| 1 | /*! |
| 2 | Support for "printf"-style parsing and formatting. |
| 3 | |
| 4 | While the routines exposed in this module very closely resemble the |
| 5 | corresponding [`strptime`] and [`strftime`] POSIX functions, it is not a goal |
| 6 | for the formatting machinery to precisely match POSIX semantics. |
| 7 | |
| 8 | If there is a conversion specifier you need that Jiff doesn't support, please |
| 9 | [create a new issue][create-issue]. |
| 10 | |
| 11 | The formatting and parsing in this module does not currently support any |
| 12 | form of localization. Please see [this issue][locale] about the topic of |
| 13 | localization in Jiff. |
| 14 | |
| 15 | [create-issue]: https://github.com/BurntSushi/jiff/issues/new |
| 16 | [locale]: https://github.com/BurntSushi/jiff/issues/4 |
| 17 | |
| 18 | # Example |
| 19 | |
| 20 | This shows how to parse a civil date and its weekday: |
| 21 | |
| 22 | ``` |
| 23 | use jiff::civil::Date; |
| 24 | |
| 25 | let date = Date::strptime("%Y-%m-%d is a %A" , "2024-07-15 is a Monday" )?; |
| 26 | assert_eq!(date.to_string(), "2024-07-15" ); |
| 27 | // Leading zeros are optional for numbers in all cases: |
| 28 | let date = Date::strptime("%Y-%m-%d is a %A" , "2024-07-15 is a Monday" )?; |
| 29 | assert_eq!(date.to_string(), "2024-07-15" ); |
| 30 | // Parsing does error checking! 2024-07-15 was not a Tuesday. |
| 31 | assert!(Date::strptime("%Y-%m-%d is a %A" , "2024-07-15 is a Tuesday" ).is_err()); |
| 32 | |
| 33 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 34 | ``` |
| 35 | |
| 36 | And this shows how to format a zoned datetime with a time zone abbreviation: |
| 37 | |
| 38 | ``` |
| 39 | use jiff::civil::date; |
| 40 | |
| 41 | let zdt = date(2024, 7, 15).at(17, 30, 59, 0).in_tz("Australia/Tasmania" )?; |
| 42 | // %-I instead of %I means no padding. |
| 43 | let string = zdt.strftime("%A, %B %d, %Y at %-I:%M%P %Z" ).to_string(); |
| 44 | assert_eq!(string, "Monday, July 15, 2024 at 5:30pm AEST" ); |
| 45 | |
| 46 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 47 | ``` |
| 48 | |
| 49 | Or parse a zoned datetime with an IANA time zone identifier: |
| 50 | |
| 51 | ``` |
| 52 | use jiff::{civil::date, Zoned}; |
| 53 | |
| 54 | let zdt = Zoned::strptime( |
| 55 | "%A, %B %d, %Y at %-I:%M%P %:Q" , |
| 56 | "Monday, July 15, 2024 at 5:30pm Australia/Tasmania" , |
| 57 | )?; |
| 58 | assert_eq!( |
| 59 | zdt, |
| 60 | date(2024, 7, 15).at(17, 30, 0, 0).in_tz("Australia/Tasmania" )?, |
| 61 | ); |
| 62 | |
| 63 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 64 | ``` |
| 65 | |
| 66 | # Usage |
| 67 | |
| 68 | For most cases, you can use the `strptime` and `strftime` methods on the |
| 69 | corresponding datetime type. For example, [`Zoned::strptime`] and |
| 70 | [`Zoned::strftime`]. However, the [`BrokenDownTime`] type in this module |
| 71 | provides a little more control. |
| 72 | |
| 73 | For example, assuming `t` is a `civil::Time`, then |
| 74 | `t.strftime("%Y").to_string()` will actually panic because a `civil::Time` does |
| 75 | not have a year. While the underlying formatting machinery actually returns |
| 76 | an error, this error gets turned into a panic by virtue of going through the |
| 77 | `std::fmt::Display` and `std::string::ToString` APIs. |
| 78 | |
| 79 | In contrast, [`BrokenDownTime::format`] (or just [`format`](format())) can |
| 80 | report the error to you without any panicking: |
| 81 | |
| 82 | ``` |
| 83 | use jiff::{civil::time, fmt::strtime}; |
| 84 | |
| 85 | let t = time(23, 59, 59, 0); |
| 86 | assert_eq!( |
| 87 | strtime::format("%Y" , t).unwrap_err().to_string(), |
| 88 | "strftime formatting failed: %Y failed: requires date to format year" , |
| 89 | ); |
| 90 | ``` |
| 91 | |
| 92 | # Advice |
| 93 | |
| 94 | The formatting machinery supported by this module is not especially expressive. |
| 95 | The pattern language is a simple sequence of conversion specifiers interspersed |
| 96 | by literals and arbitrary whitespace. This means that you sometimes need |
| 97 | delimiters or spaces between components. For example, this is fine: |
| 98 | |
| 99 | ``` |
| 100 | use jiff::fmt::strtime; |
| 101 | |
| 102 | let date = strtime::parse("%Y%m%d" , "20240715" )?.to_date()?; |
| 103 | assert_eq!(date.to_string(), "2024-07-15" ); |
| 104 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 105 | ``` |
| 106 | |
| 107 | But this is ambiguous (is the year `999` or `9990`?): |
| 108 | |
| 109 | ``` |
| 110 | use jiff::fmt::strtime; |
| 111 | |
| 112 | assert!(strtime::parse("%Y%m%d" , "9990715" ).is_err()); |
| 113 | ``` |
| 114 | |
| 115 | In this case, since years greedily consume up to 4 digits by default, `9990` |
| 116 | is parsed as the year. And since months greedily consume up to 2 digits by |
| 117 | default, `71` is parsed as the month, which results in an invalid day. If you |
| 118 | expect your datetimes to always use 4 digits for the year, then it might be |
| 119 | okay to skip on the delimiters. For example, the year `999` could be written |
| 120 | with a leading zero: |
| 121 | |
| 122 | ``` |
| 123 | use jiff::fmt::strtime; |
| 124 | |
| 125 | let date = strtime::parse("%Y%m%d" , "09990715" )?.to_date()?; |
| 126 | assert_eq!(date.to_string(), "0999-07-15" ); |
| 127 | // Indeed, the leading zero is written by default when |
| 128 | // formatting, since years are padded out to 4 digits |
| 129 | // by default: |
| 130 | assert_eq!(date.strftime("%Y%m%d" ).to_string(), "09990715" ); |
| 131 | |
| 132 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 133 | ``` |
| 134 | |
| 135 | The main advice here is that these APIs can come in handy for ad hoc tasks that |
| 136 | would otherwise be annoying to deal with. For example, I once wrote a tool to |
| 137 | extract data from an XML dump of my SMS messages, and one of the date formats |
| 138 | used was `Apr 1, 2022 20:46:15`. That doesn't correspond to any standard, and |
| 139 | while parsing it with a regex isn't that difficult, it's pretty annoying, |
| 140 | especially because of the English abbreviated month name. That's exactly the |
| 141 | kind of use case where this module shines. |
| 142 | |
| 143 | If the formatting machinery in this module isn't flexible enough for your use |
| 144 | case and you don't control the format, it is recommended to write a bespoke |
| 145 | parser (possibly with regex). It is unlikely that the expressiveness of this |
| 146 | formatting machinery will be improved much. (Although it is plausible to add |
| 147 | new conversion specifiers.) |
| 148 | |
| 149 | # Conversion specifications |
| 150 | |
| 151 | This table lists the complete set of conversion specifiers supported in the |
| 152 | format. While most conversion specifiers are supported as is in both parsing |
| 153 | and formatting, there are some differences. Where differences occur, they are |
| 154 | noted in the table below. |
| 155 | |
| 156 | When parsing, and whenever a conversion specifier matches an enumeration of |
| 157 | strings, the strings are matched without regard to ASCII case. |
| 158 | |
| 159 | | Specifier | Example | Description | |
| 160 | | --------- | ------- | ----------- | |
| 161 | | `%%` | `%%` | A literal `%`. | |
| 162 | | `%A`, `%a` | `Sunday`, `Sun` | The full and abbreviated weekday, respectively. | |
| 163 | | `%B`, `%b`, `%h` | `June`, `Jun`, `Jun` | The full and abbreviated month name, respectively. | |
| 164 | | `%C` | `20` | The century of the year. No padding. | |
| 165 | | `%D` | `7/14/24` | Equivalent to `%m/%d/%y`. | |
| 166 | | `%d`, `%e` | `25`, ` 5` | The day of the month. `%d` is zero-padded, `%e` is space padded. | |
| 167 | | `%F` | `2024-07-14` | Equivalent to `%Y-%m-%d`. | |
| 168 | | `%f` | `000456` | Fractional seconds, up to nanosecond precision. | |
| 169 | | `%.f` | `.000456` | Optional fractional seconds, with dot, up to nanosecond precision. | |
| 170 | | `%G` | `2024` | An [ISO 8601 week-based] year. Zero padded to 4 digits. | |
| 171 | | `%g` | `24` | A two-digit [ISO 8601 week-based] year. Represents only 1969-2068. Zero padded. | |
| 172 | | `%H` | `23` | The hour in a 24 hour clock. Zero padded. | |
| 173 | | `%I` | `11` | The hour in a 12 hour clock. Zero padded. | |
| 174 | | `%j` | `060` | The day of the year. Range is `1..=366`. Zero padded to 3 digits. | |
| 175 | | `%k` | `15` | The hour in a 24 hour clock. Space padded. | |
| 176 | | `%l` | ` 3` | The hour in a 12 hour clock. Space padded. | |
| 177 | | `%M` | `04` | The minute. Zero padded. | |
| 178 | | `%m` | `01` | The month. Zero padded. | |
| 179 | | `%n` | `\n` | Formats as a newline character. Parses arbitrary whitespace. | |
| 180 | | `%P` | `am` | Whether the time is in the AM or PM, lowercase. | |
| 181 | | `%p` | `PM` | Whether the time is in the AM or PM, uppercase. | |
| 182 | | `%Q` | `America/New_York`, `+0530` | An IANA time zone identifier, or `%z` if one doesn't exist. | |
| 183 | | `%:Q` | `America/New_York`, `+05:30` | An IANA time zone identifier, or `%:z` if one doesn't exist. | |
| 184 | | `%R` | `23:30` | Equivalent to `%H:%M`. | |
| 185 | | `%S` | `59` | The second. Zero padded. | |
| 186 | | `%s` | `1737396540` | A Unix timestamp, in seconds. | |
| 187 | | `%T` | `23:30:59` | Equivalent to `%H:%M:%S`. | |
| 188 | | `%t` | `\t` | Formats as a tab character. Parses arbitrary whitespace. | |
| 189 | | `%U` | `03` | Week number. Week 1 is the first week starting with a Sunday. Zero padded. | |
| 190 | | `%u` | `7` | The day of the week beginning with Monday at `1`. | |
| 191 | | `%V` | `05` | Week number in the [ISO 8601 week-based] calendar. Zero padded. | |
| 192 | | `%W` | `03` | Week number. Week 1 is the first week starting with a Monday. Zero padded. | |
| 193 | | `%w` | `0` | The day of the week beginning with Sunday at `0`. | |
| 194 | | `%Y` | `2024` | A full year, including century. Zero padded to 4 digits. | |
| 195 | | `%y` | `24` | A two-digit year. Represents only 1969-2068. Zero padded. | |
| 196 | | `%Z` | `EDT` | A time zone abbreviation. Supported when formatting only. | |
| 197 | | `%z` | `+0530` | A time zone offset in the format `[+-]HHMM[SS]`. | |
| 198 | | `%:z` | `+05:30` | A time zone offset in the format `[+-]HH:MM[:SS]`. | |
| 199 | |
| 200 | When formatting, the following flags can be inserted immediately after the `%` |
| 201 | and before the directive: |
| 202 | |
| 203 | * `_` - Pad a numeric result to the left with spaces. |
| 204 | * `-` - Do not pad a numeric result. |
| 205 | * `0` - Pad a numeric result to the left with zeros. |
| 206 | * `^` - Use alphabetic uppercase for all relevant strings. |
| 207 | * `#` - Swap the case of the result string. This is typically only useful with |
| 208 | `%p` or `%Z`, since they are the only conversion specifiers that emit strings |
| 209 | entirely in uppercase by default. |
| 210 | |
| 211 | The above flags override the "default" settings of a specifier. For example, |
| 212 | `%_d` pads with spaces instead of zeros, and `%0e` pads with zeros instead of |
| 213 | spaces. The exceptions are the `%z` and `%:z` specifiers. They are unaffected |
| 214 | by any flags. |
| 215 | |
| 216 | Moreover, any number of decimal digits can be inserted after the (possibly |
| 217 | absent) flag and before the directive, so long as the parsed number is less |
| 218 | than 256. The number formed by these digits will correspond to the minimum |
| 219 | amount of padding (to the left). |
| 220 | |
| 221 | The flags and padding amount above may be used when parsing as well. Most |
| 222 | settings are ignored during parsing except for padding. For example, if one |
| 223 | wanted to parse `003` as the day `3`, then one should use `%03d`. Otherwise, by |
| 224 | default, `%d` will only try to consume at most 2 digits. |
| 225 | |
| 226 | The `%f` and `%.f` flags also support specifying the precision, up to |
| 227 | nanoseconds. For example, `%3f` and `%.3f` will both always print a fractional |
| 228 | second component to exactly 3 decimal places. When no precision is specified, |
| 229 | then `%f` will always emit at least one digit, even if it's zero. But `%.f` |
| 230 | will emit the empty string when the fractional component is zero. Otherwise, it |
| 231 | will include the leading `.`. For parsing, `%f` does not include the leading |
| 232 | dot, but `%.f` does. Note that all of the options above are still parsed for |
| 233 | `%f` and `%.f`, but they are all no-ops (except for the padding for `%f`, which |
| 234 | is instead interpreted as a precision setting). When using a precision setting, |
| 235 | truncation is used. If you need a different rounding mode, you should use |
| 236 | higher level APIs like [`Timestamp::round`] or [`Zoned::round`]. |
| 237 | |
| 238 | # Conditionally unsupported |
| 239 | |
| 240 | Jiff does not support `%Q` or `%:Q` (IANA time zone identifier) when the |
| 241 | `alloc` crate feature is not enabled. This is because a time zone identifier |
| 242 | is variable width data. If you have a use case for this, please |
| 243 | [detail it in a new issue](https://github.com/BurntSushi/jiff/issues/new). |
| 244 | |
| 245 | # Unsupported |
| 246 | |
| 247 | The following things are currently unsupported: |
| 248 | |
| 249 | * Parsing or formatting fractional seconds in the time time zone offset. |
| 250 | * Locale oriented conversion specifiers, such as `%c`, `%r` and `%+`, are not |
| 251 | supported by Jiff. For locale oriented datetime formatting, please use the |
| 252 | [`icu`] crate via [`jiff-icu`]. |
| 253 | |
| 254 | [`strftime`]: https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html |
| 255 | [`strptime`]: https://pubs.opengroup.org/onlinepubs/009695399/functions/strptime.html |
| 256 | [ISO 8601 week-based]: https://en.wikipedia.org/wiki/ISO_week_date |
| 257 | [`icu`]: https://docs.rs/icu |
| 258 | [`jiff-icu`]: https://docs.rs/jiff-icu |
| 259 | */ |
| 260 | |
| 261 | use crate::{ |
| 262 | civil::{Date, DateTime, ISOWeekDate, Time, Weekday}, |
| 263 | error::{err, ErrorContext}, |
| 264 | fmt::{ |
| 265 | strtime::{format::Formatter, parse::Parser}, |
| 266 | Write, |
| 267 | }, |
| 268 | tz::{Offset, OffsetConflict, TimeZone, TimeZoneDatabase}, |
| 269 | util::{ |
| 270 | self, |
| 271 | array_str::Abbreviation, |
| 272 | escape, |
| 273 | rangeint::RInto, |
| 274 | t::{self, C}, |
| 275 | }, |
| 276 | Error, Timestamp, Zoned, |
| 277 | }; |
| 278 | |
| 279 | mod format; |
| 280 | mod parse; |
| 281 | |
| 282 | /// Parse the given `input` according to the given `format` string. |
| 283 | /// |
| 284 | /// See the [module documentation](self) for details on what's supported. |
| 285 | /// |
| 286 | /// This routine is the same as [`BrokenDownTime::parse`], but may be more |
| 287 | /// convenient to call. |
| 288 | /// |
| 289 | /// # Errors |
| 290 | /// |
| 291 | /// This returns an error when parsing failed. This might happen because |
| 292 | /// the format string itself was invalid, or because the input didn't match |
| 293 | /// the format string. |
| 294 | /// |
| 295 | /// # Example |
| 296 | /// |
| 297 | /// This example shows how to parse something resembling a RFC 2822 datetime: |
| 298 | /// |
| 299 | /// ``` |
| 300 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 301 | /// |
| 302 | /// let zdt = strtime::parse( |
| 303 | /// "%a, %d %b %Y %T %z" , |
| 304 | /// "Mon, 15 Jul 2024 16:24:59 -0400" , |
| 305 | /// )?.to_zoned()?; |
| 306 | /// |
| 307 | /// let tz = tz::offset(-4).to_time_zone(); |
| 308 | /// assert_eq!(zdt, date(2024, 7, 15).at(16, 24, 59, 0).to_zoned(tz)?); |
| 309 | /// |
| 310 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 311 | /// ``` |
| 312 | /// |
| 313 | /// Of course, one should prefer using the [`fmt::rfc2822`](super::rfc2822) |
| 314 | /// module, which contains a dedicated RFC 2822 parser. For example, the above |
| 315 | /// format string does not part all valid RFC 2822 datetimes, since, e.g., |
| 316 | /// the leading weekday is optional and so are the seconds in the time, but |
| 317 | /// `strptime`-like APIs have no way of expressing such requirements. |
| 318 | /// |
| 319 | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
| 320 | /// |
| 321 | /// # Example: parse RFC 3339 timestamp with fractional seconds |
| 322 | /// |
| 323 | /// ``` |
| 324 | /// use jiff::{civil::date, fmt::strtime}; |
| 325 | /// |
| 326 | /// let zdt = strtime::parse( |
| 327 | /// "%Y-%m-%dT%H:%M:%S%.f%:z" , |
| 328 | /// "2024-07-15T16:24:59.123456789-04:00" , |
| 329 | /// )?.to_zoned()?; |
| 330 | /// assert_eq!( |
| 331 | /// zdt, |
| 332 | /// date(2024, 7, 15).at(16, 24, 59, 123_456_789).in_tz("America/New_York" )?, |
| 333 | /// ); |
| 334 | /// |
| 335 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 336 | /// ``` |
| 337 | #[inline ] |
| 338 | pub fn parse( |
| 339 | format: impl AsRef<[u8]>, |
| 340 | input: impl AsRef<[u8]>, |
| 341 | ) -> Result<BrokenDownTime, Error> { |
| 342 | BrokenDownTime::parse(format, input) |
| 343 | } |
| 344 | |
| 345 | /// Format the given broken down time using the format string given. |
| 346 | /// |
| 347 | /// See the [module documentation](self) for details on what's supported. |
| 348 | /// |
| 349 | /// This routine is like [`BrokenDownTime::format`], but may be more |
| 350 | /// convenient to call. Also, it returns a `String` instead of accepting a |
| 351 | /// [`fmt::Write`](super::Write) trait implementation to write to. |
| 352 | /// |
| 353 | /// Note that `broken_down_time` can be _anything_ that can be converted into |
| 354 | /// it. This includes, for example, [`Zoned`], [`Timestamp`], [`DateTime`], |
| 355 | /// [`Date`] and [`Time`]. |
| 356 | /// |
| 357 | /// # Errors |
| 358 | /// |
| 359 | /// This returns an error when formatting failed. Formatting can fail either |
| 360 | /// because of an invalid format string, or if formatting requires a field in |
| 361 | /// `BrokenDownTime` to be set that isn't. For example, trying to format a |
| 362 | /// [`DateTime`] with the `%z` specifier will fail because a `DateTime` has no |
| 363 | /// time zone or offset information associated with it. |
| 364 | /// |
| 365 | /// # Example |
| 366 | /// |
| 367 | /// This example shows how to format a `Zoned` into something resembling a RFC |
| 368 | /// 2822 datetime: |
| 369 | /// |
| 370 | /// ``` |
| 371 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 372 | /// |
| 373 | /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York" )?; |
| 374 | /// let string = strtime::format("%a, %-d %b %Y %T %z" , &zdt)?; |
| 375 | /// assert_eq!(string, "Mon, 15 Jul 2024 16:24:59 -0400" ); |
| 376 | /// |
| 377 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 378 | /// ``` |
| 379 | /// |
| 380 | /// Of course, one should prefer using the [`fmt::rfc2822`](super::rfc2822) |
| 381 | /// module, which contains a dedicated RFC 2822 printer. |
| 382 | /// |
| 383 | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
| 384 | /// |
| 385 | /// # Example: `date`-like output |
| 386 | /// |
| 387 | /// While the output of the Unix `date` command is likely locale specific, |
| 388 | /// this is what it looks like on my system: |
| 389 | /// |
| 390 | /// ``` |
| 391 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 392 | /// |
| 393 | /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York" )?; |
| 394 | /// let string = strtime::format("%a %b %e %I:%M:%S %p %Z %Y" , &zdt)?; |
| 395 | /// assert_eq!(string, "Mon Jul 15 04:24:59 PM EDT 2024" ); |
| 396 | /// |
| 397 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 398 | /// ``` |
| 399 | /// |
| 400 | /// # Example: RFC 3339 compatible output with fractional seconds |
| 401 | /// |
| 402 | /// ``` |
| 403 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 404 | /// |
| 405 | /// let zdt = date(2024, 7, 15) |
| 406 | /// .at(16, 24, 59, 123_456_789) |
| 407 | /// .in_tz("America/New_York" )?; |
| 408 | /// let string = strtime::format("%Y-%m-%dT%H:%M:%S%.f%:z" , &zdt)?; |
| 409 | /// assert_eq!(string, "2024-07-15T16:24:59.123456789-04:00" ); |
| 410 | /// |
| 411 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 412 | /// ``` |
| 413 | #[cfg (any(test, feature = "alloc" ))] |
| 414 | #[inline ] |
| 415 | pub fn format( |
| 416 | format: impl AsRef<[u8]>, |
| 417 | broken_down_time: impl Into<BrokenDownTime>, |
| 418 | ) -> Result<alloc::string::String, Error> { |
| 419 | let broken_down_time: BrokenDownTime = broken_down_time.into(); |
| 420 | |
| 421 | let mut buf: String = alloc::string::String::new(); |
| 422 | broken_down_time.format(format, &mut buf)?; |
| 423 | Ok(buf) |
| 424 | } |
| 425 | |
| 426 | /// The "broken down time" used by parsing and formatting. |
| 427 | /// |
| 428 | /// This is a lower level aspect of the `strptime` and `strftime` APIs that you |
| 429 | /// probably won't need to use directly. The main use case is if you want to |
| 430 | /// observe formatting errors or if you want to format a datetime to something |
| 431 | /// other than a `String` via the [`fmt::Write`](super::Write) trait. |
| 432 | /// |
| 433 | /// Otherwise, typical use of this module happens indirectly via APIs like |
| 434 | /// [`Zoned::strptime`] and [`Zoned::strftime`]. |
| 435 | /// |
| 436 | /// # Design |
| 437 | /// |
| 438 | /// This is the type that parsing writes to and formatting reads from. That |
| 439 | /// is, parsing proceeds by writing individual parsed fields to this type, and |
| 440 | /// then converting the fields to datetime types like [`Zoned`] only after |
| 441 | /// parsing is complete. Similarly, formatting always begins by converting |
| 442 | /// datetime types like `Zoned` into a `BrokenDownTime`, and then formatting |
| 443 | /// the individual fields from there. |
| 444 | // Design: |
| 445 | // |
| 446 | // This is meant to be very similar to libc's `struct tm` in that it |
| 447 | // represents civil time, although may have an offset attached to it, in which |
| 448 | // case it represents an absolute time. The main difference is that each field |
| 449 | // is explicitly optional, where as in C, there's no way to tell whether a |
| 450 | // field is "set" or not. In C, this isn't so much a problem, because the |
| 451 | // caller needs to explicitly pass in a pointer to a `struct tm`, and so the |
| 452 | // API makes it clear that it's going to mutate the time. |
| 453 | // |
| 454 | // But in Rust, we really just want to accept a format string, an input and |
| 455 | // return a fresh datetime. (Nevermind the fact that we don't provide a way |
| 456 | // to mutate datetimes in place.) We could just use "default" units like you |
| 457 | // might in C, but it would be very surprising if `%m-%d` just decided to fill |
| 458 | // in the year for you with some default value. So we track which pieces have |
| 459 | // been set individually and return errors when requesting, e.g., a `Date` |
| 460 | // when no `year` has been parsed. |
| 461 | // |
| 462 | // We do permit time units to be filled in by default, as-is consistent with |
| 463 | // the rest of Jiff's API. e.g., If a `DateTime` is requested but the format |
| 464 | // string has no directives for time, we'll happy default to midnight. The |
| 465 | // only catch is that you can't omit time units bigger than any present time |
| 466 | // unit. For example, only `%M` doesn't fly. If you want to parse minutes, you |
| 467 | // also have to parse hours. |
| 468 | // |
| 469 | // This design does also let us possibly do "incomplete" parsing by asking |
| 470 | // the caller for a datetime to "seed" a `Fields` struct, and then execute |
| 471 | // parsing. But Jiff doesn't currently expose an API to do that. But this |
| 472 | // implementation was intentionally designed to support that use case, C |
| 473 | // style, if it comes up. |
| 474 | #[derive (Debug, Default)] |
| 475 | pub struct BrokenDownTime { |
| 476 | year: Option<t::Year>, |
| 477 | month: Option<t::Month>, |
| 478 | day: Option<t::Day>, |
| 479 | day_of_year: Option<t::DayOfYear>, |
| 480 | iso_week_year: Option<t::ISOYear>, |
| 481 | iso_week: Option<t::ISOWeek>, |
| 482 | week_sun: Option<t::WeekNum>, |
| 483 | week_mon: Option<t::WeekNum>, |
| 484 | hour: Option<t::Hour>, |
| 485 | minute: Option<t::Minute>, |
| 486 | second: Option<t::Second>, |
| 487 | subsec: Option<t::SubsecNanosecond>, |
| 488 | offset: Option<Offset>, |
| 489 | // Used to confirm that it is consistent |
| 490 | // with the date given. It usually isn't |
| 491 | // used to pick a date on its own, but can |
| 492 | // be for week dates. |
| 493 | weekday: Option<Weekday>, |
| 494 | // Only generally useful with %I. But can still |
| 495 | // be used with, say, %H. In that case, AM will |
| 496 | // turn 13 o'clock to 1 o'clock. |
| 497 | meridiem: Option<Meridiem>, |
| 498 | // The time zone abbreviation. Used only when |
| 499 | // formatting a `Zoned`. |
| 500 | tzabbrev: Option<Abbreviation>, |
| 501 | // The IANA time zone identifier. Used only when |
| 502 | // formatting a `Zoned`. |
| 503 | #[cfg (feature = "alloc" )] |
| 504 | iana: Option<alloc::string::String>, |
| 505 | } |
| 506 | |
| 507 | impl BrokenDownTime { |
| 508 | /// Parse the given `input` according to the given `format` string. |
| 509 | /// |
| 510 | /// See the [module documentation](self) for details on what's supported. |
| 511 | /// |
| 512 | /// This routine is the same as the module level free function |
| 513 | /// [`strtime::parse`](parse()). |
| 514 | /// |
| 515 | /// # Errors |
| 516 | /// |
| 517 | /// This returns an error when parsing failed. This might happen because |
| 518 | /// the format string itself was invalid, or because the input didn't match |
| 519 | /// the format string. |
| 520 | /// |
| 521 | /// # Example |
| 522 | /// |
| 523 | /// ``` |
| 524 | /// use jiff::{civil, fmt::strtime::BrokenDownTime}; |
| 525 | /// |
| 526 | /// let tm = BrokenDownTime::parse("%m/%d/%y" , "7/14/24" )?; |
| 527 | /// let date = tm.to_date()?; |
| 528 | /// assert_eq!(date, civil::date(2024, 7, 14)); |
| 529 | /// |
| 530 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 531 | /// ``` |
| 532 | #[inline ] |
| 533 | pub fn parse( |
| 534 | format: impl AsRef<[u8]>, |
| 535 | input: impl AsRef<[u8]>, |
| 536 | ) -> Result<BrokenDownTime, Error> { |
| 537 | BrokenDownTime::parse_mono(format.as_ref(), input.as_ref()) |
| 538 | } |
| 539 | |
| 540 | #[inline ] |
| 541 | fn parse_mono(fmt: &[u8], inp: &[u8]) -> Result<BrokenDownTime, Error> { |
| 542 | let mut pieces = BrokenDownTime::default(); |
| 543 | let mut p = Parser { fmt, inp, tm: &mut pieces }; |
| 544 | p.parse().context("strptime parsing failed" )?; |
| 545 | if !p.inp.is_empty() { |
| 546 | return Err(err!( |
| 547 | "strptime expects to consume the entire input, but \ |
| 548 | {remaining:?} remains unparsed" , |
| 549 | remaining = escape::Bytes(p.inp), |
| 550 | )); |
| 551 | } |
| 552 | Ok(pieces) |
| 553 | } |
| 554 | |
| 555 | /// Parse a prefix of the given `input` according to the given `format` |
| 556 | /// string. The offset returned corresponds to the number of bytes parsed. |
| 557 | /// That is, the length of the prefix (which may be the length of the |
| 558 | /// entire input if there are no unparsed bytes remaining). |
| 559 | /// |
| 560 | /// See the [module documentation](self) for details on what's supported. |
| 561 | /// |
| 562 | /// This is like [`BrokenDownTime::parse`], but it won't return an error |
| 563 | /// if there is input remaining after parsing the format directives. |
| 564 | /// |
| 565 | /// # Errors |
| 566 | /// |
| 567 | /// This returns an error when parsing failed. This might happen because |
| 568 | /// the format string itself was invalid, or because the input didn't match |
| 569 | /// the format string. |
| 570 | /// |
| 571 | /// # Example |
| 572 | /// |
| 573 | /// ``` |
| 574 | /// use jiff::{civil, fmt::strtime::BrokenDownTime}; |
| 575 | /// |
| 576 | /// // %y only parses two-digit years, so the 99 following |
| 577 | /// // 24 is unparsed! |
| 578 | /// let input = "7/14/2499" ; |
| 579 | /// let (tm, offset) = BrokenDownTime::parse_prefix("%m/%d/%y" , input)?; |
| 580 | /// let date = tm.to_date()?; |
| 581 | /// assert_eq!(date, civil::date(2024, 7, 14)); |
| 582 | /// assert_eq!(offset, 7); |
| 583 | /// assert_eq!(&input[offset..], "99" ); |
| 584 | /// |
| 585 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 586 | /// ``` |
| 587 | /// |
| 588 | /// If the entire input is parsed, then the offset is the length of the |
| 589 | /// input: |
| 590 | /// |
| 591 | /// ``` |
| 592 | /// use jiff::{civil, fmt::strtime::BrokenDownTime}; |
| 593 | /// |
| 594 | /// let (tm, offset) = BrokenDownTime::parse_prefix( |
| 595 | /// "%m/%d/%y" , "7/14/24" , |
| 596 | /// )?; |
| 597 | /// let date = tm.to_date()?; |
| 598 | /// assert_eq!(date, civil::date(2024, 7, 14)); |
| 599 | /// assert_eq!(offset, 7); |
| 600 | /// |
| 601 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 602 | /// ``` |
| 603 | /// |
| 604 | /// # Example: how to parse only a part of a timestamp |
| 605 | /// |
| 606 | /// If you only need, for example, the date from a timestamp, then you |
| 607 | /// can parse it as a prefix: |
| 608 | /// |
| 609 | /// ``` |
| 610 | /// use jiff::{civil, fmt::strtime::BrokenDownTime}; |
| 611 | /// |
| 612 | /// let input = "2024-01-20T17:55Z" ; |
| 613 | /// let (tm, offset) = BrokenDownTime::parse_prefix("%Y-%m-%d" , input)?; |
| 614 | /// let date = tm.to_date()?; |
| 615 | /// assert_eq!(date, civil::date(2024, 1, 20)); |
| 616 | /// assert_eq!(offset, 10); |
| 617 | /// assert_eq!(&input[offset..], "T17:55Z" ); |
| 618 | /// |
| 619 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 620 | /// ``` |
| 621 | /// |
| 622 | /// Note though that Jiff's default parsing functions are already quite |
| 623 | /// flexible, and one can just parse a civil date directly from a timestamp |
| 624 | /// automatically: |
| 625 | /// |
| 626 | /// ``` |
| 627 | /// use jiff::civil; |
| 628 | /// |
| 629 | /// let input = "2024-01-20T17:55-05" ; |
| 630 | /// let date: civil::Date = input.parse()?; |
| 631 | /// assert_eq!(date, civil::date(2024, 1, 20)); |
| 632 | /// |
| 633 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 634 | /// ``` |
| 635 | /// |
| 636 | /// Although in this case, you don't get the length of the prefix parsed. |
| 637 | #[inline ] |
| 638 | pub fn parse_prefix( |
| 639 | format: impl AsRef<[u8]>, |
| 640 | input: impl AsRef<[u8]>, |
| 641 | ) -> Result<(BrokenDownTime, usize), Error> { |
| 642 | BrokenDownTime::parse_prefix_mono(format.as_ref(), input.as_ref()) |
| 643 | } |
| 644 | |
| 645 | #[inline ] |
| 646 | fn parse_prefix_mono( |
| 647 | fmt: &[u8], |
| 648 | inp: &[u8], |
| 649 | ) -> Result<(BrokenDownTime, usize), Error> { |
| 650 | let mkoffset = util::parse::offseter(inp); |
| 651 | let mut pieces = BrokenDownTime::default(); |
| 652 | let mut p = Parser { fmt, inp, tm: &mut pieces }; |
| 653 | p.parse().context("strptime parsing failed" )?; |
| 654 | let remainder = mkoffset(p.inp); |
| 655 | Ok((pieces, remainder)) |
| 656 | } |
| 657 | |
| 658 | /// Format this broken down time using the format string given. |
| 659 | /// |
| 660 | /// See the [module documentation](self) for details on what's supported. |
| 661 | /// |
| 662 | /// This routine is like the module level free function |
| 663 | /// [`strtime::format`](parse()), except it takes a |
| 664 | /// [`fmt::Write`](super::Write) trait implementations instead of assuming |
| 665 | /// you want a `String`. |
| 666 | /// |
| 667 | /// # Errors |
| 668 | /// |
| 669 | /// This returns an error when formatting failed. Formatting can fail |
| 670 | /// either because of an invalid format string, or if formatting requires |
| 671 | /// a field in `BrokenDownTime` to be set that isn't. For example, trying |
| 672 | /// to format a [`DateTime`] with the `%z` specifier will fail because a |
| 673 | /// `DateTime` has no time zone or offset information associated with it. |
| 674 | /// |
| 675 | /// Formatting also fails if writing to the given writer fails. |
| 676 | /// |
| 677 | /// # Example |
| 678 | /// |
| 679 | /// This example shows a formatting option, `%Z`, that isn't available |
| 680 | /// during parsing. Namely, `%Z` inserts a time zone abbreviation. This |
| 681 | /// is generally only intended for display purposes, since it can be |
| 682 | /// ambiguous when parsing. |
| 683 | /// |
| 684 | /// ``` |
| 685 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime}; |
| 686 | /// |
| 687 | /// let zdt = date(2024, 7, 9).at(16, 24, 0, 0).in_tz("America/New_York" )?; |
| 688 | /// let tm = BrokenDownTime::from(&zdt); |
| 689 | /// |
| 690 | /// let mut buf = String::new(); |
| 691 | /// tm.format("%a %b %e %I:%M:%S %p %Z %Y" , &mut buf)?; |
| 692 | /// |
| 693 | /// assert_eq!(buf, "Tue Jul 9 04:24:00 PM EDT 2024" ); |
| 694 | /// |
| 695 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 696 | /// ``` |
| 697 | #[inline ] |
| 698 | pub fn format<W: Write>( |
| 699 | &self, |
| 700 | format: impl AsRef<[u8]>, |
| 701 | mut wtr: W, |
| 702 | ) -> Result<(), Error> { |
| 703 | let fmt = format.as_ref(); |
| 704 | let mut formatter = Formatter { fmt, tm: self, wtr: &mut wtr }; |
| 705 | formatter.format().context("strftime formatting failed" )?; |
| 706 | Ok(()) |
| 707 | } |
| 708 | |
| 709 | /// Format this broken down time using the format string given into a new |
| 710 | /// `String`. |
| 711 | /// |
| 712 | /// See the [module documentation](self) for details on what's supported. |
| 713 | /// |
| 714 | /// This is like [`BrokenDownTime::format`], but always uses a `String` to |
| 715 | /// format the time into. If you need to reuse allocations or write a |
| 716 | /// formatted time into a different type, then you should use |
| 717 | /// [`BrokenDownTime::format`] instead. |
| 718 | /// |
| 719 | /// # Errors |
| 720 | /// |
| 721 | /// This returns an error when formatting failed. Formatting can fail |
| 722 | /// either because of an invalid format string, or if formatting requires |
| 723 | /// a field in `BrokenDownTime` to be set that isn't. For example, trying |
| 724 | /// to format a [`DateTime`] with the `%z` specifier will fail because a |
| 725 | /// `DateTime` has no time zone or offset information associated with it. |
| 726 | /// |
| 727 | /// # Example |
| 728 | /// |
| 729 | /// This example shows a formatting option, `%Z`, that isn't available |
| 730 | /// during parsing. Namely, `%Z` inserts a time zone abbreviation. This |
| 731 | /// is generally only intended for display purposes, since it can be |
| 732 | /// ambiguous when parsing. |
| 733 | /// |
| 734 | /// ``` |
| 735 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime}; |
| 736 | /// |
| 737 | /// let zdt = date(2024, 7, 9).at(16, 24, 0, 0).in_tz("America/New_York" )?; |
| 738 | /// let tm = BrokenDownTime::from(&zdt); |
| 739 | /// let string = tm.to_string("%a %b %e %I:%M:%S %p %Z %Y" )?; |
| 740 | /// assert_eq!(string, "Tue Jul 9 04:24:00 PM EDT 2024" ); |
| 741 | /// |
| 742 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 743 | /// ``` |
| 744 | #[cfg (feature = "alloc" )] |
| 745 | #[inline ] |
| 746 | pub fn to_string( |
| 747 | &self, |
| 748 | format: impl AsRef<[u8]>, |
| 749 | ) -> Result<alloc::string::String, Error> { |
| 750 | let mut buf = alloc::string::String::new(); |
| 751 | self.format(format, &mut buf)?; |
| 752 | Ok(buf) |
| 753 | } |
| 754 | |
| 755 | /// Extracts a zoned datetime from this broken down time. |
| 756 | /// |
| 757 | /// When an IANA time zone identifier is |
| 758 | /// present but an offset is not, then the |
| 759 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
| 760 | /// strategy is used if the parsed datetime is ambiguous in the time zone. |
| 761 | /// |
| 762 | /// If you need to use a custom time zone database for doing IANA time |
| 763 | /// zone identifier lookups (via the `%Q` directive), then use |
| 764 | /// [`BrokenDownTime::to_zoned_with`]. |
| 765 | /// |
| 766 | /// # Warning |
| 767 | /// |
| 768 | /// The `strtime` module APIs do not require an IANA time zone identifier |
| 769 | /// to parse a `Zoned`. If one is not used, then if you format a zoned |
| 770 | /// datetime in a time zone like `America/New_York` and then parse it back |
| 771 | /// again, the zoned datetime you get back will be a "fixed offset" zoned |
| 772 | /// datetime. This in turn means it will not perform daylight saving time |
| 773 | /// safe arithmetic. |
| 774 | /// |
| 775 | /// However, the `%Q` directive may be used to both format and parse an |
| 776 | /// IANA time zone identifier. It is strongly recommended to use this |
| 777 | /// directive whenever one is formatting or parsing `Zoned` values. |
| 778 | /// |
| 779 | /// # Errors |
| 780 | /// |
| 781 | /// This returns an error if there weren't enough components to construct |
| 782 | /// a civil datetime _and_ either a UTC offset or a IANA time zone |
| 783 | /// identifier. When both a UTC offset and an IANA time zone identifier |
| 784 | /// are found, then [`OffsetConflict::Reject`] is used to detect any |
| 785 | /// inconsistency between the offset and the time zone. |
| 786 | /// |
| 787 | /// # Example |
| 788 | /// |
| 789 | /// This example shows how to parse a zoned datetime: |
| 790 | /// |
| 791 | /// ``` |
| 792 | /// use jiff::fmt::strtime; |
| 793 | /// |
| 794 | /// let zdt = strtime::parse( |
| 795 | /// "%F %H:%M %:z %:Q" , |
| 796 | /// "2024-07-14 21:14 -04:00 US/Eastern" , |
| 797 | /// )?.to_zoned()?; |
| 798 | /// assert_eq!(zdt.to_string(), "2024-07-14T21:14:00-04:00[US/Eastern]" ); |
| 799 | /// |
| 800 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 801 | /// ``` |
| 802 | /// |
| 803 | /// This shows that an error is returned when the offset is inconsistent |
| 804 | /// with the time zone. For example, `US/Eastern` is in daylight saving |
| 805 | /// time in July 2024: |
| 806 | /// |
| 807 | /// ``` |
| 808 | /// use jiff::fmt::strtime; |
| 809 | /// |
| 810 | /// let result = strtime::parse( |
| 811 | /// "%F %H:%M %:z %:Q" , |
| 812 | /// "2024-07-14 21:14 -05:00 US/Eastern" , |
| 813 | /// )?.to_zoned(); |
| 814 | /// assert_eq!( |
| 815 | /// result.unwrap_err().to_string(), |
| 816 | /// "datetime 2024-07-14T21:14:00 could not resolve to a \ |
| 817 | /// timestamp since 'reject' conflict resolution was chosen, \ |
| 818 | /// and because datetime has offset -05, but the time zone \ |
| 819 | /// US/Eastern for the given datetime unambiguously has offset -04" , |
| 820 | /// ); |
| 821 | /// |
| 822 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 823 | /// ``` |
| 824 | #[inline ] |
| 825 | pub fn to_zoned(&self) -> Result<Zoned, Error> { |
| 826 | self.to_zoned_with(crate::tz::db()) |
| 827 | } |
| 828 | |
| 829 | /// Extracts a zoned datetime from this broken down time and uses the time |
| 830 | /// zone database given for any IANA time zone identifier lookups. |
| 831 | /// |
| 832 | /// An IANA time zone identifier lookup is only performed when this |
| 833 | /// `BrokenDownTime` contains an IANA time zone identifier. An IANA time |
| 834 | /// zone identifier can be parsed with the `%Q` directive. |
| 835 | /// |
| 836 | /// When an IANA time zone identifier is |
| 837 | /// present but an offset is not, then the |
| 838 | /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible) |
| 839 | /// strategy is used if the parsed datetime is ambiguous in the time zone. |
| 840 | /// |
| 841 | /// # Warning |
| 842 | /// |
| 843 | /// The `strtime` module APIs do not require an IANA time zone identifier |
| 844 | /// to parse a `Zoned`. If one is not used, then if you format a zoned |
| 845 | /// datetime in a time zone like `America/New_York` and then parse it back |
| 846 | /// again, the zoned datetime you get back will be a "fixed offset" zoned |
| 847 | /// datetime. This in turn means it will not perform daylight saving time |
| 848 | /// safe arithmetic. |
| 849 | /// |
| 850 | /// However, the `%Q` directive may be used to both format and parse an |
| 851 | /// IANA time zone identifier. It is strongly recommended to use this |
| 852 | /// directive whenever one is formatting or parsing `Zoned` values. |
| 853 | /// |
| 854 | /// # Errors |
| 855 | /// |
| 856 | /// This returns an error if there weren't enough components to construct |
| 857 | /// a civil datetime _and_ either a UTC offset or a IANA time zone |
| 858 | /// identifier. When both a UTC offset and an IANA time zone identifier |
| 859 | /// are found, then [`OffsetConflict::Reject`] is used to detect any |
| 860 | /// inconsistency between the offset and the time zone. |
| 861 | /// |
| 862 | /// # Example |
| 863 | /// |
| 864 | /// This example shows how to parse a zoned datetime: |
| 865 | /// |
| 866 | /// ``` |
| 867 | /// use jiff::fmt::strtime; |
| 868 | /// |
| 869 | /// let zdt = strtime::parse( |
| 870 | /// "%F %H:%M %:z %:Q" , |
| 871 | /// "2024-07-14 21:14 -04:00 US/Eastern" , |
| 872 | /// )?.to_zoned_with(jiff::tz::db())?; |
| 873 | /// assert_eq!(zdt.to_string(), "2024-07-14T21:14:00-04:00[US/Eastern]" ); |
| 874 | /// |
| 875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 876 | /// ``` |
| 877 | #[inline ] |
| 878 | pub fn to_zoned_with( |
| 879 | &self, |
| 880 | db: &TimeZoneDatabase, |
| 881 | ) -> Result<Zoned, Error> { |
| 882 | let dt = self |
| 883 | .to_datetime() |
| 884 | .context("datetime required to parse zoned datetime" )?; |
| 885 | match (self.offset, self.iana_time_zone()) { |
| 886 | (None, None) => Err(err!( |
| 887 | "either offset (from %z) or IANA time zone identifier \ |
| 888 | (from %Q) is required for parsing zoned datetime" , |
| 889 | )), |
| 890 | (Some(offset), None) => { |
| 891 | let ts = offset.to_timestamp(dt).with_context(|| { |
| 892 | err!( |
| 893 | "parsed datetime {dt} and offset {offset}, \ |
| 894 | but combining them into a zoned datetime is outside \ |
| 895 | Jiff's supported timestamp range" , |
| 896 | ) |
| 897 | })?; |
| 898 | Ok(ts.to_zoned(TimeZone::fixed(offset))) |
| 899 | } |
| 900 | (None, Some(iana)) => { |
| 901 | let tz = db.get(iana)?; |
| 902 | let zdt = tz.to_zoned(dt)?; |
| 903 | Ok(zdt) |
| 904 | } |
| 905 | (Some(offset), Some(iana)) => { |
| 906 | let tz = db.get(iana)?; |
| 907 | let azdt = OffsetConflict::Reject.resolve(dt, offset, tz)?; |
| 908 | // Guaranteed that if OffsetConflict::Reject doesn't reject, |
| 909 | // then we get back an unambiguous zoned datetime. |
| 910 | let zdt = azdt.unambiguous().unwrap(); |
| 911 | Ok(zdt) |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | /// Extracts a timestamp from this broken down time. |
| 917 | /// |
| 918 | /// # Errors |
| 919 | /// |
| 920 | /// This returns an error if there weren't enough components to construct |
| 921 | /// a civil datetime _and_ a UTC offset. |
| 922 | /// |
| 923 | /// # Example |
| 924 | /// |
| 925 | /// This example shows how to parse a timestamp from a broken down time: |
| 926 | /// |
| 927 | /// ``` |
| 928 | /// use jiff::fmt::strtime; |
| 929 | /// |
| 930 | /// let ts = strtime::parse( |
| 931 | /// "%F %H:%M %:z" , |
| 932 | /// "2024-07-14 21:14 -04:00" , |
| 933 | /// )?.to_timestamp()?; |
| 934 | /// assert_eq!(ts.to_string(), "2024-07-15T01:14:00Z" ); |
| 935 | /// |
| 936 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 937 | /// ``` |
| 938 | #[inline ] |
| 939 | pub fn to_timestamp(&self) -> Result<Timestamp, Error> { |
| 940 | let dt = self |
| 941 | .to_datetime() |
| 942 | .context("datetime required to parse timestamp" )?; |
| 943 | let offset = |
| 944 | self.to_offset().context("offset required to parse timestamp" )?; |
| 945 | offset.to_timestamp(dt).with_context(|| { |
| 946 | err!( |
| 947 | "parsed datetime {dt} and offset {offset}, \ |
| 948 | but combining them into a timestamp is outside \ |
| 949 | Jiff's supported timestamp range" , |
| 950 | ) |
| 951 | }) |
| 952 | } |
| 953 | |
| 954 | #[inline ] |
| 955 | fn to_offset(&self) -> Result<Offset, Error> { |
| 956 | let Some(offset) = self.offset else { |
| 957 | return Err(err!( |
| 958 | "parsing format did not include time zone offset directive" , |
| 959 | )); |
| 960 | }; |
| 961 | Ok(offset) |
| 962 | } |
| 963 | |
| 964 | /// Extracts a civil datetime from this broken down time. |
| 965 | /// |
| 966 | /// # Errors |
| 967 | /// |
| 968 | /// This returns an error if there weren't enough components to construct |
| 969 | /// a civil datetime. This means there must be at least a year, month and |
| 970 | /// day. |
| 971 | /// |
| 972 | /// It's okay if there are more units than are needed to construct a civil |
| 973 | /// datetime. For example, if this broken down time contains an offset, |
| 974 | /// then it won't prevent a conversion to a civil datetime. |
| 975 | /// |
| 976 | /// # Example |
| 977 | /// |
| 978 | /// This example shows how to parse a civil datetime from a broken down |
| 979 | /// time: |
| 980 | /// |
| 981 | /// ``` |
| 982 | /// use jiff::fmt::strtime; |
| 983 | /// |
| 984 | /// let dt = strtime::parse("%F %H:%M" , "2024-07-14 21:14" )?.to_datetime()?; |
| 985 | /// assert_eq!(dt.to_string(), "2024-07-14T21:14:00" ); |
| 986 | /// |
| 987 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 988 | /// ``` |
| 989 | #[inline ] |
| 990 | pub fn to_datetime(&self) -> Result<DateTime, Error> { |
| 991 | let date = |
| 992 | self.to_date().context("date required to parse datetime" )?; |
| 993 | let time = |
| 994 | self.to_time().context("time required to parse datetime" )?; |
| 995 | Ok(DateTime::from_parts(date, time)) |
| 996 | } |
| 997 | |
| 998 | /// Extracts a civil date from this broken down time. |
| 999 | /// |
| 1000 | /// This requires that the year is set along with a way to identify the day |
| 1001 | /// in the year. This can be done by either setting the month and the day |
| 1002 | /// of the month (`%m` and `%d`), or by setting the day of the year (`%j`). |
| 1003 | /// |
| 1004 | /// # Errors |
| 1005 | /// |
| 1006 | /// This returns an error if there weren't enough components to construct |
| 1007 | /// a civil date. This means there must be at least a year and either the |
| 1008 | /// month and day or the day of the year. |
| 1009 | /// |
| 1010 | /// It's okay if there are more units than are needed to construct a civil |
| 1011 | /// datetime. For example, if this broken down time contain a civil time, |
| 1012 | /// then it won't prevent a conversion to a civil date. |
| 1013 | /// |
| 1014 | /// # Example |
| 1015 | /// |
| 1016 | /// This example shows how to parse a civil date from a broken down time: |
| 1017 | /// |
| 1018 | /// ``` |
| 1019 | /// use jiff::fmt::strtime; |
| 1020 | /// |
| 1021 | /// let date = strtime::parse("%m/%d/%y" , "7/14/24" )?.to_date()?; |
| 1022 | /// assert_eq!(date.to_string(), "2024-07-14" ); |
| 1023 | /// |
| 1024 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1025 | /// ``` |
| 1026 | #[inline ] |
| 1027 | pub fn to_date(&self) -> Result<Date, Error> { |
| 1028 | let Some(year) = self.year else { |
| 1029 | // The Gregorian year and ISO week year may be parsed separately. |
| 1030 | // That is, they are two different fields. So if the Gregorian year |
| 1031 | // is absent, we might still have an ISO 8601 week date. |
| 1032 | if let Some(date) = self.to_date_from_iso()? { |
| 1033 | return Ok(date); |
| 1034 | } |
| 1035 | return Err(err!("missing year, date cannot be created" )); |
| 1036 | }; |
| 1037 | let mut date = self.to_date_from_gregorian(year)?; |
| 1038 | if date.is_none() { |
| 1039 | date = self.to_date_from_iso()?; |
| 1040 | } |
| 1041 | if date.is_none() { |
| 1042 | date = self.to_date_from_day_of_year(year)?; |
| 1043 | } |
| 1044 | if date.is_none() { |
| 1045 | date = self.to_date_from_week_sun(year)?; |
| 1046 | } |
| 1047 | if date.is_none() { |
| 1048 | date = self.to_date_from_week_mon(year)?; |
| 1049 | } |
| 1050 | let Some(date) = date else { |
| 1051 | return Err(err!( |
| 1052 | "a month/day, day-of-year or week date must be \ |
| 1053 | present to create a date, but none were found" , |
| 1054 | )); |
| 1055 | }; |
| 1056 | if let Some(weekday) = self.weekday { |
| 1057 | if weekday != date.weekday() { |
| 1058 | return Err(err!( |
| 1059 | "parsed weekday {weekday} does not match \ |
| 1060 | weekday {got} from parsed date {date}" , |
| 1061 | weekday = weekday_name_full(weekday), |
| 1062 | got = weekday_name_full(date.weekday()), |
| 1063 | )); |
| 1064 | } |
| 1065 | } |
| 1066 | Ok(date) |
| 1067 | } |
| 1068 | |
| 1069 | #[inline ] |
| 1070 | fn to_date_from_gregorian( |
| 1071 | &self, |
| 1072 | year: t::Year, |
| 1073 | ) -> Result<Option<Date>, Error> { |
| 1074 | let (Some(month), Some(day)) = (self.month, self.day) else { |
| 1075 | return Ok(None); |
| 1076 | }; |
| 1077 | Ok(Some(Date::new_ranged(year, month, day).context("invalid date" )?)) |
| 1078 | } |
| 1079 | |
| 1080 | #[inline ] |
| 1081 | fn to_date_from_day_of_year( |
| 1082 | &self, |
| 1083 | year: t::Year, |
| 1084 | ) -> Result<Option<Date>, Error> { |
| 1085 | let Some(doy) = self.day_of_year else { return Ok(None) }; |
| 1086 | Ok(Some({ |
| 1087 | let first = |
| 1088 | Date::new_ranged(year, C(1).rinto(), C(1).rinto()).unwrap(); |
| 1089 | first |
| 1090 | .with() |
| 1091 | .day_of_year(doy.get()) |
| 1092 | .build() |
| 1093 | .context("invalid date" )? |
| 1094 | })) |
| 1095 | } |
| 1096 | |
| 1097 | #[inline ] |
| 1098 | fn to_date_from_iso(&self) -> Result<Option<Date>, Error> { |
| 1099 | let (Some(y), Some(w), Some(d)) = |
| 1100 | (self.iso_week_year, self.iso_week, self.weekday) |
| 1101 | else { |
| 1102 | return Ok(None); |
| 1103 | }; |
| 1104 | let wd = ISOWeekDate::new_ranged(y, w, d) |
| 1105 | .context("invalid ISO 8601 week date" )?; |
| 1106 | Ok(Some(wd.date())) |
| 1107 | } |
| 1108 | |
| 1109 | #[inline ] |
| 1110 | fn to_date_from_week_sun( |
| 1111 | &self, |
| 1112 | year: t::Year, |
| 1113 | ) -> Result<Option<Date>, Error> { |
| 1114 | let (Some(week), Some(weekday)) = (self.week_sun, self.weekday) else { |
| 1115 | return Ok(None); |
| 1116 | }; |
| 1117 | let week = i16::from(week); |
| 1118 | let wday = i16::from(weekday.to_sunday_zero_offset()); |
| 1119 | let first_of_year = Date::new_ranged(year, C(1).rinto(), C(1).rinto()) |
| 1120 | .context("invalid date" )?; |
| 1121 | let first_sunday = first_of_year |
| 1122 | .nth_weekday_of_month(1, Weekday::Sunday) |
| 1123 | .map(|d| d.day_of_year()) |
| 1124 | .context("invalid date" )?; |
| 1125 | let doy = if week == 0 { |
| 1126 | let days_before_first_sunday = 7 - wday; |
| 1127 | let doy = first_sunday |
| 1128 | .checked_sub(days_before_first_sunday) |
| 1129 | .ok_or_else(|| { |
| 1130 | err!( |
| 1131 | "weekday ` {weekday:?}` is not valid for \ |
| 1132 | Sunday based week number ` {week}` \ |
| 1133 | in year ` {year}`" , |
| 1134 | ) |
| 1135 | })?; |
| 1136 | if doy == 0 { |
| 1137 | return Err(err!( |
| 1138 | "weekday ` {weekday:?}` is not valid for \ |
| 1139 | Sunday based week number ` {week}` \ |
| 1140 | in year ` {year}`" , |
| 1141 | )); |
| 1142 | } |
| 1143 | doy |
| 1144 | } else { |
| 1145 | let days_since_first_sunday = (week - 1) * 7 + wday; |
| 1146 | let doy = first_sunday + days_since_first_sunday; |
| 1147 | doy |
| 1148 | }; |
| 1149 | let date = first_of_year |
| 1150 | .with() |
| 1151 | .day_of_year(doy) |
| 1152 | .build() |
| 1153 | .context("invalid date" )?; |
| 1154 | Ok(Some(date)) |
| 1155 | } |
| 1156 | |
| 1157 | #[inline ] |
| 1158 | fn to_date_from_week_mon( |
| 1159 | &self, |
| 1160 | year: t::Year, |
| 1161 | ) -> Result<Option<Date>, Error> { |
| 1162 | let (Some(week), Some(weekday)) = (self.week_mon, self.weekday) else { |
| 1163 | return Ok(None); |
| 1164 | }; |
| 1165 | let week = i16::from(week); |
| 1166 | let wday = i16::from(weekday.to_monday_zero_offset()); |
| 1167 | let first_of_year = Date::new_ranged(year, C(1).rinto(), C(1).rinto()) |
| 1168 | .context("invalid date" )?; |
| 1169 | let first_monday = first_of_year |
| 1170 | .nth_weekday_of_month(1, Weekday::Monday) |
| 1171 | .map(|d| d.day_of_year()) |
| 1172 | .context("invalid date" )?; |
| 1173 | let doy = if week == 0 { |
| 1174 | let days_before_first_monday = 7 - wday; |
| 1175 | let doy = first_monday |
| 1176 | .checked_sub(days_before_first_monday) |
| 1177 | .ok_or_else(|| { |
| 1178 | err!( |
| 1179 | "weekday ` {weekday:?}` is not valid for \ |
| 1180 | Monday based week number ` {week}` \ |
| 1181 | in year ` {year}`" , |
| 1182 | ) |
| 1183 | })?; |
| 1184 | if doy == 0 { |
| 1185 | return Err(err!( |
| 1186 | "weekday ` {weekday:?}` is not valid for \ |
| 1187 | Monday based week number ` {week}` \ |
| 1188 | in year ` {year}`" , |
| 1189 | )); |
| 1190 | } |
| 1191 | doy |
| 1192 | } else { |
| 1193 | let days_since_first_monday = (week - 1) * 7 + wday; |
| 1194 | let doy = first_monday + days_since_first_monday; |
| 1195 | doy |
| 1196 | }; |
| 1197 | let date = first_of_year |
| 1198 | .with() |
| 1199 | .day_of_year(doy) |
| 1200 | .build() |
| 1201 | .context("invalid date" )?; |
| 1202 | Ok(Some(date)) |
| 1203 | } |
| 1204 | |
| 1205 | /// Extracts a civil time from this broken down time. |
| 1206 | /// |
| 1207 | /// # Errors |
| 1208 | /// |
| 1209 | /// This returns an error if there weren't enough components to construct |
| 1210 | /// a civil time. Interestingly, this succeeds if there are no time units, |
| 1211 | /// since this will assume an absent time is midnight. However, this can |
| 1212 | /// still error when, for example, there are minutes but no hours. |
| 1213 | /// |
| 1214 | /// It's okay if there are more units than are needed to construct a civil |
| 1215 | /// time. For example, if this broken down time contains a date, then it |
| 1216 | /// won't prevent a conversion to a civil time. |
| 1217 | /// |
| 1218 | /// # Example |
| 1219 | /// |
| 1220 | /// This example shows how to parse a civil time from a broken down |
| 1221 | /// time: |
| 1222 | /// |
| 1223 | /// ``` |
| 1224 | /// use jiff::fmt::strtime; |
| 1225 | /// |
| 1226 | /// let time = strtime::parse("%H:%M:%S" , "21:14:59" )?.to_time()?; |
| 1227 | /// assert_eq!(time.to_string(), "21:14:59" ); |
| 1228 | /// |
| 1229 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1230 | /// ``` |
| 1231 | /// |
| 1232 | /// # Example: time defaults to midnight |
| 1233 | /// |
| 1234 | /// Since time defaults to midnight, one can parse an empty input string |
| 1235 | /// with an empty format string and still extract a `Time`: |
| 1236 | /// |
| 1237 | /// ``` |
| 1238 | /// use jiff::fmt::strtime; |
| 1239 | /// |
| 1240 | /// let time = strtime::parse("" , "" )?.to_time()?; |
| 1241 | /// assert_eq!(time.to_string(), "00:00:00" ); |
| 1242 | /// |
| 1243 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1244 | /// ``` |
| 1245 | /// |
| 1246 | /// # Example: invalid time |
| 1247 | /// |
| 1248 | /// Other than using illegal values (like `24` for hours), if lower units |
| 1249 | /// are parsed without higher units, then this results in an error: |
| 1250 | /// |
| 1251 | /// ``` |
| 1252 | /// use jiff::fmt::strtime; |
| 1253 | /// |
| 1254 | /// assert!(strtime::parse("%M:%S" , "15:36" )?.to_time().is_err()); |
| 1255 | /// |
| 1256 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1257 | /// ``` |
| 1258 | /// |
| 1259 | /// # Example: invalid date |
| 1260 | /// |
| 1261 | /// Since validation of a date is only done when a date is requested, it is |
| 1262 | /// actually possible to parse an invalid date and extract the time without |
| 1263 | /// an error occurring: |
| 1264 | /// |
| 1265 | /// ``` |
| 1266 | /// use jiff::fmt::strtime; |
| 1267 | /// |
| 1268 | /// // 31 is a legal day value, but not for June. |
| 1269 | /// // However, this is not validated unless you |
| 1270 | /// // ask for a `Date` from the parsed `BrokenDownTime`. |
| 1271 | /// // Everything except for `BrokenDownTime::time` |
| 1272 | /// // creates a date, so asking for only a `time` |
| 1273 | /// // will circumvent date validation! |
| 1274 | /// let tm = strtime::parse("%Y-%m-%d %H:%M:%S" , "2024-06-31 21:14:59" )?; |
| 1275 | /// let time = tm.to_time()?; |
| 1276 | /// assert_eq!(time.to_string(), "21:14:59" ); |
| 1277 | /// |
| 1278 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1279 | /// ``` |
| 1280 | #[inline ] |
| 1281 | pub fn to_time(&self) -> Result<Time, Error> { |
| 1282 | let Some(hour) = self.hour_ranged() else { |
| 1283 | if self.minute.is_some() { |
| 1284 | return Err(err!( |
| 1285 | "parsing format did not include hour directive, \ |
| 1286 | but did include minute directive (cannot have \ |
| 1287 | smaller time units with bigger time units missing)" , |
| 1288 | )); |
| 1289 | } |
| 1290 | if self.second.is_some() { |
| 1291 | return Err(err!( |
| 1292 | "parsing format did not include hour directive, \ |
| 1293 | but did include second directive (cannot have \ |
| 1294 | smaller time units with bigger time units missing)" , |
| 1295 | )); |
| 1296 | } |
| 1297 | if self.subsec.is_some() { |
| 1298 | return Err(err!( |
| 1299 | "parsing format did not include hour directive, \ |
| 1300 | but did include fractional second directive (cannot have \ |
| 1301 | smaller time units with bigger time units missing)" , |
| 1302 | )); |
| 1303 | } |
| 1304 | return Ok(Time::midnight()); |
| 1305 | }; |
| 1306 | let Some(minute) = self.minute else { |
| 1307 | if self.second.is_some() { |
| 1308 | return Err(err!( |
| 1309 | "parsing format did not include minute directive, \ |
| 1310 | but did include second directive (cannot have \ |
| 1311 | smaller time units with bigger time units missing)" , |
| 1312 | )); |
| 1313 | } |
| 1314 | if self.subsec.is_some() { |
| 1315 | return Err(err!( |
| 1316 | "parsing format did not include minute directive, \ |
| 1317 | but did include fractional second directive (cannot have \ |
| 1318 | smaller time units with bigger time units missing)" , |
| 1319 | )); |
| 1320 | } |
| 1321 | return Ok(Time::new_ranged(hour, C(0), C(0), C(0))); |
| 1322 | }; |
| 1323 | let Some(second) = self.second else { |
| 1324 | if self.subsec.is_some() { |
| 1325 | return Err(err!( |
| 1326 | "parsing format did not include second directive, \ |
| 1327 | but did include fractional second directive (cannot have \ |
| 1328 | smaller time units with bigger time units missing)" , |
| 1329 | )); |
| 1330 | } |
| 1331 | return Ok(Time::new_ranged(hour, minute, C(0), C(0))); |
| 1332 | }; |
| 1333 | let Some(subsec) = self.subsec else { |
| 1334 | return Ok(Time::new_ranged(hour, minute, second, C(0))); |
| 1335 | }; |
| 1336 | Ok(Time::new_ranged(hour, minute, second, subsec)) |
| 1337 | } |
| 1338 | |
| 1339 | /// Returns the parsed year, if available. |
| 1340 | /// |
| 1341 | /// This is also set when a 2 digit year is parsed. (But that's limited to |
| 1342 | /// the years 1969 to 2068, inclusive.) |
| 1343 | /// |
| 1344 | /// # Example |
| 1345 | /// |
| 1346 | /// This shows how to parse just a year: |
| 1347 | /// |
| 1348 | /// ``` |
| 1349 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1350 | /// |
| 1351 | /// let tm = BrokenDownTime::parse("%Y" , "2024" )?; |
| 1352 | /// assert_eq!(tm.year(), Some(2024)); |
| 1353 | /// |
| 1354 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1355 | /// ``` |
| 1356 | /// |
| 1357 | /// And 2-digit years are supported too: |
| 1358 | /// |
| 1359 | /// ``` |
| 1360 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1361 | /// |
| 1362 | /// let tm = BrokenDownTime::parse("%y" , "24" )?; |
| 1363 | /// assert_eq!(tm.year(), Some(2024)); |
| 1364 | /// let tm = BrokenDownTime::parse("%y" , "00" )?; |
| 1365 | /// assert_eq!(tm.year(), Some(2000)); |
| 1366 | /// let tm = BrokenDownTime::parse("%y" , "69" )?; |
| 1367 | /// assert_eq!(tm.year(), Some(1969)); |
| 1368 | /// |
| 1369 | /// // 2-digit years have limited range. They must |
| 1370 | /// // be in the range 0-99. |
| 1371 | /// assert!(BrokenDownTime::parse("%y" , "2024" ).is_err()); |
| 1372 | /// |
| 1373 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1374 | /// ``` |
| 1375 | #[inline ] |
| 1376 | pub fn year(&self) -> Option<i16> { |
| 1377 | self.year.map(|x| x.get()) |
| 1378 | } |
| 1379 | |
| 1380 | /// Returns the parsed month, if available. |
| 1381 | /// |
| 1382 | /// # Example |
| 1383 | /// |
| 1384 | /// This shows a few different ways of parsing just a month: |
| 1385 | /// |
| 1386 | /// ``` |
| 1387 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1388 | /// |
| 1389 | /// let tm = BrokenDownTime::parse("%m" , "12" )?; |
| 1390 | /// assert_eq!(tm.month(), Some(12)); |
| 1391 | /// |
| 1392 | /// let tm = BrokenDownTime::parse("%B" , "December" )?; |
| 1393 | /// assert_eq!(tm.month(), Some(12)); |
| 1394 | /// |
| 1395 | /// let tm = BrokenDownTime::parse("%b" , "Dec" )?; |
| 1396 | /// assert_eq!(tm.month(), Some(12)); |
| 1397 | /// |
| 1398 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1399 | /// ``` |
| 1400 | #[inline ] |
| 1401 | pub fn month(&self) -> Option<i8> { |
| 1402 | self.month.map(|x| x.get()) |
| 1403 | } |
| 1404 | |
| 1405 | /// Returns the parsed day, if available. |
| 1406 | /// |
| 1407 | /// # Example |
| 1408 | /// |
| 1409 | /// This shows how to parse the day of the month: |
| 1410 | /// |
| 1411 | /// ``` |
| 1412 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1413 | /// |
| 1414 | /// let tm = BrokenDownTime::parse("%d" , "5" )?; |
| 1415 | /// assert_eq!(tm.day(), Some(5)); |
| 1416 | /// |
| 1417 | /// let tm = BrokenDownTime::parse("%d" , "05" )?; |
| 1418 | /// assert_eq!(tm.day(), Some(5)); |
| 1419 | /// |
| 1420 | /// let tm = BrokenDownTime::parse("%03d" , "005" )?; |
| 1421 | /// assert_eq!(tm.day(), Some(5)); |
| 1422 | /// |
| 1423 | /// // Parsing a day only works for all possible legal |
| 1424 | /// // values, even if, e.g., 31 isn't valid for all |
| 1425 | /// // possible year/month combinations. |
| 1426 | /// let tm = BrokenDownTime::parse("%d" , "31" )?; |
| 1427 | /// assert_eq!(tm.day(), Some(31)); |
| 1428 | /// // This is true even if you're parsing a full date: |
| 1429 | /// let tm = BrokenDownTime::parse("%Y-%m-%d" , "2024-04-31" )?; |
| 1430 | /// assert_eq!(tm.day(), Some(31)); |
| 1431 | /// // An error only occurs when you try to extract a date: |
| 1432 | /// assert!(tm.to_date().is_err()); |
| 1433 | /// // But parsing a value that is always illegal will |
| 1434 | /// // result in an error: |
| 1435 | /// assert!(BrokenDownTime::parse("%d" , "32" ).is_err()); |
| 1436 | /// |
| 1437 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1438 | /// ``` |
| 1439 | #[inline ] |
| 1440 | pub fn day(&self) -> Option<i8> { |
| 1441 | self.day.map(|x| x.get()) |
| 1442 | } |
| 1443 | |
| 1444 | /// Returns the parsed day of the year (1-366), if available. |
| 1445 | /// |
| 1446 | /// # Example |
| 1447 | /// |
| 1448 | /// This shows how to parse the day of the year: |
| 1449 | /// |
| 1450 | /// ``` |
| 1451 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1452 | /// |
| 1453 | /// let tm = BrokenDownTime::parse("%j" , "5" )?; |
| 1454 | /// assert_eq!(tm.day_of_year(), Some(5)); |
| 1455 | /// assert_eq!(tm.to_string("%j" )?, "005" ); |
| 1456 | /// assert_eq!(tm.to_string("%-j" )?, "5" ); |
| 1457 | /// |
| 1458 | /// // Parsing the day of the year works for all possible legal |
| 1459 | /// // values, even if, e.g., 366 isn't valid for all possible |
| 1460 | /// // year/month combinations. |
| 1461 | /// let tm = BrokenDownTime::parse("%j" , "366" )?; |
| 1462 | /// assert_eq!(tm.day_of_year(), Some(366)); |
| 1463 | /// // This is true even if you're parsing a year: |
| 1464 | /// let tm = BrokenDownTime::parse("%Y/%j" , "2023/366" )?; |
| 1465 | /// assert_eq!(tm.day_of_year(), Some(366)); |
| 1466 | /// // An error only occurs when you try to extract a date: |
| 1467 | /// assert_eq!( |
| 1468 | /// tm.to_date().unwrap_err().to_string(), |
| 1469 | /// "invalid date: day-of-year=366 is out of range \ |
| 1470 | /// for year=2023, must be in range 1..=365" , |
| 1471 | /// ); |
| 1472 | /// // But parsing a value that is always illegal will |
| 1473 | /// // result in an error: |
| 1474 | /// assert!(BrokenDownTime::parse("%j" , "0" ).is_err()); |
| 1475 | /// assert!(BrokenDownTime::parse("%j" , "367" ).is_err()); |
| 1476 | /// |
| 1477 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1478 | /// ``` |
| 1479 | /// |
| 1480 | /// # Example: extract a [`Date`] |
| 1481 | /// |
| 1482 | /// This example shows how parsing a year and a day of the year enables |
| 1483 | /// the extraction of a date: |
| 1484 | /// |
| 1485 | /// ``` |
| 1486 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime}; |
| 1487 | /// |
| 1488 | /// let tm = BrokenDownTime::parse("%Y-%j" , "2024-60" )?; |
| 1489 | /// assert_eq!(tm.to_date()?, date(2024, 2, 29)); |
| 1490 | /// |
| 1491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1492 | /// ``` |
| 1493 | /// |
| 1494 | /// When all of `%m`, `%d` and `%j` are used, then `%m` and `%d` take |
| 1495 | /// priority over `%j` when extracting a `Date` from a `BrokenDownTime`. |
| 1496 | /// However, `%j` is still parsed and accessible: |
| 1497 | /// |
| 1498 | /// ``` |
| 1499 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime}; |
| 1500 | /// |
| 1501 | /// let tm = BrokenDownTime::parse( |
| 1502 | /// "%Y-%m-%d (day of year: %j)" , |
| 1503 | /// "2024-02-29 (day of year: 1)" , |
| 1504 | /// )?; |
| 1505 | /// assert_eq!(tm.to_date()?, date(2024, 2, 29)); |
| 1506 | /// assert_eq!(tm.day_of_year(), Some(1)); |
| 1507 | /// |
| 1508 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1509 | /// ``` |
| 1510 | #[inline ] |
| 1511 | pub fn day_of_year(&self) -> Option<i16> { |
| 1512 | self.day_of_year.map(|x| x.get()) |
| 1513 | } |
| 1514 | |
| 1515 | /// Returns the parsed ISO 8601 week-based year, if available. |
| 1516 | /// |
| 1517 | /// This is also set when a 2 digit ISO 8601 week-based year is parsed. |
| 1518 | /// (But that's limited to the years 1969 to 2068, inclusive.) |
| 1519 | /// |
| 1520 | /// # Example |
| 1521 | /// |
| 1522 | /// This shows how to parse just an ISO 8601 week-based year: |
| 1523 | /// |
| 1524 | /// ``` |
| 1525 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1526 | /// |
| 1527 | /// let tm = BrokenDownTime::parse("%G" , "2024" )?; |
| 1528 | /// assert_eq!(tm.iso_week_year(), Some(2024)); |
| 1529 | /// |
| 1530 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1531 | /// ``` |
| 1532 | /// |
| 1533 | /// And 2-digit years are supported too: |
| 1534 | /// |
| 1535 | /// ``` |
| 1536 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1537 | /// |
| 1538 | /// let tm = BrokenDownTime::parse("%g" , "24" )?; |
| 1539 | /// assert_eq!(tm.iso_week_year(), Some(2024)); |
| 1540 | /// let tm = BrokenDownTime::parse("%g" , "00" )?; |
| 1541 | /// assert_eq!(tm.iso_week_year(), Some(2000)); |
| 1542 | /// let tm = BrokenDownTime::parse("%g" , "69" )?; |
| 1543 | /// assert_eq!(tm.iso_week_year(), Some(1969)); |
| 1544 | /// |
| 1545 | /// // 2-digit years have limited range. They must |
| 1546 | /// // be in the range 0-99. |
| 1547 | /// assert!(BrokenDownTime::parse("%g" , "2024" ).is_err()); |
| 1548 | /// |
| 1549 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1550 | /// ``` |
| 1551 | #[inline ] |
| 1552 | pub fn iso_week_year(&self) -> Option<i16> { |
| 1553 | self.iso_week_year.map(|x| x.get()) |
| 1554 | } |
| 1555 | |
| 1556 | /// Returns the parsed ISO 8601 week-based number, if available. |
| 1557 | /// |
| 1558 | /// The week number is guaranteed to be in the range `1..53`. Week `1` is |
| 1559 | /// the first week of the year to contain 4 days. |
| 1560 | /// |
| 1561 | /// |
| 1562 | /// # Example |
| 1563 | /// |
| 1564 | /// This shows how to parse just an ISO 8601 week-based dates: |
| 1565 | /// |
| 1566 | /// ``` |
| 1567 | /// use jiff::{civil::{Weekday, date}, fmt::strtime::BrokenDownTime}; |
| 1568 | /// |
| 1569 | /// let tm = BrokenDownTime::parse("%G-W%V-%u" , "2020-W01-1" )?; |
| 1570 | /// assert_eq!(tm.iso_week_year(), Some(2020)); |
| 1571 | /// assert_eq!(tm.iso_week(), Some(1)); |
| 1572 | /// assert_eq!(tm.weekday(), Some(Weekday::Monday)); |
| 1573 | /// assert_eq!(tm.to_date()?, date(2019, 12, 30)); |
| 1574 | /// |
| 1575 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1576 | /// ``` |
| 1577 | #[inline ] |
| 1578 | pub fn iso_week(&self) -> Option<i8> { |
| 1579 | self.iso_week.map(|x| x.get()) |
| 1580 | } |
| 1581 | |
| 1582 | /// Returns the Sunday based week number. |
| 1583 | /// |
| 1584 | /// The week number returned is always in the range `0..=53`. Week `1` |
| 1585 | /// begins on the first Sunday of the year. Any days in the year prior to |
| 1586 | /// week `1` are in week `0`. |
| 1587 | /// |
| 1588 | /// # Example |
| 1589 | /// |
| 1590 | /// ``` |
| 1591 | /// use jiff::{civil::{Weekday, date}, fmt::strtime::BrokenDownTime}; |
| 1592 | /// |
| 1593 | /// let tm = BrokenDownTime::parse("%Y-%U-%w" , "2025-01-0" )?; |
| 1594 | /// assert_eq!(tm.year(), Some(2025)); |
| 1595 | /// assert_eq!(tm.sunday_based_week(), Some(1)); |
| 1596 | /// assert_eq!(tm.weekday(), Some(Weekday::Sunday)); |
| 1597 | /// assert_eq!(tm.to_date()?, date(2025, 1, 5)); |
| 1598 | /// |
| 1599 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1600 | /// ``` |
| 1601 | #[inline ] |
| 1602 | pub fn sunday_based_week(&self) -> Option<i8> { |
| 1603 | self.week_sun.map(|x| x.get()) |
| 1604 | } |
| 1605 | |
| 1606 | /// Returns the Monday based week number. |
| 1607 | /// |
| 1608 | /// The week number returned is always in the range `0..=53`. Week `1` |
| 1609 | /// begins on the first Monday of the year. Any days in the year prior to |
| 1610 | /// week `1` are in week `0`. |
| 1611 | /// |
| 1612 | /// # Example |
| 1613 | /// |
| 1614 | /// ``` |
| 1615 | /// use jiff::{civil::{Weekday, date}, fmt::strtime::BrokenDownTime}; |
| 1616 | /// |
| 1617 | /// let tm = BrokenDownTime::parse("%Y-%U-%w" , "2025-01-1" )?; |
| 1618 | /// assert_eq!(tm.year(), Some(2025)); |
| 1619 | /// assert_eq!(tm.sunday_based_week(), Some(1)); |
| 1620 | /// assert_eq!(tm.weekday(), Some(Weekday::Monday)); |
| 1621 | /// assert_eq!(tm.to_date()?, date(2025, 1, 6)); |
| 1622 | /// |
| 1623 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1624 | /// ``` |
| 1625 | #[inline ] |
| 1626 | pub fn monday_based_week(&self) -> Option<i8> { |
| 1627 | self.week_mon.map(|x| x.get()) |
| 1628 | } |
| 1629 | |
| 1630 | /// Returns the parsed hour, if available. |
| 1631 | /// |
| 1632 | /// The hour returned incorporates [`BrokenDownTime::meridiem`] if it's |
| 1633 | /// set. That is, if the actual parsed hour value is `1` but the meridiem |
| 1634 | /// is `PM`, then the hour returned by this method will be `13`. |
| 1635 | /// |
| 1636 | /// # Example |
| 1637 | /// |
| 1638 | /// This shows a how to parse an hour: |
| 1639 | /// |
| 1640 | /// ``` |
| 1641 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1642 | /// |
| 1643 | /// let tm = BrokenDownTime::parse("%H" , "13" )?; |
| 1644 | /// assert_eq!(tm.hour(), Some(13)); |
| 1645 | /// |
| 1646 | /// // When parsing a 12-hour clock without a |
| 1647 | /// // meridiem, the hour value is as parsed. |
| 1648 | /// let tm = BrokenDownTime::parse("%I" , "1" )?; |
| 1649 | /// assert_eq!(tm.hour(), Some(1)); |
| 1650 | /// |
| 1651 | /// // If a meridiem is parsed, then it is used |
| 1652 | /// // to calculate the correct hour value. |
| 1653 | /// let tm = BrokenDownTime::parse("%I%P" , "1pm" )?; |
| 1654 | /// assert_eq!(tm.hour(), Some(13)); |
| 1655 | /// |
| 1656 | /// // This works even if the hour and meridiem are |
| 1657 | /// // inconsistent with each other: |
| 1658 | /// let tm = BrokenDownTime::parse("%H%P" , "13am" )?; |
| 1659 | /// assert_eq!(tm.hour(), Some(1)); |
| 1660 | /// |
| 1661 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1662 | /// ``` |
| 1663 | #[inline ] |
| 1664 | pub fn hour(&self) -> Option<i8> { |
| 1665 | self.hour_ranged().map(|x| x.get()) |
| 1666 | } |
| 1667 | |
| 1668 | #[inline ] |
| 1669 | fn hour_ranged(&self) -> Option<t::Hour> { |
| 1670 | let hour = self.hour?; |
| 1671 | Some(match self.meridiem() { |
| 1672 | None => hour, |
| 1673 | Some(Meridiem::AM) => hour % C(12), |
| 1674 | Some(Meridiem::PM) => (hour % C(12)) + C(12), |
| 1675 | }) |
| 1676 | } |
| 1677 | |
| 1678 | /// Returns the parsed minute, if available. |
| 1679 | /// |
| 1680 | /// # Example |
| 1681 | /// |
| 1682 | /// This shows how to parse the minute: |
| 1683 | /// |
| 1684 | /// ``` |
| 1685 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1686 | /// |
| 1687 | /// let tm = BrokenDownTime::parse("%M" , "5" )?; |
| 1688 | /// assert_eq!(tm.minute(), Some(5)); |
| 1689 | /// |
| 1690 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1691 | /// ``` |
| 1692 | #[inline ] |
| 1693 | pub fn minute(&self) -> Option<i8> { |
| 1694 | self.minute.map(|x| x.get()) |
| 1695 | } |
| 1696 | |
| 1697 | /// Returns the parsed second, if available. |
| 1698 | /// |
| 1699 | /// # Example |
| 1700 | /// |
| 1701 | /// This shows how to parse the second: |
| 1702 | /// |
| 1703 | /// ``` |
| 1704 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1705 | /// |
| 1706 | /// let tm = BrokenDownTime::parse("%S" , "5" )?; |
| 1707 | /// assert_eq!(tm.second(), Some(5)); |
| 1708 | /// |
| 1709 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1710 | /// ``` |
| 1711 | #[inline ] |
| 1712 | pub fn second(&self) -> Option<i8> { |
| 1713 | self.second.map(|x| x.get()) |
| 1714 | } |
| 1715 | |
| 1716 | /// Returns the parsed subsecond nanosecond, if available. |
| 1717 | /// |
| 1718 | /// # Example |
| 1719 | /// |
| 1720 | /// This shows how to parse fractional seconds: |
| 1721 | /// |
| 1722 | /// ``` |
| 1723 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1724 | /// |
| 1725 | /// let tm = BrokenDownTime::parse("%f" , "123456" )?; |
| 1726 | /// assert_eq!(tm.subsec_nanosecond(), Some(123_456_000)); |
| 1727 | /// |
| 1728 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1729 | /// ``` |
| 1730 | /// |
| 1731 | /// Note that when using `%.f`, the fractional component is optional! |
| 1732 | /// |
| 1733 | /// ``` |
| 1734 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1735 | /// |
| 1736 | /// let tm = BrokenDownTime::parse("%S%.f" , "1" )?; |
| 1737 | /// assert_eq!(tm.second(), Some(1)); |
| 1738 | /// assert_eq!(tm.subsec_nanosecond(), None); |
| 1739 | /// |
| 1740 | /// let tm = BrokenDownTime::parse("%S%.f" , "1.789" )?; |
| 1741 | /// assert_eq!(tm.second(), Some(1)); |
| 1742 | /// assert_eq!(tm.subsec_nanosecond(), Some(789_000_000)); |
| 1743 | /// |
| 1744 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1745 | /// ``` |
| 1746 | #[inline ] |
| 1747 | pub fn subsec_nanosecond(&self) -> Option<i32> { |
| 1748 | self.subsec.map(|x| x.get()) |
| 1749 | } |
| 1750 | |
| 1751 | /// Returns the parsed offset, if available. |
| 1752 | /// |
| 1753 | /// # Example |
| 1754 | /// |
| 1755 | /// This shows how to parse the offset: |
| 1756 | /// |
| 1757 | /// ``` |
| 1758 | /// use jiff::{fmt::strtime::BrokenDownTime, tz::Offset}; |
| 1759 | /// |
| 1760 | /// let tm = BrokenDownTime::parse("%z" , "-0430" )?; |
| 1761 | /// assert_eq!( |
| 1762 | /// tm.offset(), |
| 1763 | /// Some(Offset::from_seconds(-4 * 60 * 60 - 30 * 60).unwrap()), |
| 1764 | /// ); |
| 1765 | /// let tm = BrokenDownTime::parse("%z" , "-043059" )?; |
| 1766 | /// assert_eq!( |
| 1767 | /// tm.offset(), |
| 1768 | /// Some(Offset::from_seconds(-4 * 60 * 60 - 30 * 60 - 59).unwrap()), |
| 1769 | /// ); |
| 1770 | /// |
| 1771 | /// // Or, if you want colons: |
| 1772 | /// let tm = BrokenDownTime::parse("%:z" , "-04:30" )?; |
| 1773 | /// assert_eq!( |
| 1774 | /// tm.offset(), |
| 1775 | /// Some(Offset::from_seconds(-4 * 60 * 60 - 30 * 60).unwrap()), |
| 1776 | /// ); |
| 1777 | /// |
| 1778 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1779 | /// ``` |
| 1780 | #[inline ] |
| 1781 | pub fn offset(&self) -> Option<Offset> { |
| 1782 | self.offset |
| 1783 | } |
| 1784 | |
| 1785 | /// Returns the time zone IANA identifier, if available. |
| 1786 | /// |
| 1787 | /// Note that when `alloc` is disabled, this always returns `None`. (And |
| 1788 | /// there is no way to set it.) |
| 1789 | /// |
| 1790 | /// # Example |
| 1791 | /// |
| 1792 | /// This shows how to parse an IANA time zone identifier: |
| 1793 | /// |
| 1794 | /// ``` |
| 1795 | /// use jiff::{fmt::strtime::BrokenDownTime, tz}; |
| 1796 | /// |
| 1797 | /// let tm = BrokenDownTime::parse("%Q" , "US/Eastern" )?; |
| 1798 | /// assert_eq!(tm.iana_time_zone(), Some("US/Eastern" )); |
| 1799 | /// assert_eq!(tm.offset(), None); |
| 1800 | /// |
| 1801 | /// // Note that %Q (and %:Q) also support parsing an offset |
| 1802 | /// // as a fallback. If that occurs, an IANA time zone |
| 1803 | /// // identifier is not available. |
| 1804 | /// let tm = BrokenDownTime::parse("%Q" , "-0400" )?; |
| 1805 | /// assert_eq!(tm.iana_time_zone(), None); |
| 1806 | /// assert_eq!(tm.offset(), Some(tz::offset(-4))); |
| 1807 | /// |
| 1808 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1809 | /// ``` |
| 1810 | #[inline ] |
| 1811 | pub fn iana_time_zone(&self) -> Option<&str> { |
| 1812 | #[cfg (feature = "alloc" )] |
| 1813 | { |
| 1814 | self.iana.as_deref() |
| 1815 | } |
| 1816 | #[cfg (not(feature = "alloc" ))] |
| 1817 | { |
| 1818 | None |
| 1819 | } |
| 1820 | } |
| 1821 | |
| 1822 | /// Returns the parsed weekday, if available. |
| 1823 | /// |
| 1824 | /// # Example |
| 1825 | /// |
| 1826 | /// This shows a few different ways of parsing just a weekday: |
| 1827 | /// |
| 1828 | /// ``` |
| 1829 | /// use jiff::{civil::Weekday, fmt::strtime::BrokenDownTime}; |
| 1830 | /// |
| 1831 | /// let tm = BrokenDownTime::parse("%A" , "Saturday" )?; |
| 1832 | /// assert_eq!(tm.weekday(), Some(Weekday::Saturday)); |
| 1833 | /// |
| 1834 | /// let tm = BrokenDownTime::parse("%a" , "Sat" )?; |
| 1835 | /// assert_eq!(tm.weekday(), Some(Weekday::Saturday)); |
| 1836 | /// |
| 1837 | /// // A weekday is only available if it is explicitly parsed! |
| 1838 | /// let tm = BrokenDownTime::parse("%F" , "2024-07-27" )?; |
| 1839 | /// assert_eq!(tm.weekday(), None); |
| 1840 | /// // If you need a weekday derived from a parsed date, then: |
| 1841 | /// assert_eq!(tm.to_date()?.weekday(), Weekday::Saturday); |
| 1842 | /// |
| 1843 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1844 | /// ``` |
| 1845 | /// |
| 1846 | /// Note that this will return the parsed weekday even if |
| 1847 | /// it's inconsistent with a parsed date: |
| 1848 | /// |
| 1849 | /// ``` |
| 1850 | /// use jiff::{civil::{Weekday, date}, fmt::strtime::BrokenDownTime}; |
| 1851 | /// |
| 1852 | /// let mut tm = BrokenDownTime::parse("%a, %F" , "Wed, 2024-07-27" )?; |
| 1853 | /// // 2024-07-27 is a Saturday, but Wednesday was parsed: |
| 1854 | /// assert_eq!(tm.weekday(), Some(Weekday::Wednesday)); |
| 1855 | /// // An error only occurs when extracting a date: |
| 1856 | /// assert!(tm.to_date().is_err()); |
| 1857 | /// // To skip the weekday, error checking, zero it out first: |
| 1858 | /// tm.set_weekday(None); |
| 1859 | /// assert_eq!(tm.to_date()?, date(2024, 7, 27)); |
| 1860 | /// |
| 1861 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1862 | /// ``` |
| 1863 | #[inline ] |
| 1864 | pub fn weekday(&self) -> Option<Weekday> { |
| 1865 | self.weekday |
| 1866 | } |
| 1867 | |
| 1868 | /// Returns the parsed meridiem, if available. |
| 1869 | /// |
| 1870 | /// Note that unlike other fields, there is no |
| 1871 | /// `BrokenDownTime::set_meridiem`. Instead, when formatting, the meridiem |
| 1872 | /// label (if it's used in the formatting string) is determined purely as a |
| 1873 | /// function of the hour in a 24 hour clock. |
| 1874 | /// |
| 1875 | /// # Example |
| 1876 | /// |
| 1877 | /// This shows a how to parse the meridiem: |
| 1878 | /// |
| 1879 | /// ``` |
| 1880 | /// use jiff::fmt::strtime::{BrokenDownTime, Meridiem}; |
| 1881 | /// |
| 1882 | /// let tm = BrokenDownTime::parse("%p" , "AM" )?; |
| 1883 | /// assert_eq!(tm.meridiem(), Some(Meridiem::AM)); |
| 1884 | /// let tm = BrokenDownTime::parse("%P" , "pm" )?; |
| 1885 | /// assert_eq!(tm.meridiem(), Some(Meridiem::PM)); |
| 1886 | /// |
| 1887 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1888 | /// ``` |
| 1889 | #[inline ] |
| 1890 | pub fn meridiem(&self) -> Option<Meridiem> { |
| 1891 | self.meridiem |
| 1892 | } |
| 1893 | |
| 1894 | /// Set the year on this broken down time. |
| 1895 | /// |
| 1896 | /// # Errors |
| 1897 | /// |
| 1898 | /// This returns an error if the given year is out of range. |
| 1899 | /// |
| 1900 | /// # Example |
| 1901 | /// |
| 1902 | /// ``` |
| 1903 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1904 | /// |
| 1905 | /// let mut tm = BrokenDownTime::default(); |
| 1906 | /// // out of range |
| 1907 | /// assert!(tm.set_year(Some(10_000)).is_err()); |
| 1908 | /// tm.set_year(Some(2024))?; |
| 1909 | /// assert_eq!(tm.to_string("%Y" )?, "2024" ); |
| 1910 | /// |
| 1911 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1912 | /// ``` |
| 1913 | #[inline ] |
| 1914 | pub fn set_year(&mut self, year: Option<i16>) -> Result<(), Error> { |
| 1915 | self.year = match year { |
| 1916 | None => None, |
| 1917 | Some(year) => Some(t::Year::try_new("year" , year)?), |
| 1918 | }; |
| 1919 | Ok(()) |
| 1920 | } |
| 1921 | |
| 1922 | /// Set the month on this broken down time. |
| 1923 | /// |
| 1924 | /// # Errors |
| 1925 | /// |
| 1926 | /// This returns an error if the given month is out of range. |
| 1927 | /// |
| 1928 | /// # Example |
| 1929 | /// |
| 1930 | /// ``` |
| 1931 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1932 | /// |
| 1933 | /// let mut tm = BrokenDownTime::default(); |
| 1934 | /// // out of range |
| 1935 | /// assert!(tm.set_month(Some(0)).is_err()); |
| 1936 | /// tm.set_month(Some(12))?; |
| 1937 | /// assert_eq!(tm.to_string("%B" )?, "December" ); |
| 1938 | /// |
| 1939 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1940 | /// ``` |
| 1941 | #[inline ] |
| 1942 | pub fn set_month(&mut self, month: Option<i8>) -> Result<(), Error> { |
| 1943 | self.month = match month { |
| 1944 | None => None, |
| 1945 | Some(month) => Some(t::Month::try_new("month" , month)?), |
| 1946 | }; |
| 1947 | Ok(()) |
| 1948 | } |
| 1949 | |
| 1950 | /// Set the day on this broken down time. |
| 1951 | /// |
| 1952 | /// # Errors |
| 1953 | /// |
| 1954 | /// This returns an error if the given day is out of range. |
| 1955 | /// |
| 1956 | /// Note that setting a day to a value that is legal in any context is |
| 1957 | /// always valid, even if it isn't valid for the year and month |
| 1958 | /// components already set. |
| 1959 | /// |
| 1960 | /// # Example |
| 1961 | /// |
| 1962 | /// ``` |
| 1963 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 1964 | /// |
| 1965 | /// let mut tm = BrokenDownTime::default(); |
| 1966 | /// // out of range |
| 1967 | /// assert!(tm.set_day(Some(32)).is_err()); |
| 1968 | /// tm.set_day(Some(31))?; |
| 1969 | /// assert_eq!(tm.to_string("%d" )?, "31" ); |
| 1970 | /// |
| 1971 | /// // Works even if the resulting date is invalid. |
| 1972 | /// let mut tm = BrokenDownTime::default(); |
| 1973 | /// tm.set_year(Some(2024))?; |
| 1974 | /// tm.set_month(Some(4))?; |
| 1975 | /// tm.set_day(Some(31))?; // April has 30 days, not 31 |
| 1976 | /// assert_eq!(tm.to_string("%F" )?, "2024-04-31" ); |
| 1977 | /// |
| 1978 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1979 | /// ``` |
| 1980 | #[inline ] |
| 1981 | pub fn set_day(&mut self, day: Option<i8>) -> Result<(), Error> { |
| 1982 | self.day = match day { |
| 1983 | None => None, |
| 1984 | Some(day) => Some(t::Day::try_new("day" , day)?), |
| 1985 | }; |
| 1986 | Ok(()) |
| 1987 | } |
| 1988 | |
| 1989 | /// Set the day of year on this broken down time. |
| 1990 | /// |
| 1991 | /// # Errors |
| 1992 | /// |
| 1993 | /// This returns an error if the given day is out of range. |
| 1994 | /// |
| 1995 | /// Note that setting a day to a value that is legal in any context |
| 1996 | /// is always valid, even if it isn't valid for the year, month and |
| 1997 | /// day-of-month components already set. |
| 1998 | /// |
| 1999 | /// # Example |
| 2000 | /// |
| 2001 | /// ``` |
| 2002 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2003 | /// |
| 2004 | /// let mut tm = BrokenDownTime::default(); |
| 2005 | /// // out of range |
| 2006 | /// assert!(tm.set_day_of_year(Some(367)).is_err()); |
| 2007 | /// tm.set_day_of_year(Some(31))?; |
| 2008 | /// assert_eq!(tm.to_string("%j" )?, "031" ); |
| 2009 | /// |
| 2010 | /// // Works even if the resulting date is invalid. |
| 2011 | /// let mut tm = BrokenDownTime::default(); |
| 2012 | /// tm.set_year(Some(2023))?; |
| 2013 | /// tm.set_day_of_year(Some(366))?; // 2023 wasn't a leap year |
| 2014 | /// assert_eq!(tm.to_string("%Y/%j" )?, "2023/366" ); |
| 2015 | /// |
| 2016 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2017 | /// ``` |
| 2018 | #[inline ] |
| 2019 | pub fn set_day_of_year(&mut self, day: Option<i16>) -> Result<(), Error> { |
| 2020 | self.day_of_year = match day { |
| 2021 | None => None, |
| 2022 | Some(day) => Some(t::DayOfYear::try_new("day-of-year" , day)?), |
| 2023 | }; |
| 2024 | Ok(()) |
| 2025 | } |
| 2026 | |
| 2027 | /// Set the ISO 8601 week-based year on this broken down time. |
| 2028 | /// |
| 2029 | /// # Errors |
| 2030 | /// |
| 2031 | /// This returns an error if the given year is out of range. |
| 2032 | /// |
| 2033 | /// # Example |
| 2034 | /// |
| 2035 | /// ``` |
| 2036 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2037 | /// |
| 2038 | /// let mut tm = BrokenDownTime::default(); |
| 2039 | /// // out of range |
| 2040 | /// assert!(tm.set_iso_week_year(Some(10_000)).is_err()); |
| 2041 | /// tm.set_iso_week_year(Some(2024))?; |
| 2042 | /// assert_eq!(tm.to_string("%G" )?, "2024" ); |
| 2043 | /// |
| 2044 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2045 | /// ``` |
| 2046 | #[inline ] |
| 2047 | pub fn set_iso_week_year( |
| 2048 | &mut self, |
| 2049 | year: Option<i16>, |
| 2050 | ) -> Result<(), Error> { |
| 2051 | self.iso_week_year = match year { |
| 2052 | None => None, |
| 2053 | Some(year) => Some(t::ISOYear::try_new("year" , year)?), |
| 2054 | }; |
| 2055 | Ok(()) |
| 2056 | } |
| 2057 | |
| 2058 | /// Set the ISO 8601 week-based number on this broken down time. |
| 2059 | /// |
| 2060 | /// The week number must be in the range `1..53`. Week `1` is |
| 2061 | /// the first week of the year to contain 4 days. |
| 2062 | /// |
| 2063 | /// # Errors |
| 2064 | /// |
| 2065 | /// This returns an error if the given week number is out of range. |
| 2066 | /// |
| 2067 | /// # Example |
| 2068 | /// |
| 2069 | /// ``` |
| 2070 | /// use jiff::{civil::Weekday, fmt::strtime::BrokenDownTime}; |
| 2071 | /// |
| 2072 | /// let mut tm = BrokenDownTime::default(); |
| 2073 | /// // out of range |
| 2074 | /// assert!(tm.set_iso_week(Some(0)).is_err()); |
| 2075 | /// // out of range |
| 2076 | /// assert!(tm.set_iso_week(Some(54)).is_err()); |
| 2077 | /// |
| 2078 | /// tm.set_iso_week_year(Some(2020))?; |
| 2079 | /// tm.set_iso_week(Some(1))?; |
| 2080 | /// tm.set_weekday(Some(Weekday::Monday)); |
| 2081 | /// assert_eq!(tm.to_string("%G-W%V-%u" )?, "2020-W01-1" ); |
| 2082 | /// assert_eq!(tm.to_string("%F" )?, "2019-12-30" ); |
| 2083 | /// |
| 2084 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2085 | /// ``` |
| 2086 | #[inline ] |
| 2087 | pub fn set_iso_week( |
| 2088 | &mut self, |
| 2089 | week_number: Option<i8>, |
| 2090 | ) -> Result<(), Error> { |
| 2091 | self.iso_week = match week_number { |
| 2092 | None => None, |
| 2093 | Some(wk) => Some(t::ISOWeek::try_new("week-number" , wk)?), |
| 2094 | }; |
| 2095 | Ok(()) |
| 2096 | } |
| 2097 | |
| 2098 | /// Set the Sunday based week number. |
| 2099 | /// |
| 2100 | /// The week number returned is always in the range `0..=53`. Week `1` |
| 2101 | /// begins on the first Sunday of the year. Any days in the year prior to |
| 2102 | /// week `1` are in week `0`. |
| 2103 | /// |
| 2104 | /// # Example |
| 2105 | /// |
| 2106 | /// ``` |
| 2107 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2108 | /// |
| 2109 | /// let mut tm = BrokenDownTime::default(); |
| 2110 | /// // out of range |
| 2111 | /// assert!(tm.set_sunday_based_week(Some(56)).is_err()); |
| 2112 | /// tm.set_sunday_based_week(Some(9))?; |
| 2113 | /// assert_eq!(tm.to_string("%U" )?, "09" ); |
| 2114 | /// |
| 2115 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2116 | /// ``` |
| 2117 | #[inline ] |
| 2118 | pub fn set_sunday_based_week( |
| 2119 | &mut self, |
| 2120 | week_number: Option<i8>, |
| 2121 | ) -> Result<(), Error> { |
| 2122 | self.week_sun = match week_number { |
| 2123 | None => None, |
| 2124 | Some(wk) => Some(t::WeekNum::try_new("week-number" , wk)?), |
| 2125 | }; |
| 2126 | Ok(()) |
| 2127 | } |
| 2128 | |
| 2129 | /// Set the Monday based week number. |
| 2130 | /// |
| 2131 | /// The week number returned is always in the range `0..=53`. Week `1` |
| 2132 | /// begins on the first Monday of the year. Any days in the year prior to |
| 2133 | /// week `1` are in week `0`. |
| 2134 | /// |
| 2135 | /// # Example |
| 2136 | /// |
| 2137 | /// ``` |
| 2138 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2139 | /// |
| 2140 | /// let mut tm = BrokenDownTime::default(); |
| 2141 | /// // out of range |
| 2142 | /// assert!(tm.set_monday_based_week(Some(56)).is_err()); |
| 2143 | /// tm.set_monday_based_week(Some(9))?; |
| 2144 | /// assert_eq!(tm.to_string("%W" )?, "09" ); |
| 2145 | /// |
| 2146 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2147 | /// ``` |
| 2148 | #[inline ] |
| 2149 | pub fn set_monday_based_week( |
| 2150 | &mut self, |
| 2151 | week_number: Option<i8>, |
| 2152 | ) -> Result<(), Error> { |
| 2153 | self.week_mon = match week_number { |
| 2154 | None => None, |
| 2155 | Some(wk) => Some(t::WeekNum::try_new("week-number" , wk)?), |
| 2156 | }; |
| 2157 | Ok(()) |
| 2158 | } |
| 2159 | |
| 2160 | /// Set the hour on this broken down time. |
| 2161 | /// |
| 2162 | /// # Errors |
| 2163 | /// |
| 2164 | /// This returns an error if the given hour is out of range. |
| 2165 | /// |
| 2166 | /// # Example |
| 2167 | /// |
| 2168 | /// ``` |
| 2169 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2170 | /// |
| 2171 | /// let mut tm = BrokenDownTime::default(); |
| 2172 | /// // out of range |
| 2173 | /// assert!(tm.set_hour(Some(24)).is_err()); |
| 2174 | /// tm.set_hour(Some(0))?; |
| 2175 | /// assert_eq!(tm.to_string("%H" )?, "00" ); |
| 2176 | /// assert_eq!(tm.to_string("%-H" )?, "0" ); |
| 2177 | /// |
| 2178 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2179 | /// ``` |
| 2180 | #[inline ] |
| 2181 | pub fn set_hour(&mut self, hour: Option<i8>) -> Result<(), Error> { |
| 2182 | self.hour = match hour { |
| 2183 | None => None, |
| 2184 | Some(hour) => Some(t::Hour::try_new("hour" , hour)?), |
| 2185 | }; |
| 2186 | Ok(()) |
| 2187 | } |
| 2188 | |
| 2189 | /// Set the minute on this broken down time. |
| 2190 | /// |
| 2191 | /// # Errors |
| 2192 | /// |
| 2193 | /// This returns an error if the given minute is out of range. |
| 2194 | /// |
| 2195 | /// # Example |
| 2196 | /// |
| 2197 | /// ``` |
| 2198 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2199 | /// |
| 2200 | /// let mut tm = BrokenDownTime::default(); |
| 2201 | /// // out of range |
| 2202 | /// assert!(tm.set_minute(Some(60)).is_err()); |
| 2203 | /// tm.set_minute(Some(59))?; |
| 2204 | /// assert_eq!(tm.to_string("%M" )?, "59" ); |
| 2205 | /// assert_eq!(tm.to_string("%03M" )?, "059" ); |
| 2206 | /// assert_eq!(tm.to_string("%_3M" )?, " 59" ); |
| 2207 | /// |
| 2208 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2209 | /// ``` |
| 2210 | #[inline ] |
| 2211 | pub fn set_minute(&mut self, minute: Option<i8>) -> Result<(), Error> { |
| 2212 | self.minute = match minute { |
| 2213 | None => None, |
| 2214 | Some(minute) => Some(t::Minute::try_new("minute" , minute)?), |
| 2215 | }; |
| 2216 | Ok(()) |
| 2217 | } |
| 2218 | |
| 2219 | /// Set the second on this broken down time. |
| 2220 | /// |
| 2221 | /// # Errors |
| 2222 | /// |
| 2223 | /// This returns an error if the given second is out of range. |
| 2224 | /// |
| 2225 | /// Jiff does not support leap seconds, so the range of valid seconds is |
| 2226 | /// `0` to `59`, inclusive. Note though that when parsing, a parsed value |
| 2227 | /// of `60` is automatically constrained to `59`. |
| 2228 | /// |
| 2229 | /// # Example |
| 2230 | /// |
| 2231 | /// ``` |
| 2232 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2233 | /// |
| 2234 | /// let mut tm = BrokenDownTime::default(); |
| 2235 | /// // out of range |
| 2236 | /// assert!(tm.set_second(Some(60)).is_err()); |
| 2237 | /// tm.set_second(Some(59))?; |
| 2238 | /// assert_eq!(tm.to_string("%S" )?, "59" ); |
| 2239 | /// |
| 2240 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2241 | /// ``` |
| 2242 | #[inline ] |
| 2243 | pub fn set_second(&mut self, second: Option<i8>) -> Result<(), Error> { |
| 2244 | self.second = match second { |
| 2245 | None => None, |
| 2246 | Some(second) => Some(t::Second::try_new("second" , second)?), |
| 2247 | }; |
| 2248 | Ok(()) |
| 2249 | } |
| 2250 | |
| 2251 | /// Set the subsecond nanosecond on this broken down time. |
| 2252 | /// |
| 2253 | /// # Errors |
| 2254 | /// |
| 2255 | /// This returns an error if the given number of nanoseconds is out of |
| 2256 | /// range. It must be non-negative and less than 1 whole second. |
| 2257 | /// |
| 2258 | /// # Example |
| 2259 | /// |
| 2260 | /// ``` |
| 2261 | /// use jiff::fmt::strtime::BrokenDownTime; |
| 2262 | /// |
| 2263 | /// let mut tm = BrokenDownTime::default(); |
| 2264 | /// // out of range |
| 2265 | /// assert!(tm.set_subsec_nanosecond(Some(1_000_000_000)).is_err()); |
| 2266 | /// tm.set_subsec_nanosecond(Some(123_000_000))?; |
| 2267 | /// assert_eq!(tm.to_string("%f" )?, "123" ); |
| 2268 | /// assert_eq!(tm.to_string("%.6f" )?, ".123000" ); |
| 2269 | /// |
| 2270 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2271 | /// ``` |
| 2272 | #[inline ] |
| 2273 | pub fn set_subsec_nanosecond( |
| 2274 | &mut self, |
| 2275 | subsec_nanosecond: Option<i32>, |
| 2276 | ) -> Result<(), Error> { |
| 2277 | self.subsec = match subsec_nanosecond { |
| 2278 | None => None, |
| 2279 | Some(subsec_nanosecond) => Some(t::SubsecNanosecond::try_new( |
| 2280 | "subsecond-nanosecond" , |
| 2281 | subsec_nanosecond, |
| 2282 | )?), |
| 2283 | }; |
| 2284 | Ok(()) |
| 2285 | } |
| 2286 | |
| 2287 | /// Set the time zone offset on this broken down time. |
| 2288 | /// |
| 2289 | /// This can be useful for setting the offset after parsing if the offset |
| 2290 | /// is known from the context or from some out-of-band information. |
| 2291 | /// |
| 2292 | /// Note that one can set any legal offset value, regardless of whether |
| 2293 | /// it's consistent with the IANA time zone identifier on this broken down |
| 2294 | /// time (if it's set). Similarly, setting the offset does not actually |
| 2295 | /// change any other value in this broken down time. |
| 2296 | /// |
| 2297 | /// # Example: setting the offset after parsing |
| 2298 | /// |
| 2299 | /// One use case for this routine is when parsing a datetime _without_ |
| 2300 | /// an offset, but where one wants to set an offset based on the context. |
| 2301 | /// For example, while it's usually not correct to assume a datetime is |
| 2302 | /// in UTC, if you know it is, then you can parse it into a [`Timestamp`] |
| 2303 | /// like so: |
| 2304 | /// |
| 2305 | /// ``` |
| 2306 | /// use jiff::{fmt::strtime::BrokenDownTime, tz::Offset}; |
| 2307 | /// |
| 2308 | /// let mut tm = BrokenDownTime::parse( |
| 2309 | /// "%Y-%m-%d at %H:%M:%S" , |
| 2310 | /// "1970-01-01 at 01:00:00" , |
| 2311 | /// )?; |
| 2312 | /// tm.set_offset(Some(Offset::UTC)); |
| 2313 | /// // Normally this would fail since the parse |
| 2314 | /// // itself doesn't include an offset. It only |
| 2315 | /// // works here because we explicitly set the |
| 2316 | /// // offset after parsing. |
| 2317 | /// assert_eq!(tm.to_timestamp()?.to_string(), "1970-01-01T01:00:00Z" ); |
| 2318 | /// |
| 2319 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2320 | /// ``` |
| 2321 | /// |
| 2322 | /// # Example: setting the offset is not "smart" |
| 2323 | /// |
| 2324 | /// This example shows how setting the offset on an existing broken down |
| 2325 | /// time does not impact any other field, even if the result printed is |
| 2326 | /// non-sensical: |
| 2327 | /// |
| 2328 | /// ``` |
| 2329 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime, tz}; |
| 2330 | /// |
| 2331 | /// let zdt = date(2024, 8, 28).at(14, 56, 0, 0).in_tz("US/Eastern" )?; |
| 2332 | /// let mut tm = BrokenDownTime::from(&zdt); |
| 2333 | /// tm.set_offset(Some(tz::offset(12))); |
| 2334 | /// assert_eq!( |
| 2335 | /// tm.to_string("%Y-%m-%d at %H:%M:%S in %Q %:z" )?, |
| 2336 | /// "2024-08-28 at 14:56:00 in US/Eastern +12:00" , |
| 2337 | /// ); |
| 2338 | /// |
| 2339 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2340 | /// ``` |
| 2341 | #[inline ] |
| 2342 | pub fn set_offset(&mut self, offset: Option<Offset>) { |
| 2343 | self.offset = offset; |
| 2344 | } |
| 2345 | |
| 2346 | /// Set the IANA time zone identifier on this broken down time. |
| 2347 | /// |
| 2348 | /// This can be useful for setting the time zone after parsing if the time |
| 2349 | /// zone is known from the context or from some out-of-band information. |
| 2350 | /// |
| 2351 | /// Note that one can set any string value, regardless of whether it's |
| 2352 | /// consistent with the offset on this broken down time (if it's set). |
| 2353 | /// Similarly, setting the IANA time zone identifier does not actually |
| 2354 | /// change any other value in this broken down time. |
| 2355 | /// |
| 2356 | /// # Example: setting the IANA time zone identifier after parsing |
| 2357 | /// |
| 2358 | /// One use case for this routine is when parsing a datetime _without_ a |
| 2359 | /// time zone, but where one wants to set a time zone based on the context. |
| 2360 | /// |
| 2361 | /// ``` |
| 2362 | /// use jiff::{fmt::strtime::BrokenDownTime, tz::Offset}; |
| 2363 | /// |
| 2364 | /// let mut tm = BrokenDownTime::parse( |
| 2365 | /// "%Y-%m-%d at %H:%M:%S" , |
| 2366 | /// "1970-01-01 at 01:00:00" , |
| 2367 | /// )?; |
| 2368 | /// tm.set_iana_time_zone(Some(String::from("US/Eastern" ))); |
| 2369 | /// // Normally this would fail since the parse |
| 2370 | /// // itself doesn't include an offset or a time |
| 2371 | /// // zone. It only works here because we |
| 2372 | /// // explicitly set the time zone after parsing. |
| 2373 | /// assert_eq!( |
| 2374 | /// tm.to_zoned()?.to_string(), |
| 2375 | /// "1970-01-01T01:00:00-05:00[US/Eastern]" , |
| 2376 | /// ); |
| 2377 | /// |
| 2378 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2379 | /// ``` |
| 2380 | /// |
| 2381 | /// # Example: setting the IANA time zone identifier is not "smart" |
| 2382 | /// |
| 2383 | /// This example shows how setting the IANA time zone identifier on an |
| 2384 | /// existing broken down time does not impact any other field, even if the |
| 2385 | /// result printed is non-sensical: |
| 2386 | /// |
| 2387 | /// ``` |
| 2388 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime, tz}; |
| 2389 | /// |
| 2390 | /// let zdt = date(2024, 8, 28).at(14, 56, 0, 0).in_tz("US/Eastern" )?; |
| 2391 | /// let mut tm = BrokenDownTime::from(&zdt); |
| 2392 | /// tm.set_iana_time_zone(Some(String::from("Australia/Tasmania" ))); |
| 2393 | /// assert_eq!( |
| 2394 | /// tm.to_string("%Y-%m-%d at %H:%M:%S in %Q %:z" )?, |
| 2395 | /// "2024-08-28 at 14:56:00 in Australia/Tasmania -04:00" , |
| 2396 | /// ); |
| 2397 | /// |
| 2398 | /// // In fact, it's not even required that the string |
| 2399 | /// // given be a valid IANA time zone identifier! |
| 2400 | /// let mut tm = BrokenDownTime::from(&zdt); |
| 2401 | /// tm.set_iana_time_zone(Some(String::from("Clearly/Invalid" ))); |
| 2402 | /// assert_eq!( |
| 2403 | /// tm.to_string("%Y-%m-%d at %H:%M:%S in %Q %:z" )?, |
| 2404 | /// "2024-08-28 at 14:56:00 in Clearly/Invalid -04:00" , |
| 2405 | /// ); |
| 2406 | /// |
| 2407 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2408 | /// ``` |
| 2409 | #[cfg (feature = "alloc" )] |
| 2410 | #[inline ] |
| 2411 | pub fn set_iana_time_zone(&mut self, id: Option<alloc::string::String>) { |
| 2412 | self.iana = id; |
| 2413 | } |
| 2414 | |
| 2415 | /// Set the weekday on this broken down time. |
| 2416 | /// |
| 2417 | /// # Example |
| 2418 | /// |
| 2419 | /// ``` |
| 2420 | /// use jiff::{civil::Weekday, fmt::strtime::BrokenDownTime}; |
| 2421 | /// |
| 2422 | /// let mut tm = BrokenDownTime::default(); |
| 2423 | /// tm.set_weekday(Some(Weekday::Saturday)); |
| 2424 | /// assert_eq!(tm.to_string("%A" )?, "Saturday" ); |
| 2425 | /// assert_eq!(tm.to_string("%a" )?, "Sat" ); |
| 2426 | /// assert_eq!(tm.to_string("%^a" )?, "SAT" ); |
| 2427 | /// |
| 2428 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2429 | /// ``` |
| 2430 | /// |
| 2431 | /// Note that one use case for this routine is to enable parsing of |
| 2432 | /// weekdays in datetime, but skip checking that the weekday is valid for |
| 2433 | /// the parsed date. |
| 2434 | /// |
| 2435 | /// ``` |
| 2436 | /// use jiff::{civil::date, fmt::strtime::BrokenDownTime}; |
| 2437 | /// |
| 2438 | /// let mut tm = BrokenDownTime::parse("%a, %F" , "Wed, 2024-07-27" )?; |
| 2439 | /// // 2024-07-27 was a Saturday, so asking for a date fails: |
| 2440 | /// assert!(tm.to_date().is_err()); |
| 2441 | /// // But we can remove the weekday from our broken down time: |
| 2442 | /// tm.set_weekday(None); |
| 2443 | /// assert_eq!(tm.to_date()?, date(2024, 7, 27)); |
| 2444 | /// |
| 2445 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2446 | /// ``` |
| 2447 | /// |
| 2448 | /// The advantage of this approach is that it still ensures the parsed |
| 2449 | /// weekday is a valid weekday (for example, `Wat` will cause parsing to |
| 2450 | /// fail), but doesn't require it to be consistent with the date. This |
| 2451 | /// is useful for interacting with systems that don't do strict error |
| 2452 | /// checking. |
| 2453 | #[inline ] |
| 2454 | pub fn set_weekday(&mut self, weekday: Option<Weekday>) { |
| 2455 | self.weekday = weekday; |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | impl<'a> From<&'a Zoned> for BrokenDownTime { |
| 2460 | fn from(zdt: &'a Zoned) -> BrokenDownTime { |
| 2461 | let offset_info: TimeZoneOffsetInfo<'_> = zdt.time_zone().to_offset_info(zdt.timestamp()); |
| 2462 | #[cfg (feature = "alloc" )] |
| 2463 | let iana: Option = { |
| 2464 | use alloc::string::ToString; |
| 2465 | zdt.time_zone().iana_name().map(|s: &str| s.to_string()) |
| 2466 | }; |
| 2467 | BrokenDownTime { |
| 2468 | offset: Some(zdt.offset()), |
| 2469 | // In theory, this could fail, but I've never seen a time zone |
| 2470 | // abbreviation longer than a few bytes. Please file an issue if |
| 2471 | // this is a problem for you. |
| 2472 | tzabbrev: Abbreviation::new(offset_info.abbreviation()), |
| 2473 | #[cfg (feature = "alloc" )] |
| 2474 | iana, |
| 2475 | ..BrokenDownTime::from(zdt.datetime()) |
| 2476 | } |
| 2477 | } |
| 2478 | } |
| 2479 | |
| 2480 | impl From<Timestamp> for BrokenDownTime { |
| 2481 | fn from(ts: Timestamp) -> BrokenDownTime { |
| 2482 | let dt: DateTime = Offset::UTC.to_datetime(timestamp:ts); |
| 2483 | BrokenDownTime { |
| 2484 | offset: Some(Offset::UTC), |
| 2485 | ..BrokenDownTime::from(dt) |
| 2486 | } |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | impl From<DateTime> for BrokenDownTime { |
| 2491 | fn from(dt: DateTime) -> BrokenDownTime { |
| 2492 | let (d: Date, t: Time) = (dt.date(), dt.time()); |
| 2493 | BrokenDownTime { |
| 2494 | year: Some(d.year_ranged()), |
| 2495 | month: Some(d.month_ranged()), |
| 2496 | day: Some(d.day_ranged()), |
| 2497 | hour: Some(t.hour_ranged()), |
| 2498 | minute: Some(t.minute_ranged()), |
| 2499 | second: Some(t.second_ranged()), |
| 2500 | subsec: Some(t.subsec_nanosecond_ranged()), |
| 2501 | meridiem: Some(Meridiem::from(t)), |
| 2502 | ..BrokenDownTime::default() |
| 2503 | } |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | impl From<Date> for BrokenDownTime { |
| 2508 | fn from(d: Date) -> BrokenDownTime { |
| 2509 | BrokenDownTime { |
| 2510 | year: Some(d.year_ranged()), |
| 2511 | month: Some(d.month_ranged()), |
| 2512 | day: Some(d.day_ranged()), |
| 2513 | ..BrokenDownTime::default() |
| 2514 | } |
| 2515 | } |
| 2516 | } |
| 2517 | |
| 2518 | impl From<ISOWeekDate> for BrokenDownTime { |
| 2519 | fn from(wd: ISOWeekDate) -> BrokenDownTime { |
| 2520 | BrokenDownTime { |
| 2521 | iso_week_year: Some(wd.year_ranged()), |
| 2522 | iso_week: Some(wd.week_ranged()), |
| 2523 | weekday: Some(wd.weekday()), |
| 2524 | ..BrokenDownTime::default() |
| 2525 | } |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | impl From<Time> for BrokenDownTime { |
| 2530 | fn from(t: Time) -> BrokenDownTime { |
| 2531 | BrokenDownTime { |
| 2532 | hour: Some(t.hour_ranged()), |
| 2533 | minute: Some(t.minute_ranged()), |
| 2534 | second: Some(t.second_ranged()), |
| 2535 | subsec: Some(t.subsec_nanosecond_ranged()), |
| 2536 | meridiem: Some(Meridiem::from(t)), |
| 2537 | ..BrokenDownTime::default() |
| 2538 | } |
| 2539 | } |
| 2540 | } |
| 2541 | |
| 2542 | /// A "lazy" implementation of `std::fmt::Display` for `strftime`. |
| 2543 | /// |
| 2544 | /// Values of this type are created by the `strftime` methods on the various |
| 2545 | /// datetime types in this crate. For example, [`Zoned::strftime`]. |
| 2546 | /// |
| 2547 | /// A `Display` captures the information needed from the datetime and waits to |
| 2548 | /// do the actual formatting when this type's `std::fmt::Display` trait |
| 2549 | /// implementation is actually used. |
| 2550 | /// |
| 2551 | /// # Errors and panics |
| 2552 | /// |
| 2553 | /// This trait implementation returns an error when the underlying formatting |
| 2554 | /// can fail. Formatting can fail either because of an invalid format string, |
| 2555 | /// or if formatting requires a field in `BrokenDownTime` to be set that isn't. |
| 2556 | /// For example, trying to format a [`DateTime`] with the `%z` specifier will |
| 2557 | /// fail because a `DateTime` has no time zone or offset information associated |
| 2558 | /// with it. |
| 2559 | /// |
| 2560 | /// Note though that the `std::fmt::Display` API doesn't support surfacing |
| 2561 | /// arbitrary errors. All errors collapse into the unit `std::fmt::Error` |
| 2562 | /// struct. To see the actual error, use [`BrokenDownTime::format`], |
| 2563 | /// [`BrokenDownTime::to_string`] or [`strtime::format`](format()). |
| 2564 | /// Unfortunately, the `std::fmt::Display` trait is used in many places where |
| 2565 | /// there is no way to report errors other than panicking. |
| 2566 | /// |
| 2567 | /// Therefore, only use this type if you know your formatting string is valid |
| 2568 | /// and that the datetime type being formatted has all of the information |
| 2569 | /// required by the format string. For most conversion specifiers, this falls |
| 2570 | /// in the category of things where "if it works, it works for all inputs." |
| 2571 | /// Unfortunately, there are some exceptions to this. For example, the `%y` |
| 2572 | /// modifier will only format a year if it falls in the range `1969-2068` and |
| 2573 | /// will otherwise return an error. |
| 2574 | /// |
| 2575 | /// # Example |
| 2576 | /// |
| 2577 | /// This example shows how to format a zoned datetime using |
| 2578 | /// [`Zoned::strftime`]: |
| 2579 | /// |
| 2580 | /// ``` |
| 2581 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 2582 | /// |
| 2583 | /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York" )?; |
| 2584 | /// let string = zdt.strftime("%a, %-d %b %Y %T %z" ).to_string(); |
| 2585 | /// assert_eq!(string, "Mon, 15 Jul 2024 16:24:59 -0400" ); |
| 2586 | /// |
| 2587 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2588 | /// ``` |
| 2589 | /// |
| 2590 | /// Or use it directly when writing to something: |
| 2591 | /// |
| 2592 | /// ``` |
| 2593 | /// use jiff::{civil::date, fmt::strtime, tz}; |
| 2594 | /// |
| 2595 | /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York" )?; |
| 2596 | /// |
| 2597 | /// let string = format!("the date is: {}" , zdt.strftime("%-m/%-d/%-Y" )); |
| 2598 | /// assert_eq!(string, "the date is: 7/15/2024" ); |
| 2599 | /// |
| 2600 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2601 | /// ``` |
| 2602 | pub struct Display<'f> { |
| 2603 | pub(crate) fmt: &'f [u8], |
| 2604 | pub(crate) tm: BrokenDownTime, |
| 2605 | } |
| 2606 | |
| 2607 | impl<'f> core::fmt::Display for Display<'f> { |
| 2608 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2609 | use crate::fmt::StdFmtWrite; |
| 2610 | |
| 2611 | self.tm.format(self.fmt, StdFmtWrite(f)).map_err(|_| core::fmt::Error) |
| 2612 | } |
| 2613 | } |
| 2614 | |
| 2615 | impl<'f> core::fmt::Debug for Display<'f> { |
| 2616 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2617 | f&mut DebugStruct<'_, '_>.debug_struct("Display" ) |
| 2618 | .field("fmt" , &escape::Bytes(self.fmt)) |
| 2619 | .field(name:"tm" , &self.tm) |
| 2620 | .finish() |
| 2621 | } |
| 2622 | } |
| 2623 | |
| 2624 | /// A label to disambiguate hours on a 12-hour clock. |
| 2625 | /// |
| 2626 | /// This can be accessed on a [`BrokenDownTime`] via |
| 2627 | /// [`BrokenDownTime::meridiem`]. |
| 2628 | #[derive (Clone, Copy, Debug, Eq, Hash, PartialEq)] |
| 2629 | pub enum Meridiem { |
| 2630 | /// "ante meridiem" or "before midday." |
| 2631 | /// |
| 2632 | /// Specifically, this describes hours less than 12 on a 24-hour clock. |
| 2633 | AM, |
| 2634 | /// "post meridiem" or "after midday." |
| 2635 | /// |
| 2636 | /// Specifically, this describes hours greater than 11 on a 24-hour clock. |
| 2637 | PM, |
| 2638 | } |
| 2639 | |
| 2640 | impl From<Time> for Meridiem { |
| 2641 | fn from(t: Time) -> Meridiem { |
| 2642 | if t.hour() < 12 { |
| 2643 | Meridiem::AM |
| 2644 | } else { |
| 2645 | Meridiem::PM |
| 2646 | } |
| 2647 | } |
| 2648 | } |
| 2649 | |
| 2650 | /// These are "extensions" to the standard `strftime` conversion specifiers. |
| 2651 | /// |
| 2652 | /// Basically, these provide control over padding (zeros, spaces or none), |
| 2653 | /// how much to pad and the case of string enumerations. |
| 2654 | #[derive (Clone, Copy, Debug)] |
| 2655 | struct Extension { |
| 2656 | flag: Option<Flag>, |
| 2657 | width: Option<u8>, |
| 2658 | } |
| 2659 | |
| 2660 | impl Extension { |
| 2661 | /// Parses an optional directive flag from the beginning of `fmt`. This |
| 2662 | /// assumes `fmt` is not empty and guarantees that the return unconsumed |
| 2663 | /// slice is also non-empty. |
| 2664 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 2665 | fn parse_flag<'i>( |
| 2666 | fmt: &'i [u8], |
| 2667 | ) -> Result<(Option<Flag>, &'i [u8]), Error> { |
| 2668 | let byte = fmt[0]; |
| 2669 | let flag = match byte { |
| 2670 | b'_' => Flag::PadSpace, |
| 2671 | b'0' => Flag::PadZero, |
| 2672 | b'-' => Flag::NoPad, |
| 2673 | b'^' => Flag::Uppercase, |
| 2674 | b'#' => Flag::Swapcase, |
| 2675 | _ => return Ok((None, fmt)), |
| 2676 | }; |
| 2677 | let fmt = &fmt[1..]; |
| 2678 | if fmt.is_empty() { |
| 2679 | return Err(err!( |
| 2680 | "expected to find specifier directive after flag \ |
| 2681 | {byte:?}, but found end of format string" , |
| 2682 | byte = escape::Byte(byte), |
| 2683 | )); |
| 2684 | } |
| 2685 | Ok((Some(flag), fmt)) |
| 2686 | } |
| 2687 | |
| 2688 | /// Parses an optional width that comes after a (possibly absent) flag and |
| 2689 | /// before the specifier directive itself. And if a width is parsed, the |
| 2690 | /// slice returned does not contain it. (If that slice is empty, then an |
| 2691 | /// error is returned.) |
| 2692 | /// |
| 2693 | /// Note that this is also used to parse precision settings for `%f` |
| 2694 | /// and `%.f`. In the former case, the width is just re-interpreted as |
| 2695 | /// a precision setting. In the latter case, something like `%5.9f` is |
| 2696 | /// technically valid, but the `5` is ignored. |
| 2697 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 2698 | fn parse_width<'i>( |
| 2699 | fmt: &'i [u8], |
| 2700 | ) -> Result<(Option<u8>, &'i [u8]), Error> { |
| 2701 | let mut digits = 0; |
| 2702 | while digits < fmt.len() && fmt[digits].is_ascii_digit() { |
| 2703 | digits += 1; |
| 2704 | } |
| 2705 | if digits == 0 { |
| 2706 | return Ok((None, fmt)); |
| 2707 | } |
| 2708 | let (digits, fmt) = util::parse::split(fmt, digits).unwrap(); |
| 2709 | let width = util::parse::i64(digits) |
| 2710 | .context("failed to parse conversion specifier width" )?; |
| 2711 | let width = u8::try_from(width).map_err(|_| { |
| 2712 | err!(" {width} is too big, max is {max}" , max = u8::MAX) |
| 2713 | })?; |
| 2714 | if fmt.is_empty() { |
| 2715 | return Err(err!( |
| 2716 | "expected to find specifier directive after width \ |
| 2717 | {width}, but found end of format string" , |
| 2718 | )); |
| 2719 | } |
| 2720 | Ok((Some(width), fmt)) |
| 2721 | } |
| 2722 | } |
| 2723 | |
| 2724 | /// The different flags one can set. They are mutually exclusive. |
| 2725 | #[derive (Clone, Copy, Debug)] |
| 2726 | enum Flag { |
| 2727 | PadSpace, |
| 2728 | PadZero, |
| 2729 | NoPad, |
| 2730 | Uppercase, |
| 2731 | Swapcase, |
| 2732 | } |
| 2733 | |
| 2734 | /// Returns the "full" weekday name. |
| 2735 | fn weekday_name_full(wd: Weekday) -> &'static str { |
| 2736 | match wd { |
| 2737 | Weekday::Sunday => "Sunday" , |
| 2738 | Weekday::Monday => "Monday" , |
| 2739 | Weekday::Tuesday => "Tuesday" , |
| 2740 | Weekday::Wednesday => "Wednesday" , |
| 2741 | Weekday::Thursday => "Thursday" , |
| 2742 | Weekday::Friday => "Friday" , |
| 2743 | Weekday::Saturday => "Saturday" , |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | /// Returns an abbreviated weekday name. |
| 2748 | fn weekday_name_abbrev(wd: Weekday) -> &'static str { |
| 2749 | match wd { |
| 2750 | Weekday::Sunday => "Sun" , |
| 2751 | Weekday::Monday => "Mon" , |
| 2752 | Weekday::Tuesday => "Tue" , |
| 2753 | Weekday::Wednesday => "Wed" , |
| 2754 | Weekday::Thursday => "Thu" , |
| 2755 | Weekday::Friday => "Fri" , |
| 2756 | Weekday::Saturday => "Sat" , |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | /// Returns the "full" month name. |
| 2761 | fn month_name_full(month: t::Month) -> &'static str { |
| 2762 | match month.get() { |
| 2763 | 1 => "January" , |
| 2764 | 2 => "February" , |
| 2765 | 3 => "March" , |
| 2766 | 4 => "April" , |
| 2767 | 5 => "May" , |
| 2768 | 6 => "June" , |
| 2769 | 7 => "July" , |
| 2770 | 8 => "August" , |
| 2771 | 9 => "September" , |
| 2772 | 10 => "October" , |
| 2773 | 11 => "November" , |
| 2774 | 12 => "December" , |
| 2775 | unk: i8 => unreachable!("invalid month {unk}" ), |
| 2776 | } |
| 2777 | } |
| 2778 | |
| 2779 | /// Returns the abbreviated month name. |
| 2780 | fn month_name_abbrev(month: t::Month) -> &'static str { |
| 2781 | match month.get() { |
| 2782 | 1 => "Jan" , |
| 2783 | 2 => "Feb" , |
| 2784 | 3 => "Mar" , |
| 2785 | 4 => "Apr" , |
| 2786 | 5 => "May" , |
| 2787 | 6 => "Jun" , |
| 2788 | 7 => "Jul" , |
| 2789 | 8 => "Aug" , |
| 2790 | 9 => "Sep" , |
| 2791 | 10 => "Oct" , |
| 2792 | 11 => "Nov" , |
| 2793 | 12 => "Dec" , |
| 2794 | unk: i8 => unreachable!("invalid month {unk}" ), |
| 2795 | } |
| 2796 | } |
| 2797 | |
| 2798 | #[cfg (test)] |
| 2799 | mod tests { |
| 2800 | use super::*; |
| 2801 | |
| 2802 | // See: https://github.com/BurntSushi/jiff/issues/62 |
| 2803 | #[test ] |
| 2804 | fn parse_non_delimited() { |
| 2805 | insta::assert_snapshot!( |
| 2806 | Timestamp::strptime("%Y%m%d-%H%M%S%z" , "20240730-005625+0400" ).unwrap(), |
| 2807 | @"2024-07-29T20:56:25Z" , |
| 2808 | ); |
| 2809 | insta::assert_snapshot!( |
| 2810 | Zoned::strptime("%Y%m%d-%H%M%S%z" , "20240730-005625+0400" ).unwrap(), |
| 2811 | @"2024-07-30T00:56:25+04:00[+04:00]" , |
| 2812 | ); |
| 2813 | } |
| 2814 | |
| 2815 | // Regression test for format strings with non-ASCII in them. |
| 2816 | // |
| 2817 | // We initially didn't support non-ASCII because I had thought it wouldn't |
| 2818 | // be used. i.e., If someone wanted to do something with non-ASCII, then |
| 2819 | // I thought they'd want to be using something more sophisticated that took |
| 2820 | // locale into account. But apparently not. |
| 2821 | // |
| 2822 | // See: https://github.com/BurntSushi/jiff/issues/155 |
| 2823 | #[test ] |
| 2824 | fn ok_non_ascii() { |
| 2825 | let fmt = "%Y年%m月%d日,%H时%M分%S秒" ; |
| 2826 | let dt = crate::civil::date(2022, 2, 4).at(3, 58, 59, 0); |
| 2827 | insta::assert_snapshot!( |
| 2828 | dt.strftime(fmt), |
| 2829 | @"2022年02月04日,03时58分59秒" , |
| 2830 | ); |
| 2831 | insta::assert_debug_snapshot!( |
| 2832 | DateTime::strptime(fmt, "2022年02月04日,03时58分59秒" ).unwrap(), |
| 2833 | @"2022-02-04T03:58:59" , |
| 2834 | ); |
| 2835 | } |
| 2836 | } |
| 2837 | |