1 | use core::{cmp::Ordering, time::Duration as UnsignedDuration}; |
2 | |
3 | use crate::{ |
4 | civil::{Date, DateTime, Time}, |
5 | duration::{Duration, SDuration}, |
6 | error::{err, Error, ErrorContext}, |
7 | fmt::{friendly, temporal}, |
8 | tz::TimeZone, |
9 | util::{ |
10 | borrow::DumbCow, |
11 | escape, |
12 | rangeint::{ri64, ri8, RFrom, RInto, TryRFrom, TryRInto}, |
13 | round::increment, |
14 | t::{self, Constant, NoUnits, NoUnits128, Sign, C}, |
15 | }, |
16 | RoundMode, SignedDuration, Timestamp, Zoned, |
17 | }; |
18 | |
19 | /// A macro helper, only used in tests, for comparing spans for equality. |
20 | #[cfg (test)] |
21 | macro_rules! span_eq { |
22 | ($span1:expr, $span2:expr $(,)?) => {{ |
23 | assert_eq!($span1.fieldwise(), $span2.fieldwise()); |
24 | }}; |
25 | ($span1:expr, $span2:expr, $($tt:tt)*) => {{ |
26 | assert_eq!($span1.fieldwise(), $span2.fieldwise(), $($tt)*); |
27 | }}; |
28 | } |
29 | |
30 | #[cfg (test)] |
31 | pub(crate) use span_eq; |
32 | |
33 | /// A span of time represented via a mixture of calendar and clock units. |
34 | /// |
35 | /// A span represents a duration of time in units of years, months, weeks, |
36 | /// days, hours, minutes, seconds, milliseconds, microseconds and nanoseconds. |
37 | /// Spans are used to as inputs to routines like |
38 | /// [`Zoned::checked_add`] and [`Date::saturating_sub`], |
39 | /// and are also outputs from routines like |
40 | /// [`Timestamp::since`] and [`DateTime::until`]. |
41 | /// |
42 | /// # Range of spans |
43 | /// |
44 | /// Except for nanoseconds, each unit can represent the full span of time |
45 | /// expressible via any combination of datetime supported by Jiff. For example: |
46 | /// |
47 | /// ``` |
48 | /// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit}; |
49 | /// |
50 | /// let options = DateTimeDifference::new(DateTime::MAX).largest(Unit::Year); |
51 | /// assert_eq!(DateTime::MIN.until(options)?.get_years(), 19_998); |
52 | /// |
53 | /// let options = options.largest(Unit::Day); |
54 | /// assert_eq!(DateTime::MIN.until(options)?.get_days(), 7_304_483); |
55 | /// |
56 | /// let options = options.largest(Unit::Microsecond); |
57 | /// assert_eq!( |
58 | /// DateTime::MIN.until(options)?.get_microseconds(), |
59 | /// 631_107_417_599_999_999i64, |
60 | /// ); |
61 | /// |
62 | /// let options = options.largest(Unit::Nanosecond); |
63 | /// // Span is too big, overflow! |
64 | /// assert!(DateTime::MIN.until(options).is_err()); |
65 | /// |
66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
67 | /// ``` |
68 | /// |
69 | /// # Building spans |
70 | /// |
71 | /// A default or empty span corresponds to a duration of zero time: |
72 | /// |
73 | /// ``` |
74 | /// use jiff::Span; |
75 | /// |
76 | /// assert!(Span::new().is_zero()); |
77 | /// assert!(Span::default().is_zero()); |
78 | /// ``` |
79 | /// |
80 | /// Spans are `Copy` types that have mutator methods on them for creating new |
81 | /// spans: |
82 | /// |
83 | /// ``` |
84 | /// use jiff::Span; |
85 | /// |
86 | /// let span = Span::new().days(5).hours(8).minutes(1); |
87 | /// assert_eq!(span.to_string(), "P5DT8H1M" ); |
88 | /// ``` |
89 | /// |
90 | /// But Jiff provides a [`ToSpan`] trait that defines extension methods on |
91 | /// primitive signed integers to make span creation terser: |
92 | /// |
93 | /// ``` |
94 | /// use jiff::ToSpan; |
95 | /// |
96 | /// let span = 5.days().hours(8).minutes(1); |
97 | /// assert_eq!(span.to_string(), "P5DT8H1M" ); |
98 | /// // singular units on integers can be used too: |
99 | /// let span = 1.day().hours(8).minutes(1); |
100 | /// assert_eq!(span.to_string(), "P1DT8H1M" ); |
101 | /// ``` |
102 | /// |
103 | /// # Negative spans |
104 | /// |
105 | /// A span may be negative. All of these are equivalent: |
106 | /// |
107 | /// ``` |
108 | /// use jiff::{Span, ToSpan}; |
109 | /// |
110 | /// let span = -Span::new().days(5); |
111 | /// assert_eq!(span.to_string(), "-P5D" ); |
112 | /// |
113 | /// let span = Span::new().days(5).negate(); |
114 | /// assert_eq!(span.to_string(), "-P5D" ); |
115 | /// |
116 | /// let span = Span::new().days(-5); |
117 | /// assert_eq!(span.to_string(), "-P5D" ); |
118 | /// |
119 | /// let span = -Span::new().days(-5).negate(); |
120 | /// assert_eq!(span.to_string(), "-P5D" ); |
121 | /// |
122 | /// let span = -5.days(); |
123 | /// assert_eq!(span.to_string(), "-P5D" ); |
124 | /// |
125 | /// let span = (-5).days(); |
126 | /// assert_eq!(span.to_string(), "-P5D" ); |
127 | /// |
128 | /// let span = -(5.days()); |
129 | /// assert_eq!(span.to_string(), "-P5D" ); |
130 | /// ``` |
131 | /// |
132 | /// The sign of a span applies to the entire span. When a span is negative, |
133 | /// then all of its units are negative: |
134 | /// |
135 | /// ``` |
136 | /// use jiff::ToSpan; |
137 | /// |
138 | /// let span = -5.days().hours(10).minutes(1); |
139 | /// assert_eq!(span.get_days(), -5); |
140 | /// assert_eq!(span.get_hours(), -10); |
141 | /// assert_eq!(span.get_minutes(), -1); |
142 | /// ``` |
143 | /// |
144 | /// And if any of a span's units are negative, then the entire span is regarded |
145 | /// as negative: |
146 | /// |
147 | /// ``` |
148 | /// use jiff::ToSpan; |
149 | /// |
150 | /// // It's the same thing. |
151 | /// let span = (-5).days().hours(-10).minutes(-1); |
152 | /// assert_eq!(span.get_days(), -5); |
153 | /// assert_eq!(span.get_hours(), -10); |
154 | /// assert_eq!(span.get_minutes(), -1); |
155 | /// |
156 | /// // Still the same. All negative. |
157 | /// let span = 5.days().hours(-10).minutes(1); |
158 | /// assert_eq!(span.get_days(), -5); |
159 | /// assert_eq!(span.get_hours(), -10); |
160 | /// assert_eq!(span.get_minutes(), -1); |
161 | /// |
162 | /// // But this is not! The negation in front applies |
163 | /// // to the entire span, which was already negative |
164 | /// // by virtue of at least one of its units being |
165 | /// // negative. So the negation operator in front turns |
166 | /// // the span positive. |
167 | /// let span = -5.days().hours(-10).minutes(-1); |
168 | /// assert_eq!(span.get_days(), 5); |
169 | /// assert_eq!(span.get_hours(), 10); |
170 | /// assert_eq!(span.get_minutes(), 1); |
171 | /// ``` |
172 | /// |
173 | /// You can also ask for the absolute value of a span: |
174 | /// |
175 | /// ``` |
176 | /// use jiff::Span; |
177 | /// |
178 | /// let span = Span::new().days(5).hours(10).minutes(1).negate().abs(); |
179 | /// assert_eq!(span.get_days(), 5); |
180 | /// assert_eq!(span.get_hours(), 10); |
181 | /// assert_eq!(span.get_minutes(), 1); |
182 | /// ``` |
183 | /// |
184 | /// # Parsing and printing |
185 | /// |
186 | /// The `Span` type provides convenient trait implementations of |
187 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
188 | /// |
189 | /// ``` |
190 | /// use jiff::{Span, ToSpan}; |
191 | /// |
192 | /// let span: Span = "P2m10dT2h30m" .parse()?; |
193 | /// // By default, capital unit designator labels are used. |
194 | /// // This can be changed with `jiff::fmt::temporal::SpanPrinter::lowercase`. |
195 | /// assert_eq!(span.to_string(), "P2M10DT2H30M" ); |
196 | /// |
197 | /// // Or use the "friendly" format by invoking the `Display` alternate: |
198 | /// assert_eq!(format!("{span:#}" ), "2mo 10d 2h 30m" ); |
199 | /// |
200 | /// // Parsing automatically supports both the ISO 8601 and "friendly" |
201 | /// // formats. Note that we use `Span::fieldwise` to create a `Span` that |
202 | /// // compares based on each field. To compare based on total duration, use |
203 | /// // `Span::compare` or `Span::total`. |
204 | /// let span: Span = "2mo 10d 2h 30m" .parse()?; |
205 | /// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise()); |
206 | /// let span: Span = "2 months, 10 days, 2 hours, 30 minutes" .parse()?; |
207 | /// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise()); |
208 | /// |
209 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
210 | /// ``` |
211 | /// |
212 | /// The format supported is a variation (nearly a subset) of the duration |
213 | /// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format. |
214 | /// Here are more examples: |
215 | /// |
216 | /// ``` |
217 | /// use jiff::{Span, ToSpan}; |
218 | /// |
219 | /// let spans = [ |
220 | /// // ISO 8601 |
221 | /// ("P40D" , 40.days()), |
222 | /// ("P1y1d" , 1.year().days(1)), |
223 | /// ("P3dT4h59m" , 3.days().hours(4).minutes(59)), |
224 | /// ("PT2H30M" , 2.hours().minutes(30)), |
225 | /// ("P1m" , 1.month()), |
226 | /// ("P1w" , 1.week()), |
227 | /// ("P1w4d" , 1.week().days(4)), |
228 | /// ("PT1m" , 1.minute()), |
229 | /// ("PT0.0021s" , 2.milliseconds().microseconds(100)), |
230 | /// ("PT0s" , 0.seconds()), |
231 | /// ("P0d" , 0.seconds()), |
232 | /// ( |
233 | /// "P1y1m1dT1h1m1.1s" , |
234 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
235 | /// ), |
236 | /// // Jiff's "friendly" format |
237 | /// ("40d" , 40.days()), |
238 | /// ("40 days" , 40.days()), |
239 | /// ("1y1d" , 1.year().days(1)), |
240 | /// ("1yr 1d" , 1.year().days(1)), |
241 | /// ("3d4h59m" , 3.days().hours(4).minutes(59)), |
242 | /// ("3 days, 4 hours, 59 minutes" , 3.days().hours(4).minutes(59)), |
243 | /// ("3d 4h 59m" , 3.days().hours(4).minutes(59)), |
244 | /// ("2h30m" , 2.hours().minutes(30)), |
245 | /// ("2h 30m" , 2.hours().minutes(30)), |
246 | /// ("1mo" , 1.month()), |
247 | /// ("1w" , 1.week()), |
248 | /// ("1 week" , 1.week()), |
249 | /// ("1w4d" , 1.week().days(4)), |
250 | /// ("1 wk 4 days" , 1.week().days(4)), |
251 | /// ("1m" , 1.minute()), |
252 | /// ("0.0021s" , 2.milliseconds().microseconds(100)), |
253 | /// ("0s" , 0.seconds()), |
254 | /// ("0d" , 0.seconds()), |
255 | /// ("0 days" , 0.seconds()), |
256 | /// ( |
257 | /// "1y1mo1d1h1m1.1s" , |
258 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
259 | /// ), |
260 | /// ( |
261 | /// "1yr 1mo 1day 1hr 1min 1.1sec" , |
262 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
263 | /// ), |
264 | /// ( |
265 | /// "1 year, 1 month, 1 day, 1 hour, 1 minute 1.1 seconds" , |
266 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
267 | /// ), |
268 | /// ( |
269 | /// "1 year, 1 month, 1 day, 01:01:01.1" , |
270 | /// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100), |
271 | /// ), |
272 | /// ]; |
273 | /// for (string, span) in spans { |
274 | /// let parsed: Span = string.parse()?; |
275 | /// assert_eq!( |
276 | /// span.fieldwise(), |
277 | /// parsed.fieldwise(), |
278 | /// "result of parsing {string:?}" , |
279 | /// ); |
280 | /// } |
281 | /// |
282 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
283 | /// ``` |
284 | /// |
285 | /// For more details, see the [`fmt::temporal`](temporal) and |
286 | /// [`fmt::friendly`](friendly) modules. |
287 | /// |
288 | /// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
289 | /// |
290 | /// # Comparisons |
291 | /// |
292 | /// A `Span` does not implement the `PartialEq` or `Eq` traits. These traits |
293 | /// were implemented in an earlier version of Jiff, but they made it too |
294 | /// easy to introduce bugs. For example, `120.minutes()` and `2.hours()` |
295 | /// always correspond to the same total duration, but they have different |
296 | /// representations in memory and so didn't compare equivalent. |
297 | /// |
298 | /// The reason why the `PartialEq` and `Eq` trait implementations do not do |
299 | /// comparisons with total duration is because it is fundamentally impossible |
300 | /// to do such comparisons without a reference date in all cases. |
301 | /// |
302 | /// However, it is undeniably occasionally useful to do comparisons based |
303 | /// on the component fields, so long as such use cases can tolerate two |
304 | /// different spans comparing unequal even when their total durations are |
305 | /// equivalent. For example, many of the tests in Jiff (including the tests in |
306 | /// the documentation) work by comparing a `Span` to an expected result. This |
307 | /// is a good demonstration of when fieldwise comparisons are appropriate. |
308 | /// |
309 | /// To do fieldwise comparisons with a span, use the [`Span::fieldwise`] |
310 | /// method. This method creates a [`SpanFieldwise`], which is just a `Span` |
311 | /// that implements `PartialEq` and `Eq` in a fieldwise manner. In other words, |
312 | /// it's a speed bump to ensure this is the kind of comparison you actually |
313 | /// want. For example: |
314 | /// |
315 | /// ``` |
316 | /// use jiff::ToSpan; |
317 | /// |
318 | /// assert_ne!(1.hour().fieldwise(), 60.minutes().fieldwise()); |
319 | /// // These also work since you only need one fieldwise span to do a compare: |
320 | /// assert_ne!(1.hour(), 60.minutes().fieldwise()); |
321 | /// assert_ne!(1.hour().fieldwise(), 60.minutes()); |
322 | /// ``` |
323 | /// |
324 | /// This is because doing true comparisons requires arithmetic and a relative |
325 | /// datetime in the general case, and which can fail due to overflow. This |
326 | /// operation is provided via [`Span::compare`]: |
327 | /// |
328 | /// ``` |
329 | /// use jiff::{civil::date, ToSpan}; |
330 | /// |
331 | /// // This doesn't need a reference date since it's only using time units. |
332 | /// assert_eq!(1.hour().compare(60.minutes())?, std::cmp::Ordering::Equal); |
333 | /// // But if you have calendar units, then you need a |
334 | /// // reference date at minimum: |
335 | /// assert!(1.month().compare(30.days()).is_err()); |
336 | /// assert_eq!( |
337 | /// 1.month().compare((30.days(), date(2025, 6, 1)))?, |
338 | /// std::cmp::Ordering::Equal, |
339 | /// ); |
340 | /// // A month can be a differing number of days! |
341 | /// assert_eq!( |
342 | /// 1.month().compare((30.days(), date(2025, 7, 1)))?, |
343 | /// std::cmp::Ordering::Greater, |
344 | /// ); |
345 | /// |
346 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
347 | /// ``` |
348 | /// |
349 | /// # Arithmetic |
350 | /// |
351 | /// Spans can be added or subtracted via [`Span::checked_add`] and |
352 | /// [`Span::checked_sub`]: |
353 | /// |
354 | /// ``` |
355 | /// use jiff::{Span, ToSpan}; |
356 | /// |
357 | /// let span1 = 2.hours().minutes(20); |
358 | /// let span2: Span = "PT89400s" .parse()?; |
359 | /// assert_eq!(span1.checked_add(span2)?, 27.hours().minutes(10).fieldwise()); |
360 | /// |
361 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
362 | /// ``` |
363 | /// |
364 | /// When your spans involve calendar units, a relative datetime must be |
365 | /// provided. (Because, for example, 1 month from March 1 is 31 days, but |
366 | /// 1 month from April 1 is 30 days.) |
367 | /// |
368 | /// ``` |
369 | /// use jiff::{civil::date, Span, ToSpan}; |
370 | /// |
371 | /// let span1 = 2.years().months(6).days(20); |
372 | /// let span2 = 400.days(); |
373 | /// assert_eq!( |
374 | /// span1.checked_add((span2, date(2023, 1, 1)))?, |
375 | /// 3.years().months(7).days(24).fieldwise(), |
376 | /// ); |
377 | /// // The span changes when a leap year isn't included! |
378 | /// assert_eq!( |
379 | /// span1.checked_add((span2, date(2025, 1, 1)))?, |
380 | /// 3.years().months(7).days(23).fieldwise(), |
381 | /// ); |
382 | /// |
383 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
384 | /// ``` |
385 | /// |
386 | /// # Rounding and balancing |
387 | /// |
388 | /// Unlike datetimes, multiple distinct `Span` values can actually correspond |
389 | /// to the same duration of time. For example, all of the following correspond |
390 | /// to the same duration: |
391 | /// |
392 | /// * 2 hours, 30 minutes |
393 | /// * 150 minutes |
394 | /// * 1 hour, 90 minutes |
395 | /// |
396 | /// The first is said to be balanced. That is, its biggest non-zero unit cannot |
397 | /// be expressed in an integer number of units bigger than hours. But the |
398 | /// second is unbalanced because 150 minutes can be split up into hours and |
399 | /// minutes. We call this sort of span a "top-heavy" unbalanced span. The third |
400 | /// span is also unbalanced, but it's "bottom-heavy" and rarely used. Jiff |
401 | /// will generally only produce spans of the first two types. In particular, |
402 | /// most `Span` producing APIs accept a "largest" [`Unit`] parameter, and the |
403 | /// result can be said to be a span "balanced up to the largest unit provided." |
404 | /// |
405 | /// Balanced and unbalanced spans can be switched between as needed via |
406 | /// the [`Span::round`] API by providing a rounding configuration with |
407 | /// [`SpanRound::largest`]` set: |
408 | /// |
409 | /// ``` |
410 | /// use jiff::{SpanRound, ToSpan, Unit}; |
411 | /// |
412 | /// let span = 2.hours().minutes(30); |
413 | /// let unbalanced = span.round(SpanRound::new().largest(Unit::Minute))?; |
414 | /// assert_eq!(unbalanced, 150.minutes().fieldwise()); |
415 | /// let balanced = unbalanced.round(SpanRound::new().largest(Unit::Hour))?; |
416 | /// assert_eq!(balanced, 2.hours().minutes(30).fieldwise()); |
417 | /// |
418 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
419 | /// ``` |
420 | /// |
421 | /// Balancing can also be done as part of computing spans from two datetimes: |
422 | /// |
423 | /// ``` |
424 | /// use jiff::{civil::date, ToSpan, Unit}; |
425 | /// |
426 | /// let zdt1 = date(2024, 7, 7).at(15, 23, 0, 0).in_tz("America/New_York" )?; |
427 | /// let zdt2 = date(2024, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York" )?; |
428 | /// |
429 | /// // To make arithmetic reversible, the default largest unit for spans of |
430 | /// // time computed from zoned datetimes is hours: |
431 | /// assert_eq!(zdt1.until(&zdt2)?, 2_897.hour().minutes(37).fieldwise()); |
432 | /// // But we can ask for the span to be balanced up to years: |
433 | /// assert_eq!( |
434 | /// zdt1.until((Unit::Year, &zdt2))?, |
435 | /// 3.months().days(28).hours(16).minutes(37).fieldwise(), |
436 | /// ); |
437 | /// |
438 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
439 | /// ``` |
440 | /// |
441 | /// While the [`Span::round`] API does balancing, it also, of course, does |
442 | /// rounding as well. Rounding occurs when the smallest unit is set to |
443 | /// something bigger than [`Unit::Nanosecond`]: |
444 | /// |
445 | /// ``` |
446 | /// use jiff::{ToSpan, Unit}; |
447 | /// |
448 | /// let span = 2.hours().minutes(30); |
449 | /// assert_eq!(span.round(Unit::Hour)?, 3.hours().fieldwise()); |
450 | /// |
451 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
452 | /// ``` |
453 | /// |
454 | /// When rounding spans with calendar units (years, months or weeks), then a |
455 | /// relative datetime is required: |
456 | /// |
457 | /// ``` |
458 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
459 | /// |
460 | /// let span = 10.years().months(11); |
461 | /// let options = SpanRound::new() |
462 | /// .smallest(Unit::Year) |
463 | /// .relative(date(2024, 1, 1)); |
464 | /// assert_eq!(span.round(options)?, 11.years().fieldwise()); |
465 | /// |
466 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
467 | /// ``` |
468 | /// |
469 | /// # Days are not always 24 hours! |
470 | /// |
471 | /// That is, a `Span` is made up of uniform and non-uniform units. |
472 | /// |
473 | /// A uniform unit is a unit whose elapsed duration is always the same. |
474 | /// A non-uniform unit is a unit whose elapsed duration is not always the same. |
475 | /// There are two things that can impact the length of a non-uniform unit: |
476 | /// the calendar date and the time zone. |
477 | /// |
478 | /// Years and months are always considered non-uniform units. For example, |
479 | /// 1 month from `2024-04-01` is 30 days, while 1 month from `2024-05-01` is |
480 | /// 31 days. Similarly for years because of leap years. |
481 | /// |
482 | /// Hours, minutes, seconds, milliseconds, microseconds and nanoseconds are |
483 | /// always considered uniform units. |
484 | /// |
485 | /// Days are only considered non-uniform when in the presence of a zone aware |
486 | /// datetime. A day can be more or less than 24 hours, and it can be balanced |
487 | /// up and down, but only when a relative zoned datetime is given. This |
488 | /// typically happens because of DST (daylight saving time), but can also occur |
489 | /// because of other time zone transitions too. |
490 | /// |
491 | /// ``` |
492 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
493 | /// |
494 | /// // 2024-03-10 in New York was 23 hours long, |
495 | /// // because of a jump to DST at 2am. |
496 | /// let zdt = date(2024, 3, 9).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
497 | /// // Goes from days to hours: |
498 | /// assert_eq!( |
499 | /// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?, |
500 | /// 23.hours().fieldwise(), |
501 | /// ); |
502 | /// // Goes from hours to days: |
503 | /// assert_eq!( |
504 | /// 23.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
505 | /// 1.day().fieldwise(), |
506 | /// ); |
507 | /// // 24 hours is more than 1 day starting at this time: |
508 | /// assert_eq!( |
509 | /// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
510 | /// 1.day().hours(1).fieldwise(), |
511 | /// ); |
512 | /// |
513 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
514 | /// ``` |
515 | /// |
516 | /// And similarly, days can be longer than 24 hours: |
517 | /// |
518 | /// ``` |
519 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
520 | /// |
521 | /// // 2024-11-03 in New York was 25 hours long, |
522 | /// // because of a repetition of the 1 o'clock AM hour. |
523 | /// let zdt = date(2024, 11, 2).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
524 | /// // Goes from days to hours: |
525 | /// assert_eq!( |
526 | /// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?, |
527 | /// 25.hours().fieldwise(), |
528 | /// ); |
529 | /// // Goes from hours to days: |
530 | /// assert_eq!( |
531 | /// 25.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
532 | /// 1.day().fieldwise(), |
533 | /// ); |
534 | /// // 24 hours is less than 1 day starting at this time, |
535 | /// // so it stays in units of hours even though we ask |
536 | /// // for days (because 24 isn't enough hours to make |
537 | /// // 1 day): |
538 | /// assert_eq!( |
539 | /// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?, |
540 | /// 24.hours().fieldwise(), |
541 | /// ); |
542 | /// |
543 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
544 | /// ``` |
545 | /// |
546 | /// The APIs on `Span` will otherwise treat days as non-uniform unless a |
547 | /// relative civil date is given, or there is an explicit opt-in to invariant |
548 | /// 24-hour days. For example: |
549 | /// |
550 | /// ``` |
551 | /// use jiff::{civil, SpanRelativeTo, ToSpan, Unit}; |
552 | /// |
553 | /// let span = 1.day(); |
554 | /// |
555 | /// // An error because days aren't always 24 hours: |
556 | /// assert_eq!( |
557 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
558 | /// "using unit 'day' in a span or configuration requires that either \ |
559 | /// a relative reference time be given or \ |
560 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
561 | /// invariant 24-hour days, but neither were provided" , |
562 | /// ); |
563 | /// // Opt into invariant 24 hour days without a relative date: |
564 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
565 | /// let hours = span.total((Unit::Hour, marker))?; |
566 | /// // Or use a relative civil date, and all days are 24 hours: |
567 | /// let date = civil::date(2020, 1, 1); |
568 | /// let hours = span.total((Unit::Hour, date))?; |
569 | /// assert_eq!(hours, 24.0); |
570 | /// |
571 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
572 | /// ``` |
573 | /// |
574 | /// In Jiff, all weeks are 7 days. And generally speaking, weeks only appear in |
575 | /// a `Span` if they were explicitly put there by the caller or if they were |
576 | /// explicitly requested by the caller in an API. For example: |
577 | /// |
578 | /// ``` |
579 | /// use jiff::{civil::date, ToSpan, Unit}; |
580 | /// |
581 | /// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0); |
582 | /// let dt2 = date(2024, 7, 16).at(0, 0, 0, 0); |
583 | /// // Default units go up to days. |
584 | /// assert_eq!(dt1.until(dt2)?, 197.days().fieldwise()); |
585 | /// // No weeks, even though we requested up to year. |
586 | /// assert_eq!(dt1.until((Unit::Year, dt2))?, 6.months().days(15).fieldwise()); |
587 | /// // We get weeks only when we ask for them. |
588 | /// assert_eq!(dt1.until((Unit::Week, dt2))?, 28.weeks().days(1).fieldwise()); |
589 | /// |
590 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
591 | /// ``` |
592 | /// |
593 | /// # Integration with [`std::time::Duration`] and [`SignedDuration`] |
594 | /// |
595 | /// While Jiff primarily uses a `Span` for doing arithmetic on datetimes, |
596 | /// one can convert between a `Span` and a [`std::time::Duration`] or a |
597 | /// [`SignedDuration`]. The main difference between them is that a `Span` |
598 | /// always keeps tracks of its individual units, and a `Span` can represent |
599 | /// non-uniform units like months. In contrast, `Duration` and `SignedDuration` |
600 | /// are always an exact elapsed amount of time. They don't distinguish between |
601 | /// `120 seconds` and `2 minutes`. And they can't represent the concept of |
602 | /// "months" because a month doesn't have a single fixed amount of time. |
603 | /// |
604 | /// However, an exact duration is still useful in certain contexts. Beyond |
605 | /// that, it serves as an interoperability point due to the presence of an |
606 | /// unsigned exact duration type in the standard library. Because of that, |
607 | /// Jiff provides `TryFrom` trait implementations for converting to and from a |
608 | /// `std::time::Duration` (and, of course, a `SignedDuration`). For example, to |
609 | /// convert from a `std::time::Duration` to a `Span`: |
610 | /// |
611 | /// ``` |
612 | /// use std::time::Duration; |
613 | /// |
614 | /// use jiff::{Span, ToSpan}; |
615 | /// |
616 | /// let duration = Duration::new(86_400, 123_456_789); |
617 | /// let span = Span::try_from(duration)?; |
618 | /// // A duration-to-span conversion always results in a span with |
619 | /// // non-zero units no bigger than seconds. |
620 | /// assert_eq!( |
621 | /// span.fieldwise(), |
622 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
623 | /// ); |
624 | /// |
625 | /// // Note that the conversion is fallible! For example: |
626 | /// assert!(Span::try_from(Duration::from_secs(u64::MAX)).is_err()); |
627 | /// // At present, a Jiff `Span` can only represent a range of time equal to |
628 | /// // the range of time expressible via minimum and maximum Jiff timestamps. |
629 | /// // Which is roughly -9999-01-01 to 9999-12-31, or ~20,000 years. |
630 | /// assert!(Span::try_from(Duration::from_secs(999_999_999_999)).is_err()); |
631 | /// |
632 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
633 | /// ``` |
634 | /// |
635 | /// And to convert from a `Span` to a `std::time::Duration`: |
636 | /// |
637 | /// ``` |
638 | /// use std::time::Duration; |
639 | /// |
640 | /// use jiff::{Span, ToSpan}; |
641 | /// |
642 | /// let span = 86_400.seconds() |
643 | /// .milliseconds(123) |
644 | /// .microseconds(456) |
645 | /// .nanoseconds(789); |
646 | /// let duration = Duration::try_from(span)?; |
647 | /// assert_eq!(duration, Duration::new(86_400, 123_456_789)); |
648 | /// |
649 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
650 | /// ``` |
651 | /// |
652 | /// Note that an error will occur when converting a `Span` to a |
653 | /// `std::time::Duration` using the `TryFrom` trait implementation with units |
654 | /// bigger than hours: |
655 | /// |
656 | /// ``` |
657 | /// use std::time::Duration; |
658 | /// |
659 | /// use jiff::ToSpan; |
660 | /// |
661 | /// let span = 2.days().hours(10); |
662 | /// assert_eq!( |
663 | /// Duration::try_from(span).unwrap_err().to_string(), |
664 | /// "failed to convert span to duration without relative datetime \ |
665 | /// (must use `Span::to_duration` instead): using unit 'day' in a \ |
666 | /// span or configuration requires that either a relative reference \ |
667 | /// time be given or `SpanRelativeTo::days_are_24_hours()` is used \ |
668 | /// to indicate invariant 24-hour days, but neither were provided" , |
669 | /// ); |
670 | /// |
671 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
672 | /// ``` |
673 | /// |
674 | /// Similar code can be written for `SignedDuration` as well. |
675 | /// |
676 | /// If you need to convert such spans, then as the error suggests, you'll need |
677 | /// to use [`Span::to_duration`] with a relative date. |
678 | /// |
679 | /// And note that since a `Span` is signed and a `std::time::Duration` is unsigned, |
680 | /// converting a negative `Span` to `std::time::Duration` will always fail. One can use |
681 | /// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the |
682 | /// span positive before converting it to a `Duration`: |
683 | /// |
684 | /// ``` |
685 | /// use std::time::Duration; |
686 | /// |
687 | /// use jiff::{Span, ToSpan}; |
688 | /// |
689 | /// let span = -86_400.seconds().nanoseconds(1); |
690 | /// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?); |
691 | /// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1))); |
692 | /// |
693 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
694 | /// ``` |
695 | /// |
696 | /// Or, consider using Jiff's own [`SignedDuration`] instead: |
697 | /// |
698 | /// ``` |
699 | /// # // See: https://github.com/rust-lang/rust/pull/121364 |
700 | /// # #![allow(unknown_lints, ambiguous_negative_literals)] |
701 | /// use jiff::{SignedDuration, Span, ToSpan}; |
702 | /// |
703 | /// let span = -86_400.seconds().nanoseconds(1); |
704 | /// let duration = SignedDuration::try_from(span)?; |
705 | /// assert_eq!(duration, SignedDuration::new(-86_400, -1)); |
706 | /// |
707 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
708 | /// ``` |
709 | #[derive (Clone, Copy)] |
710 | pub struct Span { |
711 | sign: Sign, |
712 | units: UnitSet, |
713 | years: t::SpanYears, |
714 | months: t::SpanMonths, |
715 | weeks: t::SpanWeeks, |
716 | days: t::SpanDays, |
717 | hours: t::SpanHours, |
718 | minutes: t::SpanMinutes, |
719 | seconds: t::SpanSeconds, |
720 | milliseconds: t::SpanMilliseconds, |
721 | microseconds: t::SpanMicroseconds, |
722 | nanoseconds: t::SpanNanoseconds, |
723 | } |
724 | |
725 | /// Infallible routines for setting units on a `Span`. |
726 | /// |
727 | /// These are useful when the units are determined by the programmer or when |
728 | /// they have been validated elsewhere. In general, use these routines when |
729 | /// constructing an invalid `Span` should be considered a bug in the program. |
730 | impl Span { |
731 | /// Creates a new span representing a zero duration. That is, a duration |
732 | /// in which no time has passed. |
733 | pub fn new() -> Span { |
734 | Span::default() |
735 | } |
736 | |
737 | /// Set the number of years on this span. The value may be negative. |
738 | /// |
739 | /// The fallible version of this method is [`Span::try_years`]. |
740 | /// |
741 | /// # Panics |
742 | /// |
743 | /// This panics when the number of years is too small or too big. |
744 | /// The minimum value is `-19,998`. |
745 | /// The maximum value is `19,998`. |
746 | #[inline ] |
747 | pub fn years<I: Into<i64>>(self, years: I) -> Span { |
748 | self.try_years(years).expect("value for years is out of bounds" ) |
749 | } |
750 | |
751 | /// Set the number of months on this span. The value may be negative. |
752 | /// |
753 | /// The fallible version of this method is [`Span::try_months`]. |
754 | /// |
755 | /// # Panics |
756 | /// |
757 | /// This panics when the number of months is too small or too big. |
758 | /// The minimum value is `-239,976`. |
759 | /// The maximum value is `239,976`. |
760 | #[inline ] |
761 | pub fn months<I: Into<i64>>(self, months: I) -> Span { |
762 | self.try_months(months).expect("value for months is out of bounds" ) |
763 | } |
764 | |
765 | /// Set the number of weeks on this span. The value may be negative. |
766 | /// |
767 | /// The fallible version of this method is [`Span::try_weeks`]. |
768 | /// |
769 | /// # Panics |
770 | /// |
771 | /// This panics when the number of weeks is too small or too big. |
772 | /// The minimum value is `-1,043,497`. |
773 | /// The maximum value is `1_043_497`. |
774 | #[inline ] |
775 | pub fn weeks<I: Into<i64>>(self, weeks: I) -> Span { |
776 | self.try_weeks(weeks).expect("value for weeks is out of bounds" ) |
777 | } |
778 | |
779 | /// Set the number of days on this span. The value may be negative. |
780 | /// |
781 | /// The fallible version of this method is [`Span::try_days`]. |
782 | /// |
783 | /// # Panics |
784 | /// |
785 | /// This panics when the number of days is too small or too big. |
786 | /// The minimum value is `-7,304,484`. |
787 | /// The maximum value is `7,304,484`. |
788 | #[inline ] |
789 | pub fn days<I: Into<i64>>(self, days: I) -> Span { |
790 | self.try_days(days).expect("value for days is out of bounds" ) |
791 | } |
792 | |
793 | /// Set the number of hours on this span. The value may be negative. |
794 | /// |
795 | /// The fallible version of this method is [`Span::try_hours`]. |
796 | /// |
797 | /// # Panics |
798 | /// |
799 | /// This panics when the number of hours is too small or too big. |
800 | /// The minimum value is `-175,307,616`. |
801 | /// The maximum value is `175,307,616`. |
802 | #[inline ] |
803 | pub fn hours<I: Into<i64>>(self, hours: I) -> Span { |
804 | self.try_hours(hours).expect("value for hours is out of bounds" ) |
805 | } |
806 | |
807 | /// Set the number of minutes on this span. The value may be negative. |
808 | /// |
809 | /// The fallible version of this method is [`Span::try_minutes`]. |
810 | /// |
811 | /// # Panics |
812 | /// |
813 | /// This panics when the number of minutes is too small or too big. |
814 | /// The minimum value is `-10,518,456,960`. |
815 | /// The maximum value is `10,518,456,960`. |
816 | #[inline ] |
817 | pub fn minutes<I: Into<i64>>(self, minutes: I) -> Span { |
818 | self.try_minutes(minutes).expect("value for minutes is out of bounds" ) |
819 | } |
820 | |
821 | /// Set the number of seconds on this span. The value may be negative. |
822 | /// |
823 | /// The fallible version of this method is [`Span::try_seconds`]. |
824 | /// |
825 | /// # Panics |
826 | /// |
827 | /// This panics when the number of seconds is too small or too big. |
828 | /// The minimum value is `-631,107,417,600`. |
829 | /// The maximum value is `631,107,417,600`. |
830 | #[inline ] |
831 | pub fn seconds<I: Into<i64>>(self, seconds: I) -> Span { |
832 | self.try_seconds(seconds).expect("value for seconds is out of bounds" ) |
833 | } |
834 | |
835 | /// Set the number of milliseconds on this span. The value may be negative. |
836 | /// |
837 | /// The fallible version of this method is [`Span::try_milliseconds`]. |
838 | /// |
839 | /// # Panics |
840 | /// |
841 | /// This panics when the number of milliseconds is too small or too big. |
842 | /// The minimum value is `-631,107,417,600,000`. |
843 | /// The maximum value is `631,107,417,600,000`. |
844 | #[inline ] |
845 | pub fn milliseconds<I: Into<i64>>(self, milliseconds: I) -> Span { |
846 | self.try_milliseconds(milliseconds) |
847 | .expect("value for milliseconds is out of bounds" ) |
848 | } |
849 | |
850 | /// Set the number of microseconds on this span. The value may be negative. |
851 | /// |
852 | /// The fallible version of this method is [`Span::try_microseconds`]. |
853 | /// |
854 | /// # Panics |
855 | /// |
856 | /// This panics when the number of microseconds is too small or too big. |
857 | /// The minimum value is `-631,107,417,600,000,000`. |
858 | /// The maximum value is `631,107,417,600,000,000`. |
859 | #[inline ] |
860 | pub fn microseconds<I: Into<i64>>(self, microseconds: I) -> Span { |
861 | self.try_microseconds(microseconds) |
862 | .expect("value for microseconds is out of bounds" ) |
863 | } |
864 | |
865 | /// Set the number of nanoseconds on this span. The value may be negative. |
866 | /// |
867 | /// Note that unlike all other units, a 64-bit integer number of |
868 | /// nanoseconds is not big enough to represent all possible spans between |
869 | /// all possible datetimes supported by Jiff. This means, for example, that |
870 | /// computing a span between two datetimes that are far enough apart _and_ |
871 | /// requesting a largest unit of [`Unit::Nanosecond`], might return an |
872 | /// error due to lack of precision. |
873 | /// |
874 | /// The fallible version of this method is [`Span::try_nanoseconds`]. |
875 | /// |
876 | /// # Panics |
877 | /// |
878 | /// This panics when the number of nanoseconds is too small or too big. |
879 | /// The minimum value is `-9,223,372,036,854,775,807`. |
880 | /// The maximum value is `9,223,372,036,854,775,807`. |
881 | #[inline ] |
882 | pub fn nanoseconds<I: Into<i64>>(self, nanoseconds: I) -> Span { |
883 | self.try_nanoseconds(nanoseconds) |
884 | .expect("value for nanoseconds is out of bounds" ) |
885 | } |
886 | } |
887 | |
888 | /// Fallible methods for setting units on a `Span`. |
889 | /// |
890 | /// These methods are useful when the span is made up of user provided values |
891 | /// that may not be in range. |
892 | impl Span { |
893 | /// Set the number of years on this span. The value may be negative. |
894 | /// |
895 | /// The panicking version of this method is [`Span::years`]. |
896 | /// |
897 | /// # Errors |
898 | /// |
899 | /// This returns an error when the number of years is too small or too big. |
900 | /// The minimum value is `-19,998`. |
901 | /// The maximum value is `19,998`. |
902 | #[inline ] |
903 | pub fn try_years<I: Into<i64>>(self, years: I) -> Result<Span, Error> { |
904 | let years = t::SpanYears::try_new("years" , years)?; |
905 | Ok(self.years_ranged(years)) |
906 | } |
907 | |
908 | /// Set the number of months on this span. The value may be negative. |
909 | /// |
910 | /// The panicking version of this method is [`Span::months`]. |
911 | /// |
912 | /// # Errors |
913 | /// |
914 | /// This returns an error when the number of months is too small or too big. |
915 | /// The minimum value is `-239,976`. |
916 | /// The maximum value is `239,976`. |
917 | #[inline ] |
918 | pub fn try_months<I: Into<i64>>(self, months: I) -> Result<Span, Error> { |
919 | type Range = ri64<{ t::SpanMonths::MIN }, { t::SpanMonths::MAX }>; |
920 | let months = Range::try_new("months" , months)?; |
921 | Ok(self.months_ranged(months.rinto())) |
922 | } |
923 | |
924 | /// Set the number of weeks on this span. The value may be negative. |
925 | /// |
926 | /// The panicking version of this method is [`Span::weeks`]. |
927 | /// |
928 | /// # Errors |
929 | /// |
930 | /// This returns an error when the number of weeks is too small or too big. |
931 | /// The minimum value is `-1,043,497`. |
932 | /// The maximum value is `1_043_497`. |
933 | #[inline ] |
934 | pub fn try_weeks<I: Into<i64>>(self, weeks: I) -> Result<Span, Error> { |
935 | type Range = ri64<{ t::SpanWeeks::MIN }, { t::SpanWeeks::MAX }>; |
936 | let weeks = Range::try_new("weeks" , weeks)?; |
937 | Ok(self.weeks_ranged(weeks.rinto())) |
938 | } |
939 | |
940 | /// Set the number of days on this span. The value may be negative. |
941 | /// |
942 | /// The panicking version of this method is [`Span::days`]. |
943 | /// |
944 | /// # Errors |
945 | /// |
946 | /// This returns an error when the number of days is too small or too big. |
947 | /// The minimum value is `-7,304,484`. |
948 | /// The maximum value is `7,304,484`. |
949 | #[inline ] |
950 | pub fn try_days<I: Into<i64>>(self, days: I) -> Result<Span, Error> { |
951 | type Range = ri64<{ t::SpanDays::MIN }, { t::SpanDays::MAX }>; |
952 | let days = Range::try_new("days" , days)?; |
953 | Ok(self.days_ranged(days.rinto())) |
954 | } |
955 | |
956 | /// Set the number of hours on this span. The value may be negative. |
957 | /// |
958 | /// The panicking version of this method is [`Span::hours`]. |
959 | /// |
960 | /// # Errors |
961 | /// |
962 | /// This returns an error when the number of hours is too small or too big. |
963 | /// The minimum value is `-175,307,616`. |
964 | /// The maximum value is `175,307,616`. |
965 | #[inline ] |
966 | pub fn try_hours<I: Into<i64>>(self, hours: I) -> Result<Span, Error> { |
967 | type Range = ri64<{ t::SpanHours::MIN }, { t::SpanHours::MAX }>; |
968 | let hours = Range::try_new("hours" , hours)?; |
969 | Ok(self.hours_ranged(hours.rinto())) |
970 | } |
971 | |
972 | /// Set the number of minutes on this span. The value may be negative. |
973 | /// |
974 | /// The panicking version of this method is [`Span::minutes`]. |
975 | /// |
976 | /// # Errors |
977 | /// |
978 | /// This returns an error when the number of minutes is too small or too big. |
979 | /// The minimum value is `-10,518,456,960`. |
980 | /// The maximum value is `10,518,456,960`. |
981 | #[inline ] |
982 | pub fn try_minutes<I: Into<i64>>(self, minutes: I) -> Result<Span, Error> { |
983 | type Range = ri64<{ t::SpanMinutes::MIN }, { t::SpanMinutes::MAX }>; |
984 | let minutes = Range::try_new("minutes" , minutes.into())?; |
985 | Ok(self.minutes_ranged(minutes)) |
986 | } |
987 | |
988 | /// Set the number of seconds on this span. The value may be negative. |
989 | /// |
990 | /// The panicking version of this method is [`Span::seconds`]. |
991 | /// |
992 | /// # Errors |
993 | /// |
994 | /// This returns an error when the number of seconds is too small or too big. |
995 | /// The minimum value is `-631,107,417,600`. |
996 | /// The maximum value is `631,107,417,600`. |
997 | #[inline ] |
998 | pub fn try_seconds<I: Into<i64>>(self, seconds: I) -> Result<Span, Error> { |
999 | type Range = ri64<{ t::SpanSeconds::MIN }, { t::SpanSeconds::MAX }>; |
1000 | let seconds = Range::try_new("seconds" , seconds.into())?; |
1001 | Ok(self.seconds_ranged(seconds)) |
1002 | } |
1003 | |
1004 | /// Set the number of milliseconds on this span. The value may be negative. |
1005 | /// |
1006 | /// The panicking version of this method is [`Span::milliseconds`]. |
1007 | /// |
1008 | /// # Errors |
1009 | /// |
1010 | /// This returns an error when the number of milliseconds is too small or |
1011 | /// too big. |
1012 | /// The minimum value is `-631,107,417,600,000`. |
1013 | /// The maximum value is `631,107,417,600,000`. |
1014 | #[inline ] |
1015 | pub fn try_milliseconds<I: Into<i64>>( |
1016 | self, |
1017 | milliseconds: I, |
1018 | ) -> Result<Span, Error> { |
1019 | type Range = |
1020 | ri64<{ t::SpanMilliseconds::MIN }, { t::SpanMilliseconds::MAX }>; |
1021 | let milliseconds = |
1022 | Range::try_new("milliseconds" , milliseconds.into())?; |
1023 | Ok(self.milliseconds_ranged(milliseconds)) |
1024 | } |
1025 | |
1026 | /// Set the number of microseconds on this span. The value may be negative. |
1027 | /// |
1028 | /// The panicking version of this method is [`Span::microseconds`]. |
1029 | /// |
1030 | /// # Errors |
1031 | /// |
1032 | /// This returns an error when the number of microseconds is too small or |
1033 | /// too big. |
1034 | /// The minimum value is `-631,107,417,600,000,000`. |
1035 | /// The maximum value is `631,107,417,600,000,000`. |
1036 | #[inline ] |
1037 | pub fn try_microseconds<I: Into<i64>>( |
1038 | self, |
1039 | microseconds: I, |
1040 | ) -> Result<Span, Error> { |
1041 | type Range = |
1042 | ri64<{ t::SpanMicroseconds::MIN }, { t::SpanMicroseconds::MAX }>; |
1043 | let microseconds = |
1044 | Range::try_new("microseconds" , microseconds.into())?; |
1045 | Ok(self.microseconds_ranged(microseconds)) |
1046 | } |
1047 | |
1048 | /// Set the number of nanoseconds on this span. The value may be negative. |
1049 | /// |
1050 | /// Note that unlike all other units, a 64-bit integer number of |
1051 | /// nanoseconds is not big enough to represent all possible spans between |
1052 | /// all possible datetimes supported by Jiff. This means, for example, that |
1053 | /// computing a span between two datetimes that are far enough apart _and_ |
1054 | /// requesting a largest unit of [`Unit::Nanosecond`], might return an |
1055 | /// error due to lack of precision. |
1056 | /// |
1057 | /// The panicking version of this method is [`Span::nanoseconds`]. |
1058 | /// |
1059 | /// # Errors |
1060 | /// |
1061 | /// This returns an error when the number of nanoseconds is too small or |
1062 | /// too big. |
1063 | /// The minimum value is `-9,223,372,036,854,775,807`. |
1064 | /// The maximum value is `9,223,372,036,854,775,807`. |
1065 | #[inline ] |
1066 | pub fn try_nanoseconds<I: Into<i64>>( |
1067 | self, |
1068 | nanoseconds: I, |
1069 | ) -> Result<Span, Error> { |
1070 | type Range = |
1071 | ri64<{ t::SpanNanoseconds::MIN }, { t::SpanNanoseconds::MAX }>; |
1072 | let nanoseconds = Range::try_new("nanoseconds" , nanoseconds.into())?; |
1073 | Ok(self.nanoseconds_ranged(nanoseconds)) |
1074 | } |
1075 | } |
1076 | |
1077 | /// Routines for accessing the individual units in a `Span`. |
1078 | impl Span { |
1079 | /// Returns the number of year units in this span. |
1080 | /// |
1081 | /// Note that this is not the same as the total number of years in the |
1082 | /// span. To get that, you'll need to use either [`Span::round`] or |
1083 | /// [`Span::total`]. |
1084 | /// |
1085 | /// # Example |
1086 | /// |
1087 | /// ``` |
1088 | /// use jiff::{civil::date, ToSpan, Unit}; |
1089 | /// |
1090 | /// let span = 3.years().months(24); |
1091 | /// assert_eq!(3, span.get_years()); |
1092 | /// assert_eq!(5.0, span.total((Unit::Year, date(2024, 1, 1)))?); |
1093 | /// |
1094 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1095 | /// ``` |
1096 | #[inline ] |
1097 | pub fn get_years(&self) -> i16 { |
1098 | self.get_years_ranged().get() |
1099 | } |
1100 | |
1101 | /// Returns the number of month units in this span. |
1102 | /// |
1103 | /// Note that this is not the same as the total number of months in the |
1104 | /// span. To get that, you'll need to use either [`Span::round`] or |
1105 | /// [`Span::total`]. |
1106 | /// |
1107 | /// # Example |
1108 | /// |
1109 | /// ``` |
1110 | /// use jiff::{civil::date, ToSpan, Unit}; |
1111 | /// |
1112 | /// let span = 7.months().days(59); |
1113 | /// assert_eq!(7, span.get_months()); |
1114 | /// assert_eq!(9.0, span.total((Unit::Month, date(2022, 6, 1)))?); |
1115 | /// |
1116 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1117 | /// ``` |
1118 | #[inline ] |
1119 | pub fn get_months(&self) -> i32 { |
1120 | self.get_months_ranged().get() |
1121 | } |
1122 | |
1123 | /// Returns the number of week units in this span. |
1124 | /// |
1125 | /// Note that this is not the same as the total number of weeks in the |
1126 | /// span. To get that, you'll need to use either [`Span::round`] or |
1127 | /// [`Span::total`]. |
1128 | /// |
1129 | /// # Example |
1130 | /// |
1131 | /// ``` |
1132 | /// use jiff::{civil::date, ToSpan, Unit}; |
1133 | /// |
1134 | /// let span = 3.weeks().days(14); |
1135 | /// assert_eq!(3, span.get_weeks()); |
1136 | /// assert_eq!(5.0, span.total((Unit::Week, date(2024, 1, 1)))?); |
1137 | /// |
1138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1139 | /// ``` |
1140 | #[inline ] |
1141 | pub fn get_weeks(&self) -> i32 { |
1142 | self.get_weeks_ranged().get() |
1143 | } |
1144 | |
1145 | /// Returns the number of day units in this span. |
1146 | /// |
1147 | /// Note that this is not the same as the total number of days in the |
1148 | /// span. To get that, you'll need to use either [`Span::round`] or |
1149 | /// [`Span::total`]. |
1150 | /// |
1151 | /// # Example |
1152 | /// |
1153 | /// ``` |
1154 | /// use jiff::{ToSpan, Unit, Zoned}; |
1155 | /// |
1156 | /// let span = 3.days().hours(47); |
1157 | /// assert_eq!(3, span.get_days()); |
1158 | /// |
1159 | /// let zdt: Zoned = "2024-03-07[America/New_York]" .parse()?; |
1160 | /// assert_eq!(5.0, span.total((Unit::Day, &zdt))?); |
1161 | /// |
1162 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1163 | /// ``` |
1164 | #[inline ] |
1165 | pub fn get_days(&self) -> i32 { |
1166 | self.get_days_ranged().get() |
1167 | } |
1168 | |
1169 | /// Returns the number of hour units in this span. |
1170 | /// |
1171 | /// Note that this is not the same as the total number of hours in the |
1172 | /// span. To get that, you'll need to use either [`Span::round`] or |
1173 | /// [`Span::total`]. |
1174 | /// |
1175 | /// # Example |
1176 | /// |
1177 | /// ``` |
1178 | /// use jiff::{ToSpan, Unit}; |
1179 | /// |
1180 | /// let span = 3.hours().minutes(120); |
1181 | /// assert_eq!(3, span.get_hours()); |
1182 | /// assert_eq!(5.0, span.total(Unit::Hour)?); |
1183 | /// |
1184 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1185 | /// ``` |
1186 | #[inline ] |
1187 | pub fn get_hours(&self) -> i32 { |
1188 | self.get_hours_ranged().get() |
1189 | } |
1190 | |
1191 | /// Returns the number of minute units in this span. |
1192 | /// |
1193 | /// Note that this is not the same as the total number of minutes in the |
1194 | /// span. To get that, you'll need to use either [`Span::round`] or |
1195 | /// [`Span::total`]. |
1196 | /// |
1197 | /// # Example |
1198 | /// |
1199 | /// ``` |
1200 | /// use jiff::{ToSpan, Unit}; |
1201 | /// |
1202 | /// let span = 3.minutes().seconds(120); |
1203 | /// assert_eq!(3, span.get_minutes()); |
1204 | /// assert_eq!(5.0, span.total(Unit::Minute)?); |
1205 | /// |
1206 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1207 | /// ``` |
1208 | #[inline ] |
1209 | pub fn get_minutes(&self) -> i64 { |
1210 | self.get_minutes_ranged().get() |
1211 | } |
1212 | |
1213 | /// Returns the number of second units in this span. |
1214 | /// |
1215 | /// Note that this is not the same as the total number of seconds in the |
1216 | /// span. To get that, you'll need to use either [`Span::round`] or |
1217 | /// [`Span::total`]. |
1218 | /// |
1219 | /// # Example |
1220 | /// |
1221 | /// ``` |
1222 | /// use jiff::{ToSpan, Unit}; |
1223 | /// |
1224 | /// let span = 3.seconds().milliseconds(2_000); |
1225 | /// assert_eq!(3, span.get_seconds()); |
1226 | /// assert_eq!(5.0, span.total(Unit::Second)?); |
1227 | /// |
1228 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1229 | /// ``` |
1230 | #[inline ] |
1231 | pub fn get_seconds(&self) -> i64 { |
1232 | self.get_seconds_ranged().get() |
1233 | } |
1234 | |
1235 | /// Returns the number of millisecond units in this span. |
1236 | /// |
1237 | /// Note that this is not the same as the total number of milliseconds in |
1238 | /// the span. To get that, you'll need to use either [`Span::round`] or |
1239 | /// [`Span::total`]. |
1240 | /// |
1241 | /// # Example |
1242 | /// |
1243 | /// ``` |
1244 | /// use jiff::{ToSpan, Unit}; |
1245 | /// |
1246 | /// let span = 3.milliseconds().microseconds(2_000); |
1247 | /// assert_eq!(3, span.get_milliseconds()); |
1248 | /// assert_eq!(5.0, span.total(Unit::Millisecond)?); |
1249 | /// |
1250 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1251 | /// ``` |
1252 | #[inline ] |
1253 | pub fn get_milliseconds(&self) -> i64 { |
1254 | self.get_milliseconds_ranged().get() |
1255 | } |
1256 | |
1257 | /// Returns the number of microsecond units in this span. |
1258 | /// |
1259 | /// Note that this is not the same as the total number of microseconds in |
1260 | /// the span. To get that, you'll need to use either [`Span::round`] or |
1261 | /// [`Span::total`]. |
1262 | /// |
1263 | /// # Example |
1264 | /// |
1265 | /// ``` |
1266 | /// use jiff::{ToSpan, Unit}; |
1267 | /// |
1268 | /// let span = 3.microseconds().nanoseconds(2_000); |
1269 | /// assert_eq!(3, span.get_microseconds()); |
1270 | /// assert_eq!(5.0, span.total(Unit::Microsecond)?); |
1271 | /// |
1272 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1273 | /// ``` |
1274 | #[inline ] |
1275 | pub fn get_microseconds(&self) -> i64 { |
1276 | self.get_microseconds_ranged().get() |
1277 | } |
1278 | |
1279 | /// Returns the number of nanosecond units in this span. |
1280 | /// |
1281 | /// Note that this is not the same as the total number of nanoseconds in |
1282 | /// the span. To get that, you'll need to use either [`Span::round`] or |
1283 | /// [`Span::total`]. |
1284 | /// |
1285 | /// # Example |
1286 | /// |
1287 | /// ``` |
1288 | /// use jiff::{ToSpan, Unit}; |
1289 | /// |
1290 | /// let span = 3.microseconds().nanoseconds(2_000); |
1291 | /// assert_eq!(2_000, span.get_nanoseconds()); |
1292 | /// assert_eq!(5_000.0, span.total(Unit::Nanosecond)?); |
1293 | /// |
1294 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1295 | /// ``` |
1296 | #[inline ] |
1297 | pub fn get_nanoseconds(&self) -> i64 { |
1298 | self.get_nanoseconds_ranged().get() |
1299 | } |
1300 | } |
1301 | |
1302 | /// Routines for manipulating, comparing and inspecting `Span` values. |
1303 | impl Span { |
1304 | /// Returns a new span that is the absolute value of this span. |
1305 | /// |
1306 | /// If this span is zero or positive, then this is a no-op. |
1307 | /// |
1308 | /// # Example |
1309 | /// |
1310 | /// ``` |
1311 | /// use jiff::ToSpan; |
1312 | /// |
1313 | /// let span = -100.seconds(); |
1314 | /// assert_eq!(span.to_string(), "-PT100S" ); |
1315 | /// let span = span.abs(); |
1316 | /// assert_eq!(span.to_string(), "PT100S" ); |
1317 | /// ``` |
1318 | #[inline ] |
1319 | pub fn abs(self) -> Span { |
1320 | if self.is_zero() { |
1321 | return self; |
1322 | } |
1323 | Span { sign: ri8::N::<1>(), ..self } |
1324 | } |
1325 | |
1326 | /// Returns a new span that negates this span. |
1327 | /// |
1328 | /// If this span is zero, then this is a no-op. If this span is negative, |
1329 | /// then the returned span is positive. If this span is positive, then |
1330 | /// the returned span is negative. |
1331 | /// |
1332 | /// # Example |
1333 | /// |
1334 | /// ``` |
1335 | /// use jiff::ToSpan; |
1336 | /// |
1337 | /// let span = 100.days(); |
1338 | /// assert_eq!(span.to_string(), "P100D" ); |
1339 | /// let span = span.negate(); |
1340 | /// assert_eq!(span.to_string(), "-P100D" ); |
1341 | /// ``` |
1342 | /// |
1343 | /// # Example: available via the negation operator |
1344 | /// |
1345 | /// This routine can also be used via `-`: |
1346 | /// |
1347 | /// ``` |
1348 | /// use jiff::ToSpan; |
1349 | /// |
1350 | /// let span = 100.days(); |
1351 | /// assert_eq!(span.to_string(), "P100D" ); |
1352 | /// let span = -span; |
1353 | /// assert_eq!(span.to_string(), "-P100D" ); |
1354 | /// ``` |
1355 | #[inline ] |
1356 | pub fn negate(self) -> Span { |
1357 | Span { sign: -self.sign, ..self } |
1358 | } |
1359 | |
1360 | /// Returns the "sign number" or "signum" of this span. |
1361 | /// |
1362 | /// The number returned is `-1` when this span is negative, |
1363 | /// `0` when this span is zero and `1` when this span is positive. |
1364 | #[inline ] |
1365 | pub fn signum(self) -> i8 { |
1366 | self.sign.signum().get() |
1367 | } |
1368 | |
1369 | /// Returns true if and only if this span is positive. |
1370 | /// |
1371 | /// This returns false when the span is zero or negative. |
1372 | /// |
1373 | /// # Example |
1374 | /// |
1375 | /// ``` |
1376 | /// use jiff::ToSpan; |
1377 | /// |
1378 | /// assert!(!2.months().is_negative()); |
1379 | /// assert!((-2.months()).is_negative()); |
1380 | /// ``` |
1381 | #[inline ] |
1382 | pub fn is_positive(self) -> bool { |
1383 | self.get_sign_ranged() > C(0) |
1384 | } |
1385 | |
1386 | /// Returns true if and only if this span is negative. |
1387 | /// |
1388 | /// This returns false when the span is zero or positive. |
1389 | /// |
1390 | /// # Example |
1391 | /// |
1392 | /// ``` |
1393 | /// use jiff::ToSpan; |
1394 | /// |
1395 | /// assert!(!2.months().is_negative()); |
1396 | /// assert!((-2.months()).is_negative()); |
1397 | /// ``` |
1398 | #[inline ] |
1399 | pub fn is_negative(self) -> bool { |
1400 | self.get_sign_ranged() < C(0) |
1401 | } |
1402 | |
1403 | /// Returns true if and only if every field in this span is set to `0`. |
1404 | /// |
1405 | /// # Example |
1406 | /// |
1407 | /// ``` |
1408 | /// use jiff::{Span, ToSpan}; |
1409 | /// |
1410 | /// assert!(Span::new().is_zero()); |
1411 | /// assert!(Span::default().is_zero()); |
1412 | /// assert!(0.seconds().is_zero()); |
1413 | /// assert!(!0.seconds().seconds(1).is_zero()); |
1414 | /// assert!(0.seconds().seconds(1).seconds(0).is_zero()); |
1415 | /// ``` |
1416 | #[inline ] |
1417 | pub fn is_zero(self) -> bool { |
1418 | self.sign == C(0) |
1419 | } |
1420 | |
1421 | /// Returns this `Span` as a value with a type that implements the |
1422 | /// `Hash`, `Eq` and `PartialEq` traits in a fieldwise fashion. |
1423 | /// |
1424 | /// A `SpanFieldwise` is meant to make it easy to compare two spans in a |
1425 | /// "dumb" way based purely on its unit values. This is distinct from |
1426 | /// something like [`Span::compare`] that performs a comparison on the |
1427 | /// actual elapsed time of two spans. |
1428 | /// |
1429 | /// It is generally discouraged to use `SpanFieldwise` since spans that |
1430 | /// represent an equivalent elapsed amount of time may compare unequal. |
1431 | /// However, in some cases, it is useful to be able to assert precise |
1432 | /// field values. For example, Jiff itself makes heavy use of fieldwise |
1433 | /// comparisons for tests. |
1434 | /// |
1435 | /// # Example: the difference between `SpanFieldwise` and `Span::compare` |
1436 | /// |
1437 | /// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be |
1438 | /// distinct values, but `Span::compare` considers them to be equivalent: |
1439 | /// |
1440 | /// ``` |
1441 | /// use std::cmp::Ordering; |
1442 | /// use jiff::ToSpan; |
1443 | /// |
1444 | /// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise()); |
1445 | /// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal); |
1446 | /// |
1447 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1448 | /// ``` |
1449 | #[inline ] |
1450 | pub fn fieldwise(self) -> SpanFieldwise { |
1451 | SpanFieldwise(self) |
1452 | } |
1453 | |
1454 | /// Multiplies each field in this span by a given integer. |
1455 | /// |
1456 | /// If this would cause any individual field in this span to overflow, then |
1457 | /// this returns an error. |
1458 | /// |
1459 | /// # Example |
1460 | /// |
1461 | /// ``` |
1462 | /// use jiff::ToSpan; |
1463 | /// |
1464 | /// let span = 4.days().seconds(8); |
1465 | /// assert_eq!(span.checked_mul(2)?, 8.days().seconds(16).fieldwise()); |
1466 | /// assert_eq!(span.checked_mul(-3)?, -12.days().seconds(24).fieldwise()); |
1467 | /// // Notice that no re-balancing is done. It's "just" multiplication. |
1468 | /// assert_eq!(span.checked_mul(10)?, 40.days().seconds(80).fieldwise()); |
1469 | /// |
1470 | /// let span = 10_000.years(); |
1471 | /// // too big! |
1472 | /// assert!(span.checked_mul(3).is_err()); |
1473 | /// |
1474 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1475 | /// ``` |
1476 | /// |
1477 | /// # Example: available via the multiplication operator |
1478 | /// |
1479 | /// This method can be used via the `*` operator. Note though that a panic |
1480 | /// happens on overflow. |
1481 | /// |
1482 | /// ``` |
1483 | /// use jiff::ToSpan; |
1484 | /// |
1485 | /// let span = 4.days().seconds(8); |
1486 | /// assert_eq!(span * 2, 8.days().seconds(16).fieldwise()); |
1487 | /// assert_eq!(2 * span, 8.days().seconds(16).fieldwise()); |
1488 | /// assert_eq!(span * -3, -12.days().seconds(24).fieldwise()); |
1489 | /// assert_eq!(-3 * span, -12.days().seconds(24).fieldwise()); |
1490 | /// |
1491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1492 | /// ``` |
1493 | #[inline ] |
1494 | pub fn checked_mul(mut self, rhs: i64) -> Result<Span, Error> { |
1495 | if rhs == 0 { |
1496 | return Ok(Span::default()); |
1497 | } else if rhs == 1 { |
1498 | return Ok(self); |
1499 | } |
1500 | self.sign *= t::Sign::try_new("span factor" , rhs.signum()) |
1501 | .expect("signum fits in ri8" ); |
1502 | // This is all somewhat odd, but since each of our span fields uses |
1503 | // a different primitive representation and range of allowed values, |
1504 | // we only seek to perform multiplications when they will actually |
1505 | // do something. Otherwise, we risk multiplying the mins/maxs of a |
1506 | // ranged integer and causing a spurious panic. Basically, the idea |
1507 | // here is the allowable values for our multiple depend on what we're |
1508 | // actually going to multiply with it. If our span has non-zero years, |
1509 | // then our multiple can't exceed the bounds of `SpanYears`, otherwise |
1510 | // it is guaranteed to overflow. |
1511 | if self.years != C(0) { |
1512 | let rhs = t::SpanYears::try_new("years multiple" , rhs)?; |
1513 | self.years = self.years.try_checked_mul("years" , rhs.abs())?; |
1514 | } |
1515 | if self.months != C(0) { |
1516 | let rhs = t::SpanMonths::try_new("months multiple" , rhs)?; |
1517 | self.months = self.months.try_checked_mul("months" , rhs.abs())?; |
1518 | } |
1519 | if self.weeks != C(0) { |
1520 | let rhs = t::SpanWeeks::try_new("weeks multiple" , rhs)?; |
1521 | self.weeks = self.weeks.try_checked_mul("weeks" , rhs.abs())?; |
1522 | } |
1523 | if self.days != C(0) { |
1524 | let rhs = t::SpanDays::try_new("days multiple" , rhs)?; |
1525 | self.days = self.days.try_checked_mul("days" , rhs.abs())?; |
1526 | } |
1527 | if self.hours != C(0) { |
1528 | let rhs = t::SpanHours::try_new("hours multiple" , rhs)?; |
1529 | self.hours = self.hours.try_checked_mul("hours" , rhs.abs())?; |
1530 | } |
1531 | if self.minutes != C(0) { |
1532 | let rhs = t::SpanMinutes::try_new("minutes multiple" , rhs)?; |
1533 | self.minutes = |
1534 | self.minutes.try_checked_mul("minutes" , rhs.abs())?; |
1535 | } |
1536 | if self.seconds != C(0) { |
1537 | let rhs = t::SpanSeconds::try_new("seconds multiple" , rhs)?; |
1538 | self.seconds = |
1539 | self.seconds.try_checked_mul("seconds" , rhs.abs())?; |
1540 | } |
1541 | if self.milliseconds != C(0) { |
1542 | let rhs = |
1543 | t::SpanMilliseconds::try_new("milliseconds multiple" , rhs)?; |
1544 | self.milliseconds = self |
1545 | .milliseconds |
1546 | .try_checked_mul("milliseconds" , rhs.abs())?; |
1547 | } |
1548 | if self.microseconds != C(0) { |
1549 | let rhs = |
1550 | t::SpanMicroseconds::try_new("microseconds multiple" , rhs)?; |
1551 | self.microseconds = self |
1552 | .microseconds |
1553 | .try_checked_mul("microseconds" , rhs.abs())?; |
1554 | } |
1555 | if self.nanoseconds != C(0) { |
1556 | let rhs = |
1557 | t::SpanNanoseconds::try_new("nanoseconds multiple" , rhs)?; |
1558 | self.nanoseconds = |
1559 | self.nanoseconds.try_checked_mul("nanoseconds" , rhs.abs())?; |
1560 | } |
1561 | // N.B. We don't need to update `self.units` here since it shouldn't |
1562 | // change. The only way it could is if a unit goes from zero to |
1563 | // non-zero (which can't happen, because multiplication by zero is |
1564 | // always zero), or if a unit goes from non-zero to zero. That also |
1565 | // can't happen because we handle the case of the factor being zero |
1566 | // specially above, and it returns a `Span` will all units zero |
1567 | // correctly. |
1568 | Ok(self) |
1569 | } |
1570 | |
1571 | /// Adds a span to this one and returns the sum as a new span. |
1572 | /// |
1573 | /// When adding a span with units greater than hours, callers must provide |
1574 | /// a relative datetime to anchor the spans. |
1575 | /// |
1576 | /// Arithmetic proceeds as specified in [RFC 5545]. Bigger units are |
1577 | /// added together before smaller units. |
1578 | /// |
1579 | /// This routine accepts anything that implements `Into<SpanArithmetic>`. |
1580 | /// There are some trait implementations that make using this routine |
1581 | /// ergonomic: |
1582 | /// |
1583 | /// * `From<Span> for SpanArithmetic` adds the given span to this one. |
1584 | /// * `From<(Span, civil::Date)> for SpanArithmetic` adds the given |
1585 | /// span to this one relative to the given date. There are also `From` |
1586 | /// implementations for `civil::DateTime` and `Zoned`. |
1587 | /// |
1588 | /// This also works with different duration types, such as |
1589 | /// [`SignedDuration`] and [`std::time::Duration`], via additional trait |
1590 | /// implementations: |
1591 | /// |
1592 | /// * `From<SignedDuration> for SpanArithmetic` adds the given duration to |
1593 | /// this one. |
1594 | /// * `From<(SignedDuration, civil::Date)> for SpanArithmetic` adds the |
1595 | /// given duration to this one relative to the given date. There are also |
1596 | /// `From` implementations for `civil::DateTime` and `Zoned`. |
1597 | /// |
1598 | /// And similarly for `std::time::Duration`. |
1599 | /// |
1600 | /// Adding a negative span is equivalent to subtracting its absolute value. |
1601 | /// |
1602 | /// The largest non-zero unit in the span returned is at most the largest |
1603 | /// non-zero unit among the two spans being added. For an absolute |
1604 | /// duration, its "largest" unit is considered to be nanoseconds. |
1605 | /// |
1606 | /// The sum returned is automatically re-balanced so that the span is not |
1607 | /// "bottom heavy." |
1608 | /// |
1609 | /// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545 |
1610 | /// |
1611 | /// # Errors |
1612 | /// |
1613 | /// This returns an error when adding the two spans would overflow any |
1614 | /// individual field of a span. This will also return an error if either |
1615 | /// of the spans have non-zero units of days or greater and no relative |
1616 | /// reference time is provided. |
1617 | /// |
1618 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
1619 | /// marker instead of providing a relative civil date to indicate that |
1620 | /// all days should be 24 hours long. This also results in treating all |
1621 | /// weeks as seven 24 hour days (168 hours). |
1622 | /// |
1623 | /// # Example |
1624 | /// |
1625 | /// ``` |
1626 | /// use jiff::ToSpan; |
1627 | /// |
1628 | /// assert_eq!( |
1629 | /// 1.hour().checked_add(30.minutes())?, |
1630 | /// 1.hour().minutes(30).fieldwise(), |
1631 | /// ); |
1632 | /// |
1633 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1634 | /// ``` |
1635 | /// |
1636 | /// # Example: re-balancing |
1637 | /// |
1638 | /// This example shows how units are automatically rebalanced into bigger |
1639 | /// units when appropriate. |
1640 | /// |
1641 | /// ``` |
1642 | /// use jiff::ToSpan; |
1643 | /// |
1644 | /// let span1 = 2.hours().minutes(59); |
1645 | /// let span2 = 2.minutes(); |
1646 | /// assert_eq!(span1.checked_add(span2)?, 3.hours().minutes(1).fieldwise()); |
1647 | /// |
1648 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1649 | /// ``` |
1650 | /// |
1651 | /// # Example: days are not assumed to be 24 hours by default |
1652 | /// |
1653 | /// When dealing with units involving days or weeks, one must either |
1654 | /// provide a relative datetime (shown in the following examples) or opt |
1655 | /// into invariant 24 hour days: |
1656 | /// |
1657 | /// ``` |
1658 | /// use jiff::{SpanRelativeTo, ToSpan}; |
1659 | /// |
1660 | /// let span1 = 2.days().hours(23); |
1661 | /// let span2 = 2.hours(); |
1662 | /// assert_eq!( |
1663 | /// span1.checked_add((span2, SpanRelativeTo::days_are_24_hours()))?, |
1664 | /// 3.days().hours(1).fieldwise(), |
1665 | /// ); |
1666 | /// |
1667 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1668 | /// ``` |
1669 | /// |
1670 | /// # Example: adding spans with calendar units |
1671 | /// |
1672 | /// If you try to add two spans with calendar units without specifying a |
1673 | /// relative datetime, you'll get an error: |
1674 | /// |
1675 | /// ``` |
1676 | /// use jiff::ToSpan; |
1677 | /// |
1678 | /// let span1 = 1.month().days(15); |
1679 | /// let span2 = 15.days(); |
1680 | /// assert!(span1.checked_add(span2).is_err()); |
1681 | /// ``` |
1682 | /// |
1683 | /// A relative datetime is needed because calendar spans may correspond to |
1684 | /// different actual durations depending on where the span begins: |
1685 | /// |
1686 | /// ``` |
1687 | /// use jiff::{civil::date, ToSpan}; |
1688 | /// |
1689 | /// let span1 = 1.month().days(15); |
1690 | /// let span2 = 15.days(); |
1691 | /// // 1 month from March 1 is 31 days... |
1692 | /// assert_eq!( |
1693 | /// span1.checked_add((span2, date(2008, 3, 1)))?, |
1694 | /// 2.months().fieldwise(), |
1695 | /// ); |
1696 | /// // ... but 1 month from April 1 is 30 days! |
1697 | /// assert_eq!( |
1698 | /// span1.checked_add((span2, date(2008, 4, 1)))?, |
1699 | /// 1.month().days(30).fieldwise(), |
1700 | /// ); |
1701 | /// |
1702 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1703 | /// ``` |
1704 | /// |
1705 | /// # Example: error on overflow |
1706 | /// |
1707 | /// Adding two spans can overflow, and this will result in an error: |
1708 | /// |
1709 | /// ``` |
1710 | /// use jiff::ToSpan; |
1711 | /// |
1712 | /// assert!(19_998.years().checked_add(1.year()).is_err()); |
1713 | /// ``` |
1714 | /// |
1715 | /// # Example: adding an absolute duration to a span |
1716 | /// |
1717 | /// This shows how one isn't limited to just adding two spans together. |
1718 | /// One can also add absolute durations to a span. |
1719 | /// |
1720 | /// ``` |
1721 | /// use std::time::Duration; |
1722 | /// |
1723 | /// use jiff::{SignedDuration, ToSpan}; |
1724 | /// |
1725 | /// assert_eq!( |
1726 | /// 1.hour().checked_add(SignedDuration::from_mins(30))?, |
1727 | /// 1.hour().minutes(30).fieldwise(), |
1728 | /// ); |
1729 | /// assert_eq!( |
1730 | /// 1.hour().checked_add(Duration::from_secs(30 * 60))?, |
1731 | /// 1.hour().minutes(30).fieldwise(), |
1732 | /// ); |
1733 | /// |
1734 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1735 | /// ``` |
1736 | /// |
1737 | /// Note that even when adding an absolute duration, if the span contains |
1738 | /// non-uniform units, you still need to provide a relative datetime: |
1739 | /// |
1740 | /// ``` |
1741 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
1742 | /// |
1743 | /// // Might be 1 month or less than 1 month! |
1744 | /// let dur = SignedDuration::from_hours(30 * 24); |
1745 | /// // No relative datetime provided even when the span |
1746 | /// // contains non-uniform units results in an error. |
1747 | /// assert!(1.month().checked_add(dur).is_err()); |
1748 | /// // In this case, 30 days is one month (April). |
1749 | /// assert_eq!( |
1750 | /// 1.month().checked_add((dur, date(2024, 3, 1)))?, |
1751 | /// 2.months().fieldwise(), |
1752 | /// ); |
1753 | /// // In this case, 30 days is less than one month (May). |
1754 | /// assert_eq!( |
1755 | /// 1.month().checked_add((dur, date(2024, 4, 1)))?, |
1756 | /// 1.month().days(30).fieldwise(), |
1757 | /// ); |
1758 | /// |
1759 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1760 | /// ``` |
1761 | #[inline ] |
1762 | pub fn checked_add<'a, A: Into<SpanArithmetic<'a>>>( |
1763 | &self, |
1764 | options: A, |
1765 | ) -> Result<Span, Error> { |
1766 | let options: SpanArithmetic<'_> = options.into(); |
1767 | options.checked_add(*self) |
1768 | } |
1769 | |
1770 | #[inline ] |
1771 | fn checked_add_span<'a>( |
1772 | &self, |
1773 | relative: Option<SpanRelativeTo<'a>>, |
1774 | span: &Span, |
1775 | ) -> Result<Span, Error> { |
1776 | let (span1, span2) = (*self, *span); |
1777 | let unit = span1.largest_unit().max(span2.largest_unit()); |
1778 | let start = match relative { |
1779 | Some(r) => match r.to_relative(unit)? { |
1780 | None => return span1.checked_add_invariant(unit, &span2), |
1781 | Some(r) => r, |
1782 | }, |
1783 | None => { |
1784 | requires_relative_date_err(unit)?; |
1785 | return span1.checked_add_invariant(unit, &span2); |
1786 | } |
1787 | }; |
1788 | let mid = start.checked_add(span1)?; |
1789 | let end = mid.checked_add(span2)?; |
1790 | start.until(unit, &end) |
1791 | } |
1792 | |
1793 | #[inline ] |
1794 | fn checked_add_duration<'a>( |
1795 | &self, |
1796 | relative: Option<SpanRelativeTo<'a>>, |
1797 | duration: SignedDuration, |
1798 | ) -> Result<Span, Error> { |
1799 | let (span1, dur2) = (*self, duration); |
1800 | let unit = span1.largest_unit(); |
1801 | let start = match relative { |
1802 | Some(r) => match r.to_relative(unit)? { |
1803 | None => { |
1804 | return span1.checked_add_invariant_duration(unit, dur2) |
1805 | } |
1806 | Some(r) => r, |
1807 | }, |
1808 | None => { |
1809 | requires_relative_date_err(unit)?; |
1810 | return span1.checked_add_invariant_duration(unit, dur2); |
1811 | } |
1812 | }; |
1813 | let mid = start.checked_add(span1)?; |
1814 | let end = mid.checked_add_duration(dur2)?; |
1815 | start.until(unit, &end) |
1816 | } |
1817 | |
1818 | /// Like `checked_add`, but only applies for invariant units. That is, |
1819 | /// when *both* spans whose non-zero units are all hours or smaller |
1820 | /// (or weeks or smaller with the "days are 24 hours" marker). |
1821 | #[inline ] |
1822 | fn checked_add_invariant( |
1823 | &self, |
1824 | unit: Unit, |
1825 | span: &Span, |
1826 | ) -> Result<Span, Error> { |
1827 | assert!(unit <= Unit::Week); |
1828 | let nanos1 = self.to_invariant_nanoseconds(); |
1829 | let nanos2 = span.to_invariant_nanoseconds(); |
1830 | let sum = nanos1 + nanos2; |
1831 | Span::from_invariant_nanoseconds(unit, sum) |
1832 | } |
1833 | |
1834 | /// Like `checked_add_invariant`, but adds an absolute duration. |
1835 | #[inline ] |
1836 | fn checked_add_invariant_duration( |
1837 | &self, |
1838 | unit: Unit, |
1839 | duration: SignedDuration, |
1840 | ) -> Result<Span, Error> { |
1841 | assert!(unit <= Unit::Week); |
1842 | let nanos1 = self.to_invariant_nanoseconds(); |
1843 | let nanos2 = t::NoUnits96::new_unchecked(duration.as_nanos()); |
1844 | let sum = nanos1 + nanos2; |
1845 | Span::from_invariant_nanoseconds(unit, sum) |
1846 | } |
1847 | |
1848 | /// This routine is identical to [`Span::checked_add`] with the given |
1849 | /// duration negated. |
1850 | /// |
1851 | /// # Errors |
1852 | /// |
1853 | /// This has the same error conditions as [`Span::checked_add`]. |
1854 | /// |
1855 | /// # Example |
1856 | /// |
1857 | /// ``` |
1858 | /// use std::time::Duration; |
1859 | /// |
1860 | /// use jiff::{SignedDuration, ToSpan}; |
1861 | /// |
1862 | /// assert_eq!( |
1863 | /// 1.hour().checked_sub(30.minutes())?, |
1864 | /// 30.minutes().fieldwise(), |
1865 | /// ); |
1866 | /// assert_eq!( |
1867 | /// 1.hour().checked_sub(SignedDuration::from_mins(30))?, |
1868 | /// 30.minutes().fieldwise(), |
1869 | /// ); |
1870 | /// assert_eq!( |
1871 | /// 1.hour().checked_sub(Duration::from_secs(30 * 60))?, |
1872 | /// 30.minutes().fieldwise(), |
1873 | /// ); |
1874 | /// |
1875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1876 | /// ``` |
1877 | #[inline ] |
1878 | pub fn checked_sub<'a, A: Into<SpanArithmetic<'a>>>( |
1879 | &self, |
1880 | options: A, |
1881 | ) -> Result<Span, Error> { |
1882 | let mut options: SpanArithmetic<'_> = options.into(); |
1883 | options.duration = options.duration.checked_neg()?; |
1884 | options.checked_add(*self) |
1885 | } |
1886 | |
1887 | /// Compares two spans in terms of how long they are. Negative spans are |
1888 | /// considered shorter than the zero span. |
1889 | /// |
1890 | /// Two spans compare equal when they correspond to the same duration |
1891 | /// of time, even if their individual fields are different. This is in |
1892 | /// contrast to the `Eq` trait implementation of `Span`, which performs |
1893 | /// exact field-wise comparisons. This split exists because the comparison |
1894 | /// provided by this routine is "heavy" in that it may need to do |
1895 | /// datetime arithmetic to return an answer. In contrast, the `Eq` trait |
1896 | /// implementation is "cheap." |
1897 | /// |
1898 | /// This routine accepts anything that implements `Into<SpanCompare>`. |
1899 | /// There are some trait implementations that make using this routine |
1900 | /// ergonomic: |
1901 | /// |
1902 | /// * `From<Span> for SpanCompare` compares the given span to this one. |
1903 | /// * `From<(Span, civil::Date)> for SpanArithmetic` compares the given |
1904 | /// span to this one relative to the given date. There are also `From` |
1905 | /// implementations for `civil::DateTime` and `Zoned`. |
1906 | /// |
1907 | /// # Errors |
1908 | /// |
1909 | /// If either of the spans being compared have a non-zero calendar unit |
1910 | /// (units bigger than hours), then this routine requires a relative |
1911 | /// datetime. If one is not provided, then an error is returned. |
1912 | /// |
1913 | /// An error can also occur when adding either span to the relative |
1914 | /// datetime given results in overflow. |
1915 | /// |
1916 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
1917 | /// marker instead of providing a relative civil date to indicate that |
1918 | /// all days should be 24 hours long. This also results in treating all |
1919 | /// weeks as seven 24 hour days (168 hours). |
1920 | /// |
1921 | /// # Example |
1922 | /// |
1923 | /// ``` |
1924 | /// use jiff::ToSpan; |
1925 | /// |
1926 | /// let span1 = 3.hours(); |
1927 | /// let span2 = 180.minutes(); |
1928 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal); |
1929 | /// // But notice that the two spans are not equal via `Eq`: |
1930 | /// assert_ne!(span1.fieldwise(), span2.fieldwise()); |
1931 | /// |
1932 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1933 | /// ``` |
1934 | /// |
1935 | /// # Example: negative spans are less than zero |
1936 | /// |
1937 | /// ``` |
1938 | /// use jiff::ToSpan; |
1939 | /// |
1940 | /// let span1 = -1.second(); |
1941 | /// let span2 = 0.seconds(); |
1942 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Less); |
1943 | /// |
1944 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1945 | /// ``` |
1946 | /// |
1947 | /// # Example: comparisons take DST into account |
1948 | /// |
1949 | /// When a relative datetime is time zone aware, then DST is taken into |
1950 | /// account when comparing spans: |
1951 | /// |
1952 | /// ``` |
1953 | /// use jiff::{civil, ToSpan, Zoned}; |
1954 | /// |
1955 | /// let span1 = 79.hours().minutes(10); |
1956 | /// let span2 = 3.days().hours(7).seconds(630); |
1957 | /// let span3 = 3.days().hours(6).minutes(50); |
1958 | /// |
1959 | /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]" .parse()?; |
1960 | /// let mut spans = [span1, span2, span3]; |
1961 | /// spans.sort_by(|s1, s2| s1.compare((s2, &relative)).unwrap()); |
1962 | /// assert_eq!( |
1963 | /// spans.map(|sp| sp.fieldwise()), |
1964 | /// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()], |
1965 | /// ); |
1966 | /// |
1967 | /// // Compare with the result of sorting without taking DST into account. |
1968 | /// // We can that by providing a relative civil date: |
1969 | /// let relative = civil::date(2020, 11, 1); |
1970 | /// spans.sort_by(|s1, s2| s1.compare((s2, relative)).unwrap()); |
1971 | /// assert_eq!( |
1972 | /// spans.map(|sp| sp.fieldwise()), |
1973 | /// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()], |
1974 | /// ); |
1975 | /// |
1976 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1977 | /// ``` |
1978 | /// |
1979 | /// See the examples for [`Span::total`] if you want to sort spans without |
1980 | /// an `unwrap()` call. |
1981 | #[inline ] |
1982 | pub fn compare<'a, C: Into<SpanCompare<'a>>>( |
1983 | &self, |
1984 | options: C, |
1985 | ) -> Result<Ordering, Error> { |
1986 | let options: SpanCompare<'_> = options.into(); |
1987 | options.compare(*self) |
1988 | } |
1989 | |
1990 | /// Returns a floating point number representing the total number of a |
1991 | /// specific unit (as given) in this span. If the span is not evenly |
1992 | /// divisible by the requested units, then the number returned may have a |
1993 | /// fractional component. |
1994 | /// |
1995 | /// This routine accepts anything that implements `Into<SpanTotal>`. There |
1996 | /// are some trait implementations that make using this routine ergonomic: |
1997 | /// |
1998 | /// * `From<Unit> for SpanTotal` computes a total for the given unit in |
1999 | /// this span. |
2000 | /// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the |
2001 | /// given unit in this span, relative to the given date. There are also |
2002 | /// `From` implementations for `civil::DateTime` and `Zoned`. |
2003 | /// |
2004 | /// # Errors |
2005 | /// |
2006 | /// If this span has any non-zero calendar unit (units bigger than hours), |
2007 | /// then this routine requires a relative datetime. If one is not provided, |
2008 | /// then an error is returned. |
2009 | /// |
2010 | /// An error can also occur when adding the span to the relative |
2011 | /// datetime given results in overflow. |
2012 | /// |
2013 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
2014 | /// marker instead of providing a relative civil date to indicate that |
2015 | /// all days should be 24 hours long. This also results in treating all |
2016 | /// weeks as seven 24 hour days (168 hours). |
2017 | /// |
2018 | /// # Example |
2019 | /// |
2020 | /// This example shows how to find the number of seconds in a particular |
2021 | /// span: |
2022 | /// |
2023 | /// ``` |
2024 | /// use jiff::{ToSpan, Unit}; |
2025 | /// |
2026 | /// let span = 3.hours().minutes(10); |
2027 | /// assert_eq!(span.total(Unit::Second)?, 11_400.0); |
2028 | /// |
2029 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2030 | /// ``` |
2031 | /// |
2032 | /// # Example: 24 hour days |
2033 | /// |
2034 | /// This shows how to find the total number of 24 hour days in |
2035 | /// `123,456,789` seconds. |
2036 | /// |
2037 | /// ``` |
2038 | /// use jiff::{SpanTotal, ToSpan, Unit}; |
2039 | /// |
2040 | /// let span = 123_456_789.seconds(); |
2041 | /// assert_eq!( |
2042 | /// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?, |
2043 | /// 1428.8980208333332, |
2044 | /// ); |
2045 | /// |
2046 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2047 | /// ``` |
2048 | /// |
2049 | /// # Example: DST is taken into account |
2050 | /// |
2051 | /// The month of March 2024 in `America/New_York` had 31 days, but one of |
2052 | /// those days was 23 hours long due a transition into daylight saving |
2053 | /// time: |
2054 | /// |
2055 | /// ``` |
2056 | /// use jiff::{civil::date, ToSpan, Unit}; |
2057 | /// |
2058 | /// let span = 744.hours(); |
2059 | /// let relative = date(2024, 3, 1).in_tz("America/New_York" )?; |
2060 | /// // Because of the short day, 744 hours is actually a little *more* than |
2061 | /// // 1 month starting from 2024-03-01. |
2062 | /// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889); |
2063 | /// |
2064 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2065 | /// ``` |
2066 | /// |
2067 | /// Now compare what happens when the relative datetime is civil and not |
2068 | /// time zone aware: |
2069 | /// |
2070 | /// ``` |
2071 | /// use jiff::{civil::date, ToSpan, Unit}; |
2072 | /// |
2073 | /// let span = 744.hours(); |
2074 | /// let relative = date(2024, 3, 1); |
2075 | /// assert_eq!(span.total((Unit::Month, relative))?, 1.0); |
2076 | /// |
2077 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2078 | /// ``` |
2079 | /// |
2080 | /// # Example: infallible sorting |
2081 | /// |
2082 | /// The sorting example in [`Span::compare`] has to use `unwrap()` in |
2083 | /// its `sort_by(..)` call because `Span::compare` may fail and there |
2084 | /// is no "fallible" sorting routine in Rust's standard library (as of |
2085 | /// 2024-07-07). While the ways in which `Span::compare` can fail for |
2086 | /// a valid configuration are limited to overflow for "extreme" values, it |
2087 | /// is possible to sort spans infallibly by computing floating point |
2088 | /// representations for each span up-front: |
2089 | /// |
2090 | /// ``` |
2091 | /// use jiff::{civil::Date, ToSpan, Unit, Zoned}; |
2092 | /// |
2093 | /// let span1 = 79.hours().minutes(10); |
2094 | /// let span2 = 3.days().hours(7).seconds(630); |
2095 | /// let span3 = 3.days().hours(6).minutes(50); |
2096 | /// |
2097 | /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]" .parse()?; |
2098 | /// let mut spans = [ |
2099 | /// (span1, span1.total((Unit::Day, &relative))?), |
2100 | /// (span2, span2.total((Unit::Day, &relative))?), |
2101 | /// (span3, span3.total((Unit::Day, &relative))?), |
2102 | /// ]; |
2103 | /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2)); |
2104 | /// assert_eq!( |
2105 | /// spans.map(|(sp, _)| sp.fieldwise()), |
2106 | /// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()], |
2107 | /// ); |
2108 | /// |
2109 | /// // Compare with the result of sorting without taking DST into account. |
2110 | /// // We do that here by providing a relative civil date. |
2111 | /// let relative: Date = "2020-11-01" .parse()?; |
2112 | /// let mut spans = [ |
2113 | /// (span1, span1.total((Unit::Day, relative))?), |
2114 | /// (span2, span2.total((Unit::Day, relative))?), |
2115 | /// (span3, span3.total((Unit::Day, relative))?), |
2116 | /// ]; |
2117 | /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2)); |
2118 | /// assert_eq!( |
2119 | /// spans.map(|(sp, _)| sp.fieldwise()), |
2120 | /// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()], |
2121 | /// ); |
2122 | /// |
2123 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2124 | /// ``` |
2125 | #[inline ] |
2126 | pub fn total<'a, T: Into<SpanTotal<'a>>>( |
2127 | &self, |
2128 | options: T, |
2129 | ) -> Result<f64, Error> { |
2130 | let options: SpanTotal<'_> = options.into(); |
2131 | options.total(*self) |
2132 | } |
2133 | |
2134 | /// Returns a new span that is balanced and rounded. |
2135 | /// |
2136 | /// Rounding a span has a number of parameters, all of which are optional. |
2137 | /// When no parameters are given, then no rounding or balancing is done, |
2138 | /// and the span as given is returned. That is, it's a no-op. |
2139 | /// |
2140 | /// The parameters are, in brief: |
2141 | /// |
2142 | /// * [`SpanRound::largest`] sets the largest [`Unit`] that is allowed to |
2143 | /// be non-zero in the span returned. When _only_ the largest unit is set, |
2144 | /// rounding itself doesn't occur and instead the span is merely balanced. |
2145 | /// * [`SpanRound::smallest`] sets the smallest [`Unit`] that is allowed to |
2146 | /// be non-zero in the span returned. By default, it is set to |
2147 | /// [`Unit::Nanosecond`], i.e., no rounding occurs. When the smallest unit |
2148 | /// is set to something bigger than nanoseconds, then the non-zero units |
2149 | /// in the span smaller than the smallest unit are used to determine how |
2150 | /// the span should be rounded. For example, rounding `1 hour 59 minutes` |
2151 | /// to the nearest hour using the default rounding mode would produce |
2152 | /// `2 hours`. |
2153 | /// * [`SpanRound::mode`] determines how to handle the remainder when |
2154 | /// rounding. The default is [`RoundMode::HalfExpand`], which corresponds |
2155 | /// to how you were taught to round in school. Alternative modes, like |
2156 | /// [`RoundMode::Trunc`], exist too. For example, a truncating rounding of |
2157 | /// `1 hour 59 minutes` to the nearest hour would produce `1 hour`. |
2158 | /// * [`SpanRound::increment`] sets the rounding granularity to use for |
2159 | /// the configured smallest unit. For example, if the smallest unit is |
2160 | /// minutes and the increment is 5, then the span returned will always have |
2161 | /// its minute units set to a multiple of `5`. |
2162 | /// * [`SpanRound::relative`] sets the datetime from which to interpret the |
2163 | /// span. This is required when rounding spans with calendar units (years, |
2164 | /// months or weeks). When a relative datetime is time zone aware, then |
2165 | /// rounding accounts for the fact that not all days are 24 hours long. |
2166 | /// When a relative datetime is omitted or is civil (not time zone aware), |
2167 | /// then days are always 24 hours long. |
2168 | /// |
2169 | /// # Constructing a [`SpanRound`] |
2170 | /// |
2171 | /// This routine accepts anything that implements `Into<SpanRound>`. There |
2172 | /// are a few key trait implementations that make this convenient: |
2173 | /// |
2174 | /// * `From<Unit> for SpanRound` will construct a rounding configuration |
2175 | /// where the smallest unit is set to the one given. |
2176 | /// * `From<(Unit, i64)> for SpanRound` will construct a rounding |
2177 | /// configuration where the smallest unit and the rounding increment are |
2178 | /// set to the ones given. |
2179 | /// |
2180 | /// To set other options (like the largest unit, the rounding mode and the |
2181 | /// relative datetime), one must explicitly create a `SpanRound` and pass |
2182 | /// it to this routine. |
2183 | /// |
2184 | /// # Errors |
2185 | /// |
2186 | /// In general, there are two main ways for rounding to fail: an improper |
2187 | /// configuration like trying to round a span with calendar units but |
2188 | /// without a relative datetime, or when overflow occurs. Overflow can |
2189 | /// occur when the span, added to the relative datetime if given, would |
2190 | /// exceed the minimum or maximum datetime values. Overflow can also occur |
2191 | /// if the span is too big to fit into the requested unit configuration. |
2192 | /// For example, a span like `19_998.years()` cannot be represented with a |
2193 | /// 64-bit integer number of nanoseconds. |
2194 | /// |
2195 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special |
2196 | /// marker instead of providing a relative civil date to indicate that |
2197 | /// all days should be 24 hours long. This also results in treating all |
2198 | /// weeks as seven 24 hour days (168 hours). |
2199 | /// |
2200 | /// # Example: balancing |
2201 | /// |
2202 | /// This example demonstrates balancing, not rounding. And in particular, |
2203 | /// this example shows how to balance a span as much as possible (i.e., |
2204 | /// with units of hours or smaller) without needing to specify a relative |
2205 | /// datetime: |
2206 | /// |
2207 | /// ``` |
2208 | /// use jiff::{SpanRound, ToSpan, Unit}; |
2209 | /// |
2210 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
2211 | /// assert_eq!( |
2212 | /// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(), |
2213 | /// 34_293.hours().minutes(33).seconds(9) |
2214 | /// .milliseconds(123).microseconds(456).nanoseconds(789), |
2215 | /// ); |
2216 | /// |
2217 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2218 | /// ``` |
2219 | /// |
2220 | /// Or you can opt into invariant 24-hour days (and 7-day weeks) without a |
2221 | /// relative date with [`SpanRound::days_are_24_hours`]: |
2222 | /// |
2223 | /// ``` |
2224 | /// use jiff::{SpanRound, ToSpan, Unit}; |
2225 | /// |
2226 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
2227 | /// assert_eq!( |
2228 | /// span.round( |
2229 | /// SpanRound::new().largest(Unit::Day).days_are_24_hours(), |
2230 | /// )?.fieldwise(), |
2231 | /// 1_428.days() |
2232 | /// .hours(21).minutes(33).seconds(9) |
2233 | /// .milliseconds(123).microseconds(456).nanoseconds(789), |
2234 | /// ); |
2235 | /// |
2236 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2237 | /// ``` |
2238 | /// |
2239 | /// # Example: balancing and rounding |
2240 | /// |
2241 | /// This example is like the one before it, but where we round to the |
2242 | /// nearest second: |
2243 | /// |
2244 | /// ``` |
2245 | /// use jiff::{SpanRound, ToSpan, Unit}; |
2246 | /// |
2247 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
2248 | /// assert_eq!( |
2249 | /// span.round(SpanRound::new().largest(Unit::Hour).smallest(Unit::Second))?, |
2250 | /// 34_293.hours().minutes(33).seconds(9).fieldwise(), |
2251 | /// ); |
2252 | /// |
2253 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2254 | /// ``` |
2255 | /// |
2256 | /// Or, just rounding to the nearest hour can make use of the |
2257 | /// `From<Unit> for SpanRound` trait implementation: |
2258 | /// |
2259 | /// ``` |
2260 | /// use jiff::{ToSpan, Unit}; |
2261 | /// |
2262 | /// let span = 123_456_789_123_456_789i64.nanoseconds(); |
2263 | /// assert_eq!(span.round(Unit::Hour)?, 34_294.hours().fieldwise()); |
2264 | /// |
2265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2266 | /// ``` |
2267 | /// |
2268 | /// # Example: balancing with a relative datetime |
2269 | /// |
2270 | /// Even with calendar units, so long as a relative datetime is provided, |
2271 | /// it's easy to turn days into bigger units: |
2272 | /// |
2273 | /// ``` |
2274 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
2275 | /// |
2276 | /// let span = 1_000.days(); |
2277 | /// let relative = date(2000, 1, 1); |
2278 | /// let options = SpanRound::new().largest(Unit::Year).relative(relative); |
2279 | /// assert_eq!(span.round(options)?, 2.years().months(8).days(26).fieldwise()); |
2280 | /// |
2281 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2282 | /// ``` |
2283 | /// |
2284 | /// # Example: round to the nearest half-hour |
2285 | /// |
2286 | /// ``` |
2287 | /// use jiff::{Span, ToSpan, Unit}; |
2288 | /// |
2289 | /// let span: Span = "PT23h50m3.123s" .parse()?; |
2290 | /// assert_eq!(span.round((Unit::Minute, 30))?, 24.hours().fieldwise()); |
2291 | /// |
2292 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2293 | /// ``` |
2294 | /// |
2295 | /// # Example: yearly quarters in a span |
2296 | /// |
2297 | /// This example shows how to find how many full 3 month quarters are in a |
2298 | /// particular span of time. |
2299 | /// |
2300 | /// ``` |
2301 | /// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit}; |
2302 | /// |
2303 | /// let span1 = 10.months().days(15); |
2304 | /// let round = SpanRound::new() |
2305 | /// .smallest(Unit::Month) |
2306 | /// .increment(3) |
2307 | /// .mode(RoundMode::Trunc) |
2308 | /// // A relative datetime must be provided when |
2309 | /// // rounding involves calendar units. |
2310 | /// .relative(date(2024, 1, 1)); |
2311 | /// let span2 = span1.round(round)?; |
2312 | /// assert_eq!(span2.get_months() / 3, 3); |
2313 | /// |
2314 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2315 | /// ``` |
2316 | #[inline ] |
2317 | pub fn round<'a, R: Into<SpanRound<'a>>>( |
2318 | self, |
2319 | options: R, |
2320 | ) -> Result<Span, Error> { |
2321 | let options: SpanRound<'a> = options.into(); |
2322 | options.round(self) |
2323 | } |
2324 | |
2325 | /// Converts a `Span` to a [`SignedDuration`] relative to the date given. |
2326 | /// |
2327 | /// In most cases, it is unlikely that you'll need to use this routine to |
2328 | /// convert a `Span` to a `SignedDuration`. Namely, by default: |
2329 | /// |
2330 | /// * [`Zoned::until`] guarantees that the biggest non-zero unit is hours. |
2331 | /// * [`Timestamp::until`] guarantees that the biggest non-zero unit is |
2332 | /// seconds. |
2333 | /// * [`DateTime::until`] guarantees that the biggest non-zero unit is |
2334 | /// days. |
2335 | /// * [`Date::until`] guarantees that the biggest non-zero unit is days. |
2336 | /// * [`Time::until`] guarantees that the biggest non-zero unit is hours. |
2337 | /// |
2338 | /// In the above, only [`DateTime::until`] and [`Date::until`] return |
2339 | /// calendar units by default. In which case, one may pass |
2340 | /// [`SpanRelativeTo::days_are_24_hours`] or an actual relative date to |
2341 | /// resolve the length of a day. |
2342 | /// |
2343 | /// Of course, any of the above can be changed by asking, for example, |
2344 | /// `Zoned::until` to return units up to years. |
2345 | /// |
2346 | /// # Errors |
2347 | /// |
2348 | /// This returns an error if adding this span to the date given results in |
2349 | /// overflow. This can also return an error if one uses |
2350 | /// [`SpanRelativeTo::days_are_24_hours`] with a `Span` that has non-zero |
2351 | /// units greater than weeks. |
2352 | /// |
2353 | /// # Example: converting a span with calendar units to a `SignedDuration` |
2354 | /// |
2355 | /// This compares the number of seconds in a non-leap year with a leap |
2356 | /// year: |
2357 | /// |
2358 | /// ``` |
2359 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
2360 | /// |
2361 | /// let span = 1.year(); |
2362 | /// |
2363 | /// let duration = span.to_duration(date(2024, 1, 1))?; |
2364 | /// assert_eq!(duration, SignedDuration::from_secs(31_622_400)); |
2365 | /// let duration = span.to_duration(date(2023, 1, 1))?; |
2366 | /// assert_eq!(duration, SignedDuration::from_secs(31_536_000)); |
2367 | /// |
2368 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2369 | /// ``` |
2370 | /// |
2371 | /// # Example: converting a span without a relative datetime |
2372 | /// |
2373 | /// If for some reason it doesn't make sense to include a |
2374 | /// relative datetime, you can use this routine to convert a |
2375 | /// `Span` with units up to weeks to a `SignedDuration` via the |
2376 | /// [`SpanRelativeTo::days_are_24_hours`] marker: |
2377 | /// |
2378 | /// ``` |
2379 | /// use jiff::{civil::date, SignedDuration, SpanRelativeTo, ToSpan}; |
2380 | /// |
2381 | /// let span = 1.week().days(1); |
2382 | /// |
2383 | /// let duration = span.to_duration(SpanRelativeTo::days_are_24_hours())?; |
2384 | /// assert_eq!(duration, SignedDuration::from_hours(192)); |
2385 | /// |
2386 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2387 | /// ``` |
2388 | #[inline ] |
2389 | pub fn to_duration<'a, R: Into<SpanRelativeTo<'a>>>( |
2390 | &self, |
2391 | relative: R, |
2392 | ) -> Result<SignedDuration, Error> { |
2393 | let max_unit = self.largest_unit(); |
2394 | let relative: SpanRelativeTo<'a> = relative.into(); |
2395 | let Some(result) = relative.to_relative(max_unit).transpose() else { |
2396 | return Ok(self.to_duration_invariant()); |
2397 | }; |
2398 | let relspan = result |
2399 | .and_then(|r| r.into_relative_span(Unit::Second, *self)) |
2400 | .with_context(|| match relative.kind { |
2401 | SpanRelativeToKind::Civil(dt) => { |
2402 | err!( |
2403 | "could not compute normalized relative span \ |
2404 | from datetime {dt} and span {self}" , |
2405 | ) |
2406 | } |
2407 | SpanRelativeToKind::Zoned(ref zdt) => { |
2408 | err!( |
2409 | "could not compute normalized relative span \ |
2410 | from datetime {zdt} and span {self}" , |
2411 | ) |
2412 | } |
2413 | SpanRelativeToKind::DaysAre24Hours => { |
2414 | err!( |
2415 | "could not compute normalized relative span \ |
2416 | from {self} when all days are assumed to be \ |
2417 | 24 hours" , |
2418 | ) |
2419 | } |
2420 | })?; |
2421 | debug_assert!(relspan.span.largest_unit() <= Unit::Second); |
2422 | Ok(relspan.span.to_duration_invariant()) |
2423 | } |
2424 | |
2425 | /// Converts an entirely invariant span to a `SignedDuration`. |
2426 | /// |
2427 | /// Callers must ensure that this span has no units greater than weeks. |
2428 | /// If it does have non-zero units of days or weeks, then every day is |
2429 | /// considered 24 hours and every week 7 days. Generally speaking, callers |
2430 | /// should also ensure that if this span does have non-zero day/week units, |
2431 | /// then callers have either provided a civil relative date or the special |
2432 | /// `SpanRelativeTo::days_are_24_hours()` marker. |
2433 | #[inline ] |
2434 | pub(crate) fn to_duration_invariant(&self) -> SignedDuration { |
2435 | // This guarantees, at compile time, that a maximal invariant Span |
2436 | // (that is, all units are days or lower and all units are set to their |
2437 | // maximum values) will still balance out to a number of seconds that |
2438 | // fits into a `i64`. This in turn implies that a `SignedDuration` can |
2439 | // represent all possible invariant positive spans. |
2440 | const _FITS_IN_U64: () = { |
2441 | debug_assert!( |
2442 | i64::MAX as i128 |
2443 | > ((t::SpanWeeks::MAX |
2444 | * t::SECONDS_PER_CIVIL_WEEK.bound()) |
2445 | + (t::SpanDays::MAX |
2446 | * t::SECONDS_PER_CIVIL_DAY.bound()) |
2447 | + (t::SpanHours::MAX * t::SECONDS_PER_HOUR.bound()) |
2448 | + (t::SpanMinutes::MAX |
2449 | * t::SECONDS_PER_MINUTE.bound()) |
2450 | + t::SpanSeconds::MAX |
2451 | + (t::SpanMilliseconds::MAX |
2452 | / t::MILLIS_PER_SECOND.bound()) |
2453 | + (t::SpanMicroseconds::MAX |
2454 | / t::MICROS_PER_SECOND.bound()) |
2455 | + (t::SpanNanoseconds::MAX |
2456 | / t::NANOS_PER_SECOND.bound())), |
2457 | ); |
2458 | () |
2459 | }; |
2460 | |
2461 | let nanos = self.to_invariant_nanoseconds(); |
2462 | debug_assert!( |
2463 | self.largest_unit() <= Unit::Week, |
2464 | "units must be weeks or lower" |
2465 | ); |
2466 | |
2467 | let seconds = nanos / t::NANOS_PER_SECOND; |
2468 | let seconds = i64::from(seconds); |
2469 | let subsec_nanos = nanos % t::NANOS_PER_SECOND; |
2470 | // OK because % 1_000_000_000 above guarantees that the result fits |
2471 | // in a i32. |
2472 | let subsec_nanos = i32::try_from(subsec_nanos).unwrap(); |
2473 | |
2474 | // SignedDuration::new can panic if |subsec_nanos| >= 1_000_000_000 |
2475 | // and seconds == {i64::MIN,i64::MAX}. But this can never happen |
2476 | // because we guaranteed by construction above that |subsec_nanos| < |
2477 | // 1_000_000_000. |
2478 | SignedDuration::new(seconds, subsec_nanos) |
2479 | } |
2480 | } |
2481 | |
2482 | /// Crate internal APIs that operate on ranged integer types. |
2483 | impl Span { |
2484 | #[inline ] |
2485 | pub(crate) fn years_ranged(self, years: t::SpanYears) -> Span { |
2486 | let mut span = Span { years: years.abs(), ..self }; |
2487 | span.sign = self.resign(years, &span); |
2488 | span.units = span.units.set(Unit::Year, years == C(0)); |
2489 | span |
2490 | } |
2491 | |
2492 | #[inline ] |
2493 | pub(crate) fn months_ranged(self, months: t::SpanMonths) -> Span { |
2494 | let mut span = Span { months: months.abs(), ..self }; |
2495 | span.sign = self.resign(months, &span); |
2496 | span.units = span.units.set(Unit::Month, months == C(0)); |
2497 | span |
2498 | } |
2499 | |
2500 | #[inline ] |
2501 | pub(crate) fn weeks_ranged(self, weeks: t::SpanWeeks) -> Span { |
2502 | let mut span = Span { weeks: weeks.abs(), ..self }; |
2503 | span.sign = self.resign(weeks, &span); |
2504 | span.units = span.units.set(Unit::Week, weeks == C(0)); |
2505 | span |
2506 | } |
2507 | |
2508 | #[inline ] |
2509 | pub(crate) fn days_ranged(self, days: t::SpanDays) -> Span { |
2510 | let mut span = Span { days: days.abs(), ..self }; |
2511 | span.sign = self.resign(days, &span); |
2512 | span.units = span.units.set(Unit::Day, days == C(0)); |
2513 | span |
2514 | } |
2515 | |
2516 | #[inline ] |
2517 | pub(crate) fn hours_ranged(self, hours: t::SpanHours) -> Span { |
2518 | let mut span = Span { hours: hours.abs(), ..self }; |
2519 | span.sign = self.resign(hours, &span); |
2520 | span.units = span.units.set(Unit::Hour, hours == C(0)); |
2521 | span |
2522 | } |
2523 | |
2524 | #[inline ] |
2525 | pub(crate) fn minutes_ranged(self, minutes: t::SpanMinutes) -> Span { |
2526 | let mut span = Span { minutes: minutes.abs(), ..self }; |
2527 | span.sign = self.resign(minutes, &span); |
2528 | span.units = span.units.set(Unit::Minute, minutes == C(0)); |
2529 | span |
2530 | } |
2531 | |
2532 | #[inline ] |
2533 | pub(crate) fn seconds_ranged(self, seconds: t::SpanSeconds) -> Span { |
2534 | let mut span = Span { seconds: seconds.abs(), ..self }; |
2535 | span.sign = self.resign(seconds, &span); |
2536 | span.units = span.units.set(Unit::Second, seconds == C(0)); |
2537 | span |
2538 | } |
2539 | |
2540 | #[inline ] |
2541 | fn milliseconds_ranged(self, milliseconds: t::SpanMilliseconds) -> Span { |
2542 | let mut span = Span { milliseconds: milliseconds.abs(), ..self }; |
2543 | span.sign = self.resign(milliseconds, &span); |
2544 | span.units = span.units.set(Unit::Millisecond, milliseconds == C(0)); |
2545 | span |
2546 | } |
2547 | |
2548 | #[inline ] |
2549 | fn microseconds_ranged(self, microseconds: t::SpanMicroseconds) -> Span { |
2550 | let mut span = Span { microseconds: microseconds.abs(), ..self }; |
2551 | span.sign = self.resign(microseconds, &span); |
2552 | span.units = span.units.set(Unit::Microsecond, microseconds == C(0)); |
2553 | span |
2554 | } |
2555 | |
2556 | #[inline ] |
2557 | pub(crate) fn nanoseconds_ranged( |
2558 | self, |
2559 | nanoseconds: t::SpanNanoseconds, |
2560 | ) -> Span { |
2561 | let mut span = Span { nanoseconds: nanoseconds.abs(), ..self }; |
2562 | span.sign = self.resign(nanoseconds, &span); |
2563 | span.units = span.units.set(Unit::Nanosecond, nanoseconds == C(0)); |
2564 | span |
2565 | } |
2566 | |
2567 | #[inline ] |
2568 | fn try_days_ranged( |
2569 | self, |
2570 | days: impl TryRInto<t::SpanDays>, |
2571 | ) -> Result<Span, Error> { |
2572 | let days = days.try_rinto("days" )?; |
2573 | Ok(self.days_ranged(days)) |
2574 | } |
2575 | |
2576 | #[inline ] |
2577 | pub(crate) fn try_hours_ranged( |
2578 | self, |
2579 | hours: impl TryRInto<t::SpanHours>, |
2580 | ) -> Result<Span, Error> { |
2581 | let hours = hours.try_rinto("hours" )?; |
2582 | Ok(self.hours_ranged(hours)) |
2583 | } |
2584 | |
2585 | #[inline ] |
2586 | pub(crate) fn try_minutes_ranged( |
2587 | self, |
2588 | minutes: impl TryRInto<t::SpanMinutes>, |
2589 | ) -> Result<Span, Error> { |
2590 | let minutes = minutes.try_rinto("minutes" )?; |
2591 | Ok(self.minutes_ranged(minutes)) |
2592 | } |
2593 | |
2594 | #[inline ] |
2595 | pub(crate) fn try_seconds_ranged( |
2596 | self, |
2597 | seconds: impl TryRInto<t::SpanSeconds>, |
2598 | ) -> Result<Span, Error> { |
2599 | let seconds = seconds.try_rinto("seconds" )?; |
2600 | Ok(self.seconds_ranged(seconds)) |
2601 | } |
2602 | |
2603 | #[inline ] |
2604 | pub(crate) fn try_milliseconds_ranged( |
2605 | self, |
2606 | milliseconds: impl TryRInto<t::SpanMilliseconds>, |
2607 | ) -> Result<Span, Error> { |
2608 | let milliseconds = milliseconds.try_rinto("milliseconds" )?; |
2609 | Ok(self.milliseconds_ranged(milliseconds)) |
2610 | } |
2611 | |
2612 | #[inline ] |
2613 | pub(crate) fn try_microseconds_ranged( |
2614 | self, |
2615 | microseconds: impl TryRInto<t::SpanMicroseconds>, |
2616 | ) -> Result<Span, Error> { |
2617 | let microseconds = microseconds.try_rinto("microseconds" )?; |
2618 | Ok(self.microseconds_ranged(microseconds)) |
2619 | } |
2620 | |
2621 | #[inline ] |
2622 | pub(crate) fn try_nanoseconds_ranged( |
2623 | self, |
2624 | nanoseconds: impl TryRInto<t::SpanNanoseconds>, |
2625 | ) -> Result<Span, Error> { |
2626 | let nanoseconds = nanoseconds.try_rinto("nanoseconds" )?; |
2627 | Ok(self.nanoseconds_ranged(nanoseconds)) |
2628 | } |
2629 | |
2630 | #[inline ] |
2631 | pub(crate) fn try_units_ranged( |
2632 | self, |
2633 | unit: Unit, |
2634 | value: NoUnits, |
2635 | ) -> Result<Span, Error> { |
2636 | Ok(match unit { |
2637 | Unit::Year => self.years_ranged(value.try_rinto("years" )?), |
2638 | Unit::Month => self.months_ranged(value.try_rinto("months" )?), |
2639 | Unit::Week => self.weeks_ranged(value.try_rinto("weeks" )?), |
2640 | Unit::Day => self.days_ranged(value.try_rinto("days" )?), |
2641 | Unit::Hour => self.hours_ranged(value.try_rinto("hours" )?), |
2642 | Unit::Minute => self.minutes_ranged(value.try_rinto("minutes" )?), |
2643 | Unit::Second => self.seconds_ranged(value.try_rinto("seconds" )?), |
2644 | Unit::Millisecond => { |
2645 | self.milliseconds_ranged(value.try_rinto("milliseconds" )?) |
2646 | } |
2647 | Unit::Microsecond => { |
2648 | self.microseconds_ranged(value.try_rinto("microseconds" )?) |
2649 | } |
2650 | Unit::Nanosecond => { |
2651 | self.nanoseconds_ranged(value.try_rinto("nanoseconds" )?) |
2652 | } |
2653 | }) |
2654 | } |
2655 | |
2656 | #[inline ] |
2657 | pub(crate) fn get_years_ranged(&self) -> t::SpanYears { |
2658 | self.years * self.sign |
2659 | } |
2660 | |
2661 | #[inline ] |
2662 | pub(crate) fn get_months_ranged(&self) -> t::SpanMonths { |
2663 | self.months * self.sign |
2664 | } |
2665 | |
2666 | #[inline ] |
2667 | pub(crate) fn get_weeks_ranged(&self) -> t::SpanWeeks { |
2668 | self.weeks * self.sign |
2669 | } |
2670 | |
2671 | #[inline ] |
2672 | pub(crate) fn get_days_ranged(&self) -> t::SpanDays { |
2673 | self.days * self.sign |
2674 | } |
2675 | |
2676 | #[inline ] |
2677 | pub(crate) fn get_hours_ranged(&self) -> t::SpanHours { |
2678 | self.hours * self.sign |
2679 | } |
2680 | |
2681 | #[inline ] |
2682 | pub(crate) fn get_minutes_ranged(&self) -> t::SpanMinutes { |
2683 | self.minutes * self.sign |
2684 | } |
2685 | |
2686 | #[inline ] |
2687 | pub(crate) fn get_seconds_ranged(&self) -> t::SpanSeconds { |
2688 | self.seconds * self.sign |
2689 | } |
2690 | |
2691 | #[inline ] |
2692 | pub(crate) fn get_milliseconds_ranged(&self) -> t::SpanMilliseconds { |
2693 | self.milliseconds * self.sign |
2694 | } |
2695 | |
2696 | #[inline ] |
2697 | pub(crate) fn get_microseconds_ranged(&self) -> t::SpanMicroseconds { |
2698 | self.microseconds * self.sign |
2699 | } |
2700 | |
2701 | #[inline ] |
2702 | pub(crate) fn get_nanoseconds_ranged(&self) -> t::SpanNanoseconds { |
2703 | self.nanoseconds * self.sign |
2704 | } |
2705 | |
2706 | #[inline ] |
2707 | fn get_sign_ranged(&self) -> ri8<-1, 1> { |
2708 | self.sign |
2709 | } |
2710 | |
2711 | #[inline ] |
2712 | fn get_units_ranged(&self, unit: Unit) -> NoUnits { |
2713 | match unit { |
2714 | Unit::Year => self.get_years_ranged().rinto(), |
2715 | Unit::Month => self.get_months_ranged().rinto(), |
2716 | Unit::Week => self.get_weeks_ranged().rinto(), |
2717 | Unit::Day => self.get_days_ranged().rinto(), |
2718 | Unit::Hour => self.get_hours_ranged().rinto(), |
2719 | Unit::Minute => self.get_minutes_ranged().rinto(), |
2720 | Unit::Second => self.get_seconds_ranged().rinto(), |
2721 | Unit::Millisecond => self.get_milliseconds_ranged().rinto(), |
2722 | Unit::Microsecond => self.get_microseconds_ranged().rinto(), |
2723 | Unit::Nanosecond => self.get_nanoseconds_ranged().rinto(), |
2724 | } |
2725 | } |
2726 | } |
2727 | |
2728 | /// Crate internal helper routines. |
2729 | impl Span { |
2730 | /// Converts the given number of nanoseconds to a `Span` whose units do not |
2731 | /// exceed `largest`. |
2732 | /// |
2733 | /// Note that `largest` is capped at `Unit::Week`. Note though that if |
2734 | /// any unit greater than `Unit::Week` is given, then it is treated as |
2735 | /// `Unit::Day`. The only way to get weeks in the `Span` returned is to |
2736 | /// specifically request `Unit::Week`. |
2737 | /// |
2738 | /// And also note that days in this context are civil days. That is, they |
2739 | /// are always 24 hours long. Callers needing to deal with variable length |
2740 | /// days should do so outside of this routine and should not provide a |
2741 | /// `largest` unit bigger than `Unit::Hour`. |
2742 | pub(crate) fn from_invariant_nanoseconds( |
2743 | largest: Unit, |
2744 | nanos: NoUnits128, |
2745 | ) -> Result<Span, Error> { |
2746 | let mut span = Span::new(); |
2747 | match largest { |
2748 | Unit::Week => { |
2749 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2750 | span = span.try_nanoseconds_ranged( |
2751 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2752 | )?; |
2753 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2754 | span = span.try_microseconds_ranged( |
2755 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2756 | )?; |
2757 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
2758 | span = span.try_milliseconds_ranged( |
2759 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
2760 | )?; |
2761 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
2762 | span = span.try_seconds_ranged( |
2763 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
2764 | )?; |
2765 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
2766 | span = span |
2767 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
2768 | let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY); |
2769 | span = span.try_hours_ranged( |
2770 | hours.rem_ceil(t::HOURS_PER_CIVIL_DAY), |
2771 | )?; |
2772 | let weeks = days.div_ceil(t::DAYS_PER_CIVIL_WEEK); |
2773 | span = span |
2774 | .try_days_ranged(days.rem_ceil(t::DAYS_PER_CIVIL_WEEK))?; |
2775 | span = span.weeks_ranged(weeks.try_rinto("weeks" )?); |
2776 | Ok(span) |
2777 | } |
2778 | Unit::Year | Unit::Month | Unit::Day => { |
2779 | // Unit::Year | Unit::Month | Unit::Week | Unit::Day => { |
2780 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2781 | span = span.try_nanoseconds_ranged( |
2782 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2783 | )?; |
2784 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2785 | span = span.try_microseconds_ranged( |
2786 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2787 | )?; |
2788 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
2789 | span = span.try_milliseconds_ranged( |
2790 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
2791 | )?; |
2792 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
2793 | span = span.try_seconds_ranged( |
2794 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
2795 | )?; |
2796 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
2797 | span = span |
2798 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
2799 | let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY); |
2800 | span = span.try_hours_ranged( |
2801 | hours.rem_ceil(t::HOURS_PER_CIVIL_DAY), |
2802 | )?; |
2803 | span = span.try_days_ranged(days)?; |
2804 | Ok(span) |
2805 | } |
2806 | Unit::Hour => { |
2807 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2808 | span = span.try_nanoseconds_ranged( |
2809 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2810 | )?; |
2811 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2812 | span = span.try_microseconds_ranged( |
2813 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2814 | )?; |
2815 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
2816 | span = span.try_milliseconds_ranged( |
2817 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
2818 | )?; |
2819 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
2820 | span = span.try_seconds_ranged( |
2821 | secs.rem_ceil(t::SECONDS_PER_MINUTE), |
2822 | )?; |
2823 | let hours = mins.div_ceil(t::MINUTES_PER_HOUR); |
2824 | span = span |
2825 | .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?; |
2826 | span = span.try_hours_ranged(hours)?; |
2827 | Ok(span) |
2828 | } |
2829 | Unit::Minute => { |
2830 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2831 | span = span.try_nanoseconds_ranged( |
2832 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2833 | )?; |
2834 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2835 | span = span.try_microseconds_ranged( |
2836 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2837 | )?; |
2838 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
2839 | span = span.try_milliseconds_ranged( |
2840 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
2841 | )?; |
2842 | let mins = secs.div_ceil(t::SECONDS_PER_MINUTE); |
2843 | span = |
2844 | span.try_seconds(secs.rem_ceil(t::SECONDS_PER_MINUTE))?; |
2845 | span = span.try_minutes_ranged(mins)?; |
2846 | Ok(span) |
2847 | } |
2848 | Unit::Second => { |
2849 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2850 | span = span.try_nanoseconds_ranged( |
2851 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2852 | )?; |
2853 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2854 | span = span.try_microseconds_ranged( |
2855 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2856 | )?; |
2857 | let secs = millis.div_ceil(t::MILLIS_PER_SECOND); |
2858 | span = span.try_milliseconds_ranged( |
2859 | millis.rem_ceil(t::MILLIS_PER_SECOND), |
2860 | )?; |
2861 | span = span.try_seconds_ranged(secs)?; |
2862 | Ok(span) |
2863 | } |
2864 | Unit::Millisecond => { |
2865 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2866 | span = span.try_nanoseconds_ranged( |
2867 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2868 | )?; |
2869 | let millis = micros.div_ceil(t::MICROS_PER_MILLI); |
2870 | span = span.try_microseconds_ranged( |
2871 | micros.rem_ceil(t::MICROS_PER_MILLI), |
2872 | )?; |
2873 | span = span.try_milliseconds_ranged(millis)?; |
2874 | Ok(span) |
2875 | } |
2876 | Unit::Microsecond => { |
2877 | let micros = nanos.div_ceil(t::NANOS_PER_MICRO); |
2878 | span = span.try_nanoseconds_ranged( |
2879 | nanos.rem_ceil(t::NANOS_PER_MICRO), |
2880 | )?; |
2881 | span = span.try_microseconds_ranged(micros)?; |
2882 | Ok(span) |
2883 | } |
2884 | Unit::Nanosecond => { |
2885 | span = span.try_nanoseconds_ranged(nanos)?; |
2886 | Ok(span) |
2887 | } |
2888 | } |
2889 | } |
2890 | |
2891 | /// Converts the non-variable units of this `Span` to a total number of |
2892 | /// nanoseconds. |
2893 | /// |
2894 | /// This includes days and weeks, even though they can be of irregular |
2895 | /// length during time zone transitions. If this applies, then callers |
2896 | /// should set the days and weeks to `0` before calling this routine. |
2897 | /// |
2898 | /// All units above weeks are always ignored. |
2899 | #[inline ] |
2900 | pub(crate) fn to_invariant_nanoseconds(&self) -> NoUnits128 { |
2901 | let mut nanos = NoUnits128::rfrom(self.get_nanoseconds_ranged()); |
2902 | nanos += NoUnits128::rfrom(self.get_microseconds_ranged()) |
2903 | * t::NANOS_PER_MICRO; |
2904 | nanos += NoUnits128::rfrom(self.get_milliseconds_ranged()) |
2905 | * t::NANOS_PER_MILLI; |
2906 | nanos += |
2907 | NoUnits128::rfrom(self.get_seconds_ranged()) * t::NANOS_PER_SECOND; |
2908 | nanos += |
2909 | NoUnits128::rfrom(self.get_minutes_ranged()) * t::NANOS_PER_MINUTE; |
2910 | nanos += |
2911 | NoUnits128::rfrom(self.get_hours_ranged()) * t::NANOS_PER_HOUR; |
2912 | nanos += |
2913 | NoUnits128::rfrom(self.get_days_ranged()) * t::NANOS_PER_CIVIL_DAY; |
2914 | nanos += NoUnits128::rfrom(self.get_weeks_ranged()) |
2915 | * t::NANOS_PER_CIVIL_WEEK; |
2916 | nanos |
2917 | } |
2918 | |
2919 | /// Converts the non-variable units of this `Span` to a total number of |
2920 | /// seconds if there is no fractional second component. Otherwise, |
2921 | /// `None` is returned. |
2922 | /// |
2923 | /// This is useful for short-circuiting in arithmetic operations when |
2924 | /// it's faster to only deal with seconds. And in particular, acknowledges |
2925 | /// that nanosecond precision durations are somewhat rare. |
2926 | /// |
2927 | /// This includes days and weeks, even though they can be of irregular |
2928 | /// length during time zone transitions. If this applies, then callers |
2929 | /// should set the days and weeks to `0` before calling this routine. |
2930 | /// |
2931 | /// All units above weeks are always ignored. |
2932 | #[inline ] |
2933 | pub(crate) fn to_invariant_seconds(&self) -> Option<NoUnits> { |
2934 | if self.has_fractional_seconds() { |
2935 | return None; |
2936 | } |
2937 | let mut seconds = NoUnits::rfrom(self.get_seconds_ranged()); |
2938 | seconds += |
2939 | NoUnits::rfrom(self.get_minutes_ranged()) * t::SECONDS_PER_MINUTE; |
2940 | seconds += |
2941 | NoUnits::rfrom(self.get_hours_ranged()) * t::SECONDS_PER_HOUR; |
2942 | seconds += |
2943 | NoUnits::rfrom(self.get_days_ranged()) * t::SECONDS_PER_CIVIL_DAY; |
2944 | seconds += NoUnits::rfrom(self.get_weeks_ranged()) |
2945 | * t::SECONDS_PER_CIVIL_WEEK; |
2946 | Some(seconds) |
2947 | } |
2948 | |
2949 | /// Rebalances the invariant units (days or lower) on this span so that |
2950 | /// the largest possible non-zero unit is the one given. |
2951 | /// |
2952 | /// Units above day are ignored and dropped. |
2953 | /// |
2954 | /// If the given unit is greater than days, then it is treated as-if it |
2955 | /// were days. |
2956 | /// |
2957 | /// # Errors |
2958 | /// |
2959 | /// This can return an error in the case of lop-sided units. For example, |
2960 | /// if this span has maximal values for all units, then rebalancing is |
2961 | /// not possible because the number of days after balancing would exceed |
2962 | /// the limit. |
2963 | #[cfg (test)] // currently only used in zic parser? |
2964 | #[inline ] |
2965 | pub(crate) fn rebalance(self, unit: Unit) -> Result<Span, Error> { |
2966 | Span::from_invariant_nanoseconds(unit, self.to_invariant_nanoseconds()) |
2967 | } |
2968 | |
2969 | /// Returns true if and only if this span has at least one non-zero |
2970 | /// fractional second unit. |
2971 | #[inline ] |
2972 | pub(crate) fn has_fractional_seconds(&self) -> bool { |
2973 | self.milliseconds != C(0) |
2974 | || self.microseconds != C(0) |
2975 | || self.nanoseconds != C(0) |
2976 | } |
2977 | |
2978 | /// Returns an equivalent span, but with all non-calendar (units below |
2979 | /// days) set to zero. |
2980 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
2981 | pub(crate) fn only_calendar(self) -> Span { |
2982 | let mut span = self; |
2983 | span.hours = t::SpanHours::N::<0>(); |
2984 | span.minutes = t::SpanMinutes::N::<0>(); |
2985 | span.seconds = t::SpanSeconds::N::<0>(); |
2986 | span.milliseconds = t::SpanMilliseconds::N::<0>(); |
2987 | span.microseconds = t::SpanMicroseconds::N::<0>(); |
2988 | span.nanoseconds = t::SpanNanoseconds::N::<0>(); |
2989 | if span.sign != C(0) |
2990 | && span.years == C(0) |
2991 | && span.months == C(0) |
2992 | && span.weeks == C(0) |
2993 | && span.days == C(0) |
2994 | { |
2995 | span.sign = t::Sign::N::<0>(); |
2996 | } |
2997 | span.units = span.units.only_calendar(); |
2998 | span |
2999 | } |
3000 | |
3001 | /// Returns an equivalent span, but with all calendar (units above |
3002 | /// hours) set to zero. |
3003 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
3004 | pub(crate) fn only_time(self) -> Span { |
3005 | let mut span = self; |
3006 | span.years = t::SpanYears::N::<0>(); |
3007 | span.months = t::SpanMonths::N::<0>(); |
3008 | span.weeks = t::SpanWeeks::N::<0>(); |
3009 | span.days = t::SpanDays::N::<0>(); |
3010 | if span.sign != C(0) |
3011 | && span.hours == C(0) |
3012 | && span.minutes == C(0) |
3013 | && span.seconds == C(0) |
3014 | && span.milliseconds == C(0) |
3015 | && span.microseconds == C(0) |
3016 | && span.nanoseconds == C(0) |
3017 | { |
3018 | span.sign = t::Sign::N::<0>(); |
3019 | } |
3020 | span.units = span.units.only_time(); |
3021 | span |
3022 | } |
3023 | |
3024 | /// Returns an equivalent span, but with all units greater than or equal to |
3025 | /// the one given set to zero. |
3026 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
3027 | pub(crate) fn only_lower(self, unit: Unit) -> Span { |
3028 | let mut span = self; |
3029 | // Unit::Nanosecond is the minimum, so nothing can be smaller than it. |
3030 | if unit <= Unit::Microsecond { |
3031 | span = span.microseconds_ranged(C(0).rinto()); |
3032 | } |
3033 | if unit <= Unit::Millisecond { |
3034 | span = span.milliseconds_ranged(C(0).rinto()); |
3035 | } |
3036 | if unit <= Unit::Second { |
3037 | span = span.seconds_ranged(C(0).rinto()); |
3038 | } |
3039 | if unit <= Unit::Minute { |
3040 | span = span.minutes_ranged(C(0).rinto()); |
3041 | } |
3042 | if unit <= Unit::Hour { |
3043 | span = span.hours_ranged(C(0).rinto()); |
3044 | } |
3045 | if unit <= Unit::Day { |
3046 | span = span.days_ranged(C(0).rinto()); |
3047 | } |
3048 | if unit <= Unit::Week { |
3049 | span = span.weeks_ranged(C(0).rinto()); |
3050 | } |
3051 | if unit <= Unit::Month { |
3052 | span = span.months_ranged(C(0).rinto()); |
3053 | } |
3054 | if unit <= Unit::Year { |
3055 | span = span.years_ranged(C(0).rinto()); |
3056 | } |
3057 | span |
3058 | } |
3059 | |
3060 | /// Returns an equivalent span, but with all units less than the one given |
3061 | /// set to zero. |
3062 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
3063 | pub(crate) fn without_lower(self, unit: Unit) -> Span { |
3064 | let mut span = self; |
3065 | if unit > Unit::Nanosecond { |
3066 | span = span.nanoseconds_ranged(C(0).rinto()); |
3067 | } |
3068 | if unit > Unit::Microsecond { |
3069 | span = span.microseconds_ranged(C(0).rinto()); |
3070 | } |
3071 | if unit > Unit::Millisecond { |
3072 | span = span.milliseconds_ranged(C(0).rinto()); |
3073 | } |
3074 | if unit > Unit::Second { |
3075 | span = span.seconds_ranged(C(0).rinto()); |
3076 | } |
3077 | if unit > Unit::Minute { |
3078 | span = span.minutes_ranged(C(0).rinto()); |
3079 | } |
3080 | if unit > Unit::Hour { |
3081 | span = span.hours_ranged(C(0).rinto()); |
3082 | } |
3083 | if unit > Unit::Day { |
3084 | span = span.days_ranged(C(0).rinto()); |
3085 | } |
3086 | if unit > Unit::Week { |
3087 | span = span.weeks_ranged(C(0).rinto()); |
3088 | } |
3089 | if unit > Unit::Month { |
3090 | span = span.months_ranged(C(0).rinto()); |
3091 | } |
3092 | // Unit::Year is the max, so nothing can be bigger than it. |
3093 | span |
3094 | } |
3095 | |
3096 | /// Returns an error corresponding to the smallest non-time non-zero unit. |
3097 | /// |
3098 | /// If all non-time units are zero, then this returns `None`. |
3099 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
3100 | pub(crate) fn smallest_non_time_non_zero_unit_error( |
3101 | &self, |
3102 | ) -> Option<Error> { |
3103 | let non_time_unit = self.largest_calendar_unit()?; |
3104 | Some(err!( |
3105 | "operation can only be performed with units of hours \ |
3106 | or smaller, but found non-zero {unit} units \ |
3107 | (operations on `Timestamp`, `tz::Offset` and `civil::Time` \ |
3108 | don't support calendar units in a `Span`)" , |
3109 | unit = non_time_unit.singular(), |
3110 | )) |
3111 | } |
3112 | |
3113 | /// Returns the largest non-zero calendar unit, or `None` if there are no |
3114 | /// non-zero calendar units. |
3115 | #[inline ] |
3116 | pub(crate) fn largest_calendar_unit(&self) -> Option<Unit> { |
3117 | self.units().only_calendar().largest_unit() |
3118 | } |
3119 | |
3120 | /// Returns the largest non-zero unit in this span. |
3121 | /// |
3122 | /// If all components of this span are zero, then `Unit::Nanosecond` is |
3123 | /// returned. |
3124 | #[inline ] |
3125 | pub(crate) fn largest_unit(&self) -> Unit { |
3126 | self.units().largest_unit().unwrap_or(Unit::Nanosecond) |
3127 | } |
3128 | |
3129 | /// Returns the set of units on this `Span`. |
3130 | #[inline ] |
3131 | pub(crate) fn units(&self) -> UnitSet { |
3132 | self.units |
3133 | } |
3134 | |
3135 | /// Returns a string containing the value of all non-zero fields. |
3136 | /// |
3137 | /// This is useful for debugging. Normally, this would be the "alternate" |
3138 | /// debug impl (perhaps), but that's what insta uses and I preferred having |
3139 | /// the friendly format used there since it is much more terse. |
3140 | #[cfg (feature = "alloc" )] |
3141 | #[allow (dead_code)] |
3142 | pub(crate) fn debug(&self) -> alloc::string::String { |
3143 | use core::fmt::Write; |
3144 | |
3145 | let mut buf = alloc::string::String::new(); |
3146 | write!(buf, "Span {{ sign: {:?}, units: {:?}" , self.sign, self.units) |
3147 | .unwrap(); |
3148 | if self.years != C(0) { |
3149 | write!(buf, ", years: {:?}" , self.years).unwrap(); |
3150 | } |
3151 | if self.months != C(0) { |
3152 | write!(buf, ", months: {:?}" , self.months).unwrap(); |
3153 | } |
3154 | if self.weeks != C(0) { |
3155 | write!(buf, ", weeks: {:?}" , self.weeks).unwrap(); |
3156 | } |
3157 | if self.days != C(0) { |
3158 | write!(buf, ", days: {:?}" , self.days).unwrap(); |
3159 | } |
3160 | if self.hours != C(0) { |
3161 | write!(buf, ", hours: {:?}" , self.hours).unwrap(); |
3162 | } |
3163 | if self.minutes != C(0) { |
3164 | write!(buf, ", minutes: {:?}" , self.minutes).unwrap(); |
3165 | } |
3166 | if self.seconds != C(0) { |
3167 | write!(buf, ", seconds: {:?}" , self.seconds).unwrap(); |
3168 | } |
3169 | if self.milliseconds != C(0) { |
3170 | write!(buf, ", milliseconds: {:?}" , self.milliseconds).unwrap(); |
3171 | } |
3172 | if self.microseconds != C(0) { |
3173 | write!(buf, ", microseconds: {:?}" , self.microseconds).unwrap(); |
3174 | } |
3175 | if self.nanoseconds != C(0) { |
3176 | write!(buf, ", nanoseconds: {:?}" , self.nanoseconds).unwrap(); |
3177 | } |
3178 | write!(buf, " }}" ).unwrap(); |
3179 | buf |
3180 | } |
3181 | |
3182 | /// Given some new units to set on this span and the span updates with the |
3183 | /// new units, this determines the what the sign of `new` should be. |
3184 | #[inline ] |
3185 | fn resign(&self, units: impl RInto<NoUnits>, new: &Span) -> Sign { |
3186 | fn imp(span: &Span, units: NoUnits, new: &Span) -> Sign { |
3187 | // Negative units anywhere always makes the entire span negative. |
3188 | if units < C(0) { |
3189 | return Sign::N::<-1>(); |
3190 | } |
3191 | let mut new_is_zero = new.sign == C(0) && units == C(0); |
3192 | // When `units == 0` and it was previously non-zero, then |
3193 | // `new.sign` won't be `0` and thus `new_is_zero` will be false |
3194 | // when it should be true. So in this case, we need to re-check all |
3195 | // the units to set the sign correctly. |
3196 | if units == C(0) { |
3197 | new_is_zero = new.years == C(0) |
3198 | && new.months == C(0) |
3199 | && new.weeks == C(0) |
3200 | && new.days == C(0) |
3201 | && new.hours == C(0) |
3202 | && new.minutes == C(0) |
3203 | && new.seconds == C(0) |
3204 | && new.milliseconds == C(0) |
3205 | && new.microseconds == C(0) |
3206 | && new.nanoseconds == C(0); |
3207 | } |
3208 | match (span.is_zero(), new_is_zero) { |
3209 | (_, true) => Sign::N::<0>(), |
3210 | (true, false) => units.signum().rinto(), |
3211 | // If the old and new span are both non-zero, and we know our new |
3212 | // units are not negative, then the sign remains unchanged. |
3213 | (false, false) => new.sign, |
3214 | } |
3215 | } |
3216 | imp(self, units.rinto(), new) |
3217 | } |
3218 | } |
3219 | |
3220 | impl Default for Span { |
3221 | #[inline ] |
3222 | fn default() -> Span { |
3223 | Span { |
3224 | sign: ri8::N::<0>(), |
3225 | units: UnitSet::empty(), |
3226 | years: C(constant:0).rinto(), |
3227 | months: C(constant:0).rinto(), |
3228 | weeks: C(constant:0).rinto(), |
3229 | days: C(constant:0).rinto(), |
3230 | hours: C(constant:0).rinto(), |
3231 | minutes: C(constant:0).rinto(), |
3232 | seconds: C(constant:0).rinto(), |
3233 | milliseconds: C(constant:0).rinto(), |
3234 | microseconds: C(constant:0).rinto(), |
3235 | nanoseconds: C(constant:0).rinto(), |
3236 | } |
3237 | } |
3238 | } |
3239 | |
3240 | impl core::fmt::Debug for Span { |
3241 | #[inline ] |
3242 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
3243 | use crate::fmt::StdFmtWrite; |
3244 | |
3245 | friendly::DEFAULT_SPAN_PRINTER |
3246 | .print_span(self, StdFmtWrite(f)) |
3247 | .map_err(|_| core::fmt::Error) |
3248 | } |
3249 | } |
3250 | |
3251 | impl core::fmt::Display for Span { |
3252 | #[inline ] |
3253 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
3254 | use crate::fmt::StdFmtWrite; |
3255 | |
3256 | if f.alternate() { |
3257 | friendly::DEFAULT_SPAN_PRINTER |
3258 | .print_span(self, StdFmtWrite(f)) |
3259 | .map_err(|_| core::fmt::Error) |
3260 | } else { |
3261 | temporal::DEFAULT_SPAN_PRINTER |
3262 | .print_span(self, StdFmtWrite(f)) |
3263 | .map_err(|_| core::fmt::Error) |
3264 | } |
3265 | } |
3266 | } |
3267 | |
3268 | impl core::str::FromStr for Span { |
3269 | type Err = Error; |
3270 | |
3271 | #[inline ] |
3272 | fn from_str(string: &str) -> Result<Span, Error> { |
3273 | parse_iso_or_friendly(string.as_bytes()) |
3274 | } |
3275 | } |
3276 | |
3277 | impl core::ops::Neg for Span { |
3278 | type Output = Span; |
3279 | |
3280 | #[inline ] |
3281 | fn neg(self) -> Span { |
3282 | self.negate() |
3283 | } |
3284 | } |
3285 | |
3286 | /// This multiplies each unit in a span by an integer. |
3287 | /// |
3288 | /// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`]. |
3289 | impl core::ops::Mul<i64> for Span { |
3290 | type Output = Span; |
3291 | |
3292 | #[inline ] |
3293 | fn mul(self, rhs: i64) -> Span { |
3294 | self.checked_mul(rhs) |
3295 | .expect(msg:"multiplying `Span` by a scalar overflowed" ) |
3296 | } |
3297 | } |
3298 | |
3299 | /// This multiplies each unit in a span by an integer. |
3300 | /// |
3301 | /// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`]. |
3302 | impl core::ops::Mul<Span> for i64 { |
3303 | type Output = Span; |
3304 | |
3305 | #[inline ] |
3306 | fn mul(self, rhs: Span) -> Span { |
3307 | rhs.checked_mul(self) |
3308 | .expect(msg:"multiplying `Span` by a scalar overflowed" ) |
3309 | } |
3310 | } |
3311 | |
3312 | /// Converts a `Span` to a [`std::time::Duration`]. |
3313 | /// |
3314 | /// Note that this assumes that days are always 24 hours long. |
3315 | /// |
3316 | /// # Errors |
3317 | /// |
3318 | /// This can fail for only two reasons: |
3319 | /// |
3320 | /// * The span is negative. This is an error because a `std::time::Duration` is |
3321 | /// unsigned.) |
3322 | /// * The span has any non-zero units greater than hours. This is an error |
3323 | /// because it's impossible to determine the length of, e.g., a month without |
3324 | /// a reference date. |
3325 | /// |
3326 | /// This can never result in overflow because a `Duration` can represent a |
3327 | /// bigger span of time than `Span` when limited to units of hours or lower. |
3328 | /// |
3329 | /// If you need to convert a `Span` to a `Duration` that has non-zero |
3330 | /// units bigger than hours, then please use [`Span::to_duration`] with a |
3331 | /// corresponding relative date. |
3332 | /// |
3333 | /// # Example: maximal span |
3334 | /// |
3335 | /// This example shows the maximum possible span using units of hours or |
3336 | /// smaller, and the corresponding `Duration` value: |
3337 | /// |
3338 | /// ``` |
3339 | /// use std::time::Duration; |
3340 | /// |
3341 | /// use jiff::Span; |
3342 | /// |
3343 | /// let sp = Span::new() |
3344 | /// .hours(175_307_616) |
3345 | /// .minutes(10_518_456_960i64) |
3346 | /// .seconds(631_107_417_600i64) |
3347 | /// .milliseconds(631_107_417_600_000i64) |
3348 | /// .microseconds(631_107_417_600_000_000i64) |
3349 | /// .nanoseconds(9_223_372_036_854_775_807i64); |
3350 | /// let duration = Duration::try_from(sp)?; |
3351 | /// assert_eq!(duration, Duration::new(3_164_760_460_036, 854_775_807)); |
3352 | /// |
3353 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3354 | /// ``` |
3355 | /// |
3356 | /// # Example: converting a negative span |
3357 | /// |
3358 | /// Since a `Span` is signed and a `Duration` is unsigned, converting |
3359 | /// a negative `Span` to `Duration` will always fail. One can use |
3360 | /// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the |
3361 | /// span positive before converting it to a `Duration`: |
3362 | /// |
3363 | /// ``` |
3364 | /// use std::time::Duration; |
3365 | /// |
3366 | /// use jiff::{Span, ToSpan}; |
3367 | /// |
3368 | /// let span = -86_400.seconds().nanoseconds(1); |
3369 | /// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?); |
3370 | /// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1))); |
3371 | /// |
3372 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3373 | /// ``` |
3374 | impl TryFrom<Span> for UnsignedDuration { |
3375 | type Error = Error; |
3376 | |
3377 | #[inline ] |
3378 | fn try_from(sp: Span) -> Result<UnsignedDuration, Error> { |
3379 | // This isn't needed, but improves error messages. |
3380 | if sp.is_negative() { |
3381 | return Err(err!( |
3382 | "cannot convert negative span {sp:?} \ |
3383 | to unsigned std::time::Duration" , |
3384 | )); |
3385 | } |
3386 | SignedDuration::try_from(sp).and_then(op:UnsignedDuration::try_from) |
3387 | } |
3388 | } |
3389 | |
3390 | /// Converts a [`std::time::Duration`] to a `Span`. |
3391 | /// |
3392 | /// The span returned from this conversion will only ever have non-zero units |
3393 | /// of seconds or smaller. |
3394 | /// |
3395 | /// # Errors |
3396 | /// |
3397 | /// This only fails when the given `Duration` overflows the maximum number of |
3398 | /// seconds representable by a `Span`. |
3399 | /// |
3400 | /// # Example |
3401 | /// |
3402 | /// This shows a basic conversion: |
3403 | /// |
3404 | /// ``` |
3405 | /// use std::time::Duration; |
3406 | /// |
3407 | /// use jiff::{Span, ToSpan}; |
3408 | /// |
3409 | /// let duration = Duration::new(86_400, 123_456_789); |
3410 | /// let span = Span::try_from(duration)?; |
3411 | /// // A duration-to-span conversion always results in a span with |
3412 | /// // non-zero units no bigger than seconds. |
3413 | /// assert_eq!( |
3414 | /// span.fieldwise(), |
3415 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
3416 | /// ); |
3417 | /// |
3418 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3419 | /// ``` |
3420 | /// |
3421 | /// # Example: rounding |
3422 | /// |
3423 | /// This example shows how to convert a `Duration` to a `Span`, and then round |
3424 | /// it up to bigger units given a relative date: |
3425 | /// |
3426 | /// ``` |
3427 | /// use std::time::Duration; |
3428 | /// |
3429 | /// use jiff::{civil::date, Span, SpanRound, ToSpan, Unit}; |
3430 | /// |
3431 | /// let duration = Duration::new(450 * 86_401, 0); |
3432 | /// let span = Span::try_from(duration)?; |
3433 | /// // We get back a simple span of just seconds: |
3434 | /// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401)); |
3435 | /// // But we can balance it up to bigger units: |
3436 | /// let options = SpanRound::new() |
3437 | /// .largest(Unit::Year) |
3438 | /// .relative(date(2024, 1, 1)); |
3439 | /// assert_eq!( |
3440 | /// span.round(options)?, |
3441 | /// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(), |
3442 | /// ); |
3443 | /// |
3444 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3445 | /// ``` |
3446 | impl TryFrom<UnsignedDuration> for Span { |
3447 | type Error = Error; |
3448 | |
3449 | #[inline ] |
3450 | fn try_from(d: UnsignedDuration) -> Result<Span, Error> { |
3451 | let seconds = i64::try_from(d.as_secs()).map_err(|_| { |
3452 | err!("seconds from {d:?} overflows a 64-bit signed integer" ) |
3453 | })?; |
3454 | let nanoseconds = i64::from(d.subsec_nanos()); |
3455 | let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value(); |
3456 | let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value()) |
3457 | / t::NANOS_PER_MICRO.value(); |
3458 | let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value(); |
3459 | |
3460 | let span = Span::new().try_seconds(seconds).with_context(|| { |
3461 | err!("duration {d:?} overflows limits of a Jiff `Span`" ) |
3462 | })?; |
3463 | // These are all OK because `Duration::subsec_nanos` is guaranteed to |
3464 | // return less than 1_000_000_000 nanoseconds. And splitting that up |
3465 | // into millis, micros and nano components is guaranteed to fit into |
3466 | // the limits of a `Span`. |
3467 | Ok(span |
3468 | .milliseconds(milliseconds) |
3469 | .microseconds(microseconds) |
3470 | .nanoseconds(nanoseconds)) |
3471 | } |
3472 | } |
3473 | |
3474 | /// Converts a `Span` to a [`SignedDuration`]. |
3475 | /// |
3476 | /// Note that this assumes that days are always 24 hours long. |
3477 | /// |
3478 | /// # Errors |
3479 | /// |
3480 | /// This can fail for only when the span has any non-zero units greater than |
3481 | /// hours. This is an error because it's impossible to determine the length of, |
3482 | /// e.g., a month without a reference date. |
3483 | /// |
3484 | /// This can never result in overflow because a `SignedDuration` can represent |
3485 | /// a bigger span of time than `Span` when limited to units of hours or lower. |
3486 | /// |
3487 | /// If you need to convert a `Span` to a `SignedDuration` that has non-zero |
3488 | /// units bigger than hours, then please use [`Span::to_duration`] with a |
3489 | /// corresponding relative date. |
3490 | /// |
3491 | /// # Example: maximal span |
3492 | /// |
3493 | /// This example shows the maximum possible span using units of hours or |
3494 | /// smaller, and the corresponding `SignedDuration` value: |
3495 | /// |
3496 | /// ``` |
3497 | /// use jiff::{SignedDuration, Span}; |
3498 | /// |
3499 | /// let sp = Span::new() |
3500 | /// .hours(175_307_616) |
3501 | /// .minutes(10_518_456_960i64) |
3502 | /// .seconds(631_107_417_600i64) |
3503 | /// .milliseconds(631_107_417_600_000i64) |
3504 | /// .microseconds(631_107_417_600_000_000i64) |
3505 | /// .nanoseconds(9_223_372_036_854_775_807i64); |
3506 | /// let duration = SignedDuration::try_from(sp)?; |
3507 | /// assert_eq!(duration, SignedDuration::new(3_164_760_460_036, 854_775_807)); |
3508 | /// |
3509 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3510 | /// ``` |
3511 | impl TryFrom<Span> for SignedDuration { |
3512 | type Error = Error; |
3513 | |
3514 | #[inline ] |
3515 | fn try_from(sp: Span) -> Result<SignedDuration, Error> { |
3516 | requires_relative_date_err(sp.largest_unit()).context( |
3517 | consequent:"failed to convert span to duration without relative datetime \ |
3518 | consequent: (must use `Span::to_duration` instead)" , |
3519 | )?; |
3520 | Ok(sp.to_duration_invariant()) |
3521 | } |
3522 | } |
3523 | |
3524 | /// Converts a [`SignedDuration`] to a `Span`. |
3525 | /// |
3526 | /// The span returned from this conversion will only ever have non-zero units |
3527 | /// of seconds or smaller. |
3528 | /// |
3529 | /// # Errors |
3530 | /// |
3531 | /// This only fails when the given `SignedDuration` overflows the maximum |
3532 | /// number of seconds representable by a `Span`. |
3533 | /// |
3534 | /// # Example |
3535 | /// |
3536 | /// This shows a basic conversion: |
3537 | /// |
3538 | /// ``` |
3539 | /// use jiff::{SignedDuration, Span, ToSpan}; |
3540 | /// |
3541 | /// let duration = SignedDuration::new(86_400, 123_456_789); |
3542 | /// let span = Span::try_from(duration)?; |
3543 | /// // A duration-to-span conversion always results in a span with |
3544 | /// // non-zero units no bigger than seconds. |
3545 | /// assert_eq!( |
3546 | /// span.fieldwise(), |
3547 | /// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789), |
3548 | /// ); |
3549 | /// |
3550 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3551 | /// ``` |
3552 | /// |
3553 | /// # Example: rounding |
3554 | /// |
3555 | /// This example shows how to convert a `SignedDuration` to a `Span`, and then |
3556 | /// round it up to bigger units given a relative date: |
3557 | /// |
3558 | /// ``` |
3559 | /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit}; |
3560 | /// |
3561 | /// let duration = SignedDuration::new(450 * 86_401, 0); |
3562 | /// let span = Span::try_from(duration)?; |
3563 | /// // We get back a simple span of just seconds: |
3564 | /// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401)); |
3565 | /// // But we can balance it up to bigger units: |
3566 | /// let options = SpanRound::new() |
3567 | /// .largest(Unit::Year) |
3568 | /// .relative(date(2024, 1, 1)); |
3569 | /// assert_eq!( |
3570 | /// span.round(options)?, |
3571 | /// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(), |
3572 | /// ); |
3573 | /// |
3574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3575 | /// ``` |
3576 | impl TryFrom<SignedDuration> for Span { |
3577 | type Error = Error; |
3578 | |
3579 | #[inline ] |
3580 | fn try_from(d: SignedDuration) -> Result<Span, Error> { |
3581 | let seconds = d.as_secs(); |
3582 | let nanoseconds = i64::from(d.subsec_nanos()); |
3583 | let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value(); |
3584 | let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value()) |
3585 | / t::NANOS_PER_MICRO.value(); |
3586 | let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value(); |
3587 | |
3588 | let span = Span::new().try_seconds(seconds).with_context(|| { |
3589 | err!("signed duration {d:?} overflows limits of a Jiff `Span`" ) |
3590 | })?; |
3591 | // These are all OK because `|SignedDuration::subsec_nanos|` is |
3592 | // guaranteed to return less than 1_000_000_000 nanoseconds. And |
3593 | // splitting that up into millis, micros and nano components is |
3594 | // guaranteed to fit into the limits of a `Span`. |
3595 | Ok(span |
3596 | .milliseconds(milliseconds) |
3597 | .microseconds(microseconds) |
3598 | .nanoseconds(nanoseconds)) |
3599 | } |
3600 | } |
3601 | |
3602 | #[cfg (feature = "serde" )] |
3603 | impl serde::Serialize for Span { |
3604 | #[inline ] |
3605 | fn serialize<S: serde::Serializer>( |
3606 | &self, |
3607 | serializer: S, |
3608 | ) -> Result<S::Ok, S::Error> { |
3609 | serializer.collect_str(self) |
3610 | } |
3611 | } |
3612 | |
3613 | #[cfg (feature = "serde" )] |
3614 | impl<'de> serde::Deserialize<'de> for Span { |
3615 | #[inline ] |
3616 | fn deserialize<D: serde::Deserializer<'de>>( |
3617 | deserializer: D, |
3618 | ) -> Result<Span, D::Error> { |
3619 | use serde::de; |
3620 | |
3621 | struct SpanVisitor; |
3622 | |
3623 | impl<'de> de::Visitor<'de> for SpanVisitor { |
3624 | type Value = Span; |
3625 | |
3626 | fn expecting( |
3627 | &self, |
3628 | f: &mut core::fmt::Formatter, |
3629 | ) -> core::fmt::Result { |
3630 | f.write_str("a span duration string" ) |
3631 | } |
3632 | |
3633 | #[inline ] |
3634 | fn visit_bytes<E: de::Error>( |
3635 | self, |
3636 | value: &[u8], |
3637 | ) -> Result<Span, E> { |
3638 | parse_iso_or_friendly(value).map_err(de::Error::custom) |
3639 | } |
3640 | |
3641 | #[inline ] |
3642 | fn visit_str<E: de::Error>(self, value: &str) -> Result<Span, E> { |
3643 | self.visit_bytes(value.as_bytes()) |
3644 | } |
3645 | } |
3646 | |
3647 | deserializer.deserialize_str(SpanVisitor) |
3648 | } |
3649 | } |
3650 | |
3651 | #[cfg (test)] |
3652 | impl quickcheck::Arbitrary for Span { |
3653 | fn arbitrary(g: &mut quickcheck::Gen) -> Span { |
3654 | // In order to sample from the full space of possible spans, we need |
3655 | // to provide a relative datetime. But if we do that, then it's |
3656 | // possible the span plus the datetime overflows. So we pick one |
3657 | // datetime and shrink the size of the span we can produce. |
3658 | type Nanos = ri64<-631_107_417_600_000_000, 631_107_417_600_000_000>; |
3659 | let nanos = Nanos::arbitrary(g).get(); |
3660 | let relative = |
3661 | SpanRelativeTo::from(DateTime::constant(0, 1, 1, 0, 0, 0, 0)); |
3662 | let round = |
3663 | SpanRound::new().largest(Unit::arbitrary(g)).relative(relative); |
3664 | Span::new().nanoseconds(nanos).round(round).unwrap() |
3665 | } |
3666 | |
3667 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
3668 | alloc::boxed::Box::new( |
3669 | ( |
3670 | ( |
3671 | self.get_years_ranged(), |
3672 | self.get_months_ranged(), |
3673 | self.get_weeks_ranged(), |
3674 | self.get_days_ranged(), |
3675 | ), |
3676 | ( |
3677 | self.get_hours_ranged(), |
3678 | self.get_minutes_ranged(), |
3679 | self.get_seconds_ranged(), |
3680 | self.get_milliseconds_ranged(), |
3681 | ), |
3682 | ( |
3683 | self.get_microseconds_ranged(), |
3684 | self.get_nanoseconds_ranged(), |
3685 | ), |
3686 | ) |
3687 | .shrink() |
3688 | .filter_map( |
3689 | |( |
3690 | (years, months, weeks, days), |
3691 | (hours, minutes, seconds, milliseconds), |
3692 | (microseconds, nanoseconds), |
3693 | )| { |
3694 | let span = Span::new() |
3695 | .years_ranged(years) |
3696 | .months_ranged(months) |
3697 | .weeks_ranged(weeks) |
3698 | .days_ranged(days) |
3699 | .hours_ranged(hours) |
3700 | .minutes_ranged(minutes) |
3701 | .seconds_ranged(seconds) |
3702 | .milliseconds_ranged(milliseconds) |
3703 | .microseconds_ranged(microseconds) |
3704 | .nanoseconds_ranged(nanoseconds); |
3705 | Some(span) |
3706 | }, |
3707 | ), |
3708 | ) |
3709 | } |
3710 | } |
3711 | |
3712 | /// A wrapper for [`Span`] that implements the `Hash`, `Eq` and `PartialEq` |
3713 | /// traits. |
3714 | /// |
3715 | /// A `SpanFieldwise` is meant to make it easy to compare two spans in a "dumb" |
3716 | /// way based purely on its unit values, while still providing a speed bump |
3717 | /// to avoid accidentally doing this comparison on `Span` directly. This is |
3718 | /// distinct from something like [`Span::compare`] that performs a comparison |
3719 | /// on the actual elapsed time of two spans. |
3720 | /// |
3721 | /// It is generally discouraged to use `SpanFieldwise` since spans that |
3722 | /// represent an equivalent elapsed amount of time may compare unequal. |
3723 | /// However, in some cases, it is useful to be able to assert precise field |
3724 | /// values. For example, Jiff itself makes heavy use of fieldwise comparisons |
3725 | /// for tests. |
3726 | /// |
3727 | /// # Construction |
3728 | /// |
3729 | /// While callers may use `SpanFieldwise(span)` (where `span` has type [`Span`]) |
3730 | /// to construct a value of this type, callers may find [`Span::fieldwise`] |
3731 | /// more convenient. Namely, `Span::fieldwise` may avoid the need to explicitly |
3732 | /// import `SpanFieldwise`. |
3733 | /// |
3734 | /// # Trait implementations |
3735 | /// |
3736 | /// In addition to implementing the `Hash`, `Eq` and `PartialEq` traits, this |
3737 | /// type also provides `PartialEq` impls for comparing a `Span` with a |
3738 | /// `SpanFieldwise`. This simplifies comparisons somewhat while still requiring |
3739 | /// that at least one of the values has an explicit fieldwise comparison type. |
3740 | /// |
3741 | /// # Safety |
3742 | /// |
3743 | /// This type is guaranteed to have the same layout in memory as [`Span`]. |
3744 | /// |
3745 | /// # Example: the difference between `SpanFieldwise` and [`Span::compare`] |
3746 | /// |
3747 | /// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be |
3748 | /// distinct values, but `Span::compare` considers them to be equivalent: |
3749 | /// |
3750 | /// ``` |
3751 | /// use std::cmp::Ordering; |
3752 | /// use jiff::ToSpan; |
3753 | /// |
3754 | /// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise()); |
3755 | /// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal); |
3756 | /// |
3757 | /// // These comparisons are allowed between a `Span` and a `SpanFieldwise`. |
3758 | /// // Namely, as long as one value is "fieldwise," then the comparison is OK. |
3759 | /// assert_ne!(120.minutes().fieldwise(), 2.hours()); |
3760 | /// assert_ne!(120.minutes(), 2.hours().fieldwise()); |
3761 | /// |
3762 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3763 | /// ``` |
3764 | #[derive (Clone, Copy, Debug, Default)] |
3765 | #[repr (transparent)] |
3766 | pub struct SpanFieldwise(pub Span); |
3767 | |
3768 | // Exists so that things like `-1.day().fieldwise()` works as expected. |
3769 | impl core::ops::Neg for SpanFieldwise { |
3770 | type Output = SpanFieldwise; |
3771 | |
3772 | #[inline ] |
3773 | fn neg(self) -> SpanFieldwise { |
3774 | SpanFieldwise(self.0.negate()) |
3775 | } |
3776 | } |
3777 | |
3778 | impl Eq for SpanFieldwise {} |
3779 | |
3780 | impl PartialEq for SpanFieldwise { |
3781 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
3782 | self.0.sign == rhs.0.sign |
3783 | && self.0.years == rhs.0.years |
3784 | && self.0.months == rhs.0.months |
3785 | && self.0.weeks == rhs.0.weeks |
3786 | && self.0.days == rhs.0.days |
3787 | && self.0.hours == rhs.0.hours |
3788 | && self.0.minutes == rhs.0.minutes |
3789 | && self.0.seconds == rhs.0.seconds |
3790 | && self.0.milliseconds == rhs.0.milliseconds |
3791 | && self.0.microseconds == rhs.0.microseconds |
3792 | && self.0.nanoseconds == rhs.0.nanoseconds |
3793 | } |
3794 | } |
3795 | |
3796 | impl<'a> PartialEq<SpanFieldwise> for &'a SpanFieldwise { |
3797 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
3798 | *self == rhs |
3799 | } |
3800 | } |
3801 | |
3802 | impl PartialEq<Span> for SpanFieldwise { |
3803 | fn eq(&self, rhs: &Span) -> bool { |
3804 | self == rhs.fieldwise() |
3805 | } |
3806 | } |
3807 | |
3808 | impl PartialEq<SpanFieldwise> for Span { |
3809 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
3810 | self.fieldwise() == *rhs |
3811 | } |
3812 | } |
3813 | |
3814 | impl<'a> PartialEq<SpanFieldwise> for &'a Span { |
3815 | fn eq(&self, rhs: &SpanFieldwise) -> bool { |
3816 | self.fieldwise() == *rhs |
3817 | } |
3818 | } |
3819 | |
3820 | impl core::hash::Hash for SpanFieldwise { |
3821 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
3822 | self.0.sign.hash(state); |
3823 | self.0.years.hash(state); |
3824 | self.0.months.hash(state); |
3825 | self.0.weeks.hash(state); |
3826 | self.0.days.hash(state); |
3827 | self.0.hours.hash(state); |
3828 | self.0.minutes.hash(state); |
3829 | self.0.seconds.hash(state); |
3830 | self.0.milliseconds.hash(state); |
3831 | self.0.microseconds.hash(state); |
3832 | self.0.nanoseconds.hash(state); |
3833 | } |
3834 | } |
3835 | |
3836 | impl From<Span> for SpanFieldwise { |
3837 | fn from(span: Span) -> SpanFieldwise { |
3838 | SpanFieldwise(span) |
3839 | } |
3840 | } |
3841 | |
3842 | impl From<SpanFieldwise> for Span { |
3843 | fn from(span: SpanFieldwise) -> Span { |
3844 | span.0 |
3845 | } |
3846 | } |
3847 | |
3848 | /// A trait for enabling concise literals for creating [`Span`] values. |
3849 | /// |
3850 | /// In short, this trait lets you write something like `5.seconds()` or |
3851 | /// `1.day()` to create a [`Span`]. Once a `Span` has been created, you can |
3852 | /// use its mutator methods to add more fields. For example, |
3853 | /// `1.day().hours(10)` is equivalent to `Span::new().days(1).hours(10)`. |
3854 | /// |
3855 | /// This trait is implemented for the following integer types: `i8`, `i16`, |
3856 | /// `i32` and `i64`. |
3857 | /// |
3858 | /// Note that this trait is provided as a convenience and should generally |
3859 | /// only be used for literals in your source code. You should not use this |
3860 | /// trait on numbers provided by end users. Namely, if the number provided |
3861 | /// is not within Jiff's span limits, then these trait methods will panic. |
3862 | /// Instead, use fallible mutator constructors like [`Span::try_days`] |
3863 | /// or [`Span::try_seconds`]. |
3864 | /// |
3865 | /// # Example |
3866 | /// |
3867 | /// ``` |
3868 | /// use jiff::ToSpan; |
3869 | /// |
3870 | /// assert_eq!(5.days().to_string(), "P5D" ); |
3871 | /// assert_eq!(5.days().hours(10).to_string(), "P5DT10H" ); |
3872 | /// |
3873 | /// // Negation works and it doesn't matter where the sign goes. It can be |
3874 | /// // applied to the span itself or to the integer. |
3875 | /// assert_eq!((-5.days()).to_string(), "-P5D" ); |
3876 | /// assert_eq!((-5).days().to_string(), "-P5D" ); |
3877 | /// ``` |
3878 | /// |
3879 | /// # Example: alternative via span parsing |
3880 | /// |
3881 | /// Another way of tersely building a `Span` value is by parsing a ISO 8601 |
3882 | /// duration string: |
3883 | /// |
3884 | /// ``` |
3885 | /// use jiff::Span; |
3886 | /// |
3887 | /// let span = "P5y2m15dT23h30m10s" .parse::<Span>()?; |
3888 | /// assert_eq!( |
3889 | /// span.fieldwise(), |
3890 | /// Span::new().years(5).months(2).days(15).hours(23).minutes(30).seconds(10), |
3891 | /// ); |
3892 | /// |
3893 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3894 | /// ``` |
3895 | pub trait ToSpan: Sized { |
3896 | /// Create a new span from this integer in units of years. |
3897 | /// |
3898 | /// # Panics |
3899 | /// |
3900 | /// When `Span::new().years(self)` would panic. |
3901 | fn years(self) -> Span; |
3902 | |
3903 | /// Create a new span from this integer in units of months. |
3904 | /// |
3905 | /// # Panics |
3906 | /// |
3907 | /// When `Span::new().months(self)` would panic. |
3908 | fn months(self) -> Span; |
3909 | |
3910 | /// Create a new span from this integer in units of weeks. |
3911 | /// |
3912 | /// # Panics |
3913 | /// |
3914 | /// When `Span::new().weeks(self)` would panic. |
3915 | fn weeks(self) -> Span; |
3916 | |
3917 | /// Create a new span from this integer in units of days. |
3918 | /// |
3919 | /// # Panics |
3920 | /// |
3921 | /// When `Span::new().days(self)` would panic. |
3922 | fn days(self) -> Span; |
3923 | |
3924 | /// Create a new span from this integer in units of hours. |
3925 | /// |
3926 | /// # Panics |
3927 | /// |
3928 | /// When `Span::new().hours(self)` would panic. |
3929 | fn hours(self) -> Span; |
3930 | |
3931 | /// Create a new span from this integer in units of minutes. |
3932 | /// |
3933 | /// # Panics |
3934 | /// |
3935 | /// When `Span::new().minutes(self)` would panic. |
3936 | fn minutes(self) -> Span; |
3937 | |
3938 | /// Create a new span from this integer in units of seconds. |
3939 | /// |
3940 | /// # Panics |
3941 | /// |
3942 | /// When `Span::new().seconds(self)` would panic. |
3943 | fn seconds(self) -> Span; |
3944 | |
3945 | /// Create a new span from this integer in units of milliseconds. |
3946 | /// |
3947 | /// # Panics |
3948 | /// |
3949 | /// When `Span::new().milliseconds(self)` would panic. |
3950 | fn milliseconds(self) -> Span; |
3951 | |
3952 | /// Create a new span from this integer in units of microseconds. |
3953 | /// |
3954 | /// # Panics |
3955 | /// |
3956 | /// When `Span::new().microseconds(self)` would panic. |
3957 | fn microseconds(self) -> Span; |
3958 | |
3959 | /// Create a new span from this integer in units of nanoseconds. |
3960 | /// |
3961 | /// # Panics |
3962 | /// |
3963 | /// When `Span::new().nanoseconds(self)` would panic. |
3964 | fn nanoseconds(self) -> Span; |
3965 | |
3966 | /// Equivalent to `years()`, but reads better for singular units. |
3967 | #[inline ] |
3968 | fn year(self) -> Span { |
3969 | self.years() |
3970 | } |
3971 | |
3972 | /// Equivalent to `months()`, but reads better for singular units. |
3973 | #[inline ] |
3974 | fn month(self) -> Span { |
3975 | self.months() |
3976 | } |
3977 | |
3978 | /// Equivalent to `weeks()`, but reads better for singular units. |
3979 | #[inline ] |
3980 | fn week(self) -> Span { |
3981 | self.weeks() |
3982 | } |
3983 | |
3984 | /// Equivalent to `days()`, but reads better for singular units. |
3985 | #[inline ] |
3986 | fn day(self) -> Span { |
3987 | self.days() |
3988 | } |
3989 | |
3990 | /// Equivalent to `hours()`, but reads better for singular units. |
3991 | #[inline ] |
3992 | fn hour(self) -> Span { |
3993 | self.hours() |
3994 | } |
3995 | |
3996 | /// Equivalent to `minutes()`, but reads better for singular units. |
3997 | #[inline ] |
3998 | fn minute(self) -> Span { |
3999 | self.minutes() |
4000 | } |
4001 | |
4002 | /// Equivalent to `seconds()`, but reads better for singular units. |
4003 | #[inline ] |
4004 | fn second(self) -> Span { |
4005 | self.seconds() |
4006 | } |
4007 | |
4008 | /// Equivalent to `milliseconds()`, but reads better for singular units. |
4009 | #[inline ] |
4010 | fn millisecond(self) -> Span { |
4011 | self.milliseconds() |
4012 | } |
4013 | |
4014 | /// Equivalent to `microseconds()`, but reads better for singular units. |
4015 | #[inline ] |
4016 | fn microsecond(self) -> Span { |
4017 | self.microseconds() |
4018 | } |
4019 | |
4020 | /// Equivalent to `nanoseconds()`, but reads better for singular units. |
4021 | #[inline ] |
4022 | fn nanosecond(self) -> Span { |
4023 | self.nanoseconds() |
4024 | } |
4025 | } |
4026 | |
4027 | macro_rules! impl_to_span { |
4028 | ($ty:ty) => { |
4029 | impl ToSpan for $ty { |
4030 | #[inline] |
4031 | fn years(self) -> Span { |
4032 | Span::new().years(self) |
4033 | } |
4034 | #[inline] |
4035 | fn months(self) -> Span { |
4036 | Span::new().months(self) |
4037 | } |
4038 | #[inline] |
4039 | fn weeks(self) -> Span { |
4040 | Span::new().weeks(self) |
4041 | } |
4042 | #[inline] |
4043 | fn days(self) -> Span { |
4044 | Span::new().days(self) |
4045 | } |
4046 | #[inline] |
4047 | fn hours(self) -> Span { |
4048 | Span::new().hours(self) |
4049 | } |
4050 | #[inline] |
4051 | fn minutes(self) -> Span { |
4052 | Span::new().minutes(self) |
4053 | } |
4054 | #[inline] |
4055 | fn seconds(self) -> Span { |
4056 | Span::new().seconds(self) |
4057 | } |
4058 | #[inline] |
4059 | fn milliseconds(self) -> Span { |
4060 | Span::new().milliseconds(self) |
4061 | } |
4062 | #[inline] |
4063 | fn microseconds(self) -> Span { |
4064 | Span::new().microseconds(self) |
4065 | } |
4066 | #[inline] |
4067 | fn nanoseconds(self) -> Span { |
4068 | Span::new().nanoseconds(self) |
4069 | } |
4070 | } |
4071 | }; |
4072 | } |
4073 | |
4074 | impl_to_span!(i8); |
4075 | impl_to_span!(i16); |
4076 | impl_to_span!(i32); |
4077 | impl_to_span!(i64); |
4078 | |
4079 | /// A way to refer to a single calendar or clock unit. |
4080 | /// |
4081 | /// This type is principally used in APIs involving a [`Span`], which is a |
4082 | /// duration of time. For example, routines like [`Zoned::until`] permit |
4083 | /// specifying the largest unit of the span returned: |
4084 | /// |
4085 | /// ``` |
4086 | /// use jiff::{Unit, Zoned}; |
4087 | /// |
4088 | /// let zdt1: Zoned = "2024-07-06 17:40-04[America/New_York]" .parse()?; |
4089 | /// let zdt2: Zoned = "2024-11-05 08:00-05[America/New_York]" .parse()?; |
4090 | /// let span = zdt1.until((Unit::Year, &zdt2))?; |
4091 | /// assert_eq!(format!("{span:#}" ), "3mo 29d 14h 20m" ); |
4092 | /// |
4093 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4094 | /// ``` |
4095 | /// |
4096 | /// But a `Unit` is also used in APIs for rounding datetimes themselves: |
4097 | /// |
4098 | /// ``` |
4099 | /// use jiff::{Unit, Zoned}; |
4100 | /// |
4101 | /// let zdt: Zoned = "2024-07-06 17:44:22.158-04[America/New_York]" .parse()?; |
4102 | /// let nearest_minute = zdt.round(Unit::Minute)?; |
4103 | /// assert_eq!( |
4104 | /// nearest_minute.to_string(), |
4105 | /// "2024-07-06T17:44:00-04:00[America/New_York]" , |
4106 | /// ); |
4107 | /// |
4108 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4109 | /// ``` |
4110 | /// |
4111 | /// # Example: ordering |
4112 | /// |
4113 | /// This example demonstrates that `Unit` has an ordering defined such that |
4114 | /// bigger units compare greater than smaller units. |
4115 | /// |
4116 | /// ``` |
4117 | /// use jiff::Unit; |
4118 | /// |
4119 | /// assert!(Unit::Year > Unit::Nanosecond); |
4120 | /// assert!(Unit::Day > Unit::Hour); |
4121 | /// assert!(Unit::Hour > Unit::Minute); |
4122 | /// assert!(Unit::Hour > Unit::Minute); |
4123 | /// assert_eq!(Unit::Hour, Unit::Hour); |
4124 | /// ``` |
4125 | #[derive (Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] |
4126 | pub enum Unit { |
4127 | /// A Gregorian calendar year. It usually has 365 days for non-leap years, |
4128 | /// and 366 days for leap years. |
4129 | Year = 9, |
4130 | /// A Gregorian calendar month. It usually has one of 28, 29, 30 or 31 |
4131 | /// days. |
4132 | Month = 8, |
4133 | /// A week is 7 days that either begins on Sunday or Monday. |
4134 | Week = 7, |
4135 | /// A day is usually 24 hours, but some days may have different lengths |
4136 | /// due to time zone transitions. |
4137 | Day = 6, |
4138 | /// An hour is always 60 minutes. |
4139 | Hour = 5, |
4140 | /// A minute is always 60 seconds. (Jiff behaves as if leap seconds do not |
4141 | /// exist.) |
4142 | Minute = 4, |
4143 | /// A second is always 1,000 milliseconds. |
4144 | Second = 3, |
4145 | /// A millisecond is always 1,000 microseconds. |
4146 | Millisecond = 2, |
4147 | /// A microsecond is always 1,000 nanoseconds. |
4148 | Microsecond = 1, |
4149 | /// A nanosecond is the smallest granularity of time supported by Jiff. |
4150 | Nanosecond = 0, |
4151 | } |
4152 | |
4153 | impl Unit { |
4154 | /// Returns the next biggest unit, if one exists. |
4155 | pub(crate) fn next(&self) -> Option<Unit> { |
4156 | match *self { |
4157 | Unit::Year => None, |
4158 | Unit::Month => Some(Unit::Year), |
4159 | Unit::Week => Some(Unit::Month), |
4160 | Unit::Day => Some(Unit::Week), |
4161 | Unit::Hour => Some(Unit::Day), |
4162 | Unit::Minute => Some(Unit::Hour), |
4163 | Unit::Second => Some(Unit::Minute), |
4164 | Unit::Millisecond => Some(Unit::Second), |
4165 | Unit::Microsecond => Some(Unit::Millisecond), |
4166 | Unit::Nanosecond => Some(Unit::Microsecond), |
4167 | } |
4168 | } |
4169 | |
4170 | /// Returns the number of nanoseconds in this unit as a 128-bit integer. |
4171 | /// |
4172 | /// # Panics |
4173 | /// |
4174 | /// When this unit is always variable. That is, years or months. |
4175 | pub(crate) fn nanoseconds(self) -> NoUnits128 { |
4176 | match self { |
4177 | Unit::Nanosecond => Constant(1), |
4178 | Unit::Microsecond => t::NANOS_PER_MICRO, |
4179 | Unit::Millisecond => t::NANOS_PER_MILLI, |
4180 | Unit::Second => t::NANOS_PER_SECOND, |
4181 | Unit::Minute => t::NANOS_PER_MINUTE, |
4182 | Unit::Hour => t::NANOS_PER_HOUR, |
4183 | Unit::Day => t::NANOS_PER_CIVIL_DAY, |
4184 | Unit::Week => t::NANOS_PER_CIVIL_WEEK, |
4185 | unit => unreachable!(" {unit:?} has no definitive time interval" ), |
4186 | } |
4187 | .rinto() |
4188 | } |
4189 | |
4190 | /// Returns true when this unit is definitively variable. |
4191 | /// |
4192 | /// In effect, this is any unit bigger than 'day', because any such unit |
4193 | /// can vary in time depending on its reference point. A 'day' can as well, |
4194 | /// but we sorta special case 'day' to mean '24 hours' for cases where |
4195 | /// the user is dealing with civil time. |
4196 | fn is_variable(self) -> bool { |
4197 | matches!(self, Unit::Year | Unit::Month | Unit::Week | Unit::Day) |
4198 | } |
4199 | |
4200 | /// A human readable singular description of this unit of time. |
4201 | pub(crate) fn singular(&self) -> &'static str { |
4202 | match *self { |
4203 | Unit::Year => "year" , |
4204 | Unit::Month => "month" , |
4205 | Unit::Week => "week" , |
4206 | Unit::Day => "day" , |
4207 | Unit::Hour => "hour" , |
4208 | Unit::Minute => "minute" , |
4209 | Unit::Second => "second" , |
4210 | Unit::Millisecond => "millisecond" , |
4211 | Unit::Microsecond => "microsecond" , |
4212 | Unit::Nanosecond => "nanosecond" , |
4213 | } |
4214 | } |
4215 | |
4216 | /// A human readable plural description of this unit of time. |
4217 | pub(crate) fn plural(&self) -> &'static str { |
4218 | match *self { |
4219 | Unit::Year => "years" , |
4220 | Unit::Month => "months" , |
4221 | Unit::Week => "weeks" , |
4222 | Unit::Day => "days" , |
4223 | Unit::Hour => "hours" , |
4224 | Unit::Minute => "minutes" , |
4225 | Unit::Second => "seconds" , |
4226 | Unit::Millisecond => "milliseconds" , |
4227 | Unit::Microsecond => "microseconds" , |
4228 | Unit::Nanosecond => "nanoseconds" , |
4229 | } |
4230 | } |
4231 | |
4232 | /// A very succinct label corresponding to this unit. |
4233 | pub(crate) fn compact(&self) -> &'static str { |
4234 | match *self { |
4235 | Unit::Year => "y" , |
4236 | Unit::Month => "mo" , |
4237 | Unit::Week => "w" , |
4238 | Unit::Day => "d" , |
4239 | Unit::Hour => "h" , |
4240 | Unit::Minute => "m" , |
4241 | Unit::Second => "s" , |
4242 | Unit::Millisecond => "ms" , |
4243 | Unit::Microsecond => "µs" , |
4244 | Unit::Nanosecond => "ns" , |
4245 | } |
4246 | } |
4247 | |
4248 | /// The inverse of `unit as usize`. |
4249 | fn from_usize(n: usize) -> Option<Unit> { |
4250 | match n { |
4251 | 0 => Some(Unit::Nanosecond), |
4252 | 1 => Some(Unit::Microsecond), |
4253 | 2 => Some(Unit::Millisecond), |
4254 | 3 => Some(Unit::Second), |
4255 | 4 => Some(Unit::Minute), |
4256 | 5 => Some(Unit::Hour), |
4257 | 6 => Some(Unit::Day), |
4258 | 7 => Some(Unit::Week), |
4259 | 8 => Some(Unit::Month), |
4260 | 9 => Some(Unit::Year), |
4261 | _ => None, |
4262 | } |
4263 | } |
4264 | } |
4265 | |
4266 | #[cfg (test)] |
4267 | impl quickcheck::Arbitrary for Unit { |
4268 | fn arbitrary(g: &mut quickcheck::Gen) -> Unit { |
4269 | Unit::from_usize(usize::arbitrary(g) % 10).unwrap() |
4270 | } |
4271 | |
4272 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
4273 | alloc::boxed::Box::new( |
4274 | (*self as usize) |
4275 | .shrink() |
4276 | .map(|n| Unit::from_usize(n % 10).unwrap()), |
4277 | ) |
4278 | } |
4279 | } |
4280 | |
4281 | /// Options for [`Span::checked_add`] and [`Span::checked_sub`]. |
4282 | /// |
4283 | /// This type provides a way to ergonomically add two spans with an optional |
4284 | /// relative datetime. Namely, a relative datetime is only needed when at least |
4285 | /// one of the two spans being added (or subtracted) has a non-zero calendar |
4286 | /// unit (years, months, weeks or days). Otherwise, an error will be returned. |
4287 | /// |
4288 | /// Callers may use [`SpanArithmetic::days_are_24_hours`] to opt into 24-hour |
4289 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
4290 | /// |
4291 | /// The main way to construct values of this type is with its `From` trait |
4292 | /// implementations: |
4293 | /// |
4294 | /// * `From<Span> for SpanArithmetic` adds (or subtracts) the given span to the |
4295 | /// receiver in [`Span::checked_add`] (or [`Span::checked_sub`]). |
4296 | /// * `From<(Span, civil::Date)> for SpanArithmetic` adds (or subtracts) |
4297 | /// the given span to the receiver in [`Span::checked_add`] (or |
4298 | /// [`Span::checked_sub`]), relative to the given date. There are also `From` |
4299 | /// implementations for `civil::DateTime`, `Zoned` and [`SpanRelativeTo`]. |
4300 | /// |
4301 | /// # Example |
4302 | /// |
4303 | /// ``` |
4304 | /// use jiff::ToSpan; |
4305 | /// |
4306 | /// assert_eq!( |
4307 | /// 1.hour().checked_add(30.minutes())?, |
4308 | /// 1.hour().minutes(30).fieldwise(), |
4309 | /// ); |
4310 | /// |
4311 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4312 | /// ``` |
4313 | #[derive (Clone, Copy, Debug)] |
4314 | pub struct SpanArithmetic<'a> { |
4315 | duration: Duration, |
4316 | relative: Option<SpanRelativeTo<'a>>, |
4317 | } |
4318 | |
4319 | impl<'a> SpanArithmetic<'a> { |
4320 | /// This is a convenience function for setting the relative option on |
4321 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
4322 | /// |
4323 | /// # Example |
4324 | /// |
4325 | /// When doing arithmetic on spans involving days, either a relative |
4326 | /// datetime must be provided, or a special assertion opting into 24-hour |
4327 | /// days is required. Otherwise, you get an error. |
4328 | /// |
4329 | /// ``` |
4330 | /// use jiff::{SpanArithmetic, ToSpan}; |
4331 | /// |
4332 | /// let span1 = 2.days().hours(12); |
4333 | /// let span2 = 12.hours(); |
4334 | /// // No relative date provided, which results in an error. |
4335 | /// assert_eq!( |
4336 | /// span1.checked_add(span2).unwrap_err().to_string(), |
4337 | /// "using unit 'day' in a span or configuration requires that \ |
4338 | /// either a relative reference time be given or \ |
4339 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
4340 | /// invariant 24-hour days, but neither were provided" , |
4341 | /// ); |
4342 | /// let sum = span1.checked_add( |
4343 | /// SpanArithmetic::from(span2).days_are_24_hours(), |
4344 | /// )?; |
4345 | /// assert_eq!(sum, 3.days().fieldwise()); |
4346 | /// |
4347 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4348 | /// ``` |
4349 | #[inline ] |
4350 | pub fn days_are_24_hours(self) -> SpanArithmetic<'a> { |
4351 | self.relative(SpanRelativeTo::days_are_24_hours()) |
4352 | } |
4353 | } |
4354 | |
4355 | impl<'a> SpanArithmetic<'a> { |
4356 | #[inline ] |
4357 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
4358 | self, |
4359 | relative: R, |
4360 | ) -> SpanArithmetic<'a> { |
4361 | SpanArithmetic { relative: Some(relative.into()), ..self } |
4362 | } |
4363 | |
4364 | #[inline ] |
4365 | fn checked_add(self, span1: Span) -> Result<Span, Error> { |
4366 | match self.duration.to_signed()? { |
4367 | SDuration::Span(span2: Span) => { |
4368 | span1.checked_add_span(self.relative, &span2) |
4369 | } |
4370 | SDuration::Absolute(dur2: SignedDuration) => { |
4371 | span1.checked_add_duration(self.relative, duration:dur2) |
4372 | } |
4373 | } |
4374 | } |
4375 | } |
4376 | |
4377 | impl From<Span> for SpanArithmetic<'static> { |
4378 | fn from(span: Span) -> SpanArithmetic<'static> { |
4379 | let duration: Duration = Duration::from(span); |
4380 | SpanArithmetic { duration, relative: None } |
4381 | } |
4382 | } |
4383 | |
4384 | impl<'a> From<&'a Span> for SpanArithmetic<'static> { |
4385 | fn from(span: &'a Span) -> SpanArithmetic<'static> { |
4386 | let duration: Duration = Duration::from(*span); |
4387 | SpanArithmetic { duration, relative: None } |
4388 | } |
4389 | } |
4390 | |
4391 | impl From<(Span, Date)> for SpanArithmetic<'static> { |
4392 | #[inline ] |
4393 | fn from((span: Span, date: Date): (Span, Date)) -> SpanArithmetic<'static> { |
4394 | SpanArithmetic::from(span).relative(date) |
4395 | } |
4396 | } |
4397 | |
4398 | impl From<(Span, DateTime)> for SpanArithmetic<'static> { |
4399 | #[inline ] |
4400 | fn from((span: Span, datetime: DateTime): (Span, DateTime)) -> SpanArithmetic<'static> { |
4401 | SpanArithmetic::from(span).relative(datetime) |
4402 | } |
4403 | } |
4404 | |
4405 | impl<'a> From<(Span, &'a Zoned)> for SpanArithmetic<'a> { |
4406 | #[inline ] |
4407 | fn from((span: Span, zoned: &'a Zoned): (Span, &'a Zoned)) -> SpanArithmetic<'a> { |
4408 | SpanArithmetic::from(span).relative(zoned) |
4409 | } |
4410 | } |
4411 | |
4412 | impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanArithmetic<'a> { |
4413 | #[inline ] |
4414 | fn from( |
4415 | (span: Span, relative: SpanRelativeTo<'a>): (Span, SpanRelativeTo<'a>), |
4416 | ) -> SpanArithmetic<'a> { |
4417 | SpanArithmetic::from(span).relative(relative) |
4418 | } |
4419 | } |
4420 | |
4421 | impl<'a> From<(&'a Span, Date)> for SpanArithmetic<'static> { |
4422 | #[inline ] |
4423 | fn from((span: &'a Span, date: Date): (&'a Span, Date)) -> SpanArithmetic<'static> { |
4424 | SpanArithmetic::from(span).relative(date) |
4425 | } |
4426 | } |
4427 | |
4428 | impl<'a> From<(&'a Span, DateTime)> for SpanArithmetic<'static> { |
4429 | #[inline ] |
4430 | fn from( |
4431 | (span: &'a Span, datetime: DateTime): (&'a Span, DateTime), |
4432 | ) -> SpanArithmetic<'static> { |
4433 | SpanArithmetic::from(span).relative(datetime) |
4434 | } |
4435 | } |
4436 | |
4437 | impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanArithmetic<'b> { |
4438 | #[inline ] |
4439 | fn from((span: &'a Span, zoned: &'b Zoned): (&'a Span, &'b Zoned)) -> SpanArithmetic<'b> { |
4440 | SpanArithmetic::from(span).relative(zoned) |
4441 | } |
4442 | } |
4443 | |
4444 | impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanArithmetic<'b> { |
4445 | #[inline ] |
4446 | fn from( |
4447 | (span: &'a Span, relative: SpanRelativeTo<'b>): (&'a Span, SpanRelativeTo<'b>), |
4448 | ) -> SpanArithmetic<'b> { |
4449 | SpanArithmetic::from(span).relative(relative) |
4450 | } |
4451 | } |
4452 | |
4453 | impl From<SignedDuration> for SpanArithmetic<'static> { |
4454 | fn from(duration: SignedDuration) -> SpanArithmetic<'static> { |
4455 | let duration: Duration = Duration::from(duration); |
4456 | SpanArithmetic { duration, relative: None } |
4457 | } |
4458 | } |
4459 | |
4460 | impl From<(SignedDuration, Date)> for SpanArithmetic<'static> { |
4461 | #[inline ] |
4462 | fn from( |
4463 | (duration: SignedDuration, date: Date): (SignedDuration, Date), |
4464 | ) -> SpanArithmetic<'static> { |
4465 | SpanArithmetic::from(duration).relative(date) |
4466 | } |
4467 | } |
4468 | |
4469 | impl From<(SignedDuration, DateTime)> for SpanArithmetic<'static> { |
4470 | #[inline ] |
4471 | fn from( |
4472 | (duration: SignedDuration, datetime: DateTime): (SignedDuration, DateTime), |
4473 | ) -> SpanArithmetic<'static> { |
4474 | SpanArithmetic::from(duration).relative(datetime) |
4475 | } |
4476 | } |
4477 | |
4478 | impl<'a> From<(SignedDuration, &'a Zoned)> for SpanArithmetic<'a> { |
4479 | #[inline ] |
4480 | fn from( |
4481 | (duration: SignedDuration, zoned: &'a Zoned): (SignedDuration, &'a Zoned), |
4482 | ) -> SpanArithmetic<'a> { |
4483 | SpanArithmetic::from(duration).relative(zoned) |
4484 | } |
4485 | } |
4486 | |
4487 | impl From<UnsignedDuration> for SpanArithmetic<'static> { |
4488 | fn from(duration: UnsignedDuration) -> SpanArithmetic<'static> { |
4489 | let duration: Duration = Duration::from(duration); |
4490 | SpanArithmetic { duration, relative: None } |
4491 | } |
4492 | } |
4493 | |
4494 | impl From<(UnsignedDuration, Date)> for SpanArithmetic<'static> { |
4495 | #[inline ] |
4496 | fn from( |
4497 | (duration: Duration, date: Date): (UnsignedDuration, Date), |
4498 | ) -> SpanArithmetic<'static> { |
4499 | SpanArithmetic::from(duration).relative(date) |
4500 | } |
4501 | } |
4502 | |
4503 | impl From<(UnsignedDuration, DateTime)> for SpanArithmetic<'static> { |
4504 | #[inline ] |
4505 | fn from( |
4506 | (duration: Duration, datetime: DateTime): (UnsignedDuration, DateTime), |
4507 | ) -> SpanArithmetic<'static> { |
4508 | SpanArithmetic::from(duration).relative(datetime) |
4509 | } |
4510 | } |
4511 | |
4512 | impl<'a> From<(UnsignedDuration, &'a Zoned)> for SpanArithmetic<'a> { |
4513 | #[inline ] |
4514 | fn from( |
4515 | (duration: Duration, zoned: &'a Zoned): (UnsignedDuration, &'a Zoned), |
4516 | ) -> SpanArithmetic<'a> { |
4517 | SpanArithmetic::from(duration).relative(zoned) |
4518 | } |
4519 | } |
4520 | |
4521 | /// Options for [`Span::compare`]. |
4522 | /// |
4523 | /// This type provides a way to ergonomically compare two spans with an |
4524 | /// optional relative datetime. Namely, a relative datetime is only needed when |
4525 | /// at least one of the two spans being compared has a non-zero calendar unit |
4526 | /// (years, months, weeks or days). Otherwise, an error will be returned. |
4527 | /// |
4528 | /// Callers may use [`SpanCompare::days_are_24_hours`] to opt into 24-hour |
4529 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
4530 | /// |
4531 | /// The main way to construct values of this type is with its `From` trait |
4532 | /// implementations: |
4533 | /// |
4534 | /// * `From<Span> for SpanCompare` compares the given span to the receiver |
4535 | /// in [`Span::compare`]. |
4536 | /// * `From<(Span, civil::Date)> for SpanCompare` compares the given span |
4537 | /// to the receiver in [`Span::compare`], relative to the given date. There |
4538 | /// are also `From` implementations for `civil::DateTime`, `Zoned` and |
4539 | /// [`SpanRelativeTo`]. |
4540 | /// |
4541 | /// # Example |
4542 | /// |
4543 | /// ``` |
4544 | /// use jiff::ToSpan; |
4545 | /// |
4546 | /// let span1 = 3.hours(); |
4547 | /// let span2 = 180.minutes(); |
4548 | /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal); |
4549 | /// |
4550 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4551 | /// ``` |
4552 | #[derive (Clone, Copy, Debug)] |
4553 | pub struct SpanCompare<'a> { |
4554 | span: Span, |
4555 | relative: Option<SpanRelativeTo<'a>>, |
4556 | } |
4557 | |
4558 | impl<'a> SpanCompare<'a> { |
4559 | /// This is a convenience function for setting the relative option on |
4560 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
4561 | /// |
4562 | /// # Example |
4563 | /// |
4564 | /// When comparing spans involving days, either a relative datetime must be |
4565 | /// provided, or a special assertion opting into 24-hour days is |
4566 | /// required. Otherwise, you get an error. |
4567 | /// |
4568 | /// ``` |
4569 | /// use jiff::{SpanCompare, ToSpan, Unit}; |
4570 | /// |
4571 | /// let span1 = 2.days().hours(12); |
4572 | /// let span2 = 60.hours(); |
4573 | /// // No relative date provided, which results in an error. |
4574 | /// assert_eq!( |
4575 | /// span1.compare(span2).unwrap_err().to_string(), |
4576 | /// "using unit 'day' in a span or configuration requires that \ |
4577 | /// either a relative reference time be given or \ |
4578 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
4579 | /// invariant 24-hour days, but neither were provided" , |
4580 | /// ); |
4581 | /// let ordering = span1.compare( |
4582 | /// SpanCompare::from(span2).days_are_24_hours(), |
4583 | /// )?; |
4584 | /// assert_eq!(ordering, std::cmp::Ordering::Equal); |
4585 | /// |
4586 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4587 | /// ``` |
4588 | #[inline ] |
4589 | pub fn days_are_24_hours(self) -> SpanCompare<'a> { |
4590 | self.relative(SpanRelativeTo::days_are_24_hours()) |
4591 | } |
4592 | } |
4593 | |
4594 | impl<'a> SpanCompare<'a> { |
4595 | #[inline ] |
4596 | fn new(span: Span) -> SpanCompare<'static> { |
4597 | SpanCompare { span, relative: None } |
4598 | } |
4599 | |
4600 | #[inline ] |
4601 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
4602 | self, |
4603 | relative: R, |
4604 | ) -> SpanCompare<'a> { |
4605 | SpanCompare { relative: Some(relative.into()), ..self } |
4606 | } |
4607 | |
4608 | fn compare(self, span: Span) -> Result<Ordering, Error> { |
4609 | let (span1, span2) = (span, self.span); |
4610 | let unit = span1.largest_unit().max(span2.largest_unit()); |
4611 | let start = match self.relative { |
4612 | Some(r) => match r.to_relative(unit)? { |
4613 | Some(r) => r, |
4614 | None => { |
4615 | let nanos1 = span1.to_invariant_nanoseconds(); |
4616 | let nanos2 = span2.to_invariant_nanoseconds(); |
4617 | return Ok(nanos1.cmp(&nanos2)); |
4618 | } |
4619 | }, |
4620 | None => { |
4621 | requires_relative_date_err(unit)?; |
4622 | let nanos1 = span1.to_invariant_nanoseconds(); |
4623 | let nanos2 = span2.to_invariant_nanoseconds(); |
4624 | return Ok(nanos1.cmp(&nanos2)); |
4625 | } |
4626 | }; |
4627 | let end1 = start.checked_add(span1)?.to_nanosecond(); |
4628 | let end2 = start.checked_add(span2)?.to_nanosecond(); |
4629 | Ok(end1.cmp(&end2)) |
4630 | } |
4631 | } |
4632 | |
4633 | impl From<Span> for SpanCompare<'static> { |
4634 | fn from(span: Span) -> SpanCompare<'static> { |
4635 | SpanCompare::new(span) |
4636 | } |
4637 | } |
4638 | |
4639 | impl<'a> From<&'a Span> for SpanCompare<'static> { |
4640 | fn from(span: &'a Span) -> SpanCompare<'static> { |
4641 | SpanCompare::new(*span) |
4642 | } |
4643 | } |
4644 | |
4645 | impl From<(Span, Date)> for SpanCompare<'static> { |
4646 | #[inline ] |
4647 | fn from((span: Span, date: Date): (Span, Date)) -> SpanCompare<'static> { |
4648 | SpanCompare::from(span).relative(date) |
4649 | } |
4650 | } |
4651 | |
4652 | impl From<(Span, DateTime)> for SpanCompare<'static> { |
4653 | #[inline ] |
4654 | fn from((span: Span, datetime: DateTime): (Span, DateTime)) -> SpanCompare<'static> { |
4655 | SpanCompare::from(span).relative(datetime) |
4656 | } |
4657 | } |
4658 | |
4659 | impl<'a> From<(Span, &'a Zoned)> for SpanCompare<'a> { |
4660 | #[inline ] |
4661 | fn from((span: Span, zoned: &'a Zoned): (Span, &'a Zoned)) -> SpanCompare<'a> { |
4662 | SpanCompare::from(span).relative(zoned) |
4663 | } |
4664 | } |
4665 | |
4666 | impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanCompare<'a> { |
4667 | #[inline ] |
4668 | fn from((span: Span, relative: SpanRelativeTo<'a>): (Span, SpanRelativeTo<'a>)) -> SpanCompare<'a> { |
4669 | SpanCompare::from(span).relative(relative) |
4670 | } |
4671 | } |
4672 | |
4673 | impl<'a> From<(&'a Span, Date)> for SpanCompare<'static> { |
4674 | #[inline ] |
4675 | fn from((span: &'a Span, date: Date): (&'a Span, Date)) -> SpanCompare<'static> { |
4676 | SpanCompare::from(span).relative(date) |
4677 | } |
4678 | } |
4679 | |
4680 | impl<'a> From<(&'a Span, DateTime)> for SpanCompare<'static> { |
4681 | #[inline ] |
4682 | fn from((span: &'a Span, datetime: DateTime): (&'a Span, DateTime)) -> SpanCompare<'static> { |
4683 | SpanCompare::from(span).relative(datetime) |
4684 | } |
4685 | } |
4686 | |
4687 | impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanCompare<'b> { |
4688 | #[inline ] |
4689 | fn from((span: &'a Span, zoned: &'b Zoned): (&'a Span, &'b Zoned)) -> SpanCompare<'b> { |
4690 | SpanCompare::from(span).relative(zoned) |
4691 | } |
4692 | } |
4693 | |
4694 | impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanCompare<'b> { |
4695 | #[inline ] |
4696 | fn from( |
4697 | (span: &'a Span, relative: SpanRelativeTo<'b>): (&'a Span, SpanRelativeTo<'b>), |
4698 | ) -> SpanCompare<'b> { |
4699 | SpanCompare::from(span).relative(relative) |
4700 | } |
4701 | } |
4702 | |
4703 | /// Options for [`Span::total`]. |
4704 | /// |
4705 | /// This type provides a way to ergonomically determine the number of a |
4706 | /// particular unit in a span, with a potentially fractional component, with |
4707 | /// an optional relative datetime. Namely, a relative datetime is only needed |
4708 | /// when the span has a non-zero calendar unit (years, months, weeks or days). |
4709 | /// Otherwise, an error will be returned. |
4710 | /// |
4711 | /// Callers may use [`SpanTotal::days_are_24_hours`] to opt into 24-hour |
4712 | /// invariant days (and 7-day weeks) without providing a relative datetime. |
4713 | /// |
4714 | /// The main way to construct values of this type is with its `From` trait |
4715 | /// implementations: |
4716 | /// |
4717 | /// * `From<Unit> for SpanTotal` computes a total for the given unit in the |
4718 | /// receiver span for [`Span::total`]. |
4719 | /// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the given |
4720 | /// unit in the receiver span for [`Span::total`], relative to the given date. |
4721 | /// There are also `From` implementations for `civil::DateTime`, `Zoned` and |
4722 | /// [`SpanRelativeTo`]. |
4723 | /// |
4724 | /// # Example |
4725 | /// |
4726 | /// This example shows how to find the number of seconds in a particular span: |
4727 | /// |
4728 | /// ``` |
4729 | /// use jiff::{ToSpan, Unit}; |
4730 | /// |
4731 | /// let span = 3.hours().minutes(10); |
4732 | /// assert_eq!(span.total(Unit::Second)?, 11_400.0); |
4733 | /// |
4734 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4735 | /// ``` |
4736 | /// |
4737 | /// # Example: 24 hour days |
4738 | /// |
4739 | /// This shows how to find the total number of 24 hour days in `123,456,789` |
4740 | /// seconds. |
4741 | /// |
4742 | /// ``` |
4743 | /// use jiff::{SpanTotal, ToSpan, Unit}; |
4744 | /// |
4745 | /// let span = 123_456_789.seconds(); |
4746 | /// assert_eq!( |
4747 | /// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?, |
4748 | /// 1428.8980208333332, |
4749 | /// ); |
4750 | /// |
4751 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4752 | /// ``` |
4753 | /// |
4754 | /// # Example: DST is taken into account |
4755 | /// |
4756 | /// The month of March 2024 in `America/New_York` had 31 days, but one of those |
4757 | /// days was 23 hours long due a transition into daylight saving time: |
4758 | /// |
4759 | /// ``` |
4760 | /// use jiff::{civil::date, ToSpan, Unit}; |
4761 | /// |
4762 | /// let span = 744.hours(); |
4763 | /// let relative = date(2024, 3, 1).in_tz("America/New_York" )?; |
4764 | /// // Because of the short day, 744 hours is actually a little *more* than |
4765 | /// // 1 month starting from 2024-03-01. |
4766 | /// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889); |
4767 | /// |
4768 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4769 | /// ``` |
4770 | /// |
4771 | /// Now compare what happens when the relative datetime is civil and not |
4772 | /// time zone aware: |
4773 | /// |
4774 | /// ``` |
4775 | /// use jiff::{civil::date, ToSpan, Unit}; |
4776 | /// |
4777 | /// let span = 744.hours(); |
4778 | /// let relative = date(2024, 3, 1); |
4779 | /// assert_eq!(span.total((Unit::Month, relative))?, 1.0); |
4780 | /// |
4781 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4782 | /// ``` |
4783 | #[derive (Clone, Copy, Debug)] |
4784 | pub struct SpanTotal<'a> { |
4785 | unit: Unit, |
4786 | relative: Option<SpanRelativeTo<'a>>, |
4787 | } |
4788 | |
4789 | impl<'a> SpanTotal<'a> { |
4790 | /// This is a convenience function for setting the relative option on |
4791 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
4792 | /// |
4793 | /// # Example |
4794 | /// |
4795 | /// When computing the total duration for spans involving days, either a |
4796 | /// relative datetime must be provided, or a special assertion opting into |
4797 | /// 24-hour days is required. Otherwise, you get an error. |
4798 | /// |
4799 | /// ``` |
4800 | /// use jiff::{civil::date, SpanTotal, ToSpan, Unit}; |
4801 | /// |
4802 | /// let span = 2.days().hours(12); |
4803 | /// |
4804 | /// // No relative date provided, which results in an error. |
4805 | /// assert_eq!( |
4806 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
4807 | /// "using unit 'day' in a span or configuration requires that either \ |
4808 | /// a relative reference time be given or \ |
4809 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
4810 | /// invariant 24-hour days, but neither were provided" , |
4811 | /// ); |
4812 | /// |
4813 | /// // If we can assume all days are 24 hours, then we can assert it: |
4814 | /// let total = span.total( |
4815 | /// SpanTotal::from(Unit::Hour).days_are_24_hours(), |
4816 | /// )?; |
4817 | /// assert_eq!(total, 60.0); |
4818 | /// |
4819 | /// // Or provide a relative datetime, which is preferred if possible: |
4820 | /// let total = span.total((Unit::Hour, date(2025, 1, 26)))?; |
4821 | /// assert_eq!(total, 60.0); |
4822 | /// |
4823 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4824 | /// ``` |
4825 | #[inline ] |
4826 | pub fn days_are_24_hours(self) -> SpanTotal<'a> { |
4827 | self.relative(SpanRelativeTo::days_are_24_hours()) |
4828 | } |
4829 | } |
4830 | |
4831 | impl<'a> SpanTotal<'a> { |
4832 | #[inline ] |
4833 | fn new(unit: Unit) -> SpanTotal<'static> { |
4834 | SpanTotal { unit, relative: None } |
4835 | } |
4836 | |
4837 | #[inline ] |
4838 | fn relative<R: Into<SpanRelativeTo<'a>>>( |
4839 | self, |
4840 | relative: R, |
4841 | ) -> SpanTotal<'a> { |
4842 | SpanTotal { relative: Some(relative.into()), ..self } |
4843 | } |
4844 | |
4845 | fn total(self, span: Span) -> Result<f64, Error> { |
4846 | let max_unit = self.unit.max(span.largest_unit()); |
4847 | let relative = match self.relative { |
4848 | Some(r) => match r.to_relative(max_unit)? { |
4849 | Some(r) => r, |
4850 | None => { |
4851 | return Ok(self.total_invariant(span)); |
4852 | } |
4853 | }, |
4854 | None => { |
4855 | requires_relative_date_err(max_unit)?; |
4856 | return Ok(self.total_invariant(span)); |
4857 | } |
4858 | }; |
4859 | let relspan = relative.into_relative_span(self.unit, span)?; |
4860 | if !self.unit.is_variable() { |
4861 | return Ok(self.total_invariant(relspan.span)); |
4862 | } |
4863 | |
4864 | assert!(self.unit >= Unit::Day); |
4865 | let sign = relspan.span.get_sign_ranged(); |
4866 | let (relative_start, relative_end) = match relspan.kind { |
4867 | RelativeSpanKind::Civil { start, end } => { |
4868 | let start = Relative::Civil(start); |
4869 | let end = Relative::Civil(end); |
4870 | (start, end) |
4871 | } |
4872 | RelativeSpanKind::Zoned { start, end } => { |
4873 | let start = Relative::Zoned(start); |
4874 | let end = Relative::Zoned(end); |
4875 | (start, end) |
4876 | } |
4877 | }; |
4878 | let (relative0, relative1) = clamp_relative_span( |
4879 | &relative_start, |
4880 | relspan.span.without_lower(self.unit), |
4881 | self.unit, |
4882 | sign.rinto(), |
4883 | )?; |
4884 | let denom = (relative1 - relative0).get() as f64; |
4885 | let numer = (relative_end.to_nanosecond() - relative0).get() as f64; |
4886 | let unit_val = relspan.span.get_units_ranged(self.unit).get() as f64; |
4887 | Ok(unit_val + (numer / denom) * (sign.get() as f64)) |
4888 | } |
4889 | |
4890 | #[inline ] |
4891 | fn total_invariant(&self, span: Span) -> f64 { |
4892 | assert!(self.unit <= Unit::Week); |
4893 | let nanos = span.to_invariant_nanoseconds(); |
4894 | (nanos.get() as f64) / (self.unit.nanoseconds().get() as f64) |
4895 | } |
4896 | } |
4897 | |
4898 | impl From<Unit> for SpanTotal<'static> { |
4899 | #[inline ] |
4900 | fn from(unit: Unit) -> SpanTotal<'static> { |
4901 | SpanTotal::new(unit) |
4902 | } |
4903 | } |
4904 | |
4905 | impl From<(Unit, Date)> for SpanTotal<'static> { |
4906 | #[inline ] |
4907 | fn from((unit: Unit, date: Date): (Unit, Date)) -> SpanTotal<'static> { |
4908 | SpanTotal::from(unit).relative(date) |
4909 | } |
4910 | } |
4911 | |
4912 | impl From<(Unit, DateTime)> for SpanTotal<'static> { |
4913 | #[inline ] |
4914 | fn from((unit: Unit, datetime: DateTime): (Unit, DateTime)) -> SpanTotal<'static> { |
4915 | SpanTotal::from(unit).relative(datetime) |
4916 | } |
4917 | } |
4918 | |
4919 | impl<'a> From<(Unit, &'a Zoned)> for SpanTotal<'a> { |
4920 | #[inline ] |
4921 | fn from((unit: Unit, zoned: &'a Zoned): (Unit, &'a Zoned)) -> SpanTotal<'a> { |
4922 | SpanTotal::from(unit).relative(zoned) |
4923 | } |
4924 | } |
4925 | |
4926 | impl<'a> From<(Unit, SpanRelativeTo<'a>)> for SpanTotal<'a> { |
4927 | #[inline ] |
4928 | fn from((unit: Unit, relative: SpanRelativeTo<'a>): (Unit, SpanRelativeTo<'a>)) -> SpanTotal<'a> { |
4929 | SpanTotal::from(unit).relative(relative) |
4930 | } |
4931 | } |
4932 | |
4933 | /// Options for [`Span::round`]. |
4934 | /// |
4935 | /// This type provides a way to configure the rounding of a span. This |
4936 | /// includes setting the smallest unit (i.e., the unit to round), the |
4937 | /// largest unit, the rounding increment, the rounding mode (e.g., "ceil" or |
4938 | /// "truncate") and the datetime that the span is relative to. |
4939 | /// |
4940 | /// `Span::round` accepts anything that implements `Into<SpanRound>`. There are |
4941 | /// a few key trait implementations that make this convenient: |
4942 | /// |
4943 | /// * `From<Unit> for SpanRound` will construct a rounding configuration where |
4944 | /// the smallest unit is set to the one given. |
4945 | /// * `From<(Unit, i64)> for SpanRound` will construct a rounding configuration |
4946 | /// where the smallest unit and the rounding increment are set to the ones |
4947 | /// given. |
4948 | /// |
4949 | /// In order to set other options (like the largest unit, the rounding mode |
4950 | /// and the relative datetime), one must explicitly create a `SpanRound` and |
4951 | /// pass it to `Span::round`. |
4952 | /// |
4953 | /// # Example |
4954 | /// |
4955 | /// This example shows how to find how many full 3 month quarters are in a |
4956 | /// particular span of time. |
4957 | /// |
4958 | /// ``` |
4959 | /// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit}; |
4960 | /// |
4961 | /// let span1 = 10.months().days(15); |
4962 | /// let round = SpanRound::new() |
4963 | /// .smallest(Unit::Month) |
4964 | /// .increment(3) |
4965 | /// .mode(RoundMode::Trunc) |
4966 | /// // A relative datetime must be provided when |
4967 | /// // rounding involves calendar units. |
4968 | /// .relative(date(2024, 1, 1)); |
4969 | /// let span2 = span1.round(round)?; |
4970 | /// assert_eq!(span2.get_months() / 3, 3); |
4971 | /// |
4972 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4973 | /// ``` |
4974 | #[derive (Clone, Copy, Debug)] |
4975 | pub struct SpanRound<'a> { |
4976 | largest: Option<Unit>, |
4977 | smallest: Unit, |
4978 | mode: RoundMode, |
4979 | increment: i64, |
4980 | relative: Option<SpanRelativeTo<'a>>, |
4981 | } |
4982 | |
4983 | impl<'a> SpanRound<'a> { |
4984 | /// Create a new default configuration for rounding a span via |
4985 | /// [`Span::round`]. |
4986 | /// |
4987 | /// The default configuration does no rounding. |
4988 | #[inline ] |
4989 | pub fn new() -> SpanRound<'static> { |
4990 | SpanRound { |
4991 | largest: None, |
4992 | smallest: Unit::Nanosecond, |
4993 | mode: RoundMode::HalfExpand, |
4994 | increment: 1, |
4995 | relative: None, |
4996 | } |
4997 | } |
4998 | |
4999 | /// Set the smallest units allowed in the span returned. These are the |
5000 | /// units that the span is rounded to. |
5001 | /// |
5002 | /// # Errors |
5003 | /// |
5004 | /// The smallest units must be no greater than the largest units. If this |
5005 | /// is violated, then rounding a span with this configuration will result |
5006 | /// in an error. |
5007 | /// |
5008 | /// If a smallest unit bigger than days is selected without a relative |
5009 | /// datetime reference point, then an error is returned when using this |
5010 | /// configuration with [`Span::round`]. |
5011 | /// |
5012 | /// # Example |
5013 | /// |
5014 | /// A basic example that rounds to the nearest minute: |
5015 | /// |
5016 | /// ``` |
5017 | /// use jiff::{ToSpan, Unit}; |
5018 | /// |
5019 | /// let span = 15.minutes().seconds(46); |
5020 | /// assert_eq!(span.round(Unit::Minute)?, 16.minutes().fieldwise()); |
5021 | /// |
5022 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5023 | /// ``` |
5024 | #[inline ] |
5025 | pub fn smallest(self, unit: Unit) -> SpanRound<'a> { |
5026 | SpanRound { smallest: unit, ..self } |
5027 | } |
5028 | |
5029 | /// Set the largest units allowed in the span returned. |
5030 | /// |
5031 | /// When a largest unit is not specified, then it defaults to the largest |
5032 | /// non-zero unit that is at least as big as the configured smallest |
5033 | /// unit. For example, given a span of `2 months 17 hours`, the default |
5034 | /// largest unit would be `Unit::Month`. The default implies that a span's |
5035 | /// units do not get "bigger" than what was given. |
5036 | /// |
5037 | /// Once a largest unit is set, there is no way to change this rounding |
5038 | /// configuration back to using the "automatic" default. Instead, callers |
5039 | /// must create a new configuration. |
5040 | /// |
5041 | /// If a largest unit is set and no other options are set, then the |
5042 | /// rounding operation can be said to be a "re-balancing." That is, the |
5043 | /// span won't lose precision, but the way in which it is expressed may |
5044 | /// change. |
5045 | /// |
5046 | /// # Errors |
5047 | /// |
5048 | /// The largest units, when set, must be at least as big as the smallest |
5049 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
5050 | /// then rounding a span with this configuration will result in an error. |
5051 | /// |
5052 | /// If a largest unit bigger than days is selected without a relative |
5053 | /// datetime reference point, then an error is returned when using this |
5054 | /// configuration with [`Span::round`]. |
5055 | /// |
5056 | /// # Example: re-balancing |
5057 | /// |
5058 | /// This shows how a span can be re-balanced without losing precision: |
5059 | /// |
5060 | /// ``` |
5061 | /// use jiff::{SpanRound, ToSpan, Unit}; |
5062 | /// |
5063 | /// let span = 86_401_123_456_789i64.nanoseconds(); |
5064 | /// assert_eq!( |
5065 | /// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(), |
5066 | /// 24.hours().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789), |
5067 | /// ); |
5068 | /// |
5069 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5070 | /// ``` |
5071 | /// |
5072 | /// If you need to use a largest unit bigger than hours, then you must |
5073 | /// provide a relative datetime as a reference point (otherwise an error |
5074 | /// will occur): |
5075 | /// |
5076 | /// ``` |
5077 | /// use jiff::{civil::date, SpanRound, ToSpan, Unit}; |
5078 | /// |
5079 | /// let span = 3_968_000.seconds(); |
5080 | /// let round = SpanRound::new() |
5081 | /// .largest(Unit::Day) |
5082 | /// .relative(date(2024, 7, 1)); |
5083 | /// assert_eq!( |
5084 | /// span.round(round)?, |
5085 | /// 45.days().hours(22).minutes(13).seconds(20).fieldwise(), |
5086 | /// ); |
5087 | /// |
5088 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5089 | /// ``` |
5090 | /// |
5091 | /// As a special case for days, one can instead opt into invariant 24-hour |
5092 | /// days (and 7-day weeks) without providing an explicit relative date: |
5093 | /// |
5094 | /// ``` |
5095 | /// use jiff::{SpanRound, ToSpan, Unit}; |
5096 | /// |
5097 | /// let span = 86_401_123_456_789i64.nanoseconds(); |
5098 | /// assert_eq!( |
5099 | /// span.round( |
5100 | /// SpanRound::new().largest(Unit::Day).days_are_24_hours(), |
5101 | /// )?.fieldwise(), |
5102 | /// 1.day().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789), |
5103 | /// ); |
5104 | /// |
5105 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5106 | /// ``` |
5107 | /// |
5108 | /// # Example: re-balancing while taking DST into account |
5109 | /// |
5110 | /// When given a zone aware relative datetime, rounding will even take |
5111 | /// DST into account: |
5112 | /// |
5113 | /// ``` |
5114 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
5115 | /// |
5116 | /// let span = 2756.hours(); |
5117 | /// let zdt = "2020-01-01T00:00+01:00[Europe/Rome]" .parse::<Zoned>()?; |
5118 | /// let round = SpanRound::new().largest(Unit::Year).relative(&zdt); |
5119 | /// assert_eq!( |
5120 | /// span.round(round)?, |
5121 | /// 3.months().days(23).hours(21).fieldwise(), |
5122 | /// ); |
5123 | /// |
5124 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5125 | /// ``` |
5126 | /// |
5127 | /// Now compare with the same operation, but on a civil datetime (which is |
5128 | /// not aware of time zone): |
5129 | /// |
5130 | /// ``` |
5131 | /// use jiff::{civil::DateTime, SpanRound, ToSpan, Unit}; |
5132 | /// |
5133 | /// let span = 2756.hours(); |
5134 | /// let dt = "2020-01-01T00:00" .parse::<DateTime>()?; |
5135 | /// let round = SpanRound::new().largest(Unit::Year).relative(dt); |
5136 | /// assert_eq!( |
5137 | /// span.round(round)?, |
5138 | /// 3.months().days(23).hours(20).fieldwise(), |
5139 | /// ); |
5140 | /// |
5141 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5142 | /// ``` |
5143 | /// |
5144 | /// The result is 1 hour shorter. This is because, in the zone |
5145 | /// aware re-balancing, it accounts for the transition into DST at |
5146 | /// `2020-03-29T01:00Z`, which skips an hour. This makes the span one hour |
5147 | /// longer because one of the days in the span is actually only 23 hours |
5148 | /// long instead of 24 hours. |
5149 | #[inline ] |
5150 | pub fn largest(self, unit: Unit) -> SpanRound<'a> { |
5151 | SpanRound { largest: Some(unit), ..self } |
5152 | } |
5153 | |
5154 | /// Set the rounding mode. |
5155 | /// |
5156 | /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work |
5157 | /// like how you were taught in school. |
5158 | /// |
5159 | /// # Example |
5160 | /// |
5161 | /// A basic example that rounds to the nearest minute, but changing its |
5162 | /// rounding mode to truncation: |
5163 | /// |
5164 | /// ``` |
5165 | /// use jiff::{RoundMode, SpanRound, ToSpan, Unit}; |
5166 | /// |
5167 | /// let span = 15.minutes().seconds(46); |
5168 | /// assert_eq!( |
5169 | /// span.round(SpanRound::new() |
5170 | /// .smallest(Unit::Minute) |
5171 | /// .mode(RoundMode::Trunc), |
5172 | /// )?, |
5173 | /// // The default round mode does rounding like |
5174 | /// // how you probably learned in school, and would |
5175 | /// // result in rounding up to 16 minutes. But we |
5176 | /// // change it to truncation here, which makes it |
5177 | /// // round down. |
5178 | /// 15.minutes().fieldwise(), |
5179 | /// ); |
5180 | /// |
5181 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5182 | /// ``` |
5183 | #[inline ] |
5184 | pub fn mode(self, mode: RoundMode) -> SpanRound<'a> { |
5185 | SpanRound { mode, ..self } |
5186 | } |
5187 | |
5188 | /// Set the rounding increment for the smallest unit. |
5189 | /// |
5190 | /// The default value is `1`. Other values permit rounding the smallest |
5191 | /// unit to the nearest integer increment specified. For example, if the |
5192 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
5193 | /// `30` would result in rounding in increments of a half hour. That is, |
5194 | /// the only minute value that could result would be `0` or `30`. |
5195 | /// |
5196 | /// # Errors |
5197 | /// |
5198 | /// When the smallest unit is less than days, the rounding increment must |
5199 | /// divide evenly into the next highest unit after the smallest unit |
5200 | /// configured (and must not be equivalent to it). For example, if the |
5201 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
5202 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
5203 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
5204 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
5205 | /// |
5206 | /// The error will occur when computing the span, and not when setting |
5207 | /// the increment here. |
5208 | /// |
5209 | /// # Example |
5210 | /// |
5211 | /// This shows how to round a span to the nearest 5 minute increment: |
5212 | /// |
5213 | /// ``` |
5214 | /// use jiff::{ToSpan, Unit}; |
5215 | /// |
5216 | /// let span = 4.hours().minutes(2).seconds(30); |
5217 | /// assert_eq!( |
5218 | /// span.round((Unit::Minute, 5))?, |
5219 | /// 4.hours().minutes(5).fieldwise(), |
5220 | /// ); |
5221 | /// |
5222 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5223 | /// ``` |
5224 | #[inline ] |
5225 | pub fn increment(self, increment: i64) -> SpanRound<'a> { |
5226 | SpanRound { increment, ..self } |
5227 | } |
5228 | |
5229 | /// Set the relative datetime to use when rounding a span. |
5230 | /// |
5231 | /// A relative datetime is only required when calendar units (units greater |
5232 | /// than days) are involved. This includes having calendar units in the |
5233 | /// original span, or calendar units in the configured smallest or largest |
5234 | /// unit. A relative datetime is required when calendar units are used |
5235 | /// because the duration of a particular calendar unit (like 1 month or 1 |
5236 | /// year) is variable and depends on the date. For example, 1 month from |
5237 | /// 2024-01-01 is 31 days, but 1 month from 2024-02-01 is 29 days. |
5238 | /// |
5239 | /// A relative datetime is provided by anything that implements |
5240 | /// `Into<SpanRelativeTo>`. There are a few convenience trait |
5241 | /// implementations provided: |
5242 | /// |
5243 | /// * `From<&Zoned> for SpanRelativeTo` uses a zone aware datetime to do |
5244 | /// rounding. In this case, rounding will take time zone transitions into |
5245 | /// account. In particular, when using a zoned relative datetime, not all |
5246 | /// days are necessarily 24 hours. |
5247 | /// * `From<civil::DateTime> for SpanRelativeTo` uses a civil datetime. In |
5248 | /// this case, all days will be considered 24 hours long. |
5249 | /// * `From<civil::Date> for SpanRelativeTo` uses a civil date. In this |
5250 | /// case, all days will be considered 24 hours long. |
5251 | /// |
5252 | /// Note that one can impose 24-hour days without providing a reference |
5253 | /// date via [`SpanRelativeTo::days_are_24_hours`]. |
5254 | /// |
5255 | /// # Errors |
5256 | /// |
5257 | /// If rounding involves a calendar unit (units bigger than hours) and no |
5258 | /// relative datetime is provided, then this configuration will lead to |
5259 | /// an error when used with [`Span::round`]. |
5260 | /// |
5261 | /// # Example |
5262 | /// |
5263 | /// This example shows very precisely how a DST transition can impact |
5264 | /// rounding and re-balancing. For example, consider the day `2024-11-03` |
5265 | /// in `America/New_York`. On this day, the 1 o'clock hour was repeated, |
5266 | /// making the day 24 hours long. This will be taken into account when |
5267 | /// rounding if a zoned datetime is provided as a reference point: |
5268 | /// |
5269 | /// ``` |
5270 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
5271 | /// |
5272 | /// let zdt = "2024-11-03T00-04[America/New_York]" .parse::<Zoned>()?; |
5273 | /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt); |
5274 | /// assert_eq!(1.day().round(round)?, 25.hours().fieldwise()); |
5275 | /// |
5276 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5277 | /// ``` |
5278 | /// |
5279 | /// And similarly for `2024-03-10`, where the 2 o'clock hour was skipped |
5280 | /// entirely: |
5281 | /// |
5282 | /// ``` |
5283 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
5284 | /// |
5285 | /// let zdt = "2024-03-10T00-05[America/New_York]" .parse::<Zoned>()?; |
5286 | /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt); |
5287 | /// assert_eq!(1.day().round(round)?, 23.hours().fieldwise()); |
5288 | /// |
5289 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5290 | /// ``` |
5291 | #[inline ] |
5292 | pub fn relative<R: Into<SpanRelativeTo<'a>>>( |
5293 | self, |
5294 | relative: R, |
5295 | ) -> SpanRound<'a> { |
5296 | SpanRound { relative: Some(relative.into()), ..self } |
5297 | } |
5298 | |
5299 | /// This is a convenience function for setting the relative option on |
5300 | /// this configuration to [`SpanRelativeTo::days_are_24_hours`]. |
5301 | /// |
5302 | /// # Example |
5303 | /// |
5304 | /// When rounding spans involving days, either a relative datetime must be |
5305 | /// provided, or a special assertion opting into 24-hour days is |
5306 | /// required. Otherwise, you get an error. |
5307 | /// |
5308 | /// ``` |
5309 | /// use jiff::{SpanRound, ToSpan, Unit}; |
5310 | /// |
5311 | /// let span = 2.days().hours(12); |
5312 | /// // No relative date provided, which results in an error. |
5313 | /// assert_eq!( |
5314 | /// span.round(Unit::Day).unwrap_err().to_string(), |
5315 | /// "error with `smallest` rounding option: using unit 'day' in a \ |
5316 | /// span or configuration requires that either a relative reference \ |
5317 | /// time be given or `SpanRelativeTo::days_are_24_hours()` is used \ |
5318 | /// to indicate invariant 24-hour days, but neither were provided" , |
5319 | /// ); |
5320 | /// let rounded = span.round( |
5321 | /// SpanRound::new().smallest(Unit::Day).days_are_24_hours(), |
5322 | /// )?; |
5323 | /// assert_eq!(rounded, 3.days().fieldwise()); |
5324 | /// |
5325 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5326 | /// ``` |
5327 | #[inline ] |
5328 | pub fn days_are_24_hours(self) -> SpanRound<'a> { |
5329 | self.relative(SpanRelativeTo::days_are_24_hours()) |
5330 | } |
5331 | |
5332 | /// Returns the configured smallest unit on this round configuration. |
5333 | #[inline ] |
5334 | pub(crate) fn get_smallest(&self) -> Unit { |
5335 | self.smallest |
5336 | } |
5337 | |
5338 | /// Returns the configured largest unit on this round configuration. |
5339 | #[inline ] |
5340 | pub(crate) fn get_largest(&self) -> Option<Unit> { |
5341 | self.largest |
5342 | } |
5343 | |
5344 | /// Returns true only when rounding a span *may* change it. When it |
5345 | /// returns false, and if the span is already balanced according to |
5346 | /// the largest unit in this round configuration, then it is guaranteed |
5347 | /// that rounding is a no-op. |
5348 | /// |
5349 | /// This is useful to avoid rounding calls after doing span arithmetic |
5350 | /// on datetime types. This works because the "largest" unit is used to |
5351 | /// construct a balanced span for the difference between two datetimes. |
5352 | /// So we already know the span has been balanced. If this weren't the |
5353 | /// case, then the largest unit being different from the one in the span |
5354 | /// could result in rounding making a change. (And indeed, in the general |
5355 | /// case of span rounding below, we do a more involved check for this.) |
5356 | #[inline ] |
5357 | pub(crate) fn rounding_may_change_span_ignore_largest(&self) -> bool { |
5358 | self.smallest > Unit::Nanosecond || self.increment > 1 |
5359 | } |
5360 | |
5361 | /// Does the actual span rounding. |
5362 | fn round(&self, span: Span) -> Result<Span, Error> { |
5363 | let existing_largest = span.largest_unit(); |
5364 | let mode = self.mode; |
5365 | let smallest = self.smallest; |
5366 | let largest = |
5367 | self.largest.unwrap_or_else(|| smallest.max(existing_largest)); |
5368 | let max = existing_largest.max(largest); |
5369 | let increment = increment::for_span(smallest, self.increment)?; |
5370 | if largest < smallest { |
5371 | return Err(err!( |
5372 | "largest unit (' {largest}') cannot be smaller than \ |
5373 | smallest unit (' {smallest}')" , |
5374 | largest = largest.singular(), |
5375 | smallest = smallest.singular(), |
5376 | )); |
5377 | } |
5378 | let relative = match self.relative { |
5379 | Some(ref r) => { |
5380 | match r.to_relative(max)? { |
5381 | Some(r) => r, |
5382 | None => { |
5383 | // If our reference point is civil time, then its units |
5384 | // are invariant as long as we are using day-or-lower |
5385 | // everywhere. That is, the length of the duration is |
5386 | // independent of the reference point. In which case, |
5387 | // rounding is a simple matter of converting the span |
5388 | // to a number of nanoseconds and then rounding that. |
5389 | return Ok(round_span_invariant( |
5390 | span, smallest, largest, increment, mode, |
5391 | )?); |
5392 | } |
5393 | } |
5394 | } |
5395 | None => { |
5396 | // This is only okay if none of our units are above 'day'. |
5397 | // That is, a reference point is only necessary when there is |
5398 | // no reasonable invariant interpretation of the span. And this |
5399 | // is only true when everything is less than 'day'. |
5400 | requires_relative_date_err(smallest) |
5401 | .context("error with `smallest` rounding option" )?; |
5402 | if let Some(largest) = self.largest { |
5403 | requires_relative_date_err(largest) |
5404 | .context("error with `largest` rounding option" )?; |
5405 | } |
5406 | requires_relative_date_err(existing_largest).context( |
5407 | "error with largest unit in span to be rounded" , |
5408 | )?; |
5409 | assert!(max <= Unit::Week); |
5410 | return Ok(round_span_invariant( |
5411 | span, smallest, largest, increment, mode, |
5412 | )?); |
5413 | } |
5414 | }; |
5415 | relative.round(span, smallest, largest, increment, mode) |
5416 | } |
5417 | } |
5418 | |
5419 | impl Default for SpanRound<'static> { |
5420 | fn default() -> SpanRound<'static> { |
5421 | SpanRound::new() |
5422 | } |
5423 | } |
5424 | |
5425 | impl From<Unit> for SpanRound<'static> { |
5426 | fn from(unit: Unit) -> SpanRound<'static> { |
5427 | SpanRound::default().smallest(unit) |
5428 | } |
5429 | } |
5430 | |
5431 | impl From<(Unit, i64)> for SpanRound<'static> { |
5432 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> SpanRound<'static> { |
5433 | SpanRound::default().smallest(unit).increment(increment) |
5434 | } |
5435 | } |
5436 | |
5437 | /// A relative datetime for use with [`Span`] APIs. |
5438 | /// |
5439 | /// A relative datetime can be one of the following: [`civil::Date`](Date), |
5440 | /// [`civil::DateTime`](DateTime) or [`Zoned`]. It can be constructed from any |
5441 | /// of the preceding types via `From` trait implementations. |
5442 | /// |
5443 | /// A relative datetime is used to indicate how the calendar units of a `Span` |
5444 | /// should be interpreted. For example, the span "1 month" does not have a |
5445 | /// fixed meaning. One month from `2024-03-01` is 31 days, but one month from |
5446 | /// `2024-04-01` is 30 days. Similar for years. |
5447 | /// |
5448 | /// When a relative datetime in time zone aware (i.e., it is a `Zoned`), then |
5449 | /// a `Span` will also consider its day units to be variable in length. For |
5450 | /// example, `2024-03-10` in `America/New_York` was only 23 hours long, where |
5451 | /// as `2024-11-03` in `America/New_York` was 25 hours long. When a relative |
5452 | /// datetime is civil, then days are considered to always be of a fixed 24 |
5453 | /// hour length. |
5454 | /// |
5455 | /// This type is principally used as an input to one of several different |
5456 | /// [`Span`] APIs: |
5457 | /// |
5458 | /// * [`Span::round`] rounds spans. A relative datetime is necessary when |
5459 | /// dealing with calendar units. (But spans without calendar units can be |
5460 | /// rounded without providing a relative datetime.) |
5461 | /// * Span arithmetic via [`Span::checked_add`] and [`Span::checked_sub`]. |
5462 | /// A relative datetime is needed when adding or subtracting spans with |
5463 | /// calendar units. |
5464 | /// * Span comarisons via [`Span::compare`] require a relative datetime when |
5465 | /// comparing spans with calendar units. |
5466 | /// * Computing the "total" duration as a single floating point number via |
5467 | /// [`Span::total`] also requires a relative datetime when dealing with |
5468 | /// calendar units. |
5469 | /// |
5470 | /// # Example |
5471 | /// |
5472 | /// This example shows how to round a span with larger calendar units to |
5473 | /// smaller units: |
5474 | /// |
5475 | /// ``` |
5476 | /// use jiff::{SpanRound, ToSpan, Unit, Zoned}; |
5477 | /// |
5478 | /// let zdt: Zoned = "2012-01-01[Antarctica/Troll]" .parse()?; |
5479 | /// let round = SpanRound::new().largest(Unit::Day).relative(&zdt); |
5480 | /// assert_eq!(1.year().round(round)?, 366.days().fieldwise()); |
5481 | /// |
5482 | /// // If you tried this without a relative datetime, it would fail: |
5483 | /// let round = SpanRound::new().largest(Unit::Day); |
5484 | /// assert!(1.year().round(round).is_err()); |
5485 | /// |
5486 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5487 | /// ``` |
5488 | #[derive (Clone, Copy, Debug)] |
5489 | pub struct SpanRelativeTo<'a> { |
5490 | kind: SpanRelativeToKind<'a>, |
5491 | } |
5492 | |
5493 | impl<'a> SpanRelativeTo<'a> { |
5494 | /// Creates a special marker that indicates all days ought to be assumed |
5495 | /// to be 24 hours without providing a relative reference time. |
5496 | /// |
5497 | /// This is relevant to the following APIs: |
5498 | /// |
5499 | /// * [`Span::checked_add`] |
5500 | /// * [`Span::checked_sub`] |
5501 | /// * [`Span::compare`] |
5502 | /// * [`Span::total`] |
5503 | /// * [`Span::round`] |
5504 | /// * [`Span::to_duration`] |
5505 | /// |
5506 | /// Specifically, in a previous version of Jiff, the above APIs permitted |
5507 | /// _silently_ assuming that days are always 24 hours when a relative |
5508 | /// reference date wasn't provided. In the current version of Jiff, this |
5509 | /// silent interpretation no longer happens and instead an error will |
5510 | /// occur. |
5511 | /// |
5512 | /// If you need to use these APIs with spans that contain non-zero units |
5513 | /// of days or weeks but without a relative reference date, then you may |
5514 | /// use this routine to create a special marker for `SpanRelativeTo` that |
5515 | /// permits the APIs above to assume days are always 24 hours. |
5516 | /// |
5517 | /// # Motivation |
5518 | /// |
5519 | /// The purpose of the marker is two-fold: |
5520 | /// |
5521 | /// * Requiring the marker is important for improving the consistency of |
5522 | /// `Span` APIs. Previously, some APIs (like [`Timestamp::checked_add`]) |
5523 | /// would always return an error if the `Span` given had non-zero |
5524 | /// units of days or greater. On the other hand, other APIs (like |
5525 | /// [`Span::checked_add`]) would autoamtically assume days were always |
5526 | /// 24 hours if no relative reference time was given and either span had |
5527 | /// non-zero units of days. With this marker, APIs _never_ assume days are |
5528 | /// always 24 hours automatically. |
5529 | /// * When it _is_ appropriate to assume all days are 24 hours |
5530 | /// (for example, when only dealing with spans derived from |
5531 | /// [`civil`](crate::civil) datetimes) and where providing a relative |
5532 | /// reference datetime doesn't make sense. In this case, one _could_ |
5533 | /// provide a "dummy" reference date since the precise date in civil time |
5534 | /// doesn't impact the length of a day. But a marker like the one returned |
5535 | /// here is more explicit for the purpose of assuming days are always 24 |
5536 | /// hours. |
5537 | /// |
5538 | /// With that said, ideally, callers should provide a relative reference |
5539 | /// datetime if possible. |
5540 | /// |
5541 | /// See [Issue #48] for more discussion on this topic. |
5542 | /// |
5543 | /// # Example: different interpretations of "1 day" |
5544 | /// |
5545 | /// This example shows how "1 day" can be interpreted differently via the |
5546 | /// [`Span::total`] API: |
5547 | /// |
5548 | /// ``` |
5549 | /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned}; |
5550 | /// |
5551 | /// let span = 1.day(); |
5552 | /// |
5553 | /// // An error because days aren't always 24 hours: |
5554 | /// assert_eq!( |
5555 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
5556 | /// "using unit 'day' in a span or configuration requires that either \ |
5557 | /// a relative reference time be given or \ |
5558 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
5559 | /// invariant 24-hour days, but neither were provided" , |
5560 | /// ); |
5561 | /// // Opt into invariant 24 hour days without a relative date: |
5562 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
5563 | /// let hours = span.total((Unit::Hour, marker))?; |
5564 | /// assert_eq!(hours, 24.0); |
5565 | /// // Days can be shorter than 24 hours: |
5566 | /// let zdt: Zoned = "2024-03-10[America/New_York]" .parse()?; |
5567 | /// let hours = span.total((Unit::Hour, &zdt))?; |
5568 | /// assert_eq!(hours, 23.0); |
5569 | /// // Days can be longer than 24 hours: |
5570 | /// let zdt: Zoned = "2024-11-03[America/New_York]" .parse()?; |
5571 | /// let hours = span.total((Unit::Hour, &zdt))?; |
5572 | /// assert_eq!(hours, 25.0); |
5573 | /// |
5574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5575 | /// ``` |
5576 | /// |
5577 | /// Similar behavior applies to the other APIs listed above. |
5578 | /// |
5579 | /// # Example: different interpretations of "1 week" |
5580 | /// |
5581 | /// This example shows how "1 week" can be interpreted differently via the |
5582 | /// [`Span::total`] API: |
5583 | /// |
5584 | /// ``` |
5585 | /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned}; |
5586 | /// |
5587 | /// let span = 1.week(); |
5588 | /// |
5589 | /// // An error because days aren't always 24 hours: |
5590 | /// assert_eq!( |
5591 | /// span.total(Unit::Hour).unwrap_err().to_string(), |
5592 | /// "using unit 'week' in a span or configuration requires that either \ |
5593 | /// a relative reference time be given or \ |
5594 | /// `SpanRelativeTo::days_are_24_hours()` is used to indicate \ |
5595 | /// invariant 24-hour days, but neither were provided" , |
5596 | /// ); |
5597 | /// // Opt into invariant 24 hour days without a relative date: |
5598 | /// let marker = SpanRelativeTo::days_are_24_hours(); |
5599 | /// let hours = span.total((Unit::Hour, marker))?; |
5600 | /// assert_eq!(hours, 168.0); |
5601 | /// // Weeks can be shorter than 24*7 hours: |
5602 | /// let zdt: Zoned = "2024-03-10[America/New_York]" .parse()?; |
5603 | /// let hours = span.total((Unit::Hour, &zdt))?; |
5604 | /// assert_eq!(hours, 167.0); |
5605 | /// // Weeks can be longer than 24*7 hours: |
5606 | /// let zdt: Zoned = "2024-11-03[America/New_York]" .parse()?; |
5607 | /// let hours = span.total((Unit::Hour, &zdt))?; |
5608 | /// assert_eq!(hours, 169.0); |
5609 | /// |
5610 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5611 | /// ``` |
5612 | /// |
5613 | /// # Example: working with [`civil::Date`](crate::civil::Date) |
5614 | /// |
5615 | /// A `Span` returned by computing the difference in time between two |
5616 | /// [`civil::Date`](crate::civil::Date)s will have a non-zero number of |
5617 | /// days. In older versions of Jiff, if one wanted to add spans returned by |
5618 | /// these APIs, you could do so without futzing with relative dates. But |
5619 | /// now you either need to provide a relative date: |
5620 | /// |
5621 | /// ``` |
5622 | /// use jiff::{civil::date, ToSpan}; |
5623 | /// |
5624 | /// let d1 = date(2025, 1, 18); |
5625 | /// let d2 = date(2025, 1, 26); |
5626 | /// let d3 = date(2025, 2, 14); |
5627 | /// |
5628 | /// let span1 = d2 - d1; |
5629 | /// let span2 = d3 - d2; |
5630 | /// let total = span1.checked_add((span2, d1))?; |
5631 | /// assert_eq!(total, 27.days().fieldwise()); |
5632 | /// |
5633 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5634 | /// ``` |
5635 | /// |
5636 | /// Or you can provide a marker indicating that days are always 24 hours. |
5637 | /// This is fine for this use case since one is only doing civil calendar |
5638 | /// arithmetic and not working with time zones: |
5639 | /// |
5640 | /// ``` |
5641 | /// use jiff::{civil::date, SpanRelativeTo, ToSpan}; |
5642 | /// |
5643 | /// let d1 = date(2025, 1, 18); |
5644 | /// let d2 = date(2025, 1, 26); |
5645 | /// let d3 = date(2025, 2, 14); |
5646 | /// |
5647 | /// let span1 = d2 - d1; |
5648 | /// let span2 = d3 - d2; |
5649 | /// let total = span1.checked_add( |
5650 | /// (span2, SpanRelativeTo::days_are_24_hours()), |
5651 | /// )?; |
5652 | /// assert_eq!(total, 27.days().fieldwise()); |
5653 | /// |
5654 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
5655 | /// ``` |
5656 | /// |
5657 | /// [Issue #48]: https://github.com/BurntSushi/jiff/issues/48 |
5658 | #[inline ] |
5659 | pub const fn days_are_24_hours() -> SpanRelativeTo<'static> { |
5660 | let kind = SpanRelativeToKind::DaysAre24Hours; |
5661 | SpanRelativeTo { kind } |
5662 | } |
5663 | |
5664 | /// Converts this public API relative datetime into a more versatile |
5665 | /// internal representation of the same concept. |
5666 | /// |
5667 | /// Basically, the internal `Relative` type is `Cow` which means it isn't |
5668 | /// `Copy`. But it can present a more uniform API. The public API type |
5669 | /// doesn't have `Cow` so that it can be `Copy`. |
5670 | /// |
5671 | /// We also take this opportunity to attach some convenient data, such |
5672 | /// as a timestamp when the relative datetime type is civil. |
5673 | /// |
5674 | /// This can return `None` if this `SpanRelativeTo` isn't actually a |
5675 | /// datetime but a "marker" indicating some unit (like days) should be |
5676 | /// treated as invariant. Or `None` is returned when the given unit is |
5677 | /// always invariant (hours or smaller). |
5678 | /// |
5679 | /// # Errors |
5680 | /// |
5681 | /// If there was a problem doing this conversion, then an error is |
5682 | /// returned. In practice, this only occurs for a civil datetime near the |
5683 | /// civil datetime minimum and maximum values. |
5684 | fn to_relative(&self, unit: Unit) -> Result<Option<Relative<'a>>, Error> { |
5685 | if !unit.is_variable() { |
5686 | return Ok(None); |
5687 | } |
5688 | match self.kind { |
5689 | SpanRelativeToKind::Civil(dt) => { |
5690 | Ok(Some(Relative::Civil(RelativeCivil::new(dt)?))) |
5691 | } |
5692 | SpanRelativeToKind::Zoned(zdt) => { |
5693 | Ok(Some(Relative::Zoned(RelativeZoned { |
5694 | zoned: DumbCow::Borrowed(zdt), |
5695 | }))) |
5696 | } |
5697 | SpanRelativeToKind::DaysAre24Hours => { |
5698 | if matches!(unit, Unit::Year | Unit::Month) { |
5699 | return Err(err!( |
5700 | "using unit ' {unit}' in span or configuration \ |
5701 | requires that a relative reference time be given \ |
5702 | (`SpanRelativeTo::days_are_24_hours()` was given \ |
5703 | but this only permits using days and weeks \ |
5704 | without a relative reference time)" , |
5705 | unit = unit.singular(), |
5706 | )); |
5707 | } |
5708 | Ok(None) |
5709 | } |
5710 | } |
5711 | } |
5712 | } |
5713 | |
5714 | #[derive (Clone, Copy, Debug)] |
5715 | enum SpanRelativeToKind<'a> { |
5716 | Civil(DateTime), |
5717 | Zoned(&'a Zoned), |
5718 | DaysAre24Hours, |
5719 | } |
5720 | |
5721 | impl<'a> From<&'a Zoned> for SpanRelativeTo<'a> { |
5722 | fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a> { |
5723 | SpanRelativeTo { kind: SpanRelativeToKind::Zoned(zdt) } |
5724 | } |
5725 | } |
5726 | |
5727 | impl From<DateTime> for SpanRelativeTo<'static> { |
5728 | fn from(dt: DateTime) -> SpanRelativeTo<'static> { |
5729 | SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) } |
5730 | } |
5731 | } |
5732 | |
5733 | impl From<Date> for SpanRelativeTo<'static> { |
5734 | fn from(date: Date) -> SpanRelativeTo<'static> { |
5735 | let dt: DateTime = DateTime::from_parts(date, Time::midnight()); |
5736 | SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) } |
5737 | } |
5738 | } |
5739 | |
5740 | /// A bit set that keeps track of all non-zero units on a `Span`. |
5741 | /// |
5742 | /// Because of alignment, adding this to a `Span` does not make it any bigger. |
5743 | /// |
5744 | /// The benefit of this bit set is to make it extremely cheap to enable fast |
5745 | /// paths in various places. For example, doing arithmetic on a `Date` with an |
5746 | /// arbitrary `Span` is pretty involved. But if you know the `Span` only |
5747 | /// consists of non-zero units of days (and zero for all other units), then you |
5748 | /// can take a much cheaper path. |
5749 | #[derive (Clone, Copy)] |
5750 | pub(crate) struct UnitSet(u16); |
5751 | |
5752 | impl UnitSet { |
5753 | /// Return a bit set representing all units as zero. |
5754 | #[inline ] |
5755 | fn empty() -> UnitSet { |
5756 | UnitSet(0) |
5757 | } |
5758 | |
5759 | /// Set the given `unit` to `is_zero` status in this set. |
5760 | /// |
5761 | /// When `is_zero` is false, the unit is added to this set. Otherwise, |
5762 | /// the unit is removed from this set. |
5763 | #[inline ] |
5764 | fn set(self, unit: Unit, is_zero: bool) -> UnitSet { |
5765 | let bit = 1 << unit as usize; |
5766 | if is_zero { |
5767 | UnitSet(self.0 & !bit) |
5768 | } else { |
5769 | UnitSet(self.0 | bit) |
5770 | } |
5771 | } |
5772 | |
5773 | /// Returns true if and only if no units are in this set. |
5774 | #[inline ] |
5775 | pub(crate) fn is_empty(&self) -> bool { |
5776 | self.0 == 0 |
5777 | } |
5778 | |
5779 | /// Returns true if and only if this `Span` contains precisely one |
5780 | /// non-zero unit corresponding to the unit given. |
5781 | #[inline ] |
5782 | pub(crate) fn contains_only(self, unit: Unit) -> bool { |
5783 | self.0 == (1 << unit as usize) |
5784 | } |
5785 | |
5786 | /// Returns this set, but with only calendar units. |
5787 | #[inline ] |
5788 | pub(crate) fn only_calendar(self) -> UnitSet { |
5789 | UnitSet(self.0 & 0b0000_0011_1100_0000) |
5790 | } |
5791 | |
5792 | /// Returns this set, but with only time units. |
5793 | #[inline ] |
5794 | pub(crate) fn only_time(self) -> UnitSet { |
5795 | UnitSet(self.0 & 0b0000_0000_0011_1111) |
5796 | } |
5797 | |
5798 | /// Returns the largest unit in this set, or `None` if none are present. |
5799 | #[inline ] |
5800 | pub(crate) fn largest_unit(self) -> Option<Unit> { |
5801 | let zeros = usize::try_from(self.0.leading_zeros()).ok()?; |
5802 | 15usize.checked_sub(zeros).and_then(Unit::from_usize) |
5803 | } |
5804 | } |
5805 | |
5806 | // N.B. This `Debug` impl isn't typically used. |
5807 | // |
5808 | // This is because the `Debug` impl for `Span` just emits itself in the |
5809 | // friendly duration format, which doesn't include internal representation |
5810 | // details like this set. It is included in `Span::debug`, but this isn't |
5811 | // part of the public crate API. |
5812 | impl core::fmt::Debug for UnitSet { |
5813 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
5814 | write!(f, " {{" )?; |
5815 | let mut units: UnitSet = *self; |
5816 | let mut i: i32 = 0; |
5817 | while let Some(unit: Unit) = units.largest_unit() { |
5818 | if i > 0 { |
5819 | write!(f, ", " )?; |
5820 | } |
5821 | i += 1; |
5822 | write!(f, " {}" , unit.compact())?; |
5823 | units = units.set(unit, is_zero:false); |
5824 | } |
5825 | if i == 0 { |
5826 | write!(f, "∅" )?; |
5827 | } |
5828 | write!(f, " }}" ) |
5829 | } |
5830 | } |
5831 | |
5832 | /// An internal abstraction for managing a relative datetime for use in some |
5833 | /// `Span` APIs. |
5834 | /// |
5835 | /// This is effectively the same as a `SpanRelativeTo`, but uses a `Cow<Zoned>` |
5836 | /// instead of a `&Zoned`. This makes it non-`Copy`, but allows us to craft a |
5837 | /// more uniform API. (i.e., `relative + span = relative` instead of `relative |
5838 | /// + span = owned_relative` or whatever.) Note that the `Copy` impl on |
5839 | /// `SpanRelativeTo` means it has to accept a `&Zoned`. It can't ever take a |
5840 | /// `Zoned` since it is non-Copy. |
5841 | /// |
5842 | /// NOTE: Separately from above, I think it's plausible that this type could be |
5843 | /// designed a bit differently. Namely, something like this: |
5844 | /// |
5845 | /// ```text |
5846 | /// struct Relative<'a> { |
5847 | /// tz: Option<&'a TimeZone>, |
5848 | /// dt: DateTime, |
5849 | /// ts: Timestamp, |
5850 | /// } |
5851 | /// ``` |
5852 | /// |
5853 | /// That is, we do zone aware stuff but without an actual `Zoned` type. But I |
5854 | /// think in order to make that work, we would need to expose most of the |
5855 | /// `Zoned` API as functions on its component types (DateTime, Timestamp and |
5856 | /// TimeZone). I think we are likely to want to do that for public API reasons, |
5857 | /// but I'd like to resist it since I think it will add a lot of complexity. |
5858 | /// Or maybe we need a `Unzoned` type that is `DateTime` and `Timestamp`, but |
5859 | /// requires passing the time zone in to each of its methods. That might work |
5860 | /// quite well, even if it was just an internal type. |
5861 | /// |
5862 | /// Anyway, I'm not 100% sure the above would work, but I think it would. It |
5863 | /// would be nicer because everything would be `Copy` all the time. We'd never |
5864 | /// need a `Cow<TimeZone>` for example, because we never need to change or |
5865 | /// create a new time zone. |
5866 | #[derive (Clone, Debug)] |
5867 | enum Relative<'a> { |
5868 | Civil(RelativeCivil), |
5869 | Zoned(RelativeZoned<'a>), |
5870 | } |
5871 | |
5872 | impl<'a> Relative<'a> { |
5873 | /// Adds the given span to this relative datetime. |
5874 | /// |
5875 | /// This defers to either [`DateTime::checked_add`] or |
5876 | /// [`Zoned::checked_add`], depending on the type of relative datetime. |
5877 | /// |
5878 | /// The `Relative` datetime returned is guaranteed to have the same |
5879 | /// internal datetie type as `self`. |
5880 | /// |
5881 | /// # Errors |
5882 | /// |
5883 | /// This returns an error in the same cases as the underlying checked |
5884 | /// arithmetic APIs. In general, this occurs when adding the given `span` |
5885 | /// would result in overflow. |
5886 | fn checked_add(&self, span: Span) -> Result<Relative, Error> { |
5887 | match *self { |
5888 | Relative::Civil(dt) => Ok(Relative::Civil(dt.checked_add(span)?)), |
5889 | Relative::Zoned(ref zdt) => { |
5890 | Ok(Relative::Zoned(zdt.checked_add(span)?)) |
5891 | } |
5892 | } |
5893 | } |
5894 | |
5895 | fn checked_add_duration( |
5896 | &self, |
5897 | duration: SignedDuration, |
5898 | ) -> Result<Relative, Error> { |
5899 | match *self { |
5900 | Relative::Civil(dt) => { |
5901 | Ok(Relative::Civil(dt.checked_add_duration(duration)?)) |
5902 | } |
5903 | Relative::Zoned(ref zdt) => { |
5904 | Ok(Relative::Zoned(zdt.checked_add_duration(duration)?)) |
5905 | } |
5906 | } |
5907 | } |
5908 | |
5909 | /// Returns the span of time from this relative datetime to the one given, |
5910 | /// with units as large as `largest`. |
5911 | /// |
5912 | /// # Errors |
5913 | /// |
5914 | /// This returns an error in the same cases as when the underlying |
5915 | /// [`DateTime::until`] or [`Zoned::until`] fail. Because this doesn't |
5916 | /// set or expose any rounding configuration, this can generally only |
5917 | /// occur when `largest` is `Unit::Nanosecond` and the span of time |
5918 | /// between `self` and `other` is too big to represent as a 64-bit integer |
5919 | /// nanosecond count. |
5920 | /// |
5921 | /// # Panics |
5922 | /// |
5923 | /// This panics if `self` and `other` are different internal datetime |
5924 | /// types. For example, if `self` was a civil datetime and `other` were |
5925 | /// a zoned datetime. |
5926 | fn until(&self, largest: Unit, other: &Relative) -> Result<Span, Error> { |
5927 | match (self, other) { |
5928 | (&Relative::Civil(ref dt1), &Relative::Civil(ref dt2)) => { |
5929 | dt1.until(largest, dt2) |
5930 | } |
5931 | (&Relative::Zoned(ref zdt1), &Relative::Zoned(ref zdt2)) => { |
5932 | zdt1.until(largest, zdt2) |
5933 | } |
5934 | // This would be bad if `Relative` were a public API, but in |
5935 | // practice, this case never occurs because we don't mixup our |
5936 | // `Relative` datetime types. |
5937 | _ => unreachable!(), |
5938 | } |
5939 | } |
5940 | |
5941 | /// Converts this relative datetime to a nanosecond in UTC time. |
5942 | /// |
5943 | /// # Errors |
5944 | /// |
5945 | /// If there was a problem doing this conversion, then an error is |
5946 | /// returned. In practice, this only occurs for a civil datetime near the |
5947 | /// civil datetime minimum and maximum values. |
5948 | fn to_nanosecond(&self) -> NoUnits128 { |
5949 | match *self { |
5950 | Relative::Civil(dt) => dt.timestamp.as_nanosecond_ranged().rinto(), |
5951 | Relative::Zoned(ref zdt) => { |
5952 | zdt.zoned.timestamp().as_nanosecond_ranged().rinto() |
5953 | } |
5954 | } |
5955 | } |
5956 | |
5957 | /// Create a balanced span of time relative to this datetime. |
5958 | /// |
5959 | /// The relative span returned has the same internal datetime type |
5960 | /// (civil or zoned) as this relative datetime. |
5961 | /// |
5962 | /// # Errors |
5963 | /// |
5964 | /// This returns an error when the span in this range cannot be |
5965 | /// represented. In general, this only occurs when asking for largest units |
5966 | /// of `Unit::Nanosecond` *and* when the span is too big to fit into a |
5967 | /// 64-bit nanosecond count. |
5968 | /// |
5969 | /// This can also return an error in other extreme cases, such as when |
5970 | /// adding the given span to this relative datetime results in overflow, |
5971 | /// or if this relative datetime is a civil datetime and it couldn't be |
5972 | /// converted to a timestamp in UTC. |
5973 | fn into_relative_span( |
5974 | self, |
5975 | largest: Unit, |
5976 | span: Span, |
5977 | ) -> Result<RelativeSpan<'a>, Error> { |
5978 | let kind = match self { |
5979 | Relative::Civil(start) => { |
5980 | let end = start.checked_add(span)?; |
5981 | RelativeSpanKind::Civil { start, end } |
5982 | } |
5983 | Relative::Zoned(start) => { |
5984 | let end = start.checked_add(span)?; |
5985 | RelativeSpanKind::Zoned { start, end } |
5986 | } |
5987 | }; |
5988 | let relspan = kind.into_relative_span(largest)?; |
5989 | if span.get_sign_ranged() != C(0) |
5990 | && relspan.span.get_sign_ranged() != C(0) |
5991 | && span.get_sign_ranged() != relspan.span.get_sign_ranged() |
5992 | { |
5993 | // I haven't quite figured out when this case is hit. I think it's |
5994 | // actually impossible right? Balancing a duration should not flip |
5995 | // the sign. |
5996 | // |
5997 | // ref: https://github.com/fullcalendar/temporal-polyfill/blob/9e001042864394247181d1a5d591c18057ce32d2/packages/temporal-polyfill/src/internal/durationMath.ts#L236-L238 |
5998 | unreachable!( |
5999 | "balanced span should have same sign as original span" |
6000 | ) |
6001 | } |
6002 | Ok(relspan) |
6003 | } |
6004 | |
6005 | /// Rounds the given span using the given rounding configuration. |
6006 | fn round( |
6007 | self, |
6008 | span: Span, |
6009 | smallest: Unit, |
6010 | largest: Unit, |
6011 | increment: NoUnits128, |
6012 | mode: RoundMode, |
6013 | ) -> Result<Span, Error> { |
6014 | let relspan = self.into_relative_span(largest, span)?; |
6015 | if relspan.span.get_sign_ranged() == C(0) { |
6016 | return Ok(relspan.span); |
6017 | } |
6018 | let nudge = match relspan.kind { |
6019 | RelativeSpanKind::Civil { start, end } => { |
6020 | if smallest > Unit::Day { |
6021 | Nudge::relative_calendar( |
6022 | relspan.span, |
6023 | &Relative::Civil(start), |
6024 | &Relative::Civil(end), |
6025 | smallest, |
6026 | increment, |
6027 | mode, |
6028 | )? |
6029 | } else { |
6030 | let relative_end = end.timestamp.as_nanosecond_ranged(); |
6031 | Nudge::relative_invariant( |
6032 | relspan.span, |
6033 | relative_end.rinto(), |
6034 | smallest, |
6035 | largest, |
6036 | increment, |
6037 | mode, |
6038 | )? |
6039 | } |
6040 | } |
6041 | RelativeSpanKind::Zoned { ref start, ref end } => { |
6042 | if smallest >= Unit::Day { |
6043 | Nudge::relative_calendar( |
6044 | relspan.span, |
6045 | &Relative::Zoned(start.borrowed()), |
6046 | &Relative::Zoned(end.borrowed()), |
6047 | smallest, |
6048 | increment, |
6049 | mode, |
6050 | )? |
6051 | } else if largest >= Unit::Day { |
6052 | // This is a special case for zoned datetimes when rounding |
6053 | // could bleed into variable units. |
6054 | Nudge::relative_zoned_time( |
6055 | relspan.span, |
6056 | start, |
6057 | smallest, |
6058 | increment, |
6059 | mode, |
6060 | )? |
6061 | } else { |
6062 | // Otherwise, rounding is the same as civil datetime. |
6063 | let relative_end = |
6064 | end.zoned.timestamp().as_nanosecond_ranged(); |
6065 | Nudge::relative_invariant( |
6066 | relspan.span, |
6067 | relative_end.rinto(), |
6068 | smallest, |
6069 | largest, |
6070 | increment, |
6071 | mode, |
6072 | )? |
6073 | } |
6074 | } |
6075 | }; |
6076 | nudge.bubble(&relspan, smallest, largest) |
6077 | } |
6078 | } |
6079 | |
6080 | /// A balanced span between a range of civil or zoned datetimes. |
6081 | /// |
6082 | /// The span is always balanced up to a certain unit as given to |
6083 | /// `RelativeSpanKind::into_relative_span`. |
6084 | #[derive (Clone, Debug)] |
6085 | struct RelativeSpan<'a> { |
6086 | span: Span, |
6087 | kind: RelativeSpanKind<'a>, |
6088 | } |
6089 | |
6090 | /// A civil or zoned datetime range of time. |
6091 | #[derive (Clone, Debug)] |
6092 | enum RelativeSpanKind<'a> { |
6093 | Civil { start: RelativeCivil, end: RelativeCivil }, |
6094 | Zoned { start: RelativeZoned<'a>, end: RelativeZoned<'a> }, |
6095 | } |
6096 | |
6097 | impl<'a> RelativeSpanKind<'a> { |
6098 | /// Create a balanced `RelativeSpan` from this range of time. |
6099 | /// |
6100 | /// # Errors |
6101 | /// |
6102 | /// This returns an error when the span in this range cannot be |
6103 | /// represented. In general, this only occurs when asking for largest units |
6104 | /// of `Unit::Nanosecond` *and* when the span is too big to fit into a |
6105 | /// 64-bit nanosecond count. |
6106 | fn into_relative_span( |
6107 | self, |
6108 | largest: Unit, |
6109 | ) -> Result<RelativeSpan<'a>, Error> { |
6110 | let span = match self { |
6111 | RelativeSpanKind::Civil { ref start, ref end } => start |
6112 | .datetime |
6113 | .until((largest, end.datetime)) |
6114 | .with_context(|| { |
6115 | err!( |
6116 | "failed to get span between {start} and {end} \ |
6117 | with largest unit as {unit}" , |
6118 | start = start.datetime, |
6119 | end = end.datetime, |
6120 | unit = largest.plural(), |
6121 | ) |
6122 | })?, |
6123 | RelativeSpanKind::Zoned { ref start, ref end } => start |
6124 | .zoned |
6125 | .until((largest, &*end.zoned)) |
6126 | .with_context(|| { |
6127 | err!( |
6128 | "failed to get span between {start} and {end} \ |
6129 | with largest unit as {unit}" , |
6130 | start = start.zoned, |
6131 | end = end.zoned, |
6132 | unit = largest.plural(), |
6133 | ) |
6134 | })?, |
6135 | }; |
6136 | Ok(RelativeSpan { span, kind: self }) |
6137 | } |
6138 | } |
6139 | |
6140 | /// A wrapper around a civil datetime and a timestamp corresponding to that |
6141 | /// civil datetime in UTC. |
6142 | /// |
6143 | /// Haphazardly interpreting a civil datetime in UTC is an odd and *usually* |
6144 | /// incorrect thing to do. But the way we use it here is basically just to give |
6145 | /// it an "anchoring" point such that we can represent it using a single |
6146 | /// integer for rounding purposes. It is only used in a context *relative* to |
6147 | /// another civil datetime interpreted in UTC. In this fashion, the selection |
6148 | /// of UTC specifically doesn't really matter. We could use any time zone. |
6149 | /// (Although, it must be a time zone without any transitions, otherwise we |
6150 | /// could wind up with time zone aware results in a context where that would |
6151 | /// be unexpected since this is civil time.) |
6152 | #[derive (Clone, Copy, Debug)] |
6153 | struct RelativeCivil { |
6154 | datetime: DateTime, |
6155 | timestamp: Timestamp, |
6156 | } |
6157 | |
6158 | impl RelativeCivil { |
6159 | /// Creates a new relative wrapper around the given civil datetime. |
6160 | /// |
6161 | /// This wrapper bundles a timestamp for the given datetime by interpreting |
6162 | /// it as being in UTC. This is an "odd" thing to do, but it's only used |
6163 | /// in the context of determining the length of time between two civil |
6164 | /// datetimes. So technically, any time zone without transitions could be |
6165 | /// used. |
6166 | /// |
6167 | /// # Errors |
6168 | /// |
6169 | /// This returns an error if the datetime could not be converted to a |
6170 | /// timestamp. This only occurs near the minimum and maximum civil datetime |
6171 | /// values. |
6172 | fn new(datetime: DateTime) -> Result<RelativeCivil, Error> { |
6173 | let timestamp = datetime |
6174 | .to_zoned(TimeZone::UTC) |
6175 | .with_context(|| { |
6176 | err!("failed to convert {datetime} to timestamp" ) |
6177 | })? |
6178 | .timestamp(); |
6179 | Ok(RelativeCivil { datetime, timestamp }) |
6180 | } |
6181 | |
6182 | /// Returns the result of [`DateTime::checked_add`]. |
6183 | /// |
6184 | /// # Errors |
6185 | /// |
6186 | /// Returns an error in the same cases as `DateTime::checked_add`. That is, |
6187 | /// when adding the span to this zoned datetime would overflow. |
6188 | /// |
6189 | /// This also returns an error if the resulting datetime could not be |
6190 | /// converted to a timestamp in UTC. This only occurs near the minimum and |
6191 | /// maximum datetime values. |
6192 | fn checked_add(&self, span: Span) -> Result<RelativeCivil, Error> { |
6193 | let datetime = self.datetime.checked_add(span).with_context(|| { |
6194 | err!("failed to add {span} to {dt}" , dt = self.datetime) |
6195 | })?; |
6196 | let timestamp = datetime |
6197 | .to_zoned(TimeZone::UTC) |
6198 | .with_context(|| { |
6199 | err!("failed to convert {datetime} to timestamp" ) |
6200 | })? |
6201 | .timestamp(); |
6202 | Ok(RelativeCivil { datetime, timestamp }) |
6203 | } |
6204 | |
6205 | /// Returns the result of [`DateTime::checked_add`] with an absolute |
6206 | /// duration. |
6207 | /// |
6208 | /// # Errors |
6209 | /// |
6210 | /// Returns an error in the same cases as `DateTime::checked_add`. That is, |
6211 | /// when adding the span to this zoned datetime would overflow. |
6212 | /// |
6213 | /// This also returns an error if the resulting datetime could not be |
6214 | /// converted to a timestamp in UTC. This only occurs near the minimum and |
6215 | /// maximum datetime values. |
6216 | fn checked_add_duration( |
6217 | &self, |
6218 | duration: SignedDuration, |
6219 | ) -> Result<RelativeCivil, Error> { |
6220 | let datetime = |
6221 | self.datetime.checked_add(duration).with_context(|| { |
6222 | err!("failed to add {duration:?} to {dt}" , dt = self.datetime) |
6223 | })?; |
6224 | let timestamp = datetime |
6225 | .to_zoned(TimeZone::UTC) |
6226 | .with_context(|| { |
6227 | err!("failed to convert {datetime} to timestamp" ) |
6228 | })? |
6229 | .timestamp(); |
6230 | Ok(RelativeCivil { datetime, timestamp }) |
6231 | } |
6232 | |
6233 | /// Returns the result of [`DateTime::until`]. |
6234 | /// |
6235 | /// # Errors |
6236 | /// |
6237 | /// Returns an error in the same cases as `DateTime::until`. That is, when |
6238 | /// the span for the given largest unit cannot be represented. This can |
6239 | /// generally only happen when `largest` is `Unit::Nanosecond` and the span |
6240 | /// cannot be represented as a 64-bit integer of nanoseconds. |
6241 | fn until( |
6242 | &self, |
6243 | largest: Unit, |
6244 | other: &RelativeCivil, |
6245 | ) -> Result<Span, Error> { |
6246 | self.datetime.until((largest, other.datetime)).with_context(|| { |
6247 | err!( |
6248 | "failed to get span between {dt1} and {dt2} \ |
6249 | with largest unit as {unit}" , |
6250 | unit = largest.plural(), |
6251 | dt1 = self.datetime, |
6252 | dt2 = other.datetime, |
6253 | ) |
6254 | }) |
6255 | } |
6256 | } |
6257 | |
6258 | /// A simple wrapper around a possibly borrowed `Zoned`. |
6259 | #[derive (Clone, Debug)] |
6260 | struct RelativeZoned<'a> { |
6261 | zoned: DumbCow<'a, Zoned>, |
6262 | } |
6263 | |
6264 | impl<'a> RelativeZoned<'a> { |
6265 | /// Returns the result of [`Zoned::checked_add`]. |
6266 | /// |
6267 | /// # Errors |
6268 | /// |
6269 | /// Returns an error in the same cases as `Zoned::checked_add`. That is, |
6270 | /// when adding the span to this zoned datetime would overflow. |
6271 | fn checked_add( |
6272 | &self, |
6273 | span: Span, |
6274 | ) -> Result<RelativeZoned<'static>, Error> { |
6275 | let zoned = self.zoned.checked_add(span).with_context(|| { |
6276 | err!("failed to add {span} to {zoned}" , zoned = self.zoned) |
6277 | })?; |
6278 | Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) }) |
6279 | } |
6280 | |
6281 | /// Returns the result of [`Zoned::checked_add`] with an absolute duration. |
6282 | /// |
6283 | /// # Errors |
6284 | /// |
6285 | /// Returns an error in the same cases as `Zoned::checked_add`. That is, |
6286 | /// when adding the span to this zoned datetime would overflow. |
6287 | fn checked_add_duration( |
6288 | &self, |
6289 | duration: SignedDuration, |
6290 | ) -> Result<RelativeZoned<'static>, Error> { |
6291 | let zoned = self.zoned.checked_add(duration).with_context(|| { |
6292 | err!("failed to add {duration:?} to {zoned}" , zoned = self.zoned) |
6293 | })?; |
6294 | Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) }) |
6295 | } |
6296 | |
6297 | /// Returns the result of [`Zoned::until`]. |
6298 | /// |
6299 | /// # Errors |
6300 | /// |
6301 | /// Returns an error in the same cases as `Zoned::until`. That is, when |
6302 | /// the span for the given largest unit cannot be represented. This can |
6303 | /// generally only happen when `largest` is `Unit::Nanosecond` and the span |
6304 | /// cannot be represented as a 64-bit integer of nanoseconds. |
6305 | fn until( |
6306 | &self, |
6307 | largest: Unit, |
6308 | other: &RelativeZoned<'a>, |
6309 | ) -> Result<Span, Error> { |
6310 | self.zoned.until((largest, &*other.zoned)).with_context(|| { |
6311 | err!( |
6312 | "failed to get span between {zdt1} and {zdt2} \ |
6313 | with largest unit as {unit}" , |
6314 | unit = largest.plural(), |
6315 | zdt1 = self.zoned, |
6316 | zdt2 = other.zoned, |
6317 | ) |
6318 | }) |
6319 | } |
6320 | |
6321 | /// Returns the borrowed version of self; useful when you need to convert |
6322 | /// `&RelativeZoned` into `RelativeZoned` without cloning anything. |
6323 | fn borrowed(&self) -> RelativeZoned { |
6324 | RelativeZoned { zoned: self.zoned.borrowed() } |
6325 | } |
6326 | } |
6327 | |
6328 | // The code below is the "core" rounding logic for spans. It was greatly |
6329 | // inspired by this gist[1] and the fullcalendar Temporal polyfill[2]. In |
6330 | // particular, the algorithm implemented below is a major simplification from |
6331 | // how Temporal used to work[3]. Parts of it are still in rough and unclear |
6332 | // shape IMO. |
6333 | // |
6334 | // [1]: https://gist.github.com/arshaw/36d3152c21482bcb78ea2c69591b20e0 |
6335 | // [2]: https://github.com/fullcalendar/temporal-polyfill |
6336 | // [3]: https://github.com/tc39/proposal-temporal/issues/2792 |
6337 | |
6338 | /// The result of a span rounding strategy. There are three: |
6339 | /// |
6340 | /// * Rounding spans relative to civil datetimes using only invariant |
6341 | /// units (days or less). This is achieved by converting the span to a simple |
6342 | /// integer number of nanoseconds and then rounding that. |
6343 | /// * Rounding spans relative to either a civil datetime or a zoned datetime |
6344 | /// where rounding might involve changing non-uniform units. That is, when |
6345 | /// the smallest unit is greater than days for civil datetimes and greater |
6346 | /// than hours for zoned datetimes. |
6347 | /// * Rounding spans relative to a zoned datetime whose smallest unit is |
6348 | /// less than days. |
6349 | /// |
6350 | /// Each of these might produce a bottom heavy span that needs to be |
6351 | /// re-balanced. This type represents that result via one of three constructors |
6352 | /// corresponding to each of the above strategies, and then provides a routine |
6353 | /// for rebalancing via "bubbling." |
6354 | #[derive (Debug)] |
6355 | struct Nudge { |
6356 | /// A possibly bottom heavy rounded span. |
6357 | span: Span, |
6358 | /// The nanosecond timestamp corresponding to `relative + span`, where |
6359 | /// `span` is the (possibly bottom heavy) rounded span. |
6360 | rounded_relative_end: NoUnits128, |
6361 | /// Whether rounding may have created a bottom heavy span such that a |
6362 | /// calendar unit might need to be incremented after re-balancing smaller |
6363 | /// units. |
6364 | grew_big_unit: bool, |
6365 | } |
6366 | |
6367 | impl Nudge { |
6368 | /// Performs rounding on the given span limited to invariant units. |
6369 | /// |
6370 | /// For civil datetimes, this means the smallest unit must be days or less, |
6371 | /// but the largest unit can be bigger. For zoned datetimes, this means |
6372 | /// that *both* the largest and smallest unit must be hours or less. This |
6373 | /// is because zoned datetimes with rounding that can spill up to days |
6374 | /// requires special handling. |
6375 | /// |
6376 | /// It works by converting the span to a single integer number of |
6377 | /// nanoseconds, rounding it and then converting back to a span. |
6378 | fn relative_invariant( |
6379 | balanced: Span, |
6380 | relative_end: NoUnits128, |
6381 | smallest: Unit, |
6382 | largest: Unit, |
6383 | increment: NoUnits128, |
6384 | mode: RoundMode, |
6385 | ) -> Result<Nudge, Error> { |
6386 | // Ensures this is only called when rounding invariant units. |
6387 | assert!(smallest <= Unit::Week); |
6388 | |
6389 | let sign = balanced.get_sign_ranged(); |
6390 | let balanced_nanos = balanced.to_invariant_nanoseconds(); |
6391 | let rounded_nanos = mode.round_by_unit_in_nanoseconds( |
6392 | balanced_nanos, |
6393 | smallest, |
6394 | increment, |
6395 | ); |
6396 | let span = Span::from_invariant_nanoseconds(largest, rounded_nanos) |
6397 | .with_context(|| { |
6398 | err!( |
6399 | "failed to convert rounded nanoseconds {rounded_nanos} \ |
6400 | to span for largest unit as {unit}" , |
6401 | unit = largest.plural(), |
6402 | ) |
6403 | })? |
6404 | .years_ranged(balanced.get_years_ranged()) |
6405 | .months_ranged(balanced.get_months_ranged()) |
6406 | .weeks_ranged(balanced.get_weeks_ranged()); |
6407 | |
6408 | let diff_nanos = rounded_nanos - balanced_nanos; |
6409 | let diff_days = rounded_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY) |
6410 | - balanced_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY); |
6411 | let grew_big_unit = diff_days.signum() == sign; |
6412 | let rounded_relative_end = relative_end + diff_nanos; |
6413 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
6414 | } |
6415 | |
6416 | /// Performs rounding on the given span where the smallest unit configured |
6417 | /// implies that rounding will cover calendar or "non-uniform" units. (That |
6418 | /// is, units whose length can change based on the relative datetime.) |
6419 | fn relative_calendar( |
6420 | balanced: Span, |
6421 | relative_start: &Relative<'_>, |
6422 | relative_end: &Relative<'_>, |
6423 | smallest: Unit, |
6424 | increment: NoUnits128, |
6425 | mode: RoundMode, |
6426 | ) -> Result<Nudge, Error> { |
6427 | #[cfg (not(feature = "std" ))] |
6428 | use crate::util::libm::Float; |
6429 | |
6430 | assert!(smallest >= Unit::Day); |
6431 | let sign = balanced.get_sign_ranged(); |
6432 | let truncated = increment |
6433 | * balanced.get_units_ranged(smallest).div_ceil(increment); |
6434 | let span = balanced |
6435 | .without_lower(smallest) |
6436 | .try_units_ranged(smallest, truncated.rinto()) |
6437 | .with_context(|| { |
6438 | err!( |
6439 | "failed to set {unit} to {truncated} on span {balanced}" , |
6440 | unit = smallest.singular() |
6441 | ) |
6442 | })?; |
6443 | let (relative0, relative1) = clamp_relative_span( |
6444 | relative_start, |
6445 | span, |
6446 | smallest, |
6447 | NoUnits::try_rfrom("increment" , increment)? |
6448 | .try_checked_mul("signed increment" , sign)?, |
6449 | )?; |
6450 | |
6451 | // FIXME: This is brutal. This is the only non-optional floating point |
6452 | // used so far in Jiff. We do expose floating point for things like |
6453 | // `Span::total`, but that's optional and not a core part of Jiff's |
6454 | // functionality. This is in the core part of Jiff's span rounding... |
6455 | let denom = (relative1 - relative0).get() as f64; |
6456 | let numer = (relative_end.to_nanosecond() - relative0).get() as f64; |
6457 | let exact = (truncated.get() as f64) |
6458 | + (numer / denom) * (sign.get() as f64) * (increment.get() as f64); |
6459 | let rounded = mode.round_float(exact, increment); |
6460 | let grew_big_unit = |
6461 | ((rounded.get() as f64) - exact).signum() == (sign.get() as f64); |
6462 | |
6463 | let span = span |
6464 | .try_units_ranged(smallest, rounded.rinto()) |
6465 | .with_context(|| { |
6466 | err!( |
6467 | "failed to set {unit} to {truncated} on span {span}" , |
6468 | unit = smallest.singular() |
6469 | ) |
6470 | })?; |
6471 | let rounded_relative_end = |
6472 | if grew_big_unit { relative1 } else { relative0 }; |
6473 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
6474 | } |
6475 | |
6476 | /// Performs rounding on the given span where the smallest unit is hours |
6477 | /// or less *and* the relative datetime is time zone aware. |
6478 | fn relative_zoned_time( |
6479 | balanced: Span, |
6480 | relative_start: &RelativeZoned<'_>, |
6481 | smallest: Unit, |
6482 | increment: NoUnits128, |
6483 | mode: RoundMode, |
6484 | ) -> Result<Nudge, Error> { |
6485 | let sign = balanced.get_sign_ranged(); |
6486 | let time_nanos = |
6487 | balanced.only_lower(Unit::Day).to_invariant_nanoseconds(); |
6488 | let mut rounded_time_nanos = |
6489 | mode.round_by_unit_in_nanoseconds(time_nanos, smallest, increment); |
6490 | let (relative0, relative1) = clamp_relative_span( |
6491 | // FIXME: Find a way to drop this clone. |
6492 | &Relative::Zoned(relative_start.clone()), |
6493 | balanced.without_lower(Unit::Day), |
6494 | Unit::Day, |
6495 | sign.rinto(), |
6496 | )?; |
6497 | let day_nanos = relative1 - relative0; |
6498 | let beyond_day_nanos = rounded_time_nanos - day_nanos; |
6499 | |
6500 | let mut day_delta = NoUnits::N::<0>(); |
6501 | let rounded_relative_end = |
6502 | if beyond_day_nanos == C(0) || beyond_day_nanos.signum() == sign { |
6503 | day_delta += C(1); |
6504 | rounded_time_nanos = mode.round_by_unit_in_nanoseconds( |
6505 | beyond_day_nanos, |
6506 | smallest, |
6507 | increment, |
6508 | ); |
6509 | relative1 + rounded_time_nanos |
6510 | } else { |
6511 | relative0 + rounded_time_nanos |
6512 | }; |
6513 | |
6514 | let span = |
6515 | Span::from_invariant_nanoseconds(Unit::Hour, rounded_time_nanos) |
6516 | .with_context(|| { |
6517 | err!( |
6518 | "failed to convert rounded nanoseconds \ |
6519 | {rounded_time_nanos} to span for largest unit as {unit}" , |
6520 | unit = Unit::Hour.plural(), |
6521 | ) |
6522 | })? |
6523 | .years_ranged(balanced.get_years_ranged()) |
6524 | .months_ranged(balanced.get_months_ranged()) |
6525 | .weeks_ranged(balanced.get_weeks_ranged()) |
6526 | .days_ranged(balanced.get_days_ranged() + day_delta); |
6527 | let grew_big_unit = day_delta != C(0); |
6528 | Ok(Nudge { span, rounded_relative_end, grew_big_unit }) |
6529 | } |
6530 | |
6531 | /// This "bubbles" up the units in a potentially "bottom heavy" span to |
6532 | /// larger units. For example, P1m50d relative to March 1 is bottom heavy. |
6533 | /// This routine will bubble the days up to months to get P2m19d. |
6534 | /// |
6535 | /// # Errors |
6536 | /// |
6537 | /// This routine fails if any arithmetic on the individual units fails, or |
6538 | /// when span arithmetic on the relative datetime given fails. |
6539 | fn bubble( |
6540 | &self, |
6541 | relative: &RelativeSpan, |
6542 | smallest: Unit, |
6543 | largest: Unit, |
6544 | ) -> Result<Span, Error> { |
6545 | if !self.grew_big_unit || smallest == Unit::Week { |
6546 | return Ok(self.span); |
6547 | } |
6548 | |
6549 | let smallest = smallest.max(Unit::Day); |
6550 | let mut balanced = self.span; |
6551 | let sign = balanced.get_sign_ranged(); |
6552 | let mut unit = smallest; |
6553 | while let Some(u) = unit.next() { |
6554 | unit = u; |
6555 | if unit > largest { |
6556 | break; |
6557 | } |
6558 | // We only bubble smaller units up into weeks when the largest unit |
6559 | // is explicitly set to weeks. Otherwise, we leave it as-is. |
6560 | if unit == Unit::Week && largest != Unit::Week { |
6561 | continue; |
6562 | } |
6563 | |
6564 | let span_start = balanced.without_lower(unit); |
6565 | let new_units = span_start |
6566 | .get_units_ranged(unit) |
6567 | .try_checked_add("bubble-units" , sign) |
6568 | .with_context(|| { |
6569 | err!( |
6570 | "failed to add sign {sign} to {unit} value {value}" , |
6571 | unit = unit.plural(), |
6572 | value = span_start.get_units_ranged(unit), |
6573 | ) |
6574 | })?; |
6575 | let span_end = span_start |
6576 | .try_units_ranged(unit, new_units) |
6577 | .with_context(|| { |
6578 | err!( |
6579 | "failed to set {unit} to value \ |
6580 | {new_units} on span {span_start}" , |
6581 | unit = unit.plural(), |
6582 | ) |
6583 | })?; |
6584 | let threshold = match relative.kind { |
6585 | RelativeSpanKind::Civil { ref start, .. } => { |
6586 | start.checked_add(span_end)?.timestamp |
6587 | } |
6588 | RelativeSpanKind::Zoned { ref start, .. } => { |
6589 | start.checked_add(span_end)?.zoned.timestamp() |
6590 | } |
6591 | }; |
6592 | let beyond = |
6593 | self.rounded_relative_end - threshold.as_nanosecond_ranged(); |
6594 | if beyond == C(0) || beyond.signum() == sign { |
6595 | balanced = span_end; |
6596 | } else { |
6597 | break; |
6598 | } |
6599 | } |
6600 | Ok(balanced) |
6601 | } |
6602 | } |
6603 | |
6604 | /// Rounds a span consisting of only invariant units. |
6605 | /// |
6606 | /// This only applies when the max of the units in the span being rounded, |
6607 | /// the largest configured unit and the smallest configured unit are all |
6608 | /// invariant. That is, days or lower for spans without a relative datetime or |
6609 | /// a relative civil datetime, and hours or lower for spans with a relative |
6610 | /// zoned datetime. |
6611 | /// |
6612 | /// All we do here is convert the span to an integer number of nanoseconds, |
6613 | /// round that and then convert back. There aren't any tricky corner cases to |
6614 | /// consider here. |
6615 | fn round_span_invariant( |
6616 | span: Span, |
6617 | smallest: Unit, |
6618 | largest: Unit, |
6619 | increment: NoUnits128, |
6620 | mode: RoundMode, |
6621 | ) -> Result<Span, Error> { |
6622 | assert!(smallest <= Unit::Week); |
6623 | assert!(largest <= Unit::Week); |
6624 | let nanos: ri128<_, _> = span.to_invariant_nanoseconds(); |
6625 | let rounded: ri128<_, _> = |
6626 | mode.round_by_unit_in_nanoseconds(quantity:nanos, unit:smallest, increment); |
6627 | Span::from_invariant_nanoseconds(largest, rounded).with_context(|| { |
6628 | err!( |
6629 | "failed to convert rounded nanoseconds {rounded} \ |
6630 | to span for largest unit as {unit}" , |
6631 | unit = largest.plural(), |
6632 | ) |
6633 | }) |
6634 | } |
6635 | |
6636 | /// Returns the nanosecond timestamps of `relative + span` and `relative + |
6637 | /// {amount of unit} + span`. |
6638 | /// |
6639 | /// This is useful for determining the actual length, in nanoseconds, of some |
6640 | /// unit amount (usually a single unit). Usually, this is called with a span |
6641 | /// whose units lower than `unit` are zeroed out and with an `amount` that |
6642 | /// is `-1` or `1` or `0`. So for example, if `unit` were `Unit::Day`, then |
6643 | /// you'd get back two nanosecond timestamps relative to the relative datetime |
6644 | /// given that start exactly "one day" apart. (Which might be different than 24 |
6645 | /// hours, depending on the time zone.) |
6646 | /// |
6647 | /// # Errors |
6648 | /// |
6649 | /// This returns an error if adding the units overflows, or if doing the span |
6650 | /// arithmetic on `relative` overflows. |
6651 | fn clamp_relative_span( |
6652 | relative: &Relative<'_>, |
6653 | span: Span, |
6654 | unit: Unit, |
6655 | amount: NoUnits, |
6656 | ) -> Result<(NoUnits128, NoUnits128), Error> { |
6657 | let amount: ri64<_, _> = span |
6658 | .get_units_ranged(unit) |
6659 | .try_checked_add("clamp-units" , amount) |
6660 | .with_context(|| { |
6661 | err!( |
6662 | "failed to add {amount} to {unit} \ |
6663 | value {value} on span {span}" , |
6664 | unit = unit.plural(), |
6665 | value = span.get_units_ranged(unit), |
6666 | ) |
6667 | })?; |
6668 | let span_amount: Span = |
6669 | span.try_units_ranged(unit, amount).with_context(|| { |
6670 | err!( |
6671 | "failed to set {unit} unit to {amount} on span {span}" , |
6672 | unit = unit.plural(), |
6673 | ) |
6674 | })?; |
6675 | let relative0: ri128<_, _> = relative.checked_add(span)?.to_nanosecond(); |
6676 | let relative1: ri128<_, _> = relative.checked_add(span_amount)?.to_nanosecond(); |
6677 | Ok((relative0, relative1)) |
6678 | } |
6679 | |
6680 | /// A common parsing function that works in bytes. |
6681 | /// |
6682 | /// Specifically, this parses either an ISO 8601 duration into a `Span` or |
6683 | /// a "friendly" duration into a `Span`. It also tries to give decent error |
6684 | /// messages. |
6685 | /// |
6686 | /// This works because the friendly and ISO 8601 formats have non-overlapping |
6687 | /// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO |
6688 | /// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this |
6689 | /// property to very quickly determine how to parse the input. We just need to |
6690 | /// handle the possibly ambiguous case with a leading sign a little carefully |
6691 | /// in order to ensure good error messages. |
6692 | /// |
6693 | /// (We do the same thing for `SignedDuration`.) |
6694 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
6695 | fn parse_iso_or_friendly(bytes: &[u8]) -> Result<Span, Error> { |
6696 | if bytes.is_empty() { |
6697 | return Err(err!( |
6698 | "an empty string is not a valid `Span`, \ |
6699 | expected either a ISO 8601 or Jiff's 'friendly' \ |
6700 | format" , |
6701 | )); |
6702 | } |
6703 | let mut first = bytes[0]; |
6704 | if first == b'+' || first == b'-' { |
6705 | if bytes.len() == 1 { |
6706 | return Err(err!( |
6707 | "found nothing after sign ` {sign}`, \ |
6708 | which is not a valid `Span`, \ |
6709 | expected either a ISO 8601 or Jiff's 'friendly' \ |
6710 | format" , |
6711 | sign = escape::Byte(first), |
6712 | )); |
6713 | } |
6714 | first = bytes[1]; |
6715 | } |
6716 | if first == b'P' || first == b'p' { |
6717 | temporal::DEFAULT_SPAN_PARSER.parse_span(bytes) |
6718 | } else { |
6719 | friendly::DEFAULT_SPAN_PARSER.parse_span(bytes) |
6720 | } |
6721 | } |
6722 | |
6723 | fn requires_relative_date_err(unit: Unit) -> Result<(), Error> { |
6724 | if unit.is_variable() { |
6725 | return Err(if matches!(unit, Unit::Week | Unit::Day) { |
6726 | err!( |
6727 | "using unit ' {unit}' in a span or configuration \ |
6728 | requires that either a relative reference time be given \ |
6729 | or `SpanRelativeTo::days_are_24_hours()` is used to \ |
6730 | indicate invariant 24-hour days, \ |
6731 | but neither were provided" , |
6732 | unit = unit.singular(), |
6733 | ) |
6734 | } else { |
6735 | err!( |
6736 | "using unit ' {unit}' in a span or configuration \ |
6737 | requires that a relative reference time be given, \ |
6738 | but none was provided" , |
6739 | unit = unit.singular(), |
6740 | ) |
6741 | }); |
6742 | } |
6743 | Ok(()) |
6744 | } |
6745 | |
6746 | #[cfg (test)] |
6747 | mod tests { |
6748 | use std::io::Cursor; |
6749 | |
6750 | use alloc::string::ToString; |
6751 | |
6752 | use crate::{civil::date, RoundMode}; |
6753 | |
6754 | use super::*; |
6755 | |
6756 | #[test ] |
6757 | fn test_total() { |
6758 | if crate::tz::db().is_definitively_empty() { |
6759 | return; |
6760 | } |
6761 | |
6762 | let span = 130.hours().minutes(20); |
6763 | let total = span.total(Unit::Second).unwrap(); |
6764 | assert_eq!(total, 469200.0); |
6765 | |
6766 | let span = 123456789.seconds(); |
6767 | let total = span |
6768 | .total(SpanTotal::from(Unit::Day).days_are_24_hours()) |
6769 | .unwrap(); |
6770 | assert_eq!(total, 1428.8980208333332); |
6771 | |
6772 | let span = 2756.hours(); |
6773 | let dt = date(2020, 1, 1).at(0, 0, 0, 0); |
6774 | let zdt = dt.in_tz("Europe/Rome" ).unwrap(); |
6775 | let total = span.total((Unit::Month, &zdt)).unwrap(); |
6776 | assert_eq!(total, 3.7958333333333334); |
6777 | let total = span.total((Unit::Month, dt)).unwrap(); |
6778 | assert_eq!(total, 3.7944444444444443); |
6779 | } |
6780 | |
6781 | #[test ] |
6782 | fn test_compare() { |
6783 | if crate::tz::db().is_definitively_empty() { |
6784 | return; |
6785 | } |
6786 | |
6787 | let span1 = 79.hours().minutes(10); |
6788 | let span2 = 79.hours().seconds(630); |
6789 | let span3 = 78.hours().minutes(50); |
6790 | let mut array = [span1, span2, span3]; |
6791 | array.sort_by(|sp1, sp2| sp1.compare(sp2).unwrap()); |
6792 | assert_eq!(array, [span3, span1, span2].map(SpanFieldwise)); |
6793 | |
6794 | let day24 = SpanRelativeTo::days_are_24_hours(); |
6795 | let span1 = 79.hours().minutes(10); |
6796 | let span2 = 3.days().hours(7).seconds(630); |
6797 | let span3 = 3.days().hours(6).minutes(50); |
6798 | let mut array = [span1, span2, span3]; |
6799 | array.sort_by(|sp1, sp2| sp1.compare((sp2, day24)).unwrap()); |
6800 | assert_eq!(array, [span3, span1, span2].map(SpanFieldwise)); |
6801 | |
6802 | let dt = date(2020, 11, 1).at(0, 0, 0, 0); |
6803 | let zdt = dt.in_tz("America/Los_Angeles" ).unwrap(); |
6804 | array.sort_by(|sp1, sp2| sp1.compare((sp2, &zdt)).unwrap()); |
6805 | assert_eq!(array, [span1, span3, span2].map(SpanFieldwise)); |
6806 | } |
6807 | |
6808 | #[test ] |
6809 | fn test_checked_add() { |
6810 | let span1 = 1.hour(); |
6811 | let span2 = 30.minutes(); |
6812 | let sum = span1.checked_add(span2).unwrap(); |
6813 | span_eq!(sum, 1.hour().minutes(30)); |
6814 | |
6815 | let span1 = 1.hour().minutes(30); |
6816 | let span2 = 2.hours().minutes(45); |
6817 | let sum = span1.checked_add(span2).unwrap(); |
6818 | span_eq!(sum, 4.hours().minutes(15)); |
6819 | |
6820 | let span = 50 |
6821 | .years() |
6822 | .months(50) |
6823 | .days(50) |
6824 | .hours(50) |
6825 | .minutes(50) |
6826 | .seconds(50) |
6827 | .milliseconds(500) |
6828 | .microseconds(500) |
6829 | .nanoseconds(500); |
6830 | let relative = date(1900, 1, 1).at(0, 0, 0, 0); |
6831 | let sum = span.checked_add((span, relative)).unwrap(); |
6832 | let expected = 108 |
6833 | .years() |
6834 | .months(7) |
6835 | .days(12) |
6836 | .hours(5) |
6837 | .minutes(41) |
6838 | .seconds(41) |
6839 | .milliseconds(1) |
6840 | .microseconds(1) |
6841 | .nanoseconds(0); |
6842 | span_eq!(sum, expected); |
6843 | |
6844 | let span = 1.month().days(15); |
6845 | let relative = date(2000, 2, 1).at(0, 0, 0, 0); |
6846 | let sum = span.checked_add((span, relative)).unwrap(); |
6847 | span_eq!(sum, 3.months()); |
6848 | let relative = date(2000, 3, 1).at(0, 0, 0, 0); |
6849 | let sum = span.checked_add((span, relative)).unwrap(); |
6850 | span_eq!(sum, 2.months().days(30)); |
6851 | } |
6852 | |
6853 | #[test ] |
6854 | fn test_round_day_time() { |
6855 | let span = 29.seconds(); |
6856 | let rounded = span.round(Unit::Minute).unwrap(); |
6857 | span_eq!(rounded, 0.minute()); |
6858 | |
6859 | let span = 30.seconds(); |
6860 | let rounded = span.round(Unit::Minute).unwrap(); |
6861 | span_eq!(rounded, 1.minute()); |
6862 | |
6863 | let span = 8.seconds(); |
6864 | let rounded = span |
6865 | .round( |
6866 | SpanRound::new() |
6867 | .smallest(Unit::Nanosecond) |
6868 | .largest(Unit::Microsecond), |
6869 | ) |
6870 | .unwrap(); |
6871 | span_eq!(rounded, 8_000_000.microseconds()); |
6872 | |
6873 | let span = 130.minutes(); |
6874 | let rounded = span |
6875 | .round(SpanRound::new().largest(Unit::Day).days_are_24_hours()) |
6876 | .unwrap(); |
6877 | span_eq!(rounded, 2.hours().minutes(10)); |
6878 | |
6879 | let span = 10.minutes().seconds(52); |
6880 | let rounded = span.round(Unit::Minute).unwrap(); |
6881 | span_eq!(rounded, 11.minutes()); |
6882 | |
6883 | let span = 10.minutes().seconds(52); |
6884 | let rounded = span |
6885 | .round( |
6886 | SpanRound::new().smallest(Unit::Minute).mode(RoundMode::Trunc), |
6887 | ) |
6888 | .unwrap(); |
6889 | span_eq!(rounded, 10.minutes()); |
6890 | |
6891 | let span = 2.hours().minutes(34).seconds(18); |
6892 | let rounded = |
6893 | span.round(SpanRound::new().largest(Unit::Second)).unwrap(); |
6894 | span_eq!(rounded, 9258.seconds()); |
6895 | |
6896 | let span = 6.minutes(); |
6897 | let rounded = span |
6898 | .round( |
6899 | SpanRound::new() |
6900 | .smallest(Unit::Minute) |
6901 | .increment(5) |
6902 | .mode(RoundMode::Ceil), |
6903 | ) |
6904 | .unwrap(); |
6905 | span_eq!(rounded, 10.minutes()); |
6906 | } |
6907 | |
6908 | #[test ] |
6909 | fn test_round_relative_zoned_calendar() { |
6910 | if crate::tz::db().is_definitively_empty() { |
6911 | return; |
6912 | } |
6913 | |
6914 | let span = 2756.hours(); |
6915 | let relative = |
6916 | date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
6917 | let options = SpanRound::new() |
6918 | .largest(Unit::Year) |
6919 | .smallest(Unit::Day) |
6920 | .relative(&relative); |
6921 | let rounded = span.round(options).unwrap(); |
6922 | span_eq!(rounded, 3.months().days(24)); |
6923 | |
6924 | let span = 24.hours().nanoseconds(5); |
6925 | let relative = date(2000, 10, 29) |
6926 | .at(0, 0, 0, 0) |
6927 | .in_tz("America/Vancouver" ) |
6928 | .unwrap(); |
6929 | let options = SpanRound::new() |
6930 | .largest(Unit::Day) |
6931 | .smallest(Unit::Minute) |
6932 | .relative(&relative) |
6933 | .mode(RoundMode::Expand) |
6934 | .increment(30); |
6935 | let rounded = span.round(options).unwrap(); |
6936 | // It seems like this is the correct answer, although it apparently |
6937 | // differs from Temporal and the FullCalendar polyfill. I'm not sure |
6938 | // what accounts for the difference in the implementation. |
6939 | // |
6940 | // See: https://github.com/tc39/proposal-temporal/pull/2758#discussion_r1597255245 |
6941 | span_eq!(rounded, 24.hours().minutes(30)); |
6942 | |
6943 | // Ref: https://github.com/tc39/proposal-temporal/issues/2816#issuecomment-2115608460 |
6944 | let span = -1.month().hours(24); |
6945 | let relative: crate::Zoned = date(2024, 4, 11) |
6946 | .at(2, 0, 0, 0) |
6947 | .in_tz("America/New_York" ) |
6948 | .unwrap(); |
6949 | let options = |
6950 | SpanRound::new().smallest(Unit::Millisecond).relative(&relative); |
6951 | let rounded = span.round(options).unwrap(); |
6952 | span_eq!(rounded, -1.month().days(1).hours(1)); |
6953 | let dt = relative.checked_add(span).unwrap(); |
6954 | let diff = relative.until((Unit::Month, &dt)).unwrap(); |
6955 | span_eq!(diff, -1.month().days(1).hours(1)); |
6956 | |
6957 | // Like the above, but don't use a datetime near a DST transition. In |
6958 | // this case, a day is a normal 24 hours. (Unlike above, where the |
6959 | // duration includes a 23 hour day, and so an additional hour has to be |
6960 | // added to the span to account for that.) |
6961 | let span = -1.month().hours(24); |
6962 | let relative = date(2024, 6, 11) |
6963 | .at(2, 0, 0, 0) |
6964 | .in_tz("America/New_York" ) |
6965 | .unwrap(); |
6966 | let options = |
6967 | SpanRound::new().smallest(Unit::Millisecond).relative(&relative); |
6968 | let rounded = span.round(options).unwrap(); |
6969 | span_eq!(rounded, -1.month().days(1)); |
6970 | } |
6971 | |
6972 | #[test ] |
6973 | fn test_round_relative_zoned_time() { |
6974 | if crate::tz::db().is_definitively_empty() { |
6975 | return; |
6976 | } |
6977 | |
6978 | let span = 2756.hours(); |
6979 | let relative = |
6980 | date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
6981 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
6982 | let rounded = span.round(options).unwrap(); |
6983 | span_eq!(rounded, 3.months().days(23).hours(21)); |
6984 | |
6985 | let span = 2756.hours(); |
6986 | let relative = |
6987 | date(2020, 9, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
6988 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
6989 | let rounded = span.round(options).unwrap(); |
6990 | span_eq!(rounded, 3.months().days(23).hours(19)); |
6991 | |
6992 | let span = 3.hours(); |
6993 | let relative = |
6994 | date(2020, 3, 8).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
6995 | let options = SpanRound::new().largest(Unit::Year).relative(&relative); |
6996 | let rounded = span.round(options).unwrap(); |
6997 | span_eq!(rounded, 3.hours()); |
6998 | } |
6999 | |
7000 | #[test ] |
7001 | fn test_round_relative_day_time() { |
7002 | let span = 2756.hours(); |
7003 | let options = |
7004 | SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1)); |
7005 | let rounded = span.round(options).unwrap(); |
7006 | span_eq!(rounded, 3.months().days(23).hours(20)); |
7007 | |
7008 | let span = 2756.hours(); |
7009 | let options = |
7010 | SpanRound::new().largest(Unit::Year).relative(date(2020, 9, 1)); |
7011 | let rounded = span.round(options).unwrap(); |
7012 | span_eq!(rounded, 3.months().days(23).hours(20)); |
7013 | |
7014 | let span = 190.days(); |
7015 | let options = |
7016 | SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1)); |
7017 | let rounded = span.round(options).unwrap(); |
7018 | span_eq!(rounded, 6.months().days(8)); |
7019 | |
7020 | let span = 30 |
7021 | .days() |
7022 | .hours(23) |
7023 | .minutes(59) |
7024 | .seconds(59) |
7025 | .milliseconds(999) |
7026 | .microseconds(999) |
7027 | .nanoseconds(999); |
7028 | let options = SpanRound::new() |
7029 | .smallest(Unit::Microsecond) |
7030 | .largest(Unit::Year) |
7031 | .relative(date(2024, 5, 1)); |
7032 | let rounded = span.round(options).unwrap(); |
7033 | span_eq!(rounded, 1.month()); |
7034 | |
7035 | let span = 364 |
7036 | .days() |
7037 | .hours(23) |
7038 | .minutes(59) |
7039 | .seconds(59) |
7040 | .milliseconds(999) |
7041 | .microseconds(999) |
7042 | .nanoseconds(999); |
7043 | let options = SpanRound::new() |
7044 | .smallest(Unit::Microsecond) |
7045 | .largest(Unit::Year) |
7046 | .relative(date(2023, 1, 1)); |
7047 | let rounded = span.round(options).unwrap(); |
7048 | span_eq!(rounded, 1.year()); |
7049 | |
7050 | let span = 365 |
7051 | .days() |
7052 | .hours(23) |
7053 | .minutes(59) |
7054 | .seconds(59) |
7055 | .milliseconds(999) |
7056 | .microseconds(999) |
7057 | .nanoseconds(999); |
7058 | let options = SpanRound::new() |
7059 | .smallest(Unit::Microsecond) |
7060 | .largest(Unit::Year) |
7061 | .relative(date(2023, 1, 1)); |
7062 | let rounded = span.round(options).unwrap(); |
7063 | span_eq!(rounded, 1.year().days(1)); |
7064 | |
7065 | let span = 365 |
7066 | .days() |
7067 | .hours(23) |
7068 | .minutes(59) |
7069 | .seconds(59) |
7070 | .milliseconds(999) |
7071 | .microseconds(999) |
7072 | .nanoseconds(999); |
7073 | let options = SpanRound::new() |
7074 | .smallest(Unit::Microsecond) |
7075 | .largest(Unit::Year) |
7076 | .relative(date(2024, 1, 1)); |
7077 | let rounded = span.round(options).unwrap(); |
7078 | span_eq!(rounded, 1.year()); |
7079 | |
7080 | let span = 3.hours(); |
7081 | let options = |
7082 | SpanRound::new().largest(Unit::Year).relative(date(2020, 3, 8)); |
7083 | let rounded = span.round(options).unwrap(); |
7084 | span_eq!(rounded, 3.hours()); |
7085 | } |
7086 | |
7087 | #[test ] |
7088 | fn span_sign() { |
7089 | assert_eq!(Span::new().get_sign_ranged(), C(0)); |
7090 | assert_eq!(Span::new().days(1).get_sign_ranged(), C(1)); |
7091 | assert_eq!(Span::new().days(-1).get_sign_ranged(), C(-1)); |
7092 | assert_eq!(Span::new().days(1).days(0).get_sign_ranged(), C(0)); |
7093 | assert_eq!(Span::new().days(-1).days(0).get_sign_ranged(), C(0)); |
7094 | assert_eq!( |
7095 | Span::new().years(1).days(1).days(0).get_sign_ranged(), |
7096 | C(1) |
7097 | ); |
7098 | assert_eq!( |
7099 | Span::new().years(-1).days(-1).days(0).get_sign_ranged(), |
7100 | C(-1) |
7101 | ); |
7102 | } |
7103 | |
7104 | #[test ] |
7105 | fn span_size() { |
7106 | #[cfg (target_pointer_width = "64" )] |
7107 | { |
7108 | #[cfg (debug_assertions)] |
7109 | { |
7110 | assert_eq!(core::mem::align_of::<Span>(), 8); |
7111 | assert_eq!(core::mem::size_of::<Span>(), 184); |
7112 | } |
7113 | #[cfg (not(debug_assertions))] |
7114 | { |
7115 | assert_eq!(core::mem::align_of::<Span>(), 8); |
7116 | assert_eq!(core::mem::size_of::<Span>(), 64); |
7117 | } |
7118 | } |
7119 | } |
7120 | |
7121 | quickcheck::quickcheck! { |
7122 | fn prop_roundtrip_span_nanoseconds(span: Span) -> quickcheck::TestResult { |
7123 | let largest = span.largest_unit(); |
7124 | if largest > Unit::Day { |
7125 | return quickcheck::TestResult::discard(); |
7126 | } |
7127 | let nanos = span.to_invariant_nanoseconds(); |
7128 | let got = Span::from_invariant_nanoseconds(largest, nanos).unwrap(); |
7129 | quickcheck::TestResult::from_bool(nanos == got.to_invariant_nanoseconds()) |
7130 | } |
7131 | } |
7132 | |
7133 | /// # `serde` deserializer compatibility test |
7134 | /// |
7135 | /// Serde YAML used to be unable to deserialize `jiff` types, |
7136 | /// as deserializing from bytes is not supported by the deserializer. |
7137 | /// |
7138 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
7139 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
7140 | #[test ] |
7141 | fn span_deserialize_yaml() { |
7142 | let expected = Span::new() |
7143 | .years(1) |
7144 | .months(2) |
7145 | .weeks(3) |
7146 | .days(4) |
7147 | .hours(5) |
7148 | .minutes(6) |
7149 | .seconds(7); |
7150 | |
7151 | let deserialized: Span = |
7152 | serde_yaml::from_str("P1y2m3w4dT5h6m7s" ).unwrap(); |
7153 | |
7154 | span_eq!(deserialized, expected); |
7155 | |
7156 | let deserialized: Span = |
7157 | serde_yaml::from_slice("P1y2m3w4dT5h6m7s" .as_bytes()).unwrap(); |
7158 | |
7159 | span_eq!(deserialized, expected); |
7160 | |
7161 | let cursor = Cursor::new(b"P1y2m3w4dT5h6m7s" ); |
7162 | let deserialized: Span = serde_yaml::from_reader(cursor).unwrap(); |
7163 | |
7164 | span_eq!(deserialized, expected); |
7165 | } |
7166 | |
7167 | #[test ] |
7168 | fn display() { |
7169 | let span = Span::new() |
7170 | .years(1) |
7171 | .months(2) |
7172 | .weeks(3) |
7173 | .days(4) |
7174 | .hours(5) |
7175 | .minutes(6) |
7176 | .seconds(7) |
7177 | .milliseconds(8) |
7178 | .microseconds(9) |
7179 | .nanoseconds(10); |
7180 | insta::assert_snapshot!( |
7181 | span, |
7182 | @"P1Y2M3W4DT5H6M7.00800901S" , |
7183 | ); |
7184 | insta::assert_snapshot!( |
7185 | alloc::format!("{span:#}" ), |
7186 | @"1y 2mo 3w 4d 5h 6m 7s 8ms 9µs 10ns" , |
7187 | ); |
7188 | } |
7189 | |
7190 | /// This test ensures that we can parse `humantime` formatted durations. |
7191 | #[test ] |
7192 | fn humantime_compatibility_parse() { |
7193 | let dur = std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789); |
7194 | let formatted = humantime::format_duration(dur).to_string(); |
7195 | assert_eq!( |
7196 | formatted, |
7197 | "1year 1month 15days 7h 26m 24s 123ms 456us 789ns" |
7198 | ); |
7199 | let expected = 1 |
7200 | .year() |
7201 | .months(1) |
7202 | .days(15) |
7203 | .hours(7) |
7204 | .minutes(26) |
7205 | .seconds(24) |
7206 | .milliseconds(123) |
7207 | .microseconds(456) |
7208 | .nanoseconds(789); |
7209 | span_eq!(formatted.parse::<Span>().unwrap(), expected); |
7210 | } |
7211 | |
7212 | /// This test ensures that we can print a `Span` that `humantime` can |
7213 | /// parse. |
7214 | /// |
7215 | /// Note that this isn't the default since `humantime`'s parser is |
7216 | /// pretty limited. e.g., It doesn't support things like `nsecs` |
7217 | /// despite supporting `secs`. And other reasons. See the docs on |
7218 | /// `Designator::HumanTime` for why we sadly provide a custom variant for |
7219 | /// it. |
7220 | #[test ] |
7221 | fn humantime_compatibility_print() { |
7222 | static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new() |
7223 | .designator(friendly::Designator::HumanTime); |
7224 | |
7225 | let span = 1 |
7226 | .year() |
7227 | .months(1) |
7228 | .days(15) |
7229 | .hours(7) |
7230 | .minutes(26) |
7231 | .seconds(24) |
7232 | .milliseconds(123) |
7233 | .microseconds(456) |
7234 | .nanoseconds(789); |
7235 | let formatted = PRINTER.span_to_string(&span); |
7236 | assert_eq!(formatted, "1y 1month 15d 7h 26m 24s 123ms 456us 789ns" ); |
7237 | |
7238 | let dur = humantime::parse_duration(&formatted).unwrap(); |
7239 | let expected = |
7240 | std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789); |
7241 | assert_eq!(dur, expected); |
7242 | } |
7243 | |
7244 | #[test ] |
7245 | fn from_str() { |
7246 | let p = |s: &str| -> Result<Span, Error> { s.parse() }; |
7247 | |
7248 | insta::assert_snapshot!( |
7249 | p("1 day" ).unwrap(), |
7250 | @"P1D" , |
7251 | ); |
7252 | insta::assert_snapshot!( |
7253 | p("+1 day" ).unwrap(), |
7254 | @"P1D" , |
7255 | ); |
7256 | insta::assert_snapshot!( |
7257 | p("-1 day" ).unwrap(), |
7258 | @"-P1D" , |
7259 | ); |
7260 | insta::assert_snapshot!( |
7261 | p("P1d" ).unwrap(), |
7262 | @"P1D" , |
7263 | ); |
7264 | insta::assert_snapshot!( |
7265 | p("+P1d" ).unwrap(), |
7266 | @"P1D" , |
7267 | ); |
7268 | insta::assert_snapshot!( |
7269 | p("-P1d" ).unwrap(), |
7270 | @"-P1D" , |
7271 | ); |
7272 | |
7273 | insta::assert_snapshot!( |
7274 | p("" ).unwrap_err(), |
7275 | @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
7276 | ); |
7277 | insta::assert_snapshot!( |
7278 | p("+" ).unwrap_err(), |
7279 | @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
7280 | ); |
7281 | insta::assert_snapshot!( |
7282 | p("-" ).unwrap_err(), |
7283 | @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
7284 | ); |
7285 | } |
7286 | |
7287 | #[test ] |
7288 | fn serde_deserialize() { |
7289 | let p = |s: &str| -> Result<Span, serde_json::Error> { |
7290 | serde_json::from_str(&alloc::format!(" \"{s} \"" )) |
7291 | }; |
7292 | |
7293 | insta::assert_snapshot!( |
7294 | p("1 day" ).unwrap(), |
7295 | @"P1D" , |
7296 | ); |
7297 | insta::assert_snapshot!( |
7298 | p("+1 day" ).unwrap(), |
7299 | @"P1D" , |
7300 | ); |
7301 | insta::assert_snapshot!( |
7302 | p("-1 day" ).unwrap(), |
7303 | @"-P1D" , |
7304 | ); |
7305 | insta::assert_snapshot!( |
7306 | p("P1d" ).unwrap(), |
7307 | @"P1D" , |
7308 | ); |
7309 | insta::assert_snapshot!( |
7310 | p("+P1d" ).unwrap(), |
7311 | @"P1D" , |
7312 | ); |
7313 | insta::assert_snapshot!( |
7314 | p("-P1d" ).unwrap(), |
7315 | @"-P1D" , |
7316 | ); |
7317 | |
7318 | insta::assert_snapshot!( |
7319 | p("" ).unwrap_err(), |
7320 | @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2" , |
7321 | ); |
7322 | insta::assert_snapshot!( |
7323 | p("+" ).unwrap_err(), |
7324 | @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
7325 | ); |
7326 | insta::assert_snapshot!( |
7327 | p("-" ).unwrap_err(), |
7328 | @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
7329 | ); |
7330 | } |
7331 | } |
7332 | |