| 1 | use core::time::Duration as UnsignedDuration; |
| 2 | |
| 3 | use crate::{ |
| 4 | civil::{ |
| 5 | datetime, Date, DateWith, Era, ISOWeekDate, Time, TimeWith, Weekday, |
| 6 | }, |
| 7 | duration::{Duration, SDuration}, |
| 8 | error::{err, Error, ErrorContext}, |
| 9 | fmt::{ |
| 10 | self, |
| 11 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
| 12 | }, |
| 13 | shared::util::itime::IDateTime, |
| 14 | tz::TimeZone, |
| 15 | util::{ |
| 16 | rangeint::{Composite, RFrom, RInto}, |
| 17 | round::increment, |
| 18 | t::{self, C}, |
| 19 | }, |
| 20 | zoned::Zoned, |
| 21 | RoundMode, SignedDuration, Span, SpanRound, Unit, |
| 22 | }; |
| 23 | |
| 24 | /// A representation of a civil datetime in the Gregorian calendar. |
| 25 | /// |
| 26 | /// A `DateTime` value corresponds to a pair of a [`Date`] and a [`Time`]. |
| 27 | /// That is, a datetime contains a year, month, day, hour, minute, second and |
| 28 | /// the fractional number of nanoseconds. |
| 29 | /// |
| 30 | /// A `DateTime` value is guaranteed to contain a valid date and time. For |
| 31 | /// example, neither `2023-02-29T00:00:00` nor `2015-06-30T23:59:60` are |
| 32 | /// valid `DateTime` values. |
| 33 | /// |
| 34 | /// # Civil datetimes |
| 35 | /// |
| 36 | /// A `DateTime` value behaves without regard to daylight saving time or time |
| 37 | /// zones in general. When doing arithmetic on datetimes with spans defined in |
| 38 | /// units of time (such as with [`DateTime::checked_add`]), days are considered |
| 39 | /// to always be precisely `86,400` seconds long. |
| 40 | /// |
| 41 | /// # Parsing and printing |
| 42 | /// |
| 43 | /// The `DateTime` type provides convenient trait implementations of |
| 44 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
| 45 | /// |
| 46 | /// ``` |
| 47 | /// use jiff::civil::DateTime; |
| 48 | /// |
| 49 | /// let dt: DateTime = "2024-06-19 15:22:45" .parse()?; |
| 50 | /// assert_eq!(dt.to_string(), "2024-06-19T15:22:45" ); |
| 51 | /// |
| 52 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 53 | /// ``` |
| 54 | /// |
| 55 | /// A civil `DateTime` can also be parsed from something that _contains_ a |
| 56 | /// datetime, but with perhaps other data (such as an offset or time zone): |
| 57 | /// |
| 58 | /// ``` |
| 59 | /// use jiff::civil::DateTime; |
| 60 | /// |
| 61 | /// let dt: DateTime = "2024-06-19T15:22:45-04[America/New_York]" .parse()?; |
| 62 | /// assert_eq!(dt.to_string(), "2024-06-19T15:22:45" ); |
| 63 | /// |
| 64 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 65 | /// ``` |
| 66 | /// |
| 67 | /// For more information on the specific format supported, see the |
| 68 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
| 69 | /// |
| 70 | /// # Default value |
| 71 | /// |
| 72 | /// For convenience, this type implements the `Default` trait. Its default |
| 73 | /// value corresponds to `0000-01-01T00:00:00.000000000`. That is, it is |
| 74 | /// the datetime corresponding to `DateTime::from_parts(Date::default(), |
| 75 | /// Time::default())`. One can also access this value via the `DateTime::ZERO` |
| 76 | /// constant. |
| 77 | /// |
| 78 | /// # Leap seconds |
| 79 | /// |
| 80 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
| 81 | /// The only exception is that if one parses a datetime with a second component |
| 82 | /// of `60`, then it is automatically constrained to `59`: |
| 83 | /// |
| 84 | /// ``` |
| 85 | /// use jiff::civil::{DateTime, date}; |
| 86 | /// |
| 87 | /// let dt: DateTime = "2016-12-31 23:59:60" .parse()?; |
| 88 | /// assert_eq!(dt, date(2016, 12, 31).at(23, 59, 59, 0)); |
| 89 | /// |
| 90 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 91 | /// ``` |
| 92 | /// |
| 93 | /// # Comparisons |
| 94 | /// |
| 95 | /// The `DateTime` type provides both `Eq` and `Ord` trait implementations to |
| 96 | /// facilitate easy comparisons. When a datetime `dt1` occurs before a datetime |
| 97 | /// `dt2`, then `dt1 < dt2`. For example: |
| 98 | /// |
| 99 | /// ``` |
| 100 | /// use jiff::civil::date; |
| 101 | /// |
| 102 | /// let dt1 = date(2024, 3, 11).at(1, 25, 15, 0); |
| 103 | /// let dt2 = date(2025, 1, 31).at(0, 30, 0, 0); |
| 104 | /// assert!(dt1 < dt2); |
| 105 | /// ``` |
| 106 | /// |
| 107 | /// # Arithmetic |
| 108 | /// |
| 109 | /// This type provides routines for adding and subtracting spans of time, as |
| 110 | /// well as computing the span of time between two `DateTime` values. |
| 111 | /// |
| 112 | /// For adding or subtracting spans of time, one can use any of the following |
| 113 | /// routines: |
| 114 | /// |
| 115 | /// * [`DateTime::checked_add`] or [`DateTime::checked_sub`] for checked |
| 116 | /// arithmetic. |
| 117 | /// * [`DateTime::saturating_add`] or [`DateTime::saturating_sub`] for |
| 118 | /// saturating arithmetic. |
| 119 | /// |
| 120 | /// Additionally, checked arithmetic is available via the `Add` and `Sub` |
| 121 | /// trait implementations. When the result overflows, a panic occurs. |
| 122 | /// |
| 123 | /// ``` |
| 124 | /// use jiff::{civil::date, ToSpan}; |
| 125 | /// |
| 126 | /// let start = date(2024, 2, 25).at(15, 45, 0, 0); |
| 127 | /// let one_week_later = start + 1.weeks(); |
| 128 | /// assert_eq!(one_week_later, date(2024, 3, 3).at(15, 45, 0, 0)); |
| 129 | /// ``` |
| 130 | /// |
| 131 | /// One can compute the span of time between two datetimes using either |
| 132 | /// [`DateTime::until`] or [`DateTime::since`]. It's also possible to subtract |
| 133 | /// two `DateTime` values directly via a `Sub` trait implementation: |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use jiff::{civil::date, ToSpan}; |
| 137 | /// |
| 138 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
| 139 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
| 140 | /// assert_eq!( |
| 141 | /// datetime1 - datetime2, |
| 142 | /// 68.days().hours(16).minutes(30).fieldwise(), |
| 143 | /// ); |
| 144 | /// ``` |
| 145 | /// |
| 146 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
| 147 | /// rounding the span returned. For example, the default largest unit is days |
| 148 | /// (as exemplified above), but we can ask for bigger units: |
| 149 | /// |
| 150 | /// ``` |
| 151 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 152 | /// |
| 153 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
| 154 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
| 155 | /// assert_eq!( |
| 156 | /// datetime1.since((Unit::Year, datetime2))?, |
| 157 | /// 2.months().days(7).hours(16).minutes(30).fieldwise(), |
| 158 | /// ); |
| 159 | /// |
| 160 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 161 | /// ``` |
| 162 | /// |
| 163 | /// Or even round the span returned: |
| 164 | /// |
| 165 | /// ``` |
| 166 | /// use jiff::{civil::{DateTimeDifference, date}, RoundMode, ToSpan, Unit}; |
| 167 | /// |
| 168 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
| 169 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
| 170 | /// assert_eq!( |
| 171 | /// datetime1.since( |
| 172 | /// DateTimeDifference::new(datetime2) |
| 173 | /// .smallest(Unit::Day) |
| 174 | /// .largest(Unit::Year), |
| 175 | /// )?, |
| 176 | /// 2.months().days(7).fieldwise(), |
| 177 | /// ); |
| 178 | /// // `DateTimeDifference` uses truncation as a rounding mode by default, |
| 179 | /// // but you can set the rounding mode to break ties away from zero: |
| 180 | /// assert_eq!( |
| 181 | /// datetime1.since( |
| 182 | /// DateTimeDifference::new(datetime2) |
| 183 | /// .smallest(Unit::Day) |
| 184 | /// .largest(Unit::Year) |
| 185 | /// .mode(RoundMode::HalfExpand), |
| 186 | /// )?, |
| 187 | /// // Rounds up to 8 days. |
| 188 | /// 2.months().days(8).fieldwise(), |
| 189 | /// ); |
| 190 | /// |
| 191 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 192 | /// ``` |
| 193 | /// |
| 194 | /// # Rounding |
| 195 | /// |
| 196 | /// A `DateTime` can be rounded based on a [`DateTimeRound`] configuration of |
| 197 | /// smallest units, rounding increment and rounding mode. Here's an example |
| 198 | /// showing how to round to the nearest third hour: |
| 199 | /// |
| 200 | /// ``` |
| 201 | /// use jiff::{civil::{DateTimeRound, date}, Unit}; |
| 202 | /// |
| 203 | /// let dt = date(2024, 6, 19).at(16, 27, 29, 999_999_999); |
| 204 | /// assert_eq!( |
| 205 | /// dt.round(DateTimeRound::new().smallest(Unit::Hour).increment(3))?, |
| 206 | /// date(2024, 6, 19).at(15, 0, 0, 0), |
| 207 | /// ); |
| 208 | /// // Or alternatively, make use of the `From<(Unit, i64)> for DateTimeRound` |
| 209 | /// // trait implementation: |
| 210 | /// assert_eq!( |
| 211 | /// dt.round((Unit::Hour, 3))?, |
| 212 | /// date(2024, 6, 19).at(15, 0, 0, 0), |
| 213 | /// ); |
| 214 | /// |
| 215 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 216 | /// ``` |
| 217 | /// |
| 218 | /// See [`DateTime::round`] for more details. |
| 219 | #[derive (Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)] |
| 220 | pub struct DateTime { |
| 221 | date: Date, |
| 222 | time: Time, |
| 223 | } |
| 224 | |
| 225 | impl DateTime { |
| 226 | /// The minimum representable Gregorian datetime. |
| 227 | /// |
| 228 | /// The minimum is chosen such that any [`Timestamp`](crate::Timestamp) |
| 229 | /// combined with any valid time zone offset can be infallibly converted to |
| 230 | /// this type. |
| 231 | pub const MIN: DateTime = datetime(-9999, 1, 1, 0, 0, 0, 0); |
| 232 | |
| 233 | /// The maximum representable Gregorian datetime. |
| 234 | /// |
| 235 | /// The maximum is chosen such that any [`Timestamp`](crate::Timestamp) |
| 236 | /// combined with any valid time zone offset can be infallibly converted to |
| 237 | /// this type. |
| 238 | pub const MAX: DateTime = datetime(9999, 12, 31, 23, 59, 59, 999_999_999); |
| 239 | |
| 240 | /// The first day of the zeroth year. |
| 241 | /// |
| 242 | /// This is guaranteed to be equivalent to `DateTime::default()`. |
| 243 | /// |
| 244 | /// # Example |
| 245 | /// |
| 246 | /// ``` |
| 247 | /// use jiff::civil::DateTime; |
| 248 | /// |
| 249 | /// assert_eq!(DateTime::ZERO, DateTime::default()); |
| 250 | /// ``` |
| 251 | pub const ZERO: DateTime = DateTime::from_parts(Date::ZERO, Time::MIN); |
| 252 | |
| 253 | /// Creates a new `DateTime` value from its component year, month, day, |
| 254 | /// hour, minute, second and fractional subsecond (up to nanosecond |
| 255 | /// precision) values. |
| 256 | /// |
| 257 | /// To create a new datetime from another with a particular component, use |
| 258 | /// the methods on [`DateTimeWith`] via [`DateTime::with`]. |
| 259 | /// |
| 260 | /// # Errors |
| 261 | /// |
| 262 | /// This returns an error when the given components do not correspond to a |
| 263 | /// valid datetime. Namely, all of the following must be true: |
| 264 | /// |
| 265 | /// * The year must be in the range `-9999..=9999`. |
| 266 | /// * The month must be in the range `1..=12`. |
| 267 | /// * The day must be at least `1` and must be at most the number of days |
| 268 | /// in the corresponding month. So for example, `2024-02-29` is valid but |
| 269 | /// `2023-02-29` is not. |
| 270 | /// * `0 <= hour <= 23` |
| 271 | /// * `0 <= minute <= 59` |
| 272 | /// * `0 <= second <= 59` |
| 273 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
| 274 | /// |
| 275 | /// # Example |
| 276 | /// |
| 277 | /// This shows an example of a valid datetime: |
| 278 | /// |
| 279 | /// ``` |
| 280 | /// use jiff::civil::DateTime; |
| 281 | /// |
| 282 | /// let d = DateTime::new(2024, 2, 29, 21, 30, 5, 123_456_789).unwrap(); |
| 283 | /// assert_eq!(d.year(), 2024); |
| 284 | /// assert_eq!(d.month(), 2); |
| 285 | /// assert_eq!(d.day(), 29); |
| 286 | /// assert_eq!(d.hour(), 21); |
| 287 | /// assert_eq!(d.minute(), 30); |
| 288 | /// assert_eq!(d.second(), 5); |
| 289 | /// assert_eq!(d.millisecond(), 123); |
| 290 | /// assert_eq!(d.microsecond(), 456); |
| 291 | /// assert_eq!(d.nanosecond(), 789); |
| 292 | /// ``` |
| 293 | /// |
| 294 | /// This shows some examples of invalid datetimes: |
| 295 | /// |
| 296 | /// ``` |
| 297 | /// use jiff::civil::DateTime; |
| 298 | /// |
| 299 | /// assert!(DateTime::new(2023, 2, 29, 21, 30, 5, 0).is_err()); |
| 300 | /// assert!(DateTime::new(2015, 6, 30, 23, 59, 60, 0).is_err()); |
| 301 | /// assert!(DateTime::new(2024, 6, 20, 19, 58, 0, 1_000_000_000).is_err()); |
| 302 | /// ``` |
| 303 | #[inline ] |
| 304 | pub fn new( |
| 305 | year: i16, |
| 306 | month: i8, |
| 307 | day: i8, |
| 308 | hour: i8, |
| 309 | minute: i8, |
| 310 | second: i8, |
| 311 | subsec_nanosecond: i32, |
| 312 | ) -> Result<DateTime, Error> { |
| 313 | let date = Date::new(year, month, day)?; |
| 314 | let time = Time::new(hour, minute, second, subsec_nanosecond)?; |
| 315 | Ok(DateTime { date, time }) |
| 316 | } |
| 317 | |
| 318 | /// Creates a new `DateTime` value in a `const` context. |
| 319 | /// |
| 320 | /// Note that an alternative syntax that is terser and perhaps easier to |
| 321 | /// read for the same operation is to combine |
| 322 | /// [`civil::date`](crate::civil::date()) with [`Date::at`]. |
| 323 | /// |
| 324 | /// # Panics |
| 325 | /// |
| 326 | /// This routine panics when [`DateTime::new`] would return an error. That |
| 327 | /// is, when the given components do not correspond to a valid datetime. |
| 328 | /// Namely, all of the following must be true: |
| 329 | /// |
| 330 | /// * The year must be in the range `-9999..=9999`. |
| 331 | /// * The month must be in the range `1..=12`. |
| 332 | /// * The day must be at least `1` and must be at most the number of days |
| 333 | /// in the corresponding month. So for example, `2024-02-29` is valid but |
| 334 | /// `2023-02-29` is not. |
| 335 | /// * `0 <= hour <= 23` |
| 336 | /// * `0 <= minute <= 59` |
| 337 | /// * `0 <= second <= 59` |
| 338 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
| 339 | /// |
| 340 | /// Similarly, when used in a const context, invalid parameters will |
| 341 | /// prevent your Rust program from compiling. |
| 342 | /// |
| 343 | /// # Example |
| 344 | /// |
| 345 | /// ``` |
| 346 | /// use jiff::civil::DateTime; |
| 347 | /// |
| 348 | /// let dt = DateTime::constant(2024, 2, 29, 21, 30, 5, 123_456_789); |
| 349 | /// assert_eq!(dt.year(), 2024); |
| 350 | /// assert_eq!(dt.month(), 2); |
| 351 | /// assert_eq!(dt.day(), 29); |
| 352 | /// assert_eq!(dt.hour(), 21); |
| 353 | /// assert_eq!(dt.minute(), 30); |
| 354 | /// assert_eq!(dt.second(), 5); |
| 355 | /// assert_eq!(dt.millisecond(), 123); |
| 356 | /// assert_eq!(dt.microsecond(), 456); |
| 357 | /// assert_eq!(dt.nanosecond(), 789); |
| 358 | /// ``` |
| 359 | /// |
| 360 | /// Or alternatively: |
| 361 | /// |
| 362 | /// ``` |
| 363 | /// use jiff::civil::date; |
| 364 | /// |
| 365 | /// let dt = date(2024, 2, 29).at(21, 30, 5, 123_456_789); |
| 366 | /// assert_eq!(dt.year(), 2024); |
| 367 | /// assert_eq!(dt.month(), 2); |
| 368 | /// assert_eq!(dt.day(), 29); |
| 369 | /// assert_eq!(dt.hour(), 21); |
| 370 | /// assert_eq!(dt.minute(), 30); |
| 371 | /// assert_eq!(dt.second(), 5); |
| 372 | /// assert_eq!(dt.millisecond(), 123); |
| 373 | /// assert_eq!(dt.microsecond(), 456); |
| 374 | /// assert_eq!(dt.nanosecond(), 789); |
| 375 | /// ``` |
| 376 | #[inline ] |
| 377 | pub const fn constant( |
| 378 | year: i16, |
| 379 | month: i8, |
| 380 | day: i8, |
| 381 | hour: i8, |
| 382 | minute: i8, |
| 383 | second: i8, |
| 384 | subsec_nanosecond: i32, |
| 385 | ) -> DateTime { |
| 386 | let date = Date::constant(year, month, day); |
| 387 | let time = Time::constant(hour, minute, second, subsec_nanosecond); |
| 388 | DateTime { date, time } |
| 389 | } |
| 390 | |
| 391 | /// Creates a `DateTime` from its constituent parts. |
| 392 | /// |
| 393 | /// Any combination of a valid `Date` and a valid `Time` results in a valid |
| 394 | /// `DateTime`. |
| 395 | /// |
| 396 | /// # Example |
| 397 | /// |
| 398 | /// This example shows how to build a datetime from its parts: |
| 399 | /// |
| 400 | /// ``` |
| 401 | /// use jiff::civil::{DateTime, date, time}; |
| 402 | /// |
| 403 | /// let dt = DateTime::from_parts(date(2024, 6, 6), time(6, 0, 0, 0)); |
| 404 | /// assert_eq!(dt, date(2024, 6, 6).at(6, 0, 0, 0)); |
| 405 | /// ``` |
| 406 | #[inline ] |
| 407 | pub const fn from_parts(date: Date, time: Time) -> DateTime { |
| 408 | DateTime { date, time } |
| 409 | } |
| 410 | |
| 411 | /// Create a builder for constructing a new `DateTime` from the fields of |
| 412 | /// this datetime. |
| 413 | /// |
| 414 | /// See the methods on [`DateTimeWith`] for the different ways one can set |
| 415 | /// the fields of a new `DateTime`. |
| 416 | /// |
| 417 | /// # Example |
| 418 | /// |
| 419 | /// The builder ensures one can chain together the individual components of |
| 420 | /// a datetime without it failing at an intermediate step. For example, if |
| 421 | /// you had a date of `2024-10-31T00:00:00` and wanted to change both the |
| 422 | /// day and the month, and each setting was validated independent of the |
| 423 | /// other, you would need to be careful to set the day first and then the |
| 424 | /// month. In some cases, you would need to set the month first and then |
| 425 | /// the day! |
| 426 | /// |
| 427 | /// But with the builder, you can set values in any order: |
| 428 | /// |
| 429 | /// ``` |
| 430 | /// use jiff::civil::date; |
| 431 | /// |
| 432 | /// let dt1 = date(2024, 10, 31).at(0, 0, 0, 0); |
| 433 | /// let dt2 = dt1.with().month(11).day(30).build()?; |
| 434 | /// assert_eq!(dt2, date(2024, 11, 30).at(0, 0, 0, 0)); |
| 435 | /// |
| 436 | /// let dt1 = date(2024, 4, 30).at(0, 0, 0, 0); |
| 437 | /// let dt2 = dt1.with().day(31).month(7).build()?; |
| 438 | /// assert_eq!(dt2, date(2024, 7, 31).at(0, 0, 0, 0)); |
| 439 | /// |
| 440 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 441 | /// ``` |
| 442 | #[inline ] |
| 443 | pub fn with(self) -> DateTimeWith { |
| 444 | DateTimeWith::new(self) |
| 445 | } |
| 446 | |
| 447 | /// Returns the year for this datetime. |
| 448 | /// |
| 449 | /// The value returned is guaranteed to be in the range `-9999..=9999`. |
| 450 | /// |
| 451 | /// # Example |
| 452 | /// |
| 453 | /// ``` |
| 454 | /// use jiff::civil::date; |
| 455 | /// |
| 456 | /// let dt1 = date(2024, 3, 9).at(7, 30, 0, 0); |
| 457 | /// assert_eq!(dt1.year(), 2024); |
| 458 | /// |
| 459 | /// let dt2 = date(-2024, 3, 9).at(7, 30, 0, 0); |
| 460 | /// assert_eq!(dt2.year(), -2024); |
| 461 | /// |
| 462 | /// let dt3 = date(0, 3, 9).at(7, 30, 0, 0); |
| 463 | /// assert_eq!(dt3.year(), 0); |
| 464 | /// ``` |
| 465 | #[inline ] |
| 466 | pub fn year(self) -> i16 { |
| 467 | self.date().year() |
| 468 | } |
| 469 | |
| 470 | /// Returns the year and its era. |
| 471 | /// |
| 472 | /// This crate specifically allows years to be negative or `0`, where as |
| 473 | /// years written for the Gregorian calendar are always positive and |
| 474 | /// greater than `0`. In the Gregorian calendar, the era labels `BCE` and |
| 475 | /// `CE` are used to disambiguate between years less than or equal to `0` |
| 476 | /// and years greater than `0`, respectively. |
| 477 | /// |
| 478 | /// The crate is designed this way so that years in the latest era (that |
| 479 | /// is, `CE`) are aligned with years in this crate. |
| 480 | /// |
| 481 | /// The year returned is guaranteed to be in the range `1..=10000`. |
| 482 | /// |
| 483 | /// # Example |
| 484 | /// |
| 485 | /// ``` |
| 486 | /// use jiff::civil::{Era, date}; |
| 487 | /// |
| 488 | /// let dt = date(2024, 10, 3).at(7, 30, 0, 0); |
| 489 | /// assert_eq!(dt.era_year(), (2024, Era::CE)); |
| 490 | /// |
| 491 | /// let dt = date(1, 10, 3).at(7, 30, 0, 0); |
| 492 | /// assert_eq!(dt.era_year(), (1, Era::CE)); |
| 493 | /// |
| 494 | /// let dt = date(0, 10, 3).at(7, 30, 0, 0); |
| 495 | /// assert_eq!(dt.era_year(), (1, Era::BCE)); |
| 496 | /// |
| 497 | /// let dt = date(-1, 10, 3).at(7, 30, 0, 0); |
| 498 | /// assert_eq!(dt.era_year(), (2, Era::BCE)); |
| 499 | /// |
| 500 | /// let dt = date(-10, 10, 3).at(7, 30, 0, 0); |
| 501 | /// assert_eq!(dt.era_year(), (11, Era::BCE)); |
| 502 | /// |
| 503 | /// let dt = date(-9_999, 10, 3).at(7, 30, 0, 0); |
| 504 | /// assert_eq!(dt.era_year(), (10_000, Era::BCE)); |
| 505 | /// ``` |
| 506 | #[inline ] |
| 507 | pub fn era_year(self) -> (i16, Era) { |
| 508 | self.date().era_year() |
| 509 | } |
| 510 | |
| 511 | /// Returns the month for this datetime. |
| 512 | /// |
| 513 | /// The value returned is guaranteed to be in the range `1..=12`. |
| 514 | /// |
| 515 | /// # Example |
| 516 | /// |
| 517 | /// ``` |
| 518 | /// use jiff::civil::date; |
| 519 | /// |
| 520 | /// let dt1 = date(2024, 3, 9).at(7, 30, 0, 0); |
| 521 | /// assert_eq!(dt1.month(), 3); |
| 522 | /// ``` |
| 523 | #[inline ] |
| 524 | pub fn month(self) -> i8 { |
| 525 | self.date().month() |
| 526 | } |
| 527 | |
| 528 | /// Returns the day for this datetime. |
| 529 | /// |
| 530 | /// The value returned is guaranteed to be in the range `1..=31`. |
| 531 | /// |
| 532 | /// # Example |
| 533 | /// |
| 534 | /// ``` |
| 535 | /// use jiff::civil::date; |
| 536 | /// |
| 537 | /// let dt1 = date(2024, 2, 29).at(7, 30, 0, 0); |
| 538 | /// assert_eq!(dt1.day(), 29); |
| 539 | /// ``` |
| 540 | #[inline ] |
| 541 | pub fn day(self) -> i8 { |
| 542 | self.date().day() |
| 543 | } |
| 544 | |
| 545 | /// Returns the "hour" component of this datetime. |
| 546 | /// |
| 547 | /// The value returned is guaranteed to be in the range `0..=23`. |
| 548 | /// |
| 549 | /// # Example |
| 550 | /// |
| 551 | /// ``` |
| 552 | /// use jiff::civil::date; |
| 553 | /// |
| 554 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 555 | /// assert_eq!(dt.hour(), 3); |
| 556 | /// ``` |
| 557 | #[inline ] |
| 558 | pub fn hour(self) -> i8 { |
| 559 | self.time().hour() |
| 560 | } |
| 561 | |
| 562 | /// Returns the "minute" component of this datetime. |
| 563 | /// |
| 564 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 565 | /// |
| 566 | /// # Example |
| 567 | /// |
| 568 | /// ``` |
| 569 | /// use jiff::civil::date; |
| 570 | /// |
| 571 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 572 | /// assert_eq!(dt.minute(), 4); |
| 573 | /// ``` |
| 574 | #[inline ] |
| 575 | pub fn minute(self) -> i8 { |
| 576 | self.time().minute() |
| 577 | } |
| 578 | |
| 579 | /// Returns the "second" component of this datetime. |
| 580 | /// |
| 581 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 582 | /// |
| 583 | /// # Example |
| 584 | /// |
| 585 | /// ``` |
| 586 | /// use jiff::civil::date; |
| 587 | /// |
| 588 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 589 | /// assert_eq!(dt.second(), 5); |
| 590 | /// ``` |
| 591 | #[inline ] |
| 592 | pub fn second(self) -> i8 { |
| 593 | self.time().second() |
| 594 | } |
| 595 | |
| 596 | /// Returns the "millisecond" component of this datetime. |
| 597 | /// |
| 598 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 599 | /// |
| 600 | /// # Example |
| 601 | /// |
| 602 | /// ``` |
| 603 | /// use jiff::civil::date; |
| 604 | /// |
| 605 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 606 | /// assert_eq!(dt.millisecond(), 123); |
| 607 | /// ``` |
| 608 | #[inline ] |
| 609 | pub fn millisecond(self) -> i16 { |
| 610 | self.time().millisecond() |
| 611 | } |
| 612 | |
| 613 | /// Returns the "microsecond" component of this datetime. |
| 614 | /// |
| 615 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 616 | /// |
| 617 | /// # Example |
| 618 | /// |
| 619 | /// ``` |
| 620 | /// use jiff::civil::date; |
| 621 | /// |
| 622 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 623 | /// assert_eq!(dt.microsecond(), 456); |
| 624 | /// ``` |
| 625 | #[inline ] |
| 626 | pub fn microsecond(self) -> i16 { |
| 627 | self.time().microsecond() |
| 628 | } |
| 629 | |
| 630 | /// Returns the "nanosecond" component of this datetime. |
| 631 | /// |
| 632 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 633 | /// |
| 634 | /// # Example |
| 635 | /// |
| 636 | /// ``` |
| 637 | /// use jiff::civil::date; |
| 638 | /// |
| 639 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 640 | /// assert_eq!(dt.nanosecond(), 789); |
| 641 | /// ``` |
| 642 | #[inline ] |
| 643 | pub fn nanosecond(self) -> i16 { |
| 644 | self.time().nanosecond() |
| 645 | } |
| 646 | |
| 647 | /// Returns the fractional nanosecond for this `DateTime` value. |
| 648 | /// |
| 649 | /// If you want to set this value on `DateTime`, then use |
| 650 | /// [`DateTimeWith::subsec_nanosecond`] via [`DateTime::with`]. |
| 651 | /// |
| 652 | /// The value returned is guaranteed to be in the range `0..=999_999_999`. |
| 653 | /// |
| 654 | /// # Example |
| 655 | /// |
| 656 | /// This shows the relationship between constructing a `DateTime` value |
| 657 | /// with routines like `with().millisecond()` and accessing the entire |
| 658 | /// fractional part as a nanosecond: |
| 659 | /// |
| 660 | /// ``` |
| 661 | /// use jiff::civil::date; |
| 662 | /// |
| 663 | /// let dt1 = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
| 664 | /// assert_eq!(dt1.subsec_nanosecond(), 123_456_789); |
| 665 | /// let dt2 = dt1.with().millisecond(333).build()?; |
| 666 | /// assert_eq!(dt2.subsec_nanosecond(), 333_456_789); |
| 667 | /// |
| 668 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 669 | /// ``` |
| 670 | /// |
| 671 | /// # Example: nanoseconds from a timestamp |
| 672 | /// |
| 673 | /// This shows how the fractional nanosecond part of a `DateTime` value |
| 674 | /// manifests from a specific timestamp. |
| 675 | /// |
| 676 | /// ``` |
| 677 | /// use jiff::{civil, Timestamp}; |
| 678 | /// |
| 679 | /// // 1,234 nanoseconds after the Unix epoch. |
| 680 | /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC" )?; |
| 681 | /// let dt = zdt.datetime(); |
| 682 | /// assert_eq!(dt.subsec_nanosecond(), 1_234); |
| 683 | /// |
| 684 | /// // 1,234 nanoseconds before the Unix epoch. |
| 685 | /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC" )?; |
| 686 | /// let dt = zdt.datetime(); |
| 687 | /// // The nanosecond is equal to `1_000_000_000 - 1_234`. |
| 688 | /// assert_eq!(dt.subsec_nanosecond(), 999998766); |
| 689 | /// // Looking at the other components of the time value might help. |
| 690 | /// assert_eq!(dt.hour(), 23); |
| 691 | /// assert_eq!(dt.minute(), 59); |
| 692 | /// assert_eq!(dt.second(), 59); |
| 693 | /// |
| 694 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 695 | /// ``` |
| 696 | #[inline ] |
| 697 | pub fn subsec_nanosecond(self) -> i32 { |
| 698 | self.time().subsec_nanosecond() |
| 699 | } |
| 700 | |
| 701 | /// Returns the weekday corresponding to this datetime. |
| 702 | /// |
| 703 | /// # Example |
| 704 | /// |
| 705 | /// ``` |
| 706 | /// use jiff::civil::{Weekday, date}; |
| 707 | /// |
| 708 | /// // The Unix epoch was on a Thursday. |
| 709 | /// let dt = date(1970, 1, 1).at(7, 30, 0, 0); |
| 710 | /// assert_eq!(dt.weekday(), Weekday::Thursday); |
| 711 | /// // One can also get the weekday as an offset in a variety of schemes. |
| 712 | /// assert_eq!(dt.weekday().to_monday_zero_offset(), 3); |
| 713 | /// assert_eq!(dt.weekday().to_monday_one_offset(), 4); |
| 714 | /// assert_eq!(dt.weekday().to_sunday_zero_offset(), 4); |
| 715 | /// assert_eq!(dt.weekday().to_sunday_one_offset(), 5); |
| 716 | /// ``` |
| 717 | #[inline ] |
| 718 | pub fn weekday(self) -> Weekday { |
| 719 | self.date().weekday() |
| 720 | } |
| 721 | |
| 722 | /// Returns the ordinal day of the year that this datetime resides in. |
| 723 | /// |
| 724 | /// For leap years, this always returns a value in the range `1..=366`. |
| 725 | /// Otherwise, the value is in the range `1..=365`. |
| 726 | /// |
| 727 | /// # Example |
| 728 | /// |
| 729 | /// ``` |
| 730 | /// use jiff::civil::date; |
| 731 | /// |
| 732 | /// let dt = date(2006, 8, 24).at(7, 30, 0, 0); |
| 733 | /// assert_eq!(dt.day_of_year(), 236); |
| 734 | /// |
| 735 | /// let dt = date(2023, 12, 31).at(7, 30, 0, 0); |
| 736 | /// assert_eq!(dt.day_of_year(), 365); |
| 737 | /// |
| 738 | /// let dt = date(2024, 12, 31).at(7, 30, 0, 0); |
| 739 | /// assert_eq!(dt.day_of_year(), 366); |
| 740 | /// ``` |
| 741 | #[inline ] |
| 742 | pub fn day_of_year(self) -> i16 { |
| 743 | self.date().day_of_year() |
| 744 | } |
| 745 | |
| 746 | /// Returns the ordinal day of the year that this datetime resides in, but |
| 747 | /// ignores leap years. |
| 748 | /// |
| 749 | /// That is, the range of possible values returned by this routine is |
| 750 | /// `1..=365`, even if this date resides in a leap year. If this date is |
| 751 | /// February 29, then this routine returns `None`. |
| 752 | /// |
| 753 | /// The value `365` always corresponds to the last day in the year, |
| 754 | /// December 31, even for leap years. |
| 755 | /// |
| 756 | /// # Example |
| 757 | /// |
| 758 | /// ``` |
| 759 | /// use jiff::civil::date; |
| 760 | /// |
| 761 | /// let dt = date(2006, 8, 24).at(7, 30, 0, 0); |
| 762 | /// assert_eq!(dt.day_of_year_no_leap(), Some(236)); |
| 763 | /// |
| 764 | /// let dt = date(2023, 12, 31).at(7, 30, 0, 0); |
| 765 | /// assert_eq!(dt.day_of_year_no_leap(), Some(365)); |
| 766 | /// |
| 767 | /// let dt = date(2024, 12, 31).at(7, 30, 0, 0); |
| 768 | /// assert_eq!(dt.day_of_year_no_leap(), Some(365)); |
| 769 | /// |
| 770 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
| 771 | /// assert_eq!(dt.day_of_year_no_leap(), None); |
| 772 | /// ``` |
| 773 | #[inline ] |
| 774 | pub fn day_of_year_no_leap(self) -> Option<i16> { |
| 775 | self.date().day_of_year_no_leap() |
| 776 | } |
| 777 | |
| 778 | /// Returns the beginning of the day that this datetime resides in. |
| 779 | /// |
| 780 | /// That is, the datetime returned always keeps the same date, but its |
| 781 | /// time is always `00:00:00` (midnight). |
| 782 | /// |
| 783 | /// # Example |
| 784 | /// |
| 785 | /// ``` |
| 786 | /// use jiff::civil::date; |
| 787 | /// |
| 788 | /// let dt = date(2024, 7, 3).at(7, 30, 10, 123_456_789); |
| 789 | /// assert_eq!(dt.start_of_day(), date(2024, 7, 3).at(0, 0, 0, 0)); |
| 790 | /// ``` |
| 791 | #[inline ] |
| 792 | pub fn start_of_day(&self) -> DateTime { |
| 793 | DateTime::from_parts(self.date(), Time::MIN) |
| 794 | } |
| 795 | |
| 796 | /// Returns the end of the day that this datetime resides in. |
| 797 | /// |
| 798 | /// That is, the datetime returned always keeps the same date, but its |
| 799 | /// time is always `23:59:59.999999999`. |
| 800 | /// |
| 801 | /// # Example |
| 802 | /// |
| 803 | /// ``` |
| 804 | /// use jiff::civil::date; |
| 805 | /// |
| 806 | /// let dt = date(2024, 7, 3).at(7, 30, 10, 123_456_789); |
| 807 | /// assert_eq!( |
| 808 | /// dt.end_of_day(), |
| 809 | /// date(2024, 7, 3).at(23, 59, 59, 999_999_999), |
| 810 | /// ); |
| 811 | /// ``` |
| 812 | #[inline ] |
| 813 | pub fn end_of_day(&self) -> DateTime { |
| 814 | DateTime::from_parts(self.date(), Time::MAX) |
| 815 | } |
| 816 | |
| 817 | /// Returns the first date of the month that this datetime resides in. |
| 818 | /// |
| 819 | /// The time in the datetime returned remains unchanged. |
| 820 | /// |
| 821 | /// # Example |
| 822 | /// |
| 823 | /// ``` |
| 824 | /// use jiff::civil::date; |
| 825 | /// |
| 826 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
| 827 | /// assert_eq!(dt.first_of_month(), date(2024, 2, 1).at(7, 30, 0, 0)); |
| 828 | /// ``` |
| 829 | #[inline ] |
| 830 | pub fn first_of_month(self) -> DateTime { |
| 831 | DateTime::from_parts(self.date().first_of_month(), self.time()) |
| 832 | } |
| 833 | |
| 834 | /// Returns the last date of the month that this datetime resides in. |
| 835 | /// |
| 836 | /// The time in the datetime returned remains unchanged. |
| 837 | /// |
| 838 | /// # Example |
| 839 | /// |
| 840 | /// ``` |
| 841 | /// use jiff::civil::date; |
| 842 | /// |
| 843 | /// let dt = date(2024, 2, 5).at(7, 30, 0, 0); |
| 844 | /// assert_eq!(dt.last_of_month(), date(2024, 2, 29).at(7, 30, 0, 0)); |
| 845 | /// ``` |
| 846 | #[inline ] |
| 847 | pub fn last_of_month(self) -> DateTime { |
| 848 | DateTime::from_parts(self.date().last_of_month(), self.time()) |
| 849 | } |
| 850 | |
| 851 | /// Returns the total number of days in the the month in which this |
| 852 | /// datetime resides. |
| 853 | /// |
| 854 | /// This is guaranteed to always return one of the following values, |
| 855 | /// depending on the year and the month: 28, 29, 30 or 31. |
| 856 | /// |
| 857 | /// # Example |
| 858 | /// |
| 859 | /// ``` |
| 860 | /// use jiff::civil::date; |
| 861 | /// |
| 862 | /// let dt = date(2024, 2, 10).at(7, 30, 0, 0); |
| 863 | /// assert_eq!(dt.days_in_month(), 29); |
| 864 | /// |
| 865 | /// let dt = date(2023, 2, 10).at(7, 30, 0, 0); |
| 866 | /// assert_eq!(dt.days_in_month(), 28); |
| 867 | /// |
| 868 | /// let dt = date(2024, 8, 15).at(7, 30, 0, 0); |
| 869 | /// assert_eq!(dt.days_in_month(), 31); |
| 870 | /// ``` |
| 871 | #[inline ] |
| 872 | pub fn days_in_month(self) -> i8 { |
| 873 | self.date().days_in_month() |
| 874 | } |
| 875 | |
| 876 | /// Returns the first date of the year that this datetime resides in. |
| 877 | /// |
| 878 | /// The time in the datetime returned remains unchanged. |
| 879 | /// |
| 880 | /// # Example |
| 881 | /// |
| 882 | /// ``` |
| 883 | /// use jiff::civil::date; |
| 884 | /// |
| 885 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
| 886 | /// assert_eq!(dt.first_of_year(), date(2024, 1, 1).at(7, 30, 0, 0)); |
| 887 | /// ``` |
| 888 | #[inline ] |
| 889 | pub fn first_of_year(self) -> DateTime { |
| 890 | DateTime::from_parts(self.date().first_of_year(), self.time()) |
| 891 | } |
| 892 | |
| 893 | /// Returns the last date of the year that this datetime resides in. |
| 894 | /// |
| 895 | /// The time in the datetime returned remains unchanged. |
| 896 | /// |
| 897 | /// # Example |
| 898 | /// |
| 899 | /// ``` |
| 900 | /// use jiff::civil::date; |
| 901 | /// |
| 902 | /// let dt = date(2024, 2, 5).at(7, 30, 0, 0); |
| 903 | /// assert_eq!(dt.last_of_year(), date(2024, 12, 31).at(7, 30, 0, 0)); |
| 904 | /// ``` |
| 905 | #[inline ] |
| 906 | pub fn last_of_year(self) -> DateTime { |
| 907 | DateTime::from_parts(self.date().last_of_year(), self.time()) |
| 908 | } |
| 909 | |
| 910 | /// Returns the total number of days in the the year in which this datetime |
| 911 | /// resides. |
| 912 | /// |
| 913 | /// This is guaranteed to always return either `365` or `366`. |
| 914 | /// |
| 915 | /// # Example |
| 916 | /// |
| 917 | /// ``` |
| 918 | /// use jiff::civil::date; |
| 919 | /// |
| 920 | /// let dt = date(2024, 7, 10).at(7, 30, 0, 0); |
| 921 | /// assert_eq!(dt.days_in_year(), 366); |
| 922 | /// |
| 923 | /// let dt = date(2023, 7, 10).at(7, 30, 0, 0); |
| 924 | /// assert_eq!(dt.days_in_year(), 365); |
| 925 | /// ``` |
| 926 | #[inline ] |
| 927 | pub fn days_in_year(self) -> i16 { |
| 928 | self.date().days_in_year() |
| 929 | } |
| 930 | |
| 931 | /// Returns true if and only if the year in which this datetime resides is |
| 932 | /// a leap year. |
| 933 | /// |
| 934 | /// # Example |
| 935 | /// |
| 936 | /// ``` |
| 937 | /// use jiff::civil::date; |
| 938 | /// |
| 939 | /// assert!(date(2024, 1, 1).at(7, 30, 0, 0).in_leap_year()); |
| 940 | /// assert!(!date(2023, 12, 31).at(7, 30, 0, 0).in_leap_year()); |
| 941 | /// ``` |
| 942 | #[inline ] |
| 943 | pub fn in_leap_year(self) -> bool { |
| 944 | self.date().in_leap_year() |
| 945 | } |
| 946 | |
| 947 | /// Returns the datetime with a date immediately following this one. |
| 948 | /// |
| 949 | /// The time in the datetime returned remains unchanged. |
| 950 | /// |
| 951 | /// # Errors |
| 952 | /// |
| 953 | /// This returns an error when this datetime's date is the maximum value. |
| 954 | /// |
| 955 | /// # Example |
| 956 | /// |
| 957 | /// ``` |
| 958 | /// use jiff::civil::{DateTime, date}; |
| 959 | /// |
| 960 | /// let dt = date(2024, 2, 28).at(7, 30, 0, 0); |
| 961 | /// assert_eq!(dt.tomorrow()?, date(2024, 2, 29).at(7, 30, 0, 0)); |
| 962 | /// |
| 963 | /// // The max doesn't have a tomorrow. |
| 964 | /// assert!(DateTime::MAX.tomorrow().is_err()); |
| 965 | /// |
| 966 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 967 | /// ``` |
| 968 | #[inline ] |
| 969 | pub fn tomorrow(self) -> Result<DateTime, Error> { |
| 970 | Ok(DateTime::from_parts(self.date().tomorrow()?, self.time())) |
| 971 | } |
| 972 | |
| 973 | /// Returns the datetime with a date immediately preceding this one. |
| 974 | /// |
| 975 | /// The time in the datetime returned remains unchanged. |
| 976 | /// |
| 977 | /// # Errors |
| 978 | /// |
| 979 | /// This returns an error when this datetime's date is the minimum value. |
| 980 | /// |
| 981 | /// # Example |
| 982 | /// |
| 983 | /// ``` |
| 984 | /// use jiff::civil::{DateTime, date}; |
| 985 | /// |
| 986 | /// let dt = date(2024, 3, 1).at(7, 30, 0, 0); |
| 987 | /// assert_eq!(dt.yesterday()?, date(2024, 2, 29).at(7, 30, 0, 0)); |
| 988 | /// |
| 989 | /// // The min doesn't have a yesterday. |
| 990 | /// assert!(DateTime::MIN.yesterday().is_err()); |
| 991 | /// |
| 992 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 993 | /// ``` |
| 994 | #[inline ] |
| 995 | pub fn yesterday(self) -> Result<DateTime, Error> { |
| 996 | Ok(DateTime::from_parts(self.date().yesterday()?, self.time())) |
| 997 | } |
| 998 | |
| 999 | /// Returns the "nth" weekday from the beginning or end of the month in |
| 1000 | /// which this datetime resides. |
| 1001 | /// |
| 1002 | /// The `nth` parameter can be positive or negative. A positive value |
| 1003 | /// computes the "nth" weekday from the beginning of the month. A negative |
| 1004 | /// value computes the "nth" weekday from the end of the month. So for |
| 1005 | /// example, use `-1` to "find the last weekday" in this date's month. |
| 1006 | /// |
| 1007 | /// The time in the datetime returned remains unchanged. |
| 1008 | /// |
| 1009 | /// # Errors |
| 1010 | /// |
| 1011 | /// This returns an error when `nth` is `0`, or if it is `5` or `-5` and |
| 1012 | /// there is no 5th weekday from the beginning or end of the month. |
| 1013 | /// |
| 1014 | /// # Example |
| 1015 | /// |
| 1016 | /// This shows how to get the nth weekday in a month, starting from the |
| 1017 | /// beginning of the month: |
| 1018 | /// |
| 1019 | /// ``` |
| 1020 | /// use jiff::civil::{Weekday, date}; |
| 1021 | /// |
| 1022 | /// let dt = date(2017, 3, 1).at(7, 30, 0, 0); |
| 1023 | /// let second_friday = dt.nth_weekday_of_month(2, Weekday::Friday)?; |
| 1024 | /// assert_eq!(second_friday, date(2017, 3, 10).at(7, 30, 0, 0)); |
| 1025 | /// |
| 1026 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1027 | /// ``` |
| 1028 | /// |
| 1029 | /// This shows how to do the reverse of the above. That is, the nth _last_ |
| 1030 | /// weekday in a month: |
| 1031 | /// |
| 1032 | /// ``` |
| 1033 | /// use jiff::civil::{Weekday, date}; |
| 1034 | /// |
| 1035 | /// let dt = date(2024, 3, 1).at(7, 30, 0, 0); |
| 1036 | /// let last_thursday = dt.nth_weekday_of_month(-1, Weekday::Thursday)?; |
| 1037 | /// assert_eq!(last_thursday, date(2024, 3, 28).at(7, 30, 0, 0)); |
| 1038 | /// let second_last_thursday = dt.nth_weekday_of_month( |
| 1039 | /// -2, |
| 1040 | /// Weekday::Thursday, |
| 1041 | /// )?; |
| 1042 | /// assert_eq!(second_last_thursday, date(2024, 3, 21).at(7, 30, 0, 0)); |
| 1043 | /// |
| 1044 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1045 | /// ``` |
| 1046 | /// |
| 1047 | /// This routine can return an error if there isn't an `nth` weekday |
| 1048 | /// for this month. For example, March 2024 only has 4 Mondays: |
| 1049 | /// |
| 1050 | /// ``` |
| 1051 | /// use jiff::civil::{Weekday, date}; |
| 1052 | /// |
| 1053 | /// let dt = date(2024, 3, 25).at(7, 30, 0, 0); |
| 1054 | /// let fourth_monday = dt.nth_weekday_of_month(4, Weekday::Monday)?; |
| 1055 | /// assert_eq!(fourth_monday, date(2024, 3, 25).at(7, 30, 0, 0)); |
| 1056 | /// // There is no 5th Monday. |
| 1057 | /// assert!(dt.nth_weekday_of_month(5, Weekday::Monday).is_err()); |
| 1058 | /// // Same goes for counting backwards. |
| 1059 | /// assert!(dt.nth_weekday_of_month(-5, Weekday::Monday).is_err()); |
| 1060 | /// |
| 1061 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1062 | /// ``` |
| 1063 | #[inline ] |
| 1064 | pub fn nth_weekday_of_month( |
| 1065 | self, |
| 1066 | nth: i8, |
| 1067 | weekday: Weekday, |
| 1068 | ) -> Result<DateTime, Error> { |
| 1069 | let date = self.date().nth_weekday_of_month(nth, weekday)?; |
| 1070 | Ok(DateTime::from_parts(date, self.time())) |
| 1071 | } |
| 1072 | |
| 1073 | /// Returns the "nth" weekday from this datetime, not including itself. |
| 1074 | /// |
| 1075 | /// The `nth` parameter can be positive or negative. A positive value |
| 1076 | /// computes the "nth" weekday starting at the day after this date and |
| 1077 | /// going forwards in time. A negative value computes the "nth" weekday |
| 1078 | /// starting at the day before this date and going backwards in time. |
| 1079 | /// |
| 1080 | /// For example, if this datetime's weekday is a Sunday and the first |
| 1081 | /// Sunday is asked for (that is, `dt.nth_weekday(1, Weekday::Sunday)`), |
| 1082 | /// then the result is a week from this datetime corresponding to the |
| 1083 | /// following Sunday. |
| 1084 | /// |
| 1085 | /// The time in the datetime returned remains unchanged. |
| 1086 | /// |
| 1087 | /// # Errors |
| 1088 | /// |
| 1089 | /// This returns an error when `nth` is `0`, or if it would otherwise |
| 1090 | /// result in a date that overflows the minimum/maximum values of |
| 1091 | /// `DateTime`. |
| 1092 | /// |
| 1093 | /// # Example |
| 1094 | /// |
| 1095 | /// This example shows how to find the "nth" weekday going forwards in |
| 1096 | /// time: |
| 1097 | /// |
| 1098 | /// ``` |
| 1099 | /// use jiff::civil::{Weekday, date}; |
| 1100 | /// |
| 1101 | /// // Use a Sunday in March as our start date. |
| 1102 | /// let dt = date(2024, 3, 10).at(7, 30, 0, 0); |
| 1103 | /// assert_eq!(dt.weekday(), Weekday::Sunday); |
| 1104 | /// |
| 1105 | /// // The first next Monday is tomorrow! |
| 1106 | /// let next_monday = dt.nth_weekday(1, Weekday::Monday)?; |
| 1107 | /// assert_eq!(next_monday, date(2024, 3, 11).at(7, 30, 0, 0)); |
| 1108 | /// |
| 1109 | /// // But the next Sunday is a week away, because this doesn't |
| 1110 | /// // include the current weekday. |
| 1111 | /// let next_sunday = dt.nth_weekday(1, Weekday::Sunday)?; |
| 1112 | /// assert_eq!(next_sunday, date(2024, 3, 17).at(7, 30, 0, 0)); |
| 1113 | /// |
| 1114 | /// // "not this Thursday, but next Thursday" |
| 1115 | /// let next_next_thursday = dt.nth_weekday(2, Weekday::Thursday)?; |
| 1116 | /// assert_eq!(next_next_thursday, date(2024, 3, 21).at(7, 30, 0, 0)); |
| 1117 | /// |
| 1118 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1119 | /// ``` |
| 1120 | /// |
| 1121 | /// This example shows how to find the "nth" weekday going backwards in |
| 1122 | /// time: |
| 1123 | /// |
| 1124 | /// ``` |
| 1125 | /// use jiff::civil::{Weekday, date}; |
| 1126 | /// |
| 1127 | /// // Use a Sunday in March as our start date. |
| 1128 | /// let dt = date(2024, 3, 10).at(7, 30, 0, 0); |
| 1129 | /// assert_eq!(dt.weekday(), Weekday::Sunday); |
| 1130 | /// |
| 1131 | /// // "last Saturday" was yesterday! |
| 1132 | /// let last_saturday = dt.nth_weekday(-1, Weekday::Saturday)?; |
| 1133 | /// assert_eq!(last_saturday, date(2024, 3, 9).at(7, 30, 0, 0)); |
| 1134 | /// |
| 1135 | /// // "last Sunday" was a week ago. |
| 1136 | /// let last_sunday = dt.nth_weekday(-1, Weekday::Sunday)?; |
| 1137 | /// assert_eq!(last_sunday, date(2024, 3, 3).at(7, 30, 0, 0)); |
| 1138 | /// |
| 1139 | /// // "not last Thursday, but the one before" |
| 1140 | /// let prev_prev_thursday = dt.nth_weekday(-2, Weekday::Thursday)?; |
| 1141 | /// assert_eq!(prev_prev_thursday, date(2024, 2, 29).at(7, 30, 0, 0)); |
| 1142 | /// |
| 1143 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1144 | /// ``` |
| 1145 | /// |
| 1146 | /// This example shows that overflow results in an error in either |
| 1147 | /// direction: |
| 1148 | /// |
| 1149 | /// ``` |
| 1150 | /// use jiff::civil::{DateTime, Weekday}; |
| 1151 | /// |
| 1152 | /// let dt = DateTime::MAX; |
| 1153 | /// assert_eq!(dt.weekday(), Weekday::Friday); |
| 1154 | /// assert!(dt.nth_weekday(1, Weekday::Saturday).is_err()); |
| 1155 | /// |
| 1156 | /// let dt = DateTime::MIN; |
| 1157 | /// assert_eq!(dt.weekday(), Weekday::Monday); |
| 1158 | /// assert!(dt.nth_weekday(-1, Weekday::Sunday).is_err()); |
| 1159 | /// ``` |
| 1160 | /// |
| 1161 | /// # Example: the start of Israeli summer time |
| 1162 | /// |
| 1163 | /// Israeli law says (at present, as of 2024-03-11) that DST or |
| 1164 | /// "summer time" starts on the Friday before the last Sunday in |
| 1165 | /// March. We can find that date using both `nth_weekday` and |
| 1166 | /// [`DateTime::nth_weekday_of_month`]: |
| 1167 | /// |
| 1168 | /// ``` |
| 1169 | /// use jiff::civil::{Weekday, date}; |
| 1170 | /// |
| 1171 | /// let march = date(2024, 3, 1).at(0, 0, 0, 0); |
| 1172 | /// let last_sunday = march.nth_weekday_of_month(-1, Weekday::Sunday)?; |
| 1173 | /// let dst_starts_on = last_sunday.nth_weekday(-1, Weekday::Friday)?; |
| 1174 | /// assert_eq!(dst_starts_on, date(2024, 3, 29).at(0, 0, 0, 0)); |
| 1175 | /// |
| 1176 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1177 | /// ``` |
| 1178 | /// |
| 1179 | /// # Example: getting the start of the week |
| 1180 | /// |
| 1181 | /// Given a date, one can use `nth_weekday` to determine the start of the |
| 1182 | /// week in which the date resides in. This might vary based on whether |
| 1183 | /// the weeks start on Sunday or Monday. This example shows how to handle |
| 1184 | /// both. |
| 1185 | /// |
| 1186 | /// ``` |
| 1187 | /// use jiff::civil::{Weekday, date}; |
| 1188 | /// |
| 1189 | /// let dt = date(2024, 3, 15).at(7, 30, 0, 0); |
| 1190 | /// // For weeks starting with Sunday. |
| 1191 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
| 1192 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(7, 30, 0, 0)); |
| 1193 | /// // For weeks starting with Monday. |
| 1194 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Monday)?; |
| 1195 | /// assert_eq!(start_of_week, date(2024, 3, 11).at(7, 30, 0, 0)); |
| 1196 | /// |
| 1197 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1198 | /// ``` |
| 1199 | /// |
| 1200 | /// In the above example, we first get the date after the current one |
| 1201 | /// because `nth_weekday` does not consider itself when counting. This |
| 1202 | /// works as expected even at the boundaries of a week: |
| 1203 | /// |
| 1204 | /// ``` |
| 1205 | /// use jiff::civil::{Time, Weekday, date}; |
| 1206 | /// |
| 1207 | /// // The start of the week. |
| 1208 | /// let dt = date(2024, 3, 10).at(0, 0, 0, 0); |
| 1209 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
| 1210 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(0, 0, 0, 0)); |
| 1211 | /// // The end of the week. |
| 1212 | /// let dt = date(2024, 3, 16).at(23, 59, 59, 999_999_999); |
| 1213 | /// let start_of_week = dt |
| 1214 | /// .tomorrow()? |
| 1215 | /// .nth_weekday(-1, Weekday::Sunday)? |
| 1216 | /// .with().time(Time::midnight()).build()?; |
| 1217 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(0, 0, 0, 0)); |
| 1218 | /// |
| 1219 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1220 | /// ``` |
| 1221 | #[inline ] |
| 1222 | pub fn nth_weekday( |
| 1223 | self, |
| 1224 | nth: i32, |
| 1225 | weekday: Weekday, |
| 1226 | ) -> Result<DateTime, Error> { |
| 1227 | let date = self.date().nth_weekday(nth, weekday)?; |
| 1228 | Ok(DateTime::from_parts(date, self.time())) |
| 1229 | } |
| 1230 | |
| 1231 | /// Returns the date component of this datetime. |
| 1232 | /// |
| 1233 | /// # Example |
| 1234 | /// |
| 1235 | /// ``` |
| 1236 | /// use jiff::civil::date; |
| 1237 | /// |
| 1238 | /// let dt = date(2024, 3, 14).at(18, 45, 0, 0); |
| 1239 | /// assert_eq!(dt.date(), date(2024, 3, 14)); |
| 1240 | /// ``` |
| 1241 | #[inline ] |
| 1242 | pub fn date(self) -> Date { |
| 1243 | self.date |
| 1244 | } |
| 1245 | |
| 1246 | /// Returns the time component of this datetime. |
| 1247 | /// |
| 1248 | /// # Example |
| 1249 | /// |
| 1250 | /// ``` |
| 1251 | /// use jiff::civil::{date, time}; |
| 1252 | /// |
| 1253 | /// let dt = date(2024, 3, 14).at(18, 45, 0, 0); |
| 1254 | /// assert_eq!(dt.time(), time(18, 45, 0, 0)); |
| 1255 | /// ``` |
| 1256 | #[inline ] |
| 1257 | pub fn time(self) -> Time { |
| 1258 | self.time |
| 1259 | } |
| 1260 | |
| 1261 | /// Construct an [ISO 8601 week date] from this datetime. |
| 1262 | /// |
| 1263 | /// The [`ISOWeekDate`] type describes itself in more detail, but in |
| 1264 | /// brief, the ISO week date calendar system eschews months in favor of |
| 1265 | /// weeks. |
| 1266 | /// |
| 1267 | /// This routine is equivalent to |
| 1268 | /// [`ISOWeekDate::from_date(dt.date())`](ISOWeekDate::from_date). |
| 1269 | /// |
| 1270 | /// [ISO 8601 week date]: https://en.wikipedia.org/wiki/ISO_week_date |
| 1271 | /// |
| 1272 | /// # Example |
| 1273 | /// |
| 1274 | /// This shows a number of examples demonstrating the conversion from a |
| 1275 | /// Gregorian date to an ISO 8601 week date: |
| 1276 | /// |
| 1277 | /// ``` |
| 1278 | /// use jiff::civil::{Date, Time, Weekday, date}; |
| 1279 | /// |
| 1280 | /// let dt = date(1995, 1, 1).at(18, 45, 0, 0); |
| 1281 | /// let weekdate = dt.iso_week_date(); |
| 1282 | /// assert_eq!(weekdate.year(), 1994); |
| 1283 | /// assert_eq!(weekdate.week(), 52); |
| 1284 | /// assert_eq!(weekdate.weekday(), Weekday::Sunday); |
| 1285 | /// |
| 1286 | /// let dt = date(1996, 12, 31).at(18, 45, 0, 0); |
| 1287 | /// let weekdate = dt.iso_week_date(); |
| 1288 | /// assert_eq!(weekdate.year(), 1997); |
| 1289 | /// assert_eq!(weekdate.week(), 1); |
| 1290 | /// assert_eq!(weekdate.weekday(), Weekday::Tuesday); |
| 1291 | /// |
| 1292 | /// let dt = date(2019, 12, 30).at(18, 45, 0, 0); |
| 1293 | /// let weekdate = dt.iso_week_date(); |
| 1294 | /// assert_eq!(weekdate.year(), 2020); |
| 1295 | /// assert_eq!(weekdate.week(), 1); |
| 1296 | /// assert_eq!(weekdate.weekday(), Weekday::Monday); |
| 1297 | /// |
| 1298 | /// let dt = date(2024, 3, 9).at(18, 45, 0, 0); |
| 1299 | /// let weekdate = dt.iso_week_date(); |
| 1300 | /// assert_eq!(weekdate.year(), 2024); |
| 1301 | /// assert_eq!(weekdate.week(), 10); |
| 1302 | /// assert_eq!(weekdate.weekday(), Weekday::Saturday); |
| 1303 | /// |
| 1304 | /// let dt = Date::MIN.to_datetime(Time::MIN); |
| 1305 | /// let weekdate = dt.iso_week_date(); |
| 1306 | /// assert_eq!(weekdate.year(), -9999); |
| 1307 | /// assert_eq!(weekdate.week(), 1); |
| 1308 | /// assert_eq!(weekdate.weekday(), Weekday::Monday); |
| 1309 | /// |
| 1310 | /// let dt = Date::MAX.to_datetime(Time::MAX); |
| 1311 | /// let weekdate = dt.iso_week_date(); |
| 1312 | /// assert_eq!(weekdate.year(), 9999); |
| 1313 | /// assert_eq!(weekdate.week(), 52); |
| 1314 | /// assert_eq!(weekdate.weekday(), Weekday::Friday); |
| 1315 | /// ``` |
| 1316 | #[inline ] |
| 1317 | pub fn iso_week_date(self) -> ISOWeekDate { |
| 1318 | self.date().iso_week_date() |
| 1319 | } |
| 1320 | |
| 1321 | /// Converts a civil datetime to a [`Zoned`] datetime by adding the given |
| 1322 | /// time zone. |
| 1323 | /// |
| 1324 | /// The name given is resolved to a [`TimeZone`] by using the default |
| 1325 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by |
| 1326 | /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function for |
| 1327 | /// [`DateTime::to_zoned`] where the time zone database lookup is done |
| 1328 | /// automatically. |
| 1329 | /// |
| 1330 | /// In some cases, a civil datetime may be ambiguous in a |
| 1331 | /// particular time zone. This routine automatically utilizes the |
| 1332 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation) strategy |
| 1333 | /// for resolving ambiguities. That is, if a civil datetime occurs in a |
| 1334 | /// backward transition (called a fold), then the earlier time is selected. |
| 1335 | /// Or if a civil datetime occurs in a forward transition (called a gap), |
| 1336 | /// then the later time is selected. |
| 1337 | /// |
| 1338 | /// To convert a datetime to a `Zoned` using a different disambiguation |
| 1339 | /// strategy, use [`TimeZone::to_ambiguous_zoned`]. |
| 1340 | /// |
| 1341 | /// # Errors |
| 1342 | /// |
| 1343 | /// This returns an error when the given time zone name could not be found |
| 1344 | /// in the default time zone database. |
| 1345 | /// |
| 1346 | /// This also returns an error if this datetime could not be represented as |
| 1347 | /// an instant. This can occur in some cases near the minimum and maximum |
| 1348 | /// boundaries of a `DateTime`. |
| 1349 | /// |
| 1350 | /// # Example |
| 1351 | /// |
| 1352 | /// This is a simple example of converting a civil datetime (a "wall" or |
| 1353 | /// "local" or "naive" datetime) to a datetime that is aware of its time |
| 1354 | /// zone: |
| 1355 | /// |
| 1356 | /// ``` |
| 1357 | /// use jiff::civil::DateTime; |
| 1358 | /// |
| 1359 | /// let dt: DateTime = "2024-06-20 15:06" .parse()?; |
| 1360 | /// let zdt = dt.in_tz("America/New_York" )?; |
| 1361 | /// assert_eq!(zdt.to_string(), "2024-06-20T15:06:00-04:00[America/New_York]" ); |
| 1362 | /// |
| 1363 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1364 | /// ``` |
| 1365 | /// |
| 1366 | /// # Example: dealing with ambiguity |
| 1367 | /// |
| 1368 | /// In the `America/New_York` time zone, there was a forward transition |
| 1369 | /// at `2024-03-10 02:00:00` civil time, and a backward transition at |
| 1370 | /// `2024-11-03 01:00:00` civil time. In the former case, a gap was |
| 1371 | /// created such that the 2 o'clock hour never appeared on clocks for folks |
| 1372 | /// in the `America/New_York` time zone. In the latter case, a fold was |
| 1373 | /// created such that the 1 o'clock hour was repeated. Thus, March 10, 2024 |
| 1374 | /// in New York was 23 hours long, while November 3, 2024 in New York was |
| 1375 | /// 25 hours long. |
| 1376 | /// |
| 1377 | /// This example shows how datetimes in these gaps and folds are resolved |
| 1378 | /// by default: |
| 1379 | /// |
| 1380 | /// ``` |
| 1381 | /// use jiff::civil::DateTime; |
| 1382 | /// |
| 1383 | /// // This is the gap, where by default we select the later time. |
| 1384 | /// let dt: DateTime = "2024-03-10 02:30" .parse()?; |
| 1385 | /// let zdt = dt.in_tz("America/New_York" )?; |
| 1386 | /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]" ); |
| 1387 | /// |
| 1388 | /// // This is the fold, where by default we select the earlier time. |
| 1389 | /// let dt: DateTime = "2024-11-03 01:30" .parse()?; |
| 1390 | /// let zdt = dt.in_tz("America/New_York" )?; |
| 1391 | /// // Since this is a fold, the wall clock time is repeated. It might be |
| 1392 | /// // hard to see that this is the earlier time, but notice the offset: |
| 1393 | /// // it is the offset for DST time in New York. The later time, or the |
| 1394 | /// // repetition of the 1 o'clock hour, would occur in standard time, |
| 1395 | /// // which is an offset of -05 for New York. |
| 1396 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
| 1397 | /// |
| 1398 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1399 | /// ``` |
| 1400 | /// |
| 1401 | /// # Example: errors |
| 1402 | /// |
| 1403 | /// This routine can return an error when the time zone is unrecognized: |
| 1404 | /// |
| 1405 | /// ``` |
| 1406 | /// use jiff::civil::date; |
| 1407 | /// |
| 1408 | /// let dt = date(2024, 6, 20).at(15, 6, 0, 0); |
| 1409 | /// assert!(dt.in_tz("does not exist" ).is_err()); |
| 1410 | /// ``` |
| 1411 | /// |
| 1412 | /// Note that even if a time zone exists in, say, the IANA database, there |
| 1413 | /// may have been a problem reading it from your system's installation of |
| 1414 | /// that database. To see what wrong, enable Jiff's `logging` crate feature |
| 1415 | /// and install a logger. If there was a failure, then a `WARN` level log |
| 1416 | /// message should be emitted. |
| 1417 | /// |
| 1418 | /// This routine can also fail if this datetime cannot be represented |
| 1419 | /// within the allowable timestamp limits: |
| 1420 | /// |
| 1421 | /// ``` |
| 1422 | /// use jiff::{civil::DateTime, tz::{Offset, TimeZone}}; |
| 1423 | /// |
| 1424 | /// let dt = DateTime::MAX; |
| 1425 | /// // All errors because the combination of the offset and the datetime |
| 1426 | /// // isn't enough to fit into timestamp limits. |
| 1427 | /// assert!(dt.in_tz("UTC" ).is_err()); |
| 1428 | /// assert!(dt.in_tz("America/New_York" ).is_err()); |
| 1429 | /// assert!(dt.in_tz("Australia/Tasmania" ).is_err()); |
| 1430 | /// // In fact, the only valid offset one can use to turn the maximum civil |
| 1431 | /// // datetime into a Zoned value is the maximum offset: |
| 1432 | /// let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
| 1433 | /// assert!(dt.to_zoned(tz).is_ok()); |
| 1434 | /// // One second less than the maximum offset results in a failure at the |
| 1435 | /// // maximum datetime boundary. |
| 1436 | /// let tz = Offset::from_seconds(93_598).unwrap().to_time_zone(); |
| 1437 | /// assert!(dt.to_zoned(tz).is_err()); |
| 1438 | /// ``` |
| 1439 | /// |
| 1440 | /// This behavior exists because it guarantees that every possible `Zoned` |
| 1441 | /// value can be converted into a civil datetime, but not every possible |
| 1442 | /// combination of civil datetime and offset can be converted into a |
| 1443 | /// `Zoned` value. There isn't a way to make every possible roundtrip |
| 1444 | /// lossless in both directions, so Jiff chooses to ensure that there is |
| 1445 | /// always a way to convert a `Zoned` instant to a human readable wall |
| 1446 | /// clock time. |
| 1447 | #[inline ] |
| 1448 | pub fn in_tz(self, time_zone_name: &str) -> Result<Zoned, Error> { |
| 1449 | let tz = crate::tz::db().get(time_zone_name)?; |
| 1450 | self.to_zoned(tz) |
| 1451 | } |
| 1452 | |
| 1453 | /// Converts a civil datetime to a [`Zoned`] datetime by adding the given |
| 1454 | /// [`TimeZone`]. |
| 1455 | /// |
| 1456 | /// In some cases, a civil datetime may be ambiguous in a |
| 1457 | /// particular time zone. This routine automatically utilizes the |
| 1458 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation) strategy |
| 1459 | /// for resolving ambiguities. That is, if a civil datetime occurs in a |
| 1460 | /// backward transition (called a fold), then the earlier time is selected. |
| 1461 | /// Or if a civil datetime occurs in a forward transition (called a gap), |
| 1462 | /// then the later time is selected. |
| 1463 | /// |
| 1464 | /// To convert a datetime to a `Zoned` using a different disambiguation |
| 1465 | /// strategy, use [`TimeZone::to_ambiguous_zoned`]. |
| 1466 | /// |
| 1467 | /// In the common case of a time zone being represented as a name string, |
| 1468 | /// like `Australia/Tasmania`, consider using [`DateTime::in_tz`] |
| 1469 | /// instead. |
| 1470 | /// |
| 1471 | /// # Errors |
| 1472 | /// |
| 1473 | /// This returns an error if this datetime could not be represented as an |
| 1474 | /// instant. This can occur in some cases near the minimum and maximum |
| 1475 | /// boundaries of a `DateTime`. |
| 1476 | /// |
| 1477 | /// # Example |
| 1478 | /// |
| 1479 | /// This example shows how to create a zoned value with a fixed time zone |
| 1480 | /// offset: |
| 1481 | /// |
| 1482 | /// ``` |
| 1483 | /// use jiff::{civil::date, tz::{self, TimeZone}}; |
| 1484 | /// |
| 1485 | /// let tz = TimeZone::fixed(tz::offset(-4)); |
| 1486 | /// let zdt = date(2024, 6, 20).at(17, 3, 0, 0).to_zoned(tz)?; |
| 1487 | /// // A time zone annotation is still included in the printable version |
| 1488 | /// // of the Zoned value, but it is fixed to a particular offset. |
| 1489 | /// assert_eq!(zdt.to_string(), "2024-06-20T17:03:00-04:00[-04:00]" ); |
| 1490 | /// |
| 1491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1492 | /// ``` |
| 1493 | /// |
| 1494 | /// # Example: POSIX time zone strings |
| 1495 | /// |
| 1496 | /// And this example shows how to create a time zone from a POSIX time |
| 1497 | /// zone string that describes the transition to and from daylight saving |
| 1498 | /// time for `America/St_Johns`. In particular, this rule uses non-zero |
| 1499 | /// minutes, which is atypical. |
| 1500 | /// |
| 1501 | /// ``` |
| 1502 | /// use jiff::{civil::date, tz::TimeZone}; |
| 1503 | /// |
| 1504 | /// let tz = TimeZone::posix("NST3:30NDT,M3.2.0,M11.1.0" )?; |
| 1505 | /// let zdt = date(2024, 6, 20).at(17, 3, 0, 0).to_zoned(tz)?; |
| 1506 | /// // There isn't any agreed upon mechanism for transmitting a POSIX time |
| 1507 | /// // zone string within an RFC 9557 TZ annotation, so Jiff just emits the |
| 1508 | /// // offset. In practice, POSIX TZ strings are rarely user facing anyway. |
| 1509 | /// // (They are still in widespread use as an implementation detail of the |
| 1510 | /// // IANA Time Zone Database however.) |
| 1511 | /// assert_eq!(zdt.to_string(), "2024-06-20T17:03:00-02:30[-02:30]" ); |
| 1512 | /// |
| 1513 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1514 | /// ``` |
| 1515 | #[inline ] |
| 1516 | pub fn to_zoned(self, tz: TimeZone) -> Result<Zoned, Error> { |
| 1517 | use crate::tz::AmbiguousOffset; |
| 1518 | |
| 1519 | // It's pretty disappointing that we do this instead of the |
| 1520 | // simpler: |
| 1521 | // |
| 1522 | // tz.into_ambiguous_zoned(self).compatible() |
| 1523 | // |
| 1524 | // Below, in the common case of an unambiguous datetime, |
| 1525 | // we avoid doing the work to re-derive the datetime *and* |
| 1526 | // offset from the timestamp we find from tzdb. In particular, |
| 1527 | // `Zoned::new` does this work given a timestamp and a time |
| 1528 | // zone. But we circumvent `Zoned::new` and use a special |
| 1529 | // `Zoned::from_parts` crate-internal constructor to handle |
| 1530 | // this case. |
| 1531 | // |
| 1532 | // Ideally we could do this in `AmbiguousZoned::compatible` |
| 1533 | // itself, but it turns out that it doesn't always work. |
| 1534 | // Namely, that API supports providing an unambiguous |
| 1535 | // offset even when the civil datetime is within a |
| 1536 | // DST transition. In that case, once the timestamp |
| 1537 | // is resolved, the offset given might actually |
| 1538 | // change. See `2024-03-11T02:02[America/New_York]` |
| 1539 | // example for `AlwaysOffset` conflict resolution on |
| 1540 | // `ZonedWith::disambiguation`. |
| 1541 | // |
| 1542 | // But the optimization works here because if we get an |
| 1543 | // unambiguous offset from tzdb, then we know it isn't in a DST |
| 1544 | // transition and that it won't change with the timestamp. |
| 1545 | // |
| 1546 | // This ends up saving a fair bit of cycles re-computing |
| 1547 | // the offset (which requires another tzdb lookup) and |
| 1548 | // re-generating the civil datetime from the timestamp for the |
| 1549 | // re-computed offset. This helps the |
| 1550 | // `civil_datetime_to_timestamp_tzdb_lookup/zoneinfo/jiff` |
| 1551 | // micro-benchmark quite a bit. |
| 1552 | let dt = self; |
| 1553 | let amb_ts = tz.to_ambiguous_timestamp(dt); |
| 1554 | let (offset, ts, dt) = match amb_ts.offset() { |
| 1555 | AmbiguousOffset::Unambiguous { offset } => { |
| 1556 | let ts = offset.to_timestamp(dt)?; |
| 1557 | (offset, ts, dt) |
| 1558 | } |
| 1559 | AmbiguousOffset::Gap { before, .. } => { |
| 1560 | let ts = before.to_timestamp(dt)?; |
| 1561 | let offset = tz.to_offset(ts); |
| 1562 | let dt = offset.to_datetime(ts); |
| 1563 | (offset, ts, dt) |
| 1564 | } |
| 1565 | AmbiguousOffset::Fold { before, .. } => { |
| 1566 | let ts = before.to_timestamp(dt)?; |
| 1567 | let offset = tz.to_offset(ts); |
| 1568 | let dt = offset.to_datetime(ts); |
| 1569 | (offset, ts, dt) |
| 1570 | } |
| 1571 | }; |
| 1572 | Ok(Zoned::from_parts(ts, tz, offset, dt)) |
| 1573 | } |
| 1574 | |
| 1575 | /// Add the given span of time to this datetime. If the sum would overflow |
| 1576 | /// the minimum or maximum datetime values, then an error is returned. |
| 1577 | /// |
| 1578 | /// This operation accepts three different duration types: [`Span`], |
| 1579 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
| 1580 | /// `From` trait implementations for the [`DateTimeArithmetic`] type. |
| 1581 | /// |
| 1582 | /// # Properties |
| 1583 | /// |
| 1584 | /// This routine is _not_ reversible because some additions may |
| 1585 | /// be ambiguous. For example, adding `1 month` to the datetime |
| 1586 | /// `2024-03-31T00:00:00` will produce `2024-04-30T00:00:00` since April |
| 1587 | /// has only 30 days in a month. Moreover, subtracting `1 month` from |
| 1588 | /// `2024-04-30T00:00:00` will produce `2024-03-30T00:00:00`, which is not |
| 1589 | /// the date we started with. |
| 1590 | /// |
| 1591 | /// If spans of time are limited to units of days (or less), then this |
| 1592 | /// routine _is_ reversible. This also implies that all operations with a |
| 1593 | /// [`SignedDuration`] or a [`std::time::Duration`] are reversible. |
| 1594 | /// |
| 1595 | /// # Errors |
| 1596 | /// |
| 1597 | /// If the span added to this datetime would result in a datetime that |
| 1598 | /// exceeds the range of a `DateTime`, then this will return an error. |
| 1599 | /// |
| 1600 | /// # Example |
| 1601 | /// |
| 1602 | /// This shows a few examples of adding spans of time to various dates. |
| 1603 | /// We make use of the [`ToSpan`](crate::ToSpan) trait for convenient |
| 1604 | /// creation of spans. |
| 1605 | /// |
| 1606 | /// ``` |
| 1607 | /// use jiff::{civil::date, ToSpan}; |
| 1608 | /// |
| 1609 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
| 1610 | /// let got = dt.checked_add(20.years().months(4).nanoseconds(500))?; |
| 1611 | /// assert_eq!(got, date(2016, 4, 7).at(3, 24, 30, 4_000)); |
| 1612 | /// |
| 1613 | /// let dt = date(2019, 1, 31).at(15, 30, 0, 0); |
| 1614 | /// let got = dt.checked_add(1.months())?; |
| 1615 | /// assert_eq!(got, date(2019, 2, 28).at(15, 30, 0, 0)); |
| 1616 | /// |
| 1617 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1618 | /// ``` |
| 1619 | /// |
| 1620 | /// # Example: available via addition operator |
| 1621 | /// |
| 1622 | /// This routine can be used via the `+` operator. Note though that if it |
| 1623 | /// fails, it will result in a panic. |
| 1624 | /// |
| 1625 | /// ``` |
| 1626 | /// use jiff::{civil::date, ToSpan}; |
| 1627 | /// |
| 1628 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
| 1629 | /// let got = dt + 20.years().months(4).nanoseconds(500); |
| 1630 | /// assert_eq!(got, date(2016, 4, 7).at(3, 24, 30, 4_000)); |
| 1631 | /// ``` |
| 1632 | /// |
| 1633 | /// # Example: negative spans are supported |
| 1634 | /// |
| 1635 | /// ``` |
| 1636 | /// use jiff::{civil::date, ToSpan}; |
| 1637 | /// |
| 1638 | /// let dt = date(2024, 3, 31).at(19, 5, 59, 999_999_999); |
| 1639 | /// assert_eq!( |
| 1640 | /// dt.checked_add(-1.months())?, |
| 1641 | /// date(2024, 2, 29).at(19, 5, 59, 999_999_999), |
| 1642 | /// ); |
| 1643 | /// |
| 1644 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1645 | /// ``` |
| 1646 | /// |
| 1647 | /// # Example: error on overflow |
| 1648 | /// |
| 1649 | /// ``` |
| 1650 | /// use jiff::{civil::date, ToSpan}; |
| 1651 | /// |
| 1652 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
| 1653 | /// assert!(dt.checked_add(9000.years()).is_err()); |
| 1654 | /// assert!(dt.checked_add(-19000.years()).is_err()); |
| 1655 | /// ``` |
| 1656 | /// |
| 1657 | /// # Example: adding absolute durations |
| 1658 | /// |
| 1659 | /// This shows how to add signed and unsigned absolute durations to a |
| 1660 | /// `DateTime`. |
| 1661 | /// |
| 1662 | /// ``` |
| 1663 | /// use std::time::Duration; |
| 1664 | /// |
| 1665 | /// use jiff::{civil::date, SignedDuration}; |
| 1666 | /// |
| 1667 | /// let dt = date(2024, 2, 29).at(0, 0, 0, 0); |
| 1668 | /// |
| 1669 | /// let dur = SignedDuration::from_hours(25); |
| 1670 | /// assert_eq!(dt.checked_add(dur)?, date(2024, 3, 1).at(1, 0, 0, 0)); |
| 1671 | /// assert_eq!(dt.checked_add(-dur)?, date(2024, 2, 27).at(23, 0, 0, 0)); |
| 1672 | /// |
| 1673 | /// let dur = Duration::from_secs(25 * 60 * 60); |
| 1674 | /// assert_eq!(dt.checked_add(dur)?, date(2024, 3, 1).at(1, 0, 0, 0)); |
| 1675 | /// // One cannot negate an unsigned duration, |
| 1676 | /// // but you can subtract it! |
| 1677 | /// assert_eq!(dt.checked_sub(dur)?, date(2024, 2, 27).at(23, 0, 0, 0)); |
| 1678 | /// |
| 1679 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1680 | /// ``` |
| 1681 | #[inline ] |
| 1682 | pub fn checked_add<A: Into<DateTimeArithmetic>>( |
| 1683 | self, |
| 1684 | duration: A, |
| 1685 | ) -> Result<DateTime, Error> { |
| 1686 | let duration: DateTimeArithmetic = duration.into(); |
| 1687 | duration.checked_add(self) |
| 1688 | } |
| 1689 | |
| 1690 | #[inline ] |
| 1691 | fn checked_add_span(self, span: Span) -> Result<DateTime, Error> { |
| 1692 | let (old_date, old_time) = (self.date(), self.time()); |
| 1693 | let units = span.units(); |
| 1694 | match (units.only_calendar().is_empty(), units.only_time().is_empty()) |
| 1695 | { |
| 1696 | (true, true) => Ok(self), |
| 1697 | (false, true) => { |
| 1698 | let new_date = |
| 1699 | old_date.checked_add(span).with_context(|| { |
| 1700 | err!("failed to add {span} to {old_date}" ) |
| 1701 | })?; |
| 1702 | Ok(DateTime::from_parts(new_date, old_time)) |
| 1703 | } |
| 1704 | (true, false) => { |
| 1705 | let (new_time, leftovers) = |
| 1706 | old_time.overflowing_add(span).with_context(|| { |
| 1707 | err!("failed to add {span} to {old_time}" ) |
| 1708 | })?; |
| 1709 | let new_date = |
| 1710 | old_date.checked_add(leftovers).with_context(|| { |
| 1711 | err!( |
| 1712 | "failed to add overflowing span, {leftovers}, \ |
| 1713 | from adding {span} to {old_time}, \ |
| 1714 | to {old_date}" , |
| 1715 | ) |
| 1716 | })?; |
| 1717 | Ok(DateTime::from_parts(new_date, new_time)) |
| 1718 | } |
| 1719 | (false, false) => self.checked_add_span_general(&span), |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | #[inline (never)] |
| 1724 | #[cold ] |
| 1725 | fn checked_add_span_general(self, span: &Span) -> Result<DateTime, Error> { |
| 1726 | let (old_date, old_time) = (self.date(), self.time()); |
| 1727 | let span_date = span.without_lower(Unit::Day); |
| 1728 | let span_time = span.only_lower(Unit::Day); |
| 1729 | |
| 1730 | let (new_time, leftovers) = |
| 1731 | old_time.overflowing_add(span_time).with_context(|| { |
| 1732 | err!("failed to add {span_time} to {old_time}" ) |
| 1733 | })?; |
| 1734 | let new_date = old_date.checked_add(span_date).with_context(|| { |
| 1735 | err!("failed to add {span_date} to {old_date}" ) |
| 1736 | })?; |
| 1737 | let new_date = new_date.checked_add(leftovers).with_context(|| { |
| 1738 | err!( |
| 1739 | "failed to add overflowing span, {leftovers}, \ |
| 1740 | from adding {span_time} to {old_time}, \ |
| 1741 | to {new_date}" , |
| 1742 | ) |
| 1743 | })?; |
| 1744 | Ok(DateTime::from_parts(new_date, new_time)) |
| 1745 | } |
| 1746 | |
| 1747 | #[inline ] |
| 1748 | fn checked_add_duration( |
| 1749 | self, |
| 1750 | duration: SignedDuration, |
| 1751 | ) -> Result<DateTime, Error> { |
| 1752 | let (date, time) = (self.date(), self.time()); |
| 1753 | let (new_time, leftovers) = time.overflowing_add_duration(duration)?; |
| 1754 | let new_date = date.checked_add(leftovers).with_context(|| { |
| 1755 | err!( |
| 1756 | "failed to add overflowing signed duration, {leftovers:?}, \ |
| 1757 | from adding {duration:?} to {time}, |
| 1758 | to {date}" , |
| 1759 | ) |
| 1760 | })?; |
| 1761 | Ok(DateTime::from_parts(new_date, new_time)) |
| 1762 | } |
| 1763 | |
| 1764 | /// This routine is identical to [`DateTime::checked_add`] with the |
| 1765 | /// duration negated. |
| 1766 | /// |
| 1767 | /// # Errors |
| 1768 | /// |
| 1769 | /// This has the same error conditions as [`DateTime::checked_add`]. |
| 1770 | /// |
| 1771 | /// # Example |
| 1772 | /// |
| 1773 | /// This routine can be used via the `-` operator. Note though that if it |
| 1774 | /// fails, it will result in a panic. |
| 1775 | /// |
| 1776 | /// ``` |
| 1777 | /// use std::time::Duration; |
| 1778 | /// |
| 1779 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
| 1780 | /// |
| 1781 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
| 1782 | /// assert_eq!( |
| 1783 | /// dt - 20.years().months(4).nanoseconds(500), |
| 1784 | /// date(1975, 8, 7).at(3, 24, 30, 3_000), |
| 1785 | /// ); |
| 1786 | /// |
| 1787 | /// let dur = SignedDuration::new(24 * 60 * 60, 3_500); |
| 1788 | /// assert_eq!(dt - dur, date(1995, 12, 6).at(3, 24, 30, 0)); |
| 1789 | /// |
| 1790 | /// let dur = Duration::new(24 * 60 * 60, 3_500); |
| 1791 | /// assert_eq!(dt - dur, date(1995, 12, 6).at(3, 24, 30, 0)); |
| 1792 | /// |
| 1793 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1794 | /// ``` |
| 1795 | #[inline ] |
| 1796 | pub fn checked_sub<A: Into<DateTimeArithmetic>>( |
| 1797 | self, |
| 1798 | duration: A, |
| 1799 | ) -> Result<DateTime, Error> { |
| 1800 | let duration: DateTimeArithmetic = duration.into(); |
| 1801 | duration.checked_neg().and_then(|dta| dta.checked_add(self)) |
| 1802 | } |
| 1803 | |
| 1804 | /// This routine is identical to [`DateTime::checked_add`], except the |
| 1805 | /// result saturates on overflow. That is, instead of overflow, either |
| 1806 | /// [`DateTime::MIN`] or [`DateTime::MAX`] is returned. |
| 1807 | /// |
| 1808 | /// # Example |
| 1809 | /// |
| 1810 | /// ``` |
| 1811 | /// use jiff::{civil::{DateTime, date}, SignedDuration, ToSpan}; |
| 1812 | /// |
| 1813 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
| 1814 | /// assert_eq!(DateTime::MAX, dt.saturating_add(9000.years())); |
| 1815 | /// assert_eq!(DateTime::MIN, dt.saturating_add(-19000.years())); |
| 1816 | /// assert_eq!(DateTime::MAX, dt.saturating_add(SignedDuration::MAX)); |
| 1817 | /// assert_eq!(DateTime::MIN, dt.saturating_add(SignedDuration::MIN)); |
| 1818 | /// assert_eq!(DateTime::MAX, dt.saturating_add(std::time::Duration::MAX)); |
| 1819 | /// ``` |
| 1820 | #[inline ] |
| 1821 | pub fn saturating_add<A: Into<DateTimeArithmetic>>( |
| 1822 | self, |
| 1823 | duration: A, |
| 1824 | ) -> DateTime { |
| 1825 | let duration: DateTimeArithmetic = duration.into(); |
| 1826 | self.checked_add(duration).unwrap_or_else(|_| { |
| 1827 | if duration.is_negative() { |
| 1828 | DateTime::MIN |
| 1829 | } else { |
| 1830 | DateTime::MAX |
| 1831 | } |
| 1832 | }) |
| 1833 | } |
| 1834 | |
| 1835 | /// This routine is identical to [`DateTime::saturating_add`] with the span |
| 1836 | /// parameter negated. |
| 1837 | /// |
| 1838 | /// # Example |
| 1839 | /// |
| 1840 | /// ``` |
| 1841 | /// use jiff::{civil::{DateTime, date}, SignedDuration, ToSpan}; |
| 1842 | /// |
| 1843 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
| 1844 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(19000.years())); |
| 1845 | /// assert_eq!(DateTime::MAX, dt.saturating_sub(-9000.years())); |
| 1846 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(SignedDuration::MAX)); |
| 1847 | /// assert_eq!(DateTime::MAX, dt.saturating_sub(SignedDuration::MIN)); |
| 1848 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(std::time::Duration::MAX)); |
| 1849 | /// ``` |
| 1850 | #[inline ] |
| 1851 | pub fn saturating_sub<A: Into<DateTimeArithmetic>>( |
| 1852 | self, |
| 1853 | duration: A, |
| 1854 | ) -> DateTime { |
| 1855 | let duration: DateTimeArithmetic = duration.into(); |
| 1856 | let Ok(duration) = duration.checked_neg() else { |
| 1857 | return DateTime::MIN; |
| 1858 | }; |
| 1859 | self.saturating_add(duration) |
| 1860 | } |
| 1861 | |
| 1862 | /// Returns a span representing the elapsed time from this datetime until |
| 1863 | /// the given `other` datetime. |
| 1864 | /// |
| 1865 | /// When `other` occurs before this datetime, then the span returned will |
| 1866 | /// be negative. |
| 1867 | /// |
| 1868 | /// Depending on the input provided, the span returned is rounded. It may |
| 1869 | /// also be balanced up to bigger units than the default. By default, the |
| 1870 | /// span returned is balanced such that the biggest possible unit is days. |
| 1871 | /// This default is an API guarantee. Users can rely on the default not |
| 1872 | /// returning any calendar units bigger than days in the default |
| 1873 | /// configuration. |
| 1874 | /// |
| 1875 | /// This operation is configured by providing a [`DateTimeDifference`] |
| 1876 | /// value. Since this routine accepts anything that implements |
| 1877 | /// `Into<DateTimeDifference>`, once can pass a `DateTime` directly. |
| 1878 | /// One can also pass a `(Unit, DateTime)`, where `Unit` is treated as |
| 1879 | /// [`DateTimeDifference::largest`]. |
| 1880 | /// |
| 1881 | /// # Properties |
| 1882 | /// |
| 1883 | /// It is guaranteed that if the returned span is subtracted from `other`, |
| 1884 | /// and if no rounding is requested, and if the largest unit requested is |
| 1885 | /// at most `Unit::Day`, then the original datetime will be returned. |
| 1886 | /// |
| 1887 | /// This routine is equivalent to `self.since(other).map(|span| -span)` |
| 1888 | /// if no rounding options are set. If rounding options are set, then |
| 1889 | /// it's equivalent to |
| 1890 | /// `self.since(other_without_rounding_options).map(|span| -span)`, |
| 1891 | /// followed by a call to [`Span::round`] with the appropriate rounding |
| 1892 | /// options set. This is because the negation of a span can result in |
| 1893 | /// different rounding results depending on the rounding mode. |
| 1894 | /// |
| 1895 | /// # Errors |
| 1896 | /// |
| 1897 | /// An error can occur in some cases when the requested configuration would |
| 1898 | /// result in a span that is beyond allowable limits. For example, the |
| 1899 | /// nanosecond component of a span cannot the span of time between the |
| 1900 | /// minimum and maximum datetime supported by Jiff. Therefore, if one |
| 1901 | /// requests a span with its largest unit set to [`Unit::Nanosecond`], then |
| 1902 | /// it's possible for this routine to fail. |
| 1903 | /// |
| 1904 | /// It is guaranteed that if one provides a datetime with the default |
| 1905 | /// [`DateTimeDifference`] configuration, then this routine will never |
| 1906 | /// fail. |
| 1907 | /// |
| 1908 | /// # Example |
| 1909 | /// |
| 1910 | /// ``` |
| 1911 | /// use jiff::{civil::date, ToSpan}; |
| 1912 | /// |
| 1913 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
| 1914 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
| 1915 | /// assert_eq!( |
| 1916 | /// earlier.until(later)?, |
| 1917 | /// 4542.days().hours(22).minutes(30).fieldwise(), |
| 1918 | /// ); |
| 1919 | /// |
| 1920 | /// // Flipping the dates is fine, but you'll get a negative span. |
| 1921 | /// assert_eq!( |
| 1922 | /// later.until(earlier)?, |
| 1923 | /// -4542.days().hours(22).minutes(30).fieldwise(), |
| 1924 | /// ); |
| 1925 | /// |
| 1926 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1927 | /// ``` |
| 1928 | /// |
| 1929 | /// # Example: using bigger units |
| 1930 | /// |
| 1931 | /// This example shows how to expand the span returned to bigger units. |
| 1932 | /// This makes use of a `From<(Unit, DateTime)> for DateTimeDifference` |
| 1933 | /// trait implementation. |
| 1934 | /// |
| 1935 | /// ``` |
| 1936 | /// use jiff::{civil::date, Unit, ToSpan}; |
| 1937 | /// |
| 1938 | /// let dt1 = date(1995, 12, 07).at(3, 24, 30, 3500); |
| 1939 | /// let dt2 = date(2019, 01, 31).at(15, 30, 0, 0); |
| 1940 | /// |
| 1941 | /// // The default limits durations to using "days" as the biggest unit. |
| 1942 | /// let span = dt1.until(dt2)?; |
| 1943 | /// assert_eq!(span.to_string(), "P8456DT12H5M29.9999965S" ); |
| 1944 | /// |
| 1945 | /// // But we can ask for units all the way up to years. |
| 1946 | /// let span = dt1.until((Unit::Year, dt2))?; |
| 1947 | /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29.9999965S" ); |
| 1948 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1949 | /// ``` |
| 1950 | /// |
| 1951 | /// # Example: rounding the result |
| 1952 | /// |
| 1953 | /// This shows how one might find the difference between two datetimes and |
| 1954 | /// have the result rounded such that sub-seconds are removed. |
| 1955 | /// |
| 1956 | /// In this case, we need to hand-construct a [`DateTimeDifference`] |
| 1957 | /// in order to gain full configurability. |
| 1958 | /// |
| 1959 | /// ``` |
| 1960 | /// use jiff::{civil::{DateTimeDifference, date}, Unit, ToSpan}; |
| 1961 | /// |
| 1962 | /// let dt1 = date(1995, 12, 07).at(3, 24, 30, 3500); |
| 1963 | /// let dt2 = date(2019, 01, 31).at(15, 30, 0, 0); |
| 1964 | /// |
| 1965 | /// let span = dt1.until( |
| 1966 | /// DateTimeDifference::from(dt2).smallest(Unit::Second), |
| 1967 | /// )?; |
| 1968 | /// assert_eq!(format!("{span:#}" ), "8456d 12h 5m 29s" ); |
| 1969 | /// |
| 1970 | /// // We can combine smallest and largest units too! |
| 1971 | /// let span = dt1.until( |
| 1972 | /// DateTimeDifference::from(dt2) |
| 1973 | /// .smallest(Unit::Second) |
| 1974 | /// .largest(Unit::Year), |
| 1975 | /// )?; |
| 1976 | /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29S" ); |
| 1977 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1978 | /// ``` |
| 1979 | /// |
| 1980 | /// # Example: units biggers than days inhibit reversibility |
| 1981 | /// |
| 1982 | /// If you ask for units bigger than days, then subtracting the span |
| 1983 | /// returned from the `other` datetime is not guaranteed to result in the |
| 1984 | /// original datetime. For example: |
| 1985 | /// |
| 1986 | /// ``` |
| 1987 | /// use jiff::{civil::date, Unit, ToSpan}; |
| 1988 | /// |
| 1989 | /// let dt1 = date(2024, 3, 2).at(0, 0, 0, 0); |
| 1990 | /// let dt2 = date(2024, 5, 1).at(0, 0, 0, 0); |
| 1991 | /// |
| 1992 | /// let span = dt1.until((Unit::Month, dt2))?; |
| 1993 | /// assert_eq!(span, 1.month().days(29).fieldwise()); |
| 1994 | /// let maybe_original = dt2.checked_sub(span)?; |
| 1995 | /// // Not the same as the original datetime! |
| 1996 | /// assert_eq!(maybe_original, date(2024, 3, 3).at(0, 0, 0, 0)); |
| 1997 | /// |
| 1998 | /// // But in the default configuration, days are always the biggest unit |
| 1999 | /// // and reversibility is guaranteed. |
| 2000 | /// let span = dt1.until(dt2)?; |
| 2001 | /// assert_eq!(span, 60.days().fieldwise()); |
| 2002 | /// let is_original = dt2.checked_sub(span)?; |
| 2003 | /// assert_eq!(is_original, dt1); |
| 2004 | /// |
| 2005 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2006 | /// ``` |
| 2007 | /// |
| 2008 | /// This occurs because span are added as if by adding the biggest units |
| 2009 | /// first, and then the smaller units. Because months vary in length, |
| 2010 | /// their meaning can change depending on how the span is added. In this |
| 2011 | /// case, adding one month to `2024-03-02` corresponds to 31 days, but |
| 2012 | /// subtracting one month from `2024-05-01` corresponds to 30 days. |
| 2013 | #[inline ] |
| 2014 | pub fn until<A: Into<DateTimeDifference>>( |
| 2015 | self, |
| 2016 | other: A, |
| 2017 | ) -> Result<Span, Error> { |
| 2018 | let args: DateTimeDifference = other.into(); |
| 2019 | let span = args.until_with_largest_unit(self)?; |
| 2020 | if args.rounding_may_change_span() { |
| 2021 | span.round(args.round.relative(self)) |
| 2022 | } else { |
| 2023 | Ok(span) |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | /// This routine is identical to [`DateTime::until`], but the order of the |
| 2028 | /// parameters is flipped. |
| 2029 | /// |
| 2030 | /// # Errors |
| 2031 | /// |
| 2032 | /// This has the same error conditions as [`DateTime::until`]. |
| 2033 | /// |
| 2034 | /// # Example |
| 2035 | /// |
| 2036 | /// This routine can be used via the `-` operator. Since the default |
| 2037 | /// configuration is used and because a `Span` can represent the difference |
| 2038 | /// between any two possible datetimes, it will never panic. |
| 2039 | /// |
| 2040 | /// ``` |
| 2041 | /// use jiff::{civil::date, ToSpan}; |
| 2042 | /// |
| 2043 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
| 2044 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
| 2045 | /// assert_eq!( |
| 2046 | /// later - earlier, |
| 2047 | /// 4542.days().hours(22).minutes(30).fieldwise(), |
| 2048 | /// ); |
| 2049 | /// ``` |
| 2050 | #[inline ] |
| 2051 | pub fn since<A: Into<DateTimeDifference>>( |
| 2052 | self, |
| 2053 | other: A, |
| 2054 | ) -> Result<Span, Error> { |
| 2055 | let args: DateTimeDifference = other.into(); |
| 2056 | let span = -args.until_with_largest_unit(self)?; |
| 2057 | if args.rounding_may_change_span() { |
| 2058 | span.round(args.round.relative(self)) |
| 2059 | } else { |
| 2060 | Ok(span) |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | /// Returns an absolute duration representing the elapsed time from this |
| 2065 | /// datetime until the given `other` datetime. |
| 2066 | /// |
| 2067 | /// When `other` occurs before this datetime, then the duration returned |
| 2068 | /// will be negative. |
| 2069 | /// |
| 2070 | /// Unlike [`DateTime::until`], this returns a duration corresponding to a |
| 2071 | /// 96-bit integer of nanoseconds between two datetimes. |
| 2072 | /// |
| 2073 | /// # Fallibility |
| 2074 | /// |
| 2075 | /// This routine never panics or returns an error. Since there are no |
| 2076 | /// configuration options that can be incorrectly provided, no error is |
| 2077 | /// possible when calling this routine. In contrast, [`DateTime::until`] |
| 2078 | /// can return an error in some cases due to misconfiguration. But like |
| 2079 | /// this routine, [`DateTime::until`] never panics or returns an error in |
| 2080 | /// its default configuration. |
| 2081 | /// |
| 2082 | /// # When should I use this versus [`DateTime::until`]? |
| 2083 | /// |
| 2084 | /// See the type documentation for [`SignedDuration`] for the section on |
| 2085 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
| 2086 | /// In short, use `Span` (and therefore `DateTime::until`) unless you have |
| 2087 | /// a specific reason to do otherwise. |
| 2088 | /// |
| 2089 | /// # Example |
| 2090 | /// |
| 2091 | /// ``` |
| 2092 | /// use jiff::{civil::date, SignedDuration}; |
| 2093 | /// |
| 2094 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
| 2095 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
| 2096 | /// assert_eq!( |
| 2097 | /// earlier.duration_until(later), |
| 2098 | /// SignedDuration::from_hours(4542 * 24) |
| 2099 | /// + SignedDuration::from_hours(22) |
| 2100 | /// + SignedDuration::from_mins(30), |
| 2101 | /// ); |
| 2102 | /// // Flipping the datetimes is fine, but you'll get a negative duration. |
| 2103 | /// assert_eq!( |
| 2104 | /// later.duration_until(earlier), |
| 2105 | /// -SignedDuration::from_hours(4542 * 24) |
| 2106 | /// - SignedDuration::from_hours(22) |
| 2107 | /// - SignedDuration::from_mins(30), |
| 2108 | /// ); |
| 2109 | /// ``` |
| 2110 | /// |
| 2111 | /// # Example: difference with [`DateTime::until`] |
| 2112 | /// |
| 2113 | /// The main difference between this routine and `DateTime::until` is that |
| 2114 | /// the latter can return units other than a 96-bit integer of nanoseconds. |
| 2115 | /// While a 96-bit integer of nanoseconds can be converted into other units |
| 2116 | /// like hours, this can only be done for uniform units. (Uniform units are |
| 2117 | /// units for which each individual unit always corresponds to the same |
| 2118 | /// elapsed time regardless of the datetime it is relative to.) This can't |
| 2119 | /// be done for units like years or months. |
| 2120 | /// |
| 2121 | /// ``` |
| 2122 | /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit}; |
| 2123 | /// |
| 2124 | /// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0); |
| 2125 | /// let dt2 = date(2025, 4, 1).at(0, 0, 0, 0); |
| 2126 | /// |
| 2127 | /// let span = dt1.until((Unit::Year, dt2))?; |
| 2128 | /// assert_eq!(span, 1.year().months(3).fieldwise()); |
| 2129 | /// |
| 2130 | /// let duration = dt1.duration_until(dt2); |
| 2131 | /// assert_eq!(duration, SignedDuration::from_hours(456 * 24)); |
| 2132 | /// // There's no way to extract years or months from the signed |
| 2133 | /// // duration like one might extract hours (because every hour |
| 2134 | /// // is the same length). Instead, you actually have to convert |
| 2135 | /// // it to a span and then balance it by providing a relative date! |
| 2136 | /// let options = SpanRound::new().largest(Unit::Year).relative(dt1); |
| 2137 | /// let span = Span::try_from(duration)?.round(options)?; |
| 2138 | /// assert_eq!(span, 1.year().months(3).fieldwise()); |
| 2139 | /// |
| 2140 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2141 | /// ``` |
| 2142 | /// |
| 2143 | /// # Example: getting an unsigned duration |
| 2144 | /// |
| 2145 | /// If you're looking to find the duration between two datetimes as a |
| 2146 | /// [`std::time::Duration`], you'll need to use this method to get a |
| 2147 | /// [`SignedDuration`] and then convert it to a `std::time::Duration`: |
| 2148 | /// |
| 2149 | /// ``` |
| 2150 | /// use std::time::Duration; |
| 2151 | /// |
| 2152 | /// use jiff::civil::date; |
| 2153 | /// |
| 2154 | /// let dt1 = date(2024, 7, 1).at(0, 0, 0, 0); |
| 2155 | /// let dt2 = date(2024, 8, 1).at(0, 0, 0, 0); |
| 2156 | /// let duration = Duration::try_from(dt1.duration_until(dt2))?; |
| 2157 | /// assert_eq!(duration, Duration::from_secs(31 * 24 * 60 * 60)); |
| 2158 | /// |
| 2159 | /// // Note that unsigned durations cannot represent all |
| 2160 | /// // possible differences! If the duration would be negative, |
| 2161 | /// // then the conversion fails: |
| 2162 | /// assert!(Duration::try_from(dt2.duration_until(dt1)).is_err()); |
| 2163 | /// |
| 2164 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2165 | /// ``` |
| 2166 | #[inline ] |
| 2167 | pub fn duration_until(self, other: DateTime) -> SignedDuration { |
| 2168 | SignedDuration::datetime_until(self, other) |
| 2169 | } |
| 2170 | |
| 2171 | /// This routine is identical to [`DateTime::duration_until`], but the |
| 2172 | /// order of the parameters is flipped. |
| 2173 | /// |
| 2174 | /// # Example |
| 2175 | /// |
| 2176 | /// ``` |
| 2177 | /// use jiff::{civil::date, SignedDuration}; |
| 2178 | /// |
| 2179 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
| 2180 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
| 2181 | /// assert_eq!( |
| 2182 | /// later.duration_since(earlier), |
| 2183 | /// SignedDuration::from_hours(4542 * 24) |
| 2184 | /// + SignedDuration::from_hours(22) |
| 2185 | /// + SignedDuration::from_mins(30), |
| 2186 | /// ); |
| 2187 | /// ``` |
| 2188 | #[inline ] |
| 2189 | pub fn duration_since(self, other: DateTime) -> SignedDuration { |
| 2190 | SignedDuration::datetime_until(other, self) |
| 2191 | } |
| 2192 | |
| 2193 | /// Rounds this datetime according to the [`DateTimeRound`] configuration |
| 2194 | /// given. |
| 2195 | /// |
| 2196 | /// The principal option is [`DateTimeRound::smallest`], which allows one |
| 2197 | /// to configure the smallest units in the returned datetime. Rounding |
| 2198 | /// is what determines whether that unit should keep its current value |
| 2199 | /// or whether it should be incremented. Moreover, the amount it should |
| 2200 | /// be incremented can be configured via [`DateTimeRound::increment`]. |
| 2201 | /// Finally, the rounding strategy itself can be configured via |
| 2202 | /// [`DateTimeRound::mode`]. |
| 2203 | /// |
| 2204 | /// Note that this routine is generic and accepts anything that |
| 2205 | /// implements `Into<DateTimeRound>`. Some notable implementations are: |
| 2206 | /// |
| 2207 | /// * `From<Unit> for DateTimeRound`, which will automatically create a |
| 2208 | /// `DateTimeRound::new().smallest(unit)` from the unit provided. |
| 2209 | /// * `From<(Unit, i64)> for DateTimeRound`, which will automatically |
| 2210 | /// create a `DateTimeRound::new().smallest(unit).increment(number)` from |
| 2211 | /// the unit and increment provided. |
| 2212 | /// |
| 2213 | /// # Errors |
| 2214 | /// |
| 2215 | /// This returns an error if the smallest unit configured on the given |
| 2216 | /// [`DateTimeRound`] is bigger than days. An error is also returned if |
| 2217 | /// the rounding increment is greater than 1 when the units are days. |
| 2218 | /// (Currently, rounding to the nearest week, month or year is not |
| 2219 | /// supported.) |
| 2220 | /// |
| 2221 | /// When the smallest unit is less than days, the rounding increment must |
| 2222 | /// divide evenly into the next highest unit after the smallest unit |
| 2223 | /// configured (and must not be equivalent to it). For example, if the |
| 2224 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 2225 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 2226 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 2227 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 2228 | /// |
| 2229 | /// This can also return an error in some cases where rounding would |
| 2230 | /// require arithmetic that exceeds the maximum datetime value. |
| 2231 | /// |
| 2232 | /// # Example |
| 2233 | /// |
| 2234 | /// This is a basic example that demonstrates rounding a datetime to the |
| 2235 | /// nearest day. This also demonstrates calling this method with the |
| 2236 | /// smallest unit directly, instead of constructing a `DateTimeRound` |
| 2237 | /// manually. |
| 2238 | /// |
| 2239 | /// ``` |
| 2240 | /// use jiff::{civil::date, Unit}; |
| 2241 | /// |
| 2242 | /// let dt = date(2024, 6, 19).at(15, 0, 0, 0); |
| 2243 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 20).at(0, 0, 0, 0)); |
| 2244 | /// let dt = date(2024, 6, 19).at(10, 0, 0, 0); |
| 2245 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 19).at(0, 0, 0, 0)); |
| 2246 | /// |
| 2247 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2248 | /// ``` |
| 2249 | /// |
| 2250 | /// # Example: changing the rounding mode |
| 2251 | /// |
| 2252 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
| 2253 | /// breaks ties by rounding away from zero. But other modes like |
| 2254 | /// [`RoundMode::Trunc`] can be used too: |
| 2255 | /// |
| 2256 | /// ``` |
| 2257 | /// use jiff::{civil::{DateTimeRound, date}, RoundMode, Unit}; |
| 2258 | /// |
| 2259 | /// let dt = date(2024, 6, 19).at(15, 0, 0, 0); |
| 2260 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 20).at(0, 0, 0, 0)); |
| 2261 | /// // The default will round up to the next day for any time past noon, |
| 2262 | /// // but using truncation rounding will always round down. |
| 2263 | /// assert_eq!( |
| 2264 | /// dt.round( |
| 2265 | /// DateTimeRound::new().smallest(Unit::Day).mode(RoundMode::Trunc), |
| 2266 | /// )?, |
| 2267 | /// date(2024, 6, 19).at(0, 0, 0, 0), |
| 2268 | /// ); |
| 2269 | /// |
| 2270 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2271 | /// ``` |
| 2272 | /// |
| 2273 | /// # Example: rounding to the nearest 5 minute increment |
| 2274 | /// |
| 2275 | /// ``` |
| 2276 | /// use jiff::{civil::date, Unit}; |
| 2277 | /// |
| 2278 | /// // rounds down |
| 2279 | /// let dt = date(2024, 6, 19).at(15, 27, 29, 999_999_999); |
| 2280 | /// assert_eq!( |
| 2281 | /// dt.round((Unit::Minute, 5))?, |
| 2282 | /// date(2024, 6, 19).at(15, 25, 0, 0), |
| 2283 | /// ); |
| 2284 | /// // rounds up |
| 2285 | /// let dt = date(2024, 6, 19).at(15, 27, 30, 0); |
| 2286 | /// assert_eq!( |
| 2287 | /// dt.round((Unit::Minute, 5))?, |
| 2288 | /// date(2024, 6, 19).at(15, 30, 0, 0), |
| 2289 | /// ); |
| 2290 | /// |
| 2291 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2292 | /// ``` |
| 2293 | /// |
| 2294 | /// # Example: overflow error |
| 2295 | /// |
| 2296 | /// This example demonstrates that it's possible for this operation to |
| 2297 | /// result in an error from datetime arithmetic overflow. |
| 2298 | /// |
| 2299 | /// ``` |
| 2300 | /// use jiff::{civil::DateTime, Unit}; |
| 2301 | /// |
| 2302 | /// let dt = DateTime::MAX; |
| 2303 | /// assert!(dt.round(Unit::Day).is_err()); |
| 2304 | /// ``` |
| 2305 | /// |
| 2306 | /// This occurs because rounding to the nearest day for the maximum |
| 2307 | /// datetime would result in rounding up to the next day. But the next day |
| 2308 | /// is greater than the maximum, and so this returns an error. |
| 2309 | /// |
| 2310 | /// If one were to use a rounding mode like [`RoundMode::Trunc`] (which |
| 2311 | /// will never round up), always set a correct increment and always used |
| 2312 | /// units less than or equal to days, then this routine is guaranteed to |
| 2313 | /// never fail: |
| 2314 | /// |
| 2315 | /// ``` |
| 2316 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
| 2317 | /// |
| 2318 | /// let round = DateTimeRound::new() |
| 2319 | /// .smallest(Unit::Day) |
| 2320 | /// .mode(RoundMode::Trunc); |
| 2321 | /// assert_eq!( |
| 2322 | /// DateTime::MAX.round(round)?, |
| 2323 | /// date(9999, 12, 31).at(0, 0, 0, 0), |
| 2324 | /// ); |
| 2325 | /// assert_eq!( |
| 2326 | /// DateTime::MIN.round(round)?, |
| 2327 | /// date(-9999, 1, 1).at(0, 0, 0, 0), |
| 2328 | /// ); |
| 2329 | /// |
| 2330 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2331 | /// ``` |
| 2332 | #[inline ] |
| 2333 | pub fn round<R: Into<DateTimeRound>>( |
| 2334 | self, |
| 2335 | options: R, |
| 2336 | ) -> Result<DateTime, Error> { |
| 2337 | let options: DateTimeRound = options.into(); |
| 2338 | options.round(self) |
| 2339 | } |
| 2340 | |
| 2341 | /// Return an iterator of periodic datetimes determined by the given span. |
| 2342 | /// |
| 2343 | /// The given span may be negative, in which case, the iterator will move |
| 2344 | /// backwards through time. The iterator won't stop until either the span |
| 2345 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
| 2346 | /// `DateTime` value. |
| 2347 | /// |
| 2348 | /// # Example: when to check a glucose monitor |
| 2349 | /// |
| 2350 | /// When my cat had diabetes, my veterinarian installed a glucose monitor |
| 2351 | /// and instructed me to scan it about every 5 hours. This example lists |
| 2352 | /// all of the times I need to scan it for the 2 days following its |
| 2353 | /// installation: |
| 2354 | /// |
| 2355 | /// ``` |
| 2356 | /// use jiff::{civil::datetime, ToSpan}; |
| 2357 | /// |
| 2358 | /// let start = datetime(2023, 7, 15, 16, 30, 0, 0); |
| 2359 | /// let end = start.checked_add(2.days())?; |
| 2360 | /// let mut scan_times = vec![]; |
| 2361 | /// for dt in start.series(5.hours()).take_while(|&dt| dt <= end) { |
| 2362 | /// scan_times.push(dt); |
| 2363 | /// } |
| 2364 | /// assert_eq!(scan_times, vec![ |
| 2365 | /// datetime(2023, 7, 15, 16, 30, 0, 0), |
| 2366 | /// datetime(2023, 7, 15, 21, 30, 0, 0), |
| 2367 | /// datetime(2023, 7, 16, 2, 30, 0, 0), |
| 2368 | /// datetime(2023, 7, 16, 7, 30, 0, 0), |
| 2369 | /// datetime(2023, 7, 16, 12, 30, 0, 0), |
| 2370 | /// datetime(2023, 7, 16, 17, 30, 0, 0), |
| 2371 | /// datetime(2023, 7, 16, 22, 30, 0, 0), |
| 2372 | /// datetime(2023, 7, 17, 3, 30, 0, 0), |
| 2373 | /// datetime(2023, 7, 17, 8, 30, 0, 0), |
| 2374 | /// datetime(2023, 7, 17, 13, 30, 0, 0), |
| 2375 | /// ]); |
| 2376 | /// |
| 2377 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2378 | /// ``` |
| 2379 | #[inline ] |
| 2380 | pub fn series(self, period: Span) -> DateTimeSeries { |
| 2381 | DateTimeSeries { start: self, period, step: 0 } |
| 2382 | } |
| 2383 | |
| 2384 | /// Converts this datetime to a nanosecond timestamp assuming a Zulu time |
| 2385 | /// zone offset and where all days are exactly 24 hours long. |
| 2386 | #[inline ] |
| 2387 | fn to_nanosecond(self) -> t::NoUnits128 { |
| 2388 | let day_nano = self.date().to_unix_epoch_day(); |
| 2389 | let time_nano = self.time().to_nanosecond(); |
| 2390 | (t::NoUnits128::rfrom(day_nano) * t::NANOS_PER_CIVIL_DAY) + time_nano |
| 2391 | } |
| 2392 | |
| 2393 | #[inline ] |
| 2394 | pub(crate) fn to_idatetime(&self) -> Composite<IDateTime> { |
| 2395 | let idate = self.date().to_idate(); |
| 2396 | let itime = self.time().to_itime(); |
| 2397 | idate.zip2(itime).map(|(date, time)| IDateTime { date, time }) |
| 2398 | } |
| 2399 | |
| 2400 | #[inline ] |
| 2401 | pub(crate) fn from_idatetime(idt: Composite<IDateTime>) -> DateTime { |
| 2402 | let (idate, itime) = idt.map(|idt| (idt.date, idt.time)).unzip2(); |
| 2403 | DateTime::from_parts(Date::from_idate(idate), Time::from_itime(itime)) |
| 2404 | } |
| 2405 | |
| 2406 | #[inline ] |
| 2407 | pub(crate) const fn to_idatetime_const(&self) -> IDateTime { |
| 2408 | IDateTime { |
| 2409 | date: self.date.to_idate_const(), |
| 2410 | time: self.time.to_itime_const(), |
| 2411 | } |
| 2412 | } |
| 2413 | } |
| 2414 | |
| 2415 | /// Parsing and formatting using a "printf"-style API. |
| 2416 | impl DateTime { |
| 2417 | /// Parses a civil datetime in `input` matching the given `format`. |
| 2418 | /// |
| 2419 | /// The format string uses a "printf"-style API where conversion |
| 2420 | /// specifiers can be used as place holders to match components of |
| 2421 | /// a datetime. For details on the specifiers supported, see the |
| 2422 | /// [`fmt::strtime`] module documentation. |
| 2423 | /// |
| 2424 | /// # Errors |
| 2425 | /// |
| 2426 | /// This returns an error when parsing failed. This might happen because |
| 2427 | /// the format string itself was invalid, or because the input didn't match |
| 2428 | /// the format string. |
| 2429 | /// |
| 2430 | /// This also returns an error if there wasn't sufficient information to |
| 2431 | /// construct a civil datetime. For example, if an offset wasn't parsed. |
| 2432 | /// |
| 2433 | /// # Example |
| 2434 | /// |
| 2435 | /// This example shows how to parse a civil datetime: |
| 2436 | /// |
| 2437 | /// ``` |
| 2438 | /// use jiff::civil::DateTime; |
| 2439 | /// |
| 2440 | /// let dt = DateTime::strptime("%F %H:%M" , "2024-07-14 21:14" )?; |
| 2441 | /// assert_eq!(dt.to_string(), "2024-07-14T21:14:00" ); |
| 2442 | /// |
| 2443 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2444 | /// ``` |
| 2445 | #[inline ] |
| 2446 | pub fn strptime( |
| 2447 | format: impl AsRef<[u8]>, |
| 2448 | input: impl AsRef<[u8]>, |
| 2449 | ) -> Result<DateTime, Error> { |
| 2450 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_datetime()) |
| 2451 | } |
| 2452 | |
| 2453 | /// Formats this civil datetime according to the given `format`. |
| 2454 | /// |
| 2455 | /// The format string uses a "printf"-style API where conversion |
| 2456 | /// specifiers can be used as place holders to format components of |
| 2457 | /// a datetime. For details on the specifiers supported, see the |
| 2458 | /// [`fmt::strtime`] module documentation. |
| 2459 | /// |
| 2460 | /// # Errors and panics |
| 2461 | /// |
| 2462 | /// While this routine itself does not error or panic, using the value |
| 2463 | /// returned may result in a panic if formatting fails. See the |
| 2464 | /// documentation on [`fmt::strtime::Display`] for more information. |
| 2465 | /// |
| 2466 | /// To format in a way that surfaces errors without panicking, use either |
| 2467 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
| 2468 | /// |
| 2469 | /// # Example |
| 2470 | /// |
| 2471 | /// This example shows how to format a civil datetime: |
| 2472 | /// |
| 2473 | /// ``` |
| 2474 | /// use jiff::civil::date; |
| 2475 | /// |
| 2476 | /// let dt = date(2024, 7, 15).at(16, 24, 59, 0); |
| 2477 | /// let string = dt.strftime("%A, %B %e, %Y at %H:%M:%S" ).to_string(); |
| 2478 | /// assert_eq!(string, "Monday, July 15, 2024 at 16:24:59" ); |
| 2479 | /// ``` |
| 2480 | #[inline ] |
| 2481 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
| 2482 | &self, |
| 2483 | format: &'f F, |
| 2484 | ) -> fmt::strtime::Display<'f> { |
| 2485 | fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() } |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | impl Default for DateTime { |
| 2490 | #[inline ] |
| 2491 | fn default() -> DateTime { |
| 2492 | DateTime::ZERO |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | /// Converts a `DateTime` into a human readable datetime string. |
| 2497 | /// |
| 2498 | /// (This `Debug` representation currently emits the same string as the |
| 2499 | /// `Display` representation, but this is not a guarantee.) |
| 2500 | /// |
| 2501 | /// Options currently supported: |
| 2502 | /// |
| 2503 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 2504 | /// of the fractional second component. |
| 2505 | /// |
| 2506 | /// # Example |
| 2507 | /// |
| 2508 | /// ``` |
| 2509 | /// use jiff::civil::date; |
| 2510 | /// |
| 2511 | /// let dt = date(2024, 6, 15).at(7, 0, 0, 123_000_000); |
| 2512 | /// assert_eq!(format!("{dt:.6?}" ), "2024-06-15T07:00:00.123000" ); |
| 2513 | /// // Precision values greater than 9 are clamped to 9. |
| 2514 | /// assert_eq!(format!("{dt:.300?}" ), "2024-06-15T07:00:00.123000000" ); |
| 2515 | /// // A precision of 0 implies the entire fractional |
| 2516 | /// // component is always truncated. |
| 2517 | /// assert_eq!(format!("{dt:.0?}" ), "2024-06-15T07:00:00" ); |
| 2518 | /// |
| 2519 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2520 | /// ``` |
| 2521 | impl core::fmt::Debug for DateTime { |
| 2522 | #[inline ] |
| 2523 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2524 | core::fmt::Display::fmt(self, f) |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | /// Converts a `DateTime` into an ISO 8601 compliant string. |
| 2529 | /// |
| 2530 | /// Options currently supported: |
| 2531 | /// |
| 2532 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 2533 | /// of the fractional second component. |
| 2534 | /// |
| 2535 | /// # Example |
| 2536 | /// |
| 2537 | /// ``` |
| 2538 | /// use jiff::civil::date; |
| 2539 | /// |
| 2540 | /// let dt = date(2024, 6, 15).at(7, 0, 0, 123_000_000); |
| 2541 | /// assert_eq!(format!("{dt:.6}" ), "2024-06-15T07:00:00.123000" ); |
| 2542 | /// // Precision values greater than 9 are clamped to 9. |
| 2543 | /// assert_eq!(format!("{dt:.300}" ), "2024-06-15T07:00:00.123000000" ); |
| 2544 | /// // A precision of 0 implies the entire fractional |
| 2545 | /// // component is always truncated. |
| 2546 | /// assert_eq!(format!("{dt:.0}" ), "2024-06-15T07:00:00" ); |
| 2547 | /// |
| 2548 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2549 | /// ``` |
| 2550 | impl core::fmt::Display for DateTime { |
| 2551 | #[inline ] |
| 2552 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2553 | use crate::fmt::StdFmtWrite; |
| 2554 | |
| 2555 | let precision: Option = |
| 2556 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
| 2557 | temporal::DateTimePrinter::new() |
| 2558 | .precision(precision) |
| 2559 | .print_datetime(self, StdFmtWrite(f)) |
| 2560 | .map_err(|_| core::fmt::Error) |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | impl core::str::FromStr for DateTime { |
| 2565 | type Err = Error; |
| 2566 | |
| 2567 | #[inline ] |
| 2568 | fn from_str(string: &str) -> Result<DateTime, Error> { |
| 2569 | DEFAULT_DATETIME_PARSER.parse_datetime(input:string) |
| 2570 | } |
| 2571 | } |
| 2572 | |
| 2573 | /// Converts a [`Date`] to a [`DateTime`] with the time set to midnight. |
| 2574 | impl From<Date> for DateTime { |
| 2575 | #[inline ] |
| 2576 | fn from(date: Date) -> DateTime { |
| 2577 | date.to_datetime(Time::midnight()) |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | /// Converts a [`Zoned`] to a [`DateTime`]. |
| 2582 | impl From<Zoned> for DateTime { |
| 2583 | #[inline ] |
| 2584 | fn from(zdt: Zoned) -> DateTime { |
| 2585 | zdt.datetime() |
| 2586 | } |
| 2587 | } |
| 2588 | |
| 2589 | /// Converts a [`&Zoned`](Zoned) to a [`DateTime`]. |
| 2590 | impl<'a> From<&'a Zoned> for DateTime { |
| 2591 | #[inline ] |
| 2592 | fn from(zdt: &'a Zoned) -> DateTime { |
| 2593 | zdt.datetime() |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | /// Adds a span of time to a datetime. |
| 2598 | /// |
| 2599 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2600 | /// without panics, use [`DateTime::checked_add`]. |
| 2601 | impl core::ops::Add<Span> for DateTime { |
| 2602 | type Output = DateTime; |
| 2603 | |
| 2604 | #[inline ] |
| 2605 | fn add(self, rhs: Span) -> DateTime { |
| 2606 | self.checked_add(rhs).expect(msg:"adding span to datetime overflowed" ) |
| 2607 | } |
| 2608 | } |
| 2609 | |
| 2610 | /// Adds a span of time to a datetime in place. |
| 2611 | /// |
| 2612 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2613 | /// without panics, use [`DateTime::checked_add`]. |
| 2614 | impl core::ops::AddAssign<Span> for DateTime { |
| 2615 | #[inline ] |
| 2616 | fn add_assign(&mut self, rhs: Span) { |
| 2617 | *self = *self + rhs |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | /// Subtracts a span of time from a datetime. |
| 2622 | /// |
| 2623 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2624 | /// without panics, use [`DateTime::checked_sub`]. |
| 2625 | impl core::ops::Sub<Span> for DateTime { |
| 2626 | type Output = DateTime; |
| 2627 | |
| 2628 | #[inline ] |
| 2629 | fn sub(self, rhs: Span) -> DateTime { |
| 2630 | self.checked_sub(rhs) |
| 2631 | .expect(msg:"subtracting span from datetime overflowed" ) |
| 2632 | } |
| 2633 | } |
| 2634 | |
| 2635 | /// Subtracts a span of time from a datetime in place. |
| 2636 | /// |
| 2637 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2638 | /// without panics, use [`DateTime::checked_sub`]. |
| 2639 | impl core::ops::SubAssign<Span> for DateTime { |
| 2640 | #[inline ] |
| 2641 | fn sub_assign(&mut self, rhs: Span) { |
| 2642 | *self = *self - rhs |
| 2643 | } |
| 2644 | } |
| 2645 | |
| 2646 | /// Computes the span of time between two datetimes. |
| 2647 | /// |
| 2648 | /// This will return a negative span when the datetime being subtracted is |
| 2649 | /// greater. |
| 2650 | /// |
| 2651 | /// Since this uses the default configuration for calculating a span between |
| 2652 | /// two datetimes (no rounding and largest units is days), this will never |
| 2653 | /// panic or fail in any way. It is guaranteed that the largest non-zero |
| 2654 | /// unit in the `Span` returned will be days. |
| 2655 | /// |
| 2656 | /// To configure the largest unit or enable rounding, use [`DateTime::since`]. |
| 2657 | /// |
| 2658 | /// If you need a [`SignedDuration`] representing the span between two civil |
| 2659 | /// datetimes, then use [`DateTime::duration_since`]. |
| 2660 | impl core::ops::Sub for DateTime { |
| 2661 | type Output = Span; |
| 2662 | |
| 2663 | #[inline ] |
| 2664 | fn sub(self, rhs: DateTime) -> Span { |
| 2665 | self.since(rhs).expect(msg:"since never fails when given DateTime" ) |
| 2666 | } |
| 2667 | } |
| 2668 | |
| 2669 | /// Adds a signed duration of time to a datetime. |
| 2670 | /// |
| 2671 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2672 | /// without panics, use [`DateTime::checked_add`]. |
| 2673 | impl core::ops::Add<SignedDuration> for DateTime { |
| 2674 | type Output = DateTime; |
| 2675 | |
| 2676 | #[inline ] |
| 2677 | fn add(self, rhs: SignedDuration) -> DateTime { |
| 2678 | self.checked_add(rhs) |
| 2679 | .expect(msg:"adding signed duration to datetime overflowed" ) |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | /// Adds a signed duration of time to a datetime in place. |
| 2684 | /// |
| 2685 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2686 | /// without panics, use [`DateTime::checked_add`]. |
| 2687 | impl core::ops::AddAssign<SignedDuration> for DateTime { |
| 2688 | #[inline ] |
| 2689 | fn add_assign(&mut self, rhs: SignedDuration) { |
| 2690 | *self = *self + rhs |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | /// Subtracts a signed duration of time from a datetime. |
| 2695 | /// |
| 2696 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2697 | /// without panics, use [`DateTime::checked_sub`]. |
| 2698 | impl core::ops::Sub<SignedDuration> for DateTime { |
| 2699 | type Output = DateTime; |
| 2700 | |
| 2701 | #[inline ] |
| 2702 | fn sub(self, rhs: SignedDuration) -> DateTime { |
| 2703 | self.checked_sub(rhs) |
| 2704 | .expect(msg:"subtracting signed duration from datetime overflowed" ) |
| 2705 | } |
| 2706 | } |
| 2707 | |
| 2708 | /// Subtracts a signed duration of time from a datetime in place. |
| 2709 | /// |
| 2710 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2711 | /// without panics, use [`DateTime::checked_sub`]. |
| 2712 | impl core::ops::SubAssign<SignedDuration> for DateTime { |
| 2713 | #[inline ] |
| 2714 | fn sub_assign(&mut self, rhs: SignedDuration) { |
| 2715 | *self = *self - rhs |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | /// Adds an unsigned duration of time to a datetime. |
| 2720 | /// |
| 2721 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2722 | /// without panics, use [`DateTime::checked_add`]. |
| 2723 | impl core::ops::Add<UnsignedDuration> for DateTime { |
| 2724 | type Output = DateTime; |
| 2725 | |
| 2726 | #[inline ] |
| 2727 | fn add(self, rhs: UnsignedDuration) -> DateTime { |
| 2728 | self.checked_add(rhs) |
| 2729 | .expect(msg:"adding unsigned duration to datetime overflowed" ) |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | /// Adds an unsigned duration of time to a datetime in place. |
| 2734 | /// |
| 2735 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2736 | /// without panics, use [`DateTime::checked_add`]. |
| 2737 | impl core::ops::AddAssign<UnsignedDuration> for DateTime { |
| 2738 | #[inline ] |
| 2739 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
| 2740 | *self = *self + rhs |
| 2741 | } |
| 2742 | } |
| 2743 | |
| 2744 | /// Subtracts an unsigned duration of time from a datetime. |
| 2745 | /// |
| 2746 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2747 | /// without panics, use [`DateTime::checked_sub`]. |
| 2748 | impl core::ops::Sub<UnsignedDuration> for DateTime { |
| 2749 | type Output = DateTime; |
| 2750 | |
| 2751 | #[inline ] |
| 2752 | fn sub(self, rhs: UnsignedDuration) -> DateTime { |
| 2753 | self.checked_sub(rhs) |
| 2754 | .expect(msg:"subtracting unsigned duration from datetime overflowed" ) |
| 2755 | } |
| 2756 | } |
| 2757 | |
| 2758 | /// Subtracts an unsigned duration of time from a datetime in place. |
| 2759 | /// |
| 2760 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2761 | /// without panics, use [`DateTime::checked_sub`]. |
| 2762 | impl core::ops::SubAssign<UnsignedDuration> for DateTime { |
| 2763 | #[inline ] |
| 2764 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
| 2765 | *self = *self - rhs |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | #[cfg (feature = "serde" )] |
| 2770 | impl serde::Serialize for DateTime { |
| 2771 | #[inline ] |
| 2772 | fn serialize<S: serde::Serializer>( |
| 2773 | &self, |
| 2774 | serializer: S, |
| 2775 | ) -> Result<S::Ok, S::Error> { |
| 2776 | serializer.collect_str(self) |
| 2777 | } |
| 2778 | } |
| 2779 | |
| 2780 | #[cfg (feature = "serde" )] |
| 2781 | impl<'de> serde::Deserialize<'de> for DateTime { |
| 2782 | #[inline ] |
| 2783 | fn deserialize<D: serde::Deserializer<'de>>( |
| 2784 | deserializer: D, |
| 2785 | ) -> Result<DateTime, D::Error> { |
| 2786 | use serde::de; |
| 2787 | |
| 2788 | struct DateTimeVisitor; |
| 2789 | |
| 2790 | impl<'de> de::Visitor<'de> for DateTimeVisitor { |
| 2791 | type Value = DateTime; |
| 2792 | |
| 2793 | fn expecting( |
| 2794 | &self, |
| 2795 | f: &mut core::fmt::Formatter, |
| 2796 | ) -> core::fmt::Result { |
| 2797 | f.write_str("a datetime string" ) |
| 2798 | } |
| 2799 | |
| 2800 | #[inline ] |
| 2801 | fn visit_bytes<E: de::Error>( |
| 2802 | self, |
| 2803 | value: &[u8], |
| 2804 | ) -> Result<DateTime, E> { |
| 2805 | DEFAULT_DATETIME_PARSER |
| 2806 | .parse_datetime(value) |
| 2807 | .map_err(de::Error::custom) |
| 2808 | } |
| 2809 | |
| 2810 | #[inline ] |
| 2811 | fn visit_str<E: de::Error>( |
| 2812 | self, |
| 2813 | value: &str, |
| 2814 | ) -> Result<DateTime, E> { |
| 2815 | self.visit_bytes(value.as_bytes()) |
| 2816 | } |
| 2817 | } |
| 2818 | |
| 2819 | deserializer.deserialize_str(DateTimeVisitor) |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | #[cfg (test)] |
| 2824 | impl quickcheck::Arbitrary for DateTime { |
| 2825 | fn arbitrary(g: &mut quickcheck::Gen) -> DateTime { |
| 2826 | let date = Date::arbitrary(g); |
| 2827 | let time = Time::arbitrary(g); |
| 2828 | DateTime::from_parts(date, time) |
| 2829 | } |
| 2830 | |
| 2831 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = DateTime>> { |
| 2832 | alloc::boxed::Box::new( |
| 2833 | (self.date(), self.time()) |
| 2834 | .shrink() |
| 2835 | .map(|(date, time)| DateTime::from_parts(date, time)), |
| 2836 | ) |
| 2837 | } |
| 2838 | } |
| 2839 | |
| 2840 | /// An iterator over periodic datetimes, created by [`DateTime::series`]. |
| 2841 | /// |
| 2842 | /// It is exhausted when the next value would exceed a [`Span`] or [`DateTime`] |
| 2843 | /// value. |
| 2844 | #[derive (Clone, Debug)] |
| 2845 | pub struct DateTimeSeries { |
| 2846 | start: DateTime, |
| 2847 | period: Span, |
| 2848 | step: i64, |
| 2849 | } |
| 2850 | |
| 2851 | impl Iterator for DateTimeSeries { |
| 2852 | type Item = DateTime; |
| 2853 | |
| 2854 | #[inline ] |
| 2855 | fn next(&mut self) -> Option<DateTime> { |
| 2856 | let span: Span = self.period.checked_mul(self.step).ok()?; |
| 2857 | self.step = self.step.checked_add(1)?; |
| 2858 | let date: DateTime = self.start.checked_add(duration:span).ok()?; |
| 2859 | Some(date) |
| 2860 | } |
| 2861 | } |
| 2862 | |
| 2863 | /// Options for [`DateTime::checked_add`] and [`DateTime::checked_sub`]. |
| 2864 | /// |
| 2865 | /// This type provides a way to ergonomically add one of a few different |
| 2866 | /// duration types to a [`DateTime`]. |
| 2867 | /// |
| 2868 | /// The main way to construct values of this type is with its `From` trait |
| 2869 | /// implementations: |
| 2870 | /// |
| 2871 | /// * `From<Span> for DateTimeArithmetic` adds (or subtracts) the given span to |
| 2872 | /// the receiver datetime. |
| 2873 | /// * `From<SignedDuration> for DateTimeArithmetic` adds (or subtracts) |
| 2874 | /// the given signed duration to the receiver datetime. |
| 2875 | /// * `From<std::time::Duration> for DateTimeArithmetic` adds (or subtracts) |
| 2876 | /// the given unsigned duration to the receiver datetime. |
| 2877 | /// |
| 2878 | /// # Example |
| 2879 | /// |
| 2880 | /// ``` |
| 2881 | /// use std::time::Duration; |
| 2882 | /// |
| 2883 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
| 2884 | /// |
| 2885 | /// let dt = date(2024, 2, 29).at(0, 0, 0, 0); |
| 2886 | /// assert_eq!( |
| 2887 | /// dt.checked_add(1.year())?, |
| 2888 | /// date(2025, 2, 28).at(0, 0, 0, 0), |
| 2889 | /// ); |
| 2890 | /// assert_eq!( |
| 2891 | /// dt.checked_add(SignedDuration::from_hours(24))?, |
| 2892 | /// date(2024, 3, 1).at(0, 0, 0, 0), |
| 2893 | /// ); |
| 2894 | /// assert_eq!( |
| 2895 | /// dt.checked_add(Duration::from_secs(24 * 60 * 60))?, |
| 2896 | /// date(2024, 3, 1).at(0, 0, 0, 0), |
| 2897 | /// ); |
| 2898 | /// |
| 2899 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2900 | /// ``` |
| 2901 | #[derive (Clone, Copy, Debug)] |
| 2902 | pub struct DateTimeArithmetic { |
| 2903 | duration: Duration, |
| 2904 | } |
| 2905 | |
| 2906 | impl DateTimeArithmetic { |
| 2907 | #[inline ] |
| 2908 | fn checked_add(self, dt: DateTime) -> Result<DateTime, Error> { |
| 2909 | match self.duration.to_signed()? { |
| 2910 | SDuration::Span(span: Span) => dt.checked_add_span(span), |
| 2911 | SDuration::Absolute(sdur: SignedDuration) => dt.checked_add_duration(sdur), |
| 2912 | } |
| 2913 | } |
| 2914 | |
| 2915 | #[inline ] |
| 2916 | fn checked_neg(self) -> Result<DateTimeArithmetic, Error> { |
| 2917 | let duration: Duration = self.duration.checked_neg()?; |
| 2918 | Ok(DateTimeArithmetic { duration }) |
| 2919 | } |
| 2920 | |
| 2921 | #[inline ] |
| 2922 | fn is_negative(&self) -> bool { |
| 2923 | self.duration.is_negative() |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | impl From<Span> for DateTimeArithmetic { |
| 2928 | fn from(span: Span) -> DateTimeArithmetic { |
| 2929 | let duration: Duration = Duration::from(span); |
| 2930 | DateTimeArithmetic { duration } |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | impl From<SignedDuration> for DateTimeArithmetic { |
| 2935 | fn from(sdur: SignedDuration) -> DateTimeArithmetic { |
| 2936 | let duration: Duration = Duration::from(sdur); |
| 2937 | DateTimeArithmetic { duration } |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | impl From<UnsignedDuration> for DateTimeArithmetic { |
| 2942 | fn from(udur: UnsignedDuration) -> DateTimeArithmetic { |
| 2943 | let duration: Duration = Duration::from(udur); |
| 2944 | DateTimeArithmetic { duration } |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | impl<'a> From<&'a Span> for DateTimeArithmetic { |
| 2949 | fn from(span: &'a Span) -> DateTimeArithmetic { |
| 2950 | DateTimeArithmetic::from(*span) |
| 2951 | } |
| 2952 | } |
| 2953 | |
| 2954 | impl<'a> From<&'a SignedDuration> for DateTimeArithmetic { |
| 2955 | fn from(sdur: &'a SignedDuration) -> DateTimeArithmetic { |
| 2956 | DateTimeArithmetic::from(*sdur) |
| 2957 | } |
| 2958 | } |
| 2959 | |
| 2960 | impl<'a> From<&'a UnsignedDuration> for DateTimeArithmetic { |
| 2961 | fn from(udur: &'a UnsignedDuration) -> DateTimeArithmetic { |
| 2962 | DateTimeArithmetic::from(*udur) |
| 2963 | } |
| 2964 | } |
| 2965 | |
| 2966 | /// Options for [`DateTime::since`] and [`DateTime::until`]. |
| 2967 | /// |
| 2968 | /// This type provides a way to configure the calculation of |
| 2969 | /// spans between two [`DateTime`] values. In particular, both |
| 2970 | /// `DateTime::since` and `DateTime::until` accept anything that implements |
| 2971 | /// `Into<DateTimeDifference>`. There are a few key trait implementations that |
| 2972 | /// make this convenient: |
| 2973 | /// |
| 2974 | /// * `From<DateTime> for DateTimeDifference` will construct a configuration |
| 2975 | /// consisting of just the datetime. So for example, `dt1.since(dt2)` returns |
| 2976 | /// the span from `dt2` to `dt1`. |
| 2977 | /// * `From<Date> for DateTimeDifference` will construct a configuration |
| 2978 | /// consisting of just the datetime built from the date given at midnight on |
| 2979 | /// that day. |
| 2980 | /// * `From<(Unit, DateTime)>` is a convenient way to specify the largest units |
| 2981 | /// that should be present on the span returned. By default, the largest units |
| 2982 | /// are days. Using this trait implementation is equivalent to |
| 2983 | /// `DateTimeDifference::new(datetime).largest(unit)`. |
| 2984 | /// * `From<(Unit, Date)>` is like the one above, but with the time component |
| 2985 | /// fixed to midnight. |
| 2986 | /// |
| 2987 | /// One can also provide a `DateTimeDifference` value directly. Doing so |
| 2988 | /// is necessary to use the rounding features of calculating a span. For |
| 2989 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
| 2990 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
| 2991 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
| 2992 | /// |
| 2993 | /// Rounding a span as part of calculating it is provided as a convenience. |
| 2994 | /// Callers may choose to round the span as a distinct step via |
| 2995 | /// [`Span::round`], but callers may need to provide a reference date |
| 2996 | /// for rounding larger units. By coupling rounding with routines like |
| 2997 | /// [`DateTime::since`], the reference date can be set automatically based on |
| 2998 | /// the input to `DateTime::since`. |
| 2999 | /// |
| 3000 | /// # Example |
| 3001 | /// |
| 3002 | /// This example shows how to round a span between two datetimes to the nearest |
| 3003 | /// half-hour, with ties breaking away from zero. |
| 3004 | /// |
| 3005 | /// ``` |
| 3006 | /// use jiff::{civil::{DateTime, DateTimeDifference}, RoundMode, ToSpan, Unit}; |
| 3007 | /// |
| 3008 | /// let dt1 = "2024-03-15 08:14:00.123456789" .parse::<DateTime>()?; |
| 3009 | /// let dt2 = "2030-03-22 15:00" .parse::<DateTime>()?; |
| 3010 | /// let span = dt1.until( |
| 3011 | /// DateTimeDifference::new(dt2) |
| 3012 | /// .smallest(Unit::Minute) |
| 3013 | /// .largest(Unit::Year) |
| 3014 | /// .mode(RoundMode::HalfExpand) |
| 3015 | /// .increment(30), |
| 3016 | /// )?; |
| 3017 | /// assert_eq!(span, 6.years().days(7).hours(7).fieldwise()); |
| 3018 | /// |
| 3019 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3020 | /// ``` |
| 3021 | #[derive (Clone, Copy, Debug)] |
| 3022 | pub struct DateTimeDifference { |
| 3023 | datetime: DateTime, |
| 3024 | round: SpanRound<'static>, |
| 3025 | } |
| 3026 | |
| 3027 | impl DateTimeDifference { |
| 3028 | /// Create a new default configuration for computing the span between the |
| 3029 | /// given datetime and some other datetime (specified as the receiver in |
| 3030 | /// [`DateTime::since`] or [`DateTime::until`]). |
| 3031 | #[inline ] |
| 3032 | pub fn new(datetime: DateTime) -> DateTimeDifference { |
| 3033 | // We use truncation rounding by default since it seems that's |
| 3034 | // what is generally expected when computing the difference between |
| 3035 | // datetimes. |
| 3036 | // |
| 3037 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
| 3038 | let round = SpanRound::new().mode(RoundMode::Trunc); |
| 3039 | DateTimeDifference { datetime, round } |
| 3040 | } |
| 3041 | |
| 3042 | /// Set the smallest units allowed in the span returned. |
| 3043 | /// |
| 3044 | /// When a largest unit is not specified and the smallest unit is days |
| 3045 | /// or greater, then the largest unit is automatically set to be equal to |
| 3046 | /// the smallest unit. |
| 3047 | /// |
| 3048 | /// # Errors |
| 3049 | /// |
| 3050 | /// The smallest units must be no greater than the largest units. If this |
| 3051 | /// is violated, then computing a span with this configuration will result |
| 3052 | /// in an error. |
| 3053 | /// |
| 3054 | /// # Example |
| 3055 | /// |
| 3056 | /// This shows how to round a span between two datetimes to the nearest |
| 3057 | /// number of weeks. |
| 3058 | /// |
| 3059 | /// ``` |
| 3060 | /// use jiff::{ |
| 3061 | /// civil::{DateTime, DateTimeDifference}, |
| 3062 | /// RoundMode, ToSpan, Unit, |
| 3063 | /// }; |
| 3064 | /// |
| 3065 | /// let dt1 = "2024-03-15 08:14" .parse::<DateTime>()?; |
| 3066 | /// let dt2 = "2030-11-22 08:30" .parse::<DateTime>()?; |
| 3067 | /// let span = dt1.until( |
| 3068 | /// DateTimeDifference::new(dt2) |
| 3069 | /// .smallest(Unit::Week) |
| 3070 | /// .largest(Unit::Week) |
| 3071 | /// .mode(RoundMode::HalfExpand), |
| 3072 | /// )?; |
| 3073 | /// assert_eq!(span, 349.weeks().fieldwise()); |
| 3074 | /// |
| 3075 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3076 | /// ``` |
| 3077 | #[inline ] |
| 3078 | pub fn smallest(self, unit: Unit) -> DateTimeDifference { |
| 3079 | DateTimeDifference { round: self.round.smallest(unit), ..self } |
| 3080 | } |
| 3081 | |
| 3082 | /// Set the largest units allowed in the span returned. |
| 3083 | /// |
| 3084 | /// When a largest unit is not specified and the smallest unit is days |
| 3085 | /// or greater, then the largest unit is automatically set to be equal to |
| 3086 | /// the smallest unit. Otherwise, when the largest unit is not specified, |
| 3087 | /// it is set to days. |
| 3088 | /// |
| 3089 | /// Once a largest unit is set, there is no way to change this rounding |
| 3090 | /// configuration back to using the "automatic" default. Instead, callers |
| 3091 | /// must create a new configuration. |
| 3092 | /// |
| 3093 | /// # Errors |
| 3094 | /// |
| 3095 | /// The largest units, when set, must be at least as big as the smallest |
| 3096 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
| 3097 | /// then computing a span with this configuration will result in an error. |
| 3098 | /// |
| 3099 | /// # Example |
| 3100 | /// |
| 3101 | /// This shows how to round a span between two datetimes to units no |
| 3102 | /// bigger than seconds. |
| 3103 | /// |
| 3104 | /// ``` |
| 3105 | /// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit}; |
| 3106 | /// |
| 3107 | /// let dt1 = "2024-03-15 08:14" .parse::<DateTime>()?; |
| 3108 | /// let dt2 = "2030-11-22 08:30" .parse::<DateTime>()?; |
| 3109 | /// let span = dt1.until( |
| 3110 | /// DateTimeDifference::new(dt2).largest(Unit::Second), |
| 3111 | /// )?; |
| 3112 | /// assert_eq!(span, 211076160.seconds().fieldwise()); |
| 3113 | /// |
| 3114 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3115 | /// ``` |
| 3116 | #[inline ] |
| 3117 | pub fn largest(self, unit: Unit) -> DateTimeDifference { |
| 3118 | DateTimeDifference { round: self.round.largest(unit), ..self } |
| 3119 | } |
| 3120 | |
| 3121 | /// Set the rounding mode. |
| 3122 | /// |
| 3123 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
| 3124 | /// rounding "up" in the context of computing the span between |
| 3125 | /// two datetimes could be surprising in a number of cases. The |
| 3126 | /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you |
| 3127 | /// might have learned about in school. But a variety of other rounding |
| 3128 | /// modes exist. |
| 3129 | /// |
| 3130 | /// # Example |
| 3131 | /// |
| 3132 | /// This shows how to always round "up" towards positive infinity. |
| 3133 | /// |
| 3134 | /// ``` |
| 3135 | /// use jiff::{ |
| 3136 | /// civil::{DateTime, DateTimeDifference}, |
| 3137 | /// RoundMode, ToSpan, Unit, |
| 3138 | /// }; |
| 3139 | /// |
| 3140 | /// let dt1 = "2024-03-15 08:10" .parse::<DateTime>()?; |
| 3141 | /// let dt2 = "2024-03-15 08:11" .parse::<DateTime>()?; |
| 3142 | /// let span = dt1.until( |
| 3143 | /// DateTimeDifference::new(dt2) |
| 3144 | /// .smallest(Unit::Hour) |
| 3145 | /// .mode(RoundMode::Ceil), |
| 3146 | /// )?; |
| 3147 | /// // Only one minute elapsed, but we asked to always round up! |
| 3148 | /// assert_eq!(span, 1.hour().fieldwise()); |
| 3149 | /// |
| 3150 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
| 3151 | /// // flips for a negative span. |
| 3152 | /// let span = dt1.since( |
| 3153 | /// DateTimeDifference::new(dt2) |
| 3154 | /// .smallest(Unit::Hour) |
| 3155 | /// .mode(RoundMode::Ceil), |
| 3156 | /// )?; |
| 3157 | /// assert_eq!(span, 0.hour().fieldwise()); |
| 3158 | /// |
| 3159 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3160 | /// ``` |
| 3161 | #[inline ] |
| 3162 | pub fn mode(self, mode: RoundMode) -> DateTimeDifference { |
| 3163 | DateTimeDifference { round: self.round.mode(mode), ..self } |
| 3164 | } |
| 3165 | |
| 3166 | /// Set the rounding increment for the smallest unit. |
| 3167 | /// |
| 3168 | /// The default value is `1`. Other values permit rounding the smallest |
| 3169 | /// unit to the nearest integer increment specified. For example, if the |
| 3170 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 3171 | /// `30` would result in rounding in increments of a half hour. That is, |
| 3172 | /// the only minute value that could result would be `0` or `30`. |
| 3173 | /// |
| 3174 | /// # Errors |
| 3175 | /// |
| 3176 | /// When the smallest unit is less than days, the rounding increment must |
| 3177 | /// divide evenly into the next highest unit after the smallest unit |
| 3178 | /// configured (and must not be equivalent to it). For example, if the |
| 3179 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 3180 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 3181 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 3182 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 3183 | /// |
| 3184 | /// The error will occur when computing the span, and not when setting |
| 3185 | /// the increment here. |
| 3186 | /// |
| 3187 | /// # Example |
| 3188 | /// |
| 3189 | /// This shows how to round the span between two datetimes to the nearest |
| 3190 | /// 5 minute increment. |
| 3191 | /// |
| 3192 | /// ``` |
| 3193 | /// use jiff::{ |
| 3194 | /// civil::{DateTime, DateTimeDifference}, |
| 3195 | /// RoundMode, ToSpan, Unit, |
| 3196 | /// }; |
| 3197 | /// |
| 3198 | /// let dt1 = "2024-03-15 08:19" .parse::<DateTime>()?; |
| 3199 | /// let dt2 = "2024-03-15 12:52" .parse::<DateTime>()?; |
| 3200 | /// let span = dt1.until( |
| 3201 | /// DateTimeDifference::new(dt2) |
| 3202 | /// .smallest(Unit::Minute) |
| 3203 | /// .increment(5) |
| 3204 | /// .mode(RoundMode::HalfExpand), |
| 3205 | /// )?; |
| 3206 | /// assert_eq!(span, 4.hour().minutes(35).fieldwise()); |
| 3207 | /// |
| 3208 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3209 | /// ``` |
| 3210 | #[inline ] |
| 3211 | pub fn increment(self, increment: i64) -> DateTimeDifference { |
| 3212 | DateTimeDifference { round: self.round.increment(increment), ..self } |
| 3213 | } |
| 3214 | |
| 3215 | /// Returns true if and only if this configuration could change the span |
| 3216 | /// via rounding. |
| 3217 | #[inline ] |
| 3218 | fn rounding_may_change_span(&self) -> bool { |
| 3219 | self.round.rounding_may_change_span_ignore_largest() |
| 3220 | } |
| 3221 | |
| 3222 | /// Returns the span of time from `dt1` to the datetime in this |
| 3223 | /// configuration. The biggest units allowed are determined by the |
| 3224 | /// `smallest` and `largest` settings, but defaults to `Unit::Day`. |
| 3225 | #[inline ] |
| 3226 | fn until_with_largest_unit(&self, dt1: DateTime) -> Result<Span, Error> { |
| 3227 | let dt2 = self.datetime; |
| 3228 | let largest = self |
| 3229 | .round |
| 3230 | .get_largest() |
| 3231 | .unwrap_or_else(|| self.round.get_smallest().max(Unit::Day)); |
| 3232 | if largest <= Unit::Day { |
| 3233 | let diff = dt2.to_nanosecond() - dt1.to_nanosecond(); |
| 3234 | // Note that this can fail! If largest unit is nanoseconds and the |
| 3235 | // datetimes are far enough apart, a single i64 won't be able to |
| 3236 | // represent the time difference. |
| 3237 | // |
| 3238 | // This is only true for nanoseconds. A single i64 in units of |
| 3239 | // microseconds can represent the interval between all valid |
| 3240 | // datetimes. (At time of writing.) |
| 3241 | return Span::from_invariant_nanoseconds(largest, diff); |
| 3242 | } |
| 3243 | |
| 3244 | let (d1, mut d2) = (dt1.date(), dt2.date()); |
| 3245 | let (t1, t2) = (dt1.time(), dt2.time()); |
| 3246 | let sign = t::sign(d2, d1); |
| 3247 | let mut time_diff = t1.until_nanoseconds(t2); |
| 3248 | if time_diff.signum() == -sign { |
| 3249 | // These unwraps will always succeed, but the argument for why is |
| 3250 | // subtle. The key here is that the only way, e.g., d2.tomorrow() |
| 3251 | // can fail is when d2 is the max date. But, if d2 is the max date, |
| 3252 | // then it's impossible for `sign < 0` since the max date is at |
| 3253 | // least as big as every other date. And thus, d2.tomorrow() is |
| 3254 | // never reached in cases where it would fail. |
| 3255 | if sign > C(0) { |
| 3256 | d2 = d2.yesterday().unwrap(); |
| 3257 | } else if sign < C(0) { |
| 3258 | d2 = d2.tomorrow().unwrap(); |
| 3259 | } |
| 3260 | time_diff += |
| 3261 | t::SpanNanoseconds::rfrom(t::NANOS_PER_CIVIL_DAY) * sign; |
| 3262 | } |
| 3263 | let date_span = d1.until((largest, d2))?; |
| 3264 | Ok(Span::from_invariant_nanoseconds(largest, time_diff.rinto()) |
| 3265 | // Unlike in the <=Unit::Day case, this always succeeds because |
| 3266 | // every unit except for nanoseconds (which is not used here) can |
| 3267 | // represent all possible spans of time between any two civil |
| 3268 | // datetimes. |
| 3269 | .expect("difference between time always fits in span" ) |
| 3270 | .years_ranged(date_span.get_years_ranged()) |
| 3271 | .months_ranged(date_span.get_months_ranged()) |
| 3272 | .weeks_ranged(date_span.get_weeks_ranged()) |
| 3273 | .days_ranged(date_span.get_days_ranged())) |
| 3274 | } |
| 3275 | } |
| 3276 | |
| 3277 | impl From<DateTime> for DateTimeDifference { |
| 3278 | #[inline ] |
| 3279 | fn from(dt: DateTime) -> DateTimeDifference { |
| 3280 | DateTimeDifference::new(datetime:dt) |
| 3281 | } |
| 3282 | } |
| 3283 | |
| 3284 | impl From<Date> for DateTimeDifference { |
| 3285 | #[inline ] |
| 3286 | fn from(date: Date) -> DateTimeDifference { |
| 3287 | DateTimeDifference::from(DateTime::from(date)) |
| 3288 | } |
| 3289 | } |
| 3290 | |
| 3291 | impl From<Zoned> for DateTimeDifference { |
| 3292 | #[inline ] |
| 3293 | fn from(zdt: Zoned) -> DateTimeDifference { |
| 3294 | DateTimeDifference::from(DateTime::from(zdt)) |
| 3295 | } |
| 3296 | } |
| 3297 | |
| 3298 | impl<'a> From<&'a Zoned> for DateTimeDifference { |
| 3299 | #[inline ] |
| 3300 | fn from(zdt: &'a Zoned) -> DateTimeDifference { |
| 3301 | DateTimeDifference::from(zdt.datetime()) |
| 3302 | } |
| 3303 | } |
| 3304 | |
| 3305 | impl From<(Unit, DateTime)> for DateTimeDifference { |
| 3306 | #[inline ] |
| 3307 | fn from((largest: Unit, dt: DateTime): (Unit, DateTime)) -> DateTimeDifference { |
| 3308 | DateTimeDifference::from(dt).largest(unit:largest) |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | impl From<(Unit, Date)> for DateTimeDifference { |
| 3313 | #[inline ] |
| 3314 | fn from((largest: Unit, date: Date): (Unit, Date)) -> DateTimeDifference { |
| 3315 | DateTimeDifference::from(date).largest(unit:largest) |
| 3316 | } |
| 3317 | } |
| 3318 | |
| 3319 | impl From<(Unit, Zoned)> for DateTimeDifference { |
| 3320 | #[inline ] |
| 3321 | fn from((largest: Unit, zdt: Zoned): (Unit, Zoned)) -> DateTimeDifference { |
| 3322 | DateTimeDifference::from((largest, DateTime::from(zdt))) |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | impl<'a> From<(Unit, &'a Zoned)> for DateTimeDifference { |
| 3327 | #[inline ] |
| 3328 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> DateTimeDifference { |
| 3329 | DateTimeDifference::from((largest, zdt.datetime())) |
| 3330 | } |
| 3331 | } |
| 3332 | |
| 3333 | /// Options for [`DateTime::round`]. |
| 3334 | /// |
| 3335 | /// This type provides a way to configure the rounding of a civil datetime. In |
| 3336 | /// particular, `DateTime::round` accepts anything that implements the |
| 3337 | /// `Into<DateTimeRound>` trait. There are some trait implementations that |
| 3338 | /// therefore make calling `DateTime::round` in some common cases more |
| 3339 | /// ergonomic: |
| 3340 | /// |
| 3341 | /// * `From<Unit> for DateTimeRound` will construct a rounding |
| 3342 | /// configuration that rounds to the unit given. Specifically, |
| 3343 | /// `DateTimeRound::new().smallest(unit)`. |
| 3344 | /// * `From<(Unit, i64)> for DateTimeRound` is like the one above, but also |
| 3345 | /// specifies the rounding increment for [`DateTimeRound::increment`]. |
| 3346 | /// |
| 3347 | /// Note that in the default configuration, no rounding occurs. |
| 3348 | /// |
| 3349 | /// # Example |
| 3350 | /// |
| 3351 | /// This example shows how to round a datetime to the nearest second: |
| 3352 | /// |
| 3353 | /// ``` |
| 3354 | /// use jiff::{civil::{DateTime, date}, Unit}; |
| 3355 | /// |
| 3356 | /// let dt: DateTime = "2024-06-20 16:24:59.5" .parse()?; |
| 3357 | /// assert_eq!( |
| 3358 | /// dt.round(Unit::Second)?, |
| 3359 | /// // The second rounds up and causes minutes to increase. |
| 3360 | /// date(2024, 6, 20).at(16, 25, 0, 0), |
| 3361 | /// ); |
| 3362 | /// |
| 3363 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3364 | /// ``` |
| 3365 | /// |
| 3366 | /// The above makes use of the fact that `Unit` implements |
| 3367 | /// `Into<DateTimeRound>`. If you want to change the rounding mode to, say, |
| 3368 | /// truncation, then you'll need to construct a `DateTimeRound` explicitly |
| 3369 | /// since there are no convenience `Into` trait implementations for |
| 3370 | /// [`RoundMode`]. |
| 3371 | /// |
| 3372 | /// ``` |
| 3373 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
| 3374 | /// |
| 3375 | /// let dt: DateTime = "2024-06-20 16:24:59.5" .parse()?; |
| 3376 | /// assert_eq!( |
| 3377 | /// dt.round( |
| 3378 | /// DateTimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
| 3379 | /// )?, |
| 3380 | /// // The second just gets truncated as if it wasn't there. |
| 3381 | /// date(2024, 6, 20).at(16, 24, 59, 0), |
| 3382 | /// ); |
| 3383 | /// |
| 3384 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3385 | /// ``` |
| 3386 | #[derive (Clone, Copy, Debug)] |
| 3387 | pub struct DateTimeRound { |
| 3388 | smallest: Unit, |
| 3389 | mode: RoundMode, |
| 3390 | increment: i64, |
| 3391 | } |
| 3392 | |
| 3393 | impl DateTimeRound { |
| 3394 | /// Create a new default configuration for rounding a [`DateTime`]. |
| 3395 | #[inline ] |
| 3396 | pub fn new() -> DateTimeRound { |
| 3397 | DateTimeRound { |
| 3398 | smallest: Unit::Nanosecond, |
| 3399 | mode: RoundMode::HalfExpand, |
| 3400 | increment: 1, |
| 3401 | } |
| 3402 | } |
| 3403 | |
| 3404 | /// Set the smallest units allowed in the datetime returned after rounding. |
| 3405 | /// |
| 3406 | /// Any units below the smallest configured unit will be used, along with |
| 3407 | /// the rounding increment and rounding mode, to determine the value of the |
| 3408 | /// smallest unit. For example, when rounding `2024-06-20T03:25:30` to the |
| 3409 | /// nearest minute, the `30` second unit will result in rounding the minute |
| 3410 | /// unit of `25` up to `26` and zeroing out everything below minutes. |
| 3411 | /// |
| 3412 | /// This defaults to [`Unit::Nanosecond`]. |
| 3413 | /// |
| 3414 | /// # Errors |
| 3415 | /// |
| 3416 | /// The smallest units must be no greater than [`Unit::Day`]. And when the |
| 3417 | /// smallest unit is `Unit::Day`, the rounding increment must be equal to |
| 3418 | /// `1`. Otherwise an error will be returned from [`DateTime::round`]. |
| 3419 | /// |
| 3420 | /// # Example |
| 3421 | /// |
| 3422 | /// ``` |
| 3423 | /// use jiff::{civil::{DateTimeRound, date}, Unit}; |
| 3424 | /// |
| 3425 | /// let dt = date(2024, 6, 20).at(3, 25, 30, 0); |
| 3426 | /// assert_eq!( |
| 3427 | /// dt.round(DateTimeRound::new().smallest(Unit::Minute))?, |
| 3428 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
| 3429 | /// ); |
| 3430 | /// // Or, utilize the `From<Unit> for DateTimeRound` impl: |
| 3431 | /// assert_eq!( |
| 3432 | /// dt.round(Unit::Minute)?, |
| 3433 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
| 3434 | /// ); |
| 3435 | /// |
| 3436 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3437 | /// ``` |
| 3438 | #[inline ] |
| 3439 | pub fn smallest(self, unit: Unit) -> DateTimeRound { |
| 3440 | DateTimeRound { smallest: unit, ..self } |
| 3441 | } |
| 3442 | |
| 3443 | /// Set the rounding mode. |
| 3444 | /// |
| 3445 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
| 3446 | /// zero. It matches the kind of rounding you might have been taught in |
| 3447 | /// school. |
| 3448 | /// |
| 3449 | /// # Example |
| 3450 | /// |
| 3451 | /// This shows how to always round datetimes up towards positive infinity. |
| 3452 | /// |
| 3453 | /// ``` |
| 3454 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
| 3455 | /// |
| 3456 | /// let dt: DateTime = "2024-06-20 03:25:01" .parse()?; |
| 3457 | /// assert_eq!( |
| 3458 | /// dt.round( |
| 3459 | /// DateTimeRound::new() |
| 3460 | /// .smallest(Unit::Minute) |
| 3461 | /// .mode(RoundMode::Ceil), |
| 3462 | /// )?, |
| 3463 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
| 3464 | /// ); |
| 3465 | /// |
| 3466 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3467 | /// ``` |
| 3468 | #[inline ] |
| 3469 | pub fn mode(self, mode: RoundMode) -> DateTimeRound { |
| 3470 | DateTimeRound { mode, ..self } |
| 3471 | } |
| 3472 | |
| 3473 | /// Set the rounding increment for the smallest unit. |
| 3474 | /// |
| 3475 | /// The default value is `1`. Other values permit rounding the smallest |
| 3476 | /// unit to the nearest integer increment specified. For example, if the |
| 3477 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 3478 | /// `30` would result in rounding in increments of a half hour. That is, |
| 3479 | /// the only minute value that could result would be `0` or `30`. |
| 3480 | /// |
| 3481 | /// # Errors |
| 3482 | /// |
| 3483 | /// When the smallest unit is `Unit::Day`, then the rounding increment must |
| 3484 | /// be `1` or else [`DateTime::round`] will return an error. |
| 3485 | /// |
| 3486 | /// For other units, the rounding increment must divide evenly into the |
| 3487 | /// next highest unit above the smallest unit set. The rounding increment |
| 3488 | /// must also not be equal to the next highest unit. For example, if the |
| 3489 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 3490 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 3491 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 3492 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 3493 | /// |
| 3494 | /// # Example |
| 3495 | /// |
| 3496 | /// This example shows how to round a datetime to the nearest 10 minute |
| 3497 | /// increment. |
| 3498 | /// |
| 3499 | /// ``` |
| 3500 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
| 3501 | /// |
| 3502 | /// let dt: DateTime = "2024-06-20 03:24:59" .parse()?; |
| 3503 | /// assert_eq!( |
| 3504 | /// dt.round((Unit::Minute, 10))?, |
| 3505 | /// date(2024, 6, 20).at(3, 20, 0, 0), |
| 3506 | /// ); |
| 3507 | /// |
| 3508 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3509 | /// ``` |
| 3510 | #[inline ] |
| 3511 | pub fn increment(self, increment: i64) -> DateTimeRound { |
| 3512 | DateTimeRound { increment, ..self } |
| 3513 | } |
| 3514 | |
| 3515 | /// Does the actual rounding. |
| 3516 | /// |
| 3517 | /// A non-public configuration here is the length of a day. For civil |
| 3518 | /// datetimes, this should always be `NANOS_PER_CIVIL_DAY`. But this |
| 3519 | /// rounding routine is also used for `Zoned` rounding, and in that |
| 3520 | /// context, the length of a day can vary based on the time zone. |
| 3521 | pub(crate) fn round(&self, dt: DateTime) -> Result<DateTime, Error> { |
| 3522 | // ref: https://tc39.es/proposal-temporal/#sec-temporal.plaindatetime.prototype.round |
| 3523 | |
| 3524 | let increment = |
| 3525 | increment::for_datetime(self.smallest, self.increment)?; |
| 3526 | // We permit rounding to any time unit and days, but nothing else. |
| 3527 | // We should support this, but Temporal doesn't. So for now, we're |
| 3528 | // sticking to what Temporal does because they're probably not doing |
| 3529 | // it for good reasons. |
| 3530 | match self.smallest { |
| 3531 | Unit::Year | Unit::Month | Unit::Week => { |
| 3532 | return Err(err!( |
| 3533 | "rounding datetimes does not support {unit}" , |
| 3534 | unit = self.smallest.plural() |
| 3535 | )); |
| 3536 | } |
| 3537 | // We don't do any rounding in this case, so just bail now. |
| 3538 | Unit::Nanosecond if increment == C(1) => { |
| 3539 | return Ok(dt); |
| 3540 | } |
| 3541 | _ => {} |
| 3542 | } |
| 3543 | |
| 3544 | let time_nanos = dt.time().to_nanosecond(); |
| 3545 | let sign = t::NoUnits128::rfrom(dt.date().year_ranged().signum()); |
| 3546 | let time_rounded = self.mode.round_by_unit_in_nanoseconds( |
| 3547 | time_nanos, |
| 3548 | self.smallest, |
| 3549 | increment, |
| 3550 | ); |
| 3551 | let days = sign * time_rounded.div_ceil(t::NANOS_PER_CIVIL_DAY); |
| 3552 | let time_nanos = time_rounded.rem_ceil(t::NANOS_PER_CIVIL_DAY); |
| 3553 | let time = Time::from_nanosecond(time_nanos.rinto()); |
| 3554 | |
| 3555 | let date_days = t::SpanDays::rfrom(dt.date().day_ranged()); |
| 3556 | // OK because days is limited by the fact that the length of a day |
| 3557 | // can't be any smaller than 1 second, and the number of nanoseconds in |
| 3558 | // a civil day is capped. |
| 3559 | let days_len = (date_days - C(1)) + days; |
| 3560 | // OK because the first day of any month is always valid. |
| 3561 | let start = dt.date().first_of_month(); |
| 3562 | // `days` should basically always be <= 1, and so `days_len` should |
| 3563 | // always be at most 1 greater (or less) than where we started. But |
| 3564 | // what if there is a time zone transition that makes 9999-12-31 |
| 3565 | // shorter than 24 hours? And we are rounding 9999-12-31? Well, then |
| 3566 | // I guess this could overflow and fail. I suppose it could also fail |
| 3567 | // for really weird time zone data that made the length of a day really |
| 3568 | // short. But even then, you'd need to be close to the boundary of |
| 3569 | // supported datetimes. |
| 3570 | let end = start |
| 3571 | .checked_add(Span::new().days_ranged(days_len)) |
| 3572 | .with_context(|| { |
| 3573 | err!("adding {days_len} days to {start} failed" ) |
| 3574 | })?; |
| 3575 | Ok(DateTime::from_parts(end, time)) |
| 3576 | } |
| 3577 | |
| 3578 | pub(crate) fn get_smallest(&self) -> Unit { |
| 3579 | self.smallest |
| 3580 | } |
| 3581 | |
| 3582 | pub(crate) fn get_mode(&self) -> RoundMode { |
| 3583 | self.mode |
| 3584 | } |
| 3585 | |
| 3586 | pub(crate) fn get_increment(&self) -> i64 { |
| 3587 | self.increment |
| 3588 | } |
| 3589 | } |
| 3590 | |
| 3591 | impl Default for DateTimeRound { |
| 3592 | #[inline ] |
| 3593 | fn default() -> DateTimeRound { |
| 3594 | DateTimeRound::new() |
| 3595 | } |
| 3596 | } |
| 3597 | |
| 3598 | impl From<Unit> for DateTimeRound { |
| 3599 | #[inline ] |
| 3600 | fn from(unit: Unit) -> DateTimeRound { |
| 3601 | DateTimeRound::default().smallest(unit) |
| 3602 | } |
| 3603 | } |
| 3604 | |
| 3605 | impl From<(Unit, i64)> for DateTimeRound { |
| 3606 | #[inline ] |
| 3607 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> DateTimeRound { |
| 3608 | DateTimeRound::from(unit).increment(increment) |
| 3609 | } |
| 3610 | } |
| 3611 | |
| 3612 | /// A builder for setting the fields on a [`DateTime`]. |
| 3613 | /// |
| 3614 | /// This builder is constructed via [`DateTime::with`]. |
| 3615 | /// |
| 3616 | /// # Example |
| 3617 | /// |
| 3618 | /// The builder ensures one can chain together the individual components of a |
| 3619 | /// datetime without it failing at an intermediate step. For example, if you |
| 3620 | /// had a date of `2024-10-31T00:00:00` and wanted to change both the day and |
| 3621 | /// the month, and each setting was validated independent of the other, you |
| 3622 | /// would need to be careful to set the day first and then the month. In some |
| 3623 | /// cases, you would need to set the month first and then the day! |
| 3624 | /// |
| 3625 | /// But with the builder, you can set values in any order: |
| 3626 | /// |
| 3627 | /// ``` |
| 3628 | /// use jiff::civil::date; |
| 3629 | /// |
| 3630 | /// let dt1 = date(2024, 10, 31).at(0, 0, 0, 0); |
| 3631 | /// let dt2 = dt1.with().month(11).day(30).build()?; |
| 3632 | /// assert_eq!(dt2, date(2024, 11, 30).at(0, 0, 0, 0)); |
| 3633 | /// |
| 3634 | /// let dt1 = date(2024, 4, 30).at(0, 0, 0, 0); |
| 3635 | /// let dt2 = dt1.with().day(31).month(7).build()?; |
| 3636 | /// assert_eq!(dt2, date(2024, 7, 31).at(0, 0, 0, 0)); |
| 3637 | /// |
| 3638 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3639 | /// ``` |
| 3640 | #[derive (Clone, Copy, Debug)] |
| 3641 | pub struct DateTimeWith { |
| 3642 | date_with: DateWith, |
| 3643 | time_with: TimeWith, |
| 3644 | } |
| 3645 | |
| 3646 | impl DateTimeWith { |
| 3647 | #[inline ] |
| 3648 | fn new(original: DateTime) -> DateTimeWith { |
| 3649 | DateTimeWith { |
| 3650 | date_with: original.date().with(), |
| 3651 | time_with: original.time().with(), |
| 3652 | } |
| 3653 | } |
| 3654 | |
| 3655 | /// Create a new `DateTime` from the fields set on this configuration. |
| 3656 | /// |
| 3657 | /// An error occurs when the fields combine to an invalid datetime. |
| 3658 | /// |
| 3659 | /// For any fields not set on this configuration, the values are taken from |
| 3660 | /// the [`DateTime`] that originally created this configuration. When no |
| 3661 | /// values are set, this routine is guaranteed to succeed and will always |
| 3662 | /// return the original datetime without modification. |
| 3663 | /// |
| 3664 | /// # Example |
| 3665 | /// |
| 3666 | /// This creates a datetime corresponding to the last day in the year at |
| 3667 | /// noon: |
| 3668 | /// |
| 3669 | /// ``` |
| 3670 | /// use jiff::civil::date; |
| 3671 | /// |
| 3672 | /// let dt = date(2023, 1, 1).at(12, 0, 0, 0); |
| 3673 | /// assert_eq!( |
| 3674 | /// dt.with().day_of_year_no_leap(365).build()?, |
| 3675 | /// date(2023, 12, 31).at(12, 0, 0, 0), |
| 3676 | /// ); |
| 3677 | /// |
| 3678 | /// // It also works with leap years for the same input: |
| 3679 | /// let dt = date(2024, 1, 1).at(12, 0, 0, 0); |
| 3680 | /// assert_eq!( |
| 3681 | /// dt.with().day_of_year_no_leap(365).build()?, |
| 3682 | /// date(2024, 12, 31).at(12, 0, 0, 0), |
| 3683 | /// ); |
| 3684 | /// |
| 3685 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3686 | /// ``` |
| 3687 | /// |
| 3688 | /// # Example: error for invalid datetime |
| 3689 | /// |
| 3690 | /// If the fields combine to form an invalid date, then an error is |
| 3691 | /// returned: |
| 3692 | /// |
| 3693 | /// ``` |
| 3694 | /// use jiff::civil::date; |
| 3695 | /// |
| 3696 | /// let dt = date(2024, 11, 30).at(15, 30, 0, 0); |
| 3697 | /// assert!(dt.with().day(31).build().is_err()); |
| 3698 | /// |
| 3699 | /// let dt = date(2024, 2, 29).at(15, 30, 0, 0); |
| 3700 | /// assert!(dt.with().year(2023).build().is_err()); |
| 3701 | /// ``` |
| 3702 | #[inline ] |
| 3703 | pub fn build(self) -> Result<DateTime, Error> { |
| 3704 | let date = self.date_with.build()?; |
| 3705 | let time = self.time_with.build()?; |
| 3706 | Ok(DateTime::from_parts(date, time)) |
| 3707 | } |
| 3708 | |
| 3709 | /// Set the year, month and day fields via the `Date` given. |
| 3710 | /// |
| 3711 | /// This overrides any previous year, month or day settings. |
| 3712 | /// |
| 3713 | /// # Example |
| 3714 | /// |
| 3715 | /// This shows how to create a new datetime with a different date: |
| 3716 | /// |
| 3717 | /// ``` |
| 3718 | /// use jiff::civil::date; |
| 3719 | /// |
| 3720 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
| 3721 | /// let dt2 = dt1.with().date(date(2017, 10, 31)).build()?; |
| 3722 | /// // The date changes but the time remains the same. |
| 3723 | /// assert_eq!(dt2, date(2017, 10, 31).at(15, 30, 0, 0)); |
| 3724 | /// |
| 3725 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3726 | /// ``` |
| 3727 | #[inline ] |
| 3728 | pub fn date(self, date: Date) -> DateTimeWith { |
| 3729 | DateTimeWith { date_with: date.with(), ..self } |
| 3730 | } |
| 3731 | |
| 3732 | /// Set the hour, minute, second, millisecond, microsecond and nanosecond |
| 3733 | /// fields via the `Time` given. |
| 3734 | /// |
| 3735 | /// This overrides any previous hour, minute, second, millisecond, |
| 3736 | /// microsecond, nanosecond or subsecond nanosecond settings. |
| 3737 | /// |
| 3738 | /// # Example |
| 3739 | /// |
| 3740 | /// This shows how to create a new datetime with a different time: |
| 3741 | /// |
| 3742 | /// ``` |
| 3743 | /// use jiff::civil::{date, time}; |
| 3744 | /// |
| 3745 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
| 3746 | /// let dt2 = dt1.with().time(time(23, 59, 59, 123_456_789)).build()?; |
| 3747 | /// // The time changes but the date remains the same. |
| 3748 | /// assert_eq!(dt2, date(2005, 11, 5).at(23, 59, 59, 123_456_789)); |
| 3749 | /// |
| 3750 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3751 | /// ``` |
| 3752 | #[inline ] |
| 3753 | pub fn time(self, time: Time) -> DateTimeWith { |
| 3754 | DateTimeWith { time_with: time.with(), ..self } |
| 3755 | } |
| 3756 | |
| 3757 | /// Set the year field on a [`DateTime`]. |
| 3758 | /// |
| 3759 | /// One can access this value via [`DateTime::year`]. |
| 3760 | /// |
| 3761 | /// This overrides any previous year settings. |
| 3762 | /// |
| 3763 | /// # Errors |
| 3764 | /// |
| 3765 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 3766 | /// given year is outside the range `-9999..=9999`. This can also return an |
| 3767 | /// error if the resulting date is otherwise invalid. |
| 3768 | /// |
| 3769 | /// # Example |
| 3770 | /// |
| 3771 | /// This shows how to create a new datetime with a different year: |
| 3772 | /// |
| 3773 | /// ``` |
| 3774 | /// use jiff::civil::date; |
| 3775 | /// |
| 3776 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
| 3777 | /// assert_eq!(dt1.year(), 2005); |
| 3778 | /// let dt2 = dt1.with().year(2007).build()?; |
| 3779 | /// assert_eq!(dt2.year(), 2007); |
| 3780 | /// |
| 3781 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3782 | /// ``` |
| 3783 | /// |
| 3784 | /// # Example: only changing the year can fail |
| 3785 | /// |
| 3786 | /// For example, while `2024-02-29T01:30:00` is valid, |
| 3787 | /// `2023-02-29T01:30:00` is not: |
| 3788 | /// |
| 3789 | /// ``` |
| 3790 | /// use jiff::civil::date; |
| 3791 | /// |
| 3792 | /// let dt = date(2024, 2, 29).at(1, 30, 0, 0); |
| 3793 | /// assert!(dt.with().year(2023).build().is_err()); |
| 3794 | /// ``` |
| 3795 | #[inline ] |
| 3796 | pub fn year(self, year: i16) -> DateTimeWith { |
| 3797 | DateTimeWith { date_with: self.date_with.year(year), ..self } |
| 3798 | } |
| 3799 | |
| 3800 | /// Set year of a datetime via its era and its non-negative numeric |
| 3801 | /// component. |
| 3802 | /// |
| 3803 | /// One can access this value via [`DateTime::era_year`]. |
| 3804 | /// |
| 3805 | /// # Errors |
| 3806 | /// |
| 3807 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 3808 | /// year is outside the range for the era specified. For [`Era::BCE`], the |
| 3809 | /// range is `1..=10000`. For [`Era::CE`], the range is `1..=9999`. |
| 3810 | /// |
| 3811 | /// # Example |
| 3812 | /// |
| 3813 | /// This shows that `CE` years are equivalent to the years used by this |
| 3814 | /// crate: |
| 3815 | /// |
| 3816 | /// ``` |
| 3817 | /// use jiff::civil::{Era, date}; |
| 3818 | /// |
| 3819 | /// let dt1 = date(2005, 11, 5).at(8, 0, 0, 0); |
| 3820 | /// assert_eq!(dt1.year(), 2005); |
| 3821 | /// let dt2 = dt1.with().era_year(2007, Era::CE).build()?; |
| 3822 | /// assert_eq!(dt2.year(), 2007); |
| 3823 | /// |
| 3824 | /// // CE years are always positive and can be at most 9999: |
| 3825 | /// assert!(dt1.with().era_year(-5, Era::CE).build().is_err()); |
| 3826 | /// assert!(dt1.with().era_year(10_000, Era::CE).build().is_err()); |
| 3827 | /// |
| 3828 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3829 | /// ``` |
| 3830 | /// |
| 3831 | /// But `BCE` years always correspond to years less than or equal to `0` |
| 3832 | /// in this crate: |
| 3833 | /// |
| 3834 | /// ``` |
| 3835 | /// use jiff::civil::{Era, date}; |
| 3836 | /// |
| 3837 | /// let dt1 = date(-27, 7, 1).at(8, 22, 30, 0); |
| 3838 | /// assert_eq!(dt1.year(), -27); |
| 3839 | /// assert_eq!(dt1.era_year(), (28, Era::BCE)); |
| 3840 | /// |
| 3841 | /// let dt2 = dt1.with().era_year(509, Era::BCE).build()?; |
| 3842 | /// assert_eq!(dt2.year(), -508); |
| 3843 | /// assert_eq!(dt2.era_year(), (509, Era::BCE)); |
| 3844 | /// |
| 3845 | /// let dt2 = dt1.with().era_year(10_000, Era::BCE).build()?; |
| 3846 | /// assert_eq!(dt2.year(), -9_999); |
| 3847 | /// assert_eq!(dt2.era_year(), (10_000, Era::BCE)); |
| 3848 | /// |
| 3849 | /// // BCE years are always positive and can be at most 10000: |
| 3850 | /// assert!(dt1.with().era_year(-5, Era::BCE).build().is_err()); |
| 3851 | /// assert!(dt1.with().era_year(10_001, Era::BCE).build().is_err()); |
| 3852 | /// |
| 3853 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3854 | /// ``` |
| 3855 | /// |
| 3856 | /// # Example: overrides `DateTimeWith::year` |
| 3857 | /// |
| 3858 | /// Setting this option will override any previous `DateTimeWith::year` |
| 3859 | /// option: |
| 3860 | /// |
| 3861 | /// ``` |
| 3862 | /// use jiff::civil::{Era, date}; |
| 3863 | /// |
| 3864 | /// let dt1 = date(2024, 7, 2).at(10, 27, 10, 123); |
| 3865 | /// let dt2 = dt1.with().year(2000).era_year(1900, Era::CE).build()?; |
| 3866 | /// assert_eq!(dt2, date(1900, 7, 2).at(10, 27, 10, 123)); |
| 3867 | /// |
| 3868 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3869 | /// ``` |
| 3870 | /// |
| 3871 | /// Similarly, `DateTimeWith::year` will override any previous call to |
| 3872 | /// `DateTimeWith::era_year`: |
| 3873 | /// |
| 3874 | /// ``` |
| 3875 | /// use jiff::civil::{Era, date}; |
| 3876 | /// |
| 3877 | /// let dt1 = date(2024, 7, 2).at(19, 0, 1, 1); |
| 3878 | /// let dt2 = dt1.with().era_year(1900, Era::CE).year(2000).build()?; |
| 3879 | /// assert_eq!(dt2, date(2000, 7, 2).at(19, 0, 1, 1)); |
| 3880 | /// |
| 3881 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3882 | /// ``` |
| 3883 | #[inline ] |
| 3884 | pub fn era_year(self, year: i16, era: Era) -> DateTimeWith { |
| 3885 | DateTimeWith { date_with: self.date_with.era_year(year, era), ..self } |
| 3886 | } |
| 3887 | |
| 3888 | /// Set the month field on a [`DateTime`]. |
| 3889 | /// |
| 3890 | /// One can access this value via [`DateTime::month`]. |
| 3891 | /// |
| 3892 | /// This overrides any previous month settings. |
| 3893 | /// |
| 3894 | /// # Errors |
| 3895 | /// |
| 3896 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 3897 | /// given month is outside the range `1..=12`. This can also return an |
| 3898 | /// error if the resulting date is otherwise invalid. |
| 3899 | /// |
| 3900 | /// # Example |
| 3901 | /// |
| 3902 | /// This shows how to create a new datetime with a different month: |
| 3903 | /// |
| 3904 | /// ``` |
| 3905 | /// use jiff::civil::date; |
| 3906 | /// |
| 3907 | /// let dt1 = date(2005, 11, 5).at(18, 3, 59, 123_456_789); |
| 3908 | /// assert_eq!(dt1.month(), 11); |
| 3909 | /// let dt2 = dt1.with().month(6).build()?; |
| 3910 | /// assert_eq!(dt2.month(), 6); |
| 3911 | /// |
| 3912 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3913 | /// ``` |
| 3914 | /// |
| 3915 | /// # Example: only changing the month can fail |
| 3916 | /// |
| 3917 | /// For example, while `2024-10-31T00:00:00` is valid, |
| 3918 | /// `2024-11-31T00:00:00` is not: |
| 3919 | /// |
| 3920 | /// ``` |
| 3921 | /// use jiff::civil::date; |
| 3922 | /// |
| 3923 | /// let dt = date(2024, 10, 31).at(0, 0, 0, 0); |
| 3924 | /// assert!(dt.with().month(11).build().is_err()); |
| 3925 | /// ``` |
| 3926 | #[inline ] |
| 3927 | pub fn month(self, month: i8) -> DateTimeWith { |
| 3928 | DateTimeWith { date_with: self.date_with.month(month), ..self } |
| 3929 | } |
| 3930 | |
| 3931 | /// Set the day field on a [`DateTime`]. |
| 3932 | /// |
| 3933 | /// One can access this value via [`DateTime::day`]. |
| 3934 | /// |
| 3935 | /// This overrides any previous day settings. |
| 3936 | /// |
| 3937 | /// # Errors |
| 3938 | /// |
| 3939 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 3940 | /// given given day is outside of allowable days for the corresponding year |
| 3941 | /// and month fields. |
| 3942 | /// |
| 3943 | /// # Example |
| 3944 | /// |
| 3945 | /// This shows some examples of setting the day, including a leap day: |
| 3946 | /// |
| 3947 | /// ``` |
| 3948 | /// use jiff::civil::date; |
| 3949 | /// |
| 3950 | /// let dt1 = date(2024, 2, 5).at(21, 59, 1, 999); |
| 3951 | /// assert_eq!(dt1.day(), 5); |
| 3952 | /// let dt2 = dt1.with().day(10).build()?; |
| 3953 | /// assert_eq!(dt2.day(), 10); |
| 3954 | /// let dt3 = dt1.with().day(29).build()?; |
| 3955 | /// assert_eq!(dt3.day(), 29); |
| 3956 | /// |
| 3957 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3958 | /// ``` |
| 3959 | /// |
| 3960 | /// # Example: changing only the day can fail |
| 3961 | /// |
| 3962 | /// This shows some examples that will fail: |
| 3963 | /// |
| 3964 | /// ``` |
| 3965 | /// use jiff::civil::date; |
| 3966 | /// |
| 3967 | /// let dt1 = date(2023, 2, 5).at(22, 58, 58, 9_999); |
| 3968 | /// // 2023 is not a leap year |
| 3969 | /// assert!(dt1.with().day(29).build().is_err()); |
| 3970 | /// |
| 3971 | /// // September has 30 days, not 31. |
| 3972 | /// let dt1 = date(2023, 9, 5).at(22, 58, 58, 9_999); |
| 3973 | /// assert!(dt1.with().day(31).build().is_err()); |
| 3974 | /// ``` |
| 3975 | #[inline ] |
| 3976 | pub fn day(self, day: i8) -> DateTimeWith { |
| 3977 | DateTimeWith { date_with: self.date_with.day(day), ..self } |
| 3978 | } |
| 3979 | |
| 3980 | /// Set the day field on a [`DateTime`] via the ordinal number of a day |
| 3981 | /// within a year. |
| 3982 | /// |
| 3983 | /// When used, any settings for month are ignored since the month is |
| 3984 | /// determined by the day of the year. |
| 3985 | /// |
| 3986 | /// The valid values for `day` are `1..=366`. Note though that `366` is |
| 3987 | /// only valid for leap years. |
| 3988 | /// |
| 3989 | /// This overrides any previous day settings. |
| 3990 | /// |
| 3991 | /// # Errors |
| 3992 | /// |
| 3993 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 3994 | /// given day is outside the allowed range of `1..=366`, or when a value of |
| 3995 | /// `366` is given for a non-leap year. |
| 3996 | /// |
| 3997 | /// # Example |
| 3998 | /// |
| 3999 | /// This demonstrates that if a year is a leap year, then `60` corresponds |
| 4000 | /// to February 29: |
| 4001 | /// |
| 4002 | /// ``` |
| 4003 | /// use jiff::civil::date; |
| 4004 | /// |
| 4005 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
| 4006 | /// assert_eq!( |
| 4007 | /// dt.with().day_of_year(60).build()?, |
| 4008 | /// date(2024, 2, 29).at(23, 59, 59, 999_999_999), |
| 4009 | /// ); |
| 4010 | /// |
| 4011 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4012 | /// ``` |
| 4013 | /// |
| 4014 | /// But for non-leap years, day 60 is March 1: |
| 4015 | /// |
| 4016 | /// ``` |
| 4017 | /// use jiff::civil::date; |
| 4018 | /// |
| 4019 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
| 4020 | /// assert_eq!( |
| 4021 | /// dt.with().day_of_year(60).build()?, |
| 4022 | /// date(2023, 3, 1).at(23, 59, 59, 999_999_999), |
| 4023 | /// ); |
| 4024 | /// |
| 4025 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4026 | /// ``` |
| 4027 | /// |
| 4028 | /// And using `366` for a non-leap year will result in an error, since |
| 4029 | /// non-leap years only have 365 days: |
| 4030 | /// |
| 4031 | /// ``` |
| 4032 | /// use jiff::civil::date; |
| 4033 | /// |
| 4034 | /// let dt = date(2023, 1, 1).at(0, 0, 0, 0); |
| 4035 | /// assert!(dt.with().day_of_year(366).build().is_err()); |
| 4036 | /// // The maximal year is not a leap year, so it returns an error too. |
| 4037 | /// let dt = date(9999, 1, 1).at(0, 0, 0, 0); |
| 4038 | /// assert!(dt.with().day_of_year(366).build().is_err()); |
| 4039 | /// ``` |
| 4040 | #[inline ] |
| 4041 | pub fn day_of_year(self, day: i16) -> DateTimeWith { |
| 4042 | DateTimeWith { date_with: self.date_with.day_of_year(day), ..self } |
| 4043 | } |
| 4044 | |
| 4045 | /// Set the day field on a [`DateTime`] via the ordinal number of a day |
| 4046 | /// within a year, but ignoring leap years. |
| 4047 | /// |
| 4048 | /// When used, any settings for month are ignored since the month is |
| 4049 | /// determined by the day of the year. |
| 4050 | /// |
| 4051 | /// The valid values for `day` are `1..=365`. The value `365` always |
| 4052 | /// corresponds to the last day of the year, even for leap years. It is |
| 4053 | /// impossible for this routine to return a datetime corresponding to |
| 4054 | /// February 29. |
| 4055 | /// |
| 4056 | /// This overrides any previous day settings. |
| 4057 | /// |
| 4058 | /// # Errors |
| 4059 | /// |
| 4060 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4061 | /// given day is outside the allowed range of `1..=365`. |
| 4062 | /// |
| 4063 | /// # Example |
| 4064 | /// |
| 4065 | /// This demonstrates that `60` corresponds to March 1, regardless of |
| 4066 | /// whether the year is a leap year or not: |
| 4067 | /// |
| 4068 | /// ``` |
| 4069 | /// use jiff::civil::date; |
| 4070 | /// |
| 4071 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
| 4072 | /// assert_eq!( |
| 4073 | /// dt.with().day_of_year_no_leap(60).build()?, |
| 4074 | /// date(2023, 3, 1).at(23, 59, 59, 999_999_999), |
| 4075 | /// ); |
| 4076 | /// |
| 4077 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
| 4078 | /// assert_eq!( |
| 4079 | /// dt.with().day_of_year_no_leap(60).build()?, |
| 4080 | /// date(2024, 3, 1).at(23, 59, 59, 999_999_999), |
| 4081 | /// ); |
| 4082 | /// |
| 4083 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4084 | /// ``` |
| 4085 | /// |
| 4086 | /// And using `365` for any year will always yield the last day of the |
| 4087 | /// year: |
| 4088 | /// |
| 4089 | /// ``` |
| 4090 | /// use jiff::civil::date; |
| 4091 | /// |
| 4092 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
| 4093 | /// assert_eq!( |
| 4094 | /// dt.with().day_of_year_no_leap(365).build()?, |
| 4095 | /// dt.last_of_year(), |
| 4096 | /// ); |
| 4097 | /// |
| 4098 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
| 4099 | /// assert_eq!( |
| 4100 | /// dt.with().day_of_year_no_leap(365).build()?, |
| 4101 | /// dt.last_of_year(), |
| 4102 | /// ); |
| 4103 | /// |
| 4104 | /// let dt = date(9999, 1, 1).at(23, 59, 59, 999_999_999); |
| 4105 | /// assert_eq!( |
| 4106 | /// dt.with().day_of_year_no_leap(365).build()?, |
| 4107 | /// dt.last_of_year(), |
| 4108 | /// ); |
| 4109 | /// |
| 4110 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4111 | /// ``` |
| 4112 | /// |
| 4113 | /// A value of `366` is out of bounds, even for leap years: |
| 4114 | /// |
| 4115 | /// ``` |
| 4116 | /// use jiff::civil::date; |
| 4117 | /// |
| 4118 | /// let dt = date(2024, 1, 1).at(5, 30, 0, 0); |
| 4119 | /// assert!(dt.with().day_of_year_no_leap(366).build().is_err()); |
| 4120 | /// ``` |
| 4121 | #[inline ] |
| 4122 | pub fn day_of_year_no_leap(self, day: i16) -> DateTimeWith { |
| 4123 | DateTimeWith { |
| 4124 | date_with: self.date_with.day_of_year_no_leap(day), |
| 4125 | ..self |
| 4126 | } |
| 4127 | } |
| 4128 | |
| 4129 | /// Set the hour field on a [`DateTime`]. |
| 4130 | /// |
| 4131 | /// One can access this value via [`DateTime::hour`]. |
| 4132 | /// |
| 4133 | /// This overrides any previous hour settings. |
| 4134 | /// |
| 4135 | /// # Errors |
| 4136 | /// |
| 4137 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4138 | /// given hour is outside the range `0..=23`. |
| 4139 | /// |
| 4140 | /// # Example |
| 4141 | /// |
| 4142 | /// ``` |
| 4143 | /// use jiff::civil::time; |
| 4144 | /// |
| 4145 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
| 4146 | /// assert_eq!(dt1.hour(), 15); |
| 4147 | /// let dt2 = dt1.with().hour(3).build()?; |
| 4148 | /// assert_eq!(dt2.hour(), 3); |
| 4149 | /// |
| 4150 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4151 | /// ``` |
| 4152 | #[inline ] |
| 4153 | pub fn hour(self, hour: i8) -> DateTimeWith { |
| 4154 | DateTimeWith { time_with: self.time_with.hour(hour), ..self } |
| 4155 | } |
| 4156 | |
| 4157 | /// Set the minute field on a [`DateTime`]. |
| 4158 | /// |
| 4159 | /// One can access this value via [`DateTime::minute`]. |
| 4160 | /// |
| 4161 | /// This overrides any previous minute settings. |
| 4162 | /// |
| 4163 | /// # Errors |
| 4164 | /// |
| 4165 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4166 | /// given minute is outside the range `0..=59`. |
| 4167 | /// |
| 4168 | /// # Example |
| 4169 | /// |
| 4170 | /// ``` |
| 4171 | /// use jiff::civil::time; |
| 4172 | /// |
| 4173 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
| 4174 | /// assert_eq!(dt1.minute(), 21); |
| 4175 | /// let dt2 = dt1.with().minute(3).build()?; |
| 4176 | /// assert_eq!(dt2.minute(), 3); |
| 4177 | /// |
| 4178 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4179 | /// ``` |
| 4180 | #[inline ] |
| 4181 | pub fn minute(self, minute: i8) -> DateTimeWith { |
| 4182 | DateTimeWith { time_with: self.time_with.minute(minute), ..self } |
| 4183 | } |
| 4184 | |
| 4185 | /// Set the second field on a [`DateTime`]. |
| 4186 | /// |
| 4187 | /// One can access this value via [`DateTime::second`]. |
| 4188 | /// |
| 4189 | /// This overrides any previous second settings. |
| 4190 | /// |
| 4191 | /// # Errors |
| 4192 | /// |
| 4193 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4194 | /// given second is outside the range `0..=59`. |
| 4195 | /// |
| 4196 | /// # Example |
| 4197 | /// |
| 4198 | /// ``` |
| 4199 | /// use jiff::civil::time; |
| 4200 | /// |
| 4201 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
| 4202 | /// assert_eq!(dt1.second(), 59); |
| 4203 | /// let dt2 = dt1.with().second(3).build()?; |
| 4204 | /// assert_eq!(dt2.second(), 3); |
| 4205 | /// |
| 4206 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4207 | /// ``` |
| 4208 | #[inline ] |
| 4209 | pub fn second(self, second: i8) -> DateTimeWith { |
| 4210 | DateTimeWith { time_with: self.time_with.second(second), ..self } |
| 4211 | } |
| 4212 | |
| 4213 | /// Set the millisecond field on a [`DateTime`]. |
| 4214 | /// |
| 4215 | /// One can access this value via [`DateTime::millisecond`]. |
| 4216 | /// |
| 4217 | /// This overrides any previous millisecond settings. |
| 4218 | /// |
| 4219 | /// Note that this only sets the millisecond component. It does |
| 4220 | /// not change the microsecond or nanosecond components. To set |
| 4221 | /// the fractional second component to nanosecond precision, use |
| 4222 | /// [`DateTimeWith::subsec_nanosecond`]. |
| 4223 | /// |
| 4224 | /// # Errors |
| 4225 | /// |
| 4226 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4227 | /// given millisecond is outside the range `0..=999`, or if both this and |
| 4228 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
| 4229 | /// |
| 4230 | /// # Example |
| 4231 | /// |
| 4232 | /// This shows the relationship between [`DateTime::millisecond`] and |
| 4233 | /// [`DateTime::subsec_nanosecond`]: |
| 4234 | /// |
| 4235 | /// ``` |
| 4236 | /// use jiff::civil::time; |
| 4237 | /// |
| 4238 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
| 4239 | /// let dt2 = dt1.with().millisecond(123).build()?; |
| 4240 | /// assert_eq!(dt2.subsec_nanosecond(), 123_000_000); |
| 4241 | /// |
| 4242 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4243 | /// ``` |
| 4244 | #[inline ] |
| 4245 | pub fn millisecond(self, millisecond: i16) -> DateTimeWith { |
| 4246 | DateTimeWith { |
| 4247 | time_with: self.time_with.millisecond(millisecond), |
| 4248 | ..self |
| 4249 | } |
| 4250 | } |
| 4251 | |
| 4252 | /// Set the microsecond field on a [`DateTime`]. |
| 4253 | /// |
| 4254 | /// One can access this value via [`DateTime::microsecond`]. |
| 4255 | /// |
| 4256 | /// This overrides any previous microsecond settings. |
| 4257 | /// |
| 4258 | /// Note that this only sets the microsecond component. It does |
| 4259 | /// not change the millisecond or nanosecond components. To set |
| 4260 | /// the fractional second component to nanosecond precision, use |
| 4261 | /// [`DateTimeWith::subsec_nanosecond`]. |
| 4262 | /// |
| 4263 | /// # Errors |
| 4264 | /// |
| 4265 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4266 | /// given microsecond is outside the range `0..=999`, or if both this and |
| 4267 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
| 4268 | /// |
| 4269 | /// # Example |
| 4270 | /// |
| 4271 | /// This shows the relationship between [`DateTime::microsecond`] and |
| 4272 | /// [`DateTime::subsec_nanosecond`]: |
| 4273 | /// |
| 4274 | /// ``` |
| 4275 | /// use jiff::civil::time; |
| 4276 | /// |
| 4277 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
| 4278 | /// let dt2 = dt1.with().microsecond(123).build()?; |
| 4279 | /// assert_eq!(dt2.subsec_nanosecond(), 123_000); |
| 4280 | /// |
| 4281 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4282 | /// ``` |
| 4283 | #[inline ] |
| 4284 | pub fn microsecond(self, microsecond: i16) -> DateTimeWith { |
| 4285 | DateTimeWith { |
| 4286 | time_with: self.time_with.microsecond(microsecond), |
| 4287 | ..self |
| 4288 | } |
| 4289 | } |
| 4290 | |
| 4291 | /// Set the nanosecond field on a [`DateTime`]. |
| 4292 | /// |
| 4293 | /// One can access this value via [`DateTime::nanosecond`]. |
| 4294 | /// |
| 4295 | /// This overrides any previous nanosecond settings. |
| 4296 | /// |
| 4297 | /// Note that this only sets the nanosecond component. It does |
| 4298 | /// not change the millisecond or microsecond components. To set |
| 4299 | /// the fractional second component to nanosecond precision, use |
| 4300 | /// [`DateTimeWith::subsec_nanosecond`]. |
| 4301 | /// |
| 4302 | /// # Errors |
| 4303 | /// |
| 4304 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4305 | /// given nanosecond is outside the range `0..=999`, or if both this and |
| 4306 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
| 4307 | /// |
| 4308 | /// # Example |
| 4309 | /// |
| 4310 | /// This shows the relationship between [`DateTime::nanosecond`] and |
| 4311 | /// [`DateTime::subsec_nanosecond`]: |
| 4312 | /// |
| 4313 | /// ``` |
| 4314 | /// use jiff::civil::time; |
| 4315 | /// |
| 4316 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
| 4317 | /// let dt2 = dt1.with().nanosecond(123).build()?; |
| 4318 | /// assert_eq!(dt2.subsec_nanosecond(), 123); |
| 4319 | /// |
| 4320 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4321 | /// ``` |
| 4322 | #[inline ] |
| 4323 | pub fn nanosecond(self, nanosecond: i16) -> DateTimeWith { |
| 4324 | DateTimeWith { |
| 4325 | time_with: self.time_with.nanosecond(nanosecond), |
| 4326 | ..self |
| 4327 | } |
| 4328 | } |
| 4329 | |
| 4330 | /// Set the subsecond nanosecond field on a [`DateTime`]. |
| 4331 | /// |
| 4332 | /// If you want to access this value on `DateTime`, then use |
| 4333 | /// [`DateTime::subsec_nanosecond`]. |
| 4334 | /// |
| 4335 | /// This overrides any previous subsecond nanosecond settings. |
| 4336 | /// |
| 4337 | /// Note that this sets the entire fractional second component to |
| 4338 | /// nanosecond precision, and overrides any individual millisecond, |
| 4339 | /// microsecond or nanosecond settings. To set individual components, |
| 4340 | /// use [`DateTimeWith::millisecond`], [`DateTimeWith::microsecond`] or |
| 4341 | /// [`DateTimeWith::nanosecond`]. |
| 4342 | /// |
| 4343 | /// # Errors |
| 4344 | /// |
| 4345 | /// This returns an error when [`DateTimeWith::build`] is called if the |
| 4346 | /// given subsecond nanosecond is outside the range `0..=999,999,999`, |
| 4347 | /// or if both this and one of [`DateTimeWith::millisecond`], |
| 4348 | /// [`DateTimeWith::microsecond`] or [`DateTimeWith::nanosecond`] are set. |
| 4349 | /// |
| 4350 | /// # Example |
| 4351 | /// |
| 4352 | /// This shows the relationship between constructing a `DateTime` value |
| 4353 | /// with subsecond nanoseconds and its individual subsecond fields: |
| 4354 | /// |
| 4355 | /// ``` |
| 4356 | /// use jiff::civil::time; |
| 4357 | /// |
| 4358 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
| 4359 | /// let dt2 = dt1.with().subsec_nanosecond(123_456_789).build()?; |
| 4360 | /// assert_eq!(dt2.millisecond(), 123); |
| 4361 | /// assert_eq!(dt2.microsecond(), 456); |
| 4362 | /// assert_eq!(dt2.nanosecond(), 789); |
| 4363 | /// |
| 4364 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4365 | /// ``` |
| 4366 | #[inline ] |
| 4367 | pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> DateTimeWith { |
| 4368 | DateTimeWith { |
| 4369 | time_with: self.time_with.subsec_nanosecond(subsec_nanosecond), |
| 4370 | ..self |
| 4371 | } |
| 4372 | } |
| 4373 | } |
| 4374 | |
| 4375 | #[cfg (test)] |
| 4376 | mod tests { |
| 4377 | use std::io::Cursor; |
| 4378 | |
| 4379 | use crate::{ |
| 4380 | civil::{date, time}, |
| 4381 | span::span_eq, |
| 4382 | RoundMode, ToSpan, Unit, |
| 4383 | }; |
| 4384 | |
| 4385 | use super::*; |
| 4386 | |
| 4387 | #[test ] |
| 4388 | fn from_temporal_docs() { |
| 4389 | let dt = DateTime::from_parts( |
| 4390 | date(1995, 12, 7), |
| 4391 | time(3, 24, 30, 000_003_500), |
| 4392 | ); |
| 4393 | |
| 4394 | let got = dt.round(Unit::Hour).unwrap(); |
| 4395 | let expected = |
| 4396 | DateTime::from_parts(date(1995, 12, 7), time(3, 0, 0, 0)); |
| 4397 | assert_eq!(got, expected); |
| 4398 | |
| 4399 | let got = dt.round((Unit::Minute, 30)).unwrap(); |
| 4400 | let expected = |
| 4401 | DateTime::from_parts(date(1995, 12, 7), time(3, 30, 0, 0)); |
| 4402 | assert_eq!(got, expected); |
| 4403 | |
| 4404 | let got = dt |
| 4405 | .round( |
| 4406 | DateTimeRound::new() |
| 4407 | .smallest(Unit::Minute) |
| 4408 | .increment(30) |
| 4409 | .mode(RoundMode::Floor), |
| 4410 | ) |
| 4411 | .unwrap(); |
| 4412 | let expected = |
| 4413 | DateTime::from_parts(date(1995, 12, 7), time(3, 0, 0, 0)); |
| 4414 | assert_eq!(got, expected); |
| 4415 | } |
| 4416 | |
| 4417 | #[test ] |
| 4418 | fn since() { |
| 4419 | let later = date(2024, 5, 9).at(2, 0, 0, 0); |
| 4420 | let earlier = date(2024, 5, 8).at(3, 0, 0, 0); |
| 4421 | span_eq!(later.since(earlier).unwrap(), 23.hours()); |
| 4422 | |
| 4423 | let later = date(2024, 5, 9).at(3, 0, 0, 0); |
| 4424 | let earlier = date(2024, 5, 8).at(2, 0, 0, 0); |
| 4425 | span_eq!(later.since(earlier).unwrap(), 1.days().hours(1)); |
| 4426 | |
| 4427 | let later = date(2024, 5, 9).at(2, 0, 0, 0); |
| 4428 | let earlier = date(2024, 5, 10).at(3, 0, 0, 0); |
| 4429 | span_eq!(later.since(earlier).unwrap(), -1.days().hours(1)); |
| 4430 | |
| 4431 | let later = date(2024, 5, 9).at(3, 0, 0, 0); |
| 4432 | let earlier = date(2024, 5, 10).at(2, 0, 0, 0); |
| 4433 | span_eq!(later.since(earlier).unwrap(), -23.hours()); |
| 4434 | } |
| 4435 | |
| 4436 | #[test ] |
| 4437 | fn until() { |
| 4438 | let a = date(9999, 12, 30).at(3, 0, 0, 0); |
| 4439 | let b = date(9999, 12, 31).at(2, 0, 0, 0); |
| 4440 | span_eq!(a.until(b).unwrap(), 23.hours()); |
| 4441 | |
| 4442 | let a = date(-9999, 1, 2).at(2, 0, 0, 0); |
| 4443 | let b = date(-9999, 1, 1).at(3, 0, 0, 0); |
| 4444 | span_eq!(a.until(b).unwrap(), -23.hours()); |
| 4445 | |
| 4446 | let a = date(1995, 12, 7).at(3, 24, 30, 3500); |
| 4447 | let b = date(2019, 1, 31).at(15, 30, 0, 0); |
| 4448 | span_eq!( |
| 4449 | a.until(b).unwrap(), |
| 4450 | 8456.days() |
| 4451 | .hours(12) |
| 4452 | .minutes(5) |
| 4453 | .seconds(29) |
| 4454 | .milliseconds(999) |
| 4455 | .microseconds(996) |
| 4456 | .nanoseconds(500) |
| 4457 | ); |
| 4458 | span_eq!( |
| 4459 | a.until((Unit::Year, b)).unwrap(), |
| 4460 | 23.years() |
| 4461 | .months(1) |
| 4462 | .days(24) |
| 4463 | .hours(12) |
| 4464 | .minutes(5) |
| 4465 | .seconds(29) |
| 4466 | .milliseconds(999) |
| 4467 | .microseconds(996) |
| 4468 | .nanoseconds(500) |
| 4469 | ); |
| 4470 | span_eq!( |
| 4471 | b.until((Unit::Year, a)).unwrap(), |
| 4472 | -23.years() |
| 4473 | .months(1) |
| 4474 | .days(24) |
| 4475 | .hours(12) |
| 4476 | .minutes(5) |
| 4477 | .seconds(29) |
| 4478 | .milliseconds(999) |
| 4479 | .microseconds(996) |
| 4480 | .nanoseconds(500) |
| 4481 | ); |
| 4482 | span_eq!( |
| 4483 | a.until((Unit::Nanosecond, b)).unwrap(), |
| 4484 | 730641929999996500i64.nanoseconds(), |
| 4485 | ); |
| 4486 | |
| 4487 | let a = date(-9999, 1, 1).at(0, 0, 0, 0); |
| 4488 | let b = date(9999, 12, 31).at(23, 59, 59, 999_999_999); |
| 4489 | assert!(a.until((Unit::Nanosecond, b)).is_err()); |
| 4490 | span_eq!( |
| 4491 | a.until((Unit::Microsecond, b)).unwrap(), |
| 4492 | Span::new() |
| 4493 | .microseconds(631_107_417_600_000_000i64 - 1) |
| 4494 | .nanoseconds(999), |
| 4495 | ); |
| 4496 | } |
| 4497 | |
| 4498 | #[test ] |
| 4499 | fn until_month_lengths() { |
| 4500 | let jan1 = date(2020, 1, 1).at(0, 0, 0, 0); |
| 4501 | let feb1 = date(2020, 2, 1).at(0, 0, 0, 0); |
| 4502 | let mar1 = date(2020, 3, 1).at(0, 0, 0, 0); |
| 4503 | |
| 4504 | span_eq!(jan1.until(feb1).unwrap(), 31.days()); |
| 4505 | span_eq!(jan1.until((Unit::Month, feb1)).unwrap(), 1.month()); |
| 4506 | span_eq!(feb1.until(mar1).unwrap(), 29.days()); |
| 4507 | span_eq!(feb1.until((Unit::Month, mar1)).unwrap(), 1.month()); |
| 4508 | span_eq!(jan1.until(mar1).unwrap(), 60.days()); |
| 4509 | span_eq!(jan1.until((Unit::Month, mar1)).unwrap(), 2.months()); |
| 4510 | } |
| 4511 | |
| 4512 | #[test ] |
| 4513 | fn datetime_size() { |
| 4514 | #[cfg (debug_assertions)] |
| 4515 | { |
| 4516 | assert_eq!(36, core::mem::size_of::<DateTime>()); |
| 4517 | } |
| 4518 | #[cfg (not(debug_assertions))] |
| 4519 | { |
| 4520 | assert_eq!(12, core::mem::size_of::<DateTime>()); |
| 4521 | } |
| 4522 | } |
| 4523 | |
| 4524 | /// # `serde` deserializer compatibility test |
| 4525 | /// |
| 4526 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 4527 | /// as deserializing from bytes is not supported by the deserializer. |
| 4528 | /// |
| 4529 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 4530 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 4531 | #[test ] |
| 4532 | fn civil_datetime_deserialize_yaml() { |
| 4533 | let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789); |
| 4534 | |
| 4535 | let deserialized: DateTime = |
| 4536 | serde_yaml::from_str("2024-10-31 16:33:53.123456789" ).unwrap(); |
| 4537 | |
| 4538 | assert_eq!(deserialized, expected); |
| 4539 | |
| 4540 | let deserialized: DateTime = |
| 4541 | serde_yaml::from_slice("2024-10-31 16:33:53.123456789" .as_bytes()) |
| 4542 | .unwrap(); |
| 4543 | |
| 4544 | assert_eq!(deserialized, expected); |
| 4545 | |
| 4546 | let cursor = Cursor::new(b"2024-10-31 16:33:53.123456789" ); |
| 4547 | let deserialized: DateTime = serde_yaml::from_reader(cursor).unwrap(); |
| 4548 | |
| 4549 | assert_eq!(deserialized, expected); |
| 4550 | } |
| 4551 | } |
| 4552 | |