1 | use core::time::Duration as UnsignedDuration; |
2 | |
3 | use crate::{ |
4 | civil::{ |
5 | datetime, Date, DateWith, Era, ISOWeekDate, Time, TimeWith, Weekday, |
6 | }, |
7 | duration::{Duration, SDuration}, |
8 | error::{err, Error, ErrorContext}, |
9 | fmt::{ |
10 | self, |
11 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
12 | }, |
13 | shared::util::itime::IDateTime, |
14 | tz::TimeZone, |
15 | util::{ |
16 | rangeint::{Composite, RFrom, RInto}, |
17 | round::increment, |
18 | t::{self, C}, |
19 | }, |
20 | zoned::Zoned, |
21 | RoundMode, SignedDuration, Span, SpanRound, Unit, |
22 | }; |
23 | |
24 | /// A representation of a civil datetime in the Gregorian calendar. |
25 | /// |
26 | /// A `DateTime` value corresponds to a pair of a [`Date`] and a [`Time`]. |
27 | /// That is, a datetime contains a year, month, day, hour, minute, second and |
28 | /// the fractional number of nanoseconds. |
29 | /// |
30 | /// A `DateTime` value is guaranteed to contain a valid date and time. For |
31 | /// example, neither `2023-02-29T00:00:00` nor `2015-06-30T23:59:60` are |
32 | /// valid `DateTime` values. |
33 | /// |
34 | /// # Civil datetimes |
35 | /// |
36 | /// A `DateTime` value behaves without regard to daylight saving time or time |
37 | /// zones in general. When doing arithmetic on datetimes with spans defined in |
38 | /// units of time (such as with [`DateTime::checked_add`]), days are considered |
39 | /// to always be precisely `86,400` seconds long. |
40 | /// |
41 | /// # Parsing and printing |
42 | /// |
43 | /// The `DateTime` type provides convenient trait implementations of |
44 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
45 | /// |
46 | /// ``` |
47 | /// use jiff::civil::DateTime; |
48 | /// |
49 | /// let dt: DateTime = "2024-06-19 15:22:45" .parse()?; |
50 | /// assert_eq!(dt.to_string(), "2024-06-19T15:22:45" ); |
51 | /// |
52 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
53 | /// ``` |
54 | /// |
55 | /// A civil `DateTime` can also be parsed from something that _contains_ a |
56 | /// datetime, but with perhaps other data (such as an offset or time zone): |
57 | /// |
58 | /// ``` |
59 | /// use jiff::civil::DateTime; |
60 | /// |
61 | /// let dt: DateTime = "2024-06-19T15:22:45-04[America/New_York]" .parse()?; |
62 | /// assert_eq!(dt.to_string(), "2024-06-19T15:22:45" ); |
63 | /// |
64 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
65 | /// ``` |
66 | /// |
67 | /// For more information on the specific format supported, see the |
68 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
69 | /// |
70 | /// # Default value |
71 | /// |
72 | /// For convenience, this type implements the `Default` trait. Its default |
73 | /// value corresponds to `0000-01-01T00:00:00.000000000`. That is, it is |
74 | /// the datetime corresponding to `DateTime::from_parts(Date::default(), |
75 | /// Time::default())`. One can also access this value via the `DateTime::ZERO` |
76 | /// constant. |
77 | /// |
78 | /// # Leap seconds |
79 | /// |
80 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
81 | /// The only exception is that if one parses a datetime with a second component |
82 | /// of `60`, then it is automatically constrained to `59`: |
83 | /// |
84 | /// ``` |
85 | /// use jiff::civil::{DateTime, date}; |
86 | /// |
87 | /// let dt: DateTime = "2016-12-31 23:59:60" .parse()?; |
88 | /// assert_eq!(dt, date(2016, 12, 31).at(23, 59, 59, 0)); |
89 | /// |
90 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
91 | /// ``` |
92 | /// |
93 | /// # Comparisons |
94 | /// |
95 | /// The `DateTime` type provides both `Eq` and `Ord` trait implementations to |
96 | /// facilitate easy comparisons. When a datetime `dt1` occurs before a datetime |
97 | /// `dt2`, then `dt1 < dt2`. For example: |
98 | /// |
99 | /// ``` |
100 | /// use jiff::civil::date; |
101 | /// |
102 | /// let dt1 = date(2024, 3, 11).at(1, 25, 15, 0); |
103 | /// let dt2 = date(2025, 1, 31).at(0, 30, 0, 0); |
104 | /// assert!(dt1 < dt2); |
105 | /// ``` |
106 | /// |
107 | /// # Arithmetic |
108 | /// |
109 | /// This type provides routines for adding and subtracting spans of time, as |
110 | /// well as computing the span of time between two `DateTime` values. |
111 | /// |
112 | /// For adding or subtracting spans of time, one can use any of the following |
113 | /// routines: |
114 | /// |
115 | /// * [`DateTime::checked_add`] or [`DateTime::checked_sub`] for checked |
116 | /// arithmetic. |
117 | /// * [`DateTime::saturating_add`] or [`DateTime::saturating_sub`] for |
118 | /// saturating arithmetic. |
119 | /// |
120 | /// Additionally, checked arithmetic is available via the `Add` and `Sub` |
121 | /// trait implementations. When the result overflows, a panic occurs. |
122 | /// |
123 | /// ``` |
124 | /// use jiff::{civil::date, ToSpan}; |
125 | /// |
126 | /// let start = date(2024, 2, 25).at(15, 45, 0, 0); |
127 | /// let one_week_later = start + 1.weeks(); |
128 | /// assert_eq!(one_week_later, date(2024, 3, 3).at(15, 45, 0, 0)); |
129 | /// ``` |
130 | /// |
131 | /// One can compute the span of time between two datetimes using either |
132 | /// [`DateTime::until`] or [`DateTime::since`]. It's also possible to subtract |
133 | /// two `DateTime` values directly via a `Sub` trait implementation: |
134 | /// |
135 | /// ``` |
136 | /// use jiff::{civil::date, ToSpan}; |
137 | /// |
138 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
139 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
140 | /// assert_eq!( |
141 | /// datetime1 - datetime2, |
142 | /// 68.days().hours(16).minutes(30).fieldwise(), |
143 | /// ); |
144 | /// ``` |
145 | /// |
146 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
147 | /// rounding the span returned. For example, the default largest unit is days |
148 | /// (as exemplified above), but we can ask for bigger units: |
149 | /// |
150 | /// ``` |
151 | /// use jiff::{civil::date, ToSpan, Unit}; |
152 | /// |
153 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
154 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
155 | /// assert_eq!( |
156 | /// datetime1.since((Unit::Year, datetime2))?, |
157 | /// 2.months().days(7).hours(16).minutes(30).fieldwise(), |
158 | /// ); |
159 | /// |
160 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
161 | /// ``` |
162 | /// |
163 | /// Or even round the span returned: |
164 | /// |
165 | /// ``` |
166 | /// use jiff::{civil::{DateTimeDifference, date}, RoundMode, ToSpan, Unit}; |
167 | /// |
168 | /// let datetime1 = date(2024, 5, 3).at(23, 30, 0, 0); |
169 | /// let datetime2 = date(2024, 2, 25).at(7, 0, 0, 0); |
170 | /// assert_eq!( |
171 | /// datetime1.since( |
172 | /// DateTimeDifference::new(datetime2) |
173 | /// .smallest(Unit::Day) |
174 | /// .largest(Unit::Year), |
175 | /// )?, |
176 | /// 2.months().days(7).fieldwise(), |
177 | /// ); |
178 | /// // `DateTimeDifference` uses truncation as a rounding mode by default, |
179 | /// // but you can set the rounding mode to break ties away from zero: |
180 | /// assert_eq!( |
181 | /// datetime1.since( |
182 | /// DateTimeDifference::new(datetime2) |
183 | /// .smallest(Unit::Day) |
184 | /// .largest(Unit::Year) |
185 | /// .mode(RoundMode::HalfExpand), |
186 | /// )?, |
187 | /// // Rounds up to 8 days. |
188 | /// 2.months().days(8).fieldwise(), |
189 | /// ); |
190 | /// |
191 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
192 | /// ``` |
193 | /// |
194 | /// # Rounding |
195 | /// |
196 | /// A `DateTime` can be rounded based on a [`DateTimeRound`] configuration of |
197 | /// smallest units, rounding increment and rounding mode. Here's an example |
198 | /// showing how to round to the nearest third hour: |
199 | /// |
200 | /// ``` |
201 | /// use jiff::{civil::{DateTimeRound, date}, Unit}; |
202 | /// |
203 | /// let dt = date(2024, 6, 19).at(16, 27, 29, 999_999_999); |
204 | /// assert_eq!( |
205 | /// dt.round(DateTimeRound::new().smallest(Unit::Hour).increment(3))?, |
206 | /// date(2024, 6, 19).at(15, 0, 0, 0), |
207 | /// ); |
208 | /// // Or alternatively, make use of the `From<(Unit, i64)> for DateTimeRound` |
209 | /// // trait implementation: |
210 | /// assert_eq!( |
211 | /// dt.round((Unit::Hour, 3))?, |
212 | /// date(2024, 6, 19).at(15, 0, 0, 0), |
213 | /// ); |
214 | /// |
215 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
216 | /// ``` |
217 | /// |
218 | /// See [`DateTime::round`] for more details. |
219 | #[derive (Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)] |
220 | pub struct DateTime { |
221 | date: Date, |
222 | time: Time, |
223 | } |
224 | |
225 | impl DateTime { |
226 | /// The minimum representable Gregorian datetime. |
227 | /// |
228 | /// The minimum is chosen such that any [`Timestamp`](crate::Timestamp) |
229 | /// combined with any valid time zone offset can be infallibly converted to |
230 | /// this type. |
231 | pub const MIN: DateTime = datetime(-9999, 1, 1, 0, 0, 0, 0); |
232 | |
233 | /// The maximum representable Gregorian datetime. |
234 | /// |
235 | /// The maximum is chosen such that any [`Timestamp`](crate::Timestamp) |
236 | /// combined with any valid time zone offset can be infallibly converted to |
237 | /// this type. |
238 | pub const MAX: DateTime = datetime(9999, 12, 31, 23, 59, 59, 999_999_999); |
239 | |
240 | /// The first day of the zeroth year. |
241 | /// |
242 | /// This is guaranteed to be equivalent to `DateTime::default()`. |
243 | /// |
244 | /// # Example |
245 | /// |
246 | /// ``` |
247 | /// use jiff::civil::DateTime; |
248 | /// |
249 | /// assert_eq!(DateTime::ZERO, DateTime::default()); |
250 | /// ``` |
251 | pub const ZERO: DateTime = DateTime::from_parts(Date::ZERO, Time::MIN); |
252 | |
253 | /// Creates a new `DateTime` value from its component year, month, day, |
254 | /// hour, minute, second and fractional subsecond (up to nanosecond |
255 | /// precision) values. |
256 | /// |
257 | /// To create a new datetime from another with a particular component, use |
258 | /// the methods on [`DateTimeWith`] via [`DateTime::with`]. |
259 | /// |
260 | /// # Errors |
261 | /// |
262 | /// This returns an error when the given components do not correspond to a |
263 | /// valid datetime. Namely, all of the following must be true: |
264 | /// |
265 | /// * The year must be in the range `-9999..=9999`. |
266 | /// * The month must be in the range `1..=12`. |
267 | /// * The day must be at least `1` and must be at most the number of days |
268 | /// in the corresponding month. So for example, `2024-02-29` is valid but |
269 | /// `2023-02-29` is not. |
270 | /// * `0 <= hour <= 23` |
271 | /// * `0 <= minute <= 59` |
272 | /// * `0 <= second <= 59` |
273 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
274 | /// |
275 | /// # Example |
276 | /// |
277 | /// This shows an example of a valid datetime: |
278 | /// |
279 | /// ``` |
280 | /// use jiff::civil::DateTime; |
281 | /// |
282 | /// let d = DateTime::new(2024, 2, 29, 21, 30, 5, 123_456_789).unwrap(); |
283 | /// assert_eq!(d.year(), 2024); |
284 | /// assert_eq!(d.month(), 2); |
285 | /// assert_eq!(d.day(), 29); |
286 | /// assert_eq!(d.hour(), 21); |
287 | /// assert_eq!(d.minute(), 30); |
288 | /// assert_eq!(d.second(), 5); |
289 | /// assert_eq!(d.millisecond(), 123); |
290 | /// assert_eq!(d.microsecond(), 456); |
291 | /// assert_eq!(d.nanosecond(), 789); |
292 | /// ``` |
293 | /// |
294 | /// This shows some examples of invalid datetimes: |
295 | /// |
296 | /// ``` |
297 | /// use jiff::civil::DateTime; |
298 | /// |
299 | /// assert!(DateTime::new(2023, 2, 29, 21, 30, 5, 0).is_err()); |
300 | /// assert!(DateTime::new(2015, 6, 30, 23, 59, 60, 0).is_err()); |
301 | /// assert!(DateTime::new(2024, 6, 20, 19, 58, 0, 1_000_000_000).is_err()); |
302 | /// ``` |
303 | #[inline ] |
304 | pub fn new( |
305 | year: i16, |
306 | month: i8, |
307 | day: i8, |
308 | hour: i8, |
309 | minute: i8, |
310 | second: i8, |
311 | subsec_nanosecond: i32, |
312 | ) -> Result<DateTime, Error> { |
313 | let date = Date::new(year, month, day)?; |
314 | let time = Time::new(hour, minute, second, subsec_nanosecond)?; |
315 | Ok(DateTime { date, time }) |
316 | } |
317 | |
318 | /// Creates a new `DateTime` value in a `const` context. |
319 | /// |
320 | /// Note that an alternative syntax that is terser and perhaps easier to |
321 | /// read for the same operation is to combine |
322 | /// [`civil::date`](crate::civil::date()) with [`Date::at`]. |
323 | /// |
324 | /// # Panics |
325 | /// |
326 | /// This routine panics when [`DateTime::new`] would return an error. That |
327 | /// is, when the given components do not correspond to a valid datetime. |
328 | /// Namely, all of the following must be true: |
329 | /// |
330 | /// * The year must be in the range `-9999..=9999`. |
331 | /// * The month must be in the range `1..=12`. |
332 | /// * The day must be at least `1` and must be at most the number of days |
333 | /// in the corresponding month. So for example, `2024-02-29` is valid but |
334 | /// `2023-02-29` is not. |
335 | /// * `0 <= hour <= 23` |
336 | /// * `0 <= minute <= 59` |
337 | /// * `0 <= second <= 59` |
338 | /// * `0 <= subsec_nanosecond <= 999,999,999` |
339 | /// |
340 | /// Similarly, when used in a const context, invalid parameters will |
341 | /// prevent your Rust program from compiling. |
342 | /// |
343 | /// # Example |
344 | /// |
345 | /// ``` |
346 | /// use jiff::civil::DateTime; |
347 | /// |
348 | /// let dt = DateTime::constant(2024, 2, 29, 21, 30, 5, 123_456_789); |
349 | /// assert_eq!(dt.year(), 2024); |
350 | /// assert_eq!(dt.month(), 2); |
351 | /// assert_eq!(dt.day(), 29); |
352 | /// assert_eq!(dt.hour(), 21); |
353 | /// assert_eq!(dt.minute(), 30); |
354 | /// assert_eq!(dt.second(), 5); |
355 | /// assert_eq!(dt.millisecond(), 123); |
356 | /// assert_eq!(dt.microsecond(), 456); |
357 | /// assert_eq!(dt.nanosecond(), 789); |
358 | /// ``` |
359 | /// |
360 | /// Or alternatively: |
361 | /// |
362 | /// ``` |
363 | /// use jiff::civil::date; |
364 | /// |
365 | /// let dt = date(2024, 2, 29).at(21, 30, 5, 123_456_789); |
366 | /// assert_eq!(dt.year(), 2024); |
367 | /// assert_eq!(dt.month(), 2); |
368 | /// assert_eq!(dt.day(), 29); |
369 | /// assert_eq!(dt.hour(), 21); |
370 | /// assert_eq!(dt.minute(), 30); |
371 | /// assert_eq!(dt.second(), 5); |
372 | /// assert_eq!(dt.millisecond(), 123); |
373 | /// assert_eq!(dt.microsecond(), 456); |
374 | /// assert_eq!(dt.nanosecond(), 789); |
375 | /// ``` |
376 | #[inline ] |
377 | pub const fn constant( |
378 | year: i16, |
379 | month: i8, |
380 | day: i8, |
381 | hour: i8, |
382 | minute: i8, |
383 | second: i8, |
384 | subsec_nanosecond: i32, |
385 | ) -> DateTime { |
386 | let date = Date::constant(year, month, day); |
387 | let time = Time::constant(hour, minute, second, subsec_nanosecond); |
388 | DateTime { date, time } |
389 | } |
390 | |
391 | /// Creates a `DateTime` from its constituent parts. |
392 | /// |
393 | /// Any combination of a valid `Date` and a valid `Time` results in a valid |
394 | /// `DateTime`. |
395 | /// |
396 | /// # Example |
397 | /// |
398 | /// This example shows how to build a datetime from its parts: |
399 | /// |
400 | /// ``` |
401 | /// use jiff::civil::{DateTime, date, time}; |
402 | /// |
403 | /// let dt = DateTime::from_parts(date(2024, 6, 6), time(6, 0, 0, 0)); |
404 | /// assert_eq!(dt, date(2024, 6, 6).at(6, 0, 0, 0)); |
405 | /// ``` |
406 | #[inline ] |
407 | pub const fn from_parts(date: Date, time: Time) -> DateTime { |
408 | DateTime { date, time } |
409 | } |
410 | |
411 | /// Create a builder for constructing a new `DateTime` from the fields of |
412 | /// this datetime. |
413 | /// |
414 | /// See the methods on [`DateTimeWith`] for the different ways one can set |
415 | /// the fields of a new `DateTime`. |
416 | /// |
417 | /// # Example |
418 | /// |
419 | /// The builder ensures one can chain together the individual components of |
420 | /// a datetime without it failing at an intermediate step. For example, if |
421 | /// you had a date of `2024-10-31T00:00:00` and wanted to change both the |
422 | /// day and the month, and each setting was validated independent of the |
423 | /// other, you would need to be careful to set the day first and then the |
424 | /// month. In some cases, you would need to set the month first and then |
425 | /// the day! |
426 | /// |
427 | /// But with the builder, you can set values in any order: |
428 | /// |
429 | /// ``` |
430 | /// use jiff::civil::date; |
431 | /// |
432 | /// let dt1 = date(2024, 10, 31).at(0, 0, 0, 0); |
433 | /// let dt2 = dt1.with().month(11).day(30).build()?; |
434 | /// assert_eq!(dt2, date(2024, 11, 30).at(0, 0, 0, 0)); |
435 | /// |
436 | /// let dt1 = date(2024, 4, 30).at(0, 0, 0, 0); |
437 | /// let dt2 = dt1.with().day(31).month(7).build()?; |
438 | /// assert_eq!(dt2, date(2024, 7, 31).at(0, 0, 0, 0)); |
439 | /// |
440 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
441 | /// ``` |
442 | #[inline ] |
443 | pub fn with(self) -> DateTimeWith { |
444 | DateTimeWith::new(self) |
445 | } |
446 | |
447 | /// Returns the year for this datetime. |
448 | /// |
449 | /// The value returned is guaranteed to be in the range `-9999..=9999`. |
450 | /// |
451 | /// # Example |
452 | /// |
453 | /// ``` |
454 | /// use jiff::civil::date; |
455 | /// |
456 | /// let dt1 = date(2024, 3, 9).at(7, 30, 0, 0); |
457 | /// assert_eq!(dt1.year(), 2024); |
458 | /// |
459 | /// let dt2 = date(-2024, 3, 9).at(7, 30, 0, 0); |
460 | /// assert_eq!(dt2.year(), -2024); |
461 | /// |
462 | /// let dt3 = date(0, 3, 9).at(7, 30, 0, 0); |
463 | /// assert_eq!(dt3.year(), 0); |
464 | /// ``` |
465 | #[inline ] |
466 | pub fn year(self) -> i16 { |
467 | self.date().year() |
468 | } |
469 | |
470 | /// Returns the year and its era. |
471 | /// |
472 | /// This crate specifically allows years to be negative or `0`, where as |
473 | /// years written for the Gregorian calendar are always positive and |
474 | /// greater than `0`. In the Gregorian calendar, the era labels `BCE` and |
475 | /// `CE` are used to disambiguate between years less than or equal to `0` |
476 | /// and years greater than `0`, respectively. |
477 | /// |
478 | /// The crate is designed this way so that years in the latest era (that |
479 | /// is, `CE`) are aligned with years in this crate. |
480 | /// |
481 | /// The year returned is guaranteed to be in the range `1..=10000`. |
482 | /// |
483 | /// # Example |
484 | /// |
485 | /// ``` |
486 | /// use jiff::civil::{Era, date}; |
487 | /// |
488 | /// let dt = date(2024, 10, 3).at(7, 30, 0, 0); |
489 | /// assert_eq!(dt.era_year(), (2024, Era::CE)); |
490 | /// |
491 | /// let dt = date(1, 10, 3).at(7, 30, 0, 0); |
492 | /// assert_eq!(dt.era_year(), (1, Era::CE)); |
493 | /// |
494 | /// let dt = date(0, 10, 3).at(7, 30, 0, 0); |
495 | /// assert_eq!(dt.era_year(), (1, Era::BCE)); |
496 | /// |
497 | /// let dt = date(-1, 10, 3).at(7, 30, 0, 0); |
498 | /// assert_eq!(dt.era_year(), (2, Era::BCE)); |
499 | /// |
500 | /// let dt = date(-10, 10, 3).at(7, 30, 0, 0); |
501 | /// assert_eq!(dt.era_year(), (11, Era::BCE)); |
502 | /// |
503 | /// let dt = date(-9_999, 10, 3).at(7, 30, 0, 0); |
504 | /// assert_eq!(dt.era_year(), (10_000, Era::BCE)); |
505 | /// ``` |
506 | #[inline ] |
507 | pub fn era_year(self) -> (i16, Era) { |
508 | self.date().era_year() |
509 | } |
510 | |
511 | /// Returns the month for this datetime. |
512 | /// |
513 | /// The value returned is guaranteed to be in the range `1..=12`. |
514 | /// |
515 | /// # Example |
516 | /// |
517 | /// ``` |
518 | /// use jiff::civil::date; |
519 | /// |
520 | /// let dt1 = date(2024, 3, 9).at(7, 30, 0, 0); |
521 | /// assert_eq!(dt1.month(), 3); |
522 | /// ``` |
523 | #[inline ] |
524 | pub fn month(self) -> i8 { |
525 | self.date().month() |
526 | } |
527 | |
528 | /// Returns the day for this datetime. |
529 | /// |
530 | /// The value returned is guaranteed to be in the range `1..=31`. |
531 | /// |
532 | /// # Example |
533 | /// |
534 | /// ``` |
535 | /// use jiff::civil::date; |
536 | /// |
537 | /// let dt1 = date(2024, 2, 29).at(7, 30, 0, 0); |
538 | /// assert_eq!(dt1.day(), 29); |
539 | /// ``` |
540 | #[inline ] |
541 | pub fn day(self) -> i8 { |
542 | self.date().day() |
543 | } |
544 | |
545 | /// Returns the "hour" component of this datetime. |
546 | /// |
547 | /// The value returned is guaranteed to be in the range `0..=23`. |
548 | /// |
549 | /// # Example |
550 | /// |
551 | /// ``` |
552 | /// use jiff::civil::date; |
553 | /// |
554 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
555 | /// assert_eq!(dt.hour(), 3); |
556 | /// ``` |
557 | #[inline ] |
558 | pub fn hour(self) -> i8 { |
559 | self.time().hour() |
560 | } |
561 | |
562 | /// Returns the "minute" component of this datetime. |
563 | /// |
564 | /// The value returned is guaranteed to be in the range `0..=59`. |
565 | /// |
566 | /// # Example |
567 | /// |
568 | /// ``` |
569 | /// use jiff::civil::date; |
570 | /// |
571 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
572 | /// assert_eq!(dt.minute(), 4); |
573 | /// ``` |
574 | #[inline ] |
575 | pub fn minute(self) -> i8 { |
576 | self.time().minute() |
577 | } |
578 | |
579 | /// Returns the "second" component of this datetime. |
580 | /// |
581 | /// The value returned is guaranteed to be in the range `0..=59`. |
582 | /// |
583 | /// # Example |
584 | /// |
585 | /// ``` |
586 | /// use jiff::civil::date; |
587 | /// |
588 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
589 | /// assert_eq!(dt.second(), 5); |
590 | /// ``` |
591 | #[inline ] |
592 | pub fn second(self) -> i8 { |
593 | self.time().second() |
594 | } |
595 | |
596 | /// Returns the "millisecond" component of this datetime. |
597 | /// |
598 | /// The value returned is guaranteed to be in the range `0..=999`. |
599 | /// |
600 | /// # Example |
601 | /// |
602 | /// ``` |
603 | /// use jiff::civil::date; |
604 | /// |
605 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
606 | /// assert_eq!(dt.millisecond(), 123); |
607 | /// ``` |
608 | #[inline ] |
609 | pub fn millisecond(self) -> i16 { |
610 | self.time().millisecond() |
611 | } |
612 | |
613 | /// Returns the "microsecond" component of this datetime. |
614 | /// |
615 | /// The value returned is guaranteed to be in the range `0..=999`. |
616 | /// |
617 | /// # Example |
618 | /// |
619 | /// ``` |
620 | /// use jiff::civil::date; |
621 | /// |
622 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
623 | /// assert_eq!(dt.microsecond(), 456); |
624 | /// ``` |
625 | #[inline ] |
626 | pub fn microsecond(self) -> i16 { |
627 | self.time().microsecond() |
628 | } |
629 | |
630 | /// Returns the "nanosecond" component of this datetime. |
631 | /// |
632 | /// The value returned is guaranteed to be in the range `0..=999`. |
633 | /// |
634 | /// # Example |
635 | /// |
636 | /// ``` |
637 | /// use jiff::civil::date; |
638 | /// |
639 | /// let dt = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
640 | /// assert_eq!(dt.nanosecond(), 789); |
641 | /// ``` |
642 | #[inline ] |
643 | pub fn nanosecond(self) -> i16 { |
644 | self.time().nanosecond() |
645 | } |
646 | |
647 | /// Returns the fractional nanosecond for this `DateTime` value. |
648 | /// |
649 | /// If you want to set this value on `DateTime`, then use |
650 | /// [`DateTimeWith::subsec_nanosecond`] via [`DateTime::with`]. |
651 | /// |
652 | /// The value returned is guaranteed to be in the range `0..=999_999_999`. |
653 | /// |
654 | /// # Example |
655 | /// |
656 | /// This shows the relationship between constructing a `DateTime` value |
657 | /// with routines like `with().millisecond()` and accessing the entire |
658 | /// fractional part as a nanosecond: |
659 | /// |
660 | /// ``` |
661 | /// use jiff::civil::date; |
662 | /// |
663 | /// let dt1 = date(2000, 1, 2).at(3, 4, 5, 123_456_789); |
664 | /// assert_eq!(dt1.subsec_nanosecond(), 123_456_789); |
665 | /// let dt2 = dt1.with().millisecond(333).build()?; |
666 | /// assert_eq!(dt2.subsec_nanosecond(), 333_456_789); |
667 | /// |
668 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
669 | /// ``` |
670 | /// |
671 | /// # Example: nanoseconds from a timestamp |
672 | /// |
673 | /// This shows how the fractional nanosecond part of a `DateTime` value |
674 | /// manifests from a specific timestamp. |
675 | /// |
676 | /// ``` |
677 | /// use jiff::{civil, Timestamp}; |
678 | /// |
679 | /// // 1,234 nanoseconds after the Unix epoch. |
680 | /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC" )?; |
681 | /// let dt = zdt.datetime(); |
682 | /// assert_eq!(dt.subsec_nanosecond(), 1_234); |
683 | /// |
684 | /// // 1,234 nanoseconds before the Unix epoch. |
685 | /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC" )?; |
686 | /// let dt = zdt.datetime(); |
687 | /// // The nanosecond is equal to `1_000_000_000 - 1_234`. |
688 | /// assert_eq!(dt.subsec_nanosecond(), 999998766); |
689 | /// // Looking at the other components of the time value might help. |
690 | /// assert_eq!(dt.hour(), 23); |
691 | /// assert_eq!(dt.minute(), 59); |
692 | /// assert_eq!(dt.second(), 59); |
693 | /// |
694 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
695 | /// ``` |
696 | #[inline ] |
697 | pub fn subsec_nanosecond(self) -> i32 { |
698 | self.time().subsec_nanosecond() |
699 | } |
700 | |
701 | /// Returns the weekday corresponding to this datetime. |
702 | /// |
703 | /// # Example |
704 | /// |
705 | /// ``` |
706 | /// use jiff::civil::{Weekday, date}; |
707 | /// |
708 | /// // The Unix epoch was on a Thursday. |
709 | /// let dt = date(1970, 1, 1).at(7, 30, 0, 0); |
710 | /// assert_eq!(dt.weekday(), Weekday::Thursday); |
711 | /// // One can also get the weekday as an offset in a variety of schemes. |
712 | /// assert_eq!(dt.weekday().to_monday_zero_offset(), 3); |
713 | /// assert_eq!(dt.weekday().to_monday_one_offset(), 4); |
714 | /// assert_eq!(dt.weekday().to_sunday_zero_offset(), 4); |
715 | /// assert_eq!(dt.weekday().to_sunday_one_offset(), 5); |
716 | /// ``` |
717 | #[inline ] |
718 | pub fn weekday(self) -> Weekday { |
719 | self.date().weekday() |
720 | } |
721 | |
722 | /// Returns the ordinal day of the year that this datetime resides in. |
723 | /// |
724 | /// For leap years, this always returns a value in the range `1..=366`. |
725 | /// Otherwise, the value is in the range `1..=365`. |
726 | /// |
727 | /// # Example |
728 | /// |
729 | /// ``` |
730 | /// use jiff::civil::date; |
731 | /// |
732 | /// let dt = date(2006, 8, 24).at(7, 30, 0, 0); |
733 | /// assert_eq!(dt.day_of_year(), 236); |
734 | /// |
735 | /// let dt = date(2023, 12, 31).at(7, 30, 0, 0); |
736 | /// assert_eq!(dt.day_of_year(), 365); |
737 | /// |
738 | /// let dt = date(2024, 12, 31).at(7, 30, 0, 0); |
739 | /// assert_eq!(dt.day_of_year(), 366); |
740 | /// ``` |
741 | #[inline ] |
742 | pub fn day_of_year(self) -> i16 { |
743 | self.date().day_of_year() |
744 | } |
745 | |
746 | /// Returns the ordinal day of the year that this datetime resides in, but |
747 | /// ignores leap years. |
748 | /// |
749 | /// That is, the range of possible values returned by this routine is |
750 | /// `1..=365`, even if this date resides in a leap year. If this date is |
751 | /// February 29, then this routine returns `None`. |
752 | /// |
753 | /// The value `365` always corresponds to the last day in the year, |
754 | /// December 31, even for leap years. |
755 | /// |
756 | /// # Example |
757 | /// |
758 | /// ``` |
759 | /// use jiff::civil::date; |
760 | /// |
761 | /// let dt = date(2006, 8, 24).at(7, 30, 0, 0); |
762 | /// assert_eq!(dt.day_of_year_no_leap(), Some(236)); |
763 | /// |
764 | /// let dt = date(2023, 12, 31).at(7, 30, 0, 0); |
765 | /// assert_eq!(dt.day_of_year_no_leap(), Some(365)); |
766 | /// |
767 | /// let dt = date(2024, 12, 31).at(7, 30, 0, 0); |
768 | /// assert_eq!(dt.day_of_year_no_leap(), Some(365)); |
769 | /// |
770 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
771 | /// assert_eq!(dt.day_of_year_no_leap(), None); |
772 | /// ``` |
773 | #[inline ] |
774 | pub fn day_of_year_no_leap(self) -> Option<i16> { |
775 | self.date().day_of_year_no_leap() |
776 | } |
777 | |
778 | /// Returns the beginning of the day that this datetime resides in. |
779 | /// |
780 | /// That is, the datetime returned always keeps the same date, but its |
781 | /// time is always `00:00:00` (midnight). |
782 | /// |
783 | /// # Example |
784 | /// |
785 | /// ``` |
786 | /// use jiff::civil::date; |
787 | /// |
788 | /// let dt = date(2024, 7, 3).at(7, 30, 10, 123_456_789); |
789 | /// assert_eq!(dt.start_of_day(), date(2024, 7, 3).at(0, 0, 0, 0)); |
790 | /// ``` |
791 | #[inline ] |
792 | pub fn start_of_day(&self) -> DateTime { |
793 | DateTime::from_parts(self.date(), Time::MIN) |
794 | } |
795 | |
796 | /// Returns the end of the day that this datetime resides in. |
797 | /// |
798 | /// That is, the datetime returned always keeps the same date, but its |
799 | /// time is always `23:59:59.999999999`. |
800 | /// |
801 | /// # Example |
802 | /// |
803 | /// ``` |
804 | /// use jiff::civil::date; |
805 | /// |
806 | /// let dt = date(2024, 7, 3).at(7, 30, 10, 123_456_789); |
807 | /// assert_eq!( |
808 | /// dt.end_of_day(), |
809 | /// date(2024, 7, 3).at(23, 59, 59, 999_999_999), |
810 | /// ); |
811 | /// ``` |
812 | #[inline ] |
813 | pub fn end_of_day(&self) -> DateTime { |
814 | DateTime::from_parts(self.date(), Time::MAX) |
815 | } |
816 | |
817 | /// Returns the first date of the month that this datetime resides in. |
818 | /// |
819 | /// The time in the datetime returned remains unchanged. |
820 | /// |
821 | /// # Example |
822 | /// |
823 | /// ``` |
824 | /// use jiff::civil::date; |
825 | /// |
826 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
827 | /// assert_eq!(dt.first_of_month(), date(2024, 2, 1).at(7, 30, 0, 0)); |
828 | /// ``` |
829 | #[inline ] |
830 | pub fn first_of_month(self) -> DateTime { |
831 | DateTime::from_parts(self.date().first_of_month(), self.time()) |
832 | } |
833 | |
834 | /// Returns the last date of the month that this datetime resides in. |
835 | /// |
836 | /// The time in the datetime returned remains unchanged. |
837 | /// |
838 | /// # Example |
839 | /// |
840 | /// ``` |
841 | /// use jiff::civil::date; |
842 | /// |
843 | /// let dt = date(2024, 2, 5).at(7, 30, 0, 0); |
844 | /// assert_eq!(dt.last_of_month(), date(2024, 2, 29).at(7, 30, 0, 0)); |
845 | /// ``` |
846 | #[inline ] |
847 | pub fn last_of_month(self) -> DateTime { |
848 | DateTime::from_parts(self.date().last_of_month(), self.time()) |
849 | } |
850 | |
851 | /// Returns the total number of days in the the month in which this |
852 | /// datetime resides. |
853 | /// |
854 | /// This is guaranteed to always return one of the following values, |
855 | /// depending on the year and the month: 28, 29, 30 or 31. |
856 | /// |
857 | /// # Example |
858 | /// |
859 | /// ``` |
860 | /// use jiff::civil::date; |
861 | /// |
862 | /// let dt = date(2024, 2, 10).at(7, 30, 0, 0); |
863 | /// assert_eq!(dt.days_in_month(), 29); |
864 | /// |
865 | /// let dt = date(2023, 2, 10).at(7, 30, 0, 0); |
866 | /// assert_eq!(dt.days_in_month(), 28); |
867 | /// |
868 | /// let dt = date(2024, 8, 15).at(7, 30, 0, 0); |
869 | /// assert_eq!(dt.days_in_month(), 31); |
870 | /// ``` |
871 | #[inline ] |
872 | pub fn days_in_month(self) -> i8 { |
873 | self.date().days_in_month() |
874 | } |
875 | |
876 | /// Returns the first date of the year that this datetime resides in. |
877 | /// |
878 | /// The time in the datetime returned remains unchanged. |
879 | /// |
880 | /// # Example |
881 | /// |
882 | /// ``` |
883 | /// use jiff::civil::date; |
884 | /// |
885 | /// let dt = date(2024, 2, 29).at(7, 30, 0, 0); |
886 | /// assert_eq!(dt.first_of_year(), date(2024, 1, 1).at(7, 30, 0, 0)); |
887 | /// ``` |
888 | #[inline ] |
889 | pub fn first_of_year(self) -> DateTime { |
890 | DateTime::from_parts(self.date().first_of_year(), self.time()) |
891 | } |
892 | |
893 | /// Returns the last date of the year that this datetime resides in. |
894 | /// |
895 | /// The time in the datetime returned remains unchanged. |
896 | /// |
897 | /// # Example |
898 | /// |
899 | /// ``` |
900 | /// use jiff::civil::date; |
901 | /// |
902 | /// let dt = date(2024, 2, 5).at(7, 30, 0, 0); |
903 | /// assert_eq!(dt.last_of_year(), date(2024, 12, 31).at(7, 30, 0, 0)); |
904 | /// ``` |
905 | #[inline ] |
906 | pub fn last_of_year(self) -> DateTime { |
907 | DateTime::from_parts(self.date().last_of_year(), self.time()) |
908 | } |
909 | |
910 | /// Returns the total number of days in the the year in which this datetime |
911 | /// resides. |
912 | /// |
913 | /// This is guaranteed to always return either `365` or `366`. |
914 | /// |
915 | /// # Example |
916 | /// |
917 | /// ``` |
918 | /// use jiff::civil::date; |
919 | /// |
920 | /// let dt = date(2024, 7, 10).at(7, 30, 0, 0); |
921 | /// assert_eq!(dt.days_in_year(), 366); |
922 | /// |
923 | /// let dt = date(2023, 7, 10).at(7, 30, 0, 0); |
924 | /// assert_eq!(dt.days_in_year(), 365); |
925 | /// ``` |
926 | #[inline ] |
927 | pub fn days_in_year(self) -> i16 { |
928 | self.date().days_in_year() |
929 | } |
930 | |
931 | /// Returns true if and only if the year in which this datetime resides is |
932 | /// a leap year. |
933 | /// |
934 | /// # Example |
935 | /// |
936 | /// ``` |
937 | /// use jiff::civil::date; |
938 | /// |
939 | /// assert!(date(2024, 1, 1).at(7, 30, 0, 0).in_leap_year()); |
940 | /// assert!(!date(2023, 12, 31).at(7, 30, 0, 0).in_leap_year()); |
941 | /// ``` |
942 | #[inline ] |
943 | pub fn in_leap_year(self) -> bool { |
944 | self.date().in_leap_year() |
945 | } |
946 | |
947 | /// Returns the datetime with a date immediately following this one. |
948 | /// |
949 | /// The time in the datetime returned remains unchanged. |
950 | /// |
951 | /// # Errors |
952 | /// |
953 | /// This returns an error when this datetime's date is the maximum value. |
954 | /// |
955 | /// # Example |
956 | /// |
957 | /// ``` |
958 | /// use jiff::civil::{DateTime, date}; |
959 | /// |
960 | /// let dt = date(2024, 2, 28).at(7, 30, 0, 0); |
961 | /// assert_eq!(dt.tomorrow()?, date(2024, 2, 29).at(7, 30, 0, 0)); |
962 | /// |
963 | /// // The max doesn't have a tomorrow. |
964 | /// assert!(DateTime::MAX.tomorrow().is_err()); |
965 | /// |
966 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
967 | /// ``` |
968 | #[inline ] |
969 | pub fn tomorrow(self) -> Result<DateTime, Error> { |
970 | Ok(DateTime::from_parts(self.date().tomorrow()?, self.time())) |
971 | } |
972 | |
973 | /// Returns the datetime with a date immediately preceding this one. |
974 | /// |
975 | /// The time in the datetime returned remains unchanged. |
976 | /// |
977 | /// # Errors |
978 | /// |
979 | /// This returns an error when this datetime's date is the minimum value. |
980 | /// |
981 | /// # Example |
982 | /// |
983 | /// ``` |
984 | /// use jiff::civil::{DateTime, date}; |
985 | /// |
986 | /// let dt = date(2024, 3, 1).at(7, 30, 0, 0); |
987 | /// assert_eq!(dt.yesterday()?, date(2024, 2, 29).at(7, 30, 0, 0)); |
988 | /// |
989 | /// // The min doesn't have a yesterday. |
990 | /// assert!(DateTime::MIN.yesterday().is_err()); |
991 | /// |
992 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
993 | /// ``` |
994 | #[inline ] |
995 | pub fn yesterday(self) -> Result<DateTime, Error> { |
996 | Ok(DateTime::from_parts(self.date().yesterday()?, self.time())) |
997 | } |
998 | |
999 | /// Returns the "nth" weekday from the beginning or end of the month in |
1000 | /// which this datetime resides. |
1001 | /// |
1002 | /// The `nth` parameter can be positive or negative. A positive value |
1003 | /// computes the "nth" weekday from the beginning of the month. A negative |
1004 | /// value computes the "nth" weekday from the end of the month. So for |
1005 | /// example, use `-1` to "find the last weekday" in this date's month. |
1006 | /// |
1007 | /// The time in the datetime returned remains unchanged. |
1008 | /// |
1009 | /// # Errors |
1010 | /// |
1011 | /// This returns an error when `nth` is `0`, or if it is `5` or `-5` and |
1012 | /// there is no 5th weekday from the beginning or end of the month. |
1013 | /// |
1014 | /// # Example |
1015 | /// |
1016 | /// This shows how to get the nth weekday in a month, starting from the |
1017 | /// beginning of the month: |
1018 | /// |
1019 | /// ``` |
1020 | /// use jiff::civil::{Weekday, date}; |
1021 | /// |
1022 | /// let dt = date(2017, 3, 1).at(7, 30, 0, 0); |
1023 | /// let second_friday = dt.nth_weekday_of_month(2, Weekday::Friday)?; |
1024 | /// assert_eq!(second_friday, date(2017, 3, 10).at(7, 30, 0, 0)); |
1025 | /// |
1026 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1027 | /// ``` |
1028 | /// |
1029 | /// This shows how to do the reverse of the above. That is, the nth _last_ |
1030 | /// weekday in a month: |
1031 | /// |
1032 | /// ``` |
1033 | /// use jiff::civil::{Weekday, date}; |
1034 | /// |
1035 | /// let dt = date(2024, 3, 1).at(7, 30, 0, 0); |
1036 | /// let last_thursday = dt.nth_weekday_of_month(-1, Weekday::Thursday)?; |
1037 | /// assert_eq!(last_thursday, date(2024, 3, 28).at(7, 30, 0, 0)); |
1038 | /// let second_last_thursday = dt.nth_weekday_of_month( |
1039 | /// -2, |
1040 | /// Weekday::Thursday, |
1041 | /// )?; |
1042 | /// assert_eq!(second_last_thursday, date(2024, 3, 21).at(7, 30, 0, 0)); |
1043 | /// |
1044 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1045 | /// ``` |
1046 | /// |
1047 | /// This routine can return an error if there isn't an `nth` weekday |
1048 | /// for this month. For example, March 2024 only has 4 Mondays: |
1049 | /// |
1050 | /// ``` |
1051 | /// use jiff::civil::{Weekday, date}; |
1052 | /// |
1053 | /// let dt = date(2024, 3, 25).at(7, 30, 0, 0); |
1054 | /// let fourth_monday = dt.nth_weekday_of_month(4, Weekday::Monday)?; |
1055 | /// assert_eq!(fourth_monday, date(2024, 3, 25).at(7, 30, 0, 0)); |
1056 | /// // There is no 5th Monday. |
1057 | /// assert!(dt.nth_weekday_of_month(5, Weekday::Monday).is_err()); |
1058 | /// // Same goes for counting backwards. |
1059 | /// assert!(dt.nth_weekday_of_month(-5, Weekday::Monday).is_err()); |
1060 | /// |
1061 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1062 | /// ``` |
1063 | #[inline ] |
1064 | pub fn nth_weekday_of_month( |
1065 | self, |
1066 | nth: i8, |
1067 | weekday: Weekday, |
1068 | ) -> Result<DateTime, Error> { |
1069 | let date = self.date().nth_weekday_of_month(nth, weekday)?; |
1070 | Ok(DateTime::from_parts(date, self.time())) |
1071 | } |
1072 | |
1073 | /// Returns the "nth" weekday from this datetime, not including itself. |
1074 | /// |
1075 | /// The `nth` parameter can be positive or negative. A positive value |
1076 | /// computes the "nth" weekday starting at the day after this date and |
1077 | /// going forwards in time. A negative value computes the "nth" weekday |
1078 | /// starting at the day before this date and going backwards in time. |
1079 | /// |
1080 | /// For example, if this datetime's weekday is a Sunday and the first |
1081 | /// Sunday is asked for (that is, `dt.nth_weekday(1, Weekday::Sunday)`), |
1082 | /// then the result is a week from this datetime corresponding to the |
1083 | /// following Sunday. |
1084 | /// |
1085 | /// The time in the datetime returned remains unchanged. |
1086 | /// |
1087 | /// # Errors |
1088 | /// |
1089 | /// This returns an error when `nth` is `0`, or if it would otherwise |
1090 | /// result in a date that overflows the minimum/maximum values of |
1091 | /// `DateTime`. |
1092 | /// |
1093 | /// # Example |
1094 | /// |
1095 | /// This example shows how to find the "nth" weekday going forwards in |
1096 | /// time: |
1097 | /// |
1098 | /// ``` |
1099 | /// use jiff::civil::{Weekday, date}; |
1100 | /// |
1101 | /// // Use a Sunday in March as our start date. |
1102 | /// let dt = date(2024, 3, 10).at(7, 30, 0, 0); |
1103 | /// assert_eq!(dt.weekday(), Weekday::Sunday); |
1104 | /// |
1105 | /// // The first next Monday is tomorrow! |
1106 | /// let next_monday = dt.nth_weekday(1, Weekday::Monday)?; |
1107 | /// assert_eq!(next_monday, date(2024, 3, 11).at(7, 30, 0, 0)); |
1108 | /// |
1109 | /// // But the next Sunday is a week away, because this doesn't |
1110 | /// // include the current weekday. |
1111 | /// let next_sunday = dt.nth_weekday(1, Weekday::Sunday)?; |
1112 | /// assert_eq!(next_sunday, date(2024, 3, 17).at(7, 30, 0, 0)); |
1113 | /// |
1114 | /// // "not this Thursday, but next Thursday" |
1115 | /// let next_next_thursday = dt.nth_weekday(2, Weekday::Thursday)?; |
1116 | /// assert_eq!(next_next_thursday, date(2024, 3, 21).at(7, 30, 0, 0)); |
1117 | /// |
1118 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1119 | /// ``` |
1120 | /// |
1121 | /// This example shows how to find the "nth" weekday going backwards in |
1122 | /// time: |
1123 | /// |
1124 | /// ``` |
1125 | /// use jiff::civil::{Weekday, date}; |
1126 | /// |
1127 | /// // Use a Sunday in March as our start date. |
1128 | /// let dt = date(2024, 3, 10).at(7, 30, 0, 0); |
1129 | /// assert_eq!(dt.weekday(), Weekday::Sunday); |
1130 | /// |
1131 | /// // "last Saturday" was yesterday! |
1132 | /// let last_saturday = dt.nth_weekday(-1, Weekday::Saturday)?; |
1133 | /// assert_eq!(last_saturday, date(2024, 3, 9).at(7, 30, 0, 0)); |
1134 | /// |
1135 | /// // "last Sunday" was a week ago. |
1136 | /// let last_sunday = dt.nth_weekday(-1, Weekday::Sunday)?; |
1137 | /// assert_eq!(last_sunday, date(2024, 3, 3).at(7, 30, 0, 0)); |
1138 | /// |
1139 | /// // "not last Thursday, but the one before" |
1140 | /// let prev_prev_thursday = dt.nth_weekday(-2, Weekday::Thursday)?; |
1141 | /// assert_eq!(prev_prev_thursday, date(2024, 2, 29).at(7, 30, 0, 0)); |
1142 | /// |
1143 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1144 | /// ``` |
1145 | /// |
1146 | /// This example shows that overflow results in an error in either |
1147 | /// direction: |
1148 | /// |
1149 | /// ``` |
1150 | /// use jiff::civil::{DateTime, Weekday}; |
1151 | /// |
1152 | /// let dt = DateTime::MAX; |
1153 | /// assert_eq!(dt.weekday(), Weekday::Friday); |
1154 | /// assert!(dt.nth_weekday(1, Weekday::Saturday).is_err()); |
1155 | /// |
1156 | /// let dt = DateTime::MIN; |
1157 | /// assert_eq!(dt.weekday(), Weekday::Monday); |
1158 | /// assert!(dt.nth_weekday(-1, Weekday::Sunday).is_err()); |
1159 | /// ``` |
1160 | /// |
1161 | /// # Example: the start of Israeli summer time |
1162 | /// |
1163 | /// Israeli law says (at present, as of 2024-03-11) that DST or |
1164 | /// "summer time" starts on the Friday before the last Sunday in |
1165 | /// March. We can find that date using both `nth_weekday` and |
1166 | /// [`DateTime::nth_weekday_of_month`]: |
1167 | /// |
1168 | /// ``` |
1169 | /// use jiff::civil::{Weekday, date}; |
1170 | /// |
1171 | /// let march = date(2024, 3, 1).at(0, 0, 0, 0); |
1172 | /// let last_sunday = march.nth_weekday_of_month(-1, Weekday::Sunday)?; |
1173 | /// let dst_starts_on = last_sunday.nth_weekday(-1, Weekday::Friday)?; |
1174 | /// assert_eq!(dst_starts_on, date(2024, 3, 29).at(0, 0, 0, 0)); |
1175 | /// |
1176 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1177 | /// ``` |
1178 | /// |
1179 | /// # Example: getting the start of the week |
1180 | /// |
1181 | /// Given a date, one can use `nth_weekday` to determine the start of the |
1182 | /// week in which the date resides in. This might vary based on whether |
1183 | /// the weeks start on Sunday or Monday. This example shows how to handle |
1184 | /// both. |
1185 | /// |
1186 | /// ``` |
1187 | /// use jiff::civil::{Weekday, date}; |
1188 | /// |
1189 | /// let dt = date(2024, 3, 15).at(7, 30, 0, 0); |
1190 | /// // For weeks starting with Sunday. |
1191 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
1192 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(7, 30, 0, 0)); |
1193 | /// // For weeks starting with Monday. |
1194 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Monday)?; |
1195 | /// assert_eq!(start_of_week, date(2024, 3, 11).at(7, 30, 0, 0)); |
1196 | /// |
1197 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1198 | /// ``` |
1199 | /// |
1200 | /// In the above example, we first get the date after the current one |
1201 | /// because `nth_weekday` does not consider itself when counting. This |
1202 | /// works as expected even at the boundaries of a week: |
1203 | /// |
1204 | /// ``` |
1205 | /// use jiff::civil::{Time, Weekday, date}; |
1206 | /// |
1207 | /// // The start of the week. |
1208 | /// let dt = date(2024, 3, 10).at(0, 0, 0, 0); |
1209 | /// let start_of_week = dt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
1210 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(0, 0, 0, 0)); |
1211 | /// // The end of the week. |
1212 | /// let dt = date(2024, 3, 16).at(23, 59, 59, 999_999_999); |
1213 | /// let start_of_week = dt |
1214 | /// .tomorrow()? |
1215 | /// .nth_weekday(-1, Weekday::Sunday)? |
1216 | /// .with().time(Time::midnight()).build()?; |
1217 | /// assert_eq!(start_of_week, date(2024, 3, 10).at(0, 0, 0, 0)); |
1218 | /// |
1219 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1220 | /// ``` |
1221 | #[inline ] |
1222 | pub fn nth_weekday( |
1223 | self, |
1224 | nth: i32, |
1225 | weekday: Weekday, |
1226 | ) -> Result<DateTime, Error> { |
1227 | let date = self.date().nth_weekday(nth, weekday)?; |
1228 | Ok(DateTime::from_parts(date, self.time())) |
1229 | } |
1230 | |
1231 | /// Returns the date component of this datetime. |
1232 | /// |
1233 | /// # Example |
1234 | /// |
1235 | /// ``` |
1236 | /// use jiff::civil::date; |
1237 | /// |
1238 | /// let dt = date(2024, 3, 14).at(18, 45, 0, 0); |
1239 | /// assert_eq!(dt.date(), date(2024, 3, 14)); |
1240 | /// ``` |
1241 | #[inline ] |
1242 | pub fn date(self) -> Date { |
1243 | self.date |
1244 | } |
1245 | |
1246 | /// Returns the time component of this datetime. |
1247 | /// |
1248 | /// # Example |
1249 | /// |
1250 | /// ``` |
1251 | /// use jiff::civil::{date, time}; |
1252 | /// |
1253 | /// let dt = date(2024, 3, 14).at(18, 45, 0, 0); |
1254 | /// assert_eq!(dt.time(), time(18, 45, 0, 0)); |
1255 | /// ``` |
1256 | #[inline ] |
1257 | pub fn time(self) -> Time { |
1258 | self.time |
1259 | } |
1260 | |
1261 | /// Construct an [ISO 8601 week date] from this datetime. |
1262 | /// |
1263 | /// The [`ISOWeekDate`] type describes itself in more detail, but in |
1264 | /// brief, the ISO week date calendar system eschews months in favor of |
1265 | /// weeks. |
1266 | /// |
1267 | /// This routine is equivalent to |
1268 | /// [`ISOWeekDate::from_date(dt.date())`](ISOWeekDate::from_date). |
1269 | /// |
1270 | /// [ISO 8601 week date]: https://en.wikipedia.org/wiki/ISO_week_date |
1271 | /// |
1272 | /// # Example |
1273 | /// |
1274 | /// This shows a number of examples demonstrating the conversion from a |
1275 | /// Gregorian date to an ISO 8601 week date: |
1276 | /// |
1277 | /// ``` |
1278 | /// use jiff::civil::{Date, Time, Weekday, date}; |
1279 | /// |
1280 | /// let dt = date(1995, 1, 1).at(18, 45, 0, 0); |
1281 | /// let weekdate = dt.iso_week_date(); |
1282 | /// assert_eq!(weekdate.year(), 1994); |
1283 | /// assert_eq!(weekdate.week(), 52); |
1284 | /// assert_eq!(weekdate.weekday(), Weekday::Sunday); |
1285 | /// |
1286 | /// let dt = date(1996, 12, 31).at(18, 45, 0, 0); |
1287 | /// let weekdate = dt.iso_week_date(); |
1288 | /// assert_eq!(weekdate.year(), 1997); |
1289 | /// assert_eq!(weekdate.week(), 1); |
1290 | /// assert_eq!(weekdate.weekday(), Weekday::Tuesday); |
1291 | /// |
1292 | /// let dt = date(2019, 12, 30).at(18, 45, 0, 0); |
1293 | /// let weekdate = dt.iso_week_date(); |
1294 | /// assert_eq!(weekdate.year(), 2020); |
1295 | /// assert_eq!(weekdate.week(), 1); |
1296 | /// assert_eq!(weekdate.weekday(), Weekday::Monday); |
1297 | /// |
1298 | /// let dt = date(2024, 3, 9).at(18, 45, 0, 0); |
1299 | /// let weekdate = dt.iso_week_date(); |
1300 | /// assert_eq!(weekdate.year(), 2024); |
1301 | /// assert_eq!(weekdate.week(), 10); |
1302 | /// assert_eq!(weekdate.weekday(), Weekday::Saturday); |
1303 | /// |
1304 | /// let dt = Date::MIN.to_datetime(Time::MIN); |
1305 | /// let weekdate = dt.iso_week_date(); |
1306 | /// assert_eq!(weekdate.year(), -9999); |
1307 | /// assert_eq!(weekdate.week(), 1); |
1308 | /// assert_eq!(weekdate.weekday(), Weekday::Monday); |
1309 | /// |
1310 | /// let dt = Date::MAX.to_datetime(Time::MAX); |
1311 | /// let weekdate = dt.iso_week_date(); |
1312 | /// assert_eq!(weekdate.year(), 9999); |
1313 | /// assert_eq!(weekdate.week(), 52); |
1314 | /// assert_eq!(weekdate.weekday(), Weekday::Friday); |
1315 | /// ``` |
1316 | #[inline ] |
1317 | pub fn iso_week_date(self) -> ISOWeekDate { |
1318 | self.date().iso_week_date() |
1319 | } |
1320 | |
1321 | /// Converts a civil datetime to a [`Zoned`] datetime by adding the given |
1322 | /// time zone. |
1323 | /// |
1324 | /// The name given is resolved to a [`TimeZone`] by using the default |
1325 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by |
1326 | /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function for |
1327 | /// [`DateTime::to_zoned`] where the time zone database lookup is done |
1328 | /// automatically. |
1329 | /// |
1330 | /// In some cases, a civil datetime may be ambiguous in a |
1331 | /// particular time zone. This routine automatically utilizes the |
1332 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation) strategy |
1333 | /// for resolving ambiguities. That is, if a civil datetime occurs in a |
1334 | /// backward transition (called a fold), then the earlier time is selected. |
1335 | /// Or if a civil datetime occurs in a forward transition (called a gap), |
1336 | /// then the later time is selected. |
1337 | /// |
1338 | /// To convert a datetime to a `Zoned` using a different disambiguation |
1339 | /// strategy, use [`TimeZone::to_ambiguous_zoned`]. |
1340 | /// |
1341 | /// # Errors |
1342 | /// |
1343 | /// This returns an error when the given time zone name could not be found |
1344 | /// in the default time zone database. |
1345 | /// |
1346 | /// This also returns an error if this datetime could not be represented as |
1347 | /// an instant. This can occur in some cases near the minimum and maximum |
1348 | /// boundaries of a `DateTime`. |
1349 | /// |
1350 | /// # Example |
1351 | /// |
1352 | /// This is a simple example of converting a civil datetime (a "wall" or |
1353 | /// "local" or "naive" datetime) to a datetime that is aware of its time |
1354 | /// zone: |
1355 | /// |
1356 | /// ``` |
1357 | /// use jiff::civil::DateTime; |
1358 | /// |
1359 | /// let dt: DateTime = "2024-06-20 15:06" .parse()?; |
1360 | /// let zdt = dt.in_tz("America/New_York" )?; |
1361 | /// assert_eq!(zdt.to_string(), "2024-06-20T15:06:00-04:00[America/New_York]" ); |
1362 | /// |
1363 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1364 | /// ``` |
1365 | /// |
1366 | /// # Example: dealing with ambiguity |
1367 | /// |
1368 | /// In the `America/New_York` time zone, there was a forward transition |
1369 | /// at `2024-03-10 02:00:00` civil time, and a backward transition at |
1370 | /// `2024-11-03 01:00:00` civil time. In the former case, a gap was |
1371 | /// created such that the 2 o'clock hour never appeared on clocks for folks |
1372 | /// in the `America/New_York` time zone. In the latter case, a fold was |
1373 | /// created such that the 1 o'clock hour was repeated. Thus, March 10, 2024 |
1374 | /// in New York was 23 hours long, while November 3, 2024 in New York was |
1375 | /// 25 hours long. |
1376 | /// |
1377 | /// This example shows how datetimes in these gaps and folds are resolved |
1378 | /// by default: |
1379 | /// |
1380 | /// ``` |
1381 | /// use jiff::civil::DateTime; |
1382 | /// |
1383 | /// // This is the gap, where by default we select the later time. |
1384 | /// let dt: DateTime = "2024-03-10 02:30" .parse()?; |
1385 | /// let zdt = dt.in_tz("America/New_York" )?; |
1386 | /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]" ); |
1387 | /// |
1388 | /// // This is the fold, where by default we select the earlier time. |
1389 | /// let dt: DateTime = "2024-11-03 01:30" .parse()?; |
1390 | /// let zdt = dt.in_tz("America/New_York" )?; |
1391 | /// // Since this is a fold, the wall clock time is repeated. It might be |
1392 | /// // hard to see that this is the earlier time, but notice the offset: |
1393 | /// // it is the offset for DST time in New York. The later time, or the |
1394 | /// // repetition of the 1 o'clock hour, would occur in standard time, |
1395 | /// // which is an offset of -05 for New York. |
1396 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
1397 | /// |
1398 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1399 | /// ``` |
1400 | /// |
1401 | /// # Example: errors |
1402 | /// |
1403 | /// This routine can return an error when the time zone is unrecognized: |
1404 | /// |
1405 | /// ``` |
1406 | /// use jiff::civil::date; |
1407 | /// |
1408 | /// let dt = date(2024, 6, 20).at(15, 6, 0, 0); |
1409 | /// assert!(dt.in_tz("does not exist" ).is_err()); |
1410 | /// ``` |
1411 | /// |
1412 | /// Note that even if a time zone exists in, say, the IANA database, there |
1413 | /// may have been a problem reading it from your system's installation of |
1414 | /// that database. To see what wrong, enable Jiff's `logging` crate feature |
1415 | /// and install a logger. If there was a failure, then a `WARN` level log |
1416 | /// message should be emitted. |
1417 | /// |
1418 | /// This routine can also fail if this datetime cannot be represented |
1419 | /// within the allowable timestamp limits: |
1420 | /// |
1421 | /// ``` |
1422 | /// use jiff::{civil::DateTime, tz::{Offset, TimeZone}}; |
1423 | /// |
1424 | /// let dt = DateTime::MAX; |
1425 | /// // All errors because the combination of the offset and the datetime |
1426 | /// // isn't enough to fit into timestamp limits. |
1427 | /// assert!(dt.in_tz("UTC" ).is_err()); |
1428 | /// assert!(dt.in_tz("America/New_York" ).is_err()); |
1429 | /// assert!(dt.in_tz("Australia/Tasmania" ).is_err()); |
1430 | /// // In fact, the only valid offset one can use to turn the maximum civil |
1431 | /// // datetime into a Zoned value is the maximum offset: |
1432 | /// let tz = Offset::from_seconds(93_599).unwrap().to_time_zone(); |
1433 | /// assert!(dt.to_zoned(tz).is_ok()); |
1434 | /// // One second less than the maximum offset results in a failure at the |
1435 | /// // maximum datetime boundary. |
1436 | /// let tz = Offset::from_seconds(93_598).unwrap().to_time_zone(); |
1437 | /// assert!(dt.to_zoned(tz).is_err()); |
1438 | /// ``` |
1439 | /// |
1440 | /// This behavior exists because it guarantees that every possible `Zoned` |
1441 | /// value can be converted into a civil datetime, but not every possible |
1442 | /// combination of civil datetime and offset can be converted into a |
1443 | /// `Zoned` value. There isn't a way to make every possible roundtrip |
1444 | /// lossless in both directions, so Jiff chooses to ensure that there is |
1445 | /// always a way to convert a `Zoned` instant to a human readable wall |
1446 | /// clock time. |
1447 | #[inline ] |
1448 | pub fn in_tz(self, time_zone_name: &str) -> Result<Zoned, Error> { |
1449 | let tz = crate::tz::db().get(time_zone_name)?; |
1450 | self.to_zoned(tz) |
1451 | } |
1452 | |
1453 | /// Converts a civil datetime to a [`Zoned`] datetime by adding the given |
1454 | /// [`TimeZone`]. |
1455 | /// |
1456 | /// In some cases, a civil datetime may be ambiguous in a |
1457 | /// particular time zone. This routine automatically utilizes the |
1458 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation) strategy |
1459 | /// for resolving ambiguities. That is, if a civil datetime occurs in a |
1460 | /// backward transition (called a fold), then the earlier time is selected. |
1461 | /// Or if a civil datetime occurs in a forward transition (called a gap), |
1462 | /// then the later time is selected. |
1463 | /// |
1464 | /// To convert a datetime to a `Zoned` using a different disambiguation |
1465 | /// strategy, use [`TimeZone::to_ambiguous_zoned`]. |
1466 | /// |
1467 | /// In the common case of a time zone being represented as a name string, |
1468 | /// like `Australia/Tasmania`, consider using [`DateTime::in_tz`] |
1469 | /// instead. |
1470 | /// |
1471 | /// # Errors |
1472 | /// |
1473 | /// This returns an error if this datetime could not be represented as an |
1474 | /// instant. This can occur in some cases near the minimum and maximum |
1475 | /// boundaries of a `DateTime`. |
1476 | /// |
1477 | /// # Example |
1478 | /// |
1479 | /// This example shows how to create a zoned value with a fixed time zone |
1480 | /// offset: |
1481 | /// |
1482 | /// ``` |
1483 | /// use jiff::{civil::date, tz::{self, TimeZone}}; |
1484 | /// |
1485 | /// let tz = TimeZone::fixed(tz::offset(-4)); |
1486 | /// let zdt = date(2024, 6, 20).at(17, 3, 0, 0).to_zoned(tz)?; |
1487 | /// // A time zone annotation is still included in the printable version |
1488 | /// // of the Zoned value, but it is fixed to a particular offset. |
1489 | /// assert_eq!(zdt.to_string(), "2024-06-20T17:03:00-04:00[-04:00]" ); |
1490 | /// |
1491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1492 | /// ``` |
1493 | /// |
1494 | /// # Example: POSIX time zone strings |
1495 | /// |
1496 | /// And this example shows how to create a time zone from a POSIX time |
1497 | /// zone string that describes the transition to and from daylight saving |
1498 | /// time for `America/St_Johns`. In particular, this rule uses non-zero |
1499 | /// minutes, which is atypical. |
1500 | /// |
1501 | /// ``` |
1502 | /// use jiff::{civil::date, tz::TimeZone}; |
1503 | /// |
1504 | /// let tz = TimeZone::posix("NST3:30NDT,M3.2.0,M11.1.0" )?; |
1505 | /// let zdt = date(2024, 6, 20).at(17, 3, 0, 0).to_zoned(tz)?; |
1506 | /// // There isn't any agreed upon mechanism for transmitting a POSIX time |
1507 | /// // zone string within an RFC 9557 TZ annotation, so Jiff just emits the |
1508 | /// // offset. In practice, POSIX TZ strings are rarely user facing anyway. |
1509 | /// // (They are still in widespread use as an implementation detail of the |
1510 | /// // IANA Time Zone Database however.) |
1511 | /// assert_eq!(zdt.to_string(), "2024-06-20T17:03:00-02:30[-02:30]" ); |
1512 | /// |
1513 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1514 | /// ``` |
1515 | #[inline ] |
1516 | pub fn to_zoned(self, tz: TimeZone) -> Result<Zoned, Error> { |
1517 | use crate::tz::AmbiguousOffset; |
1518 | |
1519 | // It's pretty disappointing that we do this instead of the |
1520 | // simpler: |
1521 | // |
1522 | // tz.into_ambiguous_zoned(self).compatible() |
1523 | // |
1524 | // Below, in the common case of an unambiguous datetime, |
1525 | // we avoid doing the work to re-derive the datetime *and* |
1526 | // offset from the timestamp we find from tzdb. In particular, |
1527 | // `Zoned::new` does this work given a timestamp and a time |
1528 | // zone. But we circumvent `Zoned::new` and use a special |
1529 | // `Zoned::from_parts` crate-internal constructor to handle |
1530 | // this case. |
1531 | // |
1532 | // Ideally we could do this in `AmbiguousZoned::compatible` |
1533 | // itself, but it turns out that it doesn't always work. |
1534 | // Namely, that API supports providing an unambiguous |
1535 | // offset even when the civil datetime is within a |
1536 | // DST transition. In that case, once the timestamp |
1537 | // is resolved, the offset given might actually |
1538 | // change. See `2024-03-11T02:02[America/New_York]` |
1539 | // example for `AlwaysOffset` conflict resolution on |
1540 | // `ZonedWith::disambiguation`. |
1541 | // |
1542 | // But the optimization works here because if we get an |
1543 | // unambiguous offset from tzdb, then we know it isn't in a DST |
1544 | // transition and that it won't change with the timestamp. |
1545 | // |
1546 | // This ends up saving a fair bit of cycles re-computing |
1547 | // the offset (which requires another tzdb lookup) and |
1548 | // re-generating the civil datetime from the timestamp for the |
1549 | // re-computed offset. This helps the |
1550 | // `civil_datetime_to_timestamp_tzdb_lookup/zoneinfo/jiff` |
1551 | // micro-benchmark quite a bit. |
1552 | let dt = self; |
1553 | let amb_ts = tz.to_ambiguous_timestamp(dt); |
1554 | let (offset, ts, dt) = match amb_ts.offset() { |
1555 | AmbiguousOffset::Unambiguous { offset } => { |
1556 | let ts = offset.to_timestamp(dt)?; |
1557 | (offset, ts, dt) |
1558 | } |
1559 | AmbiguousOffset::Gap { before, .. } => { |
1560 | let ts = before.to_timestamp(dt)?; |
1561 | let offset = tz.to_offset(ts); |
1562 | let dt = offset.to_datetime(ts); |
1563 | (offset, ts, dt) |
1564 | } |
1565 | AmbiguousOffset::Fold { before, .. } => { |
1566 | let ts = before.to_timestamp(dt)?; |
1567 | let offset = tz.to_offset(ts); |
1568 | let dt = offset.to_datetime(ts); |
1569 | (offset, ts, dt) |
1570 | } |
1571 | }; |
1572 | Ok(Zoned::from_parts(ts, tz, offset, dt)) |
1573 | } |
1574 | |
1575 | /// Add the given span of time to this datetime. If the sum would overflow |
1576 | /// the minimum or maximum datetime values, then an error is returned. |
1577 | /// |
1578 | /// This operation accepts three different duration types: [`Span`], |
1579 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
1580 | /// `From` trait implementations for the [`DateTimeArithmetic`] type. |
1581 | /// |
1582 | /// # Properties |
1583 | /// |
1584 | /// This routine is _not_ reversible because some additions may |
1585 | /// be ambiguous. For example, adding `1 month` to the datetime |
1586 | /// `2024-03-31T00:00:00` will produce `2024-04-30T00:00:00` since April |
1587 | /// has only 30 days in a month. Moreover, subtracting `1 month` from |
1588 | /// `2024-04-30T00:00:00` will produce `2024-03-30T00:00:00`, which is not |
1589 | /// the date we started with. |
1590 | /// |
1591 | /// If spans of time are limited to units of days (or less), then this |
1592 | /// routine _is_ reversible. This also implies that all operations with a |
1593 | /// [`SignedDuration`] or a [`std::time::Duration`] are reversible. |
1594 | /// |
1595 | /// # Errors |
1596 | /// |
1597 | /// If the span added to this datetime would result in a datetime that |
1598 | /// exceeds the range of a `DateTime`, then this will return an error. |
1599 | /// |
1600 | /// # Example |
1601 | /// |
1602 | /// This shows a few examples of adding spans of time to various dates. |
1603 | /// We make use of the [`ToSpan`](crate::ToSpan) trait for convenient |
1604 | /// creation of spans. |
1605 | /// |
1606 | /// ``` |
1607 | /// use jiff::{civil::date, ToSpan}; |
1608 | /// |
1609 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
1610 | /// let got = dt.checked_add(20.years().months(4).nanoseconds(500))?; |
1611 | /// assert_eq!(got, date(2016, 4, 7).at(3, 24, 30, 4_000)); |
1612 | /// |
1613 | /// let dt = date(2019, 1, 31).at(15, 30, 0, 0); |
1614 | /// let got = dt.checked_add(1.months())?; |
1615 | /// assert_eq!(got, date(2019, 2, 28).at(15, 30, 0, 0)); |
1616 | /// |
1617 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1618 | /// ``` |
1619 | /// |
1620 | /// # Example: available via addition operator |
1621 | /// |
1622 | /// This routine can be used via the `+` operator. Note though that if it |
1623 | /// fails, it will result in a panic. |
1624 | /// |
1625 | /// ``` |
1626 | /// use jiff::{civil::date, ToSpan}; |
1627 | /// |
1628 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
1629 | /// let got = dt + 20.years().months(4).nanoseconds(500); |
1630 | /// assert_eq!(got, date(2016, 4, 7).at(3, 24, 30, 4_000)); |
1631 | /// ``` |
1632 | /// |
1633 | /// # Example: negative spans are supported |
1634 | /// |
1635 | /// ``` |
1636 | /// use jiff::{civil::date, ToSpan}; |
1637 | /// |
1638 | /// let dt = date(2024, 3, 31).at(19, 5, 59, 999_999_999); |
1639 | /// assert_eq!( |
1640 | /// dt.checked_add(-1.months())?, |
1641 | /// date(2024, 2, 29).at(19, 5, 59, 999_999_999), |
1642 | /// ); |
1643 | /// |
1644 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1645 | /// ``` |
1646 | /// |
1647 | /// # Example: error on overflow |
1648 | /// |
1649 | /// ``` |
1650 | /// use jiff::{civil::date, ToSpan}; |
1651 | /// |
1652 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
1653 | /// assert!(dt.checked_add(9000.years()).is_err()); |
1654 | /// assert!(dt.checked_add(-19000.years()).is_err()); |
1655 | /// ``` |
1656 | /// |
1657 | /// # Example: adding absolute durations |
1658 | /// |
1659 | /// This shows how to add signed and unsigned absolute durations to a |
1660 | /// `DateTime`. |
1661 | /// |
1662 | /// ``` |
1663 | /// use std::time::Duration; |
1664 | /// |
1665 | /// use jiff::{civil::date, SignedDuration}; |
1666 | /// |
1667 | /// let dt = date(2024, 2, 29).at(0, 0, 0, 0); |
1668 | /// |
1669 | /// let dur = SignedDuration::from_hours(25); |
1670 | /// assert_eq!(dt.checked_add(dur)?, date(2024, 3, 1).at(1, 0, 0, 0)); |
1671 | /// assert_eq!(dt.checked_add(-dur)?, date(2024, 2, 27).at(23, 0, 0, 0)); |
1672 | /// |
1673 | /// let dur = Duration::from_secs(25 * 60 * 60); |
1674 | /// assert_eq!(dt.checked_add(dur)?, date(2024, 3, 1).at(1, 0, 0, 0)); |
1675 | /// // One cannot negate an unsigned duration, |
1676 | /// // but you can subtract it! |
1677 | /// assert_eq!(dt.checked_sub(dur)?, date(2024, 2, 27).at(23, 0, 0, 0)); |
1678 | /// |
1679 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1680 | /// ``` |
1681 | #[inline ] |
1682 | pub fn checked_add<A: Into<DateTimeArithmetic>>( |
1683 | self, |
1684 | duration: A, |
1685 | ) -> Result<DateTime, Error> { |
1686 | let duration: DateTimeArithmetic = duration.into(); |
1687 | duration.checked_add(self) |
1688 | } |
1689 | |
1690 | #[inline ] |
1691 | fn checked_add_span(self, span: Span) -> Result<DateTime, Error> { |
1692 | let (old_date, old_time) = (self.date(), self.time()); |
1693 | let units = span.units(); |
1694 | match (units.only_calendar().is_empty(), units.only_time().is_empty()) |
1695 | { |
1696 | (true, true) => Ok(self), |
1697 | (false, true) => { |
1698 | let new_date = |
1699 | old_date.checked_add(span).with_context(|| { |
1700 | err!("failed to add {span} to {old_date}" ) |
1701 | })?; |
1702 | Ok(DateTime::from_parts(new_date, old_time)) |
1703 | } |
1704 | (true, false) => { |
1705 | let (new_time, leftovers) = |
1706 | old_time.overflowing_add(span).with_context(|| { |
1707 | err!("failed to add {span} to {old_time}" ) |
1708 | })?; |
1709 | let new_date = |
1710 | old_date.checked_add(leftovers).with_context(|| { |
1711 | err!( |
1712 | "failed to add overflowing span, {leftovers}, \ |
1713 | from adding {span} to {old_time}, \ |
1714 | to {old_date}" , |
1715 | ) |
1716 | })?; |
1717 | Ok(DateTime::from_parts(new_date, new_time)) |
1718 | } |
1719 | (false, false) => self.checked_add_span_general(&span), |
1720 | } |
1721 | } |
1722 | |
1723 | #[inline (never)] |
1724 | #[cold ] |
1725 | fn checked_add_span_general(self, span: &Span) -> Result<DateTime, Error> { |
1726 | let (old_date, old_time) = (self.date(), self.time()); |
1727 | let span_date = span.without_lower(Unit::Day); |
1728 | let span_time = span.only_lower(Unit::Day); |
1729 | |
1730 | let (new_time, leftovers) = |
1731 | old_time.overflowing_add(span_time).with_context(|| { |
1732 | err!("failed to add {span_time} to {old_time}" ) |
1733 | })?; |
1734 | let new_date = old_date.checked_add(span_date).with_context(|| { |
1735 | err!("failed to add {span_date} to {old_date}" ) |
1736 | })?; |
1737 | let new_date = new_date.checked_add(leftovers).with_context(|| { |
1738 | err!( |
1739 | "failed to add overflowing span, {leftovers}, \ |
1740 | from adding {span_time} to {old_time}, \ |
1741 | to {new_date}" , |
1742 | ) |
1743 | })?; |
1744 | Ok(DateTime::from_parts(new_date, new_time)) |
1745 | } |
1746 | |
1747 | #[inline ] |
1748 | fn checked_add_duration( |
1749 | self, |
1750 | duration: SignedDuration, |
1751 | ) -> Result<DateTime, Error> { |
1752 | let (date, time) = (self.date(), self.time()); |
1753 | let (new_time, leftovers) = time.overflowing_add_duration(duration)?; |
1754 | let new_date = date.checked_add(leftovers).with_context(|| { |
1755 | err!( |
1756 | "failed to add overflowing signed duration, {leftovers:?}, \ |
1757 | from adding {duration:?} to {time}, |
1758 | to {date}" , |
1759 | ) |
1760 | })?; |
1761 | Ok(DateTime::from_parts(new_date, new_time)) |
1762 | } |
1763 | |
1764 | /// This routine is identical to [`DateTime::checked_add`] with the |
1765 | /// duration negated. |
1766 | /// |
1767 | /// # Errors |
1768 | /// |
1769 | /// This has the same error conditions as [`DateTime::checked_add`]. |
1770 | /// |
1771 | /// # Example |
1772 | /// |
1773 | /// This routine can be used via the `-` operator. Note though that if it |
1774 | /// fails, it will result in a panic. |
1775 | /// |
1776 | /// ``` |
1777 | /// use std::time::Duration; |
1778 | /// |
1779 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
1780 | /// |
1781 | /// let dt = date(1995, 12, 7).at(3, 24, 30, 3_500); |
1782 | /// assert_eq!( |
1783 | /// dt - 20.years().months(4).nanoseconds(500), |
1784 | /// date(1975, 8, 7).at(3, 24, 30, 3_000), |
1785 | /// ); |
1786 | /// |
1787 | /// let dur = SignedDuration::new(24 * 60 * 60, 3_500); |
1788 | /// assert_eq!(dt - dur, date(1995, 12, 6).at(3, 24, 30, 0)); |
1789 | /// |
1790 | /// let dur = Duration::new(24 * 60 * 60, 3_500); |
1791 | /// assert_eq!(dt - dur, date(1995, 12, 6).at(3, 24, 30, 0)); |
1792 | /// |
1793 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1794 | /// ``` |
1795 | #[inline ] |
1796 | pub fn checked_sub<A: Into<DateTimeArithmetic>>( |
1797 | self, |
1798 | duration: A, |
1799 | ) -> Result<DateTime, Error> { |
1800 | let duration: DateTimeArithmetic = duration.into(); |
1801 | duration.checked_neg().and_then(|dta| dta.checked_add(self)) |
1802 | } |
1803 | |
1804 | /// This routine is identical to [`DateTime::checked_add`], except the |
1805 | /// result saturates on overflow. That is, instead of overflow, either |
1806 | /// [`DateTime::MIN`] or [`DateTime::MAX`] is returned. |
1807 | /// |
1808 | /// # Example |
1809 | /// |
1810 | /// ``` |
1811 | /// use jiff::{civil::{DateTime, date}, SignedDuration, ToSpan}; |
1812 | /// |
1813 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
1814 | /// assert_eq!(DateTime::MAX, dt.saturating_add(9000.years())); |
1815 | /// assert_eq!(DateTime::MIN, dt.saturating_add(-19000.years())); |
1816 | /// assert_eq!(DateTime::MAX, dt.saturating_add(SignedDuration::MAX)); |
1817 | /// assert_eq!(DateTime::MIN, dt.saturating_add(SignedDuration::MIN)); |
1818 | /// assert_eq!(DateTime::MAX, dt.saturating_add(std::time::Duration::MAX)); |
1819 | /// ``` |
1820 | #[inline ] |
1821 | pub fn saturating_add<A: Into<DateTimeArithmetic>>( |
1822 | self, |
1823 | duration: A, |
1824 | ) -> DateTime { |
1825 | let duration: DateTimeArithmetic = duration.into(); |
1826 | self.checked_add(duration).unwrap_or_else(|_| { |
1827 | if duration.is_negative() { |
1828 | DateTime::MIN |
1829 | } else { |
1830 | DateTime::MAX |
1831 | } |
1832 | }) |
1833 | } |
1834 | |
1835 | /// This routine is identical to [`DateTime::saturating_add`] with the span |
1836 | /// parameter negated. |
1837 | /// |
1838 | /// # Example |
1839 | /// |
1840 | /// ``` |
1841 | /// use jiff::{civil::{DateTime, date}, SignedDuration, ToSpan}; |
1842 | /// |
1843 | /// let dt = date(2024, 3, 31).at(13, 13, 13, 13); |
1844 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(19000.years())); |
1845 | /// assert_eq!(DateTime::MAX, dt.saturating_sub(-9000.years())); |
1846 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(SignedDuration::MAX)); |
1847 | /// assert_eq!(DateTime::MAX, dt.saturating_sub(SignedDuration::MIN)); |
1848 | /// assert_eq!(DateTime::MIN, dt.saturating_sub(std::time::Duration::MAX)); |
1849 | /// ``` |
1850 | #[inline ] |
1851 | pub fn saturating_sub<A: Into<DateTimeArithmetic>>( |
1852 | self, |
1853 | duration: A, |
1854 | ) -> DateTime { |
1855 | let duration: DateTimeArithmetic = duration.into(); |
1856 | let Ok(duration) = duration.checked_neg() else { |
1857 | return DateTime::MIN; |
1858 | }; |
1859 | self.saturating_add(duration) |
1860 | } |
1861 | |
1862 | /// Returns a span representing the elapsed time from this datetime until |
1863 | /// the given `other` datetime. |
1864 | /// |
1865 | /// When `other` occurs before this datetime, then the span returned will |
1866 | /// be negative. |
1867 | /// |
1868 | /// Depending on the input provided, the span returned is rounded. It may |
1869 | /// also be balanced up to bigger units than the default. By default, the |
1870 | /// span returned is balanced such that the biggest possible unit is days. |
1871 | /// This default is an API guarantee. Users can rely on the default not |
1872 | /// returning any calendar units bigger than days in the default |
1873 | /// configuration. |
1874 | /// |
1875 | /// This operation is configured by providing a [`DateTimeDifference`] |
1876 | /// value. Since this routine accepts anything that implements |
1877 | /// `Into<DateTimeDifference>`, once can pass a `DateTime` directly. |
1878 | /// One can also pass a `(Unit, DateTime)`, where `Unit` is treated as |
1879 | /// [`DateTimeDifference::largest`]. |
1880 | /// |
1881 | /// # Properties |
1882 | /// |
1883 | /// It is guaranteed that if the returned span is subtracted from `other`, |
1884 | /// and if no rounding is requested, and if the largest unit requested is |
1885 | /// at most `Unit::Day`, then the original datetime will be returned. |
1886 | /// |
1887 | /// This routine is equivalent to `self.since(other).map(|span| -span)` |
1888 | /// if no rounding options are set. If rounding options are set, then |
1889 | /// it's equivalent to |
1890 | /// `self.since(other_without_rounding_options).map(|span| -span)`, |
1891 | /// followed by a call to [`Span::round`] with the appropriate rounding |
1892 | /// options set. This is because the negation of a span can result in |
1893 | /// different rounding results depending on the rounding mode. |
1894 | /// |
1895 | /// # Errors |
1896 | /// |
1897 | /// An error can occur in some cases when the requested configuration would |
1898 | /// result in a span that is beyond allowable limits. For example, the |
1899 | /// nanosecond component of a span cannot the span of time between the |
1900 | /// minimum and maximum datetime supported by Jiff. Therefore, if one |
1901 | /// requests a span with its largest unit set to [`Unit::Nanosecond`], then |
1902 | /// it's possible for this routine to fail. |
1903 | /// |
1904 | /// It is guaranteed that if one provides a datetime with the default |
1905 | /// [`DateTimeDifference`] configuration, then this routine will never |
1906 | /// fail. |
1907 | /// |
1908 | /// # Example |
1909 | /// |
1910 | /// ``` |
1911 | /// use jiff::{civil::date, ToSpan}; |
1912 | /// |
1913 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
1914 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
1915 | /// assert_eq!( |
1916 | /// earlier.until(later)?, |
1917 | /// 4542.days().hours(22).minutes(30).fieldwise(), |
1918 | /// ); |
1919 | /// |
1920 | /// // Flipping the dates is fine, but you'll get a negative span. |
1921 | /// assert_eq!( |
1922 | /// later.until(earlier)?, |
1923 | /// -4542.days().hours(22).minutes(30).fieldwise(), |
1924 | /// ); |
1925 | /// |
1926 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1927 | /// ``` |
1928 | /// |
1929 | /// # Example: using bigger units |
1930 | /// |
1931 | /// This example shows how to expand the span returned to bigger units. |
1932 | /// This makes use of a `From<(Unit, DateTime)> for DateTimeDifference` |
1933 | /// trait implementation. |
1934 | /// |
1935 | /// ``` |
1936 | /// use jiff::{civil::date, Unit, ToSpan}; |
1937 | /// |
1938 | /// let dt1 = date(1995, 12, 07).at(3, 24, 30, 3500); |
1939 | /// let dt2 = date(2019, 01, 31).at(15, 30, 0, 0); |
1940 | /// |
1941 | /// // The default limits durations to using "days" as the biggest unit. |
1942 | /// let span = dt1.until(dt2)?; |
1943 | /// assert_eq!(span.to_string(), "P8456DT12H5M29.9999965S" ); |
1944 | /// |
1945 | /// // But we can ask for units all the way up to years. |
1946 | /// let span = dt1.until((Unit::Year, dt2))?; |
1947 | /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29.9999965S" ); |
1948 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1949 | /// ``` |
1950 | /// |
1951 | /// # Example: rounding the result |
1952 | /// |
1953 | /// This shows how one might find the difference between two datetimes and |
1954 | /// have the result rounded such that sub-seconds are removed. |
1955 | /// |
1956 | /// In this case, we need to hand-construct a [`DateTimeDifference`] |
1957 | /// in order to gain full configurability. |
1958 | /// |
1959 | /// ``` |
1960 | /// use jiff::{civil::{DateTimeDifference, date}, Unit, ToSpan}; |
1961 | /// |
1962 | /// let dt1 = date(1995, 12, 07).at(3, 24, 30, 3500); |
1963 | /// let dt2 = date(2019, 01, 31).at(15, 30, 0, 0); |
1964 | /// |
1965 | /// let span = dt1.until( |
1966 | /// DateTimeDifference::from(dt2).smallest(Unit::Second), |
1967 | /// )?; |
1968 | /// assert_eq!(format!("{span:#}" ), "8456d 12h 5m 29s" ); |
1969 | /// |
1970 | /// // We can combine smallest and largest units too! |
1971 | /// let span = dt1.until( |
1972 | /// DateTimeDifference::from(dt2) |
1973 | /// .smallest(Unit::Second) |
1974 | /// .largest(Unit::Year), |
1975 | /// )?; |
1976 | /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29S" ); |
1977 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1978 | /// ``` |
1979 | /// |
1980 | /// # Example: units biggers than days inhibit reversibility |
1981 | /// |
1982 | /// If you ask for units bigger than days, then subtracting the span |
1983 | /// returned from the `other` datetime is not guaranteed to result in the |
1984 | /// original datetime. For example: |
1985 | /// |
1986 | /// ``` |
1987 | /// use jiff::{civil::date, Unit, ToSpan}; |
1988 | /// |
1989 | /// let dt1 = date(2024, 3, 2).at(0, 0, 0, 0); |
1990 | /// let dt2 = date(2024, 5, 1).at(0, 0, 0, 0); |
1991 | /// |
1992 | /// let span = dt1.until((Unit::Month, dt2))?; |
1993 | /// assert_eq!(span, 1.month().days(29).fieldwise()); |
1994 | /// let maybe_original = dt2.checked_sub(span)?; |
1995 | /// // Not the same as the original datetime! |
1996 | /// assert_eq!(maybe_original, date(2024, 3, 3).at(0, 0, 0, 0)); |
1997 | /// |
1998 | /// // But in the default configuration, days are always the biggest unit |
1999 | /// // and reversibility is guaranteed. |
2000 | /// let span = dt1.until(dt2)?; |
2001 | /// assert_eq!(span, 60.days().fieldwise()); |
2002 | /// let is_original = dt2.checked_sub(span)?; |
2003 | /// assert_eq!(is_original, dt1); |
2004 | /// |
2005 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2006 | /// ``` |
2007 | /// |
2008 | /// This occurs because span are added as if by adding the biggest units |
2009 | /// first, and then the smaller units. Because months vary in length, |
2010 | /// their meaning can change depending on how the span is added. In this |
2011 | /// case, adding one month to `2024-03-02` corresponds to 31 days, but |
2012 | /// subtracting one month from `2024-05-01` corresponds to 30 days. |
2013 | #[inline ] |
2014 | pub fn until<A: Into<DateTimeDifference>>( |
2015 | self, |
2016 | other: A, |
2017 | ) -> Result<Span, Error> { |
2018 | let args: DateTimeDifference = other.into(); |
2019 | let span = args.until_with_largest_unit(self)?; |
2020 | if args.rounding_may_change_span() { |
2021 | span.round(args.round.relative(self)) |
2022 | } else { |
2023 | Ok(span) |
2024 | } |
2025 | } |
2026 | |
2027 | /// This routine is identical to [`DateTime::until`], but the order of the |
2028 | /// parameters is flipped. |
2029 | /// |
2030 | /// # Errors |
2031 | /// |
2032 | /// This has the same error conditions as [`DateTime::until`]. |
2033 | /// |
2034 | /// # Example |
2035 | /// |
2036 | /// This routine can be used via the `-` operator. Since the default |
2037 | /// configuration is used and because a `Span` can represent the difference |
2038 | /// between any two possible datetimes, it will never panic. |
2039 | /// |
2040 | /// ``` |
2041 | /// use jiff::{civil::date, ToSpan}; |
2042 | /// |
2043 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
2044 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
2045 | /// assert_eq!( |
2046 | /// later - earlier, |
2047 | /// 4542.days().hours(22).minutes(30).fieldwise(), |
2048 | /// ); |
2049 | /// ``` |
2050 | #[inline ] |
2051 | pub fn since<A: Into<DateTimeDifference>>( |
2052 | self, |
2053 | other: A, |
2054 | ) -> Result<Span, Error> { |
2055 | let args: DateTimeDifference = other.into(); |
2056 | let span = -args.until_with_largest_unit(self)?; |
2057 | if args.rounding_may_change_span() { |
2058 | span.round(args.round.relative(self)) |
2059 | } else { |
2060 | Ok(span) |
2061 | } |
2062 | } |
2063 | |
2064 | /// Returns an absolute duration representing the elapsed time from this |
2065 | /// datetime until the given `other` datetime. |
2066 | /// |
2067 | /// When `other` occurs before this datetime, then the duration returned |
2068 | /// will be negative. |
2069 | /// |
2070 | /// Unlike [`DateTime::until`], this returns a duration corresponding to a |
2071 | /// 96-bit integer of nanoseconds between two datetimes. |
2072 | /// |
2073 | /// # Fallibility |
2074 | /// |
2075 | /// This routine never panics or returns an error. Since there are no |
2076 | /// configuration options that can be incorrectly provided, no error is |
2077 | /// possible when calling this routine. In contrast, [`DateTime::until`] |
2078 | /// can return an error in some cases due to misconfiguration. But like |
2079 | /// this routine, [`DateTime::until`] never panics or returns an error in |
2080 | /// its default configuration. |
2081 | /// |
2082 | /// # When should I use this versus [`DateTime::until`]? |
2083 | /// |
2084 | /// See the type documentation for [`SignedDuration`] for the section on |
2085 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
2086 | /// In short, use `Span` (and therefore `DateTime::until`) unless you have |
2087 | /// a specific reason to do otherwise. |
2088 | /// |
2089 | /// # Example |
2090 | /// |
2091 | /// ``` |
2092 | /// use jiff::{civil::date, SignedDuration}; |
2093 | /// |
2094 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
2095 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
2096 | /// assert_eq!( |
2097 | /// earlier.duration_until(later), |
2098 | /// SignedDuration::from_hours(4542 * 24) |
2099 | /// + SignedDuration::from_hours(22) |
2100 | /// + SignedDuration::from_mins(30), |
2101 | /// ); |
2102 | /// // Flipping the datetimes is fine, but you'll get a negative duration. |
2103 | /// assert_eq!( |
2104 | /// later.duration_until(earlier), |
2105 | /// -SignedDuration::from_hours(4542 * 24) |
2106 | /// - SignedDuration::from_hours(22) |
2107 | /// - SignedDuration::from_mins(30), |
2108 | /// ); |
2109 | /// ``` |
2110 | /// |
2111 | /// # Example: difference with [`DateTime::until`] |
2112 | /// |
2113 | /// The main difference between this routine and `DateTime::until` is that |
2114 | /// the latter can return units other than a 96-bit integer of nanoseconds. |
2115 | /// While a 96-bit integer of nanoseconds can be converted into other units |
2116 | /// like hours, this can only be done for uniform units. (Uniform units are |
2117 | /// units for which each individual unit always corresponds to the same |
2118 | /// elapsed time regardless of the datetime it is relative to.) This can't |
2119 | /// be done for units like years or months. |
2120 | /// |
2121 | /// ``` |
2122 | /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit}; |
2123 | /// |
2124 | /// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0); |
2125 | /// let dt2 = date(2025, 4, 1).at(0, 0, 0, 0); |
2126 | /// |
2127 | /// let span = dt1.until((Unit::Year, dt2))?; |
2128 | /// assert_eq!(span, 1.year().months(3).fieldwise()); |
2129 | /// |
2130 | /// let duration = dt1.duration_until(dt2); |
2131 | /// assert_eq!(duration, SignedDuration::from_hours(456 * 24)); |
2132 | /// // There's no way to extract years or months from the signed |
2133 | /// // duration like one might extract hours (because every hour |
2134 | /// // is the same length). Instead, you actually have to convert |
2135 | /// // it to a span and then balance it by providing a relative date! |
2136 | /// let options = SpanRound::new().largest(Unit::Year).relative(dt1); |
2137 | /// let span = Span::try_from(duration)?.round(options)?; |
2138 | /// assert_eq!(span, 1.year().months(3).fieldwise()); |
2139 | /// |
2140 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2141 | /// ``` |
2142 | /// |
2143 | /// # Example: getting an unsigned duration |
2144 | /// |
2145 | /// If you're looking to find the duration between two datetimes as a |
2146 | /// [`std::time::Duration`], you'll need to use this method to get a |
2147 | /// [`SignedDuration`] and then convert it to a `std::time::Duration`: |
2148 | /// |
2149 | /// ``` |
2150 | /// use std::time::Duration; |
2151 | /// |
2152 | /// use jiff::civil::date; |
2153 | /// |
2154 | /// let dt1 = date(2024, 7, 1).at(0, 0, 0, 0); |
2155 | /// let dt2 = date(2024, 8, 1).at(0, 0, 0, 0); |
2156 | /// let duration = Duration::try_from(dt1.duration_until(dt2))?; |
2157 | /// assert_eq!(duration, Duration::from_secs(31 * 24 * 60 * 60)); |
2158 | /// |
2159 | /// // Note that unsigned durations cannot represent all |
2160 | /// // possible differences! If the duration would be negative, |
2161 | /// // then the conversion fails: |
2162 | /// assert!(Duration::try_from(dt2.duration_until(dt1)).is_err()); |
2163 | /// |
2164 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2165 | /// ``` |
2166 | #[inline ] |
2167 | pub fn duration_until(self, other: DateTime) -> SignedDuration { |
2168 | SignedDuration::datetime_until(self, other) |
2169 | } |
2170 | |
2171 | /// This routine is identical to [`DateTime::duration_until`], but the |
2172 | /// order of the parameters is flipped. |
2173 | /// |
2174 | /// # Example |
2175 | /// |
2176 | /// ``` |
2177 | /// use jiff::{civil::date, SignedDuration}; |
2178 | /// |
2179 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0); |
2180 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0); |
2181 | /// assert_eq!( |
2182 | /// later.duration_since(earlier), |
2183 | /// SignedDuration::from_hours(4542 * 24) |
2184 | /// + SignedDuration::from_hours(22) |
2185 | /// + SignedDuration::from_mins(30), |
2186 | /// ); |
2187 | /// ``` |
2188 | #[inline ] |
2189 | pub fn duration_since(self, other: DateTime) -> SignedDuration { |
2190 | SignedDuration::datetime_until(other, self) |
2191 | } |
2192 | |
2193 | /// Rounds this datetime according to the [`DateTimeRound`] configuration |
2194 | /// given. |
2195 | /// |
2196 | /// The principal option is [`DateTimeRound::smallest`], which allows one |
2197 | /// to configure the smallest units in the returned datetime. Rounding |
2198 | /// is what determines whether that unit should keep its current value |
2199 | /// or whether it should be incremented. Moreover, the amount it should |
2200 | /// be incremented can be configured via [`DateTimeRound::increment`]. |
2201 | /// Finally, the rounding strategy itself can be configured via |
2202 | /// [`DateTimeRound::mode`]. |
2203 | /// |
2204 | /// Note that this routine is generic and accepts anything that |
2205 | /// implements `Into<DateTimeRound>`. Some notable implementations are: |
2206 | /// |
2207 | /// * `From<Unit> for DateTimeRound`, which will automatically create a |
2208 | /// `DateTimeRound::new().smallest(unit)` from the unit provided. |
2209 | /// * `From<(Unit, i64)> for DateTimeRound`, which will automatically |
2210 | /// create a `DateTimeRound::new().smallest(unit).increment(number)` from |
2211 | /// the unit and increment provided. |
2212 | /// |
2213 | /// # Errors |
2214 | /// |
2215 | /// This returns an error if the smallest unit configured on the given |
2216 | /// [`DateTimeRound`] is bigger than days. An error is also returned if |
2217 | /// the rounding increment is greater than 1 when the units are days. |
2218 | /// (Currently, rounding to the nearest week, month or year is not |
2219 | /// supported.) |
2220 | /// |
2221 | /// When the smallest unit is less than days, the rounding increment must |
2222 | /// divide evenly into the next highest unit after the smallest unit |
2223 | /// configured (and must not be equivalent to it). For example, if the |
2224 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
2225 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
2226 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
2227 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
2228 | /// |
2229 | /// This can also return an error in some cases where rounding would |
2230 | /// require arithmetic that exceeds the maximum datetime value. |
2231 | /// |
2232 | /// # Example |
2233 | /// |
2234 | /// This is a basic example that demonstrates rounding a datetime to the |
2235 | /// nearest day. This also demonstrates calling this method with the |
2236 | /// smallest unit directly, instead of constructing a `DateTimeRound` |
2237 | /// manually. |
2238 | /// |
2239 | /// ``` |
2240 | /// use jiff::{civil::date, Unit}; |
2241 | /// |
2242 | /// let dt = date(2024, 6, 19).at(15, 0, 0, 0); |
2243 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 20).at(0, 0, 0, 0)); |
2244 | /// let dt = date(2024, 6, 19).at(10, 0, 0, 0); |
2245 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 19).at(0, 0, 0, 0)); |
2246 | /// |
2247 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2248 | /// ``` |
2249 | /// |
2250 | /// # Example: changing the rounding mode |
2251 | /// |
2252 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
2253 | /// breaks ties by rounding away from zero. But other modes like |
2254 | /// [`RoundMode::Trunc`] can be used too: |
2255 | /// |
2256 | /// ``` |
2257 | /// use jiff::{civil::{DateTimeRound, date}, RoundMode, Unit}; |
2258 | /// |
2259 | /// let dt = date(2024, 6, 19).at(15, 0, 0, 0); |
2260 | /// assert_eq!(dt.round(Unit::Day)?, date(2024, 6, 20).at(0, 0, 0, 0)); |
2261 | /// // The default will round up to the next day for any time past noon, |
2262 | /// // but using truncation rounding will always round down. |
2263 | /// assert_eq!( |
2264 | /// dt.round( |
2265 | /// DateTimeRound::new().smallest(Unit::Day).mode(RoundMode::Trunc), |
2266 | /// )?, |
2267 | /// date(2024, 6, 19).at(0, 0, 0, 0), |
2268 | /// ); |
2269 | /// |
2270 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2271 | /// ``` |
2272 | /// |
2273 | /// # Example: rounding to the nearest 5 minute increment |
2274 | /// |
2275 | /// ``` |
2276 | /// use jiff::{civil::date, Unit}; |
2277 | /// |
2278 | /// // rounds down |
2279 | /// let dt = date(2024, 6, 19).at(15, 27, 29, 999_999_999); |
2280 | /// assert_eq!( |
2281 | /// dt.round((Unit::Minute, 5))?, |
2282 | /// date(2024, 6, 19).at(15, 25, 0, 0), |
2283 | /// ); |
2284 | /// // rounds up |
2285 | /// let dt = date(2024, 6, 19).at(15, 27, 30, 0); |
2286 | /// assert_eq!( |
2287 | /// dt.round((Unit::Minute, 5))?, |
2288 | /// date(2024, 6, 19).at(15, 30, 0, 0), |
2289 | /// ); |
2290 | /// |
2291 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2292 | /// ``` |
2293 | /// |
2294 | /// # Example: overflow error |
2295 | /// |
2296 | /// This example demonstrates that it's possible for this operation to |
2297 | /// result in an error from datetime arithmetic overflow. |
2298 | /// |
2299 | /// ``` |
2300 | /// use jiff::{civil::DateTime, Unit}; |
2301 | /// |
2302 | /// let dt = DateTime::MAX; |
2303 | /// assert!(dt.round(Unit::Day).is_err()); |
2304 | /// ``` |
2305 | /// |
2306 | /// This occurs because rounding to the nearest day for the maximum |
2307 | /// datetime would result in rounding up to the next day. But the next day |
2308 | /// is greater than the maximum, and so this returns an error. |
2309 | /// |
2310 | /// If one were to use a rounding mode like [`RoundMode::Trunc`] (which |
2311 | /// will never round up), always set a correct increment and always used |
2312 | /// units less than or equal to days, then this routine is guaranteed to |
2313 | /// never fail: |
2314 | /// |
2315 | /// ``` |
2316 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
2317 | /// |
2318 | /// let round = DateTimeRound::new() |
2319 | /// .smallest(Unit::Day) |
2320 | /// .mode(RoundMode::Trunc); |
2321 | /// assert_eq!( |
2322 | /// DateTime::MAX.round(round)?, |
2323 | /// date(9999, 12, 31).at(0, 0, 0, 0), |
2324 | /// ); |
2325 | /// assert_eq!( |
2326 | /// DateTime::MIN.round(round)?, |
2327 | /// date(-9999, 1, 1).at(0, 0, 0, 0), |
2328 | /// ); |
2329 | /// |
2330 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2331 | /// ``` |
2332 | #[inline ] |
2333 | pub fn round<R: Into<DateTimeRound>>( |
2334 | self, |
2335 | options: R, |
2336 | ) -> Result<DateTime, Error> { |
2337 | let options: DateTimeRound = options.into(); |
2338 | options.round(self) |
2339 | } |
2340 | |
2341 | /// Return an iterator of periodic datetimes determined by the given span. |
2342 | /// |
2343 | /// The given span may be negative, in which case, the iterator will move |
2344 | /// backwards through time. The iterator won't stop until either the span |
2345 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
2346 | /// `DateTime` value. |
2347 | /// |
2348 | /// # Example: when to check a glucose monitor |
2349 | /// |
2350 | /// When my cat had diabetes, my veterinarian installed a glucose monitor |
2351 | /// and instructed me to scan it about every 5 hours. This example lists |
2352 | /// all of the times I need to scan it for the 2 days following its |
2353 | /// installation: |
2354 | /// |
2355 | /// ``` |
2356 | /// use jiff::{civil::datetime, ToSpan}; |
2357 | /// |
2358 | /// let start = datetime(2023, 7, 15, 16, 30, 0, 0); |
2359 | /// let end = start.checked_add(2.days())?; |
2360 | /// let mut scan_times = vec![]; |
2361 | /// for dt in start.series(5.hours()).take_while(|&dt| dt <= end) { |
2362 | /// scan_times.push(dt); |
2363 | /// } |
2364 | /// assert_eq!(scan_times, vec![ |
2365 | /// datetime(2023, 7, 15, 16, 30, 0, 0), |
2366 | /// datetime(2023, 7, 15, 21, 30, 0, 0), |
2367 | /// datetime(2023, 7, 16, 2, 30, 0, 0), |
2368 | /// datetime(2023, 7, 16, 7, 30, 0, 0), |
2369 | /// datetime(2023, 7, 16, 12, 30, 0, 0), |
2370 | /// datetime(2023, 7, 16, 17, 30, 0, 0), |
2371 | /// datetime(2023, 7, 16, 22, 30, 0, 0), |
2372 | /// datetime(2023, 7, 17, 3, 30, 0, 0), |
2373 | /// datetime(2023, 7, 17, 8, 30, 0, 0), |
2374 | /// datetime(2023, 7, 17, 13, 30, 0, 0), |
2375 | /// ]); |
2376 | /// |
2377 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2378 | /// ``` |
2379 | #[inline ] |
2380 | pub fn series(self, period: Span) -> DateTimeSeries { |
2381 | DateTimeSeries { start: self, period, step: 0 } |
2382 | } |
2383 | |
2384 | /// Converts this datetime to a nanosecond timestamp assuming a Zulu time |
2385 | /// zone offset and where all days are exactly 24 hours long. |
2386 | #[inline ] |
2387 | fn to_nanosecond(self) -> t::NoUnits128 { |
2388 | let day_nano = self.date().to_unix_epoch_day(); |
2389 | let time_nano = self.time().to_nanosecond(); |
2390 | (t::NoUnits128::rfrom(day_nano) * t::NANOS_PER_CIVIL_DAY) + time_nano |
2391 | } |
2392 | |
2393 | #[inline ] |
2394 | pub(crate) fn to_idatetime(&self) -> Composite<IDateTime> { |
2395 | let idate = self.date().to_idate(); |
2396 | let itime = self.time().to_itime(); |
2397 | idate.zip2(itime).map(|(date, time)| IDateTime { date, time }) |
2398 | } |
2399 | |
2400 | #[inline ] |
2401 | pub(crate) fn from_idatetime(idt: Composite<IDateTime>) -> DateTime { |
2402 | let (idate, itime) = idt.map(|idt| (idt.date, idt.time)).unzip2(); |
2403 | DateTime::from_parts(Date::from_idate(idate), Time::from_itime(itime)) |
2404 | } |
2405 | |
2406 | #[inline ] |
2407 | pub(crate) const fn to_idatetime_const(&self) -> IDateTime { |
2408 | IDateTime { |
2409 | date: self.date.to_idate_const(), |
2410 | time: self.time.to_itime_const(), |
2411 | } |
2412 | } |
2413 | } |
2414 | |
2415 | /// Parsing and formatting using a "printf"-style API. |
2416 | impl DateTime { |
2417 | /// Parses a civil datetime in `input` matching the given `format`. |
2418 | /// |
2419 | /// The format string uses a "printf"-style API where conversion |
2420 | /// specifiers can be used as place holders to match components of |
2421 | /// a datetime. For details on the specifiers supported, see the |
2422 | /// [`fmt::strtime`] module documentation. |
2423 | /// |
2424 | /// # Errors |
2425 | /// |
2426 | /// This returns an error when parsing failed. This might happen because |
2427 | /// the format string itself was invalid, or because the input didn't match |
2428 | /// the format string. |
2429 | /// |
2430 | /// This also returns an error if there wasn't sufficient information to |
2431 | /// construct a civil datetime. For example, if an offset wasn't parsed. |
2432 | /// |
2433 | /// # Example |
2434 | /// |
2435 | /// This example shows how to parse a civil datetime: |
2436 | /// |
2437 | /// ``` |
2438 | /// use jiff::civil::DateTime; |
2439 | /// |
2440 | /// let dt = DateTime::strptime("%F %H:%M" , "2024-07-14 21:14" )?; |
2441 | /// assert_eq!(dt.to_string(), "2024-07-14T21:14:00" ); |
2442 | /// |
2443 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2444 | /// ``` |
2445 | #[inline ] |
2446 | pub fn strptime( |
2447 | format: impl AsRef<[u8]>, |
2448 | input: impl AsRef<[u8]>, |
2449 | ) -> Result<DateTime, Error> { |
2450 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_datetime()) |
2451 | } |
2452 | |
2453 | /// Formats this civil datetime according to the given `format`. |
2454 | /// |
2455 | /// The format string uses a "printf"-style API where conversion |
2456 | /// specifiers can be used as place holders to format components of |
2457 | /// a datetime. For details on the specifiers supported, see the |
2458 | /// [`fmt::strtime`] module documentation. |
2459 | /// |
2460 | /// # Errors and panics |
2461 | /// |
2462 | /// While this routine itself does not error or panic, using the value |
2463 | /// returned may result in a panic if formatting fails. See the |
2464 | /// documentation on [`fmt::strtime::Display`] for more information. |
2465 | /// |
2466 | /// To format in a way that surfaces errors without panicking, use either |
2467 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
2468 | /// |
2469 | /// # Example |
2470 | /// |
2471 | /// This example shows how to format a civil datetime: |
2472 | /// |
2473 | /// ``` |
2474 | /// use jiff::civil::date; |
2475 | /// |
2476 | /// let dt = date(2024, 7, 15).at(16, 24, 59, 0); |
2477 | /// let string = dt.strftime("%A, %B %e, %Y at %H:%M:%S" ).to_string(); |
2478 | /// assert_eq!(string, "Monday, July 15, 2024 at 16:24:59" ); |
2479 | /// ``` |
2480 | #[inline ] |
2481 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
2482 | &self, |
2483 | format: &'f F, |
2484 | ) -> fmt::strtime::Display<'f> { |
2485 | fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() } |
2486 | } |
2487 | } |
2488 | |
2489 | impl Default for DateTime { |
2490 | #[inline ] |
2491 | fn default() -> DateTime { |
2492 | DateTime::ZERO |
2493 | } |
2494 | } |
2495 | |
2496 | /// Converts a `DateTime` into a human readable datetime string. |
2497 | /// |
2498 | /// (This `Debug` representation currently emits the same string as the |
2499 | /// `Display` representation, but this is not a guarantee.) |
2500 | /// |
2501 | /// Options currently supported: |
2502 | /// |
2503 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
2504 | /// of the fractional second component. |
2505 | /// |
2506 | /// # Example |
2507 | /// |
2508 | /// ``` |
2509 | /// use jiff::civil::date; |
2510 | /// |
2511 | /// let dt = date(2024, 6, 15).at(7, 0, 0, 123_000_000); |
2512 | /// assert_eq!(format!("{dt:.6?}" ), "2024-06-15T07:00:00.123000" ); |
2513 | /// // Precision values greater than 9 are clamped to 9. |
2514 | /// assert_eq!(format!("{dt:.300?}" ), "2024-06-15T07:00:00.123000000" ); |
2515 | /// // A precision of 0 implies the entire fractional |
2516 | /// // component is always truncated. |
2517 | /// assert_eq!(format!("{dt:.0?}" ), "2024-06-15T07:00:00" ); |
2518 | /// |
2519 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2520 | /// ``` |
2521 | impl core::fmt::Debug for DateTime { |
2522 | #[inline ] |
2523 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2524 | core::fmt::Display::fmt(self, f) |
2525 | } |
2526 | } |
2527 | |
2528 | /// Converts a `DateTime` into an ISO 8601 compliant string. |
2529 | /// |
2530 | /// Options currently supported: |
2531 | /// |
2532 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
2533 | /// of the fractional second component. |
2534 | /// |
2535 | /// # Example |
2536 | /// |
2537 | /// ``` |
2538 | /// use jiff::civil::date; |
2539 | /// |
2540 | /// let dt = date(2024, 6, 15).at(7, 0, 0, 123_000_000); |
2541 | /// assert_eq!(format!("{dt:.6}" ), "2024-06-15T07:00:00.123000" ); |
2542 | /// // Precision values greater than 9 are clamped to 9. |
2543 | /// assert_eq!(format!("{dt:.300}" ), "2024-06-15T07:00:00.123000000" ); |
2544 | /// // A precision of 0 implies the entire fractional |
2545 | /// // component is always truncated. |
2546 | /// assert_eq!(format!("{dt:.0}" ), "2024-06-15T07:00:00" ); |
2547 | /// |
2548 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2549 | /// ``` |
2550 | impl core::fmt::Display for DateTime { |
2551 | #[inline ] |
2552 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2553 | use crate::fmt::StdFmtWrite; |
2554 | |
2555 | let precision: Option = |
2556 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
2557 | temporal::DateTimePrinter::new() |
2558 | .precision(precision) |
2559 | .print_datetime(self, StdFmtWrite(f)) |
2560 | .map_err(|_| core::fmt::Error) |
2561 | } |
2562 | } |
2563 | |
2564 | impl core::str::FromStr for DateTime { |
2565 | type Err = Error; |
2566 | |
2567 | #[inline ] |
2568 | fn from_str(string: &str) -> Result<DateTime, Error> { |
2569 | DEFAULT_DATETIME_PARSER.parse_datetime(input:string) |
2570 | } |
2571 | } |
2572 | |
2573 | /// Converts a [`Date`] to a [`DateTime`] with the time set to midnight. |
2574 | impl From<Date> for DateTime { |
2575 | #[inline ] |
2576 | fn from(date: Date) -> DateTime { |
2577 | date.to_datetime(Time::midnight()) |
2578 | } |
2579 | } |
2580 | |
2581 | /// Converts a [`Zoned`] to a [`DateTime`]. |
2582 | impl From<Zoned> for DateTime { |
2583 | #[inline ] |
2584 | fn from(zdt: Zoned) -> DateTime { |
2585 | zdt.datetime() |
2586 | } |
2587 | } |
2588 | |
2589 | /// Converts a [`&Zoned`](Zoned) to a [`DateTime`]. |
2590 | impl<'a> From<&'a Zoned> for DateTime { |
2591 | #[inline ] |
2592 | fn from(zdt: &'a Zoned) -> DateTime { |
2593 | zdt.datetime() |
2594 | } |
2595 | } |
2596 | |
2597 | /// Adds a span of time to a datetime. |
2598 | /// |
2599 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2600 | /// without panics, use [`DateTime::checked_add`]. |
2601 | impl core::ops::Add<Span> for DateTime { |
2602 | type Output = DateTime; |
2603 | |
2604 | #[inline ] |
2605 | fn add(self, rhs: Span) -> DateTime { |
2606 | self.checked_add(rhs).expect(msg:"adding span to datetime overflowed" ) |
2607 | } |
2608 | } |
2609 | |
2610 | /// Adds a span of time to a datetime in place. |
2611 | /// |
2612 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2613 | /// without panics, use [`DateTime::checked_add`]. |
2614 | impl core::ops::AddAssign<Span> for DateTime { |
2615 | #[inline ] |
2616 | fn add_assign(&mut self, rhs: Span) { |
2617 | *self = *self + rhs |
2618 | } |
2619 | } |
2620 | |
2621 | /// Subtracts a span of time from a datetime. |
2622 | /// |
2623 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2624 | /// without panics, use [`DateTime::checked_sub`]. |
2625 | impl core::ops::Sub<Span> for DateTime { |
2626 | type Output = DateTime; |
2627 | |
2628 | #[inline ] |
2629 | fn sub(self, rhs: Span) -> DateTime { |
2630 | self.checked_sub(rhs) |
2631 | .expect(msg:"subtracting span from datetime overflowed" ) |
2632 | } |
2633 | } |
2634 | |
2635 | /// Subtracts a span of time from a datetime in place. |
2636 | /// |
2637 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2638 | /// without panics, use [`DateTime::checked_sub`]. |
2639 | impl core::ops::SubAssign<Span> for DateTime { |
2640 | #[inline ] |
2641 | fn sub_assign(&mut self, rhs: Span) { |
2642 | *self = *self - rhs |
2643 | } |
2644 | } |
2645 | |
2646 | /// Computes the span of time between two datetimes. |
2647 | /// |
2648 | /// This will return a negative span when the datetime being subtracted is |
2649 | /// greater. |
2650 | /// |
2651 | /// Since this uses the default configuration for calculating a span between |
2652 | /// two datetimes (no rounding and largest units is days), this will never |
2653 | /// panic or fail in any way. It is guaranteed that the largest non-zero |
2654 | /// unit in the `Span` returned will be days. |
2655 | /// |
2656 | /// To configure the largest unit or enable rounding, use [`DateTime::since`]. |
2657 | /// |
2658 | /// If you need a [`SignedDuration`] representing the span between two civil |
2659 | /// datetimes, then use [`DateTime::duration_since`]. |
2660 | impl core::ops::Sub for DateTime { |
2661 | type Output = Span; |
2662 | |
2663 | #[inline ] |
2664 | fn sub(self, rhs: DateTime) -> Span { |
2665 | self.since(rhs).expect(msg:"since never fails when given DateTime" ) |
2666 | } |
2667 | } |
2668 | |
2669 | /// Adds a signed duration of time to a datetime. |
2670 | /// |
2671 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2672 | /// without panics, use [`DateTime::checked_add`]. |
2673 | impl core::ops::Add<SignedDuration> for DateTime { |
2674 | type Output = DateTime; |
2675 | |
2676 | #[inline ] |
2677 | fn add(self, rhs: SignedDuration) -> DateTime { |
2678 | self.checked_add(rhs) |
2679 | .expect(msg:"adding signed duration to datetime overflowed" ) |
2680 | } |
2681 | } |
2682 | |
2683 | /// Adds a signed duration of time to a datetime in place. |
2684 | /// |
2685 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2686 | /// without panics, use [`DateTime::checked_add`]. |
2687 | impl core::ops::AddAssign<SignedDuration> for DateTime { |
2688 | #[inline ] |
2689 | fn add_assign(&mut self, rhs: SignedDuration) { |
2690 | *self = *self + rhs |
2691 | } |
2692 | } |
2693 | |
2694 | /// Subtracts a signed duration of time from a datetime. |
2695 | /// |
2696 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2697 | /// without panics, use [`DateTime::checked_sub`]. |
2698 | impl core::ops::Sub<SignedDuration> for DateTime { |
2699 | type Output = DateTime; |
2700 | |
2701 | #[inline ] |
2702 | fn sub(self, rhs: SignedDuration) -> DateTime { |
2703 | self.checked_sub(rhs) |
2704 | .expect(msg:"subtracting signed duration from datetime overflowed" ) |
2705 | } |
2706 | } |
2707 | |
2708 | /// Subtracts a signed duration of time from a datetime in place. |
2709 | /// |
2710 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2711 | /// without panics, use [`DateTime::checked_sub`]. |
2712 | impl core::ops::SubAssign<SignedDuration> for DateTime { |
2713 | #[inline ] |
2714 | fn sub_assign(&mut self, rhs: SignedDuration) { |
2715 | *self = *self - rhs |
2716 | } |
2717 | } |
2718 | |
2719 | /// Adds an unsigned duration of time to a datetime. |
2720 | /// |
2721 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2722 | /// without panics, use [`DateTime::checked_add`]. |
2723 | impl core::ops::Add<UnsignedDuration> for DateTime { |
2724 | type Output = DateTime; |
2725 | |
2726 | #[inline ] |
2727 | fn add(self, rhs: UnsignedDuration) -> DateTime { |
2728 | self.checked_add(rhs) |
2729 | .expect(msg:"adding unsigned duration to datetime overflowed" ) |
2730 | } |
2731 | } |
2732 | |
2733 | /// Adds an unsigned duration of time to a datetime in place. |
2734 | /// |
2735 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2736 | /// without panics, use [`DateTime::checked_add`]. |
2737 | impl core::ops::AddAssign<UnsignedDuration> for DateTime { |
2738 | #[inline ] |
2739 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
2740 | *self = *self + rhs |
2741 | } |
2742 | } |
2743 | |
2744 | /// Subtracts an unsigned duration of time from a datetime. |
2745 | /// |
2746 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2747 | /// without panics, use [`DateTime::checked_sub`]. |
2748 | impl core::ops::Sub<UnsignedDuration> for DateTime { |
2749 | type Output = DateTime; |
2750 | |
2751 | #[inline ] |
2752 | fn sub(self, rhs: UnsignedDuration) -> DateTime { |
2753 | self.checked_sub(rhs) |
2754 | .expect(msg:"subtracting unsigned duration from datetime overflowed" ) |
2755 | } |
2756 | } |
2757 | |
2758 | /// Subtracts an unsigned duration of time from a datetime in place. |
2759 | /// |
2760 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2761 | /// without panics, use [`DateTime::checked_sub`]. |
2762 | impl core::ops::SubAssign<UnsignedDuration> for DateTime { |
2763 | #[inline ] |
2764 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
2765 | *self = *self - rhs |
2766 | } |
2767 | } |
2768 | |
2769 | #[cfg (feature = "serde" )] |
2770 | impl serde::Serialize for DateTime { |
2771 | #[inline ] |
2772 | fn serialize<S: serde::Serializer>( |
2773 | &self, |
2774 | serializer: S, |
2775 | ) -> Result<S::Ok, S::Error> { |
2776 | serializer.collect_str(self) |
2777 | } |
2778 | } |
2779 | |
2780 | #[cfg (feature = "serde" )] |
2781 | impl<'de> serde::Deserialize<'de> for DateTime { |
2782 | #[inline ] |
2783 | fn deserialize<D: serde::Deserializer<'de>>( |
2784 | deserializer: D, |
2785 | ) -> Result<DateTime, D::Error> { |
2786 | use serde::de; |
2787 | |
2788 | struct DateTimeVisitor; |
2789 | |
2790 | impl<'de> de::Visitor<'de> for DateTimeVisitor { |
2791 | type Value = DateTime; |
2792 | |
2793 | fn expecting( |
2794 | &self, |
2795 | f: &mut core::fmt::Formatter, |
2796 | ) -> core::fmt::Result { |
2797 | f.write_str("a datetime string" ) |
2798 | } |
2799 | |
2800 | #[inline ] |
2801 | fn visit_bytes<E: de::Error>( |
2802 | self, |
2803 | value: &[u8], |
2804 | ) -> Result<DateTime, E> { |
2805 | DEFAULT_DATETIME_PARSER |
2806 | .parse_datetime(value) |
2807 | .map_err(de::Error::custom) |
2808 | } |
2809 | |
2810 | #[inline ] |
2811 | fn visit_str<E: de::Error>( |
2812 | self, |
2813 | value: &str, |
2814 | ) -> Result<DateTime, E> { |
2815 | self.visit_bytes(value.as_bytes()) |
2816 | } |
2817 | } |
2818 | |
2819 | deserializer.deserialize_str(DateTimeVisitor) |
2820 | } |
2821 | } |
2822 | |
2823 | #[cfg (test)] |
2824 | impl quickcheck::Arbitrary for DateTime { |
2825 | fn arbitrary(g: &mut quickcheck::Gen) -> DateTime { |
2826 | let date = Date::arbitrary(g); |
2827 | let time = Time::arbitrary(g); |
2828 | DateTime::from_parts(date, time) |
2829 | } |
2830 | |
2831 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = DateTime>> { |
2832 | alloc::boxed::Box::new( |
2833 | (self.date(), self.time()) |
2834 | .shrink() |
2835 | .map(|(date, time)| DateTime::from_parts(date, time)), |
2836 | ) |
2837 | } |
2838 | } |
2839 | |
2840 | /// An iterator over periodic datetimes, created by [`DateTime::series`]. |
2841 | /// |
2842 | /// It is exhausted when the next value would exceed a [`Span`] or [`DateTime`] |
2843 | /// value. |
2844 | #[derive (Clone, Debug)] |
2845 | pub struct DateTimeSeries { |
2846 | start: DateTime, |
2847 | period: Span, |
2848 | step: i64, |
2849 | } |
2850 | |
2851 | impl Iterator for DateTimeSeries { |
2852 | type Item = DateTime; |
2853 | |
2854 | #[inline ] |
2855 | fn next(&mut self) -> Option<DateTime> { |
2856 | let span: Span = self.period.checked_mul(self.step).ok()?; |
2857 | self.step = self.step.checked_add(1)?; |
2858 | let date: DateTime = self.start.checked_add(duration:span).ok()?; |
2859 | Some(date) |
2860 | } |
2861 | } |
2862 | |
2863 | /// Options for [`DateTime::checked_add`] and [`DateTime::checked_sub`]. |
2864 | /// |
2865 | /// This type provides a way to ergonomically add one of a few different |
2866 | /// duration types to a [`DateTime`]. |
2867 | /// |
2868 | /// The main way to construct values of this type is with its `From` trait |
2869 | /// implementations: |
2870 | /// |
2871 | /// * `From<Span> for DateTimeArithmetic` adds (or subtracts) the given span to |
2872 | /// the receiver datetime. |
2873 | /// * `From<SignedDuration> for DateTimeArithmetic` adds (or subtracts) |
2874 | /// the given signed duration to the receiver datetime. |
2875 | /// * `From<std::time::Duration> for DateTimeArithmetic` adds (or subtracts) |
2876 | /// the given unsigned duration to the receiver datetime. |
2877 | /// |
2878 | /// # Example |
2879 | /// |
2880 | /// ``` |
2881 | /// use std::time::Duration; |
2882 | /// |
2883 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
2884 | /// |
2885 | /// let dt = date(2024, 2, 29).at(0, 0, 0, 0); |
2886 | /// assert_eq!( |
2887 | /// dt.checked_add(1.year())?, |
2888 | /// date(2025, 2, 28).at(0, 0, 0, 0), |
2889 | /// ); |
2890 | /// assert_eq!( |
2891 | /// dt.checked_add(SignedDuration::from_hours(24))?, |
2892 | /// date(2024, 3, 1).at(0, 0, 0, 0), |
2893 | /// ); |
2894 | /// assert_eq!( |
2895 | /// dt.checked_add(Duration::from_secs(24 * 60 * 60))?, |
2896 | /// date(2024, 3, 1).at(0, 0, 0, 0), |
2897 | /// ); |
2898 | /// |
2899 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2900 | /// ``` |
2901 | #[derive (Clone, Copy, Debug)] |
2902 | pub struct DateTimeArithmetic { |
2903 | duration: Duration, |
2904 | } |
2905 | |
2906 | impl DateTimeArithmetic { |
2907 | #[inline ] |
2908 | fn checked_add(self, dt: DateTime) -> Result<DateTime, Error> { |
2909 | match self.duration.to_signed()? { |
2910 | SDuration::Span(span: Span) => dt.checked_add_span(span), |
2911 | SDuration::Absolute(sdur: SignedDuration) => dt.checked_add_duration(sdur), |
2912 | } |
2913 | } |
2914 | |
2915 | #[inline ] |
2916 | fn checked_neg(self) -> Result<DateTimeArithmetic, Error> { |
2917 | let duration: Duration = self.duration.checked_neg()?; |
2918 | Ok(DateTimeArithmetic { duration }) |
2919 | } |
2920 | |
2921 | #[inline ] |
2922 | fn is_negative(&self) -> bool { |
2923 | self.duration.is_negative() |
2924 | } |
2925 | } |
2926 | |
2927 | impl From<Span> for DateTimeArithmetic { |
2928 | fn from(span: Span) -> DateTimeArithmetic { |
2929 | let duration: Duration = Duration::from(span); |
2930 | DateTimeArithmetic { duration } |
2931 | } |
2932 | } |
2933 | |
2934 | impl From<SignedDuration> for DateTimeArithmetic { |
2935 | fn from(sdur: SignedDuration) -> DateTimeArithmetic { |
2936 | let duration: Duration = Duration::from(sdur); |
2937 | DateTimeArithmetic { duration } |
2938 | } |
2939 | } |
2940 | |
2941 | impl From<UnsignedDuration> for DateTimeArithmetic { |
2942 | fn from(udur: UnsignedDuration) -> DateTimeArithmetic { |
2943 | let duration: Duration = Duration::from(udur); |
2944 | DateTimeArithmetic { duration } |
2945 | } |
2946 | } |
2947 | |
2948 | impl<'a> From<&'a Span> for DateTimeArithmetic { |
2949 | fn from(span: &'a Span) -> DateTimeArithmetic { |
2950 | DateTimeArithmetic::from(*span) |
2951 | } |
2952 | } |
2953 | |
2954 | impl<'a> From<&'a SignedDuration> for DateTimeArithmetic { |
2955 | fn from(sdur: &'a SignedDuration) -> DateTimeArithmetic { |
2956 | DateTimeArithmetic::from(*sdur) |
2957 | } |
2958 | } |
2959 | |
2960 | impl<'a> From<&'a UnsignedDuration> for DateTimeArithmetic { |
2961 | fn from(udur: &'a UnsignedDuration) -> DateTimeArithmetic { |
2962 | DateTimeArithmetic::from(*udur) |
2963 | } |
2964 | } |
2965 | |
2966 | /// Options for [`DateTime::since`] and [`DateTime::until`]. |
2967 | /// |
2968 | /// This type provides a way to configure the calculation of |
2969 | /// spans between two [`DateTime`] values. In particular, both |
2970 | /// `DateTime::since` and `DateTime::until` accept anything that implements |
2971 | /// `Into<DateTimeDifference>`. There are a few key trait implementations that |
2972 | /// make this convenient: |
2973 | /// |
2974 | /// * `From<DateTime> for DateTimeDifference` will construct a configuration |
2975 | /// consisting of just the datetime. So for example, `dt1.since(dt2)` returns |
2976 | /// the span from `dt2` to `dt1`. |
2977 | /// * `From<Date> for DateTimeDifference` will construct a configuration |
2978 | /// consisting of just the datetime built from the date given at midnight on |
2979 | /// that day. |
2980 | /// * `From<(Unit, DateTime)>` is a convenient way to specify the largest units |
2981 | /// that should be present on the span returned. By default, the largest units |
2982 | /// are days. Using this trait implementation is equivalent to |
2983 | /// `DateTimeDifference::new(datetime).largest(unit)`. |
2984 | /// * `From<(Unit, Date)>` is like the one above, but with the time component |
2985 | /// fixed to midnight. |
2986 | /// |
2987 | /// One can also provide a `DateTimeDifference` value directly. Doing so |
2988 | /// is necessary to use the rounding features of calculating a span. For |
2989 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
2990 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
2991 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
2992 | /// |
2993 | /// Rounding a span as part of calculating it is provided as a convenience. |
2994 | /// Callers may choose to round the span as a distinct step via |
2995 | /// [`Span::round`], but callers may need to provide a reference date |
2996 | /// for rounding larger units. By coupling rounding with routines like |
2997 | /// [`DateTime::since`], the reference date can be set automatically based on |
2998 | /// the input to `DateTime::since`. |
2999 | /// |
3000 | /// # Example |
3001 | /// |
3002 | /// This example shows how to round a span between two datetimes to the nearest |
3003 | /// half-hour, with ties breaking away from zero. |
3004 | /// |
3005 | /// ``` |
3006 | /// use jiff::{civil::{DateTime, DateTimeDifference}, RoundMode, ToSpan, Unit}; |
3007 | /// |
3008 | /// let dt1 = "2024-03-15 08:14:00.123456789" .parse::<DateTime>()?; |
3009 | /// let dt2 = "2030-03-22 15:00" .parse::<DateTime>()?; |
3010 | /// let span = dt1.until( |
3011 | /// DateTimeDifference::new(dt2) |
3012 | /// .smallest(Unit::Minute) |
3013 | /// .largest(Unit::Year) |
3014 | /// .mode(RoundMode::HalfExpand) |
3015 | /// .increment(30), |
3016 | /// )?; |
3017 | /// assert_eq!(span, 6.years().days(7).hours(7).fieldwise()); |
3018 | /// |
3019 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3020 | /// ``` |
3021 | #[derive (Clone, Copy, Debug)] |
3022 | pub struct DateTimeDifference { |
3023 | datetime: DateTime, |
3024 | round: SpanRound<'static>, |
3025 | } |
3026 | |
3027 | impl DateTimeDifference { |
3028 | /// Create a new default configuration for computing the span between the |
3029 | /// given datetime and some other datetime (specified as the receiver in |
3030 | /// [`DateTime::since`] or [`DateTime::until`]). |
3031 | #[inline ] |
3032 | pub fn new(datetime: DateTime) -> DateTimeDifference { |
3033 | // We use truncation rounding by default since it seems that's |
3034 | // what is generally expected when computing the difference between |
3035 | // datetimes. |
3036 | // |
3037 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
3038 | let round = SpanRound::new().mode(RoundMode::Trunc); |
3039 | DateTimeDifference { datetime, round } |
3040 | } |
3041 | |
3042 | /// Set the smallest units allowed in the span returned. |
3043 | /// |
3044 | /// When a largest unit is not specified and the smallest unit is days |
3045 | /// or greater, then the largest unit is automatically set to be equal to |
3046 | /// the smallest unit. |
3047 | /// |
3048 | /// # Errors |
3049 | /// |
3050 | /// The smallest units must be no greater than the largest units. If this |
3051 | /// is violated, then computing a span with this configuration will result |
3052 | /// in an error. |
3053 | /// |
3054 | /// # Example |
3055 | /// |
3056 | /// This shows how to round a span between two datetimes to the nearest |
3057 | /// number of weeks. |
3058 | /// |
3059 | /// ``` |
3060 | /// use jiff::{ |
3061 | /// civil::{DateTime, DateTimeDifference}, |
3062 | /// RoundMode, ToSpan, Unit, |
3063 | /// }; |
3064 | /// |
3065 | /// let dt1 = "2024-03-15 08:14" .parse::<DateTime>()?; |
3066 | /// let dt2 = "2030-11-22 08:30" .parse::<DateTime>()?; |
3067 | /// let span = dt1.until( |
3068 | /// DateTimeDifference::new(dt2) |
3069 | /// .smallest(Unit::Week) |
3070 | /// .largest(Unit::Week) |
3071 | /// .mode(RoundMode::HalfExpand), |
3072 | /// )?; |
3073 | /// assert_eq!(span, 349.weeks().fieldwise()); |
3074 | /// |
3075 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3076 | /// ``` |
3077 | #[inline ] |
3078 | pub fn smallest(self, unit: Unit) -> DateTimeDifference { |
3079 | DateTimeDifference { round: self.round.smallest(unit), ..self } |
3080 | } |
3081 | |
3082 | /// Set the largest units allowed in the span returned. |
3083 | /// |
3084 | /// When a largest unit is not specified and the smallest unit is days |
3085 | /// or greater, then the largest unit is automatically set to be equal to |
3086 | /// the smallest unit. Otherwise, when the largest unit is not specified, |
3087 | /// it is set to days. |
3088 | /// |
3089 | /// Once a largest unit is set, there is no way to change this rounding |
3090 | /// configuration back to using the "automatic" default. Instead, callers |
3091 | /// must create a new configuration. |
3092 | /// |
3093 | /// # Errors |
3094 | /// |
3095 | /// The largest units, when set, must be at least as big as the smallest |
3096 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
3097 | /// then computing a span with this configuration will result in an error. |
3098 | /// |
3099 | /// # Example |
3100 | /// |
3101 | /// This shows how to round a span between two datetimes to units no |
3102 | /// bigger than seconds. |
3103 | /// |
3104 | /// ``` |
3105 | /// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit}; |
3106 | /// |
3107 | /// let dt1 = "2024-03-15 08:14" .parse::<DateTime>()?; |
3108 | /// let dt2 = "2030-11-22 08:30" .parse::<DateTime>()?; |
3109 | /// let span = dt1.until( |
3110 | /// DateTimeDifference::new(dt2).largest(Unit::Second), |
3111 | /// )?; |
3112 | /// assert_eq!(span, 211076160.seconds().fieldwise()); |
3113 | /// |
3114 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3115 | /// ``` |
3116 | #[inline ] |
3117 | pub fn largest(self, unit: Unit) -> DateTimeDifference { |
3118 | DateTimeDifference { round: self.round.largest(unit), ..self } |
3119 | } |
3120 | |
3121 | /// Set the rounding mode. |
3122 | /// |
3123 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
3124 | /// rounding "up" in the context of computing the span between |
3125 | /// two datetimes could be surprising in a number of cases. The |
3126 | /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you |
3127 | /// might have learned about in school. But a variety of other rounding |
3128 | /// modes exist. |
3129 | /// |
3130 | /// # Example |
3131 | /// |
3132 | /// This shows how to always round "up" towards positive infinity. |
3133 | /// |
3134 | /// ``` |
3135 | /// use jiff::{ |
3136 | /// civil::{DateTime, DateTimeDifference}, |
3137 | /// RoundMode, ToSpan, Unit, |
3138 | /// }; |
3139 | /// |
3140 | /// let dt1 = "2024-03-15 08:10" .parse::<DateTime>()?; |
3141 | /// let dt2 = "2024-03-15 08:11" .parse::<DateTime>()?; |
3142 | /// let span = dt1.until( |
3143 | /// DateTimeDifference::new(dt2) |
3144 | /// .smallest(Unit::Hour) |
3145 | /// .mode(RoundMode::Ceil), |
3146 | /// )?; |
3147 | /// // Only one minute elapsed, but we asked to always round up! |
3148 | /// assert_eq!(span, 1.hour().fieldwise()); |
3149 | /// |
3150 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
3151 | /// // flips for a negative span. |
3152 | /// let span = dt1.since( |
3153 | /// DateTimeDifference::new(dt2) |
3154 | /// .smallest(Unit::Hour) |
3155 | /// .mode(RoundMode::Ceil), |
3156 | /// )?; |
3157 | /// assert_eq!(span, 0.hour().fieldwise()); |
3158 | /// |
3159 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3160 | /// ``` |
3161 | #[inline ] |
3162 | pub fn mode(self, mode: RoundMode) -> DateTimeDifference { |
3163 | DateTimeDifference { round: self.round.mode(mode), ..self } |
3164 | } |
3165 | |
3166 | /// Set the rounding increment for the smallest unit. |
3167 | /// |
3168 | /// The default value is `1`. Other values permit rounding the smallest |
3169 | /// unit to the nearest integer increment specified. For example, if the |
3170 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
3171 | /// `30` would result in rounding in increments of a half hour. That is, |
3172 | /// the only minute value that could result would be `0` or `30`. |
3173 | /// |
3174 | /// # Errors |
3175 | /// |
3176 | /// When the smallest unit is less than days, the rounding increment must |
3177 | /// divide evenly into the next highest unit after the smallest unit |
3178 | /// configured (and must not be equivalent to it). For example, if the |
3179 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
3180 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
3181 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
3182 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
3183 | /// |
3184 | /// The error will occur when computing the span, and not when setting |
3185 | /// the increment here. |
3186 | /// |
3187 | /// # Example |
3188 | /// |
3189 | /// This shows how to round the span between two datetimes to the nearest |
3190 | /// 5 minute increment. |
3191 | /// |
3192 | /// ``` |
3193 | /// use jiff::{ |
3194 | /// civil::{DateTime, DateTimeDifference}, |
3195 | /// RoundMode, ToSpan, Unit, |
3196 | /// }; |
3197 | /// |
3198 | /// let dt1 = "2024-03-15 08:19" .parse::<DateTime>()?; |
3199 | /// let dt2 = "2024-03-15 12:52" .parse::<DateTime>()?; |
3200 | /// let span = dt1.until( |
3201 | /// DateTimeDifference::new(dt2) |
3202 | /// .smallest(Unit::Minute) |
3203 | /// .increment(5) |
3204 | /// .mode(RoundMode::HalfExpand), |
3205 | /// )?; |
3206 | /// assert_eq!(span, 4.hour().minutes(35).fieldwise()); |
3207 | /// |
3208 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3209 | /// ``` |
3210 | #[inline ] |
3211 | pub fn increment(self, increment: i64) -> DateTimeDifference { |
3212 | DateTimeDifference { round: self.round.increment(increment), ..self } |
3213 | } |
3214 | |
3215 | /// Returns true if and only if this configuration could change the span |
3216 | /// via rounding. |
3217 | #[inline ] |
3218 | fn rounding_may_change_span(&self) -> bool { |
3219 | self.round.rounding_may_change_span_ignore_largest() |
3220 | } |
3221 | |
3222 | /// Returns the span of time from `dt1` to the datetime in this |
3223 | /// configuration. The biggest units allowed are determined by the |
3224 | /// `smallest` and `largest` settings, but defaults to `Unit::Day`. |
3225 | #[inline ] |
3226 | fn until_with_largest_unit(&self, dt1: DateTime) -> Result<Span, Error> { |
3227 | let dt2 = self.datetime; |
3228 | let largest = self |
3229 | .round |
3230 | .get_largest() |
3231 | .unwrap_or_else(|| self.round.get_smallest().max(Unit::Day)); |
3232 | if largest <= Unit::Day { |
3233 | let diff = dt2.to_nanosecond() - dt1.to_nanosecond(); |
3234 | // Note that this can fail! If largest unit is nanoseconds and the |
3235 | // datetimes are far enough apart, a single i64 won't be able to |
3236 | // represent the time difference. |
3237 | // |
3238 | // This is only true for nanoseconds. A single i64 in units of |
3239 | // microseconds can represent the interval between all valid |
3240 | // datetimes. (At time of writing.) |
3241 | return Span::from_invariant_nanoseconds(largest, diff); |
3242 | } |
3243 | |
3244 | let (d1, mut d2) = (dt1.date(), dt2.date()); |
3245 | let (t1, t2) = (dt1.time(), dt2.time()); |
3246 | let sign = t::sign(d2, d1); |
3247 | let mut time_diff = t1.until_nanoseconds(t2); |
3248 | if time_diff.signum() == -sign { |
3249 | // These unwraps will always succeed, but the argument for why is |
3250 | // subtle. The key here is that the only way, e.g., d2.tomorrow() |
3251 | // can fail is when d2 is the max date. But, if d2 is the max date, |
3252 | // then it's impossible for `sign < 0` since the max date is at |
3253 | // least as big as every other date. And thus, d2.tomorrow() is |
3254 | // never reached in cases where it would fail. |
3255 | if sign > C(0) { |
3256 | d2 = d2.yesterday().unwrap(); |
3257 | } else if sign < C(0) { |
3258 | d2 = d2.tomorrow().unwrap(); |
3259 | } |
3260 | time_diff += |
3261 | t::SpanNanoseconds::rfrom(t::NANOS_PER_CIVIL_DAY) * sign; |
3262 | } |
3263 | let date_span = d1.until((largest, d2))?; |
3264 | Ok(Span::from_invariant_nanoseconds(largest, time_diff.rinto()) |
3265 | // Unlike in the <=Unit::Day case, this always succeeds because |
3266 | // every unit except for nanoseconds (which is not used here) can |
3267 | // represent all possible spans of time between any two civil |
3268 | // datetimes. |
3269 | .expect("difference between time always fits in span" ) |
3270 | .years_ranged(date_span.get_years_ranged()) |
3271 | .months_ranged(date_span.get_months_ranged()) |
3272 | .weeks_ranged(date_span.get_weeks_ranged()) |
3273 | .days_ranged(date_span.get_days_ranged())) |
3274 | } |
3275 | } |
3276 | |
3277 | impl From<DateTime> for DateTimeDifference { |
3278 | #[inline ] |
3279 | fn from(dt: DateTime) -> DateTimeDifference { |
3280 | DateTimeDifference::new(datetime:dt) |
3281 | } |
3282 | } |
3283 | |
3284 | impl From<Date> for DateTimeDifference { |
3285 | #[inline ] |
3286 | fn from(date: Date) -> DateTimeDifference { |
3287 | DateTimeDifference::from(DateTime::from(date)) |
3288 | } |
3289 | } |
3290 | |
3291 | impl From<Zoned> for DateTimeDifference { |
3292 | #[inline ] |
3293 | fn from(zdt: Zoned) -> DateTimeDifference { |
3294 | DateTimeDifference::from(DateTime::from(zdt)) |
3295 | } |
3296 | } |
3297 | |
3298 | impl<'a> From<&'a Zoned> for DateTimeDifference { |
3299 | #[inline ] |
3300 | fn from(zdt: &'a Zoned) -> DateTimeDifference { |
3301 | DateTimeDifference::from(zdt.datetime()) |
3302 | } |
3303 | } |
3304 | |
3305 | impl From<(Unit, DateTime)> for DateTimeDifference { |
3306 | #[inline ] |
3307 | fn from((largest: Unit, dt: DateTime): (Unit, DateTime)) -> DateTimeDifference { |
3308 | DateTimeDifference::from(dt).largest(unit:largest) |
3309 | } |
3310 | } |
3311 | |
3312 | impl From<(Unit, Date)> for DateTimeDifference { |
3313 | #[inline ] |
3314 | fn from((largest: Unit, date: Date): (Unit, Date)) -> DateTimeDifference { |
3315 | DateTimeDifference::from(date).largest(unit:largest) |
3316 | } |
3317 | } |
3318 | |
3319 | impl From<(Unit, Zoned)> for DateTimeDifference { |
3320 | #[inline ] |
3321 | fn from((largest: Unit, zdt: Zoned): (Unit, Zoned)) -> DateTimeDifference { |
3322 | DateTimeDifference::from((largest, DateTime::from(zdt))) |
3323 | } |
3324 | } |
3325 | |
3326 | impl<'a> From<(Unit, &'a Zoned)> for DateTimeDifference { |
3327 | #[inline ] |
3328 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> DateTimeDifference { |
3329 | DateTimeDifference::from((largest, zdt.datetime())) |
3330 | } |
3331 | } |
3332 | |
3333 | /// Options for [`DateTime::round`]. |
3334 | /// |
3335 | /// This type provides a way to configure the rounding of a civil datetime. In |
3336 | /// particular, `DateTime::round` accepts anything that implements the |
3337 | /// `Into<DateTimeRound>` trait. There are some trait implementations that |
3338 | /// therefore make calling `DateTime::round` in some common cases more |
3339 | /// ergonomic: |
3340 | /// |
3341 | /// * `From<Unit> for DateTimeRound` will construct a rounding |
3342 | /// configuration that rounds to the unit given. Specifically, |
3343 | /// `DateTimeRound::new().smallest(unit)`. |
3344 | /// * `From<(Unit, i64)> for DateTimeRound` is like the one above, but also |
3345 | /// specifies the rounding increment for [`DateTimeRound::increment`]. |
3346 | /// |
3347 | /// Note that in the default configuration, no rounding occurs. |
3348 | /// |
3349 | /// # Example |
3350 | /// |
3351 | /// This example shows how to round a datetime to the nearest second: |
3352 | /// |
3353 | /// ``` |
3354 | /// use jiff::{civil::{DateTime, date}, Unit}; |
3355 | /// |
3356 | /// let dt: DateTime = "2024-06-20 16:24:59.5" .parse()?; |
3357 | /// assert_eq!( |
3358 | /// dt.round(Unit::Second)?, |
3359 | /// // The second rounds up and causes minutes to increase. |
3360 | /// date(2024, 6, 20).at(16, 25, 0, 0), |
3361 | /// ); |
3362 | /// |
3363 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3364 | /// ``` |
3365 | /// |
3366 | /// The above makes use of the fact that `Unit` implements |
3367 | /// `Into<DateTimeRound>`. If you want to change the rounding mode to, say, |
3368 | /// truncation, then you'll need to construct a `DateTimeRound` explicitly |
3369 | /// since there are no convenience `Into` trait implementations for |
3370 | /// [`RoundMode`]. |
3371 | /// |
3372 | /// ``` |
3373 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
3374 | /// |
3375 | /// let dt: DateTime = "2024-06-20 16:24:59.5" .parse()?; |
3376 | /// assert_eq!( |
3377 | /// dt.round( |
3378 | /// DateTimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
3379 | /// )?, |
3380 | /// // The second just gets truncated as if it wasn't there. |
3381 | /// date(2024, 6, 20).at(16, 24, 59, 0), |
3382 | /// ); |
3383 | /// |
3384 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3385 | /// ``` |
3386 | #[derive (Clone, Copy, Debug)] |
3387 | pub struct DateTimeRound { |
3388 | smallest: Unit, |
3389 | mode: RoundMode, |
3390 | increment: i64, |
3391 | } |
3392 | |
3393 | impl DateTimeRound { |
3394 | /// Create a new default configuration for rounding a [`DateTime`]. |
3395 | #[inline ] |
3396 | pub fn new() -> DateTimeRound { |
3397 | DateTimeRound { |
3398 | smallest: Unit::Nanosecond, |
3399 | mode: RoundMode::HalfExpand, |
3400 | increment: 1, |
3401 | } |
3402 | } |
3403 | |
3404 | /// Set the smallest units allowed in the datetime returned after rounding. |
3405 | /// |
3406 | /// Any units below the smallest configured unit will be used, along with |
3407 | /// the rounding increment and rounding mode, to determine the value of the |
3408 | /// smallest unit. For example, when rounding `2024-06-20T03:25:30` to the |
3409 | /// nearest minute, the `30` second unit will result in rounding the minute |
3410 | /// unit of `25` up to `26` and zeroing out everything below minutes. |
3411 | /// |
3412 | /// This defaults to [`Unit::Nanosecond`]. |
3413 | /// |
3414 | /// # Errors |
3415 | /// |
3416 | /// The smallest units must be no greater than [`Unit::Day`]. And when the |
3417 | /// smallest unit is `Unit::Day`, the rounding increment must be equal to |
3418 | /// `1`. Otherwise an error will be returned from [`DateTime::round`]. |
3419 | /// |
3420 | /// # Example |
3421 | /// |
3422 | /// ``` |
3423 | /// use jiff::{civil::{DateTimeRound, date}, Unit}; |
3424 | /// |
3425 | /// let dt = date(2024, 6, 20).at(3, 25, 30, 0); |
3426 | /// assert_eq!( |
3427 | /// dt.round(DateTimeRound::new().smallest(Unit::Minute))?, |
3428 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
3429 | /// ); |
3430 | /// // Or, utilize the `From<Unit> for DateTimeRound` impl: |
3431 | /// assert_eq!( |
3432 | /// dt.round(Unit::Minute)?, |
3433 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
3434 | /// ); |
3435 | /// |
3436 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3437 | /// ``` |
3438 | #[inline ] |
3439 | pub fn smallest(self, unit: Unit) -> DateTimeRound { |
3440 | DateTimeRound { smallest: unit, ..self } |
3441 | } |
3442 | |
3443 | /// Set the rounding mode. |
3444 | /// |
3445 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
3446 | /// zero. It matches the kind of rounding you might have been taught in |
3447 | /// school. |
3448 | /// |
3449 | /// # Example |
3450 | /// |
3451 | /// This shows how to always round datetimes up towards positive infinity. |
3452 | /// |
3453 | /// ``` |
3454 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
3455 | /// |
3456 | /// let dt: DateTime = "2024-06-20 03:25:01" .parse()?; |
3457 | /// assert_eq!( |
3458 | /// dt.round( |
3459 | /// DateTimeRound::new() |
3460 | /// .smallest(Unit::Minute) |
3461 | /// .mode(RoundMode::Ceil), |
3462 | /// )?, |
3463 | /// date(2024, 6, 20).at(3, 26, 0, 0), |
3464 | /// ); |
3465 | /// |
3466 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3467 | /// ``` |
3468 | #[inline ] |
3469 | pub fn mode(self, mode: RoundMode) -> DateTimeRound { |
3470 | DateTimeRound { mode, ..self } |
3471 | } |
3472 | |
3473 | /// Set the rounding increment for the smallest unit. |
3474 | /// |
3475 | /// The default value is `1`. Other values permit rounding the smallest |
3476 | /// unit to the nearest integer increment specified. For example, if the |
3477 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
3478 | /// `30` would result in rounding in increments of a half hour. That is, |
3479 | /// the only minute value that could result would be `0` or `30`. |
3480 | /// |
3481 | /// # Errors |
3482 | /// |
3483 | /// When the smallest unit is `Unit::Day`, then the rounding increment must |
3484 | /// be `1` or else [`DateTime::round`] will return an error. |
3485 | /// |
3486 | /// For other units, the rounding increment must divide evenly into the |
3487 | /// next highest unit above the smallest unit set. The rounding increment |
3488 | /// must also not be equal to the next highest unit. For example, if the |
3489 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
3490 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
3491 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
3492 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
3493 | /// |
3494 | /// # Example |
3495 | /// |
3496 | /// This example shows how to round a datetime to the nearest 10 minute |
3497 | /// increment. |
3498 | /// |
3499 | /// ``` |
3500 | /// use jiff::{civil::{DateTime, DateTimeRound, date}, RoundMode, Unit}; |
3501 | /// |
3502 | /// let dt: DateTime = "2024-06-20 03:24:59" .parse()?; |
3503 | /// assert_eq!( |
3504 | /// dt.round((Unit::Minute, 10))?, |
3505 | /// date(2024, 6, 20).at(3, 20, 0, 0), |
3506 | /// ); |
3507 | /// |
3508 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3509 | /// ``` |
3510 | #[inline ] |
3511 | pub fn increment(self, increment: i64) -> DateTimeRound { |
3512 | DateTimeRound { increment, ..self } |
3513 | } |
3514 | |
3515 | /// Does the actual rounding. |
3516 | /// |
3517 | /// A non-public configuration here is the length of a day. For civil |
3518 | /// datetimes, this should always be `NANOS_PER_CIVIL_DAY`. But this |
3519 | /// rounding routine is also used for `Zoned` rounding, and in that |
3520 | /// context, the length of a day can vary based on the time zone. |
3521 | pub(crate) fn round(&self, dt: DateTime) -> Result<DateTime, Error> { |
3522 | // ref: https://tc39.es/proposal-temporal/#sec-temporal.plaindatetime.prototype.round |
3523 | |
3524 | let increment = |
3525 | increment::for_datetime(self.smallest, self.increment)?; |
3526 | // We permit rounding to any time unit and days, but nothing else. |
3527 | // We should support this, but Temporal doesn't. So for now, we're |
3528 | // sticking to what Temporal does because they're probably not doing |
3529 | // it for good reasons. |
3530 | match self.smallest { |
3531 | Unit::Year | Unit::Month | Unit::Week => { |
3532 | return Err(err!( |
3533 | "rounding datetimes does not support {unit}" , |
3534 | unit = self.smallest.plural() |
3535 | )); |
3536 | } |
3537 | // We don't do any rounding in this case, so just bail now. |
3538 | Unit::Nanosecond if increment == C(1) => { |
3539 | return Ok(dt); |
3540 | } |
3541 | _ => {} |
3542 | } |
3543 | |
3544 | let time_nanos = dt.time().to_nanosecond(); |
3545 | let sign = t::NoUnits128::rfrom(dt.date().year_ranged().signum()); |
3546 | let time_rounded = self.mode.round_by_unit_in_nanoseconds( |
3547 | time_nanos, |
3548 | self.smallest, |
3549 | increment, |
3550 | ); |
3551 | let days = sign * time_rounded.div_ceil(t::NANOS_PER_CIVIL_DAY); |
3552 | let time_nanos = time_rounded.rem_ceil(t::NANOS_PER_CIVIL_DAY); |
3553 | let time = Time::from_nanosecond(time_nanos.rinto()); |
3554 | |
3555 | let date_days = t::SpanDays::rfrom(dt.date().day_ranged()); |
3556 | // OK because days is limited by the fact that the length of a day |
3557 | // can't be any smaller than 1 second, and the number of nanoseconds in |
3558 | // a civil day is capped. |
3559 | let days_len = (date_days - C(1)) + days; |
3560 | // OK because the first day of any month is always valid. |
3561 | let start = dt.date().first_of_month(); |
3562 | // `days` should basically always be <= 1, and so `days_len` should |
3563 | // always be at most 1 greater (or less) than where we started. But |
3564 | // what if there is a time zone transition that makes 9999-12-31 |
3565 | // shorter than 24 hours? And we are rounding 9999-12-31? Well, then |
3566 | // I guess this could overflow and fail. I suppose it could also fail |
3567 | // for really weird time zone data that made the length of a day really |
3568 | // short. But even then, you'd need to be close to the boundary of |
3569 | // supported datetimes. |
3570 | let end = start |
3571 | .checked_add(Span::new().days_ranged(days_len)) |
3572 | .with_context(|| { |
3573 | err!("adding {days_len} days to {start} failed" ) |
3574 | })?; |
3575 | Ok(DateTime::from_parts(end, time)) |
3576 | } |
3577 | |
3578 | pub(crate) fn get_smallest(&self) -> Unit { |
3579 | self.smallest |
3580 | } |
3581 | |
3582 | pub(crate) fn get_mode(&self) -> RoundMode { |
3583 | self.mode |
3584 | } |
3585 | |
3586 | pub(crate) fn get_increment(&self) -> i64 { |
3587 | self.increment |
3588 | } |
3589 | } |
3590 | |
3591 | impl Default for DateTimeRound { |
3592 | #[inline ] |
3593 | fn default() -> DateTimeRound { |
3594 | DateTimeRound::new() |
3595 | } |
3596 | } |
3597 | |
3598 | impl From<Unit> for DateTimeRound { |
3599 | #[inline ] |
3600 | fn from(unit: Unit) -> DateTimeRound { |
3601 | DateTimeRound::default().smallest(unit) |
3602 | } |
3603 | } |
3604 | |
3605 | impl From<(Unit, i64)> for DateTimeRound { |
3606 | #[inline ] |
3607 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> DateTimeRound { |
3608 | DateTimeRound::from(unit).increment(increment) |
3609 | } |
3610 | } |
3611 | |
3612 | /// A builder for setting the fields on a [`DateTime`]. |
3613 | /// |
3614 | /// This builder is constructed via [`DateTime::with`]. |
3615 | /// |
3616 | /// # Example |
3617 | /// |
3618 | /// The builder ensures one can chain together the individual components of a |
3619 | /// datetime without it failing at an intermediate step. For example, if you |
3620 | /// had a date of `2024-10-31T00:00:00` and wanted to change both the day and |
3621 | /// the month, and each setting was validated independent of the other, you |
3622 | /// would need to be careful to set the day first and then the month. In some |
3623 | /// cases, you would need to set the month first and then the day! |
3624 | /// |
3625 | /// But with the builder, you can set values in any order: |
3626 | /// |
3627 | /// ``` |
3628 | /// use jiff::civil::date; |
3629 | /// |
3630 | /// let dt1 = date(2024, 10, 31).at(0, 0, 0, 0); |
3631 | /// let dt2 = dt1.with().month(11).day(30).build()?; |
3632 | /// assert_eq!(dt2, date(2024, 11, 30).at(0, 0, 0, 0)); |
3633 | /// |
3634 | /// let dt1 = date(2024, 4, 30).at(0, 0, 0, 0); |
3635 | /// let dt2 = dt1.with().day(31).month(7).build()?; |
3636 | /// assert_eq!(dt2, date(2024, 7, 31).at(0, 0, 0, 0)); |
3637 | /// |
3638 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3639 | /// ``` |
3640 | #[derive (Clone, Copy, Debug)] |
3641 | pub struct DateTimeWith { |
3642 | date_with: DateWith, |
3643 | time_with: TimeWith, |
3644 | } |
3645 | |
3646 | impl DateTimeWith { |
3647 | #[inline ] |
3648 | fn new(original: DateTime) -> DateTimeWith { |
3649 | DateTimeWith { |
3650 | date_with: original.date().with(), |
3651 | time_with: original.time().with(), |
3652 | } |
3653 | } |
3654 | |
3655 | /// Create a new `DateTime` from the fields set on this configuration. |
3656 | /// |
3657 | /// An error occurs when the fields combine to an invalid datetime. |
3658 | /// |
3659 | /// For any fields not set on this configuration, the values are taken from |
3660 | /// the [`DateTime`] that originally created this configuration. When no |
3661 | /// values are set, this routine is guaranteed to succeed and will always |
3662 | /// return the original datetime without modification. |
3663 | /// |
3664 | /// # Example |
3665 | /// |
3666 | /// This creates a datetime corresponding to the last day in the year at |
3667 | /// noon: |
3668 | /// |
3669 | /// ``` |
3670 | /// use jiff::civil::date; |
3671 | /// |
3672 | /// let dt = date(2023, 1, 1).at(12, 0, 0, 0); |
3673 | /// assert_eq!( |
3674 | /// dt.with().day_of_year_no_leap(365).build()?, |
3675 | /// date(2023, 12, 31).at(12, 0, 0, 0), |
3676 | /// ); |
3677 | /// |
3678 | /// // It also works with leap years for the same input: |
3679 | /// let dt = date(2024, 1, 1).at(12, 0, 0, 0); |
3680 | /// assert_eq!( |
3681 | /// dt.with().day_of_year_no_leap(365).build()?, |
3682 | /// date(2024, 12, 31).at(12, 0, 0, 0), |
3683 | /// ); |
3684 | /// |
3685 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3686 | /// ``` |
3687 | /// |
3688 | /// # Example: error for invalid datetime |
3689 | /// |
3690 | /// If the fields combine to form an invalid date, then an error is |
3691 | /// returned: |
3692 | /// |
3693 | /// ``` |
3694 | /// use jiff::civil::date; |
3695 | /// |
3696 | /// let dt = date(2024, 11, 30).at(15, 30, 0, 0); |
3697 | /// assert!(dt.with().day(31).build().is_err()); |
3698 | /// |
3699 | /// let dt = date(2024, 2, 29).at(15, 30, 0, 0); |
3700 | /// assert!(dt.with().year(2023).build().is_err()); |
3701 | /// ``` |
3702 | #[inline ] |
3703 | pub fn build(self) -> Result<DateTime, Error> { |
3704 | let date = self.date_with.build()?; |
3705 | let time = self.time_with.build()?; |
3706 | Ok(DateTime::from_parts(date, time)) |
3707 | } |
3708 | |
3709 | /// Set the year, month and day fields via the `Date` given. |
3710 | /// |
3711 | /// This overrides any previous year, month or day settings. |
3712 | /// |
3713 | /// # Example |
3714 | /// |
3715 | /// This shows how to create a new datetime with a different date: |
3716 | /// |
3717 | /// ``` |
3718 | /// use jiff::civil::date; |
3719 | /// |
3720 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
3721 | /// let dt2 = dt1.with().date(date(2017, 10, 31)).build()?; |
3722 | /// // The date changes but the time remains the same. |
3723 | /// assert_eq!(dt2, date(2017, 10, 31).at(15, 30, 0, 0)); |
3724 | /// |
3725 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3726 | /// ``` |
3727 | #[inline ] |
3728 | pub fn date(self, date: Date) -> DateTimeWith { |
3729 | DateTimeWith { date_with: date.with(), ..self } |
3730 | } |
3731 | |
3732 | /// Set the hour, minute, second, millisecond, microsecond and nanosecond |
3733 | /// fields via the `Time` given. |
3734 | /// |
3735 | /// This overrides any previous hour, minute, second, millisecond, |
3736 | /// microsecond, nanosecond or subsecond nanosecond settings. |
3737 | /// |
3738 | /// # Example |
3739 | /// |
3740 | /// This shows how to create a new datetime with a different time: |
3741 | /// |
3742 | /// ``` |
3743 | /// use jiff::civil::{date, time}; |
3744 | /// |
3745 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
3746 | /// let dt2 = dt1.with().time(time(23, 59, 59, 123_456_789)).build()?; |
3747 | /// // The time changes but the date remains the same. |
3748 | /// assert_eq!(dt2, date(2005, 11, 5).at(23, 59, 59, 123_456_789)); |
3749 | /// |
3750 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3751 | /// ``` |
3752 | #[inline ] |
3753 | pub fn time(self, time: Time) -> DateTimeWith { |
3754 | DateTimeWith { time_with: time.with(), ..self } |
3755 | } |
3756 | |
3757 | /// Set the year field on a [`DateTime`]. |
3758 | /// |
3759 | /// One can access this value via [`DateTime::year`]. |
3760 | /// |
3761 | /// This overrides any previous year settings. |
3762 | /// |
3763 | /// # Errors |
3764 | /// |
3765 | /// This returns an error when [`DateTimeWith::build`] is called if the |
3766 | /// given year is outside the range `-9999..=9999`. This can also return an |
3767 | /// error if the resulting date is otherwise invalid. |
3768 | /// |
3769 | /// # Example |
3770 | /// |
3771 | /// This shows how to create a new datetime with a different year: |
3772 | /// |
3773 | /// ``` |
3774 | /// use jiff::civil::date; |
3775 | /// |
3776 | /// let dt1 = date(2005, 11, 5).at(15, 30, 0, 0); |
3777 | /// assert_eq!(dt1.year(), 2005); |
3778 | /// let dt2 = dt1.with().year(2007).build()?; |
3779 | /// assert_eq!(dt2.year(), 2007); |
3780 | /// |
3781 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3782 | /// ``` |
3783 | /// |
3784 | /// # Example: only changing the year can fail |
3785 | /// |
3786 | /// For example, while `2024-02-29T01:30:00` is valid, |
3787 | /// `2023-02-29T01:30:00` is not: |
3788 | /// |
3789 | /// ``` |
3790 | /// use jiff::civil::date; |
3791 | /// |
3792 | /// let dt = date(2024, 2, 29).at(1, 30, 0, 0); |
3793 | /// assert!(dt.with().year(2023).build().is_err()); |
3794 | /// ``` |
3795 | #[inline ] |
3796 | pub fn year(self, year: i16) -> DateTimeWith { |
3797 | DateTimeWith { date_with: self.date_with.year(year), ..self } |
3798 | } |
3799 | |
3800 | /// Set year of a datetime via its era and its non-negative numeric |
3801 | /// component. |
3802 | /// |
3803 | /// One can access this value via [`DateTime::era_year`]. |
3804 | /// |
3805 | /// # Errors |
3806 | /// |
3807 | /// This returns an error when [`DateTimeWith::build`] is called if the |
3808 | /// year is outside the range for the era specified. For [`Era::BCE`], the |
3809 | /// range is `1..=10000`. For [`Era::CE`], the range is `1..=9999`. |
3810 | /// |
3811 | /// # Example |
3812 | /// |
3813 | /// This shows that `CE` years are equivalent to the years used by this |
3814 | /// crate: |
3815 | /// |
3816 | /// ``` |
3817 | /// use jiff::civil::{Era, date}; |
3818 | /// |
3819 | /// let dt1 = date(2005, 11, 5).at(8, 0, 0, 0); |
3820 | /// assert_eq!(dt1.year(), 2005); |
3821 | /// let dt2 = dt1.with().era_year(2007, Era::CE).build()?; |
3822 | /// assert_eq!(dt2.year(), 2007); |
3823 | /// |
3824 | /// // CE years are always positive and can be at most 9999: |
3825 | /// assert!(dt1.with().era_year(-5, Era::CE).build().is_err()); |
3826 | /// assert!(dt1.with().era_year(10_000, Era::CE).build().is_err()); |
3827 | /// |
3828 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3829 | /// ``` |
3830 | /// |
3831 | /// But `BCE` years always correspond to years less than or equal to `0` |
3832 | /// in this crate: |
3833 | /// |
3834 | /// ``` |
3835 | /// use jiff::civil::{Era, date}; |
3836 | /// |
3837 | /// let dt1 = date(-27, 7, 1).at(8, 22, 30, 0); |
3838 | /// assert_eq!(dt1.year(), -27); |
3839 | /// assert_eq!(dt1.era_year(), (28, Era::BCE)); |
3840 | /// |
3841 | /// let dt2 = dt1.with().era_year(509, Era::BCE).build()?; |
3842 | /// assert_eq!(dt2.year(), -508); |
3843 | /// assert_eq!(dt2.era_year(), (509, Era::BCE)); |
3844 | /// |
3845 | /// let dt2 = dt1.with().era_year(10_000, Era::BCE).build()?; |
3846 | /// assert_eq!(dt2.year(), -9_999); |
3847 | /// assert_eq!(dt2.era_year(), (10_000, Era::BCE)); |
3848 | /// |
3849 | /// // BCE years are always positive and can be at most 10000: |
3850 | /// assert!(dt1.with().era_year(-5, Era::BCE).build().is_err()); |
3851 | /// assert!(dt1.with().era_year(10_001, Era::BCE).build().is_err()); |
3852 | /// |
3853 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3854 | /// ``` |
3855 | /// |
3856 | /// # Example: overrides `DateTimeWith::year` |
3857 | /// |
3858 | /// Setting this option will override any previous `DateTimeWith::year` |
3859 | /// option: |
3860 | /// |
3861 | /// ``` |
3862 | /// use jiff::civil::{Era, date}; |
3863 | /// |
3864 | /// let dt1 = date(2024, 7, 2).at(10, 27, 10, 123); |
3865 | /// let dt2 = dt1.with().year(2000).era_year(1900, Era::CE).build()?; |
3866 | /// assert_eq!(dt2, date(1900, 7, 2).at(10, 27, 10, 123)); |
3867 | /// |
3868 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3869 | /// ``` |
3870 | /// |
3871 | /// Similarly, `DateTimeWith::year` will override any previous call to |
3872 | /// `DateTimeWith::era_year`: |
3873 | /// |
3874 | /// ``` |
3875 | /// use jiff::civil::{Era, date}; |
3876 | /// |
3877 | /// let dt1 = date(2024, 7, 2).at(19, 0, 1, 1); |
3878 | /// let dt2 = dt1.with().era_year(1900, Era::CE).year(2000).build()?; |
3879 | /// assert_eq!(dt2, date(2000, 7, 2).at(19, 0, 1, 1)); |
3880 | /// |
3881 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3882 | /// ``` |
3883 | #[inline ] |
3884 | pub fn era_year(self, year: i16, era: Era) -> DateTimeWith { |
3885 | DateTimeWith { date_with: self.date_with.era_year(year, era), ..self } |
3886 | } |
3887 | |
3888 | /// Set the month field on a [`DateTime`]. |
3889 | /// |
3890 | /// One can access this value via [`DateTime::month`]. |
3891 | /// |
3892 | /// This overrides any previous month settings. |
3893 | /// |
3894 | /// # Errors |
3895 | /// |
3896 | /// This returns an error when [`DateTimeWith::build`] is called if the |
3897 | /// given month is outside the range `1..=12`. This can also return an |
3898 | /// error if the resulting date is otherwise invalid. |
3899 | /// |
3900 | /// # Example |
3901 | /// |
3902 | /// This shows how to create a new datetime with a different month: |
3903 | /// |
3904 | /// ``` |
3905 | /// use jiff::civil::date; |
3906 | /// |
3907 | /// let dt1 = date(2005, 11, 5).at(18, 3, 59, 123_456_789); |
3908 | /// assert_eq!(dt1.month(), 11); |
3909 | /// let dt2 = dt1.with().month(6).build()?; |
3910 | /// assert_eq!(dt2.month(), 6); |
3911 | /// |
3912 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3913 | /// ``` |
3914 | /// |
3915 | /// # Example: only changing the month can fail |
3916 | /// |
3917 | /// For example, while `2024-10-31T00:00:00` is valid, |
3918 | /// `2024-11-31T00:00:00` is not: |
3919 | /// |
3920 | /// ``` |
3921 | /// use jiff::civil::date; |
3922 | /// |
3923 | /// let dt = date(2024, 10, 31).at(0, 0, 0, 0); |
3924 | /// assert!(dt.with().month(11).build().is_err()); |
3925 | /// ``` |
3926 | #[inline ] |
3927 | pub fn month(self, month: i8) -> DateTimeWith { |
3928 | DateTimeWith { date_with: self.date_with.month(month), ..self } |
3929 | } |
3930 | |
3931 | /// Set the day field on a [`DateTime`]. |
3932 | /// |
3933 | /// One can access this value via [`DateTime::day`]. |
3934 | /// |
3935 | /// This overrides any previous day settings. |
3936 | /// |
3937 | /// # Errors |
3938 | /// |
3939 | /// This returns an error when [`DateTimeWith::build`] is called if the |
3940 | /// given given day is outside of allowable days for the corresponding year |
3941 | /// and month fields. |
3942 | /// |
3943 | /// # Example |
3944 | /// |
3945 | /// This shows some examples of setting the day, including a leap day: |
3946 | /// |
3947 | /// ``` |
3948 | /// use jiff::civil::date; |
3949 | /// |
3950 | /// let dt1 = date(2024, 2, 5).at(21, 59, 1, 999); |
3951 | /// assert_eq!(dt1.day(), 5); |
3952 | /// let dt2 = dt1.with().day(10).build()?; |
3953 | /// assert_eq!(dt2.day(), 10); |
3954 | /// let dt3 = dt1.with().day(29).build()?; |
3955 | /// assert_eq!(dt3.day(), 29); |
3956 | /// |
3957 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3958 | /// ``` |
3959 | /// |
3960 | /// # Example: changing only the day can fail |
3961 | /// |
3962 | /// This shows some examples that will fail: |
3963 | /// |
3964 | /// ``` |
3965 | /// use jiff::civil::date; |
3966 | /// |
3967 | /// let dt1 = date(2023, 2, 5).at(22, 58, 58, 9_999); |
3968 | /// // 2023 is not a leap year |
3969 | /// assert!(dt1.with().day(29).build().is_err()); |
3970 | /// |
3971 | /// // September has 30 days, not 31. |
3972 | /// let dt1 = date(2023, 9, 5).at(22, 58, 58, 9_999); |
3973 | /// assert!(dt1.with().day(31).build().is_err()); |
3974 | /// ``` |
3975 | #[inline ] |
3976 | pub fn day(self, day: i8) -> DateTimeWith { |
3977 | DateTimeWith { date_with: self.date_with.day(day), ..self } |
3978 | } |
3979 | |
3980 | /// Set the day field on a [`DateTime`] via the ordinal number of a day |
3981 | /// within a year. |
3982 | /// |
3983 | /// When used, any settings for month are ignored since the month is |
3984 | /// determined by the day of the year. |
3985 | /// |
3986 | /// The valid values for `day` are `1..=366`. Note though that `366` is |
3987 | /// only valid for leap years. |
3988 | /// |
3989 | /// This overrides any previous day settings. |
3990 | /// |
3991 | /// # Errors |
3992 | /// |
3993 | /// This returns an error when [`DateTimeWith::build`] is called if the |
3994 | /// given day is outside the allowed range of `1..=366`, or when a value of |
3995 | /// `366` is given for a non-leap year. |
3996 | /// |
3997 | /// # Example |
3998 | /// |
3999 | /// This demonstrates that if a year is a leap year, then `60` corresponds |
4000 | /// to February 29: |
4001 | /// |
4002 | /// ``` |
4003 | /// use jiff::civil::date; |
4004 | /// |
4005 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
4006 | /// assert_eq!( |
4007 | /// dt.with().day_of_year(60).build()?, |
4008 | /// date(2024, 2, 29).at(23, 59, 59, 999_999_999), |
4009 | /// ); |
4010 | /// |
4011 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4012 | /// ``` |
4013 | /// |
4014 | /// But for non-leap years, day 60 is March 1: |
4015 | /// |
4016 | /// ``` |
4017 | /// use jiff::civil::date; |
4018 | /// |
4019 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
4020 | /// assert_eq!( |
4021 | /// dt.with().day_of_year(60).build()?, |
4022 | /// date(2023, 3, 1).at(23, 59, 59, 999_999_999), |
4023 | /// ); |
4024 | /// |
4025 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4026 | /// ``` |
4027 | /// |
4028 | /// And using `366` for a non-leap year will result in an error, since |
4029 | /// non-leap years only have 365 days: |
4030 | /// |
4031 | /// ``` |
4032 | /// use jiff::civil::date; |
4033 | /// |
4034 | /// let dt = date(2023, 1, 1).at(0, 0, 0, 0); |
4035 | /// assert!(dt.with().day_of_year(366).build().is_err()); |
4036 | /// // The maximal year is not a leap year, so it returns an error too. |
4037 | /// let dt = date(9999, 1, 1).at(0, 0, 0, 0); |
4038 | /// assert!(dt.with().day_of_year(366).build().is_err()); |
4039 | /// ``` |
4040 | #[inline ] |
4041 | pub fn day_of_year(self, day: i16) -> DateTimeWith { |
4042 | DateTimeWith { date_with: self.date_with.day_of_year(day), ..self } |
4043 | } |
4044 | |
4045 | /// Set the day field on a [`DateTime`] via the ordinal number of a day |
4046 | /// within a year, but ignoring leap years. |
4047 | /// |
4048 | /// When used, any settings for month are ignored since the month is |
4049 | /// determined by the day of the year. |
4050 | /// |
4051 | /// The valid values for `day` are `1..=365`. The value `365` always |
4052 | /// corresponds to the last day of the year, even for leap years. It is |
4053 | /// impossible for this routine to return a datetime corresponding to |
4054 | /// February 29. |
4055 | /// |
4056 | /// This overrides any previous day settings. |
4057 | /// |
4058 | /// # Errors |
4059 | /// |
4060 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4061 | /// given day is outside the allowed range of `1..=365`. |
4062 | /// |
4063 | /// # Example |
4064 | /// |
4065 | /// This demonstrates that `60` corresponds to March 1, regardless of |
4066 | /// whether the year is a leap year or not: |
4067 | /// |
4068 | /// ``` |
4069 | /// use jiff::civil::date; |
4070 | /// |
4071 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
4072 | /// assert_eq!( |
4073 | /// dt.with().day_of_year_no_leap(60).build()?, |
4074 | /// date(2023, 3, 1).at(23, 59, 59, 999_999_999), |
4075 | /// ); |
4076 | /// |
4077 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
4078 | /// assert_eq!( |
4079 | /// dt.with().day_of_year_no_leap(60).build()?, |
4080 | /// date(2024, 3, 1).at(23, 59, 59, 999_999_999), |
4081 | /// ); |
4082 | /// |
4083 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4084 | /// ``` |
4085 | /// |
4086 | /// And using `365` for any year will always yield the last day of the |
4087 | /// year: |
4088 | /// |
4089 | /// ``` |
4090 | /// use jiff::civil::date; |
4091 | /// |
4092 | /// let dt = date(2023, 1, 1).at(23, 59, 59, 999_999_999); |
4093 | /// assert_eq!( |
4094 | /// dt.with().day_of_year_no_leap(365).build()?, |
4095 | /// dt.last_of_year(), |
4096 | /// ); |
4097 | /// |
4098 | /// let dt = date(2024, 1, 1).at(23, 59, 59, 999_999_999); |
4099 | /// assert_eq!( |
4100 | /// dt.with().day_of_year_no_leap(365).build()?, |
4101 | /// dt.last_of_year(), |
4102 | /// ); |
4103 | /// |
4104 | /// let dt = date(9999, 1, 1).at(23, 59, 59, 999_999_999); |
4105 | /// assert_eq!( |
4106 | /// dt.with().day_of_year_no_leap(365).build()?, |
4107 | /// dt.last_of_year(), |
4108 | /// ); |
4109 | /// |
4110 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4111 | /// ``` |
4112 | /// |
4113 | /// A value of `366` is out of bounds, even for leap years: |
4114 | /// |
4115 | /// ``` |
4116 | /// use jiff::civil::date; |
4117 | /// |
4118 | /// let dt = date(2024, 1, 1).at(5, 30, 0, 0); |
4119 | /// assert!(dt.with().day_of_year_no_leap(366).build().is_err()); |
4120 | /// ``` |
4121 | #[inline ] |
4122 | pub fn day_of_year_no_leap(self, day: i16) -> DateTimeWith { |
4123 | DateTimeWith { |
4124 | date_with: self.date_with.day_of_year_no_leap(day), |
4125 | ..self |
4126 | } |
4127 | } |
4128 | |
4129 | /// Set the hour field on a [`DateTime`]. |
4130 | /// |
4131 | /// One can access this value via [`DateTime::hour`]. |
4132 | /// |
4133 | /// This overrides any previous hour settings. |
4134 | /// |
4135 | /// # Errors |
4136 | /// |
4137 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4138 | /// given hour is outside the range `0..=23`. |
4139 | /// |
4140 | /// # Example |
4141 | /// |
4142 | /// ``` |
4143 | /// use jiff::civil::time; |
4144 | /// |
4145 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
4146 | /// assert_eq!(dt1.hour(), 15); |
4147 | /// let dt2 = dt1.with().hour(3).build()?; |
4148 | /// assert_eq!(dt2.hour(), 3); |
4149 | /// |
4150 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4151 | /// ``` |
4152 | #[inline ] |
4153 | pub fn hour(self, hour: i8) -> DateTimeWith { |
4154 | DateTimeWith { time_with: self.time_with.hour(hour), ..self } |
4155 | } |
4156 | |
4157 | /// Set the minute field on a [`DateTime`]. |
4158 | /// |
4159 | /// One can access this value via [`DateTime::minute`]. |
4160 | /// |
4161 | /// This overrides any previous minute settings. |
4162 | /// |
4163 | /// # Errors |
4164 | /// |
4165 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4166 | /// given minute is outside the range `0..=59`. |
4167 | /// |
4168 | /// # Example |
4169 | /// |
4170 | /// ``` |
4171 | /// use jiff::civil::time; |
4172 | /// |
4173 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
4174 | /// assert_eq!(dt1.minute(), 21); |
4175 | /// let dt2 = dt1.with().minute(3).build()?; |
4176 | /// assert_eq!(dt2.minute(), 3); |
4177 | /// |
4178 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4179 | /// ``` |
4180 | #[inline ] |
4181 | pub fn minute(self, minute: i8) -> DateTimeWith { |
4182 | DateTimeWith { time_with: self.time_with.minute(minute), ..self } |
4183 | } |
4184 | |
4185 | /// Set the second field on a [`DateTime`]. |
4186 | /// |
4187 | /// One can access this value via [`DateTime::second`]. |
4188 | /// |
4189 | /// This overrides any previous second settings. |
4190 | /// |
4191 | /// # Errors |
4192 | /// |
4193 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4194 | /// given second is outside the range `0..=59`. |
4195 | /// |
4196 | /// # Example |
4197 | /// |
4198 | /// ``` |
4199 | /// use jiff::civil::time; |
4200 | /// |
4201 | /// let dt1 = time(15, 21, 59, 0).on(2010, 6, 1); |
4202 | /// assert_eq!(dt1.second(), 59); |
4203 | /// let dt2 = dt1.with().second(3).build()?; |
4204 | /// assert_eq!(dt2.second(), 3); |
4205 | /// |
4206 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4207 | /// ``` |
4208 | #[inline ] |
4209 | pub fn second(self, second: i8) -> DateTimeWith { |
4210 | DateTimeWith { time_with: self.time_with.second(second), ..self } |
4211 | } |
4212 | |
4213 | /// Set the millisecond field on a [`DateTime`]. |
4214 | /// |
4215 | /// One can access this value via [`DateTime::millisecond`]. |
4216 | /// |
4217 | /// This overrides any previous millisecond settings. |
4218 | /// |
4219 | /// Note that this only sets the millisecond component. It does |
4220 | /// not change the microsecond or nanosecond components. To set |
4221 | /// the fractional second component to nanosecond precision, use |
4222 | /// [`DateTimeWith::subsec_nanosecond`]. |
4223 | /// |
4224 | /// # Errors |
4225 | /// |
4226 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4227 | /// given millisecond is outside the range `0..=999`, or if both this and |
4228 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
4229 | /// |
4230 | /// # Example |
4231 | /// |
4232 | /// This shows the relationship between [`DateTime::millisecond`] and |
4233 | /// [`DateTime::subsec_nanosecond`]: |
4234 | /// |
4235 | /// ``` |
4236 | /// use jiff::civil::time; |
4237 | /// |
4238 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
4239 | /// let dt2 = dt1.with().millisecond(123).build()?; |
4240 | /// assert_eq!(dt2.subsec_nanosecond(), 123_000_000); |
4241 | /// |
4242 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4243 | /// ``` |
4244 | #[inline ] |
4245 | pub fn millisecond(self, millisecond: i16) -> DateTimeWith { |
4246 | DateTimeWith { |
4247 | time_with: self.time_with.millisecond(millisecond), |
4248 | ..self |
4249 | } |
4250 | } |
4251 | |
4252 | /// Set the microsecond field on a [`DateTime`]. |
4253 | /// |
4254 | /// One can access this value via [`DateTime::microsecond`]. |
4255 | /// |
4256 | /// This overrides any previous microsecond settings. |
4257 | /// |
4258 | /// Note that this only sets the microsecond component. It does |
4259 | /// not change the millisecond or nanosecond components. To set |
4260 | /// the fractional second component to nanosecond precision, use |
4261 | /// [`DateTimeWith::subsec_nanosecond`]. |
4262 | /// |
4263 | /// # Errors |
4264 | /// |
4265 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4266 | /// given microsecond is outside the range `0..=999`, or if both this and |
4267 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
4268 | /// |
4269 | /// # Example |
4270 | /// |
4271 | /// This shows the relationship between [`DateTime::microsecond`] and |
4272 | /// [`DateTime::subsec_nanosecond`]: |
4273 | /// |
4274 | /// ``` |
4275 | /// use jiff::civil::time; |
4276 | /// |
4277 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
4278 | /// let dt2 = dt1.with().microsecond(123).build()?; |
4279 | /// assert_eq!(dt2.subsec_nanosecond(), 123_000); |
4280 | /// |
4281 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4282 | /// ``` |
4283 | #[inline ] |
4284 | pub fn microsecond(self, microsecond: i16) -> DateTimeWith { |
4285 | DateTimeWith { |
4286 | time_with: self.time_with.microsecond(microsecond), |
4287 | ..self |
4288 | } |
4289 | } |
4290 | |
4291 | /// Set the nanosecond field on a [`DateTime`]. |
4292 | /// |
4293 | /// One can access this value via [`DateTime::nanosecond`]. |
4294 | /// |
4295 | /// This overrides any previous nanosecond settings. |
4296 | /// |
4297 | /// Note that this only sets the nanosecond component. It does |
4298 | /// not change the millisecond or microsecond components. To set |
4299 | /// the fractional second component to nanosecond precision, use |
4300 | /// [`DateTimeWith::subsec_nanosecond`]. |
4301 | /// |
4302 | /// # Errors |
4303 | /// |
4304 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4305 | /// given nanosecond is outside the range `0..=999`, or if both this and |
4306 | /// [`DateTimeWith::subsec_nanosecond`] are set. |
4307 | /// |
4308 | /// # Example |
4309 | /// |
4310 | /// This shows the relationship between [`DateTime::nanosecond`] and |
4311 | /// [`DateTime::subsec_nanosecond`]: |
4312 | /// |
4313 | /// ``` |
4314 | /// use jiff::civil::time; |
4315 | /// |
4316 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
4317 | /// let dt2 = dt1.with().nanosecond(123).build()?; |
4318 | /// assert_eq!(dt2.subsec_nanosecond(), 123); |
4319 | /// |
4320 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4321 | /// ``` |
4322 | #[inline ] |
4323 | pub fn nanosecond(self, nanosecond: i16) -> DateTimeWith { |
4324 | DateTimeWith { |
4325 | time_with: self.time_with.nanosecond(nanosecond), |
4326 | ..self |
4327 | } |
4328 | } |
4329 | |
4330 | /// Set the subsecond nanosecond field on a [`DateTime`]. |
4331 | /// |
4332 | /// If you want to access this value on `DateTime`, then use |
4333 | /// [`DateTime::subsec_nanosecond`]. |
4334 | /// |
4335 | /// This overrides any previous subsecond nanosecond settings. |
4336 | /// |
4337 | /// Note that this sets the entire fractional second component to |
4338 | /// nanosecond precision, and overrides any individual millisecond, |
4339 | /// microsecond or nanosecond settings. To set individual components, |
4340 | /// use [`DateTimeWith::millisecond`], [`DateTimeWith::microsecond`] or |
4341 | /// [`DateTimeWith::nanosecond`]. |
4342 | /// |
4343 | /// # Errors |
4344 | /// |
4345 | /// This returns an error when [`DateTimeWith::build`] is called if the |
4346 | /// given subsecond nanosecond is outside the range `0..=999,999,999`, |
4347 | /// or if both this and one of [`DateTimeWith::millisecond`], |
4348 | /// [`DateTimeWith::microsecond`] or [`DateTimeWith::nanosecond`] are set. |
4349 | /// |
4350 | /// # Example |
4351 | /// |
4352 | /// This shows the relationship between constructing a `DateTime` value |
4353 | /// with subsecond nanoseconds and its individual subsecond fields: |
4354 | /// |
4355 | /// ``` |
4356 | /// use jiff::civil::time; |
4357 | /// |
4358 | /// let dt1 = time(15, 21, 35, 0).on(2010, 6, 1); |
4359 | /// let dt2 = dt1.with().subsec_nanosecond(123_456_789).build()?; |
4360 | /// assert_eq!(dt2.millisecond(), 123); |
4361 | /// assert_eq!(dt2.microsecond(), 456); |
4362 | /// assert_eq!(dt2.nanosecond(), 789); |
4363 | /// |
4364 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
4365 | /// ``` |
4366 | #[inline ] |
4367 | pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> DateTimeWith { |
4368 | DateTimeWith { |
4369 | time_with: self.time_with.subsec_nanosecond(subsec_nanosecond), |
4370 | ..self |
4371 | } |
4372 | } |
4373 | } |
4374 | |
4375 | #[cfg (test)] |
4376 | mod tests { |
4377 | use std::io::Cursor; |
4378 | |
4379 | use crate::{ |
4380 | civil::{date, time}, |
4381 | span::span_eq, |
4382 | RoundMode, ToSpan, Unit, |
4383 | }; |
4384 | |
4385 | use super::*; |
4386 | |
4387 | #[test ] |
4388 | fn from_temporal_docs() { |
4389 | let dt = DateTime::from_parts( |
4390 | date(1995, 12, 7), |
4391 | time(3, 24, 30, 000_003_500), |
4392 | ); |
4393 | |
4394 | let got = dt.round(Unit::Hour).unwrap(); |
4395 | let expected = |
4396 | DateTime::from_parts(date(1995, 12, 7), time(3, 0, 0, 0)); |
4397 | assert_eq!(got, expected); |
4398 | |
4399 | let got = dt.round((Unit::Minute, 30)).unwrap(); |
4400 | let expected = |
4401 | DateTime::from_parts(date(1995, 12, 7), time(3, 30, 0, 0)); |
4402 | assert_eq!(got, expected); |
4403 | |
4404 | let got = dt |
4405 | .round( |
4406 | DateTimeRound::new() |
4407 | .smallest(Unit::Minute) |
4408 | .increment(30) |
4409 | .mode(RoundMode::Floor), |
4410 | ) |
4411 | .unwrap(); |
4412 | let expected = |
4413 | DateTime::from_parts(date(1995, 12, 7), time(3, 0, 0, 0)); |
4414 | assert_eq!(got, expected); |
4415 | } |
4416 | |
4417 | #[test ] |
4418 | fn since() { |
4419 | let later = date(2024, 5, 9).at(2, 0, 0, 0); |
4420 | let earlier = date(2024, 5, 8).at(3, 0, 0, 0); |
4421 | span_eq!(later.since(earlier).unwrap(), 23.hours()); |
4422 | |
4423 | let later = date(2024, 5, 9).at(3, 0, 0, 0); |
4424 | let earlier = date(2024, 5, 8).at(2, 0, 0, 0); |
4425 | span_eq!(later.since(earlier).unwrap(), 1.days().hours(1)); |
4426 | |
4427 | let later = date(2024, 5, 9).at(2, 0, 0, 0); |
4428 | let earlier = date(2024, 5, 10).at(3, 0, 0, 0); |
4429 | span_eq!(later.since(earlier).unwrap(), -1.days().hours(1)); |
4430 | |
4431 | let later = date(2024, 5, 9).at(3, 0, 0, 0); |
4432 | let earlier = date(2024, 5, 10).at(2, 0, 0, 0); |
4433 | span_eq!(later.since(earlier).unwrap(), -23.hours()); |
4434 | } |
4435 | |
4436 | #[test ] |
4437 | fn until() { |
4438 | let a = date(9999, 12, 30).at(3, 0, 0, 0); |
4439 | let b = date(9999, 12, 31).at(2, 0, 0, 0); |
4440 | span_eq!(a.until(b).unwrap(), 23.hours()); |
4441 | |
4442 | let a = date(-9999, 1, 2).at(2, 0, 0, 0); |
4443 | let b = date(-9999, 1, 1).at(3, 0, 0, 0); |
4444 | span_eq!(a.until(b).unwrap(), -23.hours()); |
4445 | |
4446 | let a = date(1995, 12, 7).at(3, 24, 30, 3500); |
4447 | let b = date(2019, 1, 31).at(15, 30, 0, 0); |
4448 | span_eq!( |
4449 | a.until(b).unwrap(), |
4450 | 8456.days() |
4451 | .hours(12) |
4452 | .minutes(5) |
4453 | .seconds(29) |
4454 | .milliseconds(999) |
4455 | .microseconds(996) |
4456 | .nanoseconds(500) |
4457 | ); |
4458 | span_eq!( |
4459 | a.until((Unit::Year, b)).unwrap(), |
4460 | 23.years() |
4461 | .months(1) |
4462 | .days(24) |
4463 | .hours(12) |
4464 | .minutes(5) |
4465 | .seconds(29) |
4466 | .milliseconds(999) |
4467 | .microseconds(996) |
4468 | .nanoseconds(500) |
4469 | ); |
4470 | span_eq!( |
4471 | b.until((Unit::Year, a)).unwrap(), |
4472 | -23.years() |
4473 | .months(1) |
4474 | .days(24) |
4475 | .hours(12) |
4476 | .minutes(5) |
4477 | .seconds(29) |
4478 | .milliseconds(999) |
4479 | .microseconds(996) |
4480 | .nanoseconds(500) |
4481 | ); |
4482 | span_eq!( |
4483 | a.until((Unit::Nanosecond, b)).unwrap(), |
4484 | 730641929999996500i64.nanoseconds(), |
4485 | ); |
4486 | |
4487 | let a = date(-9999, 1, 1).at(0, 0, 0, 0); |
4488 | let b = date(9999, 12, 31).at(23, 59, 59, 999_999_999); |
4489 | assert!(a.until((Unit::Nanosecond, b)).is_err()); |
4490 | span_eq!( |
4491 | a.until((Unit::Microsecond, b)).unwrap(), |
4492 | Span::new() |
4493 | .microseconds(631_107_417_600_000_000i64 - 1) |
4494 | .nanoseconds(999), |
4495 | ); |
4496 | } |
4497 | |
4498 | #[test ] |
4499 | fn until_month_lengths() { |
4500 | let jan1 = date(2020, 1, 1).at(0, 0, 0, 0); |
4501 | let feb1 = date(2020, 2, 1).at(0, 0, 0, 0); |
4502 | let mar1 = date(2020, 3, 1).at(0, 0, 0, 0); |
4503 | |
4504 | span_eq!(jan1.until(feb1).unwrap(), 31.days()); |
4505 | span_eq!(jan1.until((Unit::Month, feb1)).unwrap(), 1.month()); |
4506 | span_eq!(feb1.until(mar1).unwrap(), 29.days()); |
4507 | span_eq!(feb1.until((Unit::Month, mar1)).unwrap(), 1.month()); |
4508 | span_eq!(jan1.until(mar1).unwrap(), 60.days()); |
4509 | span_eq!(jan1.until((Unit::Month, mar1)).unwrap(), 2.months()); |
4510 | } |
4511 | |
4512 | #[test ] |
4513 | fn datetime_size() { |
4514 | #[cfg (debug_assertions)] |
4515 | { |
4516 | assert_eq!(36, core::mem::size_of::<DateTime>()); |
4517 | } |
4518 | #[cfg (not(debug_assertions))] |
4519 | { |
4520 | assert_eq!(12, core::mem::size_of::<DateTime>()); |
4521 | } |
4522 | } |
4523 | |
4524 | /// # `serde` deserializer compatibility test |
4525 | /// |
4526 | /// Serde YAML used to be unable to deserialize `jiff` types, |
4527 | /// as deserializing from bytes is not supported by the deserializer. |
4528 | /// |
4529 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
4530 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
4531 | #[test ] |
4532 | fn civil_datetime_deserialize_yaml() { |
4533 | let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789); |
4534 | |
4535 | let deserialized: DateTime = |
4536 | serde_yaml::from_str("2024-10-31 16:33:53.123456789" ).unwrap(); |
4537 | |
4538 | assert_eq!(deserialized, expected); |
4539 | |
4540 | let deserialized: DateTime = |
4541 | serde_yaml::from_slice("2024-10-31 16:33:53.123456789" .as_bytes()) |
4542 | .unwrap(); |
4543 | |
4544 | assert_eq!(deserialized, expected); |
4545 | |
4546 | let cursor = Cursor::new(b"2024-10-31 16:33:53.123456789" ); |
4547 | let deserialized: DateTime = serde_yaml::from_reader(cursor).unwrap(); |
4548 | |
4549 | assert_eq!(deserialized, expected); |
4550 | } |
4551 | } |
4552 | |