| 2829 | let rounded = self.mode.round_by_unit_in_nanoseconds( |
| 2830 | nanos, |
| 2831 | self.smallest, |
| 2832 | increment, |
| 2833 | ); |
| 2834 | let limit = |
| 2835 | t::NoUnits128::rfrom(t::CivilDayNanosecond::MAX_SELF) + C(1); |
| 2836 | Ok(Time::from_nanosecond((rounded % limit).rinto())) |
| 2837 | } |
| 2838 | } |
| 2839 | |
| 2840 | impl Default for TimeRound { |
| 2841 | #[inline ] |
| 2842 | fn default() -> TimeRound { |
| 2843 | TimeRound::new() |
| 2844 | } |
| 2845 | } |
| 2846 | |
| 2847 | impl From<Unit> for TimeRound { |
| 2848 | #[inline ] |
| 2849 | fn from(unit: Unit) -> TimeRound { |
| 2850 | TimeRound::default().smallest(unit) |
| 2851 | } |
| 2852 | } |
| 2853 | |
| 2854 | impl From<(Unit, i64)> for TimeRound { |
| 2855 | #[inline ] |
| 2856 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> TimeRound { |
| 2857 | TimeRound::from(unit).increment(increment) |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | /// A builder for setting the fields on a [`Time`]. |
| 2862 | /// |
| 2863 | /// This builder is constructed via [`Time::with`]. |
| 2864 | /// |
| 2865 | /// # Example |
| 2866 | /// |
| 2867 | /// Unlike [`Date`], a [`Time`] is valid for all possible valid values of its |
| 2868 | /// fields. That is, there is no way for two valid field values to combine |
| 2869 | /// into an invalid `Time`. So, for `Time`, this builder does have as much of |
| 2870 | /// a benefit versus an API design with methods like `Time::with_hour` and |
| 2871 | /// `Time::with_minute`. Nevertheless, this builder permits settings multiple |
| 2872 | /// fields at the same time and performing only one validity check. Moreover, |
| 2873 | /// this provides a consistent API with other date and time types in this |
| 2874 | /// crate. |
| 2875 | /// |
| 2876 | /// ``` |
| 2877 | /// use jiff::civil::time; |
| 2878 | /// |
| 2879 | /// let t1 = time(0, 0, 24, 0); |
| 2880 | /// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?; |
| 2881 | /// assert_eq!(t2, time(15, 30, 24, 10_000_000)); |
| 2882 | /// |
| 2883 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2884 | /// ``` |
| 2885 | #[derive (Clone, Copy, Debug)] |
| 2886 | pub struct TimeWith { |
| 2887 | original: Time, |
| 2888 | hour: Option<i8>, |
| 2889 | minute: Option<i8>, |
| 2890 | second: Option<i8>, |
| 2891 | millisecond: Option<i16>, |
| 2892 | microsecond: Option<i16>, |
| 2893 | nanosecond: Option<i16>, |
| 2894 | subsec_nanosecond: Option<i32>, |
| 2895 | } |
| 2896 | |
| 2897 | impl TimeWith { |
| 2898 | #[inline ] |
| 2899 | fn new(original: Time) -> TimeWith { |
| 2900 | TimeWith { |
| 2901 | original, |
| 2902 | hour: None, |
| 2903 | minute: None, |
| 2904 | second: None, |
| 2905 | millisecond: None, |
| 2906 | microsecond: None, |
| 2907 | nanosecond: None, |
| 2908 | subsec_nanosecond: None, |
| 2909 | } |
| 2910 | } |
| 2911 | |
| 2912 | /// Create a new `Time` from the fields set on this configuration. |
| 2913 | /// |
| 2914 | /// An error occurs when the fields combine to an invalid time. This only |
| 2915 | /// occurs when at least one field has an invalid value, or if at least |
| 2916 | /// one of `millisecond`, `microsecond` or `nanosecond` is set _and_ |
| 2917 | /// `subsec_nanosecond` is set. Otherwise, if all fields are valid, then |
| 2918 | /// the entire `Time` is guaranteed to be valid. |
| 2919 | /// |
| 2920 | /// For any fields not set on this configuration, the values are taken from |
| 2921 | /// the [`Time`] that originally created this configuration. When no values |
| 2922 | /// are set, this routine is guaranteed to succeed and will always return |
| 2923 | /// the original time without modification. |
| 2924 | /// |
| 2925 | /// # Example |
| 2926 | /// |
| 2927 | /// This creates a time but with its fractional nanosecond component |
| 2928 | /// stripped: |
| 2929 | /// |
| 2930 | /// ``` |
| 2931 | /// use jiff::civil::time; |
| 2932 | /// |
| 2933 | /// let t = time(14, 27, 30, 123_456_789); |
| 2934 | /// assert_eq!(t.with().subsec_nanosecond(0).build()?, time(14, 27, 30, 0)); |
| 2935 | /// |
| 2936 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2937 | /// ``` |
| 2938 | /// |
| 2939 | /// # Example: error for invalid time |
| 2940 | /// |
| 2941 | /// ``` |
| 2942 | /// use jiff::civil::time; |
| 2943 | /// |
| 2944 | /// let t = time(14, 27, 30, 0); |
| 2945 | /// assert!(t.with().hour(24).build().is_err()); |
| 2946 | /// ``` |
| 2947 | /// |
| 2948 | /// # Example: error for ambiguous sub-second value |
| 2949 | /// |
| 2950 | /// ``` |
| 2951 | /// use jiff::civil::time; |
| 2952 | /// |
| 2953 | /// let t = time(14, 27, 30, 123_456_789); |
| 2954 | /// // Setting both the individual sub-second fields and the entire |
| 2955 | /// // fractional component could lead to a misleading configuration. So |
| 2956 | /// // if it's done, it results in an error in all cases. Callers must |
| 2957 | /// // choose one or the other. |
| 2958 | /// assert!(t.with().microsecond(1).subsec_nanosecond(0).build().is_err()); |
| 2959 | /// ``` |
| 2960 | #[inline ] |
| 2961 | pub fn build(self) -> Result<Time, Error> { |
| 2962 | let hour = match self.hour { |
| 2963 | None => self.original.hour_ranged(), |
| 2964 | Some(hour) => Hour::try_new("hour" , hour)?, |
| 2965 | }; |
| 2966 | let minute = match self.minute { |
| 2967 | None => self.original.minute_ranged(), |
| 2968 | Some(minute) => Minute::try_new("minute" , minute)?, |
| 2969 | }; |
| 2970 | let second = match self.second { |
| 2971 | None => self.original.second_ranged(), |
| 2972 | Some(second) => Second::try_new("second" , second)?, |
| 2973 | }; |
| 2974 | let millisecond = match self.millisecond { |
| 2975 | None => self.original.millisecond_ranged(), |
| 2976 | Some(millisecond) => { |
| 2977 | Millisecond::try_new("millisecond" , millisecond)? |
| 2978 | } |
| 2979 | }; |
| 2980 | let microsecond = match self.microsecond { |
| 2981 | None => self.original.microsecond_ranged(), |
| 2982 | Some(microsecond) => { |
| 2983 | Microsecond::try_new("microsecond" , microsecond)? |
| 2984 | } |
| 2985 | }; |
| 2986 | let nanosecond = match self.nanosecond { |
| 2987 | None => self.original.nanosecond_ranged(), |
| 2988 | Some(nanosecond) => Nanosecond::try_new("nanosecond" , nanosecond)?, |
| 2989 | }; |
| 2990 | let subsec_nanosecond = match self.subsec_nanosecond { |
| 2991 | None => self.original.subsec_nanosecond_ranged(), |
| 2992 | Some(subsec_nanosecond) => { |
| 2993 | if self.millisecond.is_some() { |
| 2994 | return Err(err!( |
| 2995 | "cannot set both TimeWith::millisecond \ |
| 2996 | and TimeWith::subsec_nanosecond" , |
| 2997 | )); |
| 2998 | } |
| 2999 | if self.microsecond.is_some() { |
| 3000 | return Err(err!( |
| 3001 | "cannot set both TimeWith::microsecond \ |
| 3002 | and TimeWith::subsec_nanosecond" , |
| 3003 | )); |
| 3004 | } |
| 3005 | if self.nanosecond.is_some() { |
| 3006 | return Err(err!( |
| 3007 | "cannot set both TimeWith::nanosecond \ |
| 3008 | and TimeWith::subsec_nanosecond" , |
| 3009 | )); |
| 3010 | } |
| 3011 | SubsecNanosecond::try_new( |
| 3012 | "subsec_nanosecond" , |
| 3013 | subsec_nanosecond, |
| 3014 | )? |
| 3015 | } |
| 3016 | }; |
| 3017 | if self.subsec_nanosecond.is_some() { |
| 3018 | Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond)) |
| 3019 | } else { |
| 3020 | Ok(Time::new_ranged(hour, minute, second, C(0)) |
| 3021 | .with_subsec_parts_ranged( |
| 3022 | millisecond, |
| 3023 | microsecond, |
| 3024 | nanosecond, |
| 3025 | )) |
| 3026 | } |
| 3027 | } |
| 3028 | |
| 3029 | /// Set the hour field on a [`Time`]. |
| 3030 | /// |
| 3031 | /// One can access this value via [`Time::hour`]. |
| 3032 | /// |
| 3033 | /// This overrides any previous hour settings. |
| 3034 | /// |
| 3035 | /// # Errors |
| 3036 | /// |
| 3037 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3038 | /// hour is outside the range `0..=23`. |
| 3039 | /// |
| 3040 | /// # Example |
| 3041 | /// |
| 3042 | /// ``` |
| 3043 | /// use jiff::civil::time; |
| 3044 | /// |
| 3045 | /// let t1 = time(15, 21, 59, 0); |
| 3046 | /// assert_eq!(t1.hour(), 15); |
| 3047 | /// let t2 = t1.with().hour(3).build()?; |
| 3048 | /// assert_eq!(t2.hour(), 3); |
| 3049 | /// |
| 3050 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3051 | /// ``` |
| 3052 | #[inline ] |
| 3053 | pub fn hour(self, hour: i8) -> TimeWith { |
| 3054 | TimeWith { hour: Some(hour), ..self } |
| 3055 | } |
| 3056 | |
| 3057 | /// Set the minute field on a [`Time`]. |
| 3058 | /// |
| 3059 | /// One can access this value via [`Time::minute`]. |
| 3060 | /// |
| 3061 | /// This overrides any previous minute settings. |
| 3062 | /// |
| 3063 | /// # Errors |
| 3064 | /// |
| 3065 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3066 | /// minute is outside the range `0..=59`. |
| 3067 | /// |
| 3068 | /// # Example |
| 3069 | /// |
| 3070 | /// ``` |
| 3071 | /// use jiff::civil::time; |
| 3072 | /// |
| 3073 | /// let t1 = time(15, 21, 59, 0); |
| 3074 | /// assert_eq!(t1.minute(), 21); |
| 3075 | /// let t2 = t1.with().minute(3).build()?; |
| 3076 | /// assert_eq!(t2.minute(), 3); |
| 3077 | /// |
| 3078 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3079 | /// ``` |
| 3080 | #[inline ] |
| 3081 | pub fn minute(self, minute: i8) -> TimeWith { |
| 3082 | TimeWith { minute: Some(minute), ..self } |
| 3083 | } |
| 3084 | |
| 3085 | /// Set the second field on a [`Time`]. |
| 3086 | /// |
| 3087 | /// One can access this value via [`Time::second`]. |
| 3088 | /// |
| 3089 | /// This overrides any previous second settings. |
| 3090 | /// |
| 3091 | /// # Errors |
| 3092 | /// |
| 3093 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3094 | /// second is outside the range `0..=59`. |
| 3095 | /// |
| 3096 | /// # Example |
| 3097 | /// |
| 3098 | /// ``` |
| 3099 | /// use jiff::civil::time; |
| 3100 | /// |
| 3101 | /// let t1 = time(15, 21, 59, 0); |
| 3102 | /// assert_eq!(t1.second(), 59); |
| 3103 | /// let t2 = t1.with().second(3).build()?; |
| 3104 | /// assert_eq!(t2.second(), 3); |
| 3105 | /// |
| 3106 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3107 | /// ``` |
| 3108 | #[inline ] |
| 3109 | pub fn second(self, second: i8) -> TimeWith { |
| 3110 | TimeWith { second: Some(second), ..self } |
| 3111 | } |
| 3112 | |
| 3113 | /// Set the millisecond field on a [`Time`]. |
| 3114 | /// |
| 3115 | /// One can access this value via [`Time::millisecond`]. |
| 3116 | /// |
| 3117 | /// This overrides any previous millisecond settings. |
| 3118 | /// |
| 3119 | /// Note that this only sets the millisecond component. It does |
| 3120 | /// not change the microsecond or nanosecond components. To set |
| 3121 | /// the fractional second component to nanosecond precision, use |
| 3122 | /// [`TimeWith::subsec_nanosecond`]. |
| 3123 | /// |
| 3124 | /// # Errors |
| 3125 | /// |
| 3126 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3127 | /// millisecond is outside the range `0..=999`, or if both this and |
| 3128 | /// [`TimeWith::subsec_nanosecond`] are set. |
| 3129 | /// |
| 3130 | /// # Example |
| 3131 | /// |
| 3132 | /// This shows the relationship between [`Time::millisecond`] and |
| 3133 | /// [`Time::subsec_nanosecond`]: |
| 3134 | /// |
| 3135 | /// ``` |
| 3136 | /// use jiff::civil::time; |
| 3137 | /// |
| 3138 | /// let t = time(15, 21, 35, 0).with().millisecond(123).build()?; |
| 3139 | /// assert_eq!(t.subsec_nanosecond(), 123_000_000); |
| 3140 | /// |
| 3141 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3142 | /// ``` |
| 3143 | #[inline ] |
| 3144 | pub fn millisecond(self, millisecond: i16) -> TimeWith { |
| 3145 | TimeWith { millisecond: Some(millisecond), ..self } |
| 3146 | } |
| 3147 | |
| 3148 | /// Set the microsecond field on a [`Time`]. |
| 3149 | /// |
| 3150 | /// One can access this value via [`Time::microsecond`]. |
| 3151 | /// |
| 3152 | /// This overrides any previous microsecond settings. |
| 3153 | /// |
| 3154 | /// Note that this only sets the microsecond component. It does |
| 3155 | /// not change the millisecond or nanosecond components. To set |
| 3156 | /// the fractional second component to nanosecond precision, use |
| 3157 | /// [`TimeWith::subsec_nanosecond`]. |
| 3158 | /// |
| 3159 | /// # Errors |
| 3160 | /// |
| 3161 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3162 | /// microsecond is outside the range `0..=999`, or if both this and |
| 3163 | /// [`TimeWith::subsec_nanosecond`] are set. |
| 3164 | /// |
| 3165 | /// # Example |
| 3166 | /// |
| 3167 | /// This shows the relationship between [`Time::microsecond`] and |
| 3168 | /// [`Time::subsec_nanosecond`]: |
| 3169 | /// |
| 3170 | /// ``` |
| 3171 | /// use jiff::civil::time; |
| 3172 | /// |
| 3173 | /// let t = time(15, 21, 35, 0).with().microsecond(123).build()?; |
| 3174 | /// assert_eq!(t.subsec_nanosecond(), 123_000); |
| 3175 | /// |
| 3176 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3177 | /// ``` |
| 3178 | #[inline ] |
| 3179 | pub fn microsecond(self, microsecond: i16) -> TimeWith { |
| 3180 | TimeWith { microsecond: Some(microsecond), ..self } |
| 3181 | } |
| 3182 | |
| 3183 | /// Set the nanosecond field on a [`Time`]. |
| 3184 | /// |
| 3185 | /// One can access this value via [`Time::nanosecond`]. |
| 3186 | /// |
| 3187 | /// This overrides any previous nanosecond settings. |
| 3188 | /// |
| 3189 | /// Note that this only sets the nanosecond component. It does |
| 3190 | /// not change the millisecond or microsecond components. To set |
| 3191 | /// the fractional second component to nanosecond precision, use |
| 3192 | /// [`TimeWith::subsec_nanosecond`]. |
| 3193 | /// |
| 3194 | /// # Errors |
| 3195 | /// |
| 3196 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3197 | /// nanosecond is outside the range `0..=999`, or if both this and |
| 3198 | /// [`TimeWith::subsec_nanosecond`] are set. |
| 3199 | /// |
| 3200 | /// # Example |
| 3201 | /// |
| 3202 | /// This shows the relationship between [`Time::nanosecond`] and |
| 3203 | /// [`Time::subsec_nanosecond`]: |
| 3204 | /// |
| 3205 | /// ``` |
| 3206 | /// use jiff::civil::time; |
| 3207 | /// |
| 3208 | /// let t = time(15, 21, 35, 0).with().nanosecond(123).build()?; |
| 3209 | /// assert_eq!(t.subsec_nanosecond(), 123); |
| 3210 | /// |
| 3211 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3212 | /// ``` |
| 3213 | #[inline ] |
| 3214 | pub fn nanosecond(self, nanosecond: i16) -> TimeWith { |
| 3215 | TimeWith { nanosecond: Some(nanosecond), ..self } |
| 3216 | } |
| 3217 | |
| 3218 | /// Set the subsecond nanosecond field on a [`Time`]. |
| 3219 | /// |
| 3220 | /// If you want to access this value on `Time`, then use |
| 3221 | /// [`Time::subsec_nanosecond`]. |
| 3222 | /// |
| 3223 | /// This overrides any previous subsecond nanosecond settings. |
| 3224 | /// |
| 3225 | /// Note that this sets the entire fractional second component to |
| 3226 | /// nanosecond precision, and overrides any individual millisecond, |
| 3227 | /// microsecond or nanosecond settings. To set individual components, |
| 3228 | /// use [`TimeWith::millisecond`], [`TimeWith::microsecond`] or |
| 3229 | /// [`TimeWith::nanosecond`]. |
| 3230 | /// |
| 3231 | /// # Errors |
| 3232 | /// |
| 3233 | /// This returns an error when [`TimeWith::build`] is called if the given |
| 3234 | /// subsecond nanosecond is outside the range `0..=999,999,999`, or if both |
| 3235 | /// this and one of [`TimeWith::millisecond`], [`TimeWith::microsecond`] or |
| 3236 | /// [`TimeWith::nanosecond`] are set. |
| 3237 | /// |
| 3238 | /// # Example |
| 3239 | /// |
| 3240 | /// This shows the relationship between constructing a `Time` value with |
| 3241 | /// subsecond nanoseconds and its individual subsecond fields: |
| 3242 | /// |
| 3243 | /// ``` |
| 3244 | /// use jiff::civil::time; |
| 3245 | /// |
| 3246 | /// let t1 = time(15, 21, 35, 0); |
| 3247 | /// let t2 = t1.with().subsec_nanosecond(123_456_789).build()?; |
| 3248 | /// assert_eq!(t2.millisecond(), 123); |
| 3249 | /// assert_eq!(t2.microsecond(), 456); |
| 3250 | /// assert_eq!(t2.nanosecond(), 789); |
| 3251 | /// |
| 3252 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3253 | /// ``` |
| 3254 | #[inline ] |
| 3255 | pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> TimeWith { |
| 3256 | TimeWith { subsec_nanosecond: Some(subsec_nanosecond), ..self } |
| 3257 | } |
| 3258 | } |
| 3259 | |
| 3260 | #[cfg (test)] |
| 3261 | mod tests { |
| 3262 | use std::io::Cursor; |
| 3263 | |
| 3264 | use crate::{civil::time, span::span_eq, ToSpan}; |
| 3265 | |
| 3266 | use super::*; |
| 3267 | |
| 3268 | #[test ] |
| 3269 | fn min() { |
| 3270 | let t = Time::MIN; |
| 3271 | assert_eq!(t.hour(), 0); |
| 3272 | assert_eq!(t.minute(), 0); |
| 3273 | assert_eq!(t.second(), 0); |
| 3274 | assert_eq!(t.subsec_nanosecond(), 0); |
| 3275 | } |
| 3276 | |
| 3277 | #[test ] |
| 3278 | fn max() { |
| 3279 | let t = Time::MAX; |
| 3280 | assert_eq!(t.hour(), 23); |
| 3281 | assert_eq!(t.minute(), 59); |
| 3282 | assert_eq!(t.second(), 59); |
| 3283 | assert_eq!(t.subsec_nanosecond(), 999_999_999); |
| 3284 | } |
| 3285 | |
| 3286 | #[test ] |
| 3287 | fn invalid() { |
| 3288 | assert!(Time::new(24, 0, 0, 0).is_err()); |
| 3289 | assert!(Time::new(23, 60, 0, 0).is_err()); |
| 3290 | assert!(Time::new(23, 59, 60, 0).is_err()); |
| 3291 | assert!(Time::new(23, 59, 61, 0).is_err()); |
| 3292 | assert!(Time::new(-1, 0, 0, 0).is_err()); |
| 3293 | assert!(Time::new(0, -1, 0, 0).is_err()); |
| 3294 | assert!(Time::new(0, 0, -1, 0).is_err()); |
| 3295 | |
| 3296 | assert!(Time::new(0, 0, 0, 1_000_000_000).is_err()); |
| 3297 | assert!(Time::new(0, 0, 0, -1).is_err()); |
| 3298 | assert!(Time::new(23, 59, 59, 1_000_000_000).is_err()); |
| 3299 | assert!(Time::new(23, 59, 59, -1).is_err()); |
| 3300 | } |
| 3301 | |
| 3302 | #[test ] |
| 3303 | fn rounding_cross_midnight() { |
| 3304 | let t1 = time(23, 59, 59, 999_999_999); |
| 3305 | |
| 3306 | let t2 = t1.round(Unit::Nanosecond).unwrap(); |
| 3307 | assert_eq!(t2, t1); |
| 3308 | |
| 3309 | let t2 = t1.round(Unit::Millisecond).unwrap(); |
| 3310 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3311 | |
| 3312 | let t2 = t1.round(Unit::Microsecond).unwrap(); |
| 3313 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3314 | |
| 3315 | let t2 = t1.round(Unit::Millisecond).unwrap(); |
| 3316 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3317 | |
| 3318 | let t2 = t1.round(Unit::Second).unwrap(); |
| 3319 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3320 | |
| 3321 | let t2 = t1.round(Unit::Minute).unwrap(); |
| 3322 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3323 | |
| 3324 | let t2 = t1.round(Unit::Hour).unwrap(); |
| 3325 | assert_eq!(t2, time(0, 0, 0, 0)); |
| 3326 | |
| 3327 | let t1 = time(22, 15, 0, 0); |
| 3328 | assert_eq!( |
| 3329 | time(22, 30, 0, 0), |
| 3330 | t1.round(TimeRound::new().smallest(Unit::Minute).increment(30)) |
| 3331 | .unwrap() |
| 3332 | ); |
| 3333 | } |
| 3334 | |
| 3335 | #[cfg (not(miri))] |
| 3336 | quickcheck::quickcheck! { |
| 3337 | fn prop_ordering_same_as_civil_nanosecond( |
| 3338 | civil_nanosecond1: CivilDayNanosecond, |
| 3339 | civil_nanosecond2: CivilDayNanosecond |
| 3340 | ) -> bool { |
| 3341 | let t1 = Time::from_nanosecond(civil_nanosecond1); |
| 3342 | let t2 = Time::from_nanosecond(civil_nanosecond2); |
| 3343 | t1.cmp(&t2) == civil_nanosecond1.cmp(&civil_nanosecond2) |
| 3344 | } |
| 3345 | |
| 3346 | fn prop_checked_add_then_sub( |
| 3347 | time: Time, |
| 3348 | nano_span: CivilDayNanosecond |
| 3349 | ) -> quickcheck::TestResult { |
| 3350 | let span = Span::new().nanoseconds(nano_span.get()); |
| 3351 | let Ok(sum) = time.checked_add(span) else { |
| 3352 | return quickcheck::TestResult::discard() |
| 3353 | }; |
| 3354 | let diff = sum.checked_sub(span).unwrap(); |
| 3355 | quickcheck::TestResult::from_bool(time == diff) |
| 3356 | } |
| 3357 | |
| 3358 | fn prop_wrapping_add_then_sub( |
| 3359 | time: Time, |
| 3360 | nano_span: CivilDayNanosecond |
| 3361 | ) -> bool { |
| 3362 | let span = Span::new().nanoseconds(nano_span.get()); |
| 3363 | let sum = time.wrapping_add(span); |
| 3364 | let diff = sum.wrapping_sub(span); |
| 3365 | time == diff |
| 3366 | } |
| 3367 | |
| 3368 | fn prop_checked_add_equals_wrapping_add( |
| 3369 | time: Time, |
| 3370 | nano_span: CivilDayNanosecond |
| 3371 | ) -> quickcheck::TestResult { |
| 3372 | let span = Span::new().nanoseconds(nano_span.get()); |
| 3373 | let Ok(sum_checked) = time.checked_add(span) else { |
| 3374 | return quickcheck::TestResult::discard() |
| 3375 | }; |
| 3376 | let sum_wrapped = time.wrapping_add(span); |
| 3377 | quickcheck::TestResult::from_bool(sum_checked == sum_wrapped) |
| 3378 | } |
| 3379 | |
| 3380 | fn prop_checked_sub_equals_wrapping_sub( |
| 3381 | time: Time, |
| 3382 | nano_span: CivilDayNanosecond |
| 3383 | ) -> quickcheck::TestResult { |
| 3384 | let span = Span::new().nanoseconds(nano_span.get()); |
| 3385 | let Ok(diff_checked) = time.checked_sub(span) else { |
| 3386 | return quickcheck::TestResult::discard() |
| 3387 | }; |
| 3388 | let diff_wrapped = time.wrapping_sub(span); |
| 3389 | quickcheck::TestResult::from_bool(diff_checked == diff_wrapped) |
| 3390 | } |
| 3391 | |
| 3392 | fn prop_until_then_add(t1: Time, t2: Time) -> bool { |
| 3393 | let span = t1.until(t2).unwrap(); |
| 3394 | t1.checked_add(span).unwrap() == t2 |
| 3395 | } |
| 3396 | |
| 3397 | fn prop_until_then_sub(t1: Time, t2: Time) -> bool { |
| 3398 | let span = t1.until(t2).unwrap(); |
| 3399 | t2.checked_sub(span).unwrap() == t1 |
| 3400 | } |
| 3401 | |
| 3402 | fn prop_since_then_add(t1: Time, t2: Time) -> bool { |
| 3403 | let span = t1.since(t2).unwrap(); |
| 3404 | t2.checked_add(span).unwrap() == t1 |
| 3405 | } |
| 3406 | |
| 3407 | fn prop_since_then_sub(t1: Time, t2: Time) -> bool { |
| 3408 | let span = t1.since(t2).unwrap(); |
| 3409 | t1.checked_sub(span).unwrap() == t2 |
| 3410 | } |
| 3411 | |
| 3412 | fn prop_until_is_since_negated(t1: Time, t2: Time) -> bool { |
| 3413 | t1.until(t2).unwrap().get_nanoseconds() |
| 3414 | == t1.since(t2).unwrap().negate().get_nanoseconds() |
| 3415 | } |
| 3416 | } |
| 3417 | |
| 3418 | #[test ] |
| 3419 | fn overflowing_add() { |
| 3420 | let t1 = time(23, 30, 0, 0); |
| 3421 | let (t2, span) = t1.overflowing_add(5.hours()).unwrap(); |
| 3422 | assert_eq!(t2, time(4, 30, 0, 0)); |
| 3423 | span_eq!(span, 1.days()); |
| 3424 | } |
| 3425 | |
| 3426 | #[test ] |
| 3427 | fn overflowing_add_overflows() { |
| 3428 | let t1 = time(23, 30, 0, 0); |
| 3429 | let span = Span::new() |
| 3430 | .hours(t::SpanHours::MAX_REPR) |
| 3431 | .minutes(t::SpanMinutes::MAX_REPR) |
| 3432 | .seconds(t::SpanSeconds::MAX_REPR) |
| 3433 | .milliseconds(t::SpanMilliseconds::MAX_REPR) |
| 3434 | .microseconds(t::SpanMicroseconds::MAX_REPR) |
| 3435 | .nanoseconds(t::SpanNanoseconds::MAX_REPR); |
| 3436 | assert!(t1.overflowing_add(span).is_err()); |
| 3437 | } |
| 3438 | |
| 3439 | #[test ] |
| 3440 | fn time_size() { |
| 3441 | #[cfg (debug_assertions)] |
| 3442 | { |
| 3443 | assert_eq!(24, core::mem::size_of::<Time>()); |
| 3444 | } |
| 3445 | #[cfg (not(debug_assertions))] |
| 3446 | { |
| 3447 | assert_eq!(8, core::mem::size_of::<Time>()); |
| 3448 | } |
| 3449 | } |
| 3450 | |
| 3451 | // This test checks that a wrapping subtraction with the minimum signed |
| 3452 | // duration is as expected. |
| 3453 | #[test ] |
| 3454 | fn wrapping_sub_signed_duration_min() { |
| 3455 | let max = -SignedDuration::MIN.as_nanos(); |
| 3456 | let got = time(15, 30, 8, 999_999_999).to_nanosecond(); |
| 3457 | let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound()); |
| 3458 | assert_eq!(i128::from(got.get()), expected); |
| 3459 | } |
| 3460 | |
| 3461 | // This test checks that a wrapping subtraction with the maximum signed |
| 3462 | // duration is as expected. |
| 3463 | #[test ] |
| 3464 | fn wrapping_sub_signed_duration_max() { |
| 3465 | let max = -SignedDuration::MAX.as_nanos(); |
| 3466 | let got = time(8, 29, 52, 1).to_nanosecond(); |
| 3467 | let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound()); |
| 3468 | assert_eq!(i128::from(got.get()), expected); |
| 3469 | } |
| 3470 | |
| 3471 | // This test checks that a wrapping subtraction with the maximum unsigned |
| 3472 | // duration is as expected. |
| 3473 | #[test ] |
| 3474 | fn wrapping_sub_unsigned_duration_max() { |
| 3475 | let max = |
| 3476 | -i128::try_from(std::time::Duration::MAX.as_nanos()).unwrap(); |
| 3477 | let got = time(16, 59, 44, 1).to_nanosecond(); |
| 3478 | let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound()); |
| 3479 | assert_eq!(i128::from(got.get()), expected); |
| 3480 | } |
| 3481 | |
| 3482 | /// # `serde` deserializer compatibility test |
| 3483 | /// |
| 3484 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 3485 | /// as deserializing from bytes is not supported by the deserializer. |
| 3486 | /// |
| 3487 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 3488 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 3489 | #[test ] |
| 3490 | fn civil_time_deserialize_yaml() { |
| 3491 | let expected = time(16, 35, 4, 987654321); |
| 3492 | |
| 3493 | let deserialized: Time = |
| 3494 | serde_yaml::from_str("16:35:04.987654321" ).unwrap(); |
| 3495 | |
| 3496 | assert_eq!(deserialized, expected); |
| 3497 | |
| 3498 | let deserialized: Time = |
| 3499 | serde_yaml::from_slice("16:35:04.987654321" .as_bytes()).unwrap(); |
| 3500 | |
| 3501 | assert_eq!(deserialized, expected); |
| 3502 | |
| 3503 | let cursor = Cursor::new(b"16:35:04.987654321" ); |
| 3504 | let deserialized: Time = serde_yaml::from_reader(cursor).unwrap(); |
| 3505 | |
| 3506 | assert_eq!(deserialized, expected); |
| 3507 | } |
| 3508 | } |
| 3509 | |