| 1 | use core::{cmp::Ordering, time::Duration as UnsignedDuration}; |
| 2 | |
| 3 | use crate::{ |
| 4 | civil::{Date, DateTime, Time}, |
| 5 | duration::{Duration, SDuration}, |
| 6 | error::{err, Error, ErrorContext}, |
| 7 | fmt::{friendly, temporal}, |
| 8 | tz::TimeZone, |
| 9 | util::{ |
| 10 | borrow::DumbCow, |
| 11 | escape, |
| 12 | rangeint::{ri64, ri8, RFrom, RInto, TryRFrom, TryRInto}, |
| 13 | round::increment, |
| 14 | t::{self, Constant, NoUnits, NoUnits128, Sign, C}, |
| 15 | }, |
| 16 | RoundMode, SignedDuration, Timestamp, Zoned, |
| 17 | }; |
| 18 | |
| 19 | /// A macro helper, only used in tests, for comparing spans for equality. |
| 20 | #[cfg (test)] |
| 21 | macro_rules! span_eq { |
| 22 | ($span1:expr, $span2:expr $(,)?) => {{ |
| 23 | assert_eq!($span1.fieldwise(), $span2.fieldwise()); |
| 24 | }}; |
| 25 | ($span1:expr, $span2:expr, $($tt:tt)*) => {{ |
| 26 | assert_eq!($span1.fieldwise(), $span2.fieldwise(), $($tt)*); |
| 27 | }}; |
| 28 | } |
| 29 | |
| 30 | #[cfg (test)] |
| 31 | pub(crate) use span_eq; |
| 32 | |
| 33 | /// A span of time represented via a mixture of calendar and clock units. |
| 34 | /// |
| 35 | /// A span represents a duration of time in units of years, months, weeks, |
| 36 | /// days, hours, minutes, seconds, milliseconds, microseconds and nanoseconds. |
| 37 | /// Spans are used to as inputs to routines like |
| 38 | /// [`Zoned::checked_add`] and [`Date::saturating_sub`], |
| 39 | /// and are also outputs from routines like |
| 40 | /// [`Timestamp::since`] and [`DateTime::until`]. |
| 41 | /// |
| 42 | /// # Range of spans |
| 43 | /// |
| 44 | /// Except for nanoseconds, each unit can represent the full span of time |
| 45 | /// expressible via any combination of datetime supported by Jiff. For example: |
| 46 | /// |
| 47 | /// ``` |
| 48 | /// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit}; |
| 49 | /// |
| 50 | /// let options = DateTimeDifference::new(DateTime::MAX).largest(Unit::Year); |
| 51 | /// assert_eq!(DateTime::MIN.until(options)?.get_years(), 19_998); |
| 52 | /// |
| 53 | /// let options = options.largest(Unit::Day); |
| 54 | /// assert_eq!(DateTime::MIN.until(options)?.get_days(), 7_304_483); |
| 55 | /// |
| 56 | /// let options = options.largest(Unit::Microsecond); |
| 57 | /// assert_eq!( |
| 58 | /// DateTime::MIN.until(options)?.get_microseconds(), |
| 59 | /// 631_107_417_599_999_999i64, |
| 60 | /// ); |
| 61 | /// |
| 62 | /// let options = options.largest(Unit::Nanosecond); |
| 63 | /// // Span is too big, overflow! |
| 64 | /// assert!(DateTime::MIN.until(options).is_err()); |
| 65 | /// |
| 66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 67 | /// ``` |
| 68 | /// |
| 69 | /// # Building spans |
| 70 | /// |
| 71 | /// A default or empty span corresponds to a duration of zero time: |
| 72 | /// |
| 73 | /// ``` |
| 74 | /// use jiff::Span; |
| 75 | /// |
| 76 | /// assert!(Span::new().is_zero()); |
| 77 | /// assert!(Span::default().is_zero()); |
| 78 | /// ``` |
| 79 | /// |
| 80 | /// Spans are `Copy` types that have mutator methods on them for creating new |
| 81 | /// spans: |
| 82 | /// |
| 83 | /// ``` |
| 84 | /// use jiff::Span; |
| 85 | /// |
| 86 | /// let span = Span::new().days(5).hours(8).minutes(1); |
| 87 | /// assert_eq!(span.to_string(), "P5DT8H1M" ); |
| 88 | /// ``` |
| 89 | /// |
| 90 | /// But Jiff provides a [`ToSpan`] trait that defines extension methods on |
| 91 | /// primitive signed integers to make span creation terser: |
| 92 | /// |
| 93 | /// ``` |
| 94 | /// use jiff::ToSpan; |
| 95 | /// |
| 96 | /// let span = 5.days().hours(8).minutes(1); |
| 97 | /// assert_eq!(span.to_string(), "P5DT8H1M" ); |
| 98 | /// // singular units on integers can be used too: |
| 99 | /// let span = 1.day().hours(8).minutes(1); |
| 100 | /// assert_eq!(span.to_string(), "P1DT8H1M" ); |
| 101 | /// ``` |
| 102 | /// |
| 103 | /// # Negative spans |
| 104 | /// |
| 105 | /// A span may be negative. All of these are equivalent: |
| 106 | /// |
| 107 | /// ``` |
| 108 | /// use jiff::{Span, ToSpan}; |
| 109 | /// |
| 110 | /// let span = -Span::new().days(5); |
| 111 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 112 | /// |
| 113 | /// let span = Span::new().days(5).negate(); |
| 114 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 115 | /// |
| 116 | /// let span = Span::new().days(-5); |
| 117 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 118 | /// |
| 119 | /// let span = -Span::new().days(-5).negate(); |
| 120 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 121 | /// |
| 122 | /// let span = -5.days(); |
| 123 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 124 | /// |
| 125 | /// let span = (-5).days(); |
| 126 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 127 | /// |
| 128 | /// let span = -(5.days()); |
| 129 | /// assert_eq!(span.to_string(), "-P5D" ); |
| 130 | /// ``` |
| 131 | /// |
| 132 | /// The sign of a span applies to the entire span. When a span is negative, |
| 133 | /// then all of its units are negative: |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use jiff::ToSpan; |
| 137 | /// |
| 138 | /// let span = -5.days().hours(10).minutes(1); |
| 139 | /// assert_eq!(span.get_days(), -5); |
| 140 | /// assert_eq!(span.get_hours(), -10); |
| 141 | /// assert_eq!(span.get_minutes(), -1); |
| 142 | /// ``` |
| 143 | /// |
| 144 | /// And if any of a span's units are negative, then the entire span is regarded |
| 145 | /// as negative: |
| 146 | /// |
| 147 | /// ``` |
| 148 | /// use jiff::ToSpan; |
| 149 | /// |
| 150 | /// // It's the same thing. |
| 151 | /// let span = (-5).days().hours(-10).minutes(-1); |
| 152 | /// assert_eq!(span.get_days(), -5); |
| 153 | /// assert_eq!(span.get_hours(), -10); |
| 154 | /// assert_eq!(span.get_minutes(), -1); |
| 155 | /// |
| 156 | /// // Still the same. All negative. |
| 157 | /// let span = 5.days().hours(-10).minutes(1); |
| 158 | /// assert_eq!(span.get_days(), -5); |
| 159 | /// assert_eq!(span.get_hours(), -10); |
| 160 | /// assert_eq!(span.get_minutes(), -1); |
| 161 | /// |
| 162 | /// // But this is not! The negation in front applies |
| 163 | /// // to the entire span, which was already negative |
| 164 | /// // by virtue of at least one of its units being |
| 165 | /// // negative. So the negation operator in front turns |
| 166 | /// // the span positive. |
| 167 | /// let span = -5.days().hours(-10).minutes(-1); |
| 168 | /// assert_eq!(span.get_days(), 5); |
| 169 | /// assert_eq!(span.get_hours(), 10); |
| 170 | /// assert_eq!(span.get_minutes(), 1); |
| 171 | /// ``` |
| 172 | /// |
| 173 | /// You can also ask for the absolute value of a span: |
| 174 | /// |
| 175 | /// ``` |
| 176 | /// use jiff::Span; |
| 177 | /// |
| 178 | /// let span = Span::new().days(5).hours(10).minutes(1).negate().abs(); |
| 179 | /// assert_eq!(span.get_days(), 5); |
| 180 | /// assert_eq!(span.get_hours(), 10); |
| 181 | /// assert_eq!(span.get_minutes(), 1); |
| 182 | /// ``` |
| 183 | /// |
| 184 | /// # Parsing and printing |
| 185 | /// |
| 186 | /// The `Span` type provides convenient trait implementations of |
| 187 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
| 188 | /// |
| 189 | /// ``` |
| 190 | /// use jiff::{Span, ToSpan}; |
| 191 | /// |
| 192 | /// let span: Span = "P2m10dT2h30m" .parse()?; |
| 193 | /// // By default, capital unit designator labels are used. |
| 194 | /// // This can be changed with `jiff::fmt::temporal::SpanPrinter::lowercase`. |
| 195 | /// assert_eq!(span.to_string(), "P2M10DT2H30M" ); |
| 196 | /// |
| 197 | /// // Or use the "friendly" format by invoking the `Display` alternate: |
| 198 | /// assert_eq!(format!("{span:#}" ), "2mo 10d 2h 30m" ); |
| 199 | /// |
| 200 | /// // Parsing automatically supports both the ISO 8601 and "friendly" |
| 201 | /// // formats. Note that we use `Span::fieldwise` to create a `Span` that |
| 202 | /// // compares based on each field. To compare based on total duration, use |
| 203 | /// // `Span::compare` or `Span::total`. |
| 204 | /// let span: Span = "2mo 10d 2h 30m" .parse()?; |
| 205 | /// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise()); |
| 206 | /// let span: Span = "2 months, 10 days, 2 hours, 30 minutes" .parse()?; |
| 207 | /// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise()); |
| 208 | /// |
| 209 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 210 | /// ``` |
| 211 | /// |
| 212 | /// The format supported is a variation (nearly a subset) of the duration |
| 213 | /// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format. |
| 214 | /// Here are more examples: |
| 215 | /// |
| 216 | /// ``` |
| 217 | /// use jiff::{Span, ToSpan}; |
| 218 | /// |
| 219 | /// let spans = [ |
| 220 | /// // ISO 8601 |
| 221 | /// ("P40D" , 40.days()), |
| 222 | /// ("P1y1d" , 1.year().days(1)), |
| 223 | /// ("P3dT4h59m" , 3.days().hours(4).minutes(59)), |
| 224 | /// ("PT2H30M" , 2.hours().minutes(30)), |
| 225 | /// ("P1m" , 1.month()), |
| 226 | /// ("P1w" , 1.week()), |
| 227 | /// ("P1w4d" , 1.week().days(4)), |
| 228 | /// ("PT1m" , 1.minute()), |
| 229 | /// ("PT0.0021s" , 2.milliseconds().microseconds(100)), |
| 230 | /// ("PT0s" , 0.seconds()), |
| 231 | /// ("P0d" , 0.seconds()), |
| 232 | /// ( |
| 233 | /// "P1y1m1dT1h1m1.1s" , |
| 234 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 235 | /// ), |
| 236 | /// // Jiff's "friendly" format |
| 237 | /// ("40d" , 40.days()), |
| 238 | /// ("40 days" , 40.days()), |
| 239 | /// ("1y1d" , 1.year().days(1)), |
| 240 | /// ("1yr 1d" , 1.year().days(1)), |
| 241 | /// ("3d4h59m" , 3.days().hours(4).minutes(59)), |
| 242 | /// ("3 days, 4 hours, 59 minutes" , 3.days().hours(4).minutes(59)), |
| 243 | /// ("3d 4h 59m" , 3.days().hours(4).minutes(59)), |
| 244 | /// ("2h30m" , 2.hours().minutes(30)), |
| 245 | /// ("2h 30m" , 2.hours().minutes(30)), |
| 246 | /// ("1mo" , 1.month()), |
| 247 | /// ("1w" , 1.week()), |
| 248 | /// ("1 week" , 1.week()), |
| 249 | /// ("1w4d" , 1.week().days(4)), |
| 250 | /// ("1 wk 4 days" , 1.week().days(4)), |
| 251 | /// ("1m" , 1.minute()), |
| 252 | /// ("0.0021s" , 2.milliseconds().microseconds(100)), |
| 253 | /// ("0s" , 0.seconds()), |
| 254 | /// ("0d" , 0.seconds()), |
| 255 | /// ("0 days" , 0.seconds()), |
| 256 | /// ( |
| 257 | /// "1y1mo1d1h1m1.1s" , |
| 258 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 259 | /// ), |
| 260 | /// ( |
| 261 | /// "1yr 1mo 1day 1hr 1min 1.1sec" , |
| 262 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 263 | /// ), |
| 264 | /// ( |
| 265 | /// "1 year, 1 month, 1 day, 1 hour, 1 minute 1.1 seconds" , |
| 266 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 267 | /// ), |
| 268 | /// ( |
| 269 | /// "1 year, 1 month, 1 day, 01:01:01.1" , |
| 270 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
| 271 | /// ), |
| 272 | /// ]; |
| 273 | /// for (string, span) in spans { |
| 274 | /// let parsed: Span = string.parse()?; |
| 275 | /// assert_eq!( |
| 276 | /// span.fieldwise(), |
| 277 | /// parsed.fieldwise(), |
| 278 | /// "result of parsing {string:?}" , |
| 279 | /// ); |
| 280 | /// } |
| 281 | /// |
| 282 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 283 | /// ``` |
| 284 | /// |
| 285 | /// For more details, see the [`fmt::temporal`](temporal) and |
| 286 | /// [`fmt::friendly`](friendly) modules. |
| 287 | /// |
| 288 | /// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
| 289 | /// |
| 290 | /// # Comparisons |
| 291 | /// |
| 292 | /// A `Span` does not implement the `PartialEq` or `Eq` traits. These traits |
| 293 | /// were implemented in an earlier version of Jiff, but they made it too |
| 294 | /// easy to introduce bugs. For example, `120.minutes()` and `2.hours()` |
| 295 | /// always correspond to the same total duration, but they have different |
| 296 | /// representations in memory and so didn't compare equivalent. |
| 297 | /// |
| 298 | /// The reason why the `PartialEq` and `Eq` trait implementations do not do |
| 299 | /// comparisons with total duration is because it is fundamentally impossible |
| 300 | /// to do such comparisons without a reference date in all cases. |
| 301 | /// |
| 302 | /// However, it is undeniably occasionally useful to do comparisons based |
| 303 | /// on the component fields, so long as such use cases can tolerate two |
| 304 | /// different spans comparing unequal even when their total durations are |
| 305 | /// equivalent. For example, many of the tests in Jiff (including the tests in |
| 306 | /// the documentation) work by comparing a `Span` to an expected result. This |
| 307 | /// is a good demonstration of when fieldwise comparisons are appropriate. |
| 308 | /// |
| 309 | /// To do fieldwise comparisons with a span, use the [`Span::fieldwise`] |
| 310 | /// method. This method creates a [`SpanFieldwise`], which is just a `Span` |
| 311 | /// that implements `PartialEq` and `Eq` in a fieldwise manner. In other words, |
| 312 | /// it's a speed bump to ensure this is the kind of comparison you actually |
| 313 | /// want. For example: |
| 314 | /// |
| 315 | /// ``` |
| 316 | /// use jiff::ToSpan; |
| 317 | /// |
| 318 | /// assert_ne!(1.hour().fieldwise(), 60.minutes().fieldwise()); |
| 319 | /// // These also work since you only need one fieldwise span to do a compare: |
| 320 | /// assert_ne!(1.hour(), 60.minutes().fieldwise()); |
| 321 | /// assert_ne!(1.hour().fieldwise(), 60.minutes()); |
| 322 | /// ``` |
| 323 | /// |
| 324 | /// This is because doing true comparisons requires arithmetic and a relative |
| 325 | /// datetime in the general case, and which can fail due to overflow. This |
| 326 | /// operation is provided via [`Span::compare`]: |
| 327 | /// |
| 328 | /// ``` |
| 329 | /// use jiff::{civil::date, ToSpan}; |
| 330 | /// |
| 331 | /// // This doesn't need a reference date since it's only using time units. |
| 332 | /// assert_eq!(1.hour().compare(60.minutes())?, std::cmp::Ordering::Equal); |
| 333 | /// // But if you have calendar units, then you need a |
| 334 | /// // reference date at minimum: |
| 335 | /// assert!(1.month().compare(30.days()).is_err()); |
| 336 | /// assert_eq!( |
| 337 | /// 1.month().compare((30.days(), date(2025, 6, 1)))?, |
| 338 | /// std::cmp::Ordering::Equal, |
| 339 | /// ); |
| 340 | /// // A month can be a differing number of days! |
| 341 | /// assert_eq!( |
| 342 | /// 1.month().compare((30.days(), date(2025, 7, 1)))?, |
| 343 | /// std::cmp::Ordering::Greater, |
| 344 | /// ); |
| 345 | /// |
| 346 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 347 | /// ``` |
| 348 | /// |
| 349 | /// # Arithmetic |
| 350 | /// |
| 351 | /// Spans can be added or subtracted via [`Span::checked_add`] and |
| 352 | /// [`Span::checked_sub`]: |
| 353 | /// |
| 354 | /// ``` |
| 355 | /// use jiff::{Span, ToSpan}; |
| 356 | /// |
| 357 | /// let span1 = 2.hours().minutes(20); |
| 358 | /// let span2: Span = "PT89400s" .parse()?; |
| 359 | /// assert_eq!(span1.checked_add(span2)?, 27.hours().minutes(10).fieldwise()); |
| 360 | /// |
| 361 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 362 | /// ``` |
| 363 | /// |
| 364 | /// When your spans involve calendar units, a relative datetime must be |
| 365 | /// provided. (Because, for example, 1 month from March 1 is 31 days, but |
| 366 | /// 1 month from April 1 is 30 days.) |
| 367 | /// |
| 368 | /// ``` |
| 369 | /// use jiff::{civil::date, Span, ToSpan}; |
| 370 | /// |
| 371 | /// let span1 = 2.years().months(6).days(20); |
| 372 | /// let span2 = 400.days(); |
| 373 | /// assert_eq!( |
| 374 | /// span1.checked_add((span2, date(2023, 1, 1)))?, |
| 375 | /// 3.years().months(7).days(24).fieldwise(), |
| 376 | /// ); |
| 377 | /// // The span changes when a leap year isn't included! |
| 378 | /// assert_eq!( |
| 379 | /// span1.checked_add((span2, date(2025, 1, 1)))?, |
| 380 | /// 3.years().months(7).days(23).fieldwise(), |
| 381 | /// ); |
| 382 | /// |
| 383 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 384 | /// ``` |
| 385 | /// |
| 386 | /// # Rounding and balancing |
| 387 | /// |
| 388 | /// Unlike datetimes, multiple distinct `Span` values can actually correspond |
| 389 | /// to the same duration of time. For example, all of the following correspond |
| 390 | /// to the same duration: |
| 391 | /// |
| 392 | /// * 2 hours, 30 minutes |
| 393 | /// * 150 minutes |
| 394 | /// * 1 hour, 90 minutes |
| 395 | /// |
| 396 | /// The first is said to be balanced. That is, its biggest non-zero unit cannot |
| 397 | /// be expressed in an integer number of units bigger than hours. But the |
| 398 | /// second is unbalanced because 150 minutes can be split up into hours and |
| 399 | /// minutes. We call this sort of span a "top-heavy" unbalanced span. The third |
| 400 | /// span is also unbalanced, but it's "bottom-heavy" and rarely used. Jiff |
| 401 | /// will generally only produce spans of the first two types. In particular, |
| 402 | /// most `Span` producing APIs accept a "largest" [`Unit`] parameter, and the |
| 403 | /// result can be said to be a span "balanced up to the largest unit provided." |
| 404 | /// |
| 405 | /// Balanced and unbalanced spans can be switched between as needed via |
| 406 | /// the [`Span::round`] API by providing a rounding configuration with |
| 407 | /// [`SpanRound::largest`]` set: |
| 408 | /// |
| 409 | /// ``` |
| 410 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 411 | /// |
| 412 | /// let span = 2.hours().minutes(30); |
| 413 | /// let unbalanced = span.round(SpanRound::new().largest(Unit::Minute))?; |
| 414 | /// assert_eq!(unbalanced, 150.minutes().fieldwise()); |
| 415 | /// let balanced = unbalanced.round(SpanRound::new().largest(Unit::Hour))?; |
| 416 | /// assert_eq!(balanced, 2.hours().minutes(30).fieldwise()); |
| 417 | /// |
| 418 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 419 | /// ``` |
| 420 | /// |
| 421 | /// Balancing can also be done as part of computing spans from two datetimes: |
| 422 | /// |
| 423 | /// ``` |
| 424 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 425 | /// |
| 426 | /// let zdt1 = date(2024, 7, 7).at(15, 23, 0, 0).in_tz("America/New_York" )?; |
| 427 | /// let zdt2 = date(2024, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York" )?; |
| 428 | /// |
| 429 | /// // To make arithmetic reversible, the default largest unit for spans of |
| 430 | /// // time computed from zoned datetimes is hours: |
| 431 | /// assert_eq!(zdt1.until(&zdt2)?, 2_897.hour().minutes(37).fieldwise()); |
| 432 | /// // But we can ask for the span to be balanced up to years: |
| 433 | /// assert_eq!( |
| 434 | /// zdt1.until((Unit::Year, &zdt2))?, |
| 435 | /// 3.months().days(28).hours(16).minutes(37).fieldwise(), |
| 436 | /// ); |
| 437 | /// |
| 438 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 439 | /// ``` |
| 440 | /// |
| 441 | /// While the [`Span::round`] API does balancing, it also, of course, does |
| 442 | /// rounding as well. Rounding occurs when the smallest unit is set to |
| 443 | /// something bigger than [`Unit::Nanosecond`]: |
| 444 | /// |
| 445 | /// ``` |
| 446 | /// use jiff::{ToSpan, Unit}; |
| 447 | /// |
| 448 | /// let span = 2.hours().minutes(30); |
| 449 | /// assert_eq!(span.round(Unit::Hour)?, 3.hours().fieldwise()); |
| 450 | /// |
| 451 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 452 | /// ``` |
| 453 | /// |
| 454 | /// When rounding spans with calendar units (years, months or weeks), then a |
| 455 | /// relative datetime is required: |
| 456 | /// |
| 457 | /// ``` |
| 458 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
| 459 | /// |
| 460 | /// let span = 10.years().months(11); |
| 461 | /// let options = SpanRound::new() |
| 462 | /// .smallest(Unit::Year) |
| 463 | /// .relative(date(2024, 1, 1)); |
| 464 | /// assert_eq!(span.round(options)?, 11.years().fieldwise()); |
| 465 | /// |
| 466 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 467 | /// ``` |
| 468 | /// |
| 469 | /// # Days are not always 24 hours! |
| 470 | /// |
| 471 | /// That is, a `Span` is made up of uniform and non-uniform units. |
| 472 | /// |
| 473 | /// A uniform unit is a unit whose elapsed duration is always the same. |
| 474 | /// A non-uniform unit is a unit whose elapsed duration is not always the same. |
| 475 | /// There are two things that can impact the length of a non-uniform unit: |
| 476 | /// the calendar date and the time zone. |
| 477 | /// |
| 478 | /// Years and months are always considered non-uniform units. For example, |
| 479 | /// 1 month from `2024-04-01` is 30 days, while 1 month from `2024-05-01` is |
| 480 | /// 31 days. Similarly for years because of leap years. |
| 481 | /// |
| 482 | /// Hours, minutes, seconds, milliseconds, microseconds and nanoseconds are |
| 483 | /// always considered uniform units. |
| 484 | /// |
| 485 | /// Days are only considered non-uniform when in the presence of a zone aware |
| 486 | /// datetime. A day can be more or less than 24 hours, and it can be balanced |
| 487 | /// up and down, but only when a relative zoned datetime is given. This |
| 488 | /// typically happens because of DST (daylight saving time), but can also occur |
| 489 | /// because of other time zone transitions too. |
| 490 | /// |
| 491 | /// ``` |
| 492 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
| 493 | /// |
| 494 | /// // 2024-03-10 in New York was 23 hours long, |
| 495 | /// // because of a jump to DST at 2am. |
| 496 | /// let zdt = date(2024, 3, 9).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
| 497 | /// // Goes from days to hours: |
| 498 | /// assert_eq!( |
| 499 | /// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?, |
| 500 | /// 23.hours().fieldwise(), |
| 501 | /// ); |
| 502 | /// // Goes from hours to days: |
| 503 | /// assert_eq!( |
| 504 | /// 23.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
| 505 | /// 1.day().fieldwise(), |
| 506 | /// ); |
| 507 | /// // 24 hours is more than 1 day starting at this time: |
| 508 | /// assert_eq!( |
| 509 | /// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
| 510 | /// 1.day().hours(1).fieldwise(), |
| 511 | /// ); |
| 512 | /// |
| 513 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 514 | /// ``` |
| 515 | /// |
| 516 | /// And similarly, days can be longer than 24 hours: |
| 517 | /// |
| 518 | /// ``` |
| 519 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
| 520 | /// |
| 521 | /// // 2024-11-03 in New York was 25 hours long, |
| 522 | /// // because of a repetition of the 1 o'clock AM hour. |
| 523 | /// let zdt = date(2024, 11, 2).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
| 524 | /// // Goes from days to hours: |
| 525 | /// assert_eq!( |
| 526 | /// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?, |
| 527 | /// 25.hours().fieldwise(), |
| 528 | /// ); |
| 529 | /// // Goes from hours to days: |
| 530 | /// assert_eq!( |
| 531 | /// 25.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
| 532 | /// 1.day().fieldwise(), |
| 533 | /// ); |
| 534 | /// // 24 hours is less than 1 day starting at this time, |
| 535 | /// // so it stays in units of hours even though we ask |
| 536 | /// // for days (because 24 isn't enough hours to make |
| 537 | /// // 1 day): |
| 538 | /// assert_eq!( |
| 539 | /// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
| 540 | /// 24.hours().fieldwise(), |
| 541 | /// ); |
| 542 | /// |
| 543 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 544 | /// ``` |
| 545 | /// |
| 546 | /// The APIs on `Span` will otherwise treat days as non-uniform unless a |
| 547 | /// relative civil date is given, or there is an explicit opt-in to invariant |
| 548 | /// 24-hour days. For example: |
| 549 | /// |
| 550 | /// ``` |
| 551 | /// use jiff::{civil, SpanRelativeTo, ToSpan, Unit}; |
| 552 | /// |
| 553 | /// let span = 1.day(); |
| 554 | /// |
| 555 | /// // An error because days aren't always 24 hours: |
| 556 | /// assert_eq!( |
| 557 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
| 558 | /// "using unit 'day' in a span or configuration requires that either \ |
| 559 | /// a relative reference time be given or \ |
| 560 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 561 | /// invariant 24-hour days, but neither were provided" , |
| 562 | /// ); |
| 563 | /// // Opt into invariant 24 hour days without a relative date: |
| 564 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
| 565 | /// let hours = span.total((Unit::Hour, marker))?; |
| 566 | /// // Or use a relative civil date, and all days are 24 hours: |
| 567 | /// let date = civil::date(2020, 1, 1); |
| 568 | /// let hours = span.total((Unit::Hour, date))?; |
| 569 | /// assert_eq!(hours, 24.0); |
| 570 | /// |
| 571 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 572 | /// ``` |
| 573 | /// |
| 574 | /// In Jiff, all weeks are 7 days. And generally speaking, weeks only appear in |
| 575 | /// a `Span` if they were explicitly put there by the caller or if they were |
| 576 | /// explicitly requested by the caller in an API. For example: |
| 577 | /// |
| 578 | /// ``` |
| 579 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 580 | /// |
| 581 | /// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0); |
| 582 | /// let dt2 = date(2024, 7, 16).at(0, 0, 0, 0); |
| 583 | /// // Default units go up to days. |
| 584 | /// assert_eq!(dt1.until(dt2)?, 197.days().fieldwise()); |
| 585 | /// // No weeks, even though we requested up to year. |
| 586 | /// assert_eq!(dt1.until((Unit::Year, dt2))?, 6.months().days(15).fieldwise()); |
| 587 | /// // We get weeks only when we ask for them. |
| 588 | /// assert_eq!(dt1.until((Unit::Week, dt2))?, 28.weeks().days(1).fieldwise()); |
| 589 | /// |
| 590 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 591 | /// ``` |
| 592 | /// |
| 593 | /// # Integration with [`std::time::Duration`] and [`SignedDuration`] |
| 594 | /// |
| 595 | /// While Jiff primarily uses a `Span` for doing arithmetic on datetimes, |
| 596 | /// one can convert between a `Span` and a [`std::time::Duration`] or a |
| 597 | /// [`SignedDuration`]. The main difference between them is that a `Span` |
| 598 | /// always keeps tracks of its individual units, and a `Span` can represent |
| 599 | /// non-uniform units like months. In contrast, `Duration` and `SignedDuration` |
| 600 | /// are always an exact elapsed amount of time. They don't distinguish between |
| 601 | /// `120 seconds` and `2 minutes`. And they can't represent the concept of |
| 602 | /// "months" because a month doesn't have a single fixed amount of time. |
| 603 | /// |
| 604 | /// However, an exact duration is still useful in certain contexts. Beyond |
| 605 | /// that, it serves as an interoperability point due to the presence of an |
| 606 | /// unsigned exact duration type in the standard library. Because of that, |
| 607 | /// Jiff provides `TryFrom` trait implementations for converting to and from a |
| 608 | /// `std::time::Duration` (and, of course, a `SignedDuration`). For example, to |
| 609 | /// convert from a `std::time::Duration` to a `Span`: |
| 610 | /// |
| 611 | /// ``` |
| 612 | /// use std::time::Duration; |
| 613 | /// |
| 614 | /// use jiff::{Span, ToSpan}; |
| 615 | /// |
| 616 | /// let duration = Duration::new(86_400, 123_456_789); |
| 617 | /// let span = Span::try_from(duration)?; |
| 618 | /// // A duration-to-span conversion always results in a span with |
| 619 | /// // non-zero units no bigger than seconds. |
| 620 | /// assert_eq!( |
| 621 | /// span.fieldwise(), |
| 622 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
| 623 | /// ); |
| 624 | /// |
| 625 | /// // Note that the conversion is fallible! For example: |
| 626 | /// assert!(Span::try_from(Duration::from_secs(u64::MAX)).is_err()); |
| 627 | /// // At present, a Jiff `Span` can only represent a range of time equal to |
| 628 | /// // the range of time expressible via minimum and maximum Jiff timestamps. |
| 629 | /// // Which is roughly -9999-01-01 to 9999-12-31, or ~20,000 years. |
| 630 | /// assert!(Span::try_from(Duration::from_secs(999_999_999_999)).is_err()); |
| 631 | /// |
| 632 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 633 | /// ``` |
| 634 | /// |
| 635 | /// And to convert from a `Span` to a `std::time::Duration`: |
| 636 | /// |
| 637 | /// ``` |
| 638 | /// use std::time::Duration; |
| 639 | /// |
| 640 | /// use jiff::{Span, ToSpan}; |
| 641 | /// |
| 642 | /// let span = 86_400.seconds() |
| 643 | /// .milliseconds(123) |
| 644 | /// .microseconds(456) |
| 645 | /// .nanoseconds(789); |
| 646 | /// let duration = Duration::try_from(span)?; |
| 647 | /// assert_eq!(duration, Duration::new(86_400, 123_456_789)); |
| 648 | /// |
| 649 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 650 | /// ``` |
| 651 | /// |
| 652 | /// Note that an error will occur when converting a `Span` to a |
| 653 | /// `std::time::Duration` using the `TryFrom` trait implementation with units |
| 654 | /// bigger than hours: |
| 655 | /// |
| 656 | /// ``` |
| 657 | /// use std::time::Duration; |
| 658 | /// |
| 659 | /// use jiff::ToSpan; |
| 660 | /// |
| 661 | /// let span = 2.days().hours(10); |
| 662 | /// assert_eq!( |
| 663 | /// Duration::try_from(span).unwrap_err().to_string(), |
| 664 | /// "failed to convert span to duration without relative datetime \ |
| 665 | /// (must use `Span::to_duration` instead): using unit 'day' in a \ |
| 666 | /// span or configuration requires that either a relative reference \ |
| 667 | /// time be given or `SpanRelativeTo::days_are_24_hours()` is used \ |
| 668 | /// to indicate invariant 24-hour days, but neither were provided" , |
| 669 | /// ); |
| 670 | /// |
| 671 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 672 | /// ``` |
| 673 | /// |
| 674 | /// Similar code can be written for `SignedDuration` as well. |
| 675 | /// |
| 676 | /// If you need to convert such spans, then as the error suggests, you'll need |
| 677 | /// to use [`Span::to_duration`] with a relative date. |
| 678 | /// |
| 679 | /// And note that since a `Span` is signed and a `std::time::Duration` is unsigned, |
| 680 | /// converting a negative `Span` to `std::time::Duration` will always fail. One can use |
| 681 | /// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the |
| 682 | /// span positive before converting it to a `Duration`: |
| 683 | /// |
| 684 | /// ``` |
| 685 | /// use std::time::Duration; |
| 686 | /// |
| 687 | /// use jiff::{Span, ToSpan}; |
| 688 | /// |
| 689 | /// let span = -86_400.seconds().nanoseconds(1); |
| 690 | /// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?); |
| 691 | /// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1))); |
| 692 | /// |
| 693 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 694 | /// ``` |
| 695 | /// |
| 696 | /// Or, consider using Jiff's own [`SignedDuration`] instead: |
| 697 | /// |
| 698 | /// ``` |
| 699 | /// # // See: https://github.com/rust-lang/rust/pull/121364 |
| 700 | /// # #![allow(unknown_lints, ambiguous_negative_literals)] |
| 701 | /// use jiff::{SignedDuration, Span, ToSpan}; |
| 702 | /// |
| 703 | /// let span = -86_400.seconds().nanoseconds(1); |
| 704 | /// let duration = SignedDuration::try_from(span)?; |
| 705 | /// assert_eq!(duration, SignedDuration::new(-86_400, -1)); |
| 706 | /// |
| 707 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 708 | /// ``` |
| 709 | #[derive (Clone, Copy)] |
| 710 | pub struct Span { |
| 711 | sign: Sign, |
| 712 | units: UnitSet, |
| 713 | years: t::SpanYears, |
| 714 | months: t::SpanMonths, |
| 715 | weeks: t::SpanWeeks, |
| 716 | days: t::SpanDays, |
| 717 | hours: t::SpanHours, |
| 718 | minutes: t::SpanMinutes, |
| 719 | seconds: t::SpanSeconds, |
| 720 | milliseconds: t::SpanMilliseconds, |
| 721 | microseconds: t::SpanMicroseconds, |
| 722 | nanoseconds: t::SpanNanoseconds, |
| 723 | } |
| 724 | |
| 725 | /// Infallible routines for setting units on a `Span`. |
| 726 | /// |
| 727 | /// These are useful when the units are determined by the programmer or when |
| 728 | /// they have been validated elsewhere. In general, use these routines when |
| 729 | /// constructing an invalid `Span` should be considered a bug in the program. |
| 730 | impl Span { |
| 731 | /// Creates a new span representing a zero duration. That is, a duration |
| 732 | /// in which no time has passed. |
| 733 | pub fn new() -> Span { |
| 734 | Span::default() |
| 735 | } |
| 736 | |
| 737 | /// Set the number of years on this span. The value may be negative. |
| 738 | /// |
| 739 | /// The fallible version of this method is [`Span::try_years`]. |
| 740 | /// |
| 741 | /// # Panics |
| 742 | /// |
| 743 | /// This panics when the number of years is too small or too big. |
| 744 | /// The minimum value is `-19,998`. |
| 745 | /// The maximum value is `19,998`. |
| 746 | #[inline ] |
| 747 | pub fn years<I: Into<i64>>(self, years: I) -> Span { |
| 748 | self.try_years(years).expect("value for years is out of bounds" ) |
| 749 | } |
| 750 | |
| 751 | /// Set the number of months on this span. The value may be negative. |
| 752 | /// |
| 753 | /// The fallible version of this method is [`Span::try_months`]. |
| 754 | /// |
| 755 | /// # Panics |
| 756 | /// |
| 757 | /// This panics when the number of months is too small or too big. |
| 758 | /// The minimum value is `-239,976`. |
| 759 | /// The maximum value is `239,976`. |
| 760 | #[inline ] |
| 761 | pub fn months<I: Into<i64>>(self, months: I) -> Span { |
| 762 | self.try_months(months).expect("value for months is out of bounds" ) |
| 763 | } |
| 764 | |
| 765 | /// Set the number of weeks on this span. The value may be negative. |
| 766 | /// |
| 767 | /// The fallible version of this method is [`Span::try_weeks`]. |
| 768 | /// |
| 769 | /// # Panics |
| 770 | /// |
| 771 | /// This panics when the number of weeks is too small or too big. |
| 772 | /// The minimum value is `-1,043,497`. |
| 773 | /// The maximum value is `1_043_497`. |
| 774 | #[inline ] |
| 775 | pub fn weeks<I: Into<i64>>(self, weeks: I) -> Span { |
| 776 | self.try_weeks(weeks).expect("value for weeks is out of bounds" ) |
| 777 | } |
| 778 | |
| 779 | /// Set the number of days on this span. The value may be negative. |
| 780 | /// |
| 781 | /// The fallible version of this method is [`Span::try_days`]. |
| 782 | /// |
| 783 | /// # Panics |
| 784 | /// |
| 785 | /// This panics when the number of days is too small or too big. |
| 786 | /// The minimum value is `-7,304,484`. |
| 787 | /// The maximum value is `7,304,484`. |
| 788 | #[inline ] |
| 789 | pub fn days<I: Into<i64>>(self, days: I) -> Span { |
| 790 | self.try_days(days).expect("value for days is out of bounds" ) |
| 791 | } |
| 792 | |
| 793 | /// Set the number of hours on this span. The value may be negative. |
| 794 | /// |
| 795 | /// The fallible version of this method is [`Span::try_hours`]. |
| 796 | /// |
| 797 | /// # Panics |
| 798 | /// |
| 799 | /// This panics when the number of hours is too small or too big. |
| 800 | /// The minimum value is `-175,307,616`. |
| 801 | /// The maximum value is `175,307,616`. |
| 802 | #[inline ] |
| 803 | pub fn hours<I: Into<i64>>(self, hours: I) -> Span { |
| 804 | self.try_hours(hours).expect("value for hours is out of bounds" ) |
| 805 | } |
| 806 | |
| 807 | /// Set the number of minutes on this span. The value may be negative. |
| 808 | /// |
| 809 | /// The fallible version of this method is [`Span::try_minutes`]. |
| 810 | /// |
| 811 | /// # Panics |
| 812 | /// |
| 813 | /// This panics when the number of minutes is too small or too big. |
| 814 | /// The minimum value is `-10,518,456,960`. |
| 815 | /// The maximum value is `10,518,456,960`. |
| 816 | #[inline ] |
| 817 | pub fn minutes<I: Into<i64>>(self, minutes: I) -> Span { |
| 818 | self.try_minutes(minutes).expect("value for minutes is out of bounds" ) |
| 819 | } |
| 820 | |
| 821 | /// Set the number of seconds on this span. The value may be negative. |
| 822 | /// |
| 823 | /// The fallible version of this method is [`Span::try_seconds`]. |
| 824 | /// |
| 825 | /// # Panics |
| 826 | /// |
| 827 | /// This panics when the number of seconds is too small or too big. |
| 828 | /// The minimum value is `-631,107,417,600`. |
| 829 | /// The maximum value is `631,107,417,600`. |
| 830 | #[inline ] |
| 831 | pub fn seconds<I: Into<i64>>(self, seconds: I) -> Span { |
| 832 | self.try_seconds(seconds).expect("value for seconds is out of bounds" ) |
| 833 | } |
| 834 | |
| 835 | /// Set the number of milliseconds on this span. The value may be negative. |
| 836 | /// |
| 837 | /// The fallible version of this method is [`Span::try_milliseconds`]. |
| 838 | /// |
| 839 | /// # Panics |
| 840 | /// |
| 841 | /// This panics when the number of milliseconds is too small or too big. |
| 842 | /// The minimum value is `-631,107,417,600,000`. |
| 843 | /// The maximum value is `631,107,417,600,000`. |
| 844 | #[inline ] |
| 845 | pub fn milliseconds<I: Into<i64>>(self, milliseconds: I) -> Span { |
| 846 | self.try_milliseconds(milliseconds) |
| 847 | .expect("value for milliseconds is out of bounds" ) |
| 848 | } |
| 849 | |
| 850 | /// Set the number of microseconds on this span. The value may be negative. |
| 851 | /// |
| 852 | /// The fallible version of this method is [`Span::try_microseconds`]. |
| 853 | /// |
| 854 | /// # Panics |
| 855 | /// |
| 856 | /// This panics when the number of microseconds is too small or too big. |
| 857 | /// The minimum value is `-631,107,417,600,000,000`. |
| 858 | /// The maximum value is `631,107,417,600,000,000`. |
| 859 | #[inline ] |
| 860 | pub fn microseconds<I: Into<i64>>(self, microseconds: I) -> Span { |
| 861 | self.try_microseconds(microseconds) |
| 862 | .expect("value for microseconds is out of bounds" ) |
| 863 | } |
| 864 | |
| 865 | /// Set the number of nanoseconds on this span. The value may be negative. |
| 866 | /// |
| 867 | /// Note that unlike all other units, a 64-bit integer number of |
| 868 | /// nanoseconds is not big enough to represent all possible spans between |
| 869 | /// all possible datetimes supported by Jiff. This means, for example, that |
| 870 | /// computing a span between two datetimes that are far enough apart _and_ |
| 871 | /// requesting a largest unit of [`Unit::Nanosecond`], might return an |
| 872 | /// error due to lack of precision. |
| 873 | /// |
| 874 | /// The fallible version of this method is [`Span::try_nanoseconds`]. |
| 875 | /// |
| 876 | /// # Panics |
| 877 | /// |
| 878 | /// This panics when the number of nanoseconds is too small or too big. |
| 879 | /// The minimum value is `-9,223,372,036,854,775,807`. |
| 880 | /// The maximum value is `9,223,372,036,854,775,807`. |
| 881 | #[inline ] |
| 882 | pub fn nanoseconds<I: Into<i64>>(self, nanoseconds: I) -> Span { |
| 883 | self.try_nanoseconds(nanoseconds) |
| 884 | .expect("value for nanoseconds is out of bounds" ) |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /// Fallible methods for setting units on a `Span`. |
| 889 | /// |
| 890 | /// These methods are useful when the span is made up of user provided values |
| 891 | /// that may not be in range. |
| 892 | impl Span { |
| 893 | /// Set the number of years on this span. The value may be negative. |
| 894 | /// |
| 895 | /// The panicking version of this method is [`Span::years`]. |
| 896 | /// |
| 897 | /// # Errors |
| 898 | /// |
| 899 | /// This returns an error when the number of years is too small or too big. |
| 900 | /// The minimum value is `-19,998`. |
| 901 | /// The maximum value is `19,998`. |
| 902 | #[inline ] |
| 903 | pub fn try_years<I: Into<i64>>(self, years: I) -> Result<Span, Error> { |
| 904 | let years = t::SpanYears::try_new("years" , years)?; |
| 905 | Ok(self.years_ranged(years)) |
| 906 | } |
| 907 | |
| 908 | /// Set the number of months on this span. The value may be negative. |
| 909 | /// |
| 910 | /// The panicking version of this method is [`Span::months`]. |
| 911 | /// |
| 912 | /// # Errors |
| 913 | /// |
| 914 | /// This returns an error when the number of months is too small or too big. |
| 915 | /// The minimum value is `-239,976`. |
| 916 | /// The maximum value is `239,976`. |
| 917 | #[inline ] |
| 918 | pub fn try_months<I: Into<i64>>(self, months: I) -> Result<Span, Error> { |
| 919 | type Range = ri64<{ t::SpanMonths::MIN }, { t::SpanMonths::MAX }>; |
| 920 | let months = Range::try_new("months" , months)?; |
| 921 | Ok(self.months_ranged(months.rinto())) |
| 922 | } |
| 923 | |
| 924 | /// Set the number of weeks on this span. The value may be negative. |
| 925 | /// |
| 926 | /// The panicking version of this method is [`Span::weeks`]. |
| 927 | /// |
| 928 | /// # Errors |
| 929 | /// |
| 930 | /// This returns an error when the number of weeks is too small or too big. |
| 931 | /// The minimum value is `-1,043,497`. |
| 932 | /// The maximum value is `1_043_497`. |
| 933 | #[inline ] |
| 934 | pub fn try_weeks<I: Into<i64>>(self, weeks: I) -> Result<Span, Error> { |
| 935 | type Range = ri64<{ t::SpanWeeks::MIN }, { t::SpanWeeks::MAX }>; |
| 936 | let weeks = Range::try_new("weeks" , weeks)?; |
| 937 | Ok(self.weeks_ranged(weeks.rinto())) |
| 938 | } |
| 939 | |
| 940 | /// Set the number of days on this span. The value may be negative. |
| 941 | /// |
| 942 | /// The panicking version of this method is [`Span::days`]. |
| 943 | /// |
| 944 | /// # Errors |
| 945 | /// |
| 946 | /// This returns an error when the number of days is too small or too big. |
| 947 | /// The minimum value is `-7,304,484`. |
| 948 | /// The maximum value is `7,304,484`. |
| 949 | #[inline ] |
| 950 | pub fn try_days<I: Into<i64>>(self, days: I) -> Result<Span, Error> { |
| 951 | type Range = ri64<{ t::SpanDays::MIN }, { t::SpanDays::MAX }>; |
| 952 | let days = Range::try_new("days" , days)?; |
| 953 | Ok(self.days_ranged(days.rinto())) |
| 954 | } |
| 955 | |
| 956 | /// Set the number of hours on this span. The value may be negative. |
| 957 | /// |
| 958 | /// The panicking version of this method is [`Span::hours`]. |
| 959 | /// |
| 960 | /// # Errors |
| 961 | /// |
| 962 | /// This returns an error when the number of hours is too small or too big. |
| 963 | /// The minimum value is `-175,307,616`. |
| 964 | /// The maximum value is `175,307,616`. |
| 965 | #[inline ] |
| 966 | pub fn try_hours<I: Into<i64>>(self, hours: I) -> Result<Span, Error> { |
| 967 | type Range = ri64<{ t::SpanHours::MIN }, { t::SpanHours::MAX }>; |
| 968 | let hours = Range::try_new("hours" , hours)?; |
| 969 | Ok(self.hours_ranged(hours.rinto())) |
| 970 | } |
| 971 | |
| 972 | /// Set the number of minutes on this span. The value may be negative. |
| 973 | /// |
| 974 | /// The panicking version of this method is [`Span::minutes`]. |
| 975 | /// |
| 976 | /// # Errors |
| 977 | /// |
| 978 | /// This returns an error when the number of minutes is too small or too big. |
| 979 | /// The minimum value is `-10,518,456,960`. |
| 980 | /// The maximum value is `10,518,456,960`. |
| 981 | #[inline ] |
| 982 | pub fn try_minutes<I: Into<i64>>(self, minutes: I) -> Result<Span, Error> { |
| 983 | type Range = ri64<{ t::SpanMinutes::MIN }, { t::SpanMinutes::MAX }>; |
| 984 | let minutes = Range::try_new("minutes" , minutes.into())?; |
| 985 | Ok(self.minutes_ranged(minutes)) |
| 986 | } |
| 987 | |
| 988 | /// Set the number of seconds on this span. The value may be negative. |
| 989 | /// |
| 990 | /// The panicking version of this method is [`Span::seconds`]. |
| 991 | /// |
| 992 | /// # Errors |
| 993 | /// |
| 994 | /// This returns an error when the number of seconds is too small or too big. |
| 995 | /// The minimum value is `-631,107,417,600`. |
| 996 | /// The maximum value is `631,107,417,600`. |
| 997 | #[inline ] |
| 998 | pub fn try_seconds<I: Into<i64>>(self, seconds: I) -> Result<Span, Error> { |
| 999 | type Range = ri64<{ t::SpanSeconds::MIN }, { t::SpanSeconds::MAX }>; |
| 1000 | let seconds = Range::try_new("seconds" , seconds.into())?; |
| 1001 | Ok(self.seconds_ranged(seconds)) |
| 1002 | } |
| 1003 | |
| 1004 | /// Set the number of milliseconds on this span. The value may be negative. |
| 1005 | /// |
| 1006 | /// The panicking version of this method is [`Span::milliseconds`]. |
| 1007 | /// |
| 1008 | /// # Errors |
| 1009 | /// |
| 1010 | /// This returns an error when the number of milliseconds is too small or |
| 1011 | /// too big. |
| 1012 | /// The minimum value is `-631,107,417,600,000`. |
| 1013 | /// The maximum value is `631,107,417,600,000`. |
| 1014 | #[inline ] |
| 1015 | pub fn try_milliseconds<I: Into<i64>>( |
| 1016 | self, |
| 1017 | milliseconds: I, |
| 1018 | ) -> Result<Span, Error> { |
| 1019 | type Range = |
| 1020 | ri64<{ t::SpanMilliseconds::MIN }, { t::SpanMilliseconds::MAX }>; |
| 1021 | let milliseconds = |
| 1022 | Range::try_new("milliseconds" , milliseconds.into())?; |
| 1023 | Ok(self.milliseconds_ranged(milliseconds)) |
| 1024 | } |
| 1025 | |
| 1026 | /// Set the number of microseconds on this span. The value may be negative. |
| 1027 | /// |
| 1028 | /// The panicking version of this method is [`Span::microseconds`]. |
| 1029 | /// |
| 1030 | /// # Errors |
| 1031 | /// |
| 1032 | /// This returns an error when the number of microseconds is too small or |
| 1033 | /// too big. |
| 1034 | /// The minimum value is `-631,107,417,600,000,000`. |
| 1035 | /// The maximum value is `631,107,417,600,000,000`. |
| 1036 | #[inline ] |
| 1037 | pub fn try_microseconds<I: Into<i64>>( |
| 1038 | self, |
| 1039 | microseconds: I, |
| 1040 | ) -> Result<Span, Error> { |
| 1041 | type Range = |
| 1042 | ri64<{ t::SpanMicroseconds::MIN }, { t::SpanMicroseconds::MAX }>; |
| 1043 | let microseconds = |
| 1044 | Range::try_new("microseconds" , microseconds.into())?; |
| 1045 | Ok(self.microseconds_ranged(microseconds)) |
| 1046 | } |
| 1047 | |
| 1048 | /// Set the number of nanoseconds on this span. The value may be negative. |
| 1049 | /// |
| 1050 | /// Note that unlike all other units, a 64-bit integer number of |
| 1051 | /// nanoseconds is not big enough to represent all possible spans between |
| 1052 | /// all possible datetimes supported by Jiff. This means, for example, that |
| 1053 | /// computing a span between two datetimes that are far enough apart _and_ |
| 1054 | /// requesting a largest unit of [`Unit::Nanosecond`], might return an |
| 1055 | /// error due to lack of precision. |
| 1056 | /// |
| 1057 | /// The panicking version of this method is [`Span::nanoseconds`]. |
| 1058 | /// |
| 1059 | /// # Errors |
| 1060 | /// |
| 1061 | /// This returns an error when the number of nanoseconds is too small or |
| 1062 | /// too big. |
| 1063 | /// The minimum value is `-9,223,372,036,854,775,807`. |
| 1064 | /// The maximum value is `9,223,372,036,854,775,807`. |
| 1065 | #[inline ] |
| 1066 | pub fn try_nanoseconds<I: Into<i64>>( |
| 1067 | self, |
| 1068 | nanoseconds: I, |
| 1069 | ) -> Result<Span, Error> { |
| 1070 | type Range = |
| 1071 | ri64<{ t::SpanNanoseconds::MIN }, { t::SpanNanoseconds::MAX }>; |
| 1072 | let nanoseconds = Range::try_new("nanoseconds" , nanoseconds.into())?; |
| 1073 | Ok(self.nanoseconds_ranged(nanoseconds)) |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /// Routines for accessing the individual units in a `Span`. |
| 1078 | impl Span { |
| 1079 | /// Returns the number of year units in this span. |
| 1080 | /// |
| 1081 | /// Note that this is not the same as the total number of years in the |
| 1082 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1083 | /// [`Span::total`]. |
| 1084 | /// |
| 1085 | /// # Example |
| 1086 | /// |
| 1087 | /// ``` |
| 1088 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 1089 | /// |
| 1090 | /// let span = 3.years().months(24); |
| 1091 | /// assert_eq!(3, span.get_years()); |
| 1092 | /// assert_eq!(5.0, span.total((Unit::Year, date(2024, 1, 1)))?); |
| 1093 | /// |
| 1094 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1095 | /// ``` |
| 1096 | #[inline ] |
| 1097 | pub fn get_years(&self) -> i16 { |
| 1098 | self.get_years_ranged().get() |
| 1099 | } |
| 1100 | |
| 1101 | /// Returns the number of month units in this span. |
| 1102 | /// |
| 1103 | /// Note that this is not the same as the total number of months in the |
| 1104 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1105 | /// [`Span::total`]. |
| 1106 | /// |
| 1107 | /// # Example |
| 1108 | /// |
| 1109 | /// ``` |
| 1110 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 1111 | /// |
| 1112 | /// let span = 7.months().days(59); |
| 1113 | /// assert_eq!(7, span.get_months()); |
| 1114 | /// assert_eq!(9.0, span.total((Unit::Month, date(2022, 6, 1)))?); |
| 1115 | /// |
| 1116 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1117 | /// ``` |
| 1118 | #[inline ] |
| 1119 | pub fn get_months(&self) -> i32 { |
| 1120 | self.get_months_ranged().get() |
| 1121 | } |
| 1122 | |
| 1123 | /// Returns the number of week units in this span. |
| 1124 | /// |
| 1125 | /// Note that this is not the same as the total number of weeks in the |
| 1126 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1127 | /// [`Span::total`]. |
| 1128 | /// |
| 1129 | /// # Example |
| 1130 | /// |
| 1131 | /// ``` |
| 1132 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 1133 | /// |
| 1134 | /// let span = 3.weeks().days(14); |
| 1135 | /// assert_eq!(3, span.get_weeks()); |
| 1136 | /// assert_eq!(5.0, span.total((Unit::Week, date(2024, 1, 1)))?); |
| 1137 | /// |
| 1138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1139 | /// ``` |
| 1140 | #[inline ] |
| 1141 | pub fn get_weeks(&self) -> i32 { |
| 1142 | self.get_weeks_ranged().get() |
| 1143 | } |
| 1144 | |
| 1145 | /// Returns the number of day units in this span. |
| 1146 | /// |
| 1147 | /// Note that this is not the same as the total number of days in the |
| 1148 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1149 | /// [`Span::total`]. |
| 1150 | /// |
| 1151 | /// # Example |
| 1152 | /// |
| 1153 | /// ``` |
| 1154 | /// use jiff::{ToSpan, Unit, Zoned}; |
| 1155 | /// |
| 1156 | /// let span = 3.days().hours(47); |
| 1157 | /// assert_eq!(3, span.get_days()); |
| 1158 | /// |
| 1159 | /// let zdt: Zoned = "2024-03-07[America/New_York]" .parse()?; |
| 1160 | /// assert_eq!(5.0, span.total((Unit::Day, &zdt))?); |
| 1161 | /// |
| 1162 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1163 | /// ``` |
| 1164 | #[inline ] |
| 1165 | pub fn get_days(&self) -> i32 { |
| 1166 | self.get_days_ranged().get() |
| 1167 | } |
| 1168 | |
| 1169 | /// Returns the number of hour units in this span. |
| 1170 | /// |
| 1171 | /// Note that this is not the same as the total number of hours in the |
| 1172 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1173 | /// [`Span::total`]. |
| 1174 | /// |
| 1175 | /// # Example |
| 1176 | /// |
| 1177 | /// ``` |
| 1178 | /// use jiff::{ToSpan, Unit}; |
| 1179 | /// |
| 1180 | /// let span = 3.hours().minutes(120); |
| 1181 | /// assert_eq!(3, span.get_hours()); |
| 1182 | /// assert_eq!(5.0, span.total(Unit::Hour)?); |
| 1183 | /// |
| 1184 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1185 | /// ``` |
| 1186 | #[inline ] |
| 1187 | pub fn get_hours(&self) -> i32 { |
| 1188 | self.get_hours_ranged().get() |
| 1189 | } |
| 1190 | |
| 1191 | /// Returns the number of minute units in this span. |
| 1192 | /// |
| 1193 | /// Note that this is not the same as the total number of minutes in the |
| 1194 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1195 | /// [`Span::total`]. |
| 1196 | /// |
| 1197 | /// # Example |
| 1198 | /// |
| 1199 | /// ``` |
| 1200 | /// use jiff::{ToSpan, Unit}; |
| 1201 | /// |
| 1202 | /// let span = 3.minutes().seconds(120); |
| 1203 | /// assert_eq!(3, span.get_minutes()); |
| 1204 | /// assert_eq!(5.0, span.total(Unit::Minute)?); |
| 1205 | /// |
| 1206 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1207 | /// ``` |
| 1208 | #[inline ] |
| 1209 | pub fn get_minutes(&self) -> i64 { |
| 1210 | self.get_minutes_ranged().get() |
| 1211 | } |
| 1212 | |
| 1213 | /// Returns the number of second units in this span. |
| 1214 | /// |
| 1215 | /// Note that this is not the same as the total number of seconds in the |
| 1216 | /// span. To get that, you'll need to use either [`Span::round`] or |
| 1217 | /// [`Span::total`]. |
| 1218 | /// |
| 1219 | /// # Example |
| 1220 | /// |
| 1221 | /// ``` |
| 1222 | /// use jiff::{ToSpan, Unit}; |
| 1223 | /// |
| 1224 | /// let span = 3.seconds().milliseconds(2_000); |
| 1225 | /// assert_eq!(3, span.get_seconds()); |
| 1226 | /// assert_eq!(5.0, span.total(Unit::Second)?); |
| 1227 | /// |
| 1228 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1229 | /// ``` |
| 1230 | #[inline ] |
| 1231 | pub fn get_seconds(&self) -> i64 { |
| 1232 | self.get_seconds_ranged().get() |
| 1233 | } |
| 1234 | |
| 1235 | /// Returns the number of millisecond units in this span. |
| 1236 | /// |
| 1237 | /// Note that this is not the same as the total number of milliseconds in |
| 1238 | /// the span. To get that, you'll need to use either [`Span::round`] or |
| 1239 | /// [`Span::total`]. |
| 1240 | /// |
| 1241 | /// # Example |
| 1242 | /// |
| 1243 | /// ``` |
| 1244 | /// use jiff::{ToSpan, Unit}; |
| 1245 | /// |
| 1246 | /// let span = 3.milliseconds().microseconds(2_000); |
| 1247 | /// assert_eq!(3, span.get_milliseconds()); |
| 1248 | /// assert_eq!(5.0, span.total(Unit::Millisecond)?); |
| 1249 | /// |
| 1250 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1251 | /// ``` |
| 1252 | #[inline ] |
| 1253 | pub fn get_milliseconds(&self) -> i64 { |
| 1254 | self.get_milliseconds_ranged().get() |
| 1255 | } |
| 1256 | |
| 1257 | /// Returns the number of microsecond units in this span. |
| 1258 | /// |
| 1259 | /// Note that this is not the same as the total number of microseconds in |
| 1260 | /// the span. To get that, you'll need to use either [`Span::round`] or |
| 1261 | /// [`Span::total`]. |
| 1262 | /// |
| 1263 | /// # Example |
| 1264 | /// |
| 1265 | /// ``` |
| 1266 | /// use jiff::{ToSpan, Unit}; |
| 1267 | /// |
| 1268 | /// let span = 3.microseconds().nanoseconds(2_000); |
| 1269 | /// assert_eq!(3, span.get_microseconds()); |
| 1270 | /// assert_eq!(5.0, span.total(Unit::Microsecond)?); |
| 1271 | /// |
| 1272 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1273 | /// ``` |
| 1274 | #[inline ] |
| 1275 | pub fn get_microseconds(&self) -> i64 { |
| 1276 | self.get_microseconds_ranged().get() |
| 1277 | } |
| 1278 | |
| 1279 | /// Returns the number of nanosecond units in this span. |
| 1280 | /// |
| 1281 | /// Note that this is not the same as the total number of nanoseconds in |
| 1282 | /// the span. To get that, you'll need to use either [`Span::round`] or |
| 1283 | /// [`Span::total`]. |
| 1284 | /// |
| 1285 | /// # Example |
| 1286 | /// |
| 1287 | /// ``` |
| 1288 | /// use jiff::{ToSpan, Unit}; |
| 1289 | /// |
| 1290 | /// let span = 3.microseconds().nanoseconds(2_000); |
| 1291 | /// assert_eq!(2_000, span.get_nanoseconds()); |
| 1292 | /// assert_eq!(5_000.0, span.total(Unit::Nanosecond)?); |
| 1293 | /// |
| 1294 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1295 | /// ``` |
| 1296 | #[inline ] |
| 1297 | pub fn get_nanoseconds(&self) -> i64 { |
| 1298 | self.get_nanoseconds_ranged().get() |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | /// Routines for manipulating, comparing and inspecting `Span` values. |
| 1303 | impl Span { |
| 1304 | /// Returns a new span that is the absolute value of this span. |
| 1305 | /// |
| 1306 | /// If this span is zero or positive, then this is a no-op. |
| 1307 | /// |
| 1308 | /// # Example |
| 1309 | /// |
| 1310 | /// ``` |
| 1311 | /// use jiff::ToSpan; |
| 1312 | /// |
| 1313 | /// let span = -100.seconds(); |
| 1314 | /// assert_eq!(span.to_string(), "-PT100S" ); |
| 1315 | /// let span = span.abs(); |
| 1316 | /// assert_eq!(span.to_string(), "PT100S" ); |
| 1317 | /// ``` |
| 1318 | #[inline ] |
| 1319 | pub fn abs(self) -> Span { |
| 1320 | if self.is_zero() { |
| 1321 | return self; |
| 1322 | } |
| 1323 | Span { sign: ri8::N::<1>(), ..self } |
| 1324 | } |
| 1325 | |
| 1326 | /// Returns a new span that negates this span. |
| 1327 | /// |
| 1328 | /// If this span is zero, then this is a no-op. If this span is negative, |
| 1329 | /// then the returned span is positive. If this span is positive, then |
| 1330 | /// the returned span is negative. |
| 1331 | /// |
| 1332 | /// # Example |
| 1333 | /// |
| 1334 | /// ``` |
| 1335 | /// use jiff::ToSpan; |
| 1336 | /// |
| 1337 | /// let span = 100.days(); |
| 1338 | /// assert_eq!(span.to_string(), "P100D" ); |
| 1339 | /// let span = span.negate(); |
| 1340 | /// assert_eq!(span.to_string(), "-P100D" ); |
| 1341 | /// ``` |
| 1342 | /// |
| 1343 | /// # Example: available via the negation operator |
| 1344 | /// |
| 1345 | /// This routine can also be used via `-`: |
| 1346 | /// |
| 1347 | /// ``` |
| 1348 | /// use jiff::ToSpan; |
| 1349 | /// |
| 1350 | /// let span = 100.days(); |
| 1351 | /// assert_eq!(span.to_string(), "P100D" ); |
| 1352 | /// let span = -span; |
| 1353 | /// assert_eq!(span.to_string(), "-P100D" ); |
| 1354 | /// ``` |
| 1355 | #[inline ] |
| 1356 | pub fn negate(self) -> Span { |
| 1357 | Span { sign: -self.sign, ..self } |
| 1358 | } |
| 1359 | |
| 1360 | /// Returns the "sign number" or "signum" of this span. |
| 1361 | /// |
| 1362 | /// The number returned is `-1` when this span is negative, |
| 1363 | /// `0` when this span is zero and `1` when this span is positive. |
| 1364 | #[inline ] |
| 1365 | pub fn signum(self) -> i8 { |
| 1366 | self.sign.signum().get() |
| 1367 | } |
| 1368 | |
| 1369 | /// Returns true if and only if this span is positive. |
| 1370 | /// |
| 1371 | /// This returns false when the span is zero or negative. |
| 1372 | /// |
| 1373 | /// # Example |
| 1374 | /// |
| 1375 | /// ``` |
| 1376 | /// use jiff::ToSpan; |
| 1377 | /// |
| 1378 | /// assert!(!2.months().is_negative()); |
| 1379 | /// assert!((-2.months()).is_negative()); |
| 1380 | /// ``` |
| 1381 | #[inline ] |
| 1382 | pub fn is_positive(self) -> bool { |
| 1383 | self.get_sign_ranged() > C(0) |
| 1384 | } |
| 1385 | |
| 1386 | /// Returns true if and only if this span is negative. |
| 1387 | /// |
| 1388 | /// This returns false when the span is zero or positive. |
| 1389 | /// |
| 1390 | /// # Example |
| 1391 | /// |
| 1392 | /// ``` |
| 1393 | /// use jiff::ToSpan; |
| 1394 | /// |
| 1395 | /// assert!(!2.months().is_negative()); |
| 1396 | /// assert!((-2.months()).is_negative()); |
| 1397 | /// ``` |
| 1398 | #[inline ] |
| 1399 | pub fn is_negative(self) -> bool { |
| 1400 | self.get_sign_ranged() < C(0) |
| 1401 | } |
| 1402 | |
| 1403 | /// Returns true if and only if every field in this span is set to `0`. |
| 1404 | /// |
| 1405 | /// # Example |
| 1406 | /// |
| 1407 | /// ``` |
| 1408 | /// use jiff::{Span, ToSpan}; |
| 1409 | /// |
| 1410 | /// assert!(Span::new().is_zero()); |
| 1411 | /// assert!(Span::default().is_zero()); |
| 1412 | /// assert!(0.seconds().is_zero()); |
| 1413 | /// assert!(!0.seconds().seconds(1).is_zero()); |
| 1414 | /// assert!(0.seconds().seconds(1).seconds(0).is_zero()); |
| 1415 | /// ``` |
| 1416 | #[inline ] |
| 1417 | pub fn is_zero(self) -> bool { |
| 1418 | self.sign == C(0) |
| 1419 | } |
| 1420 | |
| 1421 | /// Returns this `Span` as a value with a type that implements the |
| 1422 | /// `Hash`, `Eq` and `PartialEq` traits in a fieldwise fashion. |
| 1423 | /// |
| 1424 | /// A `SpanFieldwise` is meant to make it easy to compare two spans in a |
| 1425 | /// "dumb" way based purely on its unit values. This is distinct from |
| 1426 | /// something like [`Span::compare`] that performs a comparison on the |
| 1427 | /// actual elapsed time of two spans. |
| 1428 | /// |
| 1429 | /// It is generally discouraged to use `SpanFieldwise` since spans that |
| 1430 | /// represent an equivalent elapsed amount of time may compare unequal. |
| 1431 | /// However, in some cases, it is useful to be able to assert precise |
| 1432 | /// field values. For example, Jiff itself makes heavy use of fieldwise |
| 1433 | /// comparisons for tests. |
| 1434 | /// |
| 1435 | /// # Example: the difference between `SpanFieldwise` and `Span::compare` |
| 1436 | /// |
| 1437 | /// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be |
| 1438 | /// distinct values, but `Span::compare` considers them to be equivalent: |
| 1439 | /// |
| 1440 | /// ``` |
| 1441 | /// use std::cmp::Ordering; |
| 1442 | /// use jiff::ToSpan; |
| 1443 | /// |
| 1444 | /// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise()); |
| 1445 | /// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal); |
| 1446 | /// |
| 1447 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1448 | /// ``` |
| 1449 | #[inline ] |
| 1450 | pub fn fieldwise(self) -> SpanFieldwise { |
| 1451 | SpanFieldwise(self) |
| 1452 | } |
| 1453 | |
| 1454 | /// Multiplies each field in this span by a given integer. |
| 1455 | /// |
| 1456 | /// If this would cause any individual field in this span to overflow, then |
| 1457 | /// this returns an error. |
| 1458 | /// |
| 1459 | /// # Example |
| 1460 | /// |
| 1461 | /// ``` |
| 1462 | /// use jiff::ToSpan; |
| 1463 | /// |
| 1464 | /// let span = 4.days().seconds(8); |
| 1465 | /// assert_eq!(span.checked_mul(2)?, 8.days().seconds(16).fieldwise()); |
| 1466 | /// assert_eq!(span.checked_mul(-3)?, -12.days().seconds(24).fieldwise()); |
| 1467 | /// // Notice that no re-balancing is done. It's "just" multiplication. |
| 1468 | /// assert_eq!(span.checked_mul(10)?, 40.days().seconds(80).fieldwise()); |
| 1469 | /// |
| 1470 | /// let span = 10_000.years(); |
| 1471 | /// // too big! |
| 1472 | /// assert!(span.checked_mul(3).is_err()); |
| 1473 | /// |
| 1474 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1475 | /// ``` |
| 1476 | /// |
| 1477 | /// # Example: available via the multiplication operator |
| 1478 | /// |
| 1479 | /// This method can be used via the `*` operator. Note though that a panic |
| 1480 | /// happens on overflow. |
| 1481 | /// |
| 1482 | /// ``` |
| 1483 | /// use jiff::ToSpan; |
| 1484 | /// |
| 1485 | /// let span = 4.days().seconds(8); |
| 1486 | /// assert_eq!(span * 2, 8.days().seconds(16).fieldwise()); |
| 1487 | /// assert_eq!(2 * span, 8.days().seconds(16).fieldwise()); |
| 1488 | /// assert_eq!(span * -3, -12.days().seconds(24).fieldwise()); |
| 1489 | /// assert_eq!(-3 * span, -12.days().seconds(24).fieldwise()); |
| 1490 | /// |
| 1491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1492 | /// ``` |
| 1493 | #[inline ] |
| 1494 | pub fn checked_mul(mut self, rhs: i64) -> Result<Span, Error> { |
| 1495 | if rhs == 0 { |
| 1496 | return Ok(Span::default()); |
| 1497 | } else if rhs == 1 { |
| 1498 | return Ok(self); |
| 1499 | } |
| 1500 | self.sign *= t::Sign::try_new("span factor" , rhs.signum()) |
| 1501 | .expect("signum fits in ri8" ); |
| 1502 | // This is all somewhat odd, but since each of our span fields uses |
| 1503 | // a different primitive representation and range of allowed values, |
| 1504 | // we only seek to perform multiplications when they will actually |
| 1505 | // do something. Otherwise, we risk multiplying the mins/maxs of a |
| 1506 | // ranged integer and causing a spurious panic. Basically, the idea |
| 1507 | // here is the allowable values for our multiple depend on what we're |
| 1508 | // actually going to multiply with it. If our span has non-zero years, |
| 1509 | // then our multiple can't exceed the bounds of `SpanYears`, otherwise |
| 1510 | // it is guaranteed to overflow. |
| 1511 | if self.years != C(0) { |
| 1512 | let rhs = t::SpanYears::try_new("years multiple" , rhs)?; |
| 1513 | self.years = self.years.try_checked_mul("years" , rhs.abs())?; |
| 1514 | } |
| 1515 | if self.months != C(0) { |
| 1516 | let rhs = t::SpanMonths::try_new("months multiple" , rhs)?; |
| 1517 | self.months = self.months.try_checked_mul("months" , rhs.abs())?; |
| 1518 | } |
| 1519 | if self.weeks != C(0) { |
| 1520 | let rhs = t::SpanWeeks::try_new("weeks multiple" , rhs)?; |
| 1521 | self.weeks = self.weeks.try_checked_mul("weeks" , rhs.abs())?; |
| 1522 | } |
| 1523 | if self.days != C(0) { |
| 1524 | let rhs = t::SpanDays::try_new("days multiple" , rhs)?; |
| 1525 | self.days = self.days.try_checked_mul("days" , rhs.abs())?; |
| 1526 | } |
| 1527 | if self.hours != C(0) { |
| 1528 | let rhs = t::SpanHours::try_new("hours multiple" , rhs)?; |
| 1529 | self.hours = self.hours.try_checked_mul("hours" , rhs.abs())?; |
| 1530 | } |
| 1531 | if self.minutes != C(0) { |
| 1532 | let rhs = t::SpanMinutes::try_new("minutes multiple" , rhs)?; |
| 1533 | self.minutes = |
| 1534 | self.minutes.try_checked_mul("minutes" , rhs.abs())?; |
| 1535 | } |
| 1536 | if self.seconds != C(0) { |
| 1537 | let rhs = t::SpanSeconds::try_new("seconds multiple" , rhs)?; |
| 1538 | self.seconds = |
| 1539 | self.seconds.try_checked_mul("seconds" , rhs.abs())?; |
| 1540 | } |
| 1541 | if self.milliseconds != C(0) { |
| 1542 | let rhs = |
| 1543 | t::SpanMilliseconds::try_new("milliseconds multiple" , rhs)?; |
| 1544 | self.milliseconds = self |
| 1545 | .milliseconds |
| 1546 | .try_checked_mul("milliseconds" , rhs.abs())?; |
| 1547 | } |
| 1548 | if self.microseconds != C(0) { |
| 1549 | let rhs = |
| 1550 | t::SpanMicroseconds::try_new("microseconds multiple" , rhs)?; |
| 1551 | self.microseconds = self |
| 1552 | .microseconds |
| 1553 | .try_checked_mul("microseconds" , rhs.abs())?; |
| 1554 | } |
| 1555 | if self.nanoseconds != C(0) { |
| 1556 | let rhs = |
| 1557 | t::SpanNanoseconds::try_new("nanoseconds multiple" , rhs)?; |
| 1558 | self.nanoseconds = |
| 1559 | self.nanoseconds.try_checked_mul("nanoseconds" , rhs.abs())?; |
| 1560 | } |
| 1561 | // N.B. We don't need to update `self.units` here since it shouldn't |
| 1562 | // change. The only way it could is if a unit goes from zero to |
| 1563 | // non-zero (which can't happen, because multiplication by zero is |
| 1564 | // always zero), or if a unit goes from non-zero to zero. That also |
| 1565 | // can't happen because we handle the case of the factor being zero |
| 1566 | // specially above, and it returns a `Span` will all units zero |
| 1567 | // correctly. |
| 1568 | Ok(self) |
| 1569 | } |
| 1570 | |
| 1571 | /// Adds a span to this one and returns the sum as a new span. |
| 1572 | /// |
| 1573 | /// When adding a span with units greater than hours, callers must provide |
| 1574 | /// a relative datetime to anchor the spans. |
| 1575 | /// |
| 1576 | /// Arithmetic proceeds as specified in [RFC 5545]. Bigger units are |
| 1577 | /// added together before smaller units. |
| 1578 | /// |
| 1579 | /// This routine accepts anything that implements `Into<SpanArithmetic>`. |
| 1580 | /// There are some trait implementations that make using this routine |
| 1581 | /// ergonomic: |
| 1582 | /// |
| 1583 | /// * `From<Span> for SpanArithmetic` adds the given span to this one. |
| 1584 | /// * `From<(Span, civil::Date)> for SpanArithmetic` adds the given |
| 1585 | /// span to this one relative to the given date. There are also `From` |
| 1586 | /// implementations for `civil::DateTime` and `Zoned`. |
| 1587 | /// |
| 1588 | /// This also works with different duration types, such as |
| 1589 | /// [`SignedDuration`] and [`std::time::Duration`], via additional trait |
| 1590 | /// implementations: |
| 1591 | /// |
| 1592 | /// * `From<SignedDuration> for SpanArithmetic` adds the given duration to |
| 1593 | /// this one. |
| 1594 | /// * `From<(SignedDuration, civil::Date)> for SpanArithmetic` adds the |
| 1595 | /// given duration to this one relative to the given date. There are also |
| 1596 | /// `From` implementations for `civil::DateTime` and `Zoned`. |
| 1597 | /// |
| 1598 | /// And similarly for `std::time::Duration`. |
| 1599 | /// |
| 1600 | /// Adding a negative span is equivalent to subtracting its absolute value. |
| 1601 | /// |
| 1602 | /// The largest non-zero unit in the span returned is at most the largest |
| 1603 | /// non-zero unit among the two spans being added. For an absolute |
| 1604 | /// duration, its "largest" unit is considered to be nanoseconds. |
| 1605 | /// |
| 1606 | /// The sum returned is automatically re-balanced so that the span is not |
| 1607 | /// "bottom heavy." |
| 1608 | /// |
| 1609 | /// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545 |
| 1610 | /// |
| 1611 | /// # Errors |
| 1612 | /// |
| 1613 | /// This returns an error when adding the two spans would overflow any |
| 1614 | /// individual field of a span. This will also return an error if either |
| 1615 | /// of the spans have non-zero units of days or greater and no relative |
| 1616 | /// reference time is provided. |
| 1617 | /// |
| 1618 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
| 1619 | /// marker instead of providing a relative civil date to indicate that |
| 1620 | /// all days should be 24 hours long. This also results in treating all |
| 1621 | /// weeks as seven 24 hour days (168 hours). |
| 1622 | /// |
| 1623 | /// # Example |
| 1624 | /// |
| 1625 | /// ``` |
| 1626 | /// use jiff::ToSpan; |
| 1627 | /// |
| 1628 | /// assert_eq!( |
| 1629 | /// 1.hour().checked_add(30.minutes())?, |
| 1630 | /// 1.hour().minutes(30).fieldwise(), |
| 1631 | /// ); |
| 1632 | /// |
| 1633 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1634 | /// ``` |
| 1635 | /// |
| 1636 | /// # Example: re-balancing |
| 1637 | /// |
| 1638 | /// This example shows how units are automatically rebalanced into bigger |
| 1639 | /// units when appropriate. |
| 1640 | /// |
| 1641 | /// ``` |
| 1642 | /// use jiff::ToSpan; |
| 1643 | /// |
| 1644 | /// let span1 = 2.hours().minutes(59); |
| 1645 | /// let span2 = 2.minutes(); |
| 1646 | /// assert_eq!(span1.checked_add(span2)?, 3.hours().minutes(1).fieldwise()); |
| 1647 | /// |
| 1648 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1649 | /// ``` |
| 1650 | /// |
| 1651 | /// # Example: days are not assumed to be 24 hours by default |
| 1652 | /// |
| 1653 | /// When dealing with units involving days or weeks, one must either |
| 1654 | /// provide a relative datetime (shown in the following examples) or opt |
| 1655 | /// into invariant 24 hour days: |
| 1656 | /// |
| 1657 | /// ``` |
| 1658 | /// use jiff::{SpanRelativeTo, ToSpan}; |
| 1659 | /// |
| 1660 | /// let span1 = 2.days().hours(23); |
| 1661 | /// let span2 = 2.hours(); |
| 1662 | /// assert_eq!( |
| 1663 | /// span1.checked_add((span2, SpanRelativeTo::days_are_24_hours()))?, |
| 1664 | /// 3.days().hours(1).fieldwise(), |
| 1665 | /// ); |
| 1666 | /// |
| 1667 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1668 | /// ``` |
| 1669 | /// |
| 1670 | /// # Example: adding spans with calendar units |
| 1671 | /// |
| 1672 | /// If you try to add two spans with calendar units without specifying a |
| 1673 | /// relative datetime, you'll get an error: |
| 1674 | /// |
| 1675 | /// ``` |
| 1676 | /// use jiff::ToSpan; |
| 1677 | /// |
| 1678 | /// let span1 = 1.month().days(15); |
| 1679 | /// let span2 = 15.days(); |
| 1680 | /// assert!(span1.checked_add(span2).is_err()); |
| 1681 | /// ``` |
| 1682 | /// |
| 1683 | /// A relative datetime is needed because calendar spans may correspond to |
| 1684 | /// different actual durations depending on where the span begins: |
| 1685 | /// |
| 1686 | /// ``` |
| 1687 | /// use jiff::{civil::date, ToSpan}; |
| 1688 | /// |
| 1689 | /// let span1 = 1.month().days(15); |
| 1690 | /// let span2 = 15.days(); |
| 1691 | /// // 1 month from March 1 is 31 days... |
| 1692 | /// assert_eq!( |
| 1693 | /// span1.checked_add((span2, date(2008, 3, 1)))?, |
| 1694 | /// 2.months().fieldwise(), |
| 1695 | /// ); |
| 1696 | /// // ... but 1 month from April 1 is 30 days! |
| 1697 | /// assert_eq!( |
| 1698 | /// span1.checked_add((span2, date(2008, 4, 1)))?, |
| 1699 | /// 1.month().days(30).fieldwise(), |
| 1700 | /// ); |
| 1701 | /// |
| 1702 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1703 | /// ``` |
| 1704 | /// |
| 1705 | /// # Example: error on overflow |
| 1706 | /// |
| 1707 | /// Adding two spans can overflow, and this will result in an error: |
| 1708 | /// |
| 1709 | /// ``` |
| 1710 | /// use jiff::ToSpan; |
| 1711 | /// |
| 1712 | /// assert!(19_998.years().checked_add(1.year()).is_err()); |
| 1713 | /// ``` |
| 1714 | /// |
| 1715 | /// # Example: adding an absolute duration to a span |
| 1716 | /// |
| 1717 | /// This shows how one isn't limited to just adding two spans together. |
| 1718 | /// One can also add absolute durations to a span. |
| 1719 | /// |
| 1720 | /// ``` |
| 1721 | /// use std::time::Duration; |
| 1722 | /// |
| 1723 | /// use jiff::{SignedDuration, ToSpan}; |
| 1724 | /// |
| 1725 | /// assert_eq!( |
| 1726 | /// 1.hour().checked_add(SignedDuration::from_mins(30))?, |
| 1727 | /// 1.hour().minutes(30).fieldwise(), |
| 1728 | /// ); |
| 1729 | /// assert_eq!( |
| 1730 | /// 1.hour().checked_add(Duration::from_secs(30 * 60))?, |
| 1731 | /// 1.hour().minutes(30).fieldwise(), |
| 1732 | /// ); |
| 1733 | /// |
| 1734 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1735 | /// ``` |
| 1736 | /// |
| 1737 | /// Note that even when adding an absolute duration, if the span contains |
| 1738 | /// non-uniform units, you still need to provide a relative datetime: |
| 1739 | /// |
| 1740 | /// ``` |
| 1741 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
| 1742 | /// |
| 1743 | /// // Might be 1 month or less than 1 month! |
| 1744 | /// let dur = SignedDuration::from_hours(30 * 24); |
| 1745 | /// // No relative datetime provided even when the span |
| 1746 | /// // contains non-uniform units results in an error. |
| 1747 | /// assert!(1.month().checked_add(dur).is_err()); |
| 1748 | /// // In this case, 30 days is one month (April). |
| 1749 | /// assert_eq!( |
| 1750 | /// 1.month().checked_add((dur, date(2024, 3, 1)))?, |
| 1751 | /// 2.months().fieldwise(), |
| 1752 | /// ); |
| 1753 | /// // In this case, 30 days is less than one month (May). |
| 1754 | /// assert_eq!( |
| 1755 | /// 1.month().checked_add((dur, date(2024, 4, 1)))?, |
| 1756 | /// 1.month().days(30).fieldwise(), |
| 1757 | /// ); |
| 1758 | /// |
| 1759 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1760 | /// ``` |
| 1761 | #[inline ] |
| 1762 | pub fn checked_add<'a, A: Into<SpanArithmetic<'a>>>( |
| 1763 | &self, |
| 1764 | options: A, |
| 1765 | ) -> Result<Span, Error> { |
| 1766 | let options: SpanArithmetic<'_> = options.into(); |
| 1767 | options.checked_add(*self) |
| 1768 | } |
| 1769 | |
| 1770 | #[inline ] |
| 1771 | fn checked_add_span<'a>( |
| 1772 | &self, |
| 1773 | relative: Option<SpanRelativeTo<'a>>, |
| 1774 | span: &Span, |
| 1775 | ) -> Result<Span, Error> { |
| 1776 | let (span1, span2) = (*self, *span); |
| 1777 | let unit = span1.largest_unit().max(span2.largest_unit()); |
| 1778 | let start = match relative { |
| 1779 | Some(r) => match r.to_relative(unit)? { |
| 1780 | None => return span1.checked_add_invariant(unit, &span2), |
| 1781 | Some(r) => r, |
| 1782 | }, |
| 1783 | None => { |
| 1784 | requires_relative_date_err(unit)?; |
| 1785 | return span1.checked_add_invariant(unit, &span2); |
| 1786 | } |
| 1787 | }; |
| 1788 | let mid = start.checked_add(span1)?; |
| 1789 | let end = mid.checked_add(span2)?; |
| 1790 | start.until(unit, &end) |
| 1791 | } |
| 1792 | |
| 1793 | #[inline ] |
| 1794 | fn checked_add_duration<'a>( |
| 1795 | &self, |
| 1796 | relative: Option<SpanRelativeTo<'a>>, |
| 1797 | duration: SignedDuration, |
| 1798 | ) -> Result<Span, Error> { |
| 1799 | let (span1, dur2) = (*self, duration); |
| 1800 | let unit = span1.largest_unit(); |
| 1801 | let start = match relative { |
| 1802 | Some(r) => match r.to_relative(unit)? { |
| 1803 | None => { |
| 1804 | return span1.checked_add_invariant_duration(unit, dur2) |
| 1805 | } |
| 1806 | Some(r) => r, |
| 1807 | }, |
| 1808 | None => { |
| 1809 | requires_relative_date_err(unit)?; |
| 1810 | return span1.checked_add_invariant_duration(unit, dur2); |
| 1811 | } |
| 1812 | }; |
| 1813 | let mid = start.checked_add(span1)?; |
| 1814 | let end = mid.checked_add_duration(dur2)?; |
| 1815 | start.until(unit, &end) |
| 1816 | } |
| 1817 | |
| 1818 | /// Like `checked_add`, but only applies for invariant units. That is, |
| 1819 | /// when *both* spans whose non-zero units are all hours or smaller |
| 1820 | /// (or weeks or smaller with the "days are 24 hours" marker). |
| 1821 | #[inline ] |
| 1822 | fn checked_add_invariant( |
| 1823 | &self, |
| 1824 | unit: Unit, |
| 1825 | span: &Span, |
| 1826 | ) -> Result<Span, Error> { |
| 1827 | assert!(unit <= Unit::Week); |
| 1828 | let nanos1 = self.to_invariant_nanoseconds(); |
| 1829 | let nanos2 = span.to_invariant_nanoseconds(); |
| 1830 | let sum = nanos1 + nanos2; |
| 1831 | Span::from_invariant_nanoseconds(unit, sum) |
| 1832 | } |
| 1833 | |
| 1834 | /// Like `checked_add_invariant`, but adds an absolute duration. |
| 1835 | #[inline ] |
| 1836 | fn checked_add_invariant_duration( |
| 1837 | &self, |
| 1838 | unit: Unit, |
| 1839 | duration: SignedDuration, |
| 1840 | ) -> Result<Span, Error> { |
| 1841 | assert!(unit <= Unit::Week); |
| 1842 | let nanos1 = self.to_invariant_nanoseconds(); |
| 1843 | let nanos2 = t::NoUnits96::new_unchecked(duration.as_nanos()); |
| 1844 | let sum = nanos1 + nanos2; |
| 1845 | Span::from_invariant_nanoseconds(unit, sum) |
| 1846 | } |
| 1847 | |
| 1848 | /// This routine is identical to [`Span::checked_add`] with the given |
| 1849 | /// duration negated. |
| 1850 | /// |
| 1851 | /// # Errors |
| 1852 | /// |
| 1853 | /// This has the same error conditions as [`Span::checked_add`]. |
| 1854 | /// |
| 1855 | /// # Example |
| 1856 | /// |
| 1857 | /// ``` |
| 1858 | /// use std::time::Duration; |
| 1859 | /// |
| 1860 | /// use jiff::{SignedDuration, ToSpan}; |
| 1861 | /// |
| 1862 | /// assert_eq!( |
| 1863 | /// 1.hour().checked_sub(30.minutes())?, |
| 1864 | /// 30.minutes().fieldwise(), |
| 1865 | /// ); |
| 1866 | /// assert_eq!( |
| 1867 | /// 1.hour().checked_sub(SignedDuration::from_mins(30))?, |
| 1868 | /// 30.minutes().fieldwise(), |
| 1869 | /// ); |
| 1870 | /// assert_eq!( |
| 1871 | /// 1.hour().checked_sub(Duration::from_secs(30 * 60))?, |
| 1872 | /// 30.minutes().fieldwise(), |
| 1873 | /// ); |
| 1874 | /// |
| 1875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1876 | /// ``` |
| 1877 | #[inline ] |
| 1878 | pub fn checked_sub<'a, A: Into<SpanArithmetic<'a>>>( |
| 1879 | &self, |
| 1880 | options: A, |
| 1881 | ) -> Result<Span, Error> { |
| 1882 | let mut options: SpanArithmetic<'_> = options.into(); |
| 1883 | options.duration = options.duration.checked_neg()?; |
| 1884 | options.checked_add(*self) |
| 1885 | } |
| 1886 | |
| 1887 | /// Compares two spans in terms of how long they are. Negative spans are |
| 1888 | /// considered shorter than the zero span. |
| 1889 | /// |
| 1890 | /// Two spans compare equal when they correspond to the same duration |
| 1891 | /// of time, even if their individual fields are different. This is in |
| 1892 | /// contrast to the `Eq` trait implementation of `Span`, which performs |
| 1893 | /// exact field-wise comparisons. This split exists because the comparison |
| 1894 | /// provided by this routine is "heavy" in that it may need to do |
| 1895 | /// datetime arithmetic to return an answer. In contrast, the `Eq` trait |
| 1896 | /// implementation is "cheap." |
| 1897 | /// |
| 1898 | /// This routine accepts anything that implements `Into<SpanCompare>`. |
| 1899 | /// There are some trait implementations that make using this routine |
| 1900 | /// ergonomic: |
| 1901 | /// |
| 1902 | /// * `From<Span> for SpanCompare` compares the given span to this one. |
| 1903 | /// * `From<(Span, civil::Date)> for SpanArithmetic` compares the given |
| 1904 | /// span to this one relative to the given date. There are also `From` |
| 1905 | /// implementations for `civil::DateTime` and `Zoned`. |
| 1906 | /// |
| 1907 | /// # Errors |
| 1908 | /// |
| 1909 | /// If either of the spans being compared have a non-zero calendar unit |
| 1910 | /// (units bigger than hours), then this routine requires a relative |
| 1911 | /// datetime. If one is not provided, then an error is returned. |
| 1912 | /// |
| 1913 | /// An error can also occur when adding either span to the relative |
| 1914 | /// datetime given results in overflow. |
| 1915 | /// |
| 1916 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
| 1917 | /// marker instead of providing a relative civil date to indicate that |
| 1918 | /// all days should be 24 hours long. This also results in treating all |
| 1919 | /// weeks as seven 24 hour days (168 hours). |
| 1920 | /// |
| 1921 | /// # Example |
| 1922 | /// |
| 1923 | /// ``` |
| 1924 | /// use jiff::ToSpan; |
| 1925 | /// |
| 1926 | /// let span1 = 3.hours(); |
| 1927 | /// let span2 = 180.minutes(); |
| 1928 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal); |
| 1929 | /// // But notice that the two spans are not equal via `Eq`: |
| 1930 | /// assert_ne!(span1.fieldwise(), span2.fieldwise()); |
| 1931 | /// |
| 1932 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1933 | /// ``` |
| 1934 | /// |
| 1935 | /// # Example: negative spans are less than zero |
| 1936 | /// |
| 1937 | /// ``` |
| 1938 | /// use jiff::ToSpan; |
| 1939 | /// |
| 1940 | /// let span1 = -1.second(); |
| 1941 | /// let span2 = 0.seconds(); |
| 1942 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Less); |
| 1943 | /// |
| 1944 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1945 | /// ``` |
| 1946 | /// |
| 1947 | /// # Example: comparisons take DST into account |
| 1948 | /// |
| 1949 | /// When a relative datetime is time zone aware, then DST is taken into |
| 1950 | /// account when comparing spans: |
| 1951 | /// |
| 1952 | /// ``` |
| 1953 | /// use jiff::{civil, ToSpan, Zoned}; |
| 1954 | /// |
| 1955 | /// let span1 = 79.hours().minutes(10); |
| 1956 | /// let span2 = 3.days().hours(7).seconds(630); |
| 1957 | /// let span3 = 3.days().hours(6).minutes(50); |
| 1958 | /// |
| 1959 | /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]" .parse()?; |
| 1960 | /// let mut spans = [span1, span2, span3]; |
| 1961 | /// spans.sort_by(|s1, s2| s1.compare((s2, &relative)).unwrap()); |
| 1962 | /// assert_eq!( |
| 1963 | /// spans.map(|sp| sp.fieldwise()), |
| 1964 | /// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()], |
| 1965 | /// ); |
| 1966 | /// |
| 1967 | /// // Compare with the result of sorting without taking DST into account. |
| 1968 | /// // We can that by providing a relative civil date: |
| 1969 | /// let relative = civil::date(2020, 11, 1); |
| 1970 | /// spans.sort_by(|s1, s2| s1.compare((s2, relative)).unwrap()); |
| 1971 | /// assert_eq!( |
| 1972 | /// spans.map(|sp| sp.fieldwise()), |
| 1973 | /// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()], |
| 1974 | /// ); |
| 1975 | /// |
| 1976 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1977 | /// ``` |
| 1978 | /// |
| 1979 | /// See the examples for [`Span::total`] if you want to sort spans without |
| 1980 | /// an `unwrap()` call. |
| 1981 | #[inline ] |
| 1982 | pub fn compare<'a, C: Into<SpanCompare<'a>>>( |
| 1983 | &self, |
| 1984 | options: C, |
| 1985 | ) -> Result<Ordering, Error> { |
| 1986 | let options: SpanCompare<'_> = options.into(); |
| 1987 | options.compare(*self) |
| 1988 | } |
| 1989 | |
| 1990 | /// Returns a floating point number representing the total number of a |
| 1991 | /// specific unit (as given) in this span. If the span is not evenly |
| 1992 | /// divisible by the requested units, then the number returned may have a |
| 1993 | /// fractional component. |
| 1994 | /// |
| 1995 | /// This routine accepts anything that implements `Into<SpanTotal>`. There |
| 1996 | /// are some trait implementations that make using this routine ergonomic: |
| 1997 | /// |
| 1998 | /// * `From<Unit> for SpanTotal` computes a total for the given unit in |
| 1999 | /// this span. |
| 2000 | /// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the |
| 2001 | /// given unit in this span, relative to the given date. There are also |
| 2002 | /// `From` implementations for `civil::DateTime` and `Zoned`. |
| 2003 | /// |
| 2004 | /// # Errors |
| 2005 | /// |
| 2006 | /// If this span has any non-zero calendar unit (units bigger than hours), |
| 2007 | /// then this routine requires a relative datetime. If one is not provided, |
| 2008 | /// then an error is returned. |
| 2009 | /// |
| 2010 | /// An error can also occur when adding the span to the relative |
| 2011 | /// datetime given results in overflow. |
| 2012 | /// |
| 2013 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
| 2014 | /// marker instead of providing a relative civil date to indicate that |
| 2015 | /// all days should be 24 hours long. This also results in treating all |
| 2016 | /// weeks as seven 24 hour days (168 hours). |
| 2017 | /// |
| 2018 | /// # Example |
| 2019 | /// |
| 2020 | /// This example shows how to find the number of seconds in a particular |
| 2021 | /// span: |
| 2022 | /// |
| 2023 | /// ``` |
| 2024 | /// use jiff::{ToSpan, Unit}; |
| 2025 | /// |
| 2026 | /// let span = 3.hours().minutes(10); |
| 2027 | /// assert_eq!(span.total(Unit::Second)?, 11_400.0); |
| 2028 | /// |
| 2029 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2030 | /// ``` |
| 2031 | /// |
| 2032 | /// # Example: 24 hour days |
| 2033 | /// |
| 2034 | /// This shows how to find the total number of 24 hour days in |
| 2035 | /// `123,456,789` seconds. |
| 2036 | /// |
| 2037 | /// ``` |
| 2038 | /// use jiff::{SpanTotal, ToSpan, Unit}; |
| 2039 | /// |
| 2040 | /// let span = 123_456_789.seconds(); |
| 2041 | /// assert_eq!( |
| 2042 | /// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?, |
| 2043 | /// 1428.8980208333332, |
| 2044 | /// ); |
| 2045 | /// |
| 2046 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2047 | /// ``` |
| 2048 | /// |
| 2049 | /// # Example: DST is taken into account |
| 2050 | /// |
| 2051 | /// The month of March 2024 in `America/New_York` had 31 days, but one of |
| 2052 | /// those days was 23 hours long due a transition into daylight saving |
| 2053 | /// time: |
| 2054 | /// |
| 2055 | /// ``` |
| 2056 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 2057 | /// |
| 2058 | /// let span = 744.hours(); |
| 2059 | /// let relative = date(2024, 3, 1).in_tz("America/New_York" )?; |
| 2060 | /// // Because of the short day, 744 hours is actually a little *more* than |
| 2061 | /// // 1 month starting from 2024-03-01. |
| 2062 | /// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889); |
| 2063 | /// |
| 2064 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2065 | /// ``` |
| 2066 | /// |
| 2067 | /// Now compare what happens when the relative datetime is civil and not |
| 2068 | /// time zone aware: |
| 2069 | /// |
| 2070 | /// ``` |
| 2071 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 2072 | /// |
| 2073 | /// let span = 744.hours(); |
| 2074 | /// let relative = date(2024, 3, 1); |
| 2075 | /// assert_eq!(span.total((Unit::Month, relative))?, 1.0); |
| 2076 | /// |
| 2077 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2078 | /// ``` |
| 2079 | /// |
| 2080 | /// # Example: infallible sorting |
| 2081 | /// |
| 2082 | /// The sorting example in [`Span::compare`] has to use `unwrap()` in |
| 2083 | /// its `sort_by(..)` call because `Span::compare` may fail and there |
| 2084 | /// is no "fallible" sorting routine in Rust's standard library (as of |
| 2085 | /// 2024-07-07). While the ways in which `Span::compare` can fail for |
| 2086 | /// a valid configuration are limited to overflow for "extreme" values, it |
| 2087 | /// is possible to sort spans infallibly by computing floating point |
| 2088 | /// representations for each span up-front: |
| 2089 | /// |
| 2090 | /// ``` |
| 2091 | /// use jiff::{civil::Date, ToSpan, Unit, Zoned}; |
| 2092 | /// |
| 2093 | /// let span1 = 79.hours().minutes(10); |
| 2094 | /// let span2 = 3.days().hours(7).seconds(630); |
| 2095 | /// let span3 = 3.days().hours(6).minutes(50); |
| 2096 | /// |
| 2097 | /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]" .parse()?; |
| 2098 | /// let mut spans = [ |
| 2099 | /// (span1, span1.total((Unit::Day, &relative))?), |
| 2100 | /// (span2, span2.total((Unit::Day, &relative))?), |
| 2101 | /// (span3, span3.total((Unit::Day, &relative))?), |
| 2102 | /// ]; |
| 2103 | /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2)); |
| 2104 | /// assert_eq!( |
| 2105 | /// spans.map(|(sp, _)| sp.fieldwise()), |
| 2106 | /// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()], |
| 2107 | /// ); |
| 2108 | /// |
| 2109 | /// // Compare with the result of sorting without taking DST into account. |
| 2110 | /// // We do that here by providing a relative civil date. |
| 2111 | /// let relative: Date = "2020-11-01" .parse()?; |
| 2112 | /// let mut spans = [ |
| 2113 | /// (span1, span1.total((Unit::Day, relative))?), |
| 2114 | /// (span2, span2.total((Unit::Day, relative))?), |
| 2115 | /// (span3, span3.total((Unit::Day, relative))?), |
| 2116 | /// ]; |
| 2117 | /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2)); |
| 2118 | /// assert_eq!( |
| 2119 | /// spans.map(|(sp, _)| sp.fieldwise()), |
| 2120 | /// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()], |
| 2121 | /// ); |
| 2122 | /// |
| 2123 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2124 | /// ``` |
| 2125 | #[inline ] |
| 2126 | pub fn total<'a, T: Into<SpanTotal<'a>>>( |
| 2127 | &self, |
| 2128 | options: T, |
| 2129 | ) -> Result<f64, Error> { |
| 2130 | let options: SpanTotal<'_> = options.into(); |
| 2131 | options.total(*self) |
| 2132 | } |
| 2133 | |
| 2134 | /// Returns a new span that is balanced and rounded. |
| 2135 | /// |
| 2136 | /// Rounding a span has a number of parameters, all of which are optional. |
| 2137 | /// When no parameters are given, then no rounding or balancing is done, |
| 2138 | /// and the span as given is returned. That is, it's a no-op. |
| 2139 | /// |
| 2140 | /// The parameters are, in brief: |
| 2141 | /// |
| 2142 | /// * [`SpanRound::largest`] sets the largest [`Unit`] that is allowed to |
| 2143 | /// be non-zero in the span returned. When _only_ the largest unit is set, |
| 2144 | /// rounding itself doesn't occur and instead the span is merely balanced. |
| 2145 | /// * [`SpanRound::smallest`] sets the smallest [`Unit`] that is allowed to |
| 2146 | /// be non-zero in the span returned. By default, it is set to |
| 2147 | /// [`Unit::Nanosecond`], i.e., no rounding occurs. When the smallest unit |
| 2148 | /// is set to something bigger than nanoseconds, then the non-zero units |
| 2149 | /// in the span smaller than the smallest unit are used to determine how |
| 2150 | /// the span should be rounded. For example, rounding `1 hour 59 minutes` |
| 2151 | /// to the nearest hour using the default rounding mode would produce |
| 2152 | /// `2 hours`. |
| 2153 | /// * [`SpanRound::mode`] determines how to handle the remainder when |
| 2154 | /// rounding. The default is [`RoundMode::HalfExpand`], which corresponds |
| 2155 | /// to how you were taught to round in school. Alternative modes, like |
| 2156 | /// [`RoundMode::Trunc`], exist too. For example, a truncating rounding of |
| 2157 | /// `1 hour 59 minutes` to the nearest hour would produce `1 hour`. |
| 2158 | /// * [`SpanRound::increment`] sets the rounding granularity to use for |
| 2159 | /// the configured smallest unit. For example, if the smallest unit is |
| 2160 | /// minutes and the increment is 5, then the span returned will always have |
| 2161 | /// its minute units set to a multiple of `5`. |
| 2162 | /// * [`SpanRound::relative`] sets the datetime from which to interpret the |
| 2163 | /// span. This is required when rounding spans with calendar units (years, |
| 2164 | /// months or weeks). When a relative datetime is time zone aware, then |
| 2165 | /// rounding accounts for the fact that not all days are 24 hours long. |
| 2166 | /// When a relative datetime is omitted or is civil (not time zone aware), |
| 2167 | /// then days are always 24 hours long. |
| 2168 | /// |
| 2169 | /// # Constructing a [`SpanRound`] |
| 2170 | /// |
| 2171 | /// This routine accepts anything that implements `Into<SpanRound>`. There |
| 2172 | /// are a few key trait implementations that make this convenient: |
| 2173 | /// |
| 2174 | /// * `From<Unit> for SpanRound` will construct a rounding configuration |
| 2175 | /// where the smallest unit is set to the one given. |
| 2176 | /// * `From<(Unit, i64)> for SpanRound` will construct a rounding |
| 2177 | /// configuration where the smallest unit and the rounding increment are |
| 2178 | /// set to the ones given. |
| 2179 | /// |
| 2180 | /// To set other options (like the largest unit, the rounding mode and the |
| 2181 | /// relative datetime), one must explicitly create a `SpanRound` and pass |
| 2182 | /// it to this routine. |
| 2183 | /// |
| 2184 | /// # Errors |
| 2185 | /// |
| 2186 | /// In general, there are two main ways for rounding to fail: an improper |
| 2187 | /// configuration like trying to round a span with calendar units but |
| 2188 | /// without a relative datetime, or when overflow occurs. Overflow can |
| 2189 | /// occur when the span, added to the relative datetime if given, would |
| 2190 | /// exceed the minimum or maximum datetime values. Overflow can also occur |
| 2191 | /// if the span is too big to fit into the requested unit configuration. |
| 2192 | /// For example, a span like `19_998.years()` cannot be represented with a |
| 2193 | /// 64-bit integer number of nanoseconds. |
| 2194 | /// |
| 2195 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
| 2196 | /// marker instead of providing a relative civil date to indicate that |
| 2197 | /// all days should be 24 hours long. This also results in treating all |
| 2198 | /// weeks as seven 24 hour days (168 hours). |
| 2199 | /// |
| 2200 | /// # Example: balancing |
| 2201 | /// |
| 2202 | /// This example demonstrates balancing, not rounding. And in particular, |
| 2203 | /// this example shows how to balance a span as much as possible (i.e., |
| 2204 | /// with units of hours or smaller) without needing to specify a relative |
| 2205 | /// datetime: |
| 2206 | /// |
| 2207 | /// ``` |
| 2208 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 2209 | /// |
| 2210 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
| 2211 | /// assert_eq!( |
| 2212 | /// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(), |
| 2213 | /// 34_293.hours().minutes(33).seconds(9) |
| 2214 | /// .milliseconds(123).microseconds(456).nanoseconds(789), |
| 2215 | /// ); |
| 2216 | /// |
| 2217 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2218 | /// ``` |
| 2219 | /// |
| 2220 | /// Or you can opt into invariant 24-hour days (and 7-day weeks) without a |
| 2221 | /// relative date with [`SpanRound::days_are_24_hours`]: |
| 2222 | /// |
| 2223 | /// ``` |
| 2224 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 2225 | /// |
| 2226 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
| 2227 | /// assert_eq!( |
| 2228 | /// span.round( |
| 2229 | /// SpanRound::new().largest(Unit::Day).days_are_24_hours(), |
| 2230 | /// )?.fieldwise(), |
| 2231 | /// 1_428.days() |
| 2232 | /// .hours(21).minutes(33).seconds(9) |
| 2233 | /// .milliseconds(123).microseconds(456).nanoseconds(789), |
| 2234 | /// ); |
| 2235 | /// |
| 2236 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2237 | /// ``` |
| 2238 | /// |
| 2239 | /// # Example: balancing and rounding |
| 2240 | /// |
| 2241 | /// This example is like the one before it, but where we round to the |
| 2242 | /// nearest second: |
| 2243 | /// |
| 2244 | /// ``` |
| 2245 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 2246 | /// |
| 2247 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
| 2248 | /// assert_eq!( |
| 2249 | /// span.round(SpanRound::new().largest(Unit::Hour).smallest(Unit::Second))?, |
| 2250 | /// 34_293.hours().minutes(33).seconds(9).fieldwise(), |
| 2251 | /// ); |
| 2252 | /// |
| 2253 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2254 | /// ``` |
| 2255 | /// |
| 2256 | /// Or, just rounding to the nearest hour can make use of the |
| 2257 | /// `From<Unit> for SpanRound` trait implementation: |
| 2258 | /// |
| 2259 | /// ``` |
| 2260 | /// use jiff::{ToSpan, Unit}; |
| 2261 | /// |
| 2262 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
| 2263 | /// assert_eq!(span.round(Unit::Hour)?, 34_294.hours().fieldwise()); |
| 2264 | /// |
| 2265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2266 | /// ``` |
| 2267 | /// |
| 2268 | /// # Example: balancing with a relative datetime |
| 2269 | /// |
| 2270 | /// Even with calendar units, so long as a relative datetime is provided, |
| 2271 | /// it's easy to turn days into bigger units: |
| 2272 | /// |
| 2273 | /// ``` |
| 2274 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
| 2275 | /// |
| 2276 | /// let span = 1_000.days(); |
| 2277 | /// let relative = date(2000, 1, 1); |
| 2278 | /// let options = SpanRound::new().largest(Unit::Year).relative(relative); |
| 2279 | /// assert_eq!(span.round(options)?, 2.years().months(8).days(26).fieldwise()); |
| 2280 | /// |
| 2281 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2282 | /// ``` |
| 2283 | /// |
| 2284 | /// # Example: round to the nearest half-hour |
| 2285 | /// |
| 2286 | /// ``` |
| 2287 | /// use jiff::{Span, ToSpan, Unit}; |
| 2288 | /// |
| 2289 | /// let span: Span = "PT23h50m3.123s" .parse()?; |
| 2290 | /// assert_eq!(span.round((Unit::Minute, 30))?, 24.hours().fieldwise()); |
| 2291 | /// |
| 2292 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2293 | /// ``` |
| 2294 | /// |
| 2295 | /// # Example: yearly quarters in a span |
| 2296 | /// |
| 2297 | /// This example shows how to find how many full 3 month quarters are in a |
| 2298 | /// particular span of time. |
| 2299 | /// |
| 2300 | /// ``` |
| 2301 | /// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit}; |
| 2302 | /// |
| 2303 | /// let span1 = 10.months().days(15); |
| 2304 | /// let round = SpanRound::new() |
| 2305 | /// .smallest(Unit::Month) |
| 2306 | /// .increment(3) |
| 2307 | /// .mode(RoundMode::Trunc) |
| 2308 | /// // A relative datetime must be provided when |
| 2309 | /// // rounding involves calendar units. |
| 2310 | /// .relative(date(2024, 1, 1)); |
| 2311 | /// let span2 = span1.round(round)?; |
| 2312 | /// assert_eq!(span2.get_months() / 3, 3); |
| 2313 | /// |
| 2314 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2315 | /// ``` |
| 2316 | #[inline ] |
| 2317 | pub fn round<'a, R: Into<SpanRound<'a>>>( |
| 2318 | self, |
| 2319 | options: R, |
| 2320 | ) -> Result<Span, Error> { |
| 2321 | let options: SpanRound<'a> = options.into(); |
| 2322 | options.round(self) |
| 2323 | } |
| 2324 | |
| 2325 | /// Converts a `Span` to a [`SignedDuration`] relative to the date given. |
| 2326 | /// |
| 2327 | /// In most cases, it is unlikely that you'll need to use this routine to |
| 2328 | /// convert a `Span` to a `SignedDuration`. Namely, by default: |
| 2329 | /// |
| 2330 | /// * [`Zoned::until`] guarantees that the biggest non-zero unit is hours. |
| 2331 | /// * [`Timestamp::until`] guarantees that the biggest non-zero unit is |
| 2332 | /// seconds. |
| 2333 | /// * [`DateTime::until`] guarantees that the biggest non-zero unit is |
| 2334 | /// days. |
| 2335 | /// * [`Date::until`] guarantees that the biggest non-zero unit is days. |
| 2336 | /// * [`Time::until`] guarantees that the biggest non-zero unit is hours. |
| 2337 | /// |
| 2338 | /// In the above, only [`DateTime::until`] and [`Date::until`] return |
| 2339 | /// calendar units by default. In which case, one may pass |
| 2340 | /// [`SpanRelativeTo::days_are_24_hours`] or an actual relative date to |
| 2341 | /// resolve the length of a day. |
| 2342 | /// |
| 2343 | /// Of course, any of the above can be changed by asking, for example, |
| 2344 | /// `Zoned::until` to return units up to years. |
| 2345 | /// |
| 2346 | /// # Errors |
| 2347 | /// |
| 2348 | /// This returns an error if adding this span to the date given results in |
| 2349 | /// overflow. This can also return an error if one uses |
| 2350 | /// [`SpanRelativeTo::days_are_24_hours`] with a `Span` that has non-zero |
| 2351 | /// units greater than weeks. |
| 2352 | /// |
| 2353 | /// # Example: converting a span with calendar units to a `SignedDuration` |
| 2354 | /// |
| 2355 | /// This compares the number of seconds in a non-leap year with a leap |
| 2356 | /// year: |
| 2357 | /// |
| 2358 | /// ``` |
| 2359 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
| 2360 | /// |
| 2361 | /// let span = 1.year(); |
| 2362 | /// |
| 2363 | /// let duration = span.to_duration(date(2024, 1, 1))?; |
| 2364 | /// assert_eq!(duration, SignedDuration::from_secs(31_622_400)); |
| 2365 | /// let duration = span.to_duration(date(2023, 1, 1))?; |
| 2366 | /// assert_eq!(duration, SignedDuration::from_secs(31_536_000)); |
| 2367 | /// |
| 2368 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2369 | /// ``` |
| 2370 | /// |
| 2371 | /// # Example: converting a span without a relative datetime |
| 2372 | /// |
| 2373 | /// If for some reason it doesn't make sense to include a |
| 2374 | /// relative datetime, you can use this routine to convert a |
| 2375 | /// `Span` with units up to weeks to a `SignedDuration` via the |
| 2376 | /// [`SpanRelativeTo::days_are_24_hours`] marker: |
| 2377 | /// |
| 2378 | /// ``` |
| 2379 | /// use jiff::{civil::date, SignedDuration, SpanRelativeTo, ToSpan}; |
| 2380 | /// |
| 2381 | /// let span = 1.week().days(1); |
| 2382 | /// |
| 2383 | /// let duration = span.to_duration(SpanRelativeTo::days_are_24_hours())?; |
| 2384 | /// assert_eq!(duration, SignedDuration::from_hours(192)); |
| 2385 | /// |
| 2386 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2387 | /// ``` |
| 2388 | #[inline ] |
| 2389 | pub fn to_duration<'a, R: Into<SpanRelativeTo<'a>>>( |
| 2390 | &self, |
| 2391 | relative: R, |
| 2392 | ) -> Result<SignedDuration, Error> { |
| 2393 | let max_unit = self.largest_unit(); |
| 2394 | let relative: SpanRelativeTo<'a> = relative.into(); |
| 2395 | let Some(result) = relative.to_relative(max_unit).transpose() else { |
| 2396 | return Ok(self.to_duration_invariant()); |
| 2397 | }; |
| 2398 | let relspan = result |
| 2399 | .and_then(|r| r.into_relative_span(Unit::Second, *self)) |
| 2400 | .with_context(|| match relative.kind { |
| 2401 | SpanRelativeToKind::Civil(dt) => { |
| 2402 | err!( |
| 2403 | "could not compute normalized relative span \ |
| 2404 | from datetime {dt} and span {self}" , |
| 2405 | ) |
| 2406 | } |
| 2407 | SpanRelativeToKind::Zoned(ref zdt) => { |
| 2408 | err!( |
| 2409 | "could not compute normalized relative span \ |
| 2410 | from datetime {zdt} and span {self}" , |
| 2411 | ) |
| 2412 | } |
| 2413 | SpanRelativeToKind::DaysAre24Hours => { |
| 2414 | err!( |
| 2415 | "could not compute normalized relative span \ |
| 2416 | from {self} when all days are assumed to be \ |
| 2417 | 24 hours" , |
| 2418 | ) |
| 2419 | } |
| 2420 | })?; |
| 2421 | debug_assert!(relspan.span.largest_unit() <= Unit::Second); |
| 2422 | Ok(relspan.span.to_duration_invariant()) |
| 2423 | } |
| 2424 | |
| 2425 | /// Converts an entirely invariant span to a `SignedDuration`. |
| 2426 | /// |
| 2427 | /// Callers must ensure that this span has no units greater than weeks. |
| 2428 | /// If it does have non-zero units of days or weeks, then every day is |
| 2429 | /// considered 24 hours and every week 7 days. Generally speaking, callers |
| 2430 | /// should also ensure that if this span does have non-zero day/week units, |
| 2431 | /// then callers have either provided a civil relative date or the special |
| 2432 | /// `SpanRelativeTo::days_are_24_hours()` marker. |
| 2433 | #[inline ] |
| 2434 | pub(crate) fn to_duration_invariant(&self) -> SignedDuration { |
| 2435 | // This guarantees, at compile time, that a maximal invariant Span |
| 2436 | // (that is, all units are days or lower and all units are set to their |
| 2437 | // maximum values) will still balance out to a number of seconds that |
| 2438 | // fits into a `i64`. This in turn implies that a `SignedDuration` can |
| 2439 | // represent all possible invariant positive spans. |
| 2440 | const _FITS_IN_U64: () = { |
| 2441 | debug_assert!( |
| 2442 | i64::MAX as i128 |
| 2443 | > ((t::SpanWeeks::MAX |
| 2444 | * t::SECONDS_PER_CIVIL_WEEK.bound()) |
| 2445 | + (t::SpanDays::MAX |
| 2446 | * t::SECONDS_PER_CIVIL_DAY.bound()) |
| 2447 | + (t::SpanHours::MAX * t::SECONDS_PER_HOUR.bound()) |
| 2448 | + (t::SpanMinutes::MAX |
| 2449 | * t::SECONDS_PER_MINUTE.bound()) |
| 2450 | + t::SpanSeconds::MAX |
| 2451 | + (t::SpanMilliseconds::MAX |
| 2452 | / t::MILLIS_PER_SECOND.bound()) |
| 2453 | + (t::SpanMicroseconds::MAX |
| 2454 | / t::MICROS_PER_SECOND.bound()) |
| 2455 | + (t::SpanNanoseconds::MAX |
| 2456 | / t::NANOS_PER_SECOND.bound())), |
| 2457 | ); |
| 2458 | () |
| 2459 | }; |
| 2460 | |
| 2461 | let nanos = self.to_invariant_nanoseconds(); |
| 2462 | debug_assert!( |
| 2463 | self.largest_unit() <= Unit::Week, |
| 2464 | "units must be weeks or lower" |
| 2465 | ); |
| 2466 | |
| 2467 | let seconds = nanos / t::NANOS_PER_SECOND; |
| 2468 | let seconds = i64::from(seconds); |
| 2469 | let subsec_nanos = nanos % t::NANOS_PER_SECOND; |
| 2470 | // OK because % 1_000_000_000 above guarantees that the result fits |
| 2471 | // in a i32. |
| 2472 | let subsec_nanos = i32::try_from(subsec_nanos).unwrap(); |
| 2473 | |
| 2474 | // SignedDuration::new can panic if |subsec_nanos| >= 1_000_000_000 |
| 2475 | // and seconds == {i64::MIN,i64::MAX}. But this can never happen |
| 2476 | // because we guaranteed by construction above that |subsec_nanos| < |
| 2477 | // 1_000_000_000. |
| 2478 | SignedDuration::new(seconds, subsec_nanos) |
| 2479 | } |
| 2480 | } |
| 2481 | |
| 2482 | /// Crate internal APIs that operate on ranged integer types. |
| 2483 | impl Span { |
| 2484 | #[inline ] |
| 2485 | pub(crate) fn years_ranged(self, years: t::SpanYears) -> Span { |
| 2486 | let mut span = Span { years: years.abs(), ..self }; |
| 2487 | span.sign = self.resign(years, &span); |
| 2488 | span.units = span.units.set(Unit::Year, years == C(0)); |
| 2489 | span |
| 2490 | } |
| 2491 | |
| 2492 | #[inline ] |
| 2493 | pub(crate) fn months_ranged(self, months: t::SpanMonths) -> Span { |
| 2494 | let mut span = Span { months: months.abs(), ..self }; |
| 2495 | span.sign = self.resign(months, &span); |
| 2496 | span.units = span.units.set(Unit::Month, months == C(0)); |
| 2497 | span |
| 2498 | } |
| 2499 | |
| 2500 | #[inline ] |
| 2501 | pub(crate) fn weeks_ranged(self, weeks: t::SpanWeeks) -> Span { |
| 2502 | let mut span = Span { weeks: weeks.abs(), ..self }; |
| 2503 | span.sign = self.resign(weeks, &span); |
| 2504 | span.units = span.units.set(Unit::Week, weeks == C(0)); |
| 2505 | span |
| 2506 | } |
| 2507 | |
| 2508 | #[inline ] |
| 2509 | pub(crate) fn days_ranged(self, days: t::SpanDays) -> Span { |
| 2510 | let mut span = Span { days: days.abs(), ..self }; |
| 2511 | span.sign = self.resign(days, &span); |
| 2512 | span.units = span.units.set(Unit::Day, days == C(0)); |
| 2513 | span |
| 2514 | } |
| 2515 | |
| 2516 | #[inline ] |
| 2517 | pub(crate) fn hours_ranged(self, hours: t::SpanHours) -> Span { |
| 2518 | let mut span = Span { hours: hours.abs(), ..self }; |
| 2519 | span.sign = self.resign(hours, &span); |
| 2520 | span.units = span.units.set(Unit::Hour, hours == C(0)); |
| 2521 | span |
| 2522 | } |
| 2523 | |
| 2524 | #[inline ] |
| 2525 | pub(crate) fn minutes_ranged(self, minutes: t::SpanMinutes) -> Span { |
| 2526 | let mut span = Span { minutes: minutes.abs(), ..self }; |
| 2527 | span.sign = self.resign(minutes, &span); |
| 2528 | span.units = span.units.set(Unit::Minute, minutes == C(0)); |
| 2529 | span |
| 2530 | } |
| 2531 | |
| 2532 | #[inline ] |
| 2533 | pub(crate) fn seconds_ranged(self, seconds: t::SpanSeconds) -> Span { |
| 2534 | let mut span = Span { seconds: seconds.abs(), ..self }; |
| 2535 | span.sign = self.resign(seconds, &span); |
| 2536 | span.units = span.units.set(Unit::Second, seconds == C(0)); |
| 2537 | span |
| 2538 | } |
| 2539 | |
| 2540 | #[inline ] |
| 2541 | fn milliseconds_ranged(self, milliseconds: t::SpanMilliseconds) -> Span { |
| 2542 | let mut span = Span { milliseconds: milliseconds.abs(), ..self }; |
| 2543 | span.sign = self.resign(milliseconds, &span); |
| 2544 | span.units = span.units.set(Unit::Millisecond, milliseconds == C(0)); |
| 2545 | span |
| 2546 | } |
| 2547 | |
| 2548 | #[inline ] |
| 2549 | fn microseconds_ranged(self, microseconds: t::SpanMicroseconds) -> Span { |
| 2550 | let mut span = Span { microseconds: microseconds.abs(), ..self }; |
| 2551 | span.sign = self.resign(microseconds, &span); |
| 2552 | span.units = span.units.set(Unit::Microsecond, microseconds == C(0)); |
| 2553 | span |
| 2554 | } |
| 2555 | |
| 2556 | #[inline ] |
| 2557 | pub(crate) fn nanoseconds_ranged( |
| 2558 | self, |
| 2559 | nanoseconds: t::SpanNanoseconds, |
| 2560 | ) -> Span { |
| 2561 | let mut span = Span { nanoseconds: nanoseconds.abs(), ..self }; |
| 2562 | span.sign = self.resign(nanoseconds, &span); |
| 2563 | span.units = span.units.set(Unit::Nanosecond, nanoseconds == C(0)); |
| 2564 | span |
| 2565 | } |
| 2566 | |
| 2567 | #[inline ] |
| 2568 | fn try_days_ranged( |
| 2569 | self, |
| 2570 | days: impl TryRInto<t::SpanDays>, |
| 2571 | ) -> Result<Span, Error> { |
| 2572 | let days = days.try_rinto("days" )?; |
| 2573 | Ok(self.days_ranged(days)) |
| 2574 | } |
| 2575 | |
| 2576 | #[inline ] |
| 2577 | pub(crate) fn try_hours_ranged( |
| 2578 | self, |
| 2579 | hours: impl TryRInto<t::SpanHours>, |
| 2580 | ) -> Result<Span, Error> { |
| 2581 | let hours = hours.try_rinto("hours" )?; |
| 2582 | Ok(self.hours_ranged(hours)) |
| 2583 | } |
| 2584 | |
| 2585 | #[inline ] |
| 2586 | pub(crate) fn try_minutes_ranged( |
| 2587 | self, |
| 2588 | minutes: impl TryRInto<t::SpanMinutes>, |
| 2589 | ) -> Result<Span, Error> { |
| 2590 | let minutes = minutes.try_rinto("minutes" )?; |
| 2591 | Ok(self.minutes_ranged(minutes)) |
| 2592 | } |
| 2593 | |
| 2594 | #[inline ] |
| 2595 | pub(crate) fn try_seconds_ranged( |
| 2596 | self, |
| 2597 | seconds: impl TryRInto<t::SpanSeconds>, |
| 2598 | ) -> Result<Span, Error> { |
| 2599 | let seconds = seconds.try_rinto("seconds" )?; |
| 2600 | Ok(self.seconds_ranged(seconds)) |
| 2601 | } |
| 2602 | |
| 2603 | #[inline ] |
| 2604 | pub(crate) fn try_milliseconds_ranged( |
| 2605 | self, |
| 2606 | milliseconds: impl TryRInto<t::SpanMilliseconds>, |
| 2607 | ) -> Result<Span, Error> { |
| 2608 | let milliseconds = milliseconds.try_rinto("milliseconds" )?; |
| 2609 | Ok(self.milliseconds_ranged(milliseconds)) |
| 2610 | } |
| 2611 | |
| 2612 | #[inline ] |
| 2613 | pub(crate) fn try_microseconds_ranged( |
| 2614 | self, |
| 2615 | microseconds: impl TryRInto<t::SpanMicroseconds>, |
| 2616 | ) -> Result<Span, Error> { |
| 2617 | let microseconds = microseconds.try_rinto("microseconds" )?; |
| 2618 | Ok(self.microseconds_ranged(microseconds)) |
| 2619 | } |
| 2620 | |
| 2621 | #[inline ] |
| 2622 | pub(crate) fn try_nanoseconds_ranged( |
| 2623 | self, |
| 2624 | nanoseconds: impl TryRInto<t::SpanNanoseconds>, |
| 2625 | ) -> Result<Span, Error> { |
| 2626 | let nanoseconds = nanoseconds.try_rinto("nanoseconds" )?; |
| 2627 | Ok(self.nanoseconds_ranged(nanoseconds)) |
| 2628 | } |
| 2629 | |
| 2630 | #[inline ] |
| 2631 | pub(crate) fn try_units_ranged( |
| 2632 | self, |
| 2633 | unit: Unit, |
| 2634 | value: NoUnits, |
| 2635 | ) -> Result<Span, Error> { |
| 2636 | Ok(match unit { |
| 2637 | Unit::Year => self.years_ranged(value.try_rinto("years" )?), |
| 2638 | Unit::Month => self.months_ranged(value.try_rinto("months" )?), |
| 2639 | Unit::Week => self.weeks_ranged(value.try_rinto("weeks" )?), |
| 2640 | Unit::Day => self.days_ranged(value.try_rinto("days" )?), |
| 2641 | Unit::Hour => self.hours_ranged(value.try_rinto("hours" )?), |
| 2642 | Unit::Minute => self.minutes_ranged(value.try_rinto("minutes" )?), |
| 2643 | Unit::Second => self.seconds_ranged(value.try_rinto("seconds" )?), |
| 2644 | Unit::Millisecond => { |
| 2645 | self.milliseconds_ranged(value.try_rinto("milliseconds" )?) |
| 2646 | } |
| 2647 | Unit::Microsecond => { |
| 2648 | self.microseconds_ranged(value.try_rinto("microseconds" )?) |
| 2649 | } |
| 2650 | Unit::Nanosecond => { |
| 2651 | self.nanoseconds_ranged(value.try_rinto("nanoseconds" )?) |
| 2652 | } |
| 2653 | }) |
| 2654 | } |
| 2655 | |
| 2656 | #[inline ] |
| 2657 | pub(crate) fn get_years_ranged(&self) -> t::SpanYears { |
| 2658 | self.years * self.sign |
| 2659 | } |
| 2660 | |
| 2661 | #[inline ] |
| 2662 | pub(crate) fn get_months_ranged(&self) -> t::SpanMonths { |
| 2663 | self.months * self.sign |
| 2664 | } |
| 2665 | |
| 2666 | #[inline ] |
| 2667 | pub(crate) fn get_weeks_ranged(&self) -> t::SpanWeeks { |
| 2668 | self.weeks * self.sign |
| 2669 | } |
| 2670 | |
| 2671 | #[inline ] |
| 2672 | pub(crate) fn get_days_ranged(&self) -> t::SpanDays { |
| 2673 | self.days * self.sign |
| 2674 | } |
| 2675 | |
| 2676 | #[inline ] |
| 2677 | pub(crate) fn get_hours_ranged(&self) -> t::SpanHours { |
| 2678 | self.hours * self.sign |
| 2679 | } |
| 2680 | |
| 2681 | #[inline ] |
| 2682 | pub(crate) fn get_minutes_ranged(&self) -> t::SpanMinutes { |
| 2683 | self.minutes * self.sign |
| 2684 | } |
| 2685 | |
| 2686 | #[inline ] |
| 2687 | pub(crate) fn get_seconds_ranged(&self) -> t::SpanSeconds { |
| 2688 | self.seconds * self.sign |
| 2689 | } |
| 2690 | |
| 2691 | #[inline ] |
| 2692 | pub(crate) fn get_milliseconds_ranged(&self) -> t::SpanMilliseconds { |
| 2693 | self.milliseconds * self.sign |
| 2694 | } |
| 2695 | |
| 2696 | #[inline ] |
| 2697 | pub(crate) fn get_microseconds_ranged(&self) -> t::SpanMicroseconds { |
| 2698 | self.microseconds * self.sign |
| 2699 | } |
| 2700 | |
| 2701 | #[inline ] |
| 2702 | pub(crate) fn get_nanoseconds_ranged(&self) -> t::SpanNanoseconds { |
| 2703 | self.nanoseconds * self.sign |
| 2704 | } |
| 2705 | |
| 2706 | #[inline ] |
| 2707 | fn get_sign_ranged(&self) -> ri8<-1, 1> { |
| 2708 | self.sign |
| 2709 | } |
| 2710 | |
| 2711 | #[inline ] |
| 2712 | fn get_units_ranged(&self, unit: Unit) -> NoUnits { |
| 2713 | match unit { |
| 2714 | Unit::Year => self.get_years_ranged().rinto(), |
| 2715 | Unit::Month => self.get_months_ranged().rinto(), |
| 2716 | Unit::Week => self.get_weeks_ranged().rinto(), |
| 2717 | Unit::Day => self.get_days_ranged().rinto(), |
| 2718 | Unit::Hour => self.get_hours_ranged().rinto(), |
| 2719 | Unit::Minute => self.get_minutes_ranged().rinto(), |
| 2720 | Unit::Second => self.get_seconds_ranged().rinto(), |
| 2721 | Unit::Millisecond => self.get_milliseconds_ranged().rinto(), |
| 2722 | Unit::Microsecond => self.get_microseconds_ranged().rinto(), |
| 2723 | Unit::Nanosecond => self.get_nanoseconds_ranged().rinto(), |
| 2724 | } |
| 2725 | } |
| 2726 | } |
| 2727 | |
| 2728 | /// Crate internal helper routines. |
| 2729 | impl Span { |
| 2730 | /// Converts the given number of nanoseconds to a `Span` whose units do not |
| 2731 | /// exceed `largest`. |
| 2732 | /// |
| 2733 | /// Note that `largest` is capped at `Unit::Week`. Note though that if |
| 2734 | /// any unit greater than `Unit::Week` is given, then it is treated as |
| 2735 | /// `Unit::Day`. The only way to get weeks in the `Span` returned is to |
| 2736 | /// specifically request `Unit::Week`. |
| 2737 | /// |
| 2738 | /// And also note that days in this context are civil days. That is, they |
| 2739 | /// are always 24 hours long. Callers needing to deal with variable length |
| 2740 | /// days should do so outside of this routine and should not provide a |
| 2741 | /// `largest` unit bigger than `Unit::Hour`. |
| 2742 | pub(crate) fn from_invariant_nanoseconds( |
| 2743 | largest: Unit, |
| 2744 | nanos: NoUnits128, |
| 2745 | ) -> Result<Span, Error> { |
| 2746 | let mut span = Span::new(); |
| 2747 | match largest { |
| 2748 | Unit::Week => { |
| 2749 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2750 | span = span.try_nanoseconds_ranged( |
| 2751 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2752 | )?; |
| 2753 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2754 | span = span.try_microseconds_ranged( |
| 2755 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2756 | )?; |
| 2757 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
| 2758 | span = span.try_milliseconds_ranged( |
| 2759 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
| 2760 | )?; |
| 2761 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
| 2762 | span = span.try_seconds_ranged( |
| 2763 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
| 2764 | )?; |
| 2765 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
| 2766 | span = span |
| 2767 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
| 2768 | let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY); |
| 2769 | span = span.try_hours_ranged( |
| 2770 | hours.rem_ceil(t::HOURS_PER_CIVIL_DAY), |
| 2771 | )?; |
| 2772 | let weeks = days.div_ceil(t::DAYS_PER_CIVIL_WEEK); |
| 2773 | span = span |
| 2774 | .try_days_ranged(days.rem_ceil(t::DAYS_PER_CIVIL_WEEK))?; |
| 2775 | span = span.weeks_ranged(weeks.try_rinto("weeks" )?); |
| 2776 | Ok(span) |
| 2777 | } |
| 2778 | Unit::Year | Unit::Month | Unit::Day => { |
| 2779 | // Unit::Year | Unit::Month | Unit::Week | Unit::Day => { |
| 2780 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2781 | span = span.try_nanoseconds_ranged( |
| 2782 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2783 | )?; |
| 2784 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2785 | span = span.try_microseconds_ranged( |
| 2786 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2787 | )?; |
| 2788 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
| 2789 | span = span.try_milliseconds_ranged( |
| 2790 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
| 2791 | )?; |
| 2792 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
| 2793 | span = span.try_seconds_ranged( |
| 2794 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
| 2795 | )?; |
| 2796 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
| 2797 | span = span |
| 2798 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
| 2799 | let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY); |
| 2800 | span = span.try_hours_ranged( |
| 2801 | hours.rem_ceil(t::HOURS_PER_CIVIL_DAY), |
| 2802 | )?; |
| 2803 | span = span.try_days_ranged(days)?; |
| 2804 | Ok(span) |
| 2805 | } |
| 2806 | Unit::Hour => { |
| 2807 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2808 | span = span.try_nanoseconds_ranged( |
| 2809 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2810 | )?; |
| 2811 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2812 | span = span.try_microseconds_ranged( |
| 2813 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2814 | )?; |
| 2815 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
| 2816 | span = span.try_milliseconds_ranged( |
| 2817 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
| 2818 | )?; |
| 2819 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
| 2820 | span = span.try_seconds_ranged( |
| 2821 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
| 2822 | )?; |
| 2823 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
| 2824 | span = span |
| 2825 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
| 2826 | span = span.try_hours_ranged(hours)?; |
| 2827 | Ok(span) |
| 2828 | } |
| 2829 | Unit::Minute => { |
| 2830 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2831 | span = span.try_nanoseconds_ranged( |
| 2832 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2833 | )?; |
| 2834 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2835 | span = span.try_microseconds_ranged( |
| 2836 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2837 | )?; |
| 2838 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
| 2839 | span = span.try_milliseconds_ranged( |
| 2840 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
| 2841 | )?; |
| 2842 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
| 2843 | span = |
| 2844 | span.try_seconds(secs.rem_ceil(t::SECONDS_PER_MINUTE))?; |
| 2845 | span = span.try_minutes_ranged(mins)?; |
| 2846 | Ok(span) |
| 2847 | } |
| 2848 | Unit::Second => { |
| 2849 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2850 | span = span.try_nanoseconds_ranged( |
| 2851 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2852 | )?; |
| 2853 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2854 | span = span.try_microseconds_ranged( |
| 2855 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2856 | )?; |
| 2857 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
| 2858 | span = span.try_milliseconds_ranged( |
| 2859 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
| 2860 | )?; |
| 2861 | span = span.try_seconds_ranged(secs)?; |
| 2862 | Ok(span) |
| 2863 | } |
| 2864 | Unit::Millisecond => { |
| 2865 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2866 | span = span.try_nanoseconds_ranged( |
| 2867 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2868 | )?; |
| 2869 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
| 2870 | span = span.try_microseconds_ranged( |
| 2871 | micros.rem_ceil(t::MICROS_PER_MILLI), |
| 2872 | )?; |
| 2873 | span = span.try_milliseconds_ranged(millis)?; |
| 2874 | Ok(span) |
| 2875 | } |
| 2876 | Unit::Microsecond => { |
| 2877 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
| 2878 | span = span.try_nanoseconds_ranged( |
| 2879 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
| 2880 | )?; |
| 2881 | span = span.try_microseconds_ranged(micros)?; |
| 2882 | Ok(span) |
| 2883 | } |
| 2884 | Unit::Nanosecond => { |
| 2885 | span = span.try_nanoseconds_ranged(nanos)?; |
| 2886 | Ok(span) |
| 2887 | } |
| 2888 | } |
| 2889 | } |
| 2890 | |
| 2891 | /// Converts the non-variable units of this `Span` to a total number of |
| 2892 | /// nanoseconds. |
| 2893 | /// |
| 2894 | /// This includes days and weeks, even though they can be of irregular |
| 2895 | /// length during time zone transitions. If this applies, then callers |
| 2896 | /// should set the days and weeks to `0` before calling this routine. |
| 2897 | /// |
| 2898 | /// All units above weeks are always ignored. |
| 2899 | #[inline ] |
| 2900 | pub(crate) fn to_invariant_nanoseconds(&self) -> NoUnits128 { |
| 2901 | let mut nanos = NoUnits128::rfrom(self.get_nanoseconds_ranged()); |
| 2902 | nanos += NoUnits128::rfrom(self.get_microseconds_ranged()) |
| 2903 | * t::NANOS_PER_MICRO; |
| 2904 | nanos += NoUnits128::rfrom(self.get_milliseconds_ranged()) |
| 2905 | * t::NANOS_PER_MILLI; |
| 2906 | nanos += |
| 2907 | NoUnits128::rfrom(self.get_seconds_ranged()) * t::NANOS_PER_SECOND; |
| 2908 | nanos += |
| 2909 | NoUnits128::rfrom(self.get_minutes_ranged()) * t::NANOS_PER_MINUTE; |
| 2910 | nanos += |
| 2911 | NoUnits128::rfrom(self.get_hours_ranged()) * t::NANOS_PER_HOUR; |
| 2912 | nanos += |
| 2913 | NoUnits128::rfrom(self.get_days_ranged()) * t::NANOS_PER_CIVIL_DAY; |
| 2914 | nanos += NoUnits128::rfrom(self.get_weeks_ranged()) |
| 2915 | * t::NANOS_PER_CIVIL_WEEK; |
| 2916 | nanos |
| 2917 | } |
| 2918 | |
| 2919 | /// Converts the non-variable units of this `Span` to a total number of |
| 2920 | /// seconds if there is no fractional second component. Otherwise, |
| 2921 | /// `None` is returned. |
| 2922 | /// |
| 2923 | /// This is useful for short-circuiting in arithmetic operations when |
| 2924 | /// it's faster to only deal with seconds. And in particular, acknowledges |
| 2925 | /// that nanosecond precision durations are somewhat rare. |
| 2926 | /// |
| 2927 | /// This includes days and weeks, even though they can be of irregular |
| 2928 | /// length during time zone transitions. If this applies, then callers |
| 2929 | /// should set the days and weeks to `0` before calling this routine. |
| 2930 | /// |
| 2931 | /// All units above weeks are always ignored. |
| 2932 | #[inline ] |
| 2933 | pub(crate) fn to_invariant_seconds(&self) -> Option<NoUnits> { |
| 2934 | if self.has_fractional_seconds() { |
| 2935 | return None; |
| 2936 | } |
| 2937 | let mut seconds = NoUnits::rfrom(self.get_seconds_ranged()); |
| 2938 | seconds += |
| 2939 | NoUnits::rfrom(self.get_minutes_ranged()) * t::SECONDS_PER_MINUTE; |
| 2940 | seconds += |
| 2941 | NoUnits::rfrom(self.get_hours_ranged()) * t::SECONDS_PER_HOUR; |
| 2942 | seconds += |
| 2943 | NoUnits::rfrom(self.get_days_ranged()) * t::SECONDS_PER_CIVIL_DAY; |
| 2944 | seconds += NoUnits::rfrom(self.get_weeks_ranged()) |
| 2945 | * t::SECONDS_PER_CIVIL_WEEK; |
| 2946 | Some(seconds) |
| 2947 | } |
| 2948 | |
| 2949 | /// Rebalances the invariant units (days or lower) on this span so that |
| 2950 | /// the largest possible non-zero unit is the one given. |
| 2951 | /// |
| 2952 | /// Units above day are ignored and dropped. |
| 2953 | /// |
| 2954 | /// If the given unit is greater than days, then it is treated as-if it |
| 2955 | /// were days. |
| 2956 | /// |
| 2957 | /// # Errors |
| 2958 | /// |
| 2959 | /// This can return an error in the case of lop-sided units. For example, |
| 2960 | /// if this span has maximal values for all units, then rebalancing is |
| 2961 | /// not possible because the number of days after balancing would exceed |
| 2962 | /// the limit. |
| 2963 | #[cfg (test)] // currently only used in zic parser? |
| 2964 | #[inline ] |
| 2965 | pub(crate) fn rebalance(self, unit: Unit) -> Result<Span, Error> { |
| 2966 | Span::from_invariant_nanoseconds(unit, self.to_invariant_nanoseconds()) |
| 2967 | } |
| 2968 | |
| 2969 | /// Returns true if and only if this span has at least one non-zero |
| 2970 | /// fractional second unit. |
| 2971 | #[inline ] |
| 2972 | pub(crate) fn has_fractional_seconds(&self) -> bool { |
| 2973 | self.milliseconds != C(0) |
| 2974 | || self.microseconds != C(0) |
| 2975 | || self.nanoseconds != C(0) |
| 2976 | } |
| 2977 | |
| 2978 | /// Returns an equivalent span, but with all non-calendar (units below |
| 2979 | /// days) set to zero. |
| 2980 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 2981 | pub(crate) fn only_calendar(self) -> Span { |
| 2982 | let mut span = self; |
| 2983 | span.hours = t::SpanHours::N::<0>(); |
| 2984 | span.minutes = t::SpanMinutes::N::<0>(); |
| 2985 | span.seconds = t::SpanSeconds::N::<0>(); |
| 2986 | span.milliseconds = t::SpanMilliseconds::N::<0>(); |
| 2987 | span.microseconds = t::SpanMicroseconds::N::<0>(); |
| 2988 | span.nanoseconds = t::SpanNanoseconds::N::<0>(); |
| 2989 | if span.sign != C(0) |
| 2990 | && span.years == C(0) |
| 2991 | && span.months == C(0) |
| 2992 | && span.weeks == C(0) |
| 2993 | && span.days == C(0) |
| 2994 | { |
| 2995 | span.sign = t::Sign::N::<0>(); |
| 2996 | } |
| 2997 | span.units = span.units.only_calendar(); |
| 2998 | span |
| 2999 | } |
| 3000 | |
| 3001 | /// Returns an equivalent span, but with all calendar (units above |
| 3002 | /// hours) set to zero. |
| 3003 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3004 | pub(crate) fn only_time(self) -> Span { |
| 3005 | let mut span = self; |
| 3006 | span.years = t::SpanYears::N::<0>(); |
| 3007 | span.months = t::SpanMonths::N::<0>(); |
| 3008 | span.weeks = t::SpanWeeks::N::<0>(); |
| 3009 | span.days = t::SpanDays::N::<0>(); |
| 3010 | if span.sign != C(0) |
| 3011 | && span.hours == C(0) |
| 3012 | && span.minutes == C(0) |
| 3013 | && span.seconds == C(0) |
| 3014 | && span.milliseconds == C(0) |
| 3015 | && span.microseconds == C(0) |
| 3016 | && span.nanoseconds == C(0) |
| 3017 | { |
| 3018 | span.sign = t::Sign::N::<0>(); |
| 3019 | } |
| 3020 | span.units = span.units.only_time(); |
| 3021 | span |
| 3022 | } |
| 3023 | |
| 3024 | /// Returns an equivalent span, but with all units greater than or equal to |
| 3025 | /// the one given set to zero. |
| 3026 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3027 | pub(crate) fn only_lower(self, unit: Unit) -> Span { |
| 3028 | let mut span = self; |
| 3029 | // Unit::Nanosecond is the minimum, so nothing can be smaller than it. |
| 3030 | if unit <= Unit::Microsecond { |
| 3031 | span = span.microseconds_ranged(C(0).rinto()); |
| 3032 | } |
| 3033 | if unit <= Unit::Millisecond { |
| 3034 | span = span.milliseconds_ranged(C(0).rinto()); |
| 3035 | } |
| 3036 | if unit <= Unit::Second { |
| 3037 | span = span.seconds_ranged(C(0).rinto()); |
| 3038 | } |
| 3039 | if unit <= Unit::Minute { |
| 3040 | span = span.minutes_ranged(C(0).rinto()); |
| 3041 | } |
| 3042 | if unit <= Unit::Hour { |
| 3043 | span = span.hours_ranged(C(0).rinto()); |
| 3044 | } |
| 3045 | if unit <= Unit::Day { |
| 3046 | span = span.days_ranged(C(0).rinto()); |
| 3047 | } |
| 3048 | if unit <= Unit::Week { |
| 3049 | span = span.weeks_ranged(C(0).rinto()); |
| 3050 | } |
| 3051 | if unit <= Unit::Month { |
| 3052 | span = span.months_ranged(C(0).rinto()); |
| 3053 | } |
| 3054 | if unit <= Unit::Year { |
| 3055 | span = span.years_ranged(C(0).rinto()); |
| 3056 | } |
| 3057 | span |
| 3058 | } |
| 3059 | |
| 3060 | /// Returns an equivalent span, but with all units less than the one given |
| 3061 | /// set to zero. |
| 3062 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3063 | pub(crate) fn without_lower(self, unit: Unit) -> Span { |
| 3064 | let mut span = self; |
| 3065 | if unit > Unit::Nanosecond { |
| 3066 | span = span.nanoseconds_ranged(C(0).rinto()); |
| 3067 | } |
| 3068 | if unit > Unit::Microsecond { |
| 3069 | span = span.microseconds_ranged(C(0).rinto()); |
| 3070 | } |
| 3071 | if unit > Unit::Millisecond { |
| 3072 | span = span.milliseconds_ranged(C(0).rinto()); |
| 3073 | } |
| 3074 | if unit > Unit::Second { |
| 3075 | span = span.seconds_ranged(C(0).rinto()); |
| 3076 | } |
| 3077 | if unit > Unit::Minute { |
| 3078 | span = span.minutes_ranged(C(0).rinto()); |
| 3079 | } |
| 3080 | if unit > Unit::Hour { |
| 3081 | span = span.hours_ranged(C(0).rinto()); |
| 3082 | } |
| 3083 | if unit > Unit::Day { |
| 3084 | span = span.days_ranged(C(0).rinto()); |
| 3085 | } |
| 3086 | if unit > Unit::Week { |
| 3087 | span = span.weeks_ranged(C(0).rinto()); |
| 3088 | } |
| 3089 | if unit > Unit::Month { |
| 3090 | span = span.months_ranged(C(0).rinto()); |
| 3091 | } |
| 3092 | // Unit::Year is the max, so nothing can be bigger than it. |
| 3093 | span |
| 3094 | } |
| 3095 | |
| 3096 | /// Returns an error corresponding to the smallest non-time non-zero unit. |
| 3097 | /// |
| 3098 | /// If all non-time units are zero, then this returns `None`. |
| 3099 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 3100 | pub(crate) fn smallest_non_time_non_zero_unit_error( |
| 3101 | &self, |
| 3102 | ) -> Option<Error> { |
| 3103 | let non_time_unit = self.largest_calendar_unit()?; |
| 3104 | Some(err!( |
| 3105 | "operation can only be performed with units of hours \ |
| 3106 | or smaller, but found non-zero {unit} units \ |
| 3107 | (operations on `Timestamp`, `tz::Offset` and `civil::Time` \ |
| 3108 | don't support calendar units in a `Span`)" , |
| 3109 | unit = non_time_unit.singular(), |
| 3110 | )) |
| 3111 | } |
| 3112 | |
| 3113 | /// Returns the largest non-zero calendar unit, or `None` if there are no |
| 3114 | /// non-zero calendar units. |
| 3115 | #[inline ] |
| 3116 | pub(crate) fn largest_calendar_unit(&self) -> Option<Unit> { |
| 3117 | self.units().only_calendar().largest_unit() |
| 3118 | } |
| 3119 | |
| 3120 | /// Returns the largest non-zero unit in this span. |
| 3121 | /// |
| 3122 | /// If all components of this span are zero, then `Unit::Nanosecond` is |
| 3123 | /// returned. |
| 3124 | #[inline ] |
| 3125 | pub(crate) fn largest_unit(&self) -> Unit { |
| 3126 | self.units().largest_unit().unwrap_or(Unit::Nanosecond) |
| 3127 | } |
| 3128 | |
| 3129 | /// Returns the set of units on this `Span`. |
| 3130 | #[inline ] |
| 3131 | pub(crate) fn units(&self) -> UnitSet { |
| 3132 | self.units |
| 3133 | } |
| 3134 | |
| 3135 | /// Returns a string containing the value of all non-zero fields. |
| 3136 | /// |
| 3137 | /// This is useful for debugging. Normally, this would be the "alternate" |
| 3138 | /// debug impl (perhaps), but that's what insta uses and I preferred having |
| 3139 | /// the friendly format used there since it is much more terse. |
| 3140 | #[cfg (feature = "alloc" )] |
| 3141 | #[allow (dead_code)] |
| 3142 | pub(crate) fn debug(&self) -> alloc::string::String { |
| 3143 | use core::fmt::Write; |
| 3144 | |
| 3145 | let mut buf = alloc::string::String::new(); |
| 3146 | write!(buf, "Span {{ sign: {:?}, units: {:?}" , self.sign, self.units) |
| 3147 | .unwrap(); |
| 3148 | if self.years != C(0) { |
| 3149 | write!(buf, ", years: {:?}" , self.years).unwrap(); |
| 3150 | } |
| 3151 | if self.months != C(0) { |
| 3152 | write!(buf, ", months: {:?}" , self.months).unwrap(); |
| 3153 | } |
| 3154 | if self.weeks != C(0) { |
| 3155 | write!(buf, ", weeks: {:?}" , self.weeks).unwrap(); |
| 3156 | } |
| 3157 | if self.days != C(0) { |
| 3158 | write!(buf, ", days: {:?}" , self.days).unwrap(); |
| 3159 | } |
| 3160 | if self.hours != C(0) { |
| 3161 | write!(buf, ", hours: {:?}" , self.hours).unwrap(); |
| 3162 | } |
| 3163 | if self.minutes != C(0) { |
| 3164 | write!(buf, ", minutes: {:?}" , self.minutes).unwrap(); |
| 3165 | } |
| 3166 | if self.seconds != C(0) { |
| 3167 | write!(buf, ", seconds: {:?}" , self.seconds).unwrap(); |
| 3168 | } |
| 3169 | if self.milliseconds != C(0) { |
| 3170 | write!(buf, ", milliseconds: {:?}" , self.milliseconds).unwrap(); |
| 3171 | } |
| 3172 | if self.microseconds != C(0) { |
| 3173 | write!(buf, ", microseconds: {:?}" , self.microseconds).unwrap(); |
| 3174 | } |
| 3175 | if self.nanoseconds != C(0) { |
| 3176 | write!(buf, ", nanoseconds: {:?}" , self.nanoseconds).unwrap(); |
| 3177 | } |
| 3178 | write!(buf, " }}" ).unwrap(); |
| 3179 | buf |
| 3180 | } |
| 3181 | |
| 3182 | /// Given some new units to set on this span and the span updates with the |
| 3183 | /// new units, this determines the what the sign of `new` should be. |
| 3184 | #[inline ] |
| 3185 | fn resign(&self, units: impl RInto<NoUnits>, new: &Span) -> Sign { |
| 3186 | fn imp(span: &Span, units: NoUnits, new: &Span) -> Sign { |
| 3187 | // Negative units anywhere always makes the entire span negative. |
| 3188 | if units < C(0) { |
| 3189 | return Sign::N::<-1>(); |
| 3190 | } |
| 3191 | let mut new_is_zero = new.sign == C(0) && units == C(0); |
| 3192 | // When `units == 0` and it was previously non-zero, then |
| 3193 | // `new.sign` won't be `0` and thus `new_is_zero` will be false |
| 3194 | // when it should be true. So in this case, we need to re-check all |
| 3195 | // the units to set the sign correctly. |
| 3196 | if units == C(0) { |
| 3197 | new_is_zero = new.years == C(0) |
| 3198 | && new.months == C(0) |
| 3199 | && new.weeks == C(0) |
| 3200 | && new.days == C(0) |
| 3201 | && new.hours == C(0) |
| 3202 | && new.minutes == C(0) |
| 3203 | && new.seconds == C(0) |
| 3204 | && new.milliseconds == C(0) |
| 3205 | && new.microseconds == C(0) |
| 3206 | && new.nanoseconds == C(0); |
| 3207 | } |
| 3208 | match (span.is_zero(), new_is_zero) { |
| 3209 | (_, true) => Sign::N::<0>(), |
| 3210 | (true, false) => units.signum().rinto(), |
| 3211 | // If the old and new span are both non-zero, and we know our new |
| 3212 | // units are not negative, then the sign remains unchanged. |
| 3213 | (false, false) => new.sign, |
| 3214 | } |
| 3215 | } |
| 3216 | imp(self, units.rinto(), new) |
| 3217 | } |
| 3218 | } |
| 3219 | |
| 3220 | impl Default for Span { |
| 3221 | #[inline ] |
| 3222 | fn default() -> Span { |
| 3223 | Span { |
| 3224 | sign: ri8::N::<0>(), |
| 3225 | units: UnitSet::empty(), |
| 3226 | years: C(constant:0).rinto(), |
| 3227 | months: C(constant:0).rinto(), |
| 3228 | weeks: C(constant:0).rinto(), |
| 3229 | days: C(constant:0).rinto(), |
| 3230 | hours: C(constant:0).rinto(), |
| 3231 | minutes: C(constant:0).rinto(), |
| 3232 | seconds: C(constant:0).rinto(), |
| 3233 | milliseconds: C(constant:0).rinto(), |
| 3234 | microseconds: C(constant:0).rinto(), |
| 3235 | nanoseconds: C(constant:0).rinto(), |
| 3236 | } |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | impl core::fmt::Debug for Span { |
| 3241 | #[inline ] |
| 3242 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 3243 | use crate::fmt::StdFmtWrite; |
| 3244 | |
| 3245 | friendly::DEFAULT_SPAN_PRINTER |
| 3246 | .print_span(self, StdFmtWrite(f)) |
| 3247 | .map_err(|_| core::fmt::Error) |
| 3248 | } |
| 3249 | } |
| 3250 | |
| 3251 | impl core::fmt::Display for Span { |
| 3252 | #[inline ] |
| 3253 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 3254 | use crate::fmt::StdFmtWrite; |
| 3255 | |
| 3256 | if f.alternate() { |
| 3257 | friendly::DEFAULT_SPAN_PRINTER |
| 3258 | .print_span(self, StdFmtWrite(f)) |
| 3259 | .map_err(|_| core::fmt::Error) |
| 3260 | } else { |
| 3261 | temporal::DEFAULT_SPAN_PRINTER |
| 3262 | .print_span(self, StdFmtWrite(f)) |
| 3263 | .map_err(|_| core::fmt::Error) |
| 3264 | } |
| 3265 | } |
| 3266 | } |
| 3267 | |
| 3268 | impl core::str::FromStr for Span { |
| 3269 | type Err = Error; |
| 3270 | |
| 3271 | #[inline ] |
| 3272 | fn from_str(string: &str) -> Result<Span, Error> { |
| 3273 | parse_iso_or_friendly(string.as_bytes()) |
| 3274 | } |
| 3275 | } |
| 3276 | |
| 3277 | impl core::ops::Neg for Span { |
| 3278 | type Output = Span; |
| 3279 | |
| 3280 | #[inline ] |
| 3281 | fn neg(self) -> Span { |
| 3282 | self.negate() |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | /// This multiplies each unit in a span by an integer. |
| 3287 | /// |
| 3288 | /// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`]. |
| 3289 | impl core::ops::Mul<i64> for Span { |
| 3290 | type Output = Span; |
| 3291 | |
| 3292 | #[inline ] |
| 3293 | fn mul(self, rhs: i64) -> Span { |
| 3294 | self.checked_mul(rhs) |
| 3295 | .expect(msg:"multiplying `Span` by a scalar overflowed" ) |
| 3296 | } |
| 3297 | } |
| 3298 | |
| 3299 | /// This multiplies each unit in a span by an integer. |
| 3300 | /// |
| 3301 | /// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`]. |
| 3302 | impl core::ops::Mul<Span> for i64 { |
| 3303 | type Output = Span; |
| 3304 | |
| 3305 | #[inline ] |
| 3306 | fn mul(self, rhs: Span) -> Span { |
| 3307 | rhs.checked_mul(self) |
| 3308 | .expect(msg:"multiplying `Span` by a scalar overflowed" ) |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | /// Converts a `Span` to a [`std::time::Duration`]. |
| 3313 | /// |
| 3314 | /// Note that this assumes that days are always 24 hours long. |
| 3315 | /// |
| 3316 | /// # Errors |
| 3317 | /// |
| 3318 | /// This can fail for only two reasons: |
| 3319 | /// |
| 3320 | /// * The span is negative. This is an error because a `std::time::Duration` is |
| 3321 | /// unsigned.) |
| 3322 | /// * The span has any non-zero units greater than hours. This is an error |
| 3323 | /// because it's impossible to determine the length of, e.g., a month without |
| 3324 | /// a reference date. |
| 3325 | /// |
| 3326 | /// This can never result in overflow because a `Duration` can represent a |
| 3327 | /// bigger span of time than `Span` when limited to units of hours or lower. |
| 3328 | /// |
| 3329 | /// If you need to convert a `Span` to a `Duration` that has non-zero |
| 3330 | /// units bigger than hours, then please use [`Span::to_duration`] with a |
| 3331 | /// corresponding relative date. |
| 3332 | /// |
| 3333 | /// # Example: maximal span |
| 3334 | /// |
| 3335 | /// This example shows the maximum possible span using units of hours or |
| 3336 | /// smaller, and the corresponding `Duration` value: |
| 3337 | /// |
| 3338 | /// ``` |
| 3339 | /// use std::time::Duration; |
| 3340 | /// |
| 3341 | /// use jiff::Span; |
| 3342 | /// |
| 3343 | /// let sp = Span::new() |
| 3344 | /// .hours(175_307_616) |
| 3345 | /// .minutes(10_518_456_960i64) |
| 3346 | /// .seconds(631_107_417_600i64) |
| 3347 | /// .milliseconds(631_107_417_600_000i64) |
| 3348 | /// .microseconds(631_107_417_600_000_000i64) |
| 3349 | /// .nanoseconds(9_223_372_036_854_775_807i64); |
| 3350 | /// let duration = Duration::try_from(sp)?; |
| 3351 | /// assert_eq!(duration, Duration::new(3_164_760_460_036, 854_775_807)); |
| 3352 | /// |
| 3353 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3354 | /// ``` |
| 3355 | /// |
| 3356 | /// # Example: converting a negative span |
| 3357 | /// |
| 3358 | /// Since a `Span` is signed and a `Duration` is unsigned, converting |
| 3359 | /// a negative `Span` to `Duration` will always fail. One can use |
| 3360 | /// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the |
| 3361 | /// span positive before converting it to a `Duration`: |
| 3362 | /// |
| 3363 | /// ``` |
| 3364 | /// use std::time::Duration; |
| 3365 | /// |
| 3366 | /// use jiff::{Span, ToSpan}; |
| 3367 | /// |
| 3368 | /// let span = -86_400.seconds().nanoseconds(1); |
| 3369 | /// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?); |
| 3370 | /// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1))); |
| 3371 | /// |
| 3372 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3373 | /// ``` |
| 3374 | impl TryFrom<Span> for UnsignedDuration { |
| 3375 | type Error = Error; |
| 3376 | |
| 3377 | #[inline ] |
| 3378 | fn try_from(sp: Span) -> Result<UnsignedDuration, Error> { |
| 3379 | // This isn't needed, but improves error messages. |
| 3380 | if sp.is_negative() { |
| 3381 | return Err(err!( |
| 3382 | "cannot convert negative span {sp:?} \ |
| 3383 | to unsigned std::time::Duration" , |
| 3384 | )); |
| 3385 | } |
| 3386 | SignedDuration::try_from(sp).and_then(op:UnsignedDuration::try_from) |
| 3387 | } |
| 3388 | } |
| 3389 | |
| 3390 | /// Converts a [`std::time::Duration`] to a `Span`. |
| 3391 | /// |
| 3392 | /// The span returned from this conversion will only ever have non-zero units |
| 3393 | /// of seconds or smaller. |
| 3394 | /// |
| 3395 | /// # Errors |
| 3396 | /// |
| 3397 | /// This only fails when the given `Duration` overflows the maximum number of |
| 3398 | /// seconds representable by a `Span`. |
| 3399 | /// |
| 3400 | /// # Example |
| 3401 | /// |
| 3402 | /// This shows a basic conversion: |
| 3403 | /// |
| 3404 | /// ``` |
| 3405 | /// use std::time::Duration; |
| 3406 | /// |
| 3407 | /// use jiff::{Span, ToSpan}; |
| 3408 | /// |
| 3409 | /// let duration = Duration::new(86_400, 123_456_789); |
| 3410 | /// let span = Span::try_from(duration)?; |
| 3411 | /// // A duration-to-span conversion always results in a span with |
| 3412 | /// // non-zero units no bigger than seconds. |
| 3413 | /// assert_eq!( |
| 3414 | /// span.fieldwise(), |
| 3415 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
| 3416 | /// ); |
| 3417 | /// |
| 3418 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3419 | /// ``` |
| 3420 | /// |
| 3421 | /// # Example: rounding |
| 3422 | /// |
| 3423 | /// This example shows how to convert a `Duration` to a `Span`, and then round |
| 3424 | /// it up to bigger units given a relative date: |
| 3425 | /// |
| 3426 | /// ``` |
| 3427 | /// use std::time::Duration; |
| 3428 | /// |
| 3429 | /// use jiff::{civil::date, Span, SpanRound, ToSpan, Unit}; |
| 3430 | /// |
| 3431 | /// let duration = Duration::new(450 * 86_401, 0); |
| 3432 | /// let span = Span::try_from(duration)?; |
| 3433 | /// // We get back a simple span of just seconds: |
| 3434 | /// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401)); |
| 3435 | /// // But we can balance it up to bigger units: |
| 3436 | /// let options = SpanRound::new() |
| 3437 | /// .largest(Unit::Year) |
| 3438 | /// .relative(date(2024, 1, 1)); |
| 3439 | /// assert_eq!( |
| 3440 | /// span.round(options)?, |
| 3441 | /// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(), |
| 3442 | /// ); |
| 3443 | /// |
| 3444 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3445 | /// ``` |
| 3446 | impl TryFrom<UnsignedDuration> for Span { |
| 3447 | type Error = Error; |
| 3448 | |
| 3449 | #[inline ] |
| 3450 | fn try_from(d: UnsignedDuration) -> Result<Span, Error> { |
| 3451 | let seconds = i64::try_from(d.as_secs()).map_err(|_| { |
| 3452 | err!("seconds from {d:?} overflows a 64-bit signed integer" ) |
| 3453 | })?; |
| 3454 | let nanoseconds = i64::from(d.subsec_nanos()); |
| 3455 | let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value(); |
| 3456 | let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value()) |
| 3457 | / t::NANOS_PER_MICRO.value(); |
| 3458 | let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value(); |
| 3459 | |
| 3460 | let span = Span::new().try_seconds(seconds).with_context(|| { |
| 3461 | err!("duration {d:?} overflows limits of a Jiff `Span`" ) |
| 3462 | })?; |
| 3463 | // These are all OK because `Duration::subsec_nanos` is guaranteed to |
| 3464 | // return less than 1_000_000_000 nanoseconds. And splitting that up |
| 3465 | // into millis, micros and nano components is guaranteed to fit into |
| 3466 | // the limits of a `Span`. |
| 3467 | Ok(span |
| 3468 | .milliseconds(milliseconds) |
| 3469 | .microseconds(microseconds) |
| 3470 | .nanoseconds(nanoseconds)) |
| 3471 | } |
| 3472 | } |
| 3473 | |
| 3474 | /// Converts a `Span` to a [`SignedDuration`]. |
| 3475 | /// |
| 3476 | /// Note that this assumes that days are always 24 hours long. |
| 3477 | /// |
| 3478 | /// # Errors |
| 3479 | /// |
| 3480 | /// This can fail for only when the span has any non-zero units greater than |
| 3481 | /// hours. This is an error because it's impossible to determine the length of, |
| 3482 | /// e.g., a month without a reference date. |
| 3483 | /// |
| 3484 | /// This can never result in overflow because a `SignedDuration` can represent |
| 3485 | /// a bigger span of time than `Span` when limited to units of hours or lower. |
| 3486 | /// |
| 3487 | /// If you need to convert a `Span` to a `SignedDuration` that has non-zero |
| 3488 | /// units bigger than hours, then please use [`Span::to_duration`] with a |
| 3489 | /// corresponding relative date. |
| 3490 | /// |
| 3491 | /// # Example: maximal span |
| 3492 | /// |
| 3493 | /// This example shows the maximum possible span using units of hours or |
| 3494 | /// smaller, and the corresponding `SignedDuration` value: |
| 3495 | /// |
| 3496 | /// ``` |
| 3497 | /// use jiff::{SignedDuration, Span}; |
| 3498 | /// |
| 3499 | /// let sp = Span::new() |
| 3500 | /// .hours(175_307_616) |
| 3501 | /// .minutes(10_518_456_960i64) |
| 3502 | /// .seconds(631_107_417_600i64) |
| 3503 | /// .milliseconds(631_107_417_600_000i64) |
| 3504 | /// .microseconds(631_107_417_600_000_000i64) |
| 3505 | /// .nanoseconds(9_223_372_036_854_775_807i64); |
| 3506 | /// let duration = SignedDuration::try_from(sp)?; |
| 3507 | /// assert_eq!(duration, SignedDuration::new(3_164_760_460_036, 854_775_807)); |
| 3508 | /// |
| 3509 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3510 | /// ``` |
| 3511 | impl TryFrom<Span> for SignedDuration { |
| 3512 | type Error = Error; |
| 3513 | |
| 3514 | #[inline ] |
| 3515 | fn try_from(sp: Span) -> Result<SignedDuration, Error> { |
| 3516 | requires_relative_date_err(sp.largest_unit()).context( |
| 3517 | consequent:"failed to convert span to duration without relative datetime \ |
| 3518 | consequent: (must use `Span::to_duration` instead)" , |
| 3519 | )?; |
| 3520 | Ok(sp.to_duration_invariant()) |
| 3521 | } |
| 3522 | } |
| 3523 | |
| 3524 | /// Converts a [`SignedDuration`] to a `Span`. |
| 3525 | /// |
| 3526 | /// The span returned from this conversion will only ever have non-zero units |
| 3527 | /// of seconds or smaller. |
| 3528 | /// |
| 3529 | /// # Errors |
| 3530 | /// |
| 3531 | /// This only fails when the given `SignedDuration` overflows the maximum |
| 3532 | /// number of seconds representable by a `Span`. |
| 3533 | /// |
| 3534 | /// # Example |
| 3535 | /// |
| 3536 | /// This shows a basic conversion: |
| 3537 | /// |
| 3538 | /// ``` |
| 3539 | /// use jiff::{SignedDuration, Span, ToSpan}; |
| 3540 | /// |
| 3541 | /// let duration = SignedDuration::new(86_400, 123_456_789); |
| 3542 | /// let span = Span::try_from(duration)?; |
| 3543 | /// // A duration-to-span conversion always results in a span with |
| 3544 | /// // non-zero units no bigger than seconds. |
| 3545 | /// assert_eq!( |
| 3546 | /// span.fieldwise(), |
| 3547 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
| 3548 | /// ); |
| 3549 | /// |
| 3550 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3551 | /// ``` |
| 3552 | /// |
| 3553 | /// # Example: rounding |
| 3554 | /// |
| 3555 | /// This example shows how to convert a `SignedDuration` to a `Span`, and then |
| 3556 | /// round it up to bigger units given a relative date: |
| 3557 | /// |
| 3558 | /// ``` |
| 3559 | /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit}; |
| 3560 | /// |
| 3561 | /// let duration = SignedDuration::new(450 * 86_401, 0); |
| 3562 | /// let span = Span::try_from(duration)?; |
| 3563 | /// // We get back a simple span of just seconds: |
| 3564 | /// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401)); |
| 3565 | /// // But we can balance it up to bigger units: |
| 3566 | /// let options = SpanRound::new() |
| 3567 | /// .largest(Unit::Year) |
| 3568 | /// .relative(date(2024, 1, 1)); |
| 3569 | /// assert_eq!( |
| 3570 | /// span.round(options)?, |
| 3571 | /// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(), |
| 3572 | /// ); |
| 3573 | /// |
| 3574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3575 | /// ``` |
| 3576 | impl TryFrom<SignedDuration> for Span { |
| 3577 | type Error = Error; |
| 3578 | |
| 3579 | #[inline ] |
| 3580 | fn try_from(d: SignedDuration) -> Result<Span, Error> { |
| 3581 | let seconds = d.as_secs(); |
| 3582 | let nanoseconds = i64::from(d.subsec_nanos()); |
| 3583 | let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value(); |
| 3584 | let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value()) |
| 3585 | / t::NANOS_PER_MICRO.value(); |
| 3586 | let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value(); |
| 3587 | |
| 3588 | let span = Span::new().try_seconds(seconds).with_context(|| { |
| 3589 | err!("signed duration {d:?} overflows limits of a Jiff `Span`" ) |
| 3590 | })?; |
| 3591 | // These are all OK because `|SignedDuration::subsec_nanos|` is |
| 3592 | // guaranteed to return less than 1_000_000_000 nanoseconds. And |
| 3593 | // splitting that up into millis, micros and nano components is |
| 3594 | // guaranteed to fit into the limits of a `Span`. |
| 3595 | Ok(span |
| 3596 | .milliseconds(milliseconds) |
| 3597 | .microseconds(microseconds) |
| 3598 | .nanoseconds(nanoseconds)) |
| 3599 | } |
| 3600 | } |
| 3601 | |
| 3602 | #[cfg (feature = "serde" )] |
| 3603 | impl serde::Serialize for Span { |
| 3604 | #[inline ] |
| 3605 | fn serialize<S: serde::Serializer>( |
| 3606 | &self, |
| 3607 | serializer: S, |
| 3608 | ) -> Result<S::Ok, S::Error> { |
| 3609 | serializer.collect_str(self) |
| 3610 | } |
| 3611 | } |
| 3612 | |
| 3613 | #[cfg (feature = "serde" )] |
| 3614 | impl<'de> serde::Deserialize<'de> for Span { |
| 3615 | #[inline ] |
| 3616 | fn deserialize<D: serde::Deserializer<'de>>( |
| 3617 | deserializer: D, |
| 3618 | ) -> Result<Span, D::Error> { |
| 3619 | use serde::de; |
| 3620 | |
| 3621 | struct SpanVisitor; |
| 3622 | |
| 3623 | impl<'de> de::Visitor<'de> for SpanVisitor { |
| 3624 | type Value = Span; |
| 3625 | |
| 3626 | fn expecting( |
| 3627 | &self, |
| 3628 | f: &mut core::fmt::Formatter, |
| 3629 | ) -> core::fmt::Result { |
| 3630 | f.write_str("a span duration string" ) |
| 3631 | } |
| 3632 | |
| 3633 | #[inline ] |
| 3634 | fn visit_bytes<E: de::Error>( |
| 3635 | self, |
| 3636 | value: &[u8], |
| 3637 | ) -> Result<Span, E> { |
| 3638 | parse_iso_or_friendly(value).map_err(de::Error::custom) |
| 3639 | } |
| 3640 | |
| 3641 | #[inline ] |
| 3642 | fn visit_str<E: de::Error>(self, value: &str) -> Result<Span, E> { |
| 3643 | self.visit_bytes(value.as_bytes()) |
| 3644 | } |
| 3645 | } |
| 3646 | |
| 3647 | deserializer.deserialize_str(SpanVisitor) |
| 3648 | } |
| 3649 | } |
| 3650 | |
| 3651 | #[cfg (test)] |
| 3652 | impl quickcheck::Arbitrary for Span { |
| 3653 | fn arbitrary(g: &mut quickcheck::Gen) -> Span { |
| 3654 | // In order to sample from the full space of possible spans, we need |
| 3655 | // to provide a relative datetime. But if we do that, then it's |
| 3656 | // possible the span plus the datetime overflows. So we pick one |
| 3657 | // datetime and shrink the size of the span we can produce. |
| 3658 | type Nanos = ri64<-631_107_417_600_000_000, 631_107_417_600_000_000>; |
| 3659 | let nanos = Nanos::arbitrary(g).get(); |
| 3660 | let relative = |
| 3661 | SpanRelativeTo::from(DateTime::constant(0, 1, 1, 0, 0, 0, 0)); |
| 3662 | let round = |
| 3663 | SpanRound::new().largest(Unit::arbitrary(g)).relative(relative); |
| 3664 | Span::new().nanoseconds(nanos).round(round).unwrap() |
| 3665 | } |
| 3666 | |
| 3667 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
| 3668 | alloc::boxed::Box::new( |
| 3669 | ( |
| 3670 | ( |
| 3671 | self.get_years_ranged(), |
| 3672 | self.get_months_ranged(), |
| 3673 | self.get_weeks_ranged(), |
| 3674 | self.get_days_ranged(), |
| 3675 | ), |
| 3676 | ( |
| 3677 | self.get_hours_ranged(), |
| 3678 | self.get_minutes_ranged(), |
| 3679 | self.get_seconds_ranged(), |
| 3680 | self.get_milliseconds_ranged(), |
| 3681 | ), |
| 3682 | ( |
| 3683 | self.get_microseconds_ranged(), |
| 3684 | self.get_nanoseconds_ranged(), |
| 3685 | ), |
| 3686 | ) |
| 3687 | .shrink() |
| 3688 | .filter_map( |
| 3689 | |( |
| 3690 | (years, months, weeks, days), |
| 3691 | (hours, minutes, seconds, milliseconds), |
| 3692 | (microseconds, nanoseconds), |
| 3693 | )| { |
| 3694 | let span = Span::new() |
| 3695 | .years_ranged(years) |
| 3696 | .months_ranged(months) |
| 3697 | .weeks_ranged(weeks) |
| 3698 | .days_ranged(days) |
| 3699 | .hours_ranged(hours) |
| 3700 | .minutes_ranged(minutes) |
| 3701 | .seconds_ranged(seconds) |
| 3702 | .milliseconds_ranged(milliseconds) |
| 3703 | .microseconds_ranged(microseconds) |
| 3704 | .nanoseconds_ranged(nanoseconds); |
| 3705 | Some(span) |
| 3706 | }, |
| 3707 | ), |
| 3708 | ) |
| 3709 | } |
| 3710 | } |
| 3711 | |
| 3712 | /// A wrapper for [`Span`] that implements the `Hash`, `Eq` and `PartialEq` |
| 3713 | /// traits. |
| 3714 | /// |
| 3715 | /// A `SpanFieldwise` is meant to make it easy to compare two spans in a "dumb" |
| 3716 | /// way based purely on its unit values, while still providing a speed bump |
| 3717 | /// to avoid accidentally doing this comparison on `Span` directly. This is |
| 3718 | /// distinct from something like [`Span::compare`] that performs a comparison |
| 3719 | /// on the actual elapsed time of two spans. |
| 3720 | /// |
| 3721 | /// It is generally discouraged to use `SpanFieldwise` since spans that |
| 3722 | /// represent an equivalent elapsed amount of time may compare unequal. |
| 3723 | /// However, in some cases, it is useful to be able to assert precise field |
| 3724 | /// values. For example, Jiff itself makes heavy use of fieldwise comparisons |
| 3725 | /// for tests. |
| 3726 | /// |
| 3727 | /// # Construction |
| 3728 | /// |
| 3729 | /// While callers may use `SpanFieldwise(span)` (where `span` has type [`Span`]) |
| 3730 | /// to construct a value of this type, callers may find [`Span::fieldwise`] |
| 3731 | /// more convenient. Namely, `Span::fieldwise` may avoid the need to explicitly |
| 3732 | /// import `SpanFieldwise`. |
| 3733 | /// |
| 3734 | /// # Trait implementations |
| 3735 | /// |
| 3736 | /// In addition to implementing the `Hash`, `Eq` and `PartialEq` traits, this |
| 3737 | /// type also provides `PartialEq` impls for comparing a `Span` with a |
| 3738 | /// `SpanFieldwise`. This simplifies comparisons somewhat while still requiring |
| 3739 | /// that at least one of the values has an explicit fieldwise comparison type. |
| 3740 | /// |
| 3741 | /// # Safety |
| 3742 | /// |
| 3743 | /// This type is guaranteed to have the same layout in memory as [`Span`]. |
| 3744 | /// |
| 3745 | /// # Example: the difference between `SpanFieldwise` and [`Span::compare`] |
| 3746 | /// |
| 3747 | /// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be |
| 3748 | /// distinct values, but `Span::compare` considers them to be equivalent: |
| 3749 | /// |
| 3750 | /// ``` |
| 3751 | /// use std::cmp::Ordering; |
| 3752 | /// use jiff::ToSpan; |
| 3753 | /// |
| 3754 | /// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise()); |
| 3755 | /// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal); |
| 3756 | /// |
| 3757 | /// // These comparisons are allowed between a `Span` and a `SpanFieldwise`. |
| 3758 | /// // Namely, as long as one value is "fieldwise," then the comparison is OK. |
| 3759 | /// assert_ne!(120.minutes().fieldwise(), 2.hours()); |
| 3760 | /// assert_ne!(120.minutes(), 2.hours().fieldwise()); |
| 3761 | /// |
| 3762 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3763 | /// ``` |
| 3764 | #[derive (Clone, Copy, Debug, Default)] |
| 3765 | #[repr (transparent)] |
| 3766 | pub struct SpanFieldwise(pub Span); |
| 3767 | |
| 3768 | // Exists so that things like `-1.day().fieldwise()` works as expected. |
| 3769 | impl core::ops::Neg for SpanFieldwise { |
| 3770 | type Output = SpanFieldwise; |
| 3771 | |
| 3772 | #[inline ] |
| 3773 | fn neg(self) -> SpanFieldwise { |
| 3774 | SpanFieldwise(self.0.negate()) |
| 3775 | } |
| 3776 | } |
| 3777 | |
| 3778 | impl Eq for SpanFieldwise {} |
| 3779 | |
| 3780 | impl PartialEq for SpanFieldwise { |
| 3781 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
| 3782 | self.0.sign == rhs.0.sign |
| 3783 | && self.0.years == rhs.0.years |
| 3784 | && self.0.months == rhs.0.months |
| 3785 | && self.0.weeks == rhs.0.weeks |
| 3786 | && self.0.days == rhs.0.days |
| 3787 | && self.0.hours == rhs.0.hours |
| 3788 | && self.0.minutes == rhs.0.minutes |
| 3789 | && self.0.seconds == rhs.0.seconds |
| 3790 | && self.0.milliseconds == rhs.0.milliseconds |
| 3791 | && self.0.microseconds == rhs.0.microseconds |
| 3792 | && self.0.nanoseconds == rhs.0.nanoseconds |
| 3793 | } |
| 3794 | } |
| 3795 | |
| 3796 | impl<'a> PartialEq<SpanFieldwise> for &'a SpanFieldwise { |
| 3797 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
| 3798 | *self == rhs |
| 3799 | } |
| 3800 | } |
| 3801 | |
| 3802 | impl PartialEq<Span> for SpanFieldwise { |
| 3803 | fn eq(&self, rhs: &Span) -> bool { |
| 3804 | self == rhs.fieldwise() |
| 3805 | } |
| 3806 | } |
| 3807 | |
| 3808 | impl PartialEq<SpanFieldwise> for Span { |
| 3809 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
| 3810 | self.fieldwise() == *rhs |
| 3811 | } |
| 3812 | } |
| 3813 | |
| 3814 | impl<'a> PartialEq<SpanFieldwise> for &'a Span { |
| 3815 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
| 3816 | self.fieldwise() == *rhs |
| 3817 | } |
| 3818 | } |
| 3819 | |
| 3820 | impl core::hash::Hash for SpanFieldwise { |
| 3821 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
| 3822 | self.0.sign.hash(state); |
| 3823 | self.0.years.hash(state); |
| 3824 | self.0.months.hash(state); |
| 3825 | self.0.weeks.hash(state); |
| 3826 | self.0.days.hash(state); |
| 3827 | self.0.hours.hash(state); |
| 3828 | self.0.minutes.hash(state); |
| 3829 | self.0.seconds.hash(state); |
| 3830 | self.0.milliseconds.hash(state); |
| 3831 | self.0.microseconds.hash(state); |
| 3832 | self.0.nanoseconds.hash(state); |
| 3833 | } |
| 3834 | } |
| 3835 | |
| 3836 | impl From<Span> for SpanFieldwise { |
| 3837 | fn from(span: Span) -> SpanFieldwise { |
| 3838 | SpanFieldwise(span) |
| 3839 | } |
| 3840 | } |
| 3841 | |
| 3842 | impl From<SpanFieldwise> for Span { |
| 3843 | fn from(span: SpanFieldwise) -> Span { |
| 3844 | span.0 |
| 3845 | } |
| 3846 | } |
| 3847 | |
| 3848 | /// A trait for enabling concise literals for creating [`Span`] values. |
| 3849 | /// |
| 3850 | /// In short, this trait lets you write something like `5.seconds()` or |
| 3851 | /// `1.day()` to create a [`Span`]. Once a `Span` has been created, you can |
| 3852 | /// use its mutator methods to add more fields. For example, |
| 3853 | /// `1.day().hours(10)` is equivalent to `Span::new().days(1).hours(10)`. |
| 3854 | /// |
| 3855 | /// This trait is implemented for the following integer types: `i8`, `i16`, |
| 3856 | /// `i32` and `i64`. |
| 3857 | /// |
| 3858 | /// Note that this trait is provided as a convenience and should generally |
| 3859 | /// only be used for literals in your source code. You should not use this |
| 3860 | /// trait on numbers provided by end users. Namely, if the number provided |
| 3861 | /// is not within Jiff's span limits, then these trait methods will panic. |
| 3862 | /// Instead, use fallible mutator constructors like [`Span::try_days`] |
| 3863 | /// or [`Span::try_seconds`]. |
| 3864 | /// |
| 3865 | /// # Example |
| 3866 | /// |
| 3867 | /// ``` |
| 3868 | /// use jiff::ToSpan; |
| 3869 | /// |
| 3870 | /// assert_eq!(5.days().to_string(), "P5D" ); |
| 3871 | /// assert_eq!(5.days().hours(10).to_string(), "P5DT10H" ); |
| 3872 | /// |
| 3873 | /// // Negation works and it doesn't matter where the sign goes. It can be |
| 3874 | /// // applied to the span itself or to the integer. |
| 3875 | /// assert_eq!((-5.days()).to_string(), "-P5D" ); |
| 3876 | /// assert_eq!((-5).days().to_string(), "-P5D" ); |
| 3877 | /// ``` |
| 3878 | /// |
| 3879 | /// # Example: alternative via span parsing |
| 3880 | /// |
| 3881 | /// Another way of tersely building a `Span` value is by parsing a ISO 8601 |
| 3882 | /// duration string: |
| 3883 | /// |
| 3884 | /// ``` |
| 3885 | /// use jiff::Span; |
| 3886 | /// |
| 3887 | /// let span = "P5y2m15dT23h30m10s" .parse::<Span>()?; |
| 3888 | /// assert_eq!( |
| 3889 | /// span.fieldwise(), |
| 3890 | /// Span::new().years(5).months(2).days(15).hours(23).minutes(30).seconds(10), |
| 3891 | /// ); |
| 3892 | /// |
| 3893 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3894 | /// ``` |
| 3895 | pub trait ToSpan: Sized { |
| 3896 | /// Create a new span from this integer in units of years. |
| 3897 | /// |
| 3898 | /// # Panics |
| 3899 | /// |
| 3900 | /// When `Span::new().years(self)` would panic. |
| 3901 | fn years(self) -> Span; |
| 3902 | |
| 3903 | /// Create a new span from this integer in units of months. |
| 3904 | /// |
| 3905 | /// # Panics |
| 3906 | /// |
| 3907 | /// When `Span::new().months(self)` would panic. |
| 3908 | fn months(self) -> Span; |
| 3909 | |
| 3910 | /// Create a new span from this integer in units of weeks. |
| 3911 | /// |
| 3912 | /// # Panics |
| 3913 | /// |
| 3914 | /// When `Span::new().weeks(self)` would panic. |
| 3915 | fn weeks(self) -> Span; |
| 3916 | |
| 3917 | /// Create a new span from this integer in units of days. |
| 3918 | /// |
| 3919 | /// # Panics |
| 3920 | /// |
| 3921 | /// When `Span::new().days(self)` would panic. |
| 3922 | fn days(self) -> Span; |
| 3923 | |
| 3924 | /// Create a new span from this integer in units of hours. |
| 3925 | /// |
| 3926 | /// # Panics |
| 3927 | /// |
| 3928 | /// When `Span::new().hours(self)` would panic. |
| 3929 | fn hours(self) -> Span; |
| 3930 | |
| 3931 | /// Create a new span from this integer in units of minutes. |
| 3932 | /// |
| 3933 | /// # Panics |
| 3934 | /// |
| 3935 | /// When `Span::new().minutes(self)` would panic. |
| 3936 | fn minutes(self) -> Span; |
| 3937 | |
| 3938 | /// Create a new span from this integer in units of seconds. |
| 3939 | /// |
| 3940 | /// # Panics |
| 3941 | /// |
| 3942 | /// When `Span::new().seconds(self)` would panic. |
| 3943 | fn seconds(self) -> Span; |
| 3944 | |
| 3945 | /// Create a new span from this integer in units of milliseconds. |
| 3946 | /// |
| 3947 | /// # Panics |
| 3948 | /// |
| 3949 | /// When `Span::new().milliseconds(self)` would panic. |
| 3950 | fn milliseconds(self) -> Span; |
| 3951 | |
| 3952 | /// Create a new span from this integer in units of microseconds. |
| 3953 | /// |
| 3954 | /// # Panics |
| 3955 | /// |
| 3956 | /// When `Span::new().microseconds(self)` would panic. |
| 3957 | fn microseconds(self) -> Span; |
| 3958 | |
| 3959 | /// Create a new span from this integer in units of nanoseconds. |
| 3960 | /// |
| 3961 | /// # Panics |
| 3962 | /// |
| 3963 | /// When `Span::new().nanoseconds(self)` would panic. |
| 3964 | fn nanoseconds(self) -> Span; |
| 3965 | |
| 3966 | /// Equivalent to `years()`, but reads better for singular units. |
| 3967 | #[inline ] |
| 3968 | fn year(self) -> Span { |
| 3969 | self.years() |
| 3970 | } |
| 3971 | |
| 3972 | /// Equivalent to `months()`, but reads better for singular units. |
| 3973 | #[inline ] |
| 3974 | fn month(self) -> Span { |
| 3975 | self.months() |
| 3976 | } |
| 3977 | |
| 3978 | /// Equivalent to `weeks()`, but reads better for singular units. |
| 3979 | #[inline ] |
| 3980 | fn week(self) -> Span { |
| 3981 | self.weeks() |
| 3982 | } |
| 3983 | |
| 3984 | /// Equivalent to `days()`, but reads better for singular units. |
| 3985 | #[inline ] |
| 3986 | fn day(self) -> Span { |
| 3987 | self.days() |
| 3988 | } |
| 3989 | |
| 3990 | /// Equivalent to `hours()`, but reads better for singular units. |
| 3991 | #[inline ] |
| 3992 | fn hour(self) -> Span { |
| 3993 | self.hours() |
| 3994 | } |
| 3995 | |
| 3996 | /// Equivalent to `minutes()`, but reads better for singular units. |
| 3997 | #[inline ] |
| 3998 | fn minute(self) -> Span { |
| 3999 | self.minutes() |
| 4000 | } |
| 4001 | |
| 4002 | /// Equivalent to `seconds()`, but reads better for singular units. |
| 4003 | #[inline ] |
| 4004 | fn second(self) -> Span { |
| 4005 | self.seconds() |
| 4006 | } |
| 4007 | |
| 4008 | /// Equivalent to `milliseconds()`, but reads better for singular units. |
| 4009 | #[inline ] |
| 4010 | fn millisecond(self) -> Span { |
| 4011 | self.milliseconds() |
| 4012 | } |
| 4013 | |
| 4014 | /// Equivalent to `microseconds()`, but reads better for singular units. |
| 4015 | #[inline ] |
| 4016 | fn microsecond(self) -> Span { |
| 4017 | self.microseconds() |
| 4018 | } |
| 4019 | |
| 4020 | /// Equivalent to `nanoseconds()`, but reads better for singular units. |
| 4021 | #[inline ] |
| 4022 | fn nanosecond(self) -> Span { |
| 4023 | self.nanoseconds() |
| 4024 | } |
| 4025 | } |
| 4026 | |
| 4027 | macro_rules! impl_to_span { |
| 4028 | ($ty:ty) => { |
| 4029 | impl ToSpan for $ty { |
| 4030 | #[inline] |
| 4031 | fn years(self) -> Span { |
| 4032 | Span::new().years(self) |
| 4033 | } |
| 4034 | #[inline] |
| 4035 | fn months(self) -> Span { |
| 4036 | Span::new().months(self) |
| 4037 | } |
| 4038 | #[inline] |
| 4039 | fn weeks(self) -> Span { |
| 4040 | Span::new().weeks(self) |
| 4041 | } |
| 4042 | #[inline] |
| 4043 | fn days(self) -> Span { |
| 4044 | Span::new().days(self) |
| 4045 | } |
| 4046 | #[inline] |
| 4047 | fn hours(self) -> Span { |
| 4048 | Span::new().hours(self) |
| 4049 | } |
| 4050 | #[inline] |
| 4051 | fn minutes(self) -> Span { |
| 4052 | Span::new().minutes(self) |
| 4053 | } |
| 4054 | #[inline] |
| 4055 | fn seconds(self) -> Span { |
| 4056 | Span::new().seconds(self) |
| 4057 | } |
| 4058 | #[inline] |
| 4059 | fn milliseconds(self) -> Span { |
| 4060 | Span::new().milliseconds(self) |
| 4061 | } |
| 4062 | #[inline] |
| 4063 | fn microseconds(self) -> Span { |
| 4064 | Span::new().microseconds(self) |
| 4065 | } |
| 4066 | #[inline] |
| 4067 | fn nanoseconds(self) -> Span { |
| 4068 | Span::new().nanoseconds(self) |
| 4069 | } |
| 4070 | } |
| 4071 | }; |
| 4072 | } |
| 4073 | |
| 4074 | impl_to_span!(i8); |
| 4075 | impl_to_span!(i16); |
| 4076 | impl_to_span!(i32); |
| 4077 | impl_to_span!(i64); |
| 4078 | |
| 4079 | /// A way to refer to a single calendar or clock unit. |
| 4080 | /// |
| 4081 | /// This type is principally used in APIs involving a [`Span`], which is a |
| 4082 | /// duration of time. For example, routines like [`Zoned::until`] permit |
| 4083 | /// specifying the largest unit of the span returned: |
| 4084 | /// |
| 4085 | /// ``` |
| 4086 | /// use jiff::{Unit, Zoned}; |
| 4087 | /// |
| 4088 | /// let zdt1: Zoned = "2024-07-06 17:40-04[America/New_York]" .parse()?; |
| 4089 | /// let zdt2: Zoned = "2024-11-05 08:00-05[America/New_York]" .parse()?; |
| 4090 | /// let span = zdt1.until((Unit::Year, &zdt2))?; |
| 4091 | /// assert_eq!(format!("{span:#}" ), "3mo 29d 14h 20m" ); |
| 4092 | /// |
| 4093 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4094 | /// ``` |
| 4095 | /// |
| 4096 | /// But a `Unit` is also used in APIs for rounding datetimes themselves: |
| 4097 | /// |
| 4098 | /// ``` |
| 4099 | /// use jiff::{Unit, Zoned}; |
| 4100 | /// |
| 4101 | /// let zdt: Zoned = "2024-07-06 17:44:22.158-04[America/New_York]" .parse()?; |
| 4102 | /// let nearest_minute = zdt.round(Unit::Minute)?; |
| 4103 | /// assert_eq!( |
| 4104 | /// nearest_minute.to_string(), |
| 4105 | /// "2024-07-06T17:44:00-04:00[America/New_York]" , |
| 4106 | /// ); |
| 4107 | /// |
| 4108 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4109 | /// ``` |
| 4110 | /// |
| 4111 | /// # Example: ordering |
| 4112 | /// |
| 4113 | /// This example demonstrates that `Unit` has an ordering defined such that |
| 4114 | /// bigger units compare greater than smaller units. |
| 4115 | /// |
| 4116 | /// ``` |
| 4117 | /// use jiff::Unit; |
| 4118 | /// |
| 4119 | /// assert!(Unit::Year > Unit::Nanosecond); |
| 4120 | /// assert!(Unit::Day > Unit::Hour); |
| 4121 | /// assert!(Unit::Hour > Unit::Minute); |
| 4122 | /// assert!(Unit::Hour > Unit::Minute); |
| 4123 | /// assert_eq!(Unit::Hour, Unit::Hour); |
| 4124 | /// ``` |
| 4125 | #[derive (Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] |
| 4126 | pub enum Unit { |
| 4127 | /// A Gregorian calendar year. It usually has 365 days for non-leap years, |
| 4128 | /// and 366 days for leap years. |
| 4129 | Year = 9, |
| 4130 | /// A Gregorian calendar month. It usually has one of 28, 29, 30 or 31 |
| 4131 | /// days. |
| 4132 | Month = 8, |
| 4133 | /// A week is 7 days that either begins on Sunday or Monday. |
| 4134 | Week = 7, |
| 4135 | /// A day is usually 24 hours, but some days may have different lengths |
| 4136 | /// due to time zone transitions. |
| 4137 | Day = 6, |
| 4138 | /// An hour is always 60 minutes. |
| 4139 | Hour = 5, |
| 4140 | /// A minute is always 60 seconds. (Jiff behaves as if leap seconds do not |
| 4141 | /// exist.) |
| 4142 | Minute = 4, |
| 4143 | /// A second is always 1,000 milliseconds. |
| 4144 | Second = 3, |
| 4145 | /// A millisecond is always 1,000 microseconds. |
| 4146 | Millisecond = 2, |
| 4147 | /// A microsecond is always 1,000 nanoseconds. |
| 4148 | Microsecond = 1, |
| 4149 | /// A nanosecond is the smallest granularity of time supported by Jiff. |
| 4150 | Nanosecond = 0, |
| 4151 | } |
| 4152 | |
| 4153 | impl Unit { |
| 4154 | /// Returns the next biggest unit, if one exists. |
| 4155 | pub(crate) fn next(&self) -> Option<Unit> { |
| 4156 | match *self { |
| 4157 | Unit::Year => None, |
| 4158 | Unit::Month => Some(Unit::Year), |
| 4159 | Unit::Week => Some(Unit::Month), |
| 4160 | Unit::Day => Some(Unit::Week), |
| 4161 | Unit::Hour => Some(Unit::Day), |
| 4162 | Unit::Minute => Some(Unit::Hour), |
| 4163 | Unit::Second => Some(Unit::Minute), |
| 4164 | Unit::Millisecond => Some(Unit::Second), |
| 4165 | Unit::Microsecond => Some(Unit::Millisecond), |
| 4166 | Unit::Nanosecond => Some(Unit::Microsecond), |
| 4167 | } |
| 4168 | } |
| 4169 | |
| 4170 | /// Returns the number of nanoseconds in this unit as a 128-bit integer. |
| 4171 | /// |
| 4172 | /// # Panics |
| 4173 | /// |
| 4174 | /// When this unit is always variable. That is, years or months. |
| 4175 | pub(crate) fn nanoseconds(self) -> NoUnits128 { |
| 4176 | match self { |
| 4177 | Unit::Nanosecond => Constant(1), |
| 4178 | Unit::Microsecond => t::NANOS_PER_MICRO, |
| 4179 | Unit::Millisecond => t::NANOS_PER_MILLI, |
| 4180 | Unit::Second => t::NANOS_PER_SECOND, |
| 4181 | Unit::Minute => t::NANOS_PER_MINUTE, |
| 4182 | Unit::Hour => t::NANOS_PER_HOUR, |
| 4183 | Unit::Day => t::NANOS_PER_CIVIL_DAY, |
| 4184 | Unit::Week => t::NANOS_PER_CIVIL_WEEK, |
| 4185 | unit => unreachable!(" {unit:?} has no definitive time interval" ), |
| 4186 | } |
| 4187 | .rinto() |
| 4188 | } |
| 4189 | |
| 4190 | /// Returns true when this unit is definitively variable. |
| 4191 | /// |
| 4192 | /// In effect, this is any unit bigger than 'day', because any such unit |
| 4193 | /// can vary in time depending on its reference point. A 'day' can as well, |
| 4194 | /// but we sorta special case 'day' to mean '24 hours' for cases where |
| 4195 | /// the user is dealing with civil time. |
| 4196 | fn is_variable(self) -> bool { |
| 4197 | matches!(self, Unit::Year | Unit::Month | Unit::Week | Unit::Day) |
| 4198 | } |
| 4199 | |
| 4200 | /// A human readable singular description of this unit of time. |
| 4201 | pub(crate) fn singular(&self) -> &'static str { |
| 4202 | match *self { |
| 4203 | Unit::Year => "year" , |
| 4204 | Unit::Month => "month" , |
| 4205 | Unit::Week => "week" , |
| 4206 | Unit::Day => "day" , |
| 4207 | Unit::Hour => "hour" , |
| 4208 | Unit::Minute => "minute" , |
| 4209 | Unit::Second => "second" , |
| 4210 | Unit::Millisecond => "millisecond" , |
| 4211 | Unit::Microsecond => "microsecond" , |
| 4212 | Unit::Nanosecond => "nanosecond" , |
| 4213 | } |
| 4214 | } |
| 4215 | |
| 4216 | /// A human readable plural description of this unit of time. |
| 4217 | pub(crate) fn plural(&self) -> &'static str { |
| 4218 | match *self { |
| 4219 | Unit::Year => "years" , |
| 4220 | Unit::Month => "months" , |
| 4221 | Unit::Week => "weeks" , |
| 4222 | Unit::Day => "days" , |
| 4223 | Unit::Hour => "hours" , |
| 4224 | Unit::Minute => "minutes" , |
| 4225 | Unit::Second => "seconds" , |
| 4226 | Unit::Millisecond => "milliseconds" , |
| 4227 | Unit::Microsecond => "microseconds" , |
| 4228 | Unit::Nanosecond => "nanoseconds" , |
| 4229 | } |
| 4230 | } |
| 4231 | |
| 4232 | /// A very succinct label corresponding to this unit. |
| 4233 | pub(crate) fn compact(&self) -> &'static str { |
| 4234 | match *self { |
| 4235 | Unit::Year => "y" , |
| 4236 | Unit::Month => "mo" , |
| 4237 | Unit::Week => "w" , |
| 4238 | Unit::Day => "d" , |
| 4239 | Unit::Hour => "h" , |
| 4240 | Unit::Minute => "m" , |
| 4241 | Unit::Second => "s" , |
| 4242 | Unit::Millisecond => "ms" , |
| 4243 | Unit::Microsecond => "µs" , |
| 4244 | Unit::Nanosecond => "ns" , |
| 4245 | } |
| 4246 | } |
| 4247 | |
| 4248 | /// The inverse of `unit as usize`. |
| 4249 | fn from_usize(n: usize) -> Option<Unit> { |
| 4250 | match n { |
| 4251 | 0 => Some(Unit::Nanosecond), |
| 4252 | 1 => Some(Unit::Microsecond), |
| 4253 | 2 => Some(Unit::Millisecond), |
| 4254 | 3 => Some(Unit::Second), |
| 4255 | 4 => Some(Unit::Minute), |
| 4256 | 5 => Some(Unit::Hour), |
| 4257 | 6 => Some(Unit::Day), |
| 4258 | 7 => Some(Unit::Week), |
| 4259 | 8 => Some(Unit::Month), |
| 4260 | 9 => Some(Unit::Year), |
| 4261 | _ => None, |
| 4262 | } |
| 4263 | } |
| 4264 | } |
| 4265 | |
| 4266 | #[cfg (test)] |
| 4267 | impl quickcheck::Arbitrary for Unit { |
| 4268 | fn arbitrary(g: &mut quickcheck::Gen) -> Unit { |
| 4269 | Unit::from_usize(usize::arbitrary(g) % 10).unwrap() |
| 4270 | } |
| 4271 | |
| 4272 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
| 4273 | alloc::boxed::Box::new( |
| 4274 | (*self as usize) |
| 4275 | .shrink() |
| 4276 | .map(|n| Unit::from_usize(n % 10).unwrap()), |
| 4277 | ) |
| 4278 | } |
| 4279 | } |
| 4280 | |
| 4281 | /// Options for [`Span::checked_add`] and [`Span::checked_sub`]. |
| 4282 | /// |
| 4283 | /// This type provides a way to ergonomically add two spans with an optional |
| 4284 | /// relative datetime. Namely, a relative datetime is only needed when at least |
| 4285 | /// one of the two spans being added (or subtracted) has a non-zero calendar |
| 4286 | /// unit (years, months, weeks or days). Otherwise, an error will be returned. |
| 4287 | /// |
| 4288 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] to opt into 24-hour |
| 4289 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
| 4290 | /// |
| 4291 | /// The main way to construct values of this type is with its `From` trait |
| 4292 | /// implementations: |
| 4293 | /// |
| 4294 | /// * `From<Span> for SpanArithmetic` adds (or subtracts) the given span to the |
| 4295 | /// receiver in [`Span::checked_add`] (or [`Span::checked_sub`]). |
| 4296 | /// * `From<(Span, civil::Date)> for SpanArithmetic` adds (or subtracts) |
| 4297 | /// the given span to the receiver in [`Span::checked_add`] (or |
| 4298 | /// [`Span::checked_sub`]), relative to the given date. There are also `From` |
| 4299 | /// implementations for `civil::DateTime`, `Zoned` and [`SpanRelativeTo`]. |
| 4300 | /// |
| 4301 | /// # Example |
| 4302 | /// |
| 4303 | /// ``` |
| 4304 | /// use jiff::ToSpan; |
| 4305 | /// |
| 4306 | /// assert_eq!( |
| 4307 | /// 1.hour().checked_add(30.minutes())?, |
| 4308 | /// 1.hour().minutes(30).fieldwise(), |
| 4309 | /// ); |
| 4310 | /// |
| 4311 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4312 | /// ``` |
| 4313 | #[derive (Clone, Copy, Debug)] |
| 4314 | pub struct SpanArithmetic<'a> { |
| 4315 | duration: Duration, |
| 4316 | relative: Option<SpanRelativeTo<'a>>, |
| 4317 | } |
| 4318 | |
| 4319 | impl<'a> SpanArithmetic<'a> { |
| 4320 | /// This is a convenience function for setting the relative option on |
| 4321 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
| 4322 | /// |
| 4323 | /// # Example |
| 4324 | /// |
| 4325 | /// When doing arithmetic on spans involving days, either a relative |
| 4326 | /// datetime must be provided, or a special assertion opting into 24-hour |
| 4327 | /// days is required. Otherwise, you get an error. |
| 4328 | /// |
| 4329 | /// ``` |
| 4330 | /// use jiff::{SpanArithmetic, ToSpan}; |
| 4331 | /// |
| 4332 | /// let span1 = 2.days().hours(12); |
| 4333 | /// let span2 = 12.hours(); |
| 4334 | /// // No relative date provided, which results in an error. |
| 4335 | /// assert_eq!( |
| 4336 | /// span1.checked_add(span2).unwrap_err().to_string(), |
| 4337 | /// "using unit 'day' in a span or configuration requires that \ |
| 4338 | /// either a relative reference time be given or \ |
| 4339 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 4340 | /// invariant 24-hour days, but neither were provided" , |
| 4341 | /// ); |
| 4342 | /// let sum = span1.checked_add( |
| 4343 | /// SpanArithmetic::from(span2).days_are_24_hours(), |
| 4344 | /// )?; |
| 4345 | /// assert_eq!(sum, 3.days().fieldwise()); |
| 4346 | /// |
| 4347 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4348 | /// ``` |
| 4349 | #[inline ] |
| 4350 | pub fn days_are_24_hours(self) -> SpanArithmetic<'a> { |
| 4351 | self.relative(SpanRelativeTo::days_are_24_hours()) |
| 4352 | } |
| 4353 | } |
| 4354 | |
| 4355 | impl<'a> SpanArithmetic<'a> { |
| 4356 | #[inline ] |
| 4357 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
| 4358 | self, |
| 4359 | relative: R, |
| 4360 | ) -> SpanArithmetic<'a> { |
| 4361 | SpanArithmetic { relative: Some(relative.into()), ..self } |
| 4362 | } |
| 4363 | |
| 4364 | #[inline ] |
| 4365 | fn checked_add(self, span1: Span) -> Result<Span, Error> { |
| 4366 | match self.duration.to_signed()? { |
| 4367 | SDuration::Span(span2: Span) => { |
| 4368 | span1.checked_add_span(self.relative, &span2) |
| 4369 | } |
| 4370 | SDuration::Absolute(dur2: SignedDuration) => { |
| 4371 | span1.checked_add_duration(self.relative, duration:dur2) |
| 4372 | } |
| 4373 | } |
| 4374 | } |
| 4375 | } |
| 4376 | |
| 4377 | impl From<Span> for SpanArithmetic<'static> { |
| 4378 | fn from(span: Span) -> SpanArithmetic<'static> { |
| 4379 | let duration: Duration = Duration::from(span); |
| 4380 | SpanArithmetic { duration, relative: None } |
| 4381 | } |
| 4382 | } |
| 4383 | |
| 4384 | impl<'a> From<&'a Span> for SpanArithmetic<'static> { |
| 4385 | fn from(span: &'a Span) -> SpanArithmetic<'static> { |
| 4386 | let duration: Duration = Duration::from(*span); |
| 4387 | SpanArithmetic { duration, relative: None } |
| 4388 | } |
| 4389 | } |
| 4390 | |
| 4391 | impl From<(Span, Date)> for SpanArithmetic<'static> { |
| 4392 | #[inline ] |
| 4393 | fn from((span: Span, date: Date): (Span, Date)) -> SpanArithmetic<'static> { |
| 4394 | SpanArithmetic::from(span).relative(date) |
| 4395 | } |
| 4396 | } |
| 4397 | |
| 4398 | impl From<(Span, DateTime)> for SpanArithmetic<'static> { |
| 4399 | #[inline ] |
| 4400 | fn from((span: Span, datetime: DateTime): (Span, DateTime)) -> SpanArithmetic<'static> { |
| 4401 | SpanArithmetic::from(span).relative(datetime) |
| 4402 | } |
| 4403 | } |
| 4404 | |
| 4405 | impl<'a> From<(Span, &'a Zoned)> for SpanArithmetic<'a> { |
| 4406 | #[inline ] |
| 4407 | fn from((span: Span, zoned: &'a Zoned): (Span, &'a Zoned)) -> SpanArithmetic<'a> { |
| 4408 | SpanArithmetic::from(span).relative(zoned) |
| 4409 | } |
| 4410 | } |
| 4411 | |
| 4412 | impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanArithmetic<'a> { |
| 4413 | #[inline ] |
| 4414 | fn from( |
| 4415 | (span: Span, relative: SpanRelativeTo<'a>): (Span, SpanRelativeTo<'a>), |
| 4416 | ) -> SpanArithmetic<'a> { |
| 4417 | SpanArithmetic::from(span).relative(relative) |
| 4418 | } |
| 4419 | } |
| 4420 | |
| 4421 | impl<'a> From<(&'a Span, Date)> for SpanArithmetic<'static> { |
| 4422 | #[inline ] |
| 4423 | fn from((span: &'a Span, date: Date): (&'a Span, Date)) -> SpanArithmetic<'static> { |
| 4424 | SpanArithmetic::from(span).relative(date) |
| 4425 | } |
| 4426 | } |
| 4427 | |
| 4428 | impl<'a> From<(&'a Span, DateTime)> for SpanArithmetic<'static> { |
| 4429 | #[inline ] |
| 4430 | fn from( |
| 4431 | (span: &'a Span, datetime: DateTime): (&'a Span, DateTime), |
| 4432 | ) -> SpanArithmetic<'static> { |
| 4433 | SpanArithmetic::from(span).relative(datetime) |
| 4434 | } |
| 4435 | } |
| 4436 | |
| 4437 | impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanArithmetic<'b> { |
| 4438 | #[inline ] |
| 4439 | fn from((span: &'a Span, zoned: &'b Zoned): (&'a Span, &'b Zoned)) -> SpanArithmetic<'b> { |
| 4440 | SpanArithmetic::from(span).relative(zoned) |
| 4441 | } |
| 4442 | } |
| 4443 | |
| 4444 | impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanArithmetic<'b> { |
| 4445 | #[inline ] |
| 4446 | fn from( |
| 4447 | (span: &'a Span, relative: SpanRelativeTo<'b>): (&'a Span, SpanRelativeTo<'b>), |
| 4448 | ) -> SpanArithmetic<'b> { |
| 4449 | SpanArithmetic::from(span).relative(relative) |
| 4450 | } |
| 4451 | } |
| 4452 | |
| 4453 | impl From<SignedDuration> for SpanArithmetic<'static> { |
| 4454 | fn from(duration: SignedDuration) -> SpanArithmetic<'static> { |
| 4455 | let duration: Duration = Duration::from(duration); |
| 4456 | SpanArithmetic { duration, relative: None } |
| 4457 | } |
| 4458 | } |
| 4459 | |
| 4460 | impl From<(SignedDuration, Date)> for SpanArithmetic<'static> { |
| 4461 | #[inline ] |
| 4462 | fn from( |
| 4463 | (duration: SignedDuration, date: Date): (SignedDuration, Date), |
| 4464 | ) -> SpanArithmetic<'static> { |
| 4465 | SpanArithmetic::from(duration).relative(date) |
| 4466 | } |
| 4467 | } |
| 4468 | |
| 4469 | impl From<(SignedDuration, DateTime)> for SpanArithmetic<'static> { |
| 4470 | #[inline ] |
| 4471 | fn from( |
| 4472 | (duration: SignedDuration, datetime: DateTime): (SignedDuration, DateTime), |
| 4473 | ) -> SpanArithmetic<'static> { |
| 4474 | SpanArithmetic::from(duration).relative(datetime) |
| 4475 | } |
| 4476 | } |
| 4477 | |
| 4478 | impl<'a> From<(SignedDuration, &'a Zoned)> for SpanArithmetic<'a> { |
| 4479 | #[inline ] |
| 4480 | fn from( |
| 4481 | (duration: SignedDuration, zoned: &'a Zoned): (SignedDuration, &'a Zoned), |
| 4482 | ) -> SpanArithmetic<'a> { |
| 4483 | SpanArithmetic::from(duration).relative(zoned) |
| 4484 | } |
| 4485 | } |
| 4486 | |
| 4487 | impl From<UnsignedDuration> for SpanArithmetic<'static> { |
| 4488 | fn from(duration: UnsignedDuration) -> SpanArithmetic<'static> { |
| 4489 | let duration: Duration = Duration::from(duration); |
| 4490 | SpanArithmetic { duration, relative: None } |
| 4491 | } |
| 4492 | } |
| 4493 | |
| 4494 | impl From<(UnsignedDuration, Date)> for SpanArithmetic<'static> { |
| 4495 | #[inline ] |
| 4496 | fn from( |
| 4497 | (duration: Duration, date: Date): (UnsignedDuration, Date), |
| 4498 | ) -> SpanArithmetic<'static> { |
| 4499 | SpanArithmetic::from(duration).relative(date) |
| 4500 | } |
| 4501 | } |
| 4502 | |
| 4503 | impl From<(UnsignedDuration, DateTime)> for SpanArithmetic<'static> { |
| 4504 | #[inline ] |
| 4505 | fn from( |
| 4506 | (duration: Duration, datetime: DateTime): (UnsignedDuration, DateTime), |
| 4507 | ) -> SpanArithmetic<'static> { |
| 4508 | SpanArithmetic::from(duration).relative(datetime) |
| 4509 | } |
| 4510 | } |
| 4511 | |
| 4512 | impl<'a> From<(UnsignedDuration, &'a Zoned)> for SpanArithmetic<'a> { |
| 4513 | #[inline ] |
| 4514 | fn from( |
| 4515 | (duration: Duration, zoned: &'a Zoned): (UnsignedDuration, &'a Zoned), |
| 4516 | ) -> SpanArithmetic<'a> { |
| 4517 | SpanArithmetic::from(duration).relative(zoned) |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | /// Options for [`Span::compare`]. |
| 4522 | /// |
| 4523 | /// This type provides a way to ergonomically compare two spans with an |
| 4524 | /// optional relative datetime. Namely, a relative datetime is only needed when |
| 4525 | /// at least one of the two spans being compared has a non-zero calendar unit |
| 4526 | /// (years, months, weeks or days). Otherwise, an error will be returned. |
| 4527 | /// |
| 4528 | /// Callers may use [`SpanCompare::days_are_24_hours`] to opt into 24-hour |
| 4529 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
| 4530 | /// |
| 4531 | /// The main way to construct values of this type is with its `From` trait |
| 4532 | /// implementations: |
| 4533 | /// |
| 4534 | /// * `From<Span> for SpanCompare` compares the given span to the receiver |
| 4535 | /// in [`Span::compare`]. |
| 4536 | /// * `From<(Span, civil::Date)> for SpanCompare` compares the given span |
| 4537 | /// to the receiver in [`Span::compare`], relative to the given date. There |
| 4538 | /// are also `From` implementations for `civil::DateTime`, `Zoned` and |
| 4539 | /// [`SpanRelativeTo`]. |
| 4540 | /// |
| 4541 | /// # Example |
| 4542 | /// |
| 4543 | /// ``` |
| 4544 | /// use jiff::ToSpan; |
| 4545 | /// |
| 4546 | /// let span1 = 3.hours(); |
| 4547 | /// let span2 = 180.minutes(); |
| 4548 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal); |
| 4549 | /// |
| 4550 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4551 | /// ``` |
| 4552 | #[derive (Clone, Copy, Debug)] |
| 4553 | pub struct SpanCompare<'a> { |
| 4554 | span: Span, |
| 4555 | relative: Option<SpanRelativeTo<'a>>, |
| 4556 | } |
| 4557 | |
| 4558 | impl<'a> SpanCompare<'a> { |
| 4559 | /// This is a convenience function for setting the relative option on |
| 4560 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
| 4561 | /// |
| 4562 | /// # Example |
| 4563 | /// |
| 4564 | /// When comparing spans involving days, either a relative datetime must be |
| 4565 | /// provided, or a special assertion opting into 24-hour days is |
| 4566 | /// required. Otherwise, you get an error. |
| 4567 | /// |
| 4568 | /// ``` |
| 4569 | /// use jiff::{SpanCompare, ToSpan, Unit}; |
| 4570 | /// |
| 4571 | /// let span1 = 2.days().hours(12); |
| 4572 | /// let span2 = 60.hours(); |
| 4573 | /// // No relative date provided, which results in an error. |
| 4574 | /// assert_eq!( |
| 4575 | /// span1.compare(span2).unwrap_err().to_string(), |
| 4576 | /// "using unit 'day' in a span or configuration requires that \ |
| 4577 | /// either a relative reference time be given or \ |
| 4578 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 4579 | /// invariant 24-hour days, but neither were provided" , |
| 4580 | /// ); |
| 4581 | /// let ordering = span1.compare( |
| 4582 | /// SpanCompare::from(span2).days_are_24_hours(), |
| 4583 | /// )?; |
| 4584 | /// assert_eq!(ordering, std::cmp::Ordering::Equal); |
| 4585 | /// |
| 4586 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4587 | /// ``` |
| 4588 | #[inline ] |
| 4589 | pub fn days_are_24_hours(self) -> SpanCompare<'a> { |
| 4590 | self.relative(SpanRelativeTo::days_are_24_hours()) |
| 4591 | } |
| 4592 | } |
| 4593 | |
| 4594 | impl<'a> SpanCompare<'a> { |
| 4595 | #[inline ] |
| 4596 | fn new(span: Span) -> SpanCompare<'static> { |
| 4597 | SpanCompare { span, relative: None } |
| 4598 | } |
| 4599 | |
| 4600 | #[inline ] |
| 4601 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
| 4602 | self, |
| 4603 | relative: R, |
| 4604 | ) -> SpanCompare<'a> { |
| 4605 | SpanCompare { relative: Some(relative.into()), ..self } |
| 4606 | } |
| 4607 | |
| 4608 | fn compare(self, span: Span) -> Result<Ordering, Error> { |
| 4609 | let (span1, span2) = (span, self.span); |
| 4610 | let unit = span1.largest_unit().max(span2.largest_unit()); |
| 4611 | let start = match self.relative { |
| 4612 | Some(r) => match r.to_relative(unit)? { |
| 4613 | Some(r) => r, |
| 4614 | None => { |
| 4615 | let nanos1 = span1.to_invariant_nanoseconds(); |
| 4616 | let nanos2 = span2.to_invariant_nanoseconds(); |
| 4617 | return Ok(nanos1.cmp(&nanos2)); |
| 4618 | } |
| 4619 | }, |
| 4620 | None => { |
| 4621 | requires_relative_date_err(unit)?; |
| 4622 | let nanos1 = span1.to_invariant_nanoseconds(); |
| 4623 | let nanos2 = span2.to_invariant_nanoseconds(); |
| 4624 | return Ok(nanos1.cmp(&nanos2)); |
| 4625 | } |
| 4626 | }; |
| 4627 | let end1 = start.checked_add(span1)?.to_nanosecond(); |
| 4628 | let end2 = start.checked_add(span2)?.to_nanosecond(); |
| 4629 | Ok(end1.cmp(&end2)) |
| 4630 | } |
| 4631 | } |
| 4632 | |
| 4633 | impl From<Span> for SpanCompare<'static> { |
| 4634 | fn from(span: Span) -> SpanCompare<'static> { |
| 4635 | SpanCompare::new(span) |
| 4636 | } |
| 4637 | } |
| 4638 | |
| 4639 | impl<'a> From<&'a Span> for SpanCompare<'static> { |
| 4640 | fn from(span: &'a Span) -> SpanCompare<'static> { |
| 4641 | SpanCompare::new(*span) |
| 4642 | } |
| 4643 | } |
| 4644 | |
| 4645 | impl From<(Span, Date)> for SpanCompare<'static> { |
| 4646 | #[inline ] |
| 4647 | fn from((span: Span, date: Date): (Span, Date)) -> SpanCompare<'static> { |
| 4648 | SpanCompare::from(span).relative(date) |
| 4649 | } |
| 4650 | } |
| 4651 | |
| 4652 | impl From<(Span, DateTime)> for SpanCompare<'static> { |
| 4653 | #[inline ] |
| 4654 | fn from((span: Span, datetime: DateTime): (Span, DateTime)) -> SpanCompare<'static> { |
| 4655 | SpanCompare::from(span).relative(datetime) |
| 4656 | } |
| 4657 | } |
| 4658 | |
| 4659 | impl<'a> From<(Span, &'a Zoned)> for SpanCompare<'a> { |
| 4660 | #[inline ] |
| 4661 | fn from((span: Span, zoned: &'a Zoned): (Span, &'a Zoned)) -> SpanCompare<'a> { |
| 4662 | SpanCompare::from(span).relative(zoned) |
| 4663 | } |
| 4664 | } |
| 4665 | |
| 4666 | impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanCompare<'a> { |
| 4667 | #[inline ] |
| 4668 | fn from((span: Span, relative: SpanRelativeTo<'a>): (Span, SpanRelativeTo<'a>)) -> SpanCompare<'a> { |
| 4669 | SpanCompare::from(span).relative(relative) |
| 4670 | } |
| 4671 | } |
| 4672 | |
| 4673 | impl<'a> From<(&'a Span, Date)> for SpanCompare<'static> { |
| 4674 | #[inline ] |
| 4675 | fn from((span: &'a Span, date: Date): (&'a Span, Date)) -> SpanCompare<'static> { |
| 4676 | SpanCompare::from(span).relative(date) |
| 4677 | } |
| 4678 | } |
| 4679 | |
| 4680 | impl<'a> From<(&'a Span, DateTime)> for SpanCompare<'static> { |
| 4681 | #[inline ] |
| 4682 | fn from((span: &'a Span, datetime: DateTime): (&'a Span, DateTime)) -> SpanCompare<'static> { |
| 4683 | SpanCompare::from(span).relative(datetime) |
| 4684 | } |
| 4685 | } |
| 4686 | |
| 4687 | impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanCompare<'b> { |
| 4688 | #[inline ] |
| 4689 | fn from((span: &'a Span, zoned: &'b Zoned): (&'a Span, &'b Zoned)) -> SpanCompare<'b> { |
| 4690 | SpanCompare::from(span).relative(zoned) |
| 4691 | } |
| 4692 | } |
| 4693 | |
| 4694 | impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanCompare<'b> { |
| 4695 | #[inline ] |
| 4696 | fn from( |
| 4697 | (span: &'a Span, relative: SpanRelativeTo<'b>): (&'a Span, SpanRelativeTo<'b>), |
| 4698 | ) -> SpanCompare<'b> { |
| 4699 | SpanCompare::from(span).relative(relative) |
| 4700 | } |
| 4701 | } |
| 4702 | |
| 4703 | /// Options for [`Span::total`]. |
| 4704 | /// |
| 4705 | /// This type provides a way to ergonomically determine the number of a |
| 4706 | /// particular unit in a span, with a potentially fractional component, with |
| 4707 | /// an optional relative datetime. Namely, a relative datetime is only needed |
| 4708 | /// when the span has a non-zero calendar unit (years, months, weeks or days). |
| 4709 | /// Otherwise, an error will be returned. |
| 4710 | /// |
| 4711 | /// Callers may use [`SpanTotal::days_are_24_hours`] to opt into 24-hour |
| 4712 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
| 4713 | /// |
| 4714 | /// The main way to construct values of this type is with its `From` trait |
| 4715 | /// implementations: |
| 4716 | /// |
| 4717 | /// * `From<Unit> for SpanTotal` computes a total for the given unit in the |
| 4718 | /// receiver span for [`Span::total`]. |
| 4719 | /// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the given |
| 4720 | /// unit in the receiver span for [`Span::total`], relative to the given date. |
| 4721 | /// There are also `From` implementations for `civil::DateTime`, `Zoned` and |
| 4722 | /// [`SpanRelativeTo`]. |
| 4723 | /// |
| 4724 | /// # Example |
| 4725 | /// |
| 4726 | /// This example shows how to find the number of seconds in a particular span: |
| 4727 | /// |
| 4728 | /// ``` |
| 4729 | /// use jiff::{ToSpan, Unit}; |
| 4730 | /// |
| 4731 | /// let span = 3.hours().minutes(10); |
| 4732 | /// assert_eq!(span.total(Unit::Second)?, 11_400.0); |
| 4733 | /// |
| 4734 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4735 | /// ``` |
| 4736 | /// |
| 4737 | /// # Example: 24 hour days |
| 4738 | /// |
| 4739 | /// This shows how to find the total number of 24 hour days in `123,456,789` |
| 4740 | /// seconds. |
| 4741 | /// |
| 4742 | /// ``` |
| 4743 | /// use jiff::{SpanTotal, ToSpan, Unit}; |
| 4744 | /// |
| 4745 | /// let span = 123_456_789.seconds(); |
| 4746 | /// assert_eq!( |
| 4747 | /// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?, |
| 4748 | /// 1428.8980208333332, |
| 4749 | /// ); |
| 4750 | /// |
| 4751 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4752 | /// ``` |
| 4753 | /// |
| 4754 | /// # Example: DST is taken into account |
| 4755 | /// |
| 4756 | /// The month of March 2024 in `America/New_York` had 31 days, but one of those |
| 4757 | /// days was 23 hours long due a transition into daylight saving time: |
| 4758 | /// |
| 4759 | /// ``` |
| 4760 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 4761 | /// |
| 4762 | /// let span = 744.hours(); |
| 4763 | /// let relative = date(2024, 3, 1).in_tz("America/New_York" )?; |
| 4764 | /// // Because of the short day, 744 hours is actually a little *more* than |
| 4765 | /// // 1 month starting from 2024-03-01. |
| 4766 | /// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889); |
| 4767 | /// |
| 4768 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4769 | /// ``` |
| 4770 | /// |
| 4771 | /// Now compare what happens when the relative datetime is civil and not |
| 4772 | /// time zone aware: |
| 4773 | /// |
| 4774 | /// ``` |
| 4775 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 4776 | /// |
| 4777 | /// let span = 744.hours(); |
| 4778 | /// let relative = date(2024, 3, 1); |
| 4779 | /// assert_eq!(span.total((Unit::Month, relative))?, 1.0); |
| 4780 | /// |
| 4781 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4782 | /// ``` |
| 4783 | #[derive (Clone, Copy, Debug)] |
| 4784 | pub struct SpanTotal<'a> { |
| 4785 | unit: Unit, |
| 4786 | relative: Option<SpanRelativeTo<'a>>, |
| 4787 | } |
| 4788 | |
| 4789 | impl<'a> SpanTotal<'a> { |
| 4790 | /// This is a convenience function for setting the relative option on |
| 4791 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
| 4792 | /// |
| 4793 | /// # Example |
| 4794 | /// |
| 4795 | /// When computing the total duration for spans involving days, either a |
| 4796 | /// relative datetime must be provided, or a special assertion opting into |
| 4797 | /// 24-hour days is required. Otherwise, you get an error. |
| 4798 | /// |
| 4799 | /// ``` |
| 4800 | /// use jiff::{civil::date, SpanTotal, ToSpan, Unit}; |
| 4801 | /// |
| 4802 | /// let span = 2.days().hours(12); |
| 4803 | /// |
| 4804 | /// // No relative date provided, which results in an error. |
| 4805 | /// assert_eq!( |
| 4806 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
| 4807 | /// "using unit 'day' in a span or configuration requires that either \ |
| 4808 | /// a relative reference time be given or \ |
| 4809 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 4810 | /// invariant 24-hour days, but neither were provided" , |
| 4811 | /// ); |
| 4812 | /// |
| 4813 | /// // If we can assume all days are 24 hours, then we can assert it: |
| 4814 | /// let total = span.total( |
| 4815 | /// SpanTotal::from(Unit::Hour).days_are_24_hours(), |
| 4816 | /// )?; |
| 4817 | /// assert_eq!(total, 60.0); |
| 4818 | /// |
| 4819 | /// // Or provide a relative datetime, which is preferred if possible: |
| 4820 | /// let total = span.total((Unit::Hour, date(2025, 1, 26)))?; |
| 4821 | /// assert_eq!(total, 60.0); |
| 4822 | /// |
| 4823 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4824 | /// ``` |
| 4825 | #[inline ] |
| 4826 | pub fn days_are_24_hours(self) -> SpanTotal<'a> { |
| 4827 | self.relative(SpanRelativeTo::days_are_24_hours()) |
| 4828 | } |
| 4829 | } |
| 4830 | |
| 4831 | impl<'a> SpanTotal<'a> { |
| 4832 | #[inline ] |
| 4833 | fn new(unit: Unit) -> SpanTotal<'static> { |
| 4834 | SpanTotal { unit, relative: None } |
| 4835 | } |
| 4836 | |
| 4837 | #[inline ] |
| 4838 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
| 4839 | self, |
| 4840 | relative: R, |
| 4841 | ) -> SpanTotal<'a> { |
| 4842 | SpanTotal { relative: Some(relative.into()), ..self } |
| 4843 | } |
| 4844 | |
| 4845 | fn total(self, span: Span) -> Result<f64, Error> { |
| 4846 | let max_unit = self.unit.max(span.largest_unit()); |
| 4847 | let relative = match self.relative { |
| 4848 | Some(r) => match r.to_relative(max_unit)? { |
| 4849 | Some(r) => r, |
| 4850 | None => { |
| 4851 | return Ok(self.total_invariant(span)); |
| 4852 | } |
| 4853 | }, |
| 4854 | None => { |
| 4855 | requires_relative_date_err(max_unit)?; |
| 4856 | return Ok(self.total_invariant(span)); |
| 4857 | } |
| 4858 | }; |
| 4859 | let relspan = relative.into_relative_span(self.unit, span)?; |
| 4860 | if !self.unit.is_variable() { |
| 4861 | return Ok(self.total_invariant(relspan.span)); |
| 4862 | } |
| 4863 | |
| 4864 | assert!(self.unit >= Unit::Day); |
| 4865 | let sign = relspan.span.get_sign_ranged(); |
| 4866 | let (relative_start, relative_end) = match relspan.kind { |
| 4867 | RelativeSpanKind::Civil { start, end } => { |
| 4868 | let start = Relative::Civil(start); |
| 4869 | let end = Relative::Civil(end); |
| 4870 | (start, end) |
| 4871 | } |
| 4872 | RelativeSpanKind::Zoned { start, end } => { |
| 4873 | let start = Relative::Zoned(start); |
| 4874 | let end = Relative::Zoned(end); |
| 4875 | (start, end) |
| 4876 | } |
| 4877 | }; |
| 4878 | let (relative0, relative1) = clamp_relative_span( |
| 4879 | &relative_start, |
| 4880 | relspan.span.without_lower(self.unit), |
| 4881 | self.unit, |
| 4882 | sign.rinto(), |
| 4883 | )?; |
| 4884 | let denom = (relative1 - relative0).get() as f64; |
| 4885 | let numer = (relative_end.to_nanosecond() - relative0).get() as f64; |
| 4886 | let unit_val = relspan.span.get_units_ranged(self.unit).get() as f64; |
| 4887 | Ok(unit_val + (numer / denom) * (sign.get() as f64)) |
| 4888 | } |
| 4889 | |
| 4890 | #[inline ] |
| 4891 | fn total_invariant(&self, span: Span) -> f64 { |
| 4892 | assert!(self.unit <= Unit::Week); |
| 4893 | let nanos = span.to_invariant_nanoseconds(); |
| 4894 | (nanos.get() as f64) / (self.unit.nanoseconds().get() as f64) |
| 4895 | } |
| 4896 | } |
| 4897 | |
| 4898 | impl From<Unit> for SpanTotal<'static> { |
| 4899 | #[inline ] |
| 4900 | fn from(unit: Unit) -> SpanTotal<'static> { |
| 4901 | SpanTotal::new(unit) |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | impl From<(Unit, Date)> for SpanTotal<'static> { |
| 4906 | #[inline ] |
| 4907 | fn from((unit: Unit, date: Date): (Unit, Date)) -> SpanTotal<'static> { |
| 4908 | SpanTotal::from(unit).relative(date) |
| 4909 | } |
| 4910 | } |
| 4911 | |
| 4912 | impl From<(Unit, DateTime)> for SpanTotal<'static> { |
| 4913 | #[inline ] |
| 4914 | fn from((unit: Unit, datetime: DateTime): (Unit, DateTime)) -> SpanTotal<'static> { |
| 4915 | SpanTotal::from(unit).relative(datetime) |
| 4916 | } |
| 4917 | } |
| 4918 | |
| 4919 | impl<'a> From<(Unit, &'a Zoned)> for SpanTotal<'a> { |
| 4920 | #[inline ] |
| 4921 | fn from((unit: Unit, zoned: &'a Zoned): (Unit, &'a Zoned)) -> SpanTotal<'a> { |
| 4922 | SpanTotal::from(unit).relative(zoned) |
| 4923 | } |
| 4924 | } |
| 4925 | |
| 4926 | impl<'a> From<(Unit, SpanRelativeTo<'a>)> for SpanTotal<'a> { |
| 4927 | #[inline ] |
| 4928 | fn from((unit: Unit, relative: SpanRelativeTo<'a>): (Unit, SpanRelativeTo<'a>)) -> SpanTotal<'a> { |
| 4929 | SpanTotal::from(unit).relative(relative) |
| 4930 | } |
| 4931 | } |
| 4932 | |
| 4933 | /// Options for [`Span::round`]. |
| 4934 | /// |
| 4935 | /// This type provides a way to configure the rounding of a span. This |
| 4936 | /// includes setting the smallest unit (i.e., the unit to round), the |
| 4937 | /// largest unit, the rounding increment, the rounding mode (e.g., "ceil" or |
| 4938 | /// "truncate") and the datetime that the span is relative to. |
| 4939 | /// |
| 4940 | /// `Span::round` accepts anything that implements `Into<SpanRound>`. There are |
| 4941 | /// a few key trait implementations that make this convenient: |
| 4942 | /// |
| 4943 | /// * `From<Unit> for SpanRound` will construct a rounding configuration where |
| 4944 | /// the smallest unit is set to the one given. |
| 4945 | /// * `From<(Unit, i64)> for SpanRound` will construct a rounding configuration |
| 4946 | /// where the smallest unit and the rounding increment are set to the ones |
| 4947 | /// given. |
| 4948 | /// |
| 4949 | /// In order to set other options (like the largest unit, the rounding mode |
| 4950 | /// and the relative datetime), one must explicitly create a `SpanRound` and |
| 4951 | /// pass it to `Span::round`. |
| 4952 | /// |
| 4953 | /// # Example |
| 4954 | /// |
| 4955 | /// This example shows how to find how many full 3 month quarters are in a |
| 4956 | /// particular span of time. |
| 4957 | /// |
| 4958 | /// ``` |
| 4959 | /// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit}; |
| 4960 | /// |
| 4961 | /// let span1 = 10.months().days(15); |
| 4962 | /// let round = SpanRound::new() |
| 4963 | /// .smallest(Unit::Month) |
| 4964 | /// .increment(3) |
| 4965 | /// .mode(RoundMode::Trunc) |
| 4966 | /// // A relative datetime must be provided when |
| 4967 | /// // rounding involves calendar units. |
| 4968 | /// .relative(date(2024, 1, 1)); |
| 4969 | /// let span2 = span1.round(round)?; |
| 4970 | /// assert_eq!(span2.get_months() / 3, 3); |
| 4971 | /// |
| 4972 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4973 | /// ``` |
| 4974 | #[derive (Clone, Copy, Debug)] |
| 4975 | pub struct SpanRound<'a> { |
| 4976 | largest: Option<Unit>, |
| 4977 | smallest: Unit, |
| 4978 | mode: RoundMode, |
| 4979 | increment: i64, |
| 4980 | relative: Option<SpanRelativeTo<'a>>, |
| 4981 | } |
| 4982 | |
| 4983 | impl<'a> SpanRound<'a> { |
| 4984 | /// Create a new default configuration for rounding a span via |
| 4985 | /// [`Span::round`]. |
| 4986 | /// |
| 4987 | /// The default configuration does no rounding. |
| 4988 | #[inline ] |
| 4989 | pub fn new() -> SpanRound<'static> { |
| 4990 | SpanRound { |
| 4991 | largest: None, |
| 4992 | smallest: Unit::Nanosecond, |
| 4993 | mode: RoundMode::HalfExpand, |
| 4994 | increment: 1, |
| 4995 | relative: None, |
| 4996 | } |
| 4997 | } |
| 4998 | |
| 4999 | /// Set the smallest units allowed in the span returned. These are the |
| 5000 | /// units that the span is rounded to. |
| 5001 | /// |
| 5002 | /// # Errors |
| 5003 | /// |
| 5004 | /// The smallest units must be no greater than the largest units. If this |
| 5005 | /// is violated, then rounding a span with this configuration will result |
| 5006 | /// in an error. |
| 5007 | /// |
| 5008 | /// If a smallest unit bigger than days is selected without a relative |
| 5009 | /// datetime reference point, then an error is returned when using this |
| 5010 | /// configuration with [`Span::round`]. |
| 5011 | /// |
| 5012 | /// # Example |
| 5013 | /// |
| 5014 | /// A basic example that rounds to the nearest minute: |
| 5015 | /// |
| 5016 | /// ``` |
| 5017 | /// use jiff::{ToSpan, Unit}; |
| 5018 | /// |
| 5019 | /// let span = 15.minutes().seconds(46); |
| 5020 | /// assert_eq!(span.round(Unit::Minute)?, 16.minutes().fieldwise()); |
| 5021 | /// |
| 5022 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5023 | /// ``` |
| 5024 | #[inline ] |
| 5025 | pub fn smallest(self, unit: Unit) -> SpanRound<'a> { |
| 5026 | SpanRound { smallest: unit, ..self } |
| 5027 | } |
| 5028 | |
| 5029 | /// Set the largest units allowed in the span returned. |
| 5030 | /// |
| 5031 | /// When a largest unit is not specified, then it defaults to the largest |
| 5032 | /// non-zero unit that is at least as big as the configured smallest |
| 5033 | /// unit. For example, given a span of `2 months 17 hours`, the default |
| 5034 | /// largest unit would be `Unit::Month`. The default implies that a span's |
| 5035 | /// units do not get "bigger" than what was given. |
| 5036 | /// |
| 5037 | /// Once a largest unit is set, there is no way to change this rounding |
| 5038 | /// configuration back to using the "automatic" default. Instead, callers |
| 5039 | /// must create a new configuration. |
| 5040 | /// |
| 5041 | /// If a largest unit is set and no other options are set, then the |
| 5042 | /// rounding operation can be said to be a "re-balancing." That is, the |
| 5043 | /// span won't lose precision, but the way in which it is expressed may |
| 5044 | /// change. |
| 5045 | /// |
| 5046 | /// # Errors |
| 5047 | /// |
| 5048 | /// The largest units, when set, must be at least as big as the smallest |
| 5049 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
| 5050 | /// then rounding a span with this configuration will result in an error. |
| 5051 | /// |
| 5052 | /// If a largest unit bigger than days is selected without a relative |
| 5053 | /// datetime reference point, then an error is returned when using this |
| 5054 | /// configuration with [`Span::round`]. |
| 5055 | /// |
| 5056 | /// # Example: re-balancing |
| 5057 | /// |
| 5058 | /// This shows how a span can be re-balanced without losing precision: |
| 5059 | /// |
| 5060 | /// ``` |
| 5061 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 5062 | /// |
| 5063 | /// let span = 86_401_123_456_789i64.nanoseconds(); |
| 5064 | /// assert_eq!( |
| 5065 | /// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(), |
| 5066 | /// 24.hours().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789), |
| 5067 | /// ); |
| 5068 | /// |
| 5069 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5070 | /// ``` |
| 5071 | /// |
| 5072 | /// If you need to use a largest unit bigger than hours, then you must |
| 5073 | /// provide a relative datetime as a reference point (otherwise an error |
| 5074 | /// will occur): |
| 5075 | /// |
| 5076 | /// ``` |
| 5077 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
| 5078 | /// |
| 5079 | /// let span = 3_968_000.seconds(); |
| 5080 | /// let round = SpanRound::new() |
| 5081 | /// .largest(Unit::Day) |
| 5082 | /// .relative(date(2024, 7, 1)); |
| 5083 | /// assert_eq!( |
| 5084 | /// span.round(round)?, |
| 5085 | /// 45.days().hours(22).minutes(13).seconds(20).fieldwise(), |
| 5086 | /// ); |
| 5087 | /// |
| 5088 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5089 | /// ``` |
| 5090 | /// |
| 5091 | /// As a special case for days, one can instead opt into invariant 24-hour |
| 5092 | /// days (and 7-day weeks) without providing an explicit relative date: |
| 5093 | /// |
| 5094 | /// ``` |
| 5095 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 5096 | /// |
| 5097 | /// let span = 86_401_123_456_789i64.nanoseconds(); |
| 5098 | /// assert_eq!( |
| 5099 | /// span.round( |
| 5100 | /// SpanRound::new().largest(Unit::Day).days_are_24_hours(), |
| 5101 | /// )?.fieldwise(), |
| 5102 | /// 1.day().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789), |
| 5103 | /// ); |
| 5104 | /// |
| 5105 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5106 | /// ``` |
| 5107 | /// |
| 5108 | /// # Example: re-balancing while taking DST into account |
| 5109 | /// |
| 5110 | /// When given a zone aware relative datetime, rounding will even take |
| 5111 | /// DST into account: |
| 5112 | /// |
| 5113 | /// ``` |
| 5114 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
| 5115 | /// |
| 5116 | /// let span = 2756.hours(); |
| 5117 | /// let zdt = "2020-01-01T00:00+01:00[Europe/Rome]" .parse::<Zoned>()?; |
| 5118 | /// let round = SpanRound::new().largest(Unit::Year).relative(&zdt); |
| 5119 | /// assert_eq!( |
| 5120 | /// span.round(round)?, |
| 5121 | /// 3.months().days(23).hours(21).fieldwise(), |
| 5122 | /// ); |
| 5123 | /// |
| 5124 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5125 | /// ``` |
| 5126 | /// |
| 5127 | /// Now compare with the same operation, but on a civil datetime (which is |
| 5128 | /// not aware of time zone): |
| 5129 | /// |
| 5130 | /// ``` |
| 5131 | /// use jiff::{civil::DateTime, SpanRound, ToSpan, Unit}; |
| 5132 | /// |
| 5133 | /// let span = 2756.hours(); |
| 5134 | /// let dt = "2020-01-01T00:00" .parse::<DateTime>()?; |
| 5135 | /// let round = SpanRound::new().largest(Unit::Year).relative(dt); |
| 5136 | /// assert_eq!( |
| 5137 | /// span.round(round)?, |
| 5138 | /// 3.months().days(23).hours(20).fieldwise(), |
| 5139 | /// ); |
| 5140 | /// |
| 5141 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5142 | /// ``` |
| 5143 | /// |
| 5144 | /// The result is 1 hour shorter. This is because, in the zone |
| 5145 | /// aware re-balancing, it accounts for the transition into DST at |
| 5146 | /// `2020-03-29T01:00Z`, which skips an hour. This makes the span one hour |
| 5147 | /// longer because one of the days in the span is actually only 23 hours |
| 5148 | /// long instead of 24 hours. |
| 5149 | #[inline ] |
| 5150 | pub fn largest(self, unit: Unit) -> SpanRound<'a> { |
| 5151 | SpanRound { largest: Some(unit), ..self } |
| 5152 | } |
| 5153 | |
| 5154 | /// Set the rounding mode. |
| 5155 | /// |
| 5156 | /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work |
| 5157 | /// like how you were taught in school. |
| 5158 | /// |
| 5159 | /// # Example |
| 5160 | /// |
| 5161 | /// A basic example that rounds to the nearest minute, but changing its |
| 5162 | /// rounding mode to truncation: |
| 5163 | /// |
| 5164 | /// ``` |
| 5165 | /// use jiff::{RoundMode, SpanRound, ToSpan, Unit}; |
| 5166 | /// |
| 5167 | /// let span = 15.minutes().seconds(46); |
| 5168 | /// assert_eq!( |
| 5169 | /// span.round(SpanRound::new() |
| 5170 | /// .smallest(Unit::Minute) |
| 5171 | /// .mode(RoundMode::Trunc), |
| 5172 | /// )?, |
| 5173 | /// // The default round mode does rounding like |
| 5174 | /// // how you probably learned in school, and would |
| 5175 | /// // result in rounding up to 16 minutes. But we |
| 5176 | /// // change it to truncation here, which makes it |
| 5177 | /// // round down. |
| 5178 | /// 15.minutes().fieldwise(), |
| 5179 | /// ); |
| 5180 | /// |
| 5181 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5182 | /// ``` |
| 5183 | #[inline ] |
| 5184 | pub fn mode(self, mode: RoundMode) -> SpanRound<'a> { |
| 5185 | SpanRound { mode, ..self } |
| 5186 | } |
| 5187 | |
| 5188 | /// Set the rounding increment for the smallest unit. |
| 5189 | /// |
| 5190 | /// The default value is `1`. Other values permit rounding the smallest |
| 5191 | /// unit to the nearest integer increment specified. For example, if the |
| 5192 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 5193 | /// `30` would result in rounding in increments of a half hour. That is, |
| 5194 | /// the only minute value that could result would be `0` or `30`. |
| 5195 | /// |
| 5196 | /// # Errors |
| 5197 | /// |
| 5198 | /// When the smallest unit is less than days, the rounding increment must |
| 5199 | /// divide evenly into the next highest unit after the smallest unit |
| 5200 | /// configured (and must not be equivalent to it). For example, if the |
| 5201 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 5202 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 5203 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 5204 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 5205 | /// |
| 5206 | /// The error will occur when computing the span, and not when setting |
| 5207 | /// the increment here. |
| 5208 | /// |
| 5209 | /// # Example |
| 5210 | /// |
| 5211 | /// This shows how to round a span to the nearest 5 minute increment: |
| 5212 | /// |
| 5213 | /// ``` |
| 5214 | /// use jiff::{ToSpan, Unit}; |
| 5215 | /// |
| 5216 | /// let span = 4.hours().minutes(2).seconds(30); |
| 5217 | /// assert_eq!( |
| 5218 | /// span.round((Unit::Minute, 5))?, |
| 5219 | /// 4.hours().minutes(5).fieldwise(), |
| 5220 | /// ); |
| 5221 | /// |
| 5222 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5223 | /// ``` |
| 5224 | #[inline ] |
| 5225 | pub fn increment(self, increment: i64) -> SpanRound<'a> { |
| 5226 | SpanRound { increment, ..self } |
| 5227 | } |
| 5228 | |
| 5229 | /// Set the relative datetime to use when rounding a span. |
| 5230 | /// |
| 5231 | /// A relative datetime is only required when calendar units (units greater |
| 5232 | /// than days) are involved. This includes having calendar units in the |
| 5233 | /// original span, or calendar units in the configured smallest or largest |
| 5234 | /// unit. A relative datetime is required when calendar units are used |
| 5235 | /// because the duration of a particular calendar unit (like 1 month or 1 |
| 5236 | /// year) is variable and depends on the date. For example, 1 month from |
| 5237 | /// 2024-01-01 is 31 days, but 1 month from 2024-02-01 is 29 days. |
| 5238 | /// |
| 5239 | /// A relative datetime is provided by anything that implements |
| 5240 | /// `Into<SpanRelativeTo>`. There are a few convenience trait |
| 5241 | /// implementations provided: |
| 5242 | /// |
| 5243 | /// * `From<&Zoned> for SpanRelativeTo` uses a zone aware datetime to do |
| 5244 | /// rounding. In this case, rounding will take time zone transitions into |
| 5245 | /// account. In particular, when using a zoned relative datetime, not all |
| 5246 | /// days are necessarily 24 hours. |
| 5247 | /// * `From<civil::DateTime> for SpanRelativeTo` uses a civil datetime. In |
| 5248 | /// this case, all days will be considered 24 hours long. |
| 5249 | /// * `From<civil::Date> for SpanRelativeTo` uses a civil date. In this |
| 5250 | /// case, all days will be considered 24 hours long. |
| 5251 | /// |
| 5252 | /// Note that one can impose 24-hour days without providing a reference |
| 5253 | /// date via [`SpanRelativeTo::days_are_24_hours`]. |
| 5254 | /// |
| 5255 | /// # Errors |
| 5256 | /// |
| 5257 | /// If rounding involves a calendar unit (units bigger than hours) and no |
| 5258 | /// relative datetime is provided, then this configuration will lead to |
| 5259 | /// an error when used with [`Span::round`]. |
| 5260 | /// |
| 5261 | /// # Example |
| 5262 | /// |
| 5263 | /// This example shows very precisely how a DST transition can impact |
| 5264 | /// rounding and re-balancing. For example, consider the day `2024-11-03` |
| 5265 | /// in `America/New_York`. On this day, the 1 o'clock hour was repeated, |
| 5266 | /// making the day 24 hours long. This will be taken into account when |
| 5267 | /// rounding if a zoned datetime is provided as a reference point: |
| 5268 | /// |
| 5269 | /// ``` |
| 5270 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
| 5271 | /// |
| 5272 | /// let zdt = "2024-11-03T00-04[America/New_York]" .parse::<Zoned>()?; |
| 5273 | /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt); |
| 5274 | /// assert_eq!(1.day().round(round)?, 25.hours().fieldwise()); |
| 5275 | /// |
| 5276 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5277 | /// ``` |
| 5278 | /// |
| 5279 | /// And similarly for `2024-03-10`, where the 2 o'clock hour was skipped |
| 5280 | /// entirely: |
| 5281 | /// |
| 5282 | /// ``` |
| 5283 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
| 5284 | /// |
| 5285 | /// let zdt = "2024-03-10T00-05[America/New_York]" .parse::<Zoned>()?; |
| 5286 | /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt); |
| 5287 | /// assert_eq!(1.day().round(round)?, 23.hours().fieldwise()); |
| 5288 | /// |
| 5289 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5290 | /// ``` |
| 5291 | #[inline ] |
| 5292 | pub fn relative<R: Into<SpanRelativeTo<'a>>>( |
| 5293 | self, |
| 5294 | relative: R, |
| 5295 | ) -> SpanRound<'a> { |
| 5296 | SpanRound { relative: Some(relative.into()), ..self } |
| 5297 | } |
| 5298 | |
| 5299 | /// This is a convenience function for setting the relative option on |
| 5300 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
| 5301 | /// |
| 5302 | /// # Example |
| 5303 | /// |
| 5304 | /// When rounding spans involving days, either a relative datetime must be |
| 5305 | /// provided, or a special assertion opting into 24-hour days is |
| 5306 | /// required. Otherwise, you get an error. |
| 5307 | /// |
| 5308 | /// ``` |
| 5309 | /// use jiff::{SpanRound, ToSpan, Unit}; |
| 5310 | /// |
| 5311 | /// let span = 2.days().hours(12); |
| 5312 | /// // No relative date provided, which results in an error. |
| 5313 | /// assert_eq!( |
| 5314 | /// span.round(Unit::Day).unwrap_err().to_string(), |
| 5315 | /// "error with `smallest` rounding option: using unit 'day' in a \ |
| 5316 | /// span or configuration requires that either a relative reference \ |
| 5317 | /// time be given or `SpanRelativeTo::days_are_24_hours()` is used \ |
| 5318 | /// to indicate invariant 24-hour days, but neither were provided" , |
| 5319 | /// ); |
| 5320 | /// let rounded = span.round( |
| 5321 | /// SpanRound::new().smallest(Unit::Day).days_are_24_hours(), |
| 5322 | /// )?; |
| 5323 | /// assert_eq!(rounded, 3.days().fieldwise()); |
| 5324 | /// |
| 5325 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5326 | /// ``` |
| 5327 | #[inline ] |
| 5328 | pub fn days_are_24_hours(self) -> SpanRound<'a> { |
| 5329 | self.relative(SpanRelativeTo::days_are_24_hours()) |
| 5330 | } |
| 5331 | |
| 5332 | /// Returns the configured smallest unit on this round configuration. |
| 5333 | #[inline ] |
| 5334 | pub(crate) fn get_smallest(&self) -> Unit { |
| 5335 | self.smallest |
| 5336 | } |
| 5337 | |
| 5338 | /// Returns the configured largest unit on this round configuration. |
| 5339 | #[inline ] |
| 5340 | pub(crate) fn get_largest(&self) -> Option<Unit> { |
| 5341 | self.largest |
| 5342 | } |
| 5343 | |
| 5344 | /// Returns true only when rounding a span *may* change it. When it |
| 5345 | /// returns false, and if the span is already balanced according to |
| 5346 | /// the largest unit in this round configuration, then it is guaranteed |
| 5347 | /// that rounding is a no-op. |
| 5348 | /// |
| 5349 | /// This is useful to avoid rounding calls after doing span arithmetic |
| 5350 | /// on datetime types. This works because the "largest" unit is used to |
| 5351 | /// construct a balanced span for the difference between two datetimes. |
| 5352 | /// So we already know the span has been balanced. If this weren't the |
| 5353 | /// case, then the largest unit being different from the one in the span |
| 5354 | /// could result in rounding making a change. (And indeed, in the general |
| 5355 | /// case of span rounding below, we do a more involved check for this.) |
| 5356 | #[inline ] |
| 5357 | pub(crate) fn rounding_may_change_span_ignore_largest(&self) -> bool { |
| 5358 | self.smallest > Unit::Nanosecond || self.increment > 1 |
| 5359 | } |
| 5360 | |
| 5361 | /// Does the actual span rounding. |
| 5362 | fn round(&self, span: Span) -> Result<Span, Error> { |
| 5363 | let existing_largest = span.largest_unit(); |
| 5364 | let mode = self.mode; |
| 5365 | let smallest = self.smallest; |
| 5366 | let largest = |
| 5367 | self.largest.unwrap_or_else(|| smallest.max(existing_largest)); |
| 5368 | let max = existing_largest.max(largest); |
| 5369 | let increment = increment::for_span(smallest, self.increment)?; |
| 5370 | if largest < smallest { |
| 5371 | return Err(err!( |
| 5372 | "largest unit (' {largest}') cannot be smaller than \ |
| 5373 | smallest unit (' {smallest}')" , |
| 5374 | largest = largest.singular(), |
| 5375 | smallest = smallest.singular(), |
| 5376 | )); |
| 5377 | } |
| 5378 | let relative = match self.relative { |
| 5379 | Some(ref r) => { |
| 5380 | match r.to_relative(max)? { |
| 5381 | Some(r) => r, |
| 5382 | None => { |
| 5383 | // If our reference point is civil time, then its units |
| 5384 | // are invariant as long as we are using day-or-lower |
| 5385 | // everywhere. That is, the length of the duration is |
| 5386 | // independent of the reference point. In which case, |
| 5387 | // rounding is a simple matter of converting the span |
| 5388 | // to a number of nanoseconds and then rounding that. |
| 5389 | return Ok(round_span_invariant( |
| 5390 | span, smallest, largest, increment, mode, |
| 5391 | )?); |
| 5392 | } |
| 5393 | } |
| 5394 | } |
| 5395 | None => { |
| 5396 | // This is only okay if none of our units are above 'day'. |
| 5397 | // That is, a reference point is only necessary when there is |
| 5398 | // no reasonable invariant interpretation of the span. And this |
| 5399 | // is only true when everything is less than 'day'. |
| 5400 | requires_relative_date_err(smallest) |
| 5401 | .context("error with `smallest` rounding option" )?; |
| 5402 | if let Some(largest) = self.largest { |
| 5403 | requires_relative_date_err(largest) |
| 5404 | .context("error with `largest` rounding option" )?; |
| 5405 | } |
| 5406 | requires_relative_date_err(existing_largest).context( |
| 5407 | "error with largest unit in span to be rounded" , |
| 5408 | )?; |
| 5409 | assert!(max <= Unit::Week); |
| 5410 | return Ok(round_span_invariant( |
| 5411 | span, smallest, largest, increment, mode, |
| 5412 | )?); |
| 5413 | } |
| 5414 | }; |
| 5415 | relative.round(span, smallest, largest, increment, mode) |
| 5416 | } |
| 5417 | } |
| 5418 | |
| 5419 | impl Default for SpanRound<'static> { |
| 5420 | fn default() -> SpanRound<'static> { |
| 5421 | SpanRound::new() |
| 5422 | } |
| 5423 | } |
| 5424 | |
| 5425 | impl From<Unit> for SpanRound<'static> { |
| 5426 | fn from(unit: Unit) -> SpanRound<'static> { |
| 5427 | SpanRound::default().smallest(unit) |
| 5428 | } |
| 5429 | } |
| 5430 | |
| 5431 | impl From<(Unit, i64)> for SpanRound<'static> { |
| 5432 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> SpanRound<'static> { |
| 5433 | SpanRound::default().smallest(unit).increment(increment) |
| 5434 | } |
| 5435 | } |
| 5436 | |
| 5437 | /// A relative datetime for use with [`Span`] APIs. |
| 5438 | /// |
| 5439 | /// A relative datetime can be one of the following: [`civil::Date`](Date), |
| 5440 | /// [`civil::DateTime`](DateTime) or [`Zoned`]. It can be constructed from any |
| 5441 | /// of the preceding types via `From` trait implementations. |
| 5442 | /// |
| 5443 | /// A relative datetime is used to indicate how the calendar units of a `Span` |
| 5444 | /// should be interpreted. For example, the span "1 month" does not have a |
| 5445 | /// fixed meaning. One month from `2024-03-01` is 31 days, but one month from |
| 5446 | /// `2024-04-01` is 30 days. Similar for years. |
| 5447 | /// |
| 5448 | /// When a relative datetime in time zone aware (i.e., it is a `Zoned`), then |
| 5449 | /// a `Span` will also consider its day units to be variable in length. For |
| 5450 | /// example, `2024-03-10` in `America/New_York` was only 23 hours long, where |
| 5451 | /// as `2024-11-03` in `America/New_York` was 25 hours long. When a relative |
| 5452 | /// datetime is civil, then days are considered to always be of a fixed 24 |
| 5453 | /// hour length. |
| 5454 | /// |
| 5455 | /// This type is principally used as an input to one of several different |
| 5456 | /// [`Span`] APIs: |
| 5457 | /// |
| 5458 | /// * [`Span::round`] rounds spans. A relative datetime is necessary when |
| 5459 | /// dealing with calendar units. (But spans without calendar units can be |
| 5460 | /// rounded without providing a relative datetime.) |
| 5461 | /// * Span arithmetic via [`Span::checked_add`] and [`Span::checked_sub`]. |
| 5462 | /// A relative datetime is needed when adding or subtracting spans with |
| 5463 | /// calendar units. |
| 5464 | /// * Span comarisons via [`Span::compare`] require a relative datetime when |
| 5465 | /// comparing spans with calendar units. |
| 5466 | /// * Computing the "total" duration as a single floating point number via |
| 5467 | /// [`Span::total`] also requires a relative datetime when dealing with |
| 5468 | /// calendar units. |
| 5469 | /// |
| 5470 | /// # Example |
| 5471 | /// |
| 5472 | /// This example shows how to round a span with larger calendar units to |
| 5473 | /// smaller units: |
| 5474 | /// |
| 5475 | /// ``` |
| 5476 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
| 5477 | /// |
| 5478 | /// let zdt: Zoned = "2012-01-01[Antarctica/Troll]" .parse()?; |
| 5479 | /// let round = SpanRound::new().largest(Unit::Day).relative(&zdt); |
| 5480 | /// assert_eq!(1.year().round(round)?, 366.days().fieldwise()); |
| 5481 | /// |
| 5482 | /// // If you tried this without a relative datetime, it would fail: |
| 5483 | /// let round = SpanRound::new().largest(Unit::Day); |
| 5484 | /// assert!(1.year().round(round).is_err()); |
| 5485 | /// |
| 5486 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5487 | /// ``` |
| 5488 | #[derive (Clone, Copy, Debug)] |
| 5489 | pub struct SpanRelativeTo<'a> { |
| 5490 | kind: SpanRelativeToKind<'a>, |
| 5491 | } |
| 5492 | |
| 5493 | impl<'a> SpanRelativeTo<'a> { |
| 5494 | /// Creates a special marker that indicates all days ought to be assumed |
| 5495 | /// to be 24 hours without providing a relative reference time. |
| 5496 | /// |
| 5497 | /// This is relevant to the following APIs: |
| 5498 | /// |
| 5499 | /// * [`Span::checked_add`] |
| 5500 | /// * [`Span::checked_sub`] |
| 5501 | /// * [`Span::compare`] |
| 5502 | /// * [`Span::total`] |
| 5503 | /// * [`Span::round`] |
| 5504 | /// * [`Span::to_duration`] |
| 5505 | /// |
| 5506 | /// Specifically, in a previous version of Jiff, the above APIs permitted |
| 5507 | /// _silently_ assuming that days are always 24 hours when a relative |
| 5508 | /// reference date wasn't provided. In the current version of Jiff, this |
| 5509 | /// silent interpretation no longer happens and instead an error will |
| 5510 | /// occur. |
| 5511 | /// |
| 5512 | /// If you need to use these APIs with spans that contain non-zero units |
| 5513 | /// of days or weeks but without a relative reference date, then you may |
| 5514 | /// use this routine to create a special marker for `SpanRelativeTo` that |
| 5515 | /// permits the APIs above to assume days are always 24 hours. |
| 5516 | /// |
| 5517 | /// # Motivation |
| 5518 | /// |
| 5519 | /// The purpose of the marker is two-fold: |
| 5520 | /// |
| 5521 | /// * Requiring the marker is important for improving the consistency of |
| 5522 | /// `Span` APIs. Previously, some APIs (like [`Timestamp::checked_add`]) |
| 5523 | /// would always return an error if the `Span` given had non-zero |
| 5524 | /// units of days or greater. On the other hand, other APIs (like |
| 5525 | /// [`Span::checked_add`]) would autoamtically assume days were always |
| 5526 | /// 24 hours if no relative reference time was given and either span had |
| 5527 | /// non-zero units of days. With this marker, APIs _never_ assume days are |
| 5528 | /// always 24 hours automatically. |
| 5529 | /// * When it _is_ appropriate to assume all days are 24 hours |
| 5530 | /// (for example, when only dealing with spans derived from |
| 5531 | /// [`civil`](crate::civil) datetimes) and where providing a relative |
| 5532 | /// reference datetime doesn't make sense. In this case, one _could_ |
| 5533 | /// provide a "dummy" reference date since the precise date in civil time |
| 5534 | /// doesn't impact the length of a day. But a marker like the one returned |
| 5535 | /// here is more explicit for the purpose of assuming days are always 24 |
| 5536 | /// hours. |
| 5537 | /// |
| 5538 | /// With that said, ideally, callers should provide a relative reference |
| 5539 | /// datetime if possible. |
| 5540 | /// |
| 5541 | /// See [Issue #48] for more discussion on this topic. |
| 5542 | /// |
| 5543 | /// # Example: different interpretations of "1 day" |
| 5544 | /// |
| 5545 | /// This example shows how "1 day" can be interpreted differently via the |
| 5546 | /// [`Span::total`] API: |
| 5547 | /// |
| 5548 | /// ``` |
| 5549 | /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned}; |
| 5550 | /// |
| 5551 | /// let span = 1.day(); |
| 5552 | /// |
| 5553 | /// // An error because days aren't always 24 hours: |
| 5554 | /// assert_eq!( |
| 5555 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
| 5556 | /// "using unit 'day' in a span or configuration requires that either \ |
| 5557 | /// a relative reference time be given or \ |
| 5558 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 5559 | /// invariant 24-hour days, but neither were provided" , |
| 5560 | /// ); |
| 5561 | /// // Opt into invariant 24 hour days without a relative date: |
| 5562 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
| 5563 | /// let hours = span.total((Unit::Hour, marker))?; |
| 5564 | /// assert_eq!(hours, 24.0); |
| 5565 | /// // Days can be shorter than 24 hours: |
| 5566 | /// let zdt: Zoned = "2024-03-10[America/New_York]" .parse()?; |
| 5567 | /// let hours = span.total((Unit::Hour, &zdt))?; |
| 5568 | /// assert_eq!(hours, 23.0); |
| 5569 | /// // Days can be longer than 24 hours: |
| 5570 | /// let zdt: Zoned = "2024-11-03[America/New_York]" .parse()?; |
| 5571 | /// let hours = span.total((Unit::Hour, &zdt))?; |
| 5572 | /// assert_eq!(hours, 25.0); |
| 5573 | /// |
| 5574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5575 | /// ``` |
| 5576 | /// |
| 5577 | /// Similar behavior applies to the other APIs listed above. |
| 5578 | /// |
| 5579 | /// # Example: different interpretations of "1 week" |
| 5580 | /// |
| 5581 | /// This example shows how "1 week" can be interpreted differently via the |
| 5582 | /// [`Span::total`] API: |
| 5583 | /// |
| 5584 | /// ``` |
| 5585 | /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned}; |
| 5586 | /// |
| 5587 | /// let span = 1.week(); |
| 5588 | /// |
| 5589 | /// // An error because days aren't always 24 hours: |
| 5590 | /// assert_eq!( |
| 5591 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
| 5592 | /// "using unit 'week' in a span or configuration requires that either \ |
| 5593 | /// a relative reference time be given or \ |
| 5594 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
| 5595 | /// invariant 24-hour days, but neither were provided" , |
| 5596 | /// ); |
| 5597 | /// // Opt into invariant 24 hour days without a relative date: |
| 5598 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
| 5599 | /// let hours = span.total((Unit::Hour, marker))?; |
| 5600 | /// assert_eq!(hours, 168.0); |
| 5601 | /// // Weeks can be shorter than 24*7 hours: |
| 5602 | /// let zdt: Zoned = "2024-03-10[America/New_York]" .parse()?; |
| 5603 | /// let hours = span.total((Unit::Hour, &zdt))?; |
| 5604 | /// assert_eq!(hours, 167.0); |
| 5605 | /// // Weeks can be longer than 24*7 hours: |
| 5606 | /// let zdt: Zoned = "2024-11-03[America/New_York]" .parse()?; |
| 5607 | /// let hours = span.total((Unit::Hour, &zdt))?; |
| 5608 | /// assert_eq!(hours, 169.0); |
| 5609 | /// |
| 5610 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5611 | /// ``` |
| 5612 | /// |
| 5613 | /// # Example: working with [`civil::Date`](crate::civil::Date) |
| 5614 | /// |
| 5615 | /// A `Span` returned by computing the difference in time between two |
| 5616 | /// [`civil::Date`](crate::civil::Date)s will have a non-zero number of |
| 5617 | /// days. In older versions of Jiff, if one wanted to add spans returned by |
| 5618 | /// these APIs, you could do so without futzing with relative dates. But |
| 5619 | /// now you either need to provide a relative date: |
| 5620 | /// |
| 5621 | /// ``` |
| 5622 | /// use jiff::{civil::date, ToSpan}; |
| 5623 | /// |
| 5624 | /// let d1 = date(2025, 1, 18); |
| 5625 | /// let d2 = date(2025, 1, 26); |
| 5626 | /// let d3 = date(2025, 2, 14); |
| 5627 | /// |
| 5628 | /// let span1 = d2 - d1; |
| 5629 | /// let span2 = d3 - d2; |
| 5630 | /// let total = span1.checked_add((span2, d1))?; |
| 5631 | /// assert_eq!(total, 27.days().fieldwise()); |
| 5632 | /// |
| 5633 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5634 | /// ``` |
| 5635 | /// |
| 5636 | /// Or you can provide a marker indicating that days are always 24 hours. |
| 5637 | /// This is fine for this use case since one is only doing civil calendar |
| 5638 | /// arithmetic and not working with time zones: |
| 5639 | /// |
| 5640 | /// ``` |
| 5641 | /// use jiff::{civil::date, SpanRelativeTo, ToSpan}; |
| 5642 | /// |
| 5643 | /// let d1 = date(2025, 1, 18); |
| 5644 | /// let d2 = date(2025, 1, 26); |
| 5645 | /// let d3 = date(2025, 2, 14); |
| 5646 | /// |
| 5647 | /// let span1 = d2 - d1; |
| 5648 | /// let span2 = d3 - d2; |
| 5649 | /// let total = span1.checked_add( |
| 5650 | /// (span2, SpanRelativeTo::days_are_24_hours()), |
| 5651 | /// )?; |
| 5652 | /// assert_eq!(total, 27.days().fieldwise()); |
| 5653 | /// |
| 5654 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5655 | /// ``` |
| 5656 | /// |
| 5657 | /// [Issue #48]: https://github.com/BurntSushi/jiff/issues/48 |
| 5658 | #[inline ] |
| 5659 | pub const fn days_are_24_hours() -> SpanRelativeTo<'static> { |
| 5660 | let kind = SpanRelativeToKind::DaysAre24Hours; |
| 5661 | SpanRelativeTo { kind } |
| 5662 | } |
| 5663 | |
| 5664 | /// Converts this public API relative datetime into a more versatile |
| 5665 | /// internal representation of the same concept. |
| 5666 | /// |
| 5667 | /// Basically, the internal `Relative` type is `Cow` which means it isn't |
| 5668 | /// `Copy`. But it can present a more uniform API. The public API type |
| 5669 | /// doesn't have `Cow` so that it can be `Copy`. |
| 5670 | /// |
| 5671 | /// We also take this opportunity to attach some convenient data, such |
| 5672 | /// as a timestamp when the relative datetime type is civil. |
| 5673 | /// |
| 5674 | /// This can return `None` if this `SpanRelativeTo` isn't actually a |
| 5675 | /// datetime but a "marker" indicating some unit (like days) should be |
| 5676 | /// treated as invariant. Or `None` is returned when the given unit is |
| 5677 | /// always invariant (hours or smaller). |
| 5678 | /// |
| 5679 | /// # Errors |
| 5680 | /// |
| 5681 | /// If there was a problem doing this conversion, then an error is |
| 5682 | /// returned. In practice, this only occurs for a civil datetime near the |
| 5683 | /// civil datetime minimum and maximum values. |
| 5684 | fn to_relative(&self, unit: Unit) -> Result<Option<Relative<'a>>, Error> { |
| 5685 | if !unit.is_variable() { |
| 5686 | return Ok(None); |
| 5687 | } |
| 5688 | match self.kind { |
| 5689 | SpanRelativeToKind::Civil(dt) => { |
| 5690 | Ok(Some(Relative::Civil(RelativeCivil::new(dt)?))) |
| 5691 | } |
| 5692 | SpanRelativeToKind::Zoned(zdt) => { |
| 5693 | Ok(Some(Relative::Zoned(RelativeZoned { |
| 5694 | zoned: DumbCow::Borrowed(zdt), |
| 5695 | }))) |
| 5696 | } |
| 5697 | SpanRelativeToKind::DaysAre24Hours => { |
| 5698 | if matches!(unit, Unit::Year | Unit::Month) { |
| 5699 | return Err(err!( |
| 5700 | "using unit ' {unit}' in span or configuration \ |
| 5701 | requires that a relative reference time be given \ |
| 5702 | (`SpanRelativeTo::days_are_24_hours()` was given \ |
| 5703 | but this only permits using days and weeks \ |
| 5704 | without a relative reference time)" , |
| 5705 | unit = unit.singular(), |
| 5706 | )); |
| 5707 | } |
| 5708 | Ok(None) |
| 5709 | } |
| 5710 | } |
| 5711 | } |
| 5712 | } |
| 5713 | |
| 5714 | #[derive (Clone, Copy, Debug)] |
| 5715 | enum SpanRelativeToKind<'a> { |
| 5716 | Civil(DateTime), |
| 5717 | Zoned(&'a Zoned), |
| 5718 | DaysAre24Hours, |
| 5719 | } |
| 5720 | |
| 5721 | impl<'a> From<&'a Zoned> for SpanRelativeTo<'a> { |
| 5722 | fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a> { |
| 5723 | SpanRelativeTo { kind: SpanRelativeToKind::Zoned(zdt) } |
| 5724 | } |
| 5725 | } |
| 5726 | |
| 5727 | impl From<DateTime> for SpanRelativeTo<'static> { |
| 5728 | fn from(dt: DateTime) -> SpanRelativeTo<'static> { |
| 5729 | SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) } |
| 5730 | } |
| 5731 | } |
| 5732 | |
| 5733 | impl From<Date> for SpanRelativeTo<'static> { |
| 5734 | fn from(date: Date) -> SpanRelativeTo<'static> { |
| 5735 | let dt: DateTime = DateTime::from_parts(date, Time::midnight()); |
| 5736 | SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) } |
| 5737 | } |
| 5738 | } |
| 5739 | |
| 5740 | /// A bit set that keeps track of all non-zero units on a `Span`. |
| 5741 | /// |
| 5742 | /// Because of alignment, adding this to a `Span` does not make it any bigger. |
| 5743 | /// |
| 5744 | /// The benefit of this bit set is to make it extremely cheap to enable fast |
| 5745 | /// paths in various places. For example, doing arithmetic on a `Date` with an |
| 5746 | /// arbitrary `Span` is pretty involved. But if you know the `Span` only |
| 5747 | /// consists of non-zero units of days (and zero for all other units), then you |
| 5748 | /// can take a much cheaper path. |
| 5749 | #[derive (Clone, Copy)] |
| 5750 | pub(crate) struct UnitSet(u16); |
| 5751 | |
| 5752 | impl UnitSet { |
| 5753 | /// Return a bit set representing all units as zero. |
| 5754 | #[inline ] |
| 5755 | fn empty() -> UnitSet { |
| 5756 | UnitSet(0) |
| 5757 | } |
| 5758 | |
| 5759 | /// Set the given `unit` to `is_zero` status in this set. |
| 5760 | /// |
| 5761 | /// When `is_zero` is false, the unit is added to this set. Otherwise, |
| 5762 | /// the unit is removed from this set. |
| 5763 | #[inline ] |
| 5764 | fn set(self, unit: Unit, is_zero: bool) -> UnitSet { |
| 5765 | let bit = 1 << unit as usize; |
| 5766 | if is_zero { |
| 5767 | UnitSet(self.0 & !bit) |
| 5768 | } else { |
| 5769 | UnitSet(self.0 | bit) |
| 5770 | } |
| 5771 | } |
| 5772 | |
| 5773 | /// Returns true if and only if no units are in this set. |
| 5774 | #[inline ] |
| 5775 | pub(crate) fn is_empty(&self) -> bool { |
| 5776 | self.0 == 0 |
| 5777 | } |
| 5778 | |
| 5779 | /// Returns true if and only if this `Span` contains precisely one |
| 5780 | /// non-zero unit corresponding to the unit given. |
| 5781 | #[inline ] |
| 5782 | pub(crate) fn contains_only(self, unit: Unit) -> bool { |
| 5783 | self.0 == (1 << unit as usize) |
| 5784 | } |
| 5785 | |
| 5786 | /// Returns this set, but with only calendar units. |
| 5787 | #[inline ] |
| 5788 | pub(crate) fn only_calendar(self) -> UnitSet { |
| 5789 | UnitSet(self.0 & 0b0000_0011_1100_0000) |
| 5790 | } |
| 5791 | |
| 5792 | /// Returns this set, but with only time units. |
| 5793 | #[inline ] |
| 5794 | pub(crate) fn only_time(self) -> UnitSet { |
| 5795 | UnitSet(self.0 & 0b0000_0000_0011_1111) |
| 5796 | } |
| 5797 | |
| 5798 | /// Returns the largest unit in this set, or `None` if none are present. |
| 5799 | #[inline ] |
| 5800 | pub(crate) fn largest_unit(self) -> Option<Unit> { |
| 5801 | let zeros = usize::try_from(self.0.leading_zeros()).ok()?; |
| 5802 | 15usize.checked_sub(zeros).and_then(Unit::from_usize) |
| 5803 | } |
| 5804 | } |
| 5805 | |
| 5806 | // N.B. This `Debug` impl isn't typically used. |
| 5807 | // |
| 5808 | // This is because the `Debug` impl for `Span` just emits itself in the |
| 5809 | // friendly duration format, which doesn't include internal representation |
| 5810 | // details like this set. It is included in `Span::debug`, but this isn't |
| 5811 | // part of the public crate API. |
| 5812 | impl core::fmt::Debug for UnitSet { |
| 5813 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 5814 | write!(f, " {{" )?; |
| 5815 | let mut units: UnitSet = *self; |
| 5816 | let mut i: i32 = 0; |
| 5817 | while let Some(unit: Unit) = units.largest_unit() { |
| 5818 | if i > 0 { |
| 5819 | write!(f, ", " )?; |
| 5820 | } |
| 5821 | i += 1; |
| 5822 | write!(f, " {}" , unit.compact())?; |
| 5823 | units = units.set(unit, is_zero:false); |
| 5824 | } |
| 5825 | if i == 0 { |
| 5826 | write!(f, "∅" )?; |
| 5827 | } |
| 5828 | write!(f, " }}" ) |
| 5829 | } |
| 5830 | } |
| 5831 | |
| 5832 | /// An internal abstraction for managing a relative datetime for use in some |
| 5833 | /// `Span` APIs. |
| 5834 | /// |
| 5835 | /// This is effectively the same as a `SpanRelativeTo`, but uses a `Cow<Zoned>` |
| 5836 | /// instead of a `&Zoned`. This makes it non-`Copy`, but allows us to craft a |
| 5837 | /// more uniform API. (i.e., `relative + span = relative` instead of `relative |
| 5838 | /// + span = owned_relative` or whatever.) Note that the `Copy` impl on |
| 5839 | /// `SpanRelativeTo` means it has to accept a `&Zoned`. It can't ever take a |
| 5840 | /// `Zoned` since it is non-Copy. |
| 5841 | /// |
| 5842 | /// NOTE: Separately from above, I think it's plausible that this type could be |
| 5843 | /// designed a bit differently. Namely, something like this: |
| 5844 | /// |
| 5845 | /// ```text |
| 5846 | /// struct Relative<'a> { |
| 5847 | /// tz: Option<&'a TimeZone>, |
| 5848 | /// dt: DateTime, |
| 5849 | /// ts: Timestamp, |
| 5850 | /// } |
| 5851 | /// ``` |
| 5852 | /// |
| 5853 | /// That is, we do zone aware stuff but without an actual `Zoned` type. But I |
| 5854 | /// think in order to make that work, we would need to expose most of the |
| 5855 | /// `Zoned` API as functions on its component types (DateTime, Timestamp and |
| 5856 | /// TimeZone). I think we are likely to want to do that for public API reasons, |
| 5857 | /// but I'd like to resist it since I think it will add a lot of complexity. |
| 5858 | /// Or maybe we need a `Unzoned` type that is `DateTime` and `Timestamp`, but |
| 5859 | /// requires passing the time zone in to each of its methods. That might work |
| 5860 | /// quite well, even if it was just an internal type. |
| 5861 | /// |
| 5862 | /// Anyway, I'm not 100% sure the above would work, but I think it would. It |
| 5863 | /// would be nicer because everything would be `Copy` all the time. We'd never |
| 5864 | /// need a `Cow<TimeZone>` for example, because we never need to change or |
| 5865 | /// create a new time zone. |
| 5866 | #[derive (Clone, Debug)] |
| 5867 | enum Relative<'a> { |
| 5868 | Civil(RelativeCivil), |
| 5869 | Zoned(RelativeZoned<'a>), |
| 5870 | } |
| 5871 | |
| 5872 | impl<'a> Relative<'a> { |
| 5873 | /// Adds the given span to this relative datetime. |
| 5874 | /// |
| 5875 | /// This defers to either [`DateTime::checked_add`] or |
| 5876 | /// [`Zoned::checked_add`], depending on the type of relative datetime. |
| 5877 | /// |
| 5878 | /// The `Relative` datetime returned is guaranteed to have the same |
| 5879 | /// internal datetie type as `self`. |
| 5880 | /// |
| 5881 | /// # Errors |
| 5882 | /// |
| 5883 | /// This returns an error in the same cases as the underlying checked |
| 5884 | /// arithmetic APIs. In general, this occurs when adding the given `span` |
| 5885 | /// would result in overflow. |
| 5886 | fn checked_add(&self, span: Span) -> Result<Relative, Error> { |
| 5887 | match *self { |
| 5888 | Relative::Civil(dt) => Ok(Relative::Civil(dt.checked_add(span)?)), |
| 5889 | Relative::Zoned(ref zdt) => { |
| 5890 | Ok(Relative::Zoned(zdt.checked_add(span)?)) |
| 5891 | } |
| 5892 | } |
| 5893 | } |
| 5894 | |
| 5895 | fn checked_add_duration( |
| 5896 | &self, |
| 5897 | duration: SignedDuration, |
| 5898 | ) -> Result<Relative, Error> { |
| 5899 | match *self { |
| 5900 | Relative::Civil(dt) => { |
| 5901 | Ok(Relative::Civil(dt.checked_add_duration(duration)?)) |
| 5902 | } |
| 5903 | Relative::Zoned(ref zdt) => { |
| 5904 | Ok(Relative::Zoned(zdt.checked_add_duration(duration)?)) |
| 5905 | } |
| 5906 | } |
| 5907 | } |
| 5908 | |
| 5909 | /// Returns the span of time from this relative datetime to the one given, |
| 5910 | /// with units as large as `largest`. |
| 5911 | /// |
| 5912 | /// # Errors |
| 5913 | /// |
| 5914 | /// This returns an error in the same cases as when the underlying |
| 5915 | /// [`DateTime::until`] or [`Zoned::until`] fail. Because this doesn't |
| 5916 | /// set or expose any rounding configuration, this can generally only |
| 5917 | /// occur when `largest` is `Unit::Nanosecond` and the span of time |
| 5918 | /// between `self` and `other` is too big to represent as a 64-bit integer |
| 5919 | /// nanosecond count. |
| 5920 | /// |
| 5921 | /// # Panics |
| 5922 | /// |
| 5923 | /// This panics if `self` and `other` are different internal datetime |
| 5924 | /// types. For example, if `self` was a civil datetime and `other` were |
| 5925 | /// a zoned datetime. |
| 5926 | fn until(&self, largest: Unit, other: &Relative) -> Result<Span, Error> { |
| 5927 | match (self, other) { |
| 5928 | (&Relative::Civil(ref dt1), &Relative::Civil(ref dt2)) => { |
| 5929 | dt1.until(largest, dt2) |
| 5930 | } |
| 5931 | (&Relative::Zoned(ref zdt1), &Relative::Zoned(ref zdt2)) => { |
| 5932 | zdt1.until(largest, zdt2) |
| 5933 | } |
| 5934 | // This would be bad if `Relative` were a public API, but in |
| 5935 | // practice, this case never occurs because we don't mixup our |
| 5936 | // `Relative` datetime types. |
| 5937 | _ => unreachable!(), |
| 5938 | } |
| 5939 | } |
| 5940 | |
| 5941 | /// Converts this relative datetime to a nanosecond in UTC time. |
| 5942 | /// |
| 5943 | /// # Errors |
| 5944 | /// |
| 5945 | /// If there was a problem doing this conversion, then an error is |
| 5946 | /// returned. In practice, this only occurs for a civil datetime near the |
| 5947 | /// civil datetime minimum and maximum values. |
| 5948 | fn to_nanosecond(&self) -> NoUnits128 { |
| 5949 | match *self { |
| 5950 | Relative::Civil(dt) => dt.timestamp.as_nanosecond_ranged().rinto(), |
| 5951 | Relative::Zoned(ref zdt) => { |
| 5952 | zdt.zoned.timestamp().as_nanosecond_ranged().rinto() |
| 5953 | } |
| 5954 | } |
| 5955 | } |
| 5956 | |
| 5957 | /// Create a balanced span of time relative to this datetime. |
| 5958 | /// |
| 5959 | /// The relative span returned has the same internal datetime type |
| 5960 | /// (civil or zoned) as this relative datetime. |
| 5961 | /// |
| 5962 | /// # Errors |
| 5963 | /// |
| 5964 | /// This returns an error when the span in this range cannot be |
| 5965 | /// represented. In general, this only occurs when asking for largest units |
| 5966 | /// of `Unit::Nanosecond` *and* when the span is too big to fit into a |
| 5967 | /// 64-bit nanosecond count. |
| 5968 | /// |
| 5969 | /// This can also return an error in other extreme cases, such as when |
| 5970 | /// adding the given span to this relative datetime results in overflow, |
| 5971 | /// or if this relative datetime is a civil datetime and it couldn't be |
| 5972 | /// converted to a timestamp in UTC. |
| 5973 | fn into_relative_span( |
| 5974 | self, |
| 5975 | largest: Unit, |
| 5976 | span: Span, |
| 5977 | ) -> Result<RelativeSpan<'a>, Error> { |
| 5978 | let kind = match self { |
| 5979 | Relative::Civil(start) => { |
| 5980 | let end = start.checked_add(span)?; |
| 5981 | RelativeSpanKind::Civil { start, end } |
| 5982 | } |
| 5983 | Relative::Zoned(start) => { |
| 5984 | let end = start.checked_add(span)?; |
| 5985 | RelativeSpanKind::Zoned { start, end } |
| 5986 | } |
| 5987 | }; |
| 5988 | let relspan = kind.into_relative_span(largest)?; |
| 5989 | if span.get_sign_ranged() != C(0) |
| 5990 | && relspan.span.get_sign_ranged() != C(0) |
| 5991 | && span.get_sign_ranged() != relspan.span.get_sign_ranged() |
| 5992 | { |
| 5993 | // I haven't quite figured out when this case is hit. I think it's |
| 5994 | // actually impossible right? Balancing a duration should not flip |
| 5995 | // the sign. |
| 5996 | // |
| 5997 | // ref: https://github.com/fullcalendar/temporal-polyfill/blob/9e001042864394247181d1a5d591c18057ce32d2/packages/temporal-polyfill/src/internal/durationMath.ts#L236-L238 |
| 5998 | unreachable!( |
| 5999 | "balanced span should have same sign as original span" |
| 6000 | ) |
| 6001 | } |
| 6002 | Ok(relspan) |
| 6003 | } |
| 6004 | |
| 6005 | /// Rounds the given span using the given rounding configuration. |
| 6006 | fn round( |
| 6007 | self, |
| 6008 | span: Span, |
| 6009 | smallest: Unit, |
| 6010 | largest: Unit, |
| 6011 | increment: NoUnits128, |
| 6012 | mode: RoundMode, |
| 6013 | ) -> Result<Span, Error> { |
| 6014 | let relspan = self.into_relative_span(largest, span)?; |
| 6015 | if relspan.span.get_sign_ranged() == C(0) { |
| 6016 | return Ok(relspan.span); |
| 6017 | } |
| 6018 | let nudge = match relspan.kind { |
| 6019 | RelativeSpanKind::Civil { start, end } => { |
| 6020 | if smallest > Unit::Day { |
| 6021 | Nudge::relative_calendar( |
| 6022 | relspan.span, |
| 6023 | &Relative::Civil(start), |
| 6024 | &Relative::Civil(end), |
| 6025 | smallest, |
| 6026 | increment, |
| 6027 | mode, |
| 6028 | )? |
| 6029 | } else { |
| 6030 | let relative_end = end.timestamp.as_nanosecond_ranged(); |
| 6031 | Nudge::relative_invariant( |
| 6032 | relspan.span, |
| 6033 | relative_end.rinto(), |
| 6034 | smallest, |
| 6035 | largest, |
| 6036 | increment, |
| 6037 | mode, |
| 6038 | )? |
| 6039 | } |
| 6040 | } |
| 6041 | RelativeSpanKind::Zoned { ref start, ref end } => { |
| 6042 | if smallest >= Unit::Day { |
| 6043 | Nudge::relative_calendar( |
| 6044 | relspan.span, |
| 6045 | &Relative::Zoned(start.borrowed()), |
| 6046 | &Relative::Zoned(end.borrowed()), |
| 6047 | smallest, |
| 6048 | increment, |
| 6049 | mode, |
| 6050 | )? |
| 6051 | } else if largest >= Unit::Day { |
| 6052 | // This is a special case for zoned datetimes when rounding |
| 6053 | // could bleed into variable units. |
| 6054 | Nudge::relative_zoned_time( |
| 6055 | relspan.span, |
| 6056 | start, |
| 6057 | smallest, |
| 6058 | increment, |
| 6059 | mode, |
| 6060 | )? |
| 6061 | } else { |
| 6062 | // Otherwise, rounding is the same as civil datetime. |
| 6063 | let relative_end = |
| 6064 | end.zoned.timestamp().as_nanosecond_ranged(); |
| 6065 | Nudge::relative_invariant( |
| 6066 | relspan.span, |
| 6067 | relative_end.rinto(), |
| 6068 | smallest, |
| 6069 | largest, |
| 6070 | increment, |
| 6071 | mode, |
| 6072 | )? |
| 6073 | } |
| 6074 | } |
| 6075 | }; |
| 6076 | nudge.bubble(&relspan, smallest, largest) |
| 6077 | } |
| 6078 | } |
| 6079 | |
| 6080 | /// A balanced span between a range of civil or zoned datetimes. |
| 6081 | /// |
| 6082 | /// The span is always balanced up to a certain unit as given to |
| 6083 | /// `RelativeSpanKind::into_relative_span`. |
| 6084 | #[derive (Clone, Debug)] |
| 6085 | struct RelativeSpan<'a> { |
| 6086 | span: Span, |
| 6087 | kind: RelativeSpanKind<'a>, |
| 6088 | } |
| 6089 | |
| 6090 | /// A civil or zoned datetime range of time. |
| 6091 | #[derive (Clone, Debug)] |
| 6092 | enum RelativeSpanKind<'a> { |
| 6093 | Civil { start: RelativeCivil, end: RelativeCivil }, |
| 6094 | Zoned { start: RelativeZoned<'a>, end: RelativeZoned<'a> }, |
| 6095 | } |
| 6096 | |
| 6097 | impl<'a> RelativeSpanKind<'a> { |
| 6098 | /// Create a balanced `RelativeSpan` from this range of time. |
| 6099 | /// |
| 6100 | /// # Errors |
| 6101 | /// |
| 6102 | /// This returns an error when the span in this range cannot be |
| 6103 | /// represented. In general, this only occurs when asking for largest units |
| 6104 | /// of `Unit::Nanosecond` *and* when the span is too big to fit into a |
| 6105 | /// 64-bit nanosecond count. |
| 6106 | fn into_relative_span( |
| 6107 | self, |
| 6108 | largest: Unit, |
| 6109 | ) -> Result<RelativeSpan<'a>, Error> { |
| 6110 | let span = match self { |
| 6111 | RelativeSpanKind::Civil { ref start, ref end } => start |
| 6112 | .datetime |
| 6113 | .until((largest, end.datetime)) |
| 6114 | .with_context(|| { |
| 6115 | err!( |
| 6116 | "failed to get span between {start} and {end} \ |
| 6117 | with largest unit as {unit}" , |
| 6118 | start = start.datetime, |
| 6119 | end = end.datetime, |
| 6120 | unit = largest.plural(), |
| 6121 | ) |
| 6122 | })?, |
| 6123 | RelativeSpanKind::Zoned { ref start, ref end } => start |
| 6124 | .zoned |
| 6125 | .until((largest, &*end.zoned)) |
| 6126 | .with_context(|| { |
| 6127 | err!( |
| 6128 | "failed to get span between {start} and {end} \ |
| 6129 | with largest unit as {unit}" , |
| 6130 | start = start.zoned, |
| 6131 | end = end.zoned, |
| 6132 | unit = largest.plural(), |
| 6133 | ) |
| 6134 | })?, |
| 6135 | }; |
| 6136 | Ok(RelativeSpan { span, kind: self }) |
| 6137 | } |
| 6138 | } |
| 6139 | |
| 6140 | /// A wrapper around a civil datetime and a timestamp corresponding to that |
| 6141 | /// civil datetime in UTC. |
| 6142 | /// |
| 6143 | /// Haphazardly interpreting a civil datetime in UTC is an odd and *usually* |
| 6144 | /// incorrect thing to do. But the way we use it here is basically just to give |
| 6145 | /// it an "anchoring" point such that we can represent it using a single |
| 6146 | /// integer for rounding purposes. It is only used in a context *relative* to |
| 6147 | /// another civil datetime interpreted in UTC. In this fashion, the selection |
| 6148 | /// of UTC specifically doesn't really matter. We could use any time zone. |
| 6149 | /// (Although, it must be a time zone without any transitions, otherwise we |
| 6150 | /// could wind up with time zone aware results in a context where that would |
| 6151 | /// be unexpected since this is civil time.) |
| 6152 | #[derive (Clone, Copy, Debug)] |
| 6153 | struct RelativeCivil { |
| 6154 | datetime: DateTime, |
| 6155 | timestamp: Timestamp, |
| 6156 | } |
| 6157 | |
| 6158 | impl RelativeCivil { |
| 6159 | /// Creates a new relative wrapper around the given civil datetime. |
| 6160 | /// |
| 6161 | /// This wrapper bundles a timestamp for the given datetime by interpreting |
| 6162 | /// it as being in UTC. This is an "odd" thing to do, but it's only used |
| 6163 | /// in the context of determining the length of time between two civil |
| 6164 | /// datetimes. So technically, any time zone without transitions could be |
| 6165 | /// used. |
| 6166 | /// |
| 6167 | /// # Errors |
| 6168 | /// |
| 6169 | /// This returns an error if the datetime could not be converted to a |
| 6170 | /// timestamp. This only occurs near the minimum and maximum civil datetime |
| 6171 | /// values. |
| 6172 | fn new(datetime: DateTime) -> Result<RelativeCivil, Error> { |
| 6173 | let timestamp = datetime |
| 6174 | .to_zoned(TimeZone::UTC) |
| 6175 | .with_context(|| { |
| 6176 | err!("failed to convert {datetime} to timestamp" ) |
| 6177 | })? |
| 6178 | .timestamp(); |
| 6179 | Ok(RelativeCivil { datetime, timestamp }) |
| 6180 | } |
| 6181 | |
| 6182 | /// Returns the result of [`DateTime::checked_add`]. |
| 6183 | /// |
| 6184 | /// # Errors |
| 6185 | /// |
| 6186 | /// Returns an error in the same cases as `DateTime::checked_add`. That is, |
| 6187 | /// when adding the span to this zoned datetime would overflow. |
| 6188 | /// |
| 6189 | /// This also returns an error if the resulting datetime could not be |
| 6190 | /// converted to a timestamp in UTC. This only occurs near the minimum and |
| 6191 | /// maximum datetime values. |
| 6192 | fn checked_add(&self, span: Span) -> Result<RelativeCivil, Error> { |
| 6193 | let datetime = self.datetime.checked_add(span).with_context(|| { |
| 6194 | err!("failed to add {span} to {dt}" , dt = self.datetime) |
| 6195 | })?; |
| 6196 | let timestamp = datetime |
| 6197 | .to_zoned(TimeZone::UTC) |
| 6198 | .with_context(|| { |
| 6199 | err!("failed to convert {datetime} to timestamp" ) |
| 6200 | })? |
| 6201 | .timestamp(); |
| 6202 | Ok(RelativeCivil { datetime, timestamp }) |
| 6203 | } |
| 6204 | |
| 6205 | /// Returns the result of [`DateTime::checked_add`] with an absolute |
| 6206 | /// duration. |
| 6207 | /// |
| 6208 | /// # Errors |
| 6209 | /// |
| 6210 | /// Returns an error in the same cases as `DateTime::checked_add`. That is, |
| 6211 | /// when adding the span to this zoned datetime would overflow. |
| 6212 | /// |
| 6213 | /// This also returns an error if the resulting datetime could not be |
| 6214 | /// converted to a timestamp in UTC. This only occurs near the minimum and |
| 6215 | /// maximum datetime values. |
| 6216 | fn checked_add_duration( |
| 6217 | &self, |
| 6218 | duration: SignedDuration, |
| 6219 | ) -> Result<RelativeCivil, Error> { |
| 6220 | let datetime = |
| 6221 | self.datetime.checked_add(duration).with_context(|| { |
| 6222 | err!("failed to add {duration:?} to {dt}" , dt = self.datetime) |
| 6223 | })?; |
| 6224 | let timestamp = datetime |
| 6225 | .to_zoned(TimeZone::UTC) |
| 6226 | .with_context(|| { |
| 6227 | err!("failed to convert {datetime} to timestamp" ) |
| 6228 | })? |
| 6229 | .timestamp(); |
| 6230 | Ok(RelativeCivil { datetime, timestamp }) |
| 6231 | } |
| 6232 | |
| 6233 | /// Returns the result of [`DateTime::until`]. |
| 6234 | /// |
| 6235 | /// # Errors |
| 6236 | /// |
| 6237 | /// Returns an error in the same cases as `DateTime::until`. That is, when |
| 6238 | /// the span for the given largest unit cannot be represented. This can |
| 6239 | /// generally only happen when `largest` is `Unit::Nanosecond` and the span |
| 6240 | /// cannot be represented as a 64-bit integer of nanoseconds. |
| 6241 | fn until( |
| 6242 | &self, |
| 6243 | largest: Unit, |
| 6244 | other: &RelativeCivil, |
| 6245 | ) -> Result<Span, Error> { |
| 6246 | self.datetime.until((largest, other.datetime)).with_context(|| { |
| 6247 | err!( |
| 6248 | "failed to get span between {dt1} and {dt2} \ |
| 6249 | with largest unit as {unit}" , |
| 6250 | unit = largest.plural(), |
| 6251 | dt1 = self.datetime, |
| 6252 | dt2 = other.datetime, |
| 6253 | ) |
| 6254 | }) |
| 6255 | } |
| 6256 | } |
| 6257 | |
| 6258 | /// A simple wrapper around a possibly borrowed `Zoned`. |
| 6259 | #[derive (Clone, Debug)] |
| 6260 | struct RelativeZoned<'a> { |
| 6261 | zoned: DumbCow<'a, Zoned>, |
| 6262 | } |
| 6263 | |
| 6264 | impl<'a> RelativeZoned<'a> { |
| 6265 | /// Returns the result of [`Zoned::checked_add`]. |
| 6266 | /// |
| 6267 | /// # Errors |
| 6268 | /// |
| 6269 | /// Returns an error in the same cases as `Zoned::checked_add`. That is, |
| 6270 | /// when adding the span to this zoned datetime would overflow. |
| 6271 | fn checked_add( |
| 6272 | &self, |
| 6273 | span: Span, |
| 6274 | ) -> Result<RelativeZoned<'static>, Error> { |
| 6275 | let zoned = self.zoned.checked_add(span).with_context(|| { |
| 6276 | err!("failed to add {span} to {zoned}" , zoned = self.zoned) |
| 6277 | })?; |
| 6278 | Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) }) |
| 6279 | } |
| 6280 | |
| 6281 | /// Returns the result of [`Zoned::checked_add`] with an absolute duration. |
| 6282 | /// |
| 6283 | /// # Errors |
| 6284 | /// |
| 6285 | /// Returns an error in the same cases as `Zoned::checked_add`. That is, |
| 6286 | /// when adding the span to this zoned datetime would overflow. |
| 6287 | fn checked_add_duration( |
| 6288 | &self, |
| 6289 | duration: SignedDuration, |
| 6290 | ) -> Result<RelativeZoned<'static>, Error> { |
| 6291 | let zoned = self.zoned.checked_add(duration).with_context(|| { |
| 6292 | err!("failed to add {duration:?} to {zoned}" , zoned = self.zoned) |
| 6293 | })?; |
| 6294 | Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) }) |
| 6295 | } |
| 6296 | |
| 6297 | /// Returns the result of [`Zoned::until`]. |
| 6298 | /// |
| 6299 | /// # Errors |
| 6300 | /// |
| 6301 | /// Returns an error in the same cases as `Zoned::until`. That is, when |
| 6302 | /// the span for the given largest unit cannot be represented. This can |
| 6303 | /// generally only happen when `largest` is `Unit::Nanosecond` and the span |
| 6304 | /// cannot be represented as a 64-bit integer of nanoseconds. |
| 6305 | fn until( |
| 6306 | &self, |
| 6307 | largest: Unit, |
| 6308 | other: &RelativeZoned<'a>, |
| 6309 | ) -> Result<Span, Error> { |
| 6310 | self.zoned.until((largest, &*other.zoned)).with_context(|| { |
| 6311 | err!( |
| 6312 | "failed to get span between {zdt1} and {zdt2} \ |
| 6313 | with largest unit as {unit}" , |
| 6314 | unit = largest.plural(), |
| 6315 | zdt1 = self.zoned, |
| 6316 | zdt2 = other.zoned, |
| 6317 | ) |
| 6318 | }) |
| 6319 | } |
| 6320 | |
| 6321 | /// Returns the borrowed version of self; useful when you need to convert |
| 6322 | /// `&RelativeZoned` into `RelativeZoned` without cloning anything. |
| 6323 | fn borrowed(&self) -> RelativeZoned { |
| 6324 | RelativeZoned { zoned: self.zoned.borrowed() } |
| 6325 | } |
| 6326 | } |
| 6327 | |
| 6328 | // The code below is the "core" rounding logic for spans. It was greatly |
| 6329 | // inspired by this gist[1] and the fullcalendar Temporal polyfill[2]. In |
| 6330 | // particular, the algorithm implemented below is a major simplification from |
| 6331 | // how Temporal used to work[3]. Parts of it are still in rough and unclear |
| 6332 | // shape IMO. |
| 6333 | // |
| 6334 | // [1]: https://gist.github.com/arshaw/36d3152c21482bcb78ea2c69591b20e0 |
| 6335 | // [2]: https://github.com/fullcalendar/temporal-polyfill |
| 6336 | // [3]: https://github.com/tc39/proposal-temporal/issues/2792 |
| 6337 | |
| 6338 | /// The result of a span rounding strategy. There are three: |
| 6339 | /// |
| 6340 | /// * Rounding spans relative to civil datetimes using only invariant |
| 6341 | /// units (days or less). This is achieved by converting the span to a simple |
| 6342 | /// integer number of nanoseconds and then rounding that. |
| 6343 | /// * Rounding spans relative to either a civil datetime or a zoned datetime |
| 6344 | /// where rounding might involve changing non-uniform units. That is, when |
| 6345 | /// the smallest unit is greater than days for civil datetimes and greater |
| 6346 | /// than hours for zoned datetimes. |
| 6347 | /// * Rounding spans relative to a zoned datetime whose smallest unit is |
| 6348 | /// less than days. |
| 6349 | /// |
| 6350 | /// Each of these might produce a bottom heavy span that needs to be |
| 6351 | /// re-balanced. This type represents that result via one of three constructors |
| 6352 | /// corresponding to each of the above strategies, and then provides a routine |
| 6353 | /// for rebalancing via "bubbling." |
| 6354 | #[derive (Debug)] |
| 6355 | struct Nudge { |
| 6356 | /// A possibly bottom heavy rounded span. |
| 6357 | span: Span, |
| 6358 | /// The nanosecond timestamp corresponding to `relative + span`, where |
| 6359 | /// `span` is the (possibly bottom heavy) rounded span. |
| 6360 | rounded_relative_end: NoUnits128, |
| 6361 | /// Whether rounding may have created a bottom heavy span such that a |
| 6362 | /// calendar unit might need to be incremented after re-balancing smaller |
| 6363 | /// units. |
| 6364 | grew_big_unit: bool, |
| 6365 | } |
| 6366 | |
| 6367 | impl Nudge { |
| 6368 | /// Performs rounding on the given span limited to invariant units. |
| 6369 | /// |
| 6370 | /// For civil datetimes, this means the smallest unit must be days or less, |
| 6371 | /// but the largest unit can be bigger. For zoned datetimes, this means |
| 6372 | /// that *both* the largest and smallest unit must be hours or less. This |
| 6373 | /// is because zoned datetimes with rounding that can spill up to days |
| 6374 | /// requires special handling. |
| 6375 | /// |
| 6376 | /// It works by converting the span to a single integer number of |
| 6377 | /// nanoseconds, rounding it and then converting back to a span. |
| 6378 | fn relative_invariant( |
| 6379 | balanced: Span, |
| 6380 | relative_end: NoUnits128, |
| 6381 | smallest: Unit, |
| 6382 | largest: Unit, |
| 6383 | increment: NoUnits128, |
| 6384 | mode: RoundMode, |
| 6385 | ) -> Result<Nudge, Error> { |
| 6386 | // Ensures this is only called when rounding invariant units. |
| 6387 | assert!(smallest <= Unit::Week); |
| 6388 | |
| 6389 | let sign = balanced.get_sign_ranged(); |
| 6390 | let balanced_nanos = balanced.to_invariant_nanoseconds(); |
| 6391 | let rounded_nanos = mode.round_by_unit_in_nanoseconds( |
| 6392 | balanced_nanos, |
| 6393 | smallest, |
| 6394 | increment, |
| 6395 | ); |
| 6396 | let span = Span::from_invariant_nanoseconds(largest, rounded_nanos) |
| 6397 | .with_context(|| { |
| 6398 | err!( |
| 6399 | "failed to convert rounded nanoseconds {rounded_nanos} \ |
| 6400 | to span for largest unit as {unit}" , |
| 6401 | unit = largest.plural(), |
| 6402 | ) |
| 6403 | })? |
| 6404 | .years_ranged(balanced.get_years_ranged()) |
| 6405 | .months_ranged(balanced.get_months_ranged()) |
| 6406 | .weeks_ranged(balanced.get_weeks_ranged()); |
| 6407 | |
| 6408 | let diff_nanos = rounded_nanos - balanced_nanos; |
| 6409 | let diff_days = rounded_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY) |
| 6410 | - balanced_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY); |
| 6411 | let grew_big_unit = diff_days.signum() == sign; |
| 6412 | let rounded_relative_end = relative_end + diff_nanos; |
| 6413 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
| 6414 | } |
| 6415 | |
| 6416 | /// Performs rounding on the given span where the smallest unit configured |
| 6417 | /// implies that rounding will cover calendar or "non-uniform" units. (That |
| 6418 | /// is, units whose length can change based on the relative datetime.) |
| 6419 | fn relative_calendar( |
| 6420 | balanced: Span, |
| 6421 | relative_start: &Relative<'_>, |
| 6422 | relative_end: &Relative<'_>, |
| 6423 | smallest: Unit, |
| 6424 | increment: NoUnits128, |
| 6425 | mode: RoundMode, |
| 6426 | ) -> Result<Nudge, Error> { |
| 6427 | #[cfg (not(feature = "std" ))] |
| 6428 | use crate::util::libm::Float; |
| 6429 | |
| 6430 | assert!(smallest >= Unit::Day); |
| 6431 | let sign = balanced.get_sign_ranged(); |
| 6432 | let truncated = increment |
| 6433 | * balanced.get_units_ranged(smallest).div_ceil(increment); |
| 6434 | let span = balanced |
| 6435 | .without_lower(smallest) |
| 6436 | .try_units_ranged(smallest, truncated.rinto()) |
| 6437 | .with_context(|| { |
| 6438 | err!( |
| 6439 | "failed to set {unit} to {truncated} on span {balanced}" , |
| 6440 | unit = smallest.singular() |
| 6441 | ) |
| 6442 | })?; |
| 6443 | let (relative0, relative1) = clamp_relative_span( |
| 6444 | relative_start, |
| 6445 | span, |
| 6446 | smallest, |
| 6447 | NoUnits::try_rfrom("increment" , increment)? |
| 6448 | .try_checked_mul("signed increment" , sign)?, |
| 6449 | )?; |
| 6450 | |
| 6451 | // FIXME: This is brutal. This is the only non-optional floating point |
| 6452 | // used so far in Jiff. We do expose floating point for things like |
| 6453 | // `Span::total`, but that's optional and not a core part of Jiff's |
| 6454 | // functionality. This is in the core part of Jiff's span rounding... |
| 6455 | let denom = (relative1 - relative0).get() as f64; |
| 6456 | let numer = (relative_end.to_nanosecond() - relative0).get() as f64; |
| 6457 | let exact = (truncated.get() as f64) |
| 6458 | + (numer / denom) * (sign.get() as f64) * (increment.get() as f64); |
| 6459 | let rounded = mode.round_float(exact, increment); |
| 6460 | let grew_big_unit = |
| 6461 | ((rounded.get() as f64) - exact).signum() == (sign.get() as f64); |
| 6462 | |
| 6463 | let span = span |
| 6464 | .try_units_ranged(smallest, rounded.rinto()) |
| 6465 | .with_context(|| { |
| 6466 | err!( |
| 6467 | "failed to set {unit} to {truncated} on span {span}" , |
| 6468 | unit = smallest.singular() |
| 6469 | ) |
| 6470 | })?; |
| 6471 | let rounded_relative_end = |
| 6472 | if grew_big_unit { relative1 } else { relative0 }; |
| 6473 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
| 6474 | } |
| 6475 | |
| 6476 | /// Performs rounding on the given span where the smallest unit is hours |
| 6477 | /// or less *and* the relative datetime is time zone aware. |
| 6478 | fn relative_zoned_time( |
| 6479 | balanced: Span, |
| 6480 | relative_start: &RelativeZoned<'_>, |
| 6481 | smallest: Unit, |
| 6482 | increment: NoUnits128, |
| 6483 | mode: RoundMode, |
| 6484 | ) -> Result<Nudge, Error> { |
| 6485 | let sign = balanced.get_sign_ranged(); |
| 6486 | let time_nanos = |
| 6487 | balanced.only_lower(Unit::Day).to_invariant_nanoseconds(); |
| 6488 | let mut rounded_time_nanos = |
| 6489 | mode.round_by_unit_in_nanoseconds(time_nanos, smallest, increment); |
| 6490 | let (relative0, relative1) = clamp_relative_span( |
| 6491 | // FIXME: Find a way to drop this clone. |
| 6492 | &Relative::Zoned(relative_start.clone()), |
| 6493 | balanced.without_lower(Unit::Day), |
| 6494 | Unit::Day, |
| 6495 | sign.rinto(), |
| 6496 | )?; |
| 6497 | let day_nanos = relative1 - relative0; |
| 6498 | let beyond_day_nanos = rounded_time_nanos - day_nanos; |
| 6499 | |
| 6500 | let mut day_delta = NoUnits::N::<0>(); |
| 6501 | let rounded_relative_end = |
| 6502 | if beyond_day_nanos == C(0) || beyond_day_nanos.signum() == sign { |
| 6503 | day_delta += C(1); |
| 6504 | rounded_time_nanos = mode.round_by_unit_in_nanoseconds( |
| 6505 | beyond_day_nanos, |
| 6506 | smallest, |
| 6507 | increment, |
| 6508 | ); |
| 6509 | relative1 + rounded_time_nanos |
| 6510 | } else { |
| 6511 | relative0 + rounded_time_nanos |
| 6512 | }; |
| 6513 | |
| 6514 | let span = |
| 6515 | Span::from_invariant_nanoseconds(Unit::Hour, rounded_time_nanos) |
| 6516 | .with_context(|| { |
| 6517 | err!( |
| 6518 | "failed to convert rounded nanoseconds \ |
| 6519 | {rounded_time_nanos} to span for largest unit as {unit}" , |
| 6520 | unit = Unit::Hour.plural(), |
| 6521 | ) |
| 6522 | })? |
| 6523 | .years_ranged(balanced.get_years_ranged()) |
| 6524 | .months_ranged(balanced.get_months_ranged()) |
| 6525 | .weeks_ranged(balanced.get_weeks_ranged()) |
| 6526 | .days_ranged(balanced.get_days_ranged() + day_delta); |
| 6527 | let grew_big_unit = day_delta != C(0); |
| 6528 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
| 6529 | } |
| 6530 | |
| 6531 | /// This "bubbles" up the units in a potentially "bottom heavy" span to |
| 6532 | /// larger units. For example, P1m50d relative to March 1 is bottom heavy. |
| 6533 | /// This routine will bubble the days up to months to get P2m19d. |
| 6534 | /// |
| 6535 | /// # Errors |
| 6536 | /// |
| 6537 | /// This routine fails if any arithmetic on the individual units fails, or |
| 6538 | /// when span arithmetic on the relative datetime given fails. |
| 6539 | fn bubble( |
| 6540 | &self, |
| 6541 | relative: &RelativeSpan, |
| 6542 | smallest: Unit, |
| 6543 | largest: Unit, |
| 6544 | ) -> Result<Span, Error> { |
| 6545 | if !self.grew_big_unit || smallest == Unit::Week { |
| 6546 | return Ok(self.span); |
| 6547 | } |
| 6548 | |
| 6549 | let smallest = smallest.max(Unit::Day); |
| 6550 | let mut balanced = self.span; |
| 6551 | let sign = balanced.get_sign_ranged(); |
| 6552 | let mut unit = smallest; |
| 6553 | while let Some(u) = unit.next() { |
| 6554 | unit = u; |
| 6555 | if unit > largest { |
| 6556 | break; |
| 6557 | } |
| 6558 | // We only bubble smaller units up into weeks when the largest unit |
| 6559 | // is explicitly set to weeks. Otherwise, we leave it as-is. |
| 6560 | if unit == Unit::Week && largest != Unit::Week { |
| 6561 | continue; |
| 6562 | } |
| 6563 | |
| 6564 | let span_start = balanced.without_lower(unit); |
| 6565 | let new_units = span_start |
| 6566 | .get_units_ranged(unit) |
| 6567 | .try_checked_add("bubble-units" , sign) |
| 6568 | .with_context(|| { |
| 6569 | err!( |
| 6570 | "failed to add sign {sign} to {unit} value {value}" , |
| 6571 | unit = unit.plural(), |
| 6572 | value = span_start.get_units_ranged(unit), |
| 6573 | ) |
| 6574 | })?; |
| 6575 | let span_end = span_start |
| 6576 | .try_units_ranged(unit, new_units) |
| 6577 | .with_context(|| { |
| 6578 | err!( |
| 6579 | "failed to set {unit} to value \ |
| 6580 | {new_units} on span {span_start}" , |
| 6581 | unit = unit.plural(), |
| 6582 | ) |
| 6583 | })?; |
| 6584 | let threshold = match relative.kind { |
| 6585 | RelativeSpanKind::Civil { ref start, .. } => { |
| 6586 | start.checked_add(span_end)?.timestamp |
| 6587 | } |
| 6588 | RelativeSpanKind::Zoned { ref start, .. } => { |
| 6589 | start.checked_add(span_end)?.zoned.timestamp() |
| 6590 | } |
| 6591 | }; |
| 6592 | let beyond = |
| 6593 | self.rounded_relative_end - threshold.as_nanosecond_ranged(); |
| 6594 | if beyond == C(0) || beyond.signum() == sign { |
| 6595 | balanced = span_end; |
| 6596 | } else { |
| 6597 | break; |
| 6598 | } |
| 6599 | } |
| 6600 | Ok(balanced) |
| 6601 | } |
| 6602 | } |
| 6603 | |
| 6604 | /// Rounds a span consisting of only invariant units. |
| 6605 | /// |
| 6606 | /// This only applies when the max of the units in the span being rounded, |
| 6607 | /// the largest configured unit and the smallest configured unit are all |
| 6608 | /// invariant. That is, days or lower for spans without a relative datetime or |
| 6609 | /// a relative civil datetime, and hours or lower for spans with a relative |
| 6610 | /// zoned datetime. |
| 6611 | /// |
| 6612 | /// All we do here is convert the span to an integer number of nanoseconds, |
| 6613 | /// round that and then convert back. There aren't any tricky corner cases to |
| 6614 | /// consider here. |
| 6615 | fn round_span_invariant( |
| 6616 | span: Span, |
| 6617 | smallest: Unit, |
| 6618 | largest: Unit, |
| 6619 | increment: NoUnits128, |
| 6620 | mode: RoundMode, |
| 6621 | ) -> Result<Span, Error> { |
| 6622 | assert!(smallest <= Unit::Week); |
| 6623 | assert!(largest <= Unit::Week); |
| 6624 | let nanos: ri128<_, _> = span.to_invariant_nanoseconds(); |
| 6625 | let rounded: ri128<_, _> = |
| 6626 | mode.round_by_unit_in_nanoseconds(quantity:nanos, unit:smallest, increment); |
| 6627 | Span::from_invariant_nanoseconds(largest, rounded).with_context(|| { |
| 6628 | err!( |
| 6629 | "failed to convert rounded nanoseconds {rounded} \ |
| 6630 | to span for largest unit as {unit}" , |
| 6631 | unit = largest.plural(), |
| 6632 | ) |
| 6633 | }) |
| 6634 | } |
| 6635 | |
| 6636 | /// Returns the nanosecond timestamps of `relative + span` and `relative + |
| 6637 | /// {amount of unit} + span`. |
| 6638 | /// |
| 6639 | /// This is useful for determining the actual length, in nanoseconds, of some |
| 6640 | /// unit amount (usually a single unit). Usually, this is called with a span |
| 6641 | /// whose units lower than `unit` are zeroed out and with an `amount` that |
| 6642 | /// is `-1` or `1` or `0`. So for example, if `unit` were `Unit::Day`, then |
| 6643 | /// you'd get back two nanosecond timestamps relative to the relative datetime |
| 6644 | /// given that start exactly "one day" apart. (Which might be different than 24 |
| 6645 | /// hours, depending on the time zone.) |
| 6646 | /// |
| 6647 | /// # Errors |
| 6648 | /// |
| 6649 | /// This returns an error if adding the units overflows, or if doing the span |
| 6650 | /// arithmetic on `relative` overflows. |
| 6651 | fn clamp_relative_span( |
| 6652 | relative: &Relative<'_>, |
| 6653 | span: Span, |
| 6654 | unit: Unit, |
| 6655 | amount: NoUnits, |
| 6656 | ) -> Result<(NoUnits128, NoUnits128), Error> { |
| 6657 | let amount: ri64<_, _> = span |
| 6658 | .get_units_ranged(unit) |
| 6659 | .try_checked_add("clamp-units" , amount) |
| 6660 | .with_context(|| { |
| 6661 | err!( |
| 6662 | "failed to add {amount} to {unit} \ |
| 6663 | value {value} on span {span}" , |
| 6664 | unit = unit.plural(), |
| 6665 | value = span.get_units_ranged(unit), |
| 6666 | ) |
| 6667 | })?; |
| 6668 | let span_amount: Span = |
| 6669 | span.try_units_ranged(unit, amount).with_context(|| { |
| 6670 | err!( |
| 6671 | "failed to set {unit} unit to {amount} on span {span}" , |
| 6672 | unit = unit.plural(), |
| 6673 | ) |
| 6674 | })?; |
| 6675 | let relative0: ri128<_, _> = relative.checked_add(span)?.to_nanosecond(); |
| 6676 | let relative1: ri128<_, _> = relative.checked_add(span_amount)?.to_nanosecond(); |
| 6677 | Ok((relative0, relative1)) |
| 6678 | } |
| 6679 | |
| 6680 | /// A common parsing function that works in bytes. |
| 6681 | /// |
| 6682 | /// Specifically, this parses either an ISO 8601 duration into a `Span` or |
| 6683 | /// a "friendly" duration into a `Span`. It also tries to give decent error |
| 6684 | /// messages. |
| 6685 | /// |
| 6686 | /// This works because the friendly and ISO 8601 formats have non-overlapping |
| 6687 | /// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO |
| 6688 | /// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this |
| 6689 | /// property to very quickly determine how to parse the input. We just need to |
| 6690 | /// handle the possibly ambiguous case with a leading sign a little carefully |
| 6691 | /// in order to ensure good error messages. |
| 6692 | /// |
| 6693 | /// (We do the same thing for `SignedDuration`.) |
| 6694 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 6695 | fn parse_iso_or_friendly(bytes: &[u8]) -> Result<Span, Error> { |
| 6696 | if bytes.is_empty() { |
| 6697 | return Err(err!( |
| 6698 | "an empty string is not a valid `Span`, \ |
| 6699 | expected either a ISO 8601 or Jiff's 'friendly' \ |
| 6700 | format" , |
| 6701 | )); |
| 6702 | } |
| 6703 | let mut first = bytes[0]; |
| 6704 | if first == b'+' || first == b'-' { |
| 6705 | if bytes.len() == 1 { |
| 6706 | return Err(err!( |
| 6707 | "found nothing after sign ` {sign}`, \ |
| 6708 | which is not a valid `Span`, \ |
| 6709 | expected either a ISO 8601 or Jiff's 'friendly' \ |
| 6710 | format" , |
| 6711 | sign = escape::Byte(first), |
| 6712 | )); |
| 6713 | } |
| 6714 | first = bytes[1]; |
| 6715 | } |
| 6716 | if first == b'P' || first == b'p' { |
| 6717 | temporal::DEFAULT_SPAN_PARSER.parse_span(bytes) |
| 6718 | } else { |
| 6719 | friendly::DEFAULT_SPAN_PARSER.parse_span(bytes) |
| 6720 | } |
| 6721 | } |
| 6722 | |
| 6723 | fn requires_relative_date_err(unit: Unit) -> Result<(), Error> { |
| 6724 | if unit.is_variable() { |
| 6725 | return Err(if matches!(unit, Unit::Week | Unit::Day) { |
| 6726 | err!( |
| 6727 | "using unit ' {unit}' in a span or configuration \ |
| 6728 | requires that either a relative reference time be given \ |
| 6729 | or `SpanRelativeTo::days_are_24_hours()` is used to \ |
| 6730 | indicate invariant 24-hour days, \ |
| 6731 | but neither were provided" , |
| 6732 | unit = unit.singular(), |
| 6733 | ) |
| 6734 | } else { |
| 6735 | err!( |
| 6736 | "using unit ' {unit}' in a span or configuration \ |
| 6737 | requires that a relative reference time be given, \ |
| 6738 | but none was provided" , |
| 6739 | unit = unit.singular(), |
| 6740 | ) |
| 6741 | }); |
| 6742 | } |
| 6743 | Ok(()) |
| 6744 | } |
| 6745 | |
| 6746 | #[cfg (test)] |
| 6747 | mod tests { |
| 6748 | use std::io::Cursor; |
| 6749 | |
| 6750 | use alloc::string::ToString; |
| 6751 | |
| 6752 | use crate::{civil::date, RoundMode}; |
| 6753 | |
| 6754 | use super::*; |
| 6755 | |
| 6756 | #[test ] |
| 6757 | fn test_total() { |
| 6758 | if crate::tz::db().is_definitively_empty() { |
| 6759 | return; |
| 6760 | } |
| 6761 | |
| 6762 | let span = 130.hours().minutes(20); |
| 6763 | let total = span.total(Unit::Second).unwrap(); |
| 6764 | assert_eq!(total, 469200.0); |
| 6765 | |
| 6766 | let span = 123456789.seconds(); |
| 6767 | let total = span |
| 6768 | .total(SpanTotal::from(Unit::Day).days_are_24_hours()) |
| 6769 | .unwrap(); |
| 6770 | assert_eq!(total, 1428.8980208333332); |
| 6771 | |
| 6772 | let span = 2756.hours(); |
| 6773 | let dt = date(2020, 1, 1).at(0, 0, 0, 0); |
| 6774 | let zdt = dt.in_tz("Europe/Rome" ).unwrap(); |
| 6775 | let total = span.total((Unit::Month, &zdt)).unwrap(); |
| 6776 | assert_eq!(total, 3.7958333333333334); |
| 6777 | let total = span.total((Unit::Month, dt)).unwrap(); |
| 6778 | assert_eq!(total, 3.7944444444444443); |
| 6779 | } |
| 6780 | |
| 6781 | #[test ] |
| 6782 | fn test_compare() { |
| 6783 | if crate::tz::db().is_definitively_empty() { |
| 6784 | return; |
| 6785 | } |
| 6786 | |
| 6787 | let span1 = 79.hours().minutes(10); |
| 6788 | let span2 = 79.hours().seconds(630); |
| 6789 | let span3 = 78.hours().minutes(50); |
| 6790 | let mut array = [span1, span2, span3]; |
| 6791 | array.sort_by(|sp1, sp2| sp1.compare(sp2).unwrap()); |
| 6792 | assert_eq!(array, [span3, span1, span2].map(SpanFieldwise)); |
| 6793 | |
| 6794 | let day24 = SpanRelativeTo::days_are_24_hours(); |
| 6795 | let span1 = 79.hours().minutes(10); |
| 6796 | let span2 = 3.days().hours(7).seconds(630); |
| 6797 | let span3 = 3.days().hours(6).minutes(50); |
| 6798 | let mut array = [span1, span2, span3]; |
| 6799 | array.sort_by(|sp1, sp2| sp1.compare((sp2, day24)).unwrap()); |
| 6800 | assert_eq!(array, [span3, span1, span2].map(SpanFieldwise)); |
| 6801 | |
| 6802 | let dt = date(2020, 11, 1).at(0, 0, 0, 0); |
| 6803 | let zdt = dt.in_tz("America/Los_Angeles" ).unwrap(); |
| 6804 | array.sort_by(|sp1, sp2| sp1.compare((sp2, &zdt)).unwrap()); |
| 6805 | assert_eq!(array, [span1, span3, span2].map(SpanFieldwise)); |
| 6806 | } |
| 6807 | |
| 6808 | #[test ] |
| 6809 | fn test_checked_add() { |
| 6810 | let span1 = 1.hour(); |
| 6811 | let span2 = 30.minutes(); |
| 6812 | let sum = span1.checked_add(span2).unwrap(); |
| 6813 | span_eq!(sum, 1.hour().minutes(30)); |
| 6814 | |
| 6815 | let span1 = 1.hour().minutes(30); |
| 6816 | let span2 = 2.hours().minutes(45); |
| 6817 | let sum = span1.checked_add(span2).unwrap(); |
| 6818 | span_eq!(sum, 4.hours().minutes(15)); |
| 6819 | |
| 6820 | let span = 50 |
| 6821 | .years() |
| 6822 | .months(50) |
| 6823 | .days(50) |
| 6824 | .hours(50) |
| 6825 | .minutes(50) |
| 6826 | .seconds(50) |
| 6827 | .milliseconds(500) |
| 6828 | .microseconds(500) |
| 6829 | .nanoseconds(500); |
| 6830 | let relative = date(1900, 1, 1).at(0, 0, 0, 0); |
| 6831 | let sum = span.checked_add((span, relative)).unwrap(); |
| 6832 | let expected = 108 |
| 6833 | .years() |
| 6834 | .months(7) |
| 6835 | .days(12) |
| 6836 | .hours(5) |
| 6837 | .minutes(41) |
| 6838 | .seconds(41) |
| 6839 | .milliseconds(1) |
| 6840 | .microseconds(1) |
| 6841 | .nanoseconds(0); |
| 6842 | span_eq!(sum, expected); |
| 6843 | |
| 6844 | let span = 1.month().days(15); |
| 6845 | let relative = date(2000, 2, 1).at(0, 0, 0, 0); |
| 6846 | let sum = span.checked_add((span, relative)).unwrap(); |
| 6847 | span_eq!(sum, 3.months()); |
| 6848 | let relative = date(2000, 3, 1).at(0, 0, 0, 0); |
| 6849 | let sum = span.checked_add((span, relative)).unwrap(); |
| 6850 | span_eq!(sum, 2.months().days(30)); |
| 6851 | } |
| 6852 | |
| 6853 | #[test ] |
| 6854 | fn test_round_day_time() { |
| 6855 | let span = 29.seconds(); |
| 6856 | let rounded = span.round(Unit::Minute).unwrap(); |
| 6857 | span_eq!(rounded, 0.minute()); |
| 6858 | |
| 6859 | let span = 30.seconds(); |
| 6860 | let rounded = span.round(Unit::Minute).unwrap(); |
| 6861 | span_eq!(rounded, 1.minute()); |
| 6862 | |
| 6863 | let span = 8.seconds(); |
| 6864 | let rounded = span |
| 6865 | .round( |
| 6866 | SpanRound::new() |
| 6867 | .smallest(Unit::Nanosecond) |
| 6868 | .largest(Unit::Microsecond), |
| 6869 | ) |
| 6870 | .unwrap(); |
| 6871 | span_eq!(rounded, 8_000_000.microseconds()); |
| 6872 | |
| 6873 | let span = 130.minutes(); |
| 6874 | let rounded = span |
| 6875 | .round(SpanRound::new().largest(Unit::Day).days_are_24_hours()) |
| 6876 | .unwrap(); |
| 6877 | span_eq!(rounded, 2.hours().minutes(10)); |
| 6878 | |
| 6879 | let span = 10.minutes().seconds(52); |
| 6880 | let rounded = span.round(Unit::Minute).unwrap(); |
| 6881 | span_eq!(rounded, 11.minutes()); |
| 6882 | |
| 6883 | let span = 10.minutes().seconds(52); |
| 6884 | let rounded = span |
| 6885 | .round( |
| 6886 | SpanRound::new().smallest(Unit::Minute).mode(RoundMode::Trunc), |
| 6887 | ) |
| 6888 | .unwrap(); |
| 6889 | span_eq!(rounded, 10.minutes()); |
| 6890 | |
| 6891 | let span = 2.hours().minutes(34).seconds(18); |
| 6892 | let rounded = |
| 6893 | span.round(SpanRound::new().largest(Unit::Second)).unwrap(); |
| 6894 | span_eq!(rounded, 9258.seconds()); |
| 6895 | |
| 6896 | let span = 6.minutes(); |
| 6897 | let rounded = span |
| 6898 | .round( |
| 6899 | SpanRound::new() |
| 6900 | .smallest(Unit::Minute) |
| 6901 | .increment(5) |
| 6902 | .mode(RoundMode::Ceil), |
| 6903 | ) |
| 6904 | .unwrap(); |
| 6905 | span_eq!(rounded, 10.minutes()); |
| 6906 | } |
| 6907 | |
| 6908 | #[test ] |
| 6909 | fn test_round_relative_zoned_calendar() { |
| 6910 | if crate::tz::db().is_definitively_empty() { |
| 6911 | return; |
| 6912 | } |
| 6913 | |
| 6914 | let span = 2756.hours(); |
| 6915 | let relative = |
| 6916 | date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
| 6917 | let options = SpanRound::new() |
| 6918 | .largest(Unit::Year) |
| 6919 | .smallest(Unit::Day) |
| 6920 | .relative(&relative); |
| 6921 | let rounded = span.round(options).unwrap(); |
| 6922 | span_eq!(rounded, 3.months().days(24)); |
| 6923 | |
| 6924 | let span = 24.hours().nanoseconds(5); |
| 6925 | let relative = date(2000, 10, 29) |
| 6926 | .at(0, 0, 0, 0) |
| 6927 | .in_tz("America/Vancouver" ) |
| 6928 | .unwrap(); |
| 6929 | let options = SpanRound::new() |
| 6930 | .largest(Unit::Day) |
| 6931 | .smallest(Unit::Minute) |
| 6932 | .relative(&relative) |
| 6933 | .mode(RoundMode::Expand) |
| 6934 | .increment(30); |
| 6935 | let rounded = span.round(options).unwrap(); |
| 6936 | // It seems like this is the correct answer, although it apparently |
| 6937 | // differs from Temporal and the FullCalendar polyfill. I'm not sure |
| 6938 | // what accounts for the difference in the implementation. |
| 6939 | // |
| 6940 | // See: https://github.com/tc39/proposal-temporal/pull/2758#discussion_r1597255245 |
| 6941 | span_eq!(rounded, 24.hours().minutes(30)); |
| 6942 | |
| 6943 | // Ref: https://github.com/tc39/proposal-temporal/issues/2816#issuecomment-2115608460 |
| 6944 | let span = -1.month().hours(24); |
| 6945 | let relative: crate::Zoned = date(2024, 4, 11) |
| 6946 | .at(2, 0, 0, 0) |
| 6947 | .in_tz("America/New_York" ) |
| 6948 | .unwrap(); |
| 6949 | let options = |
| 6950 | SpanRound::new().smallest(Unit::Millisecond).relative(&relative); |
| 6951 | let rounded = span.round(options).unwrap(); |
| 6952 | span_eq!(rounded, -1.month().days(1).hours(1)); |
| 6953 | let dt = relative.checked_add(span).unwrap(); |
| 6954 | let diff = relative.until((Unit::Month, &dt)).unwrap(); |
| 6955 | span_eq!(diff, -1.month().days(1).hours(1)); |
| 6956 | |
| 6957 | // Like the above, but don't use a datetime near a DST transition. In |
| 6958 | // this case, a day is a normal 24 hours. (Unlike above, where the |
| 6959 | // duration includes a 23 hour day, and so an additional hour has to be |
| 6960 | // added to the span to account for that.) |
| 6961 | let span = -1.month().hours(24); |
| 6962 | let relative = date(2024, 6, 11) |
| 6963 | .at(2, 0, 0, 0) |
| 6964 | .in_tz("America/New_York" ) |
| 6965 | .unwrap(); |
| 6966 | let options = |
| 6967 | SpanRound::new().smallest(Unit::Millisecond).relative(&relative); |
| 6968 | let rounded = span.round(options).unwrap(); |
| 6969 | span_eq!(rounded, -1.month().days(1)); |
| 6970 | } |
| 6971 | |
| 6972 | #[test ] |
| 6973 | fn test_round_relative_zoned_time() { |
| 6974 | if crate::tz::db().is_definitively_empty() { |
| 6975 | return; |
| 6976 | } |
| 6977 | |
| 6978 | let span = 2756.hours(); |
| 6979 | let relative = |
| 6980 | date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
| 6981 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
| 6982 | let rounded = span.round(options).unwrap(); |
| 6983 | span_eq!(rounded, 3.months().days(23).hours(21)); |
| 6984 | |
| 6985 | let span = 2756.hours(); |
| 6986 | let relative = |
| 6987 | date(2020, 9, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
| 6988 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
| 6989 | let rounded = span.round(options).unwrap(); |
| 6990 | span_eq!(rounded, 3.months().days(23).hours(19)); |
| 6991 | |
| 6992 | let span = 3.hours(); |
| 6993 | let relative = |
| 6994 | date(2020, 3, 8).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
| 6995 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
| 6996 | let rounded = span.round(options).unwrap(); |
| 6997 | span_eq!(rounded, 3.hours()); |
| 6998 | } |
| 6999 | |
| 7000 | #[test ] |
| 7001 | fn test_round_relative_day_time() { |
| 7002 | let span = 2756.hours(); |
| 7003 | let options = |
| 7004 | SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1)); |
| 7005 | let rounded = span.round(options).unwrap(); |
| 7006 | span_eq!(rounded, 3.months().days(23).hours(20)); |
| 7007 | |
| 7008 | let span = 2756.hours(); |
| 7009 | let options = |
| 7010 | SpanRound::new().largest(Unit::Year).relative(date(2020, 9, 1)); |
| 7011 | let rounded = span.round(options).unwrap(); |
| 7012 | span_eq!(rounded, 3.months().days(23).hours(20)); |
| 7013 | |
| 7014 | let span = 190.days(); |
| 7015 | let options = |
| 7016 | SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1)); |
| 7017 | let rounded = span.round(options).unwrap(); |
| 7018 | span_eq!(rounded, 6.months().days(8)); |
| 7019 | |
| 7020 | let span = 30 |
| 7021 | .days() |
| 7022 | .hours(23) |
| 7023 | .minutes(59) |
| 7024 | .seconds(59) |
| 7025 | .milliseconds(999) |
| 7026 | .microseconds(999) |
| 7027 | .nanoseconds(999); |
| 7028 | let options = SpanRound::new() |
| 7029 | .smallest(Unit::Microsecond) |
| 7030 | .largest(Unit::Year) |
| 7031 | .relative(date(2024, 5, 1)); |
| 7032 | let rounded = span.round(options).unwrap(); |
| 7033 | span_eq!(rounded, 1.month()); |
| 7034 | |
| 7035 | let span = 364 |
| 7036 | .days() |
| 7037 | .hours(23) |
| 7038 | .minutes(59) |
| 7039 | .seconds(59) |
| 7040 | .milliseconds(999) |
| 7041 | .microseconds(999) |
| 7042 | .nanoseconds(999); |
| 7043 | let options = SpanRound::new() |
| 7044 | .smallest(Unit::Microsecond) |
| 7045 | .largest(Unit::Year) |
| 7046 | .relative(date(2023, 1, 1)); |
| 7047 | let rounded = span.round(options).unwrap(); |
| 7048 | span_eq!(rounded, 1.year()); |
| 7049 | |
| 7050 | let span = 365 |
| 7051 | .days() |
| 7052 | .hours(23) |
| 7053 | .minutes(59) |
| 7054 | .seconds(59) |
| 7055 | .milliseconds(999) |
| 7056 | .microseconds(999) |
| 7057 | .nanoseconds(999); |
| 7058 | let options = SpanRound::new() |
| 7059 | .smallest(Unit::Microsecond) |
| 7060 | .largest(Unit::Year) |
| 7061 | .relative(date(2023, 1, 1)); |
| 7062 | let rounded = span.round(options).unwrap(); |
| 7063 | span_eq!(rounded, 1.year().days(1)); |
| 7064 | |
| 7065 | let span = 365 |
| 7066 | .days() |
| 7067 | .hours(23) |
| 7068 | .minutes(59) |
| 7069 | .seconds(59) |
| 7070 | .milliseconds(999) |
| 7071 | .microseconds(999) |
| 7072 | .nanoseconds(999); |
| 7073 | let options = SpanRound::new() |
| 7074 | .smallest(Unit::Microsecond) |
| 7075 | .largest(Unit::Year) |
| 7076 | .relative(date(2024, 1, 1)); |
| 7077 | let rounded = span.round(options).unwrap(); |
| 7078 | span_eq!(rounded, 1.year()); |
| 7079 | |
| 7080 | let span = 3.hours(); |
| 7081 | let options = |
| 7082 | SpanRound::new().largest(Unit::Year).relative(date(2020, 3, 8)); |
| 7083 | let rounded = span.round(options).unwrap(); |
| 7084 | span_eq!(rounded, 3.hours()); |
| 7085 | } |
| 7086 | |
| 7087 | #[test ] |
| 7088 | fn span_sign() { |
| 7089 | assert_eq!(Span::new().get_sign_ranged(), C(0)); |
| 7090 | assert_eq!(Span::new().days(1).get_sign_ranged(), C(1)); |
| 7091 | assert_eq!(Span::new().days(-1).get_sign_ranged(), C(-1)); |
| 7092 | assert_eq!(Span::new().days(1).days(0).get_sign_ranged(), C(0)); |
| 7093 | assert_eq!(Span::new().days(-1).days(0).get_sign_ranged(), C(0)); |
| 7094 | assert_eq!( |
| 7095 | Span::new().years(1).days(1).days(0).get_sign_ranged(), |
| 7096 | C(1) |
| 7097 | ); |
| 7098 | assert_eq!( |
| 7099 | Span::new().years(-1).days(-1).days(0).get_sign_ranged(), |
| 7100 | C(-1) |
| 7101 | ); |
| 7102 | } |
| 7103 | |
| 7104 | #[test ] |
| 7105 | fn span_size() { |
| 7106 | #[cfg (target_pointer_width = "64" )] |
| 7107 | { |
| 7108 | #[cfg (debug_assertions)] |
| 7109 | { |
| 7110 | assert_eq!(core::mem::align_of::<Span>(), 8); |
| 7111 | assert_eq!(core::mem::size_of::<Span>(), 184); |
| 7112 | } |
| 7113 | #[cfg (not(debug_assertions))] |
| 7114 | { |
| 7115 | assert_eq!(core::mem::align_of::<Span>(), 8); |
| 7116 | assert_eq!(core::mem::size_of::<Span>(), 64); |
| 7117 | } |
| 7118 | } |
| 7119 | } |
| 7120 | |
| 7121 | quickcheck::quickcheck! { |
| 7122 | fn prop_roundtrip_span_nanoseconds(span: Span) -> quickcheck::TestResult { |
| 7123 | let largest = span.largest_unit(); |
| 7124 | if largest > Unit::Day { |
| 7125 | return quickcheck::TestResult::discard(); |
| 7126 | } |
| 7127 | let nanos = span.to_invariant_nanoseconds(); |
| 7128 | let got = Span::from_invariant_nanoseconds(largest, nanos).unwrap(); |
| 7129 | quickcheck::TestResult::from_bool(nanos == got.to_invariant_nanoseconds()) |
| 7130 | } |
| 7131 | } |
| 7132 | |
| 7133 | /// # `serde` deserializer compatibility test |
| 7134 | /// |
| 7135 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 7136 | /// as deserializing from bytes is not supported by the deserializer. |
| 7137 | /// |
| 7138 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 7139 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 7140 | #[test ] |
| 7141 | fn span_deserialize_yaml() { |
| 7142 | let expected = Span::new() |
| 7143 | .years(1) |
| 7144 | .months(2) |
| 7145 | .weeks(3) |
| 7146 | .days(4) |
| 7147 | .hours(5) |
| 7148 | .minutes(6) |
| 7149 | .seconds(7); |
| 7150 | |
| 7151 | let deserialized: Span = |
| 7152 | serde_yaml::from_str("P1y2m3w4dT5h6m7s" ).unwrap(); |
| 7153 | |
| 7154 | span_eq!(deserialized, expected); |
| 7155 | |
| 7156 | let deserialized: Span = |
| 7157 | serde_yaml::from_slice("P1y2m3w4dT5h6m7s" .as_bytes()).unwrap(); |
| 7158 | |
| 7159 | span_eq!(deserialized, expected); |
| 7160 | |
| 7161 | let cursor = Cursor::new(b"P1y2m3w4dT5h6m7s" ); |
| 7162 | let deserialized: Span = serde_yaml::from_reader(cursor).unwrap(); |
| 7163 | |
| 7164 | span_eq!(deserialized, expected); |
| 7165 | } |
| 7166 | |
| 7167 | #[test ] |
| 7168 | fn display() { |
| 7169 | let span = Span::new() |
| 7170 | .years(1) |
| 7171 | .months(2) |
| 7172 | .weeks(3) |
| 7173 | .days(4) |
| 7174 | .hours(5) |
| 7175 | .minutes(6) |
| 7176 | .seconds(7) |
| 7177 | .milliseconds(8) |
| 7178 | .microseconds(9) |
| 7179 | .nanoseconds(10); |
| 7180 | insta::assert_snapshot!( |
| 7181 | span, |
| 7182 | @"P1Y2M3W4DT5H6M7.00800901S" , |
| 7183 | ); |
| 7184 | insta::assert_snapshot!( |
| 7185 | alloc::format!("{span:#}" ), |
| 7186 | @"1y 2mo 3w 4d 5h 6m 7s 8ms 9µs 10ns" , |
| 7187 | ); |
| 7188 | } |
| 7189 | |
| 7190 | /// This test ensures that we can parse `humantime` formatted durations. |
| 7191 | #[test ] |
| 7192 | fn humantime_compatibility_parse() { |
| 7193 | let dur = std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789); |
| 7194 | let formatted = humantime::format_duration(dur).to_string(); |
| 7195 | assert_eq!( |
| 7196 | formatted, |
| 7197 | "1year 1month 15days 7h 26m 24s 123ms 456us 789ns" |
| 7198 | ); |
| 7199 | let expected = 1 |
| 7200 | .year() |
| 7201 | .months(1) |
| 7202 | .days(15) |
| 7203 | .hours(7) |
| 7204 | .minutes(26) |
| 7205 | .seconds(24) |
| 7206 | .milliseconds(123) |
| 7207 | .microseconds(456) |
| 7208 | .nanoseconds(789); |
| 7209 | span_eq!(formatted.parse::<Span>().unwrap(), expected); |
| 7210 | } |
| 7211 | |
| 7212 | /// This test ensures that we can print a `Span` that `humantime` can |
| 7213 | /// parse. |
| 7214 | /// |
| 7215 | /// Note that this isn't the default since `humantime`'s parser is |
| 7216 | /// pretty limited. e.g., It doesn't support things like `nsecs` |
| 7217 | /// despite supporting `secs`. And other reasons. See the docs on |
| 7218 | /// `Designator::HumanTime` for why we sadly provide a custom variant for |
| 7219 | /// it. |
| 7220 | #[test ] |
| 7221 | fn humantime_compatibility_print() { |
| 7222 | static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new() |
| 7223 | .designator(friendly::Designator::HumanTime); |
| 7224 | |
| 7225 | let span = 1 |
| 7226 | .year() |
| 7227 | .months(1) |
| 7228 | .days(15) |
| 7229 | .hours(7) |
| 7230 | .minutes(26) |
| 7231 | .seconds(24) |
| 7232 | .milliseconds(123) |
| 7233 | .microseconds(456) |
| 7234 | .nanoseconds(789); |
| 7235 | let formatted = PRINTER.span_to_string(&span); |
| 7236 | assert_eq!(formatted, "1y 1month 15d 7h 26m 24s 123ms 456us 789ns" ); |
| 7237 | |
| 7238 | let dur = humantime::parse_duration(&formatted).unwrap(); |
| 7239 | let expected = |
| 7240 | std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789); |
| 7241 | assert_eq!(dur, expected); |
| 7242 | } |
| 7243 | |
| 7244 | #[test ] |
| 7245 | fn from_str() { |
| 7246 | let p = |s: &str| -> Result<Span, Error> { s.parse() }; |
| 7247 | |
| 7248 | insta::assert_snapshot!( |
| 7249 | p("1 day" ).unwrap(), |
| 7250 | @"P1D" , |
| 7251 | ); |
| 7252 | insta::assert_snapshot!( |
| 7253 | p("+1 day" ).unwrap(), |
| 7254 | @"P1D" , |
| 7255 | ); |
| 7256 | insta::assert_snapshot!( |
| 7257 | p("-1 day" ).unwrap(), |
| 7258 | @"-P1D" , |
| 7259 | ); |
| 7260 | insta::assert_snapshot!( |
| 7261 | p("P1d" ).unwrap(), |
| 7262 | @"P1D" , |
| 7263 | ); |
| 7264 | insta::assert_snapshot!( |
| 7265 | p("+P1d" ).unwrap(), |
| 7266 | @"P1D" , |
| 7267 | ); |
| 7268 | insta::assert_snapshot!( |
| 7269 | p("-P1d" ).unwrap(), |
| 7270 | @"-P1D" , |
| 7271 | ); |
| 7272 | |
| 7273 | insta::assert_snapshot!( |
| 7274 | p("" ).unwrap_err(), |
| 7275 | @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 7276 | ); |
| 7277 | insta::assert_snapshot!( |
| 7278 | p("+" ).unwrap_err(), |
| 7279 | @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 7280 | ); |
| 7281 | insta::assert_snapshot!( |
| 7282 | p("-" ).unwrap_err(), |
| 7283 | @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 7284 | ); |
| 7285 | } |
| 7286 | |
| 7287 | #[test ] |
| 7288 | fn serde_deserialize() { |
| 7289 | let p = |s: &str| -> Result<Span, serde_json::Error> { |
| 7290 | serde_json::from_str(&alloc::format!(" \"{s} \"" )) |
| 7291 | }; |
| 7292 | |
| 7293 | insta::assert_snapshot!( |
| 7294 | p("1 day" ).unwrap(), |
| 7295 | @"P1D" , |
| 7296 | ); |
| 7297 | insta::assert_snapshot!( |
| 7298 | p("+1 day" ).unwrap(), |
| 7299 | @"P1D" , |
| 7300 | ); |
| 7301 | insta::assert_snapshot!( |
| 7302 | p("-1 day" ).unwrap(), |
| 7303 | @"-P1D" , |
| 7304 | ); |
| 7305 | insta::assert_snapshot!( |
| 7306 | p("P1d" ).unwrap(), |
| 7307 | @"P1D" , |
| 7308 | ); |
| 7309 | insta::assert_snapshot!( |
| 7310 | p("+P1d" ).unwrap(), |
| 7311 | @"P1D" , |
| 7312 | ); |
| 7313 | insta::assert_snapshot!( |
| 7314 | p("-P1d" ).unwrap(), |
| 7315 | @"-P1D" , |
| 7316 | ); |
| 7317 | |
| 7318 | insta::assert_snapshot!( |
| 7319 | p("" ).unwrap_err(), |
| 7320 | @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2" , |
| 7321 | ); |
| 7322 | insta::assert_snapshot!( |
| 7323 | p("+" ).unwrap_err(), |
| 7324 | @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
| 7325 | ); |
| 7326 | insta::assert_snapshot!( |
| 7327 | p("-" ).unwrap_err(), |
| 7328 | @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
| 7329 | ); |
| 7330 | } |
| 7331 | } |
| 7332 | |