| 1 | use core::time::Duration as UnsignedDuration; |
| 2 | |
| 3 | use crate::{ |
| 4 | civil::{ |
| 5 | Date, DateTime, DateTimeRound, DateTimeWith, Era, ISOWeekDate, Time, |
| 6 | Weekday, |
| 7 | }, |
| 8 | duration::{Duration, SDuration}, |
| 9 | error::{err, Error, ErrorContext}, |
| 10 | fmt::{ |
| 11 | self, |
| 12 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
| 13 | }, |
| 14 | tz::{AmbiguousOffset, Disambiguation, Offset, OffsetConflict, TimeZone}, |
| 15 | util::{ |
| 16 | rangeint::{RInto, TryRFrom}, |
| 17 | round::increment, |
| 18 | t::{self, ZonedDayNanoseconds, C}, |
| 19 | }, |
| 20 | RoundMode, SignedDuration, Span, SpanRound, Timestamp, Unit, |
| 21 | }; |
| 22 | |
| 23 | /// A time zone aware instant in time. |
| 24 | /// |
| 25 | /// A `Zoned` value can be thought of as the combination of following types, |
| 26 | /// all rolled into one: |
| 27 | /// |
| 28 | /// * A [`Timestamp`] for indicating the precise instant in time. |
| 29 | /// * A [`DateTime`] for indicating the "civil" calendar date and clock time. |
| 30 | /// * A [`TimeZone`] for indicating how to apply time zone transitions while |
| 31 | /// performing arithmetic. |
| 32 | /// |
| 33 | /// In particular, a `Zoned` is specifically designed for dealing with |
| 34 | /// datetimes in a time zone aware manner. Here are some highlights: |
| 35 | /// |
| 36 | /// * Arithmetic automatically adjusts for daylight saving time (DST), using |
| 37 | /// the rules defined by [RFC 5545]. |
| 38 | /// * Creating new `Zoned` values from other `Zoned` values via [`Zoned::with`] |
| 39 | /// by changing clock time (e.g., `02:30`) can do so without worrying that the |
| 40 | /// time will be invalid due to DST transitions. |
| 41 | /// * An approximate superset of the [`DateTime`] API is offered on `Zoned`, |
| 42 | /// but where each of its operations take time zone into account when |
| 43 | /// appropriate. For example, [`DateTime::start_of_day`] always returns a |
| 44 | /// datetime set to midnight, but [`Zoned::start_of_day`] returns the first |
| 45 | /// instant of a day, which might not be midnight if there is a time zone |
| 46 | /// transition at midnight. |
| 47 | /// * When using a `Zoned`, it is easy to switch between civil datetime (the |
| 48 | /// day you see on the calendar and the time you see on the clock) and Unix |
| 49 | /// time (a precise instant in time). Indeed, a `Zoned` can be losslessy |
| 50 | /// converted to any other datetime type in this crate: [`Timestamp`], |
| 51 | /// [`DateTime`], [`Date`] and [`Time`]. |
| 52 | /// * A `Zoned` value can be losslessly serialized and deserialized, via |
| 53 | /// [serde], by adhering to [RFC 8536]. An example of a serialized zoned |
| 54 | /// datetime is `2024-07-04T08:39:00-04:00[America/New_York]`. |
| 55 | /// * Since a `Zoned` stores a [`TimeZone`] itself, multiple time zone aware |
| 56 | /// operations can be chained together without repeatedly specifying the time |
| 57 | /// zone. |
| 58 | /// |
| 59 | /// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545 |
| 60 | /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536 |
| 61 | /// [serde]: https://serde.rs/ |
| 62 | /// |
| 63 | /// # Parsing and printing |
| 64 | /// |
| 65 | /// The `Zoned` type provides convenient trait implementations of |
| 66 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
| 67 | /// |
| 68 | /// ``` |
| 69 | /// use jiff::Zoned; |
| 70 | /// |
| 71 | /// let zdt: Zoned = "2024-06-19 15:22[America/New_York]" .parse()?; |
| 72 | /// // Notice that the second component and the offset have both been added. |
| 73 | /// assert_eq!(zdt.to_string(), "2024-06-19T15:22:00-04:00[America/New_York]" ); |
| 74 | /// |
| 75 | /// // While in the above case the datetime is unambiguous, in some cases, it |
| 76 | /// // can be ambiguous. In these cases, an offset is required to correctly |
| 77 | /// // roundtrip a zoned datetime. For example, on 2024-11-03 in New York, the |
| 78 | /// // 1 o'clock hour was repeated twice, corresponding to the end of daylight |
| 79 | /// // saving time. |
| 80 | /// // |
| 81 | /// // So because of the ambiguity, this time could be in offset -04 (the first |
| 82 | /// // time 1 o'clock is on the clock) or it could be -05 (the second time |
| 83 | /// // 1 o'clock is on the clock, corresponding to the end of DST). |
| 84 | /// // |
| 85 | /// // By default, parsing uses a "compatible" strategy for resolving all cases |
| 86 | /// // of ambiguity: in forward transitions (gaps), the later time is selected. |
| 87 | /// // And in backward transitions (folds), the earlier time is selected. |
| 88 | /// let zdt: Zoned = "2024-11-03 01:30[America/New_York]" .parse()?; |
| 89 | /// // As we can see, since this was a fold, the earlier time was selected |
| 90 | /// // because the -04 offset is the first time 1 o'clock appears on the clock. |
| 91 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]" ); |
| 92 | /// // But if we changed the offset and re-serialized, the only thing that |
| 93 | /// // changes is, indeed, the offset. This demonstrates that the offset is |
| 94 | /// // key to ensuring lossless serialization. |
| 95 | /// let zdt = zdt.with().offset(jiff::tz::offset(-5)).build()?; |
| 96 | /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-05:00[America/New_York]" ); |
| 97 | /// |
| 98 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 99 | /// ``` |
| 100 | /// |
| 101 | /// A `Zoned` can also be parsed from just a time zone aware date (but the |
| 102 | /// time zone annotation is still required). In this case, the time is set to |
| 103 | /// midnight: |
| 104 | /// |
| 105 | /// ``` |
| 106 | /// use jiff::Zoned; |
| 107 | /// |
| 108 | /// let zdt: Zoned = "2024-06-19[America/New_York]" .parse()?; |
| 109 | /// assert_eq!(zdt.to_string(), "2024-06-19T00:00:00-04:00[America/New_York]" ); |
| 110 | /// // ... although it isn't always midnight, in the case of a time zone |
| 111 | /// // transition at midnight! |
| 112 | /// let zdt: Zoned = "2015-10-18[America/Sao_Paulo]" .parse()?; |
| 113 | /// assert_eq!(zdt.to_string(), "2015-10-18T01:00:00-02:00[America/Sao_Paulo]" ); |
| 114 | /// |
| 115 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 116 | /// ``` |
| 117 | /// |
| 118 | /// For more information on the specific format supported, see the |
| 119 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
| 120 | /// |
| 121 | /// # Leap seconds |
| 122 | /// |
| 123 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
| 124 | /// The only exception is that if one parses a datetime with a second component |
| 125 | /// of `60`, then it is automatically constrained to `59`: |
| 126 | /// |
| 127 | /// ``` |
| 128 | /// use jiff::{civil::date, Zoned}; |
| 129 | /// |
| 130 | /// let zdt: Zoned = "2016-12-31 23:59:60[Australia/Tasmania]" .parse()?; |
| 131 | /// assert_eq!(zdt.datetime(), date(2016, 12, 31).at(23, 59, 59, 0)); |
| 132 | /// |
| 133 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 134 | /// ``` |
| 135 | /// |
| 136 | /// # Comparisons |
| 137 | /// |
| 138 | /// The `Zoned` type provides both `Eq` and `Ord` trait implementations to |
| 139 | /// facilitate easy comparisons. When a zoned datetime `zdt1` occurs before a |
| 140 | /// zoned datetime `zdt2`, then `zdt1 < zdt2`. For example: |
| 141 | /// |
| 142 | /// ``` |
| 143 | /// use jiff::civil::date; |
| 144 | /// |
| 145 | /// let zdt1 = date(2024, 3, 11).at(1, 25, 15, 0).in_tz("America/New_York" )?; |
| 146 | /// let zdt2 = date(2025, 1, 31).at(0, 30, 0, 0).in_tz("America/New_York" )?; |
| 147 | /// assert!(zdt1 < zdt2); |
| 148 | /// |
| 149 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 150 | /// ``` |
| 151 | /// |
| 152 | /// Note that `Zoned` comparisons only consider the precise instant in time. |
| 153 | /// The civil datetime or even the time zone are completely ignored. So it's |
| 154 | /// possible for a zoned datetime to be less than another even if it's civil |
| 155 | /// datetime is bigger: |
| 156 | /// |
| 157 | /// ``` |
| 158 | /// use jiff::civil::date; |
| 159 | /// |
| 160 | /// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York" )?; |
| 161 | /// let zdt2 = date(2024, 7, 4).at(11, 0, 0, 0).in_tz("America/Los_Angeles" )?; |
| 162 | /// assert!(zdt1 < zdt2); |
| 163 | /// // But if we only compare civil datetime, the result is flipped: |
| 164 | /// assert!(zdt1.datetime() > zdt2.datetime()); |
| 165 | /// |
| 166 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 167 | /// ``` |
| 168 | /// |
| 169 | /// The same applies for equality as well. Two `Zoned` values are equal, even |
| 170 | /// if they have different time zones, when the instant in time is identical: |
| 171 | /// |
| 172 | /// ``` |
| 173 | /// use jiff::civil::date; |
| 174 | /// |
| 175 | /// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York" )?; |
| 176 | /// let zdt2 = date(2024, 7, 4).at(9, 0, 0, 0).in_tz("America/Los_Angeles" )?; |
| 177 | /// assert_eq!(zdt1, zdt2); |
| 178 | /// |
| 179 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 180 | /// ``` |
| 181 | /// |
| 182 | /// (Note that this is diifferent from |
| 183 | /// [Temporal's `ZonedDateTime.equals`][temporal-equals] comparison, which will |
| 184 | /// take time zone into account for equality. This is because `Eq` and `Ord` |
| 185 | /// trait implementations must be consistent in Rust. If you need Temporal's |
| 186 | /// behavior, then use `zdt1 == zdt2 && zdt1.time_zone() == zdt2.time_zone()`.) |
| 187 | /// |
| 188 | /// [temporal-equals]: https://tc39.es/proposal-temporal/docs/zoneddatetime.html#equals |
| 189 | /// |
| 190 | /// # Arithmetic |
| 191 | /// |
| 192 | /// This type provides routines for adding and subtracting spans of time, as |
| 193 | /// well as computing the span of time between two `Zoned` values. These |
| 194 | /// operations take time zones into account. |
| 195 | /// |
| 196 | /// For adding or subtracting spans of time, one can use any of the following |
| 197 | /// routines: |
| 198 | /// |
| 199 | /// * [`Zoned::checked_add`] or [`Zoned::checked_sub`] for checked |
| 200 | /// arithmetic. |
| 201 | /// * [`Zoned::saturating_add`] or [`Zoned::saturating_sub`] for |
| 202 | /// saturating arithmetic. |
| 203 | /// |
| 204 | /// Additionally, checked arithmetic is available via the `Add` and `Sub` |
| 205 | /// trait implementations. When the result overflows, a panic occurs. |
| 206 | /// |
| 207 | /// ``` |
| 208 | /// use jiff::{civil::date, ToSpan}; |
| 209 | /// |
| 210 | /// let start = date(2024, 2, 25).at(15, 45, 0, 0).in_tz("America/New_York" )?; |
| 211 | /// // `Zoned` doesn't implement `Copy`, so we use `&start` instead of `start`. |
| 212 | /// let one_week_later = &start + 1.weeks(); |
| 213 | /// assert_eq!(one_week_later.datetime(), date(2024, 3, 3).at(15, 45, 0, 0)); |
| 214 | /// |
| 215 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 216 | /// ``` |
| 217 | /// |
| 218 | /// One can compute the span of time between two zoned datetimes using either |
| 219 | /// [`Zoned::until`] or [`Zoned::since`]. It's also possible to subtract |
| 220 | /// two `Zoned` values directly via a `Sub` trait implementation: |
| 221 | /// |
| 222 | /// ``` |
| 223 | /// use jiff::{civil::date, ToSpan}; |
| 224 | /// |
| 225 | /// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York" )?; |
| 226 | /// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 227 | /// assert_eq!(&zdt1 - &zdt2, 1647.hours().minutes(30).fieldwise()); |
| 228 | /// |
| 229 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 230 | /// ``` |
| 231 | /// |
| 232 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
| 233 | /// rounding the span returned. For example, the default largest unit is hours |
| 234 | /// (as exemplified above), but we can ask for bigger units: |
| 235 | /// |
| 236 | /// ``` |
| 237 | /// use jiff::{civil::date, ToSpan, Unit}; |
| 238 | /// |
| 239 | /// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York" )?; |
| 240 | /// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 241 | /// assert_eq!( |
| 242 | /// zdt1.since((Unit::Year, &zdt2))?, |
| 243 | /// 2.months().days(7).hours(16).minutes(30).fieldwise(), |
| 244 | /// ); |
| 245 | /// |
| 246 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 247 | /// ``` |
| 248 | /// |
| 249 | /// Or even round the span returned: |
| 250 | /// |
| 251 | /// ``` |
| 252 | /// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference}; |
| 253 | /// |
| 254 | /// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York" )?; |
| 255 | /// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 256 | /// assert_eq!( |
| 257 | /// zdt1.since( |
| 258 | /// ZonedDifference::new(&zdt2) |
| 259 | /// .smallest(Unit::Day) |
| 260 | /// .largest(Unit::Year), |
| 261 | /// )?, |
| 262 | /// 2.months().days(7).fieldwise(), |
| 263 | /// ); |
| 264 | /// // `ZonedDifference` uses truncation as a rounding mode by default, |
| 265 | /// // but you can set the rounding mode to break ties away from zero: |
| 266 | /// assert_eq!( |
| 267 | /// zdt1.since( |
| 268 | /// ZonedDifference::new(&zdt2) |
| 269 | /// .smallest(Unit::Day) |
| 270 | /// .largest(Unit::Year) |
| 271 | /// .mode(RoundMode::HalfExpand), |
| 272 | /// )?, |
| 273 | /// // Rounds up to 8 days. |
| 274 | /// 2.months().days(8).fieldwise(), |
| 275 | /// ); |
| 276 | /// |
| 277 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 278 | /// ``` |
| 279 | /// |
| 280 | /// # Rounding |
| 281 | /// |
| 282 | /// A `Zoned` can be rounded based on a [`ZonedRound`] configuration of |
| 283 | /// smallest units, rounding increment and rounding mode. Here's an example |
| 284 | /// showing how to round to the nearest third hour: |
| 285 | /// |
| 286 | /// ``` |
| 287 | /// use jiff::{civil::date, Unit, ZonedRound}; |
| 288 | /// |
| 289 | /// let zdt = date(2024, 6, 19) |
| 290 | /// .at(16, 27, 29, 999_999_999) |
| 291 | /// .in_tz("America/New_York" )?; |
| 292 | /// assert_eq!( |
| 293 | /// zdt.round(ZonedRound::new().smallest(Unit::Hour).increment(3))?, |
| 294 | /// date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York" )?, |
| 295 | /// ); |
| 296 | /// // Or alternatively, make use of the `From<(Unit, i64)> for ZonedRound` |
| 297 | /// // trait implementation: |
| 298 | /// assert_eq!( |
| 299 | /// zdt.round((Unit::Hour, 3))?, |
| 300 | /// date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York" )?, |
| 301 | /// ); |
| 302 | /// |
| 303 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 304 | /// ``` |
| 305 | /// |
| 306 | /// See [`Zoned::round`] for more details. |
| 307 | #[derive (Clone)] |
| 308 | pub struct Zoned { |
| 309 | inner: ZonedInner, |
| 310 | } |
| 311 | |
| 312 | /// The representation of a `Zoned`. |
| 313 | /// |
| 314 | /// This uses 4 different things: a timestamp, a datetime, an offset and a |
| 315 | /// time zone. This in turn makes `Zoned` a bit beefy (40 bytes on x86-64), |
| 316 | /// but I think this is probably the right trade off. (At time of writing, |
| 317 | /// 2024-07-04.) |
| 318 | /// |
| 319 | /// Technically speaking, the only essential fields here are timestamp and time |
| 320 | /// zone. The datetime and offset can both be unambiguously _computed_ from the |
| 321 | /// combination of a timestamp and a time zone. Indeed, just the timestamp and |
| 322 | /// the time zone was my initial representation. But as I developed the API of |
| 323 | /// this type, it became clearer that we should probably store the datetime and |
| 324 | /// offset as well. |
| 325 | /// |
| 326 | /// The main issue here is that in order to compute the datetime from a |
| 327 | /// timestamp and a time zone, you need to do two things: |
| 328 | /// |
| 329 | /// 1. First, compute the offset. This means doing a binary search on the TZif |
| 330 | /// data for the transition (or closest transition) matching the timestamp. |
| 331 | /// 2. Second, use the offset (from UTC) to convert the timestamp into a civil |
| 332 | /// datetime. This involves a "Unix time to Unix epoch days" conversion that |
| 333 | /// requires some heavy arithmetic. |
| 334 | /// |
| 335 | /// So if we don't store the datetime or offset, then we need to compute them |
| 336 | /// any time we need them. And the Temporal design really pushes heavily in |
| 337 | /// favor of treating the "instant in time" and "civil datetime" as two sides |
| 338 | /// to the same coin. That means users are very encouraged to just use whatever |
| 339 | /// they need. So if we are always computing the offset and datetime whenever |
| 340 | /// we need them, we're potentially punishing users for working with civil |
| 341 | /// datetimes. It just doesn't feel like the right trade-off. |
| 342 | /// |
| 343 | /// Instead, my idea here is that, ultimately, `Zoned` is meant to provide |
| 344 | /// a one-stop shop for "doing the right thing." Presenting that unified |
| 345 | /// abstraction comes with costs. And that if we want to expose cheaper ways |
| 346 | /// of performing at least some of the operations on `Zoned` by making fewer |
| 347 | /// assumptions, then we should probably endeavor to do that by exposing a |
| 348 | /// lower level API. I'm not sure what that would look like, so I think it |
| 349 | /// should be driven by use cases. |
| 350 | /// |
| 351 | /// Some other things I considered: |
| 352 | /// |
| 353 | /// * Use `Zoned(Arc<ZonedInner>)` to make `Zoned` pointer-sized. But I didn't |
| 354 | /// like this because it implies creating any new `Zoned` value requires an |
| 355 | /// allocation. Since a `TimeZone` internally uses an `Arc`, all it requires |
| 356 | /// today is a chunky memcpy and an atomic ref count increment. |
| 357 | /// * Use `OnceLock` shenanigans for the datetime and offset fields. This would |
| 358 | /// make `Zoned` even beefier and I wasn't totally clear how much this would |
| 359 | /// save us. And it would impose some (probably small) cost on every datetime |
| 360 | /// or offset access. |
| 361 | /// * Use a radically different design that permits a `Zoned` to be `Copy`. |
| 362 | /// I personally find it deeply annoying that `Zoned` is both the "main" |
| 363 | /// datetime type in Jiff and also the only one that doesn't implement `Copy`. |
| 364 | /// I explored some designs, but I couldn't figure out how to make it work in |
| 365 | /// a satisfying way. The main issue here is `TimeZone`. A `TimeZone` is a huge |
| 366 | /// chunk of data and the ergonomics of the `Zoned` API require being able to |
| 367 | /// access a `TimeZone` without the caller providing it explicitly. So to me, |
| 368 | /// the only real alternative here is to use some kind of integer handle into |
| 369 | /// a global time zone database. But now you all of a sudden need to worry |
| 370 | /// about synchronization for every time zone access and plausibly also garbage |
| 371 | /// collection. And this also complicates matters for using custom time zone |
| 372 | /// databases. So I ultimately came down on "Zoned is not Copy" as the least |
| 373 | /// awful choice. *heavy sigh* |
| 374 | #[derive (Clone)] |
| 375 | struct ZonedInner { |
| 376 | timestamp: Timestamp, |
| 377 | datetime: DateTime, |
| 378 | offset: Offset, |
| 379 | time_zone: TimeZone, |
| 380 | } |
| 381 | |
| 382 | impl Zoned { |
| 383 | /// Returns the current system time in this system's time zone. |
| 384 | /// |
| 385 | /// If the system's time zone could not be found, then [`TimeZone::UTC`] |
| 386 | /// is used instead. When this happens, a `WARN` level log message will |
| 387 | /// be emitted. (To see it, one will need to install a logger that is |
| 388 | /// compatible with the `log` crate and enable Jiff's `logging` Cargo |
| 389 | /// feature.) |
| 390 | /// |
| 391 | /// To create a `Zoned` value for the current time in a particular |
| 392 | /// time zone other than the system default time zone, use |
| 393 | /// `Timestamp::now().to_zoned(time_zone)`. In particular, using |
| 394 | /// [`Timestamp::now`] avoids the work required to fetch the system time |
| 395 | /// zone if you did `Zoned::now().with_time_zone(time_zone)`. |
| 396 | /// |
| 397 | /// # Panics |
| 398 | /// |
| 399 | /// This panics if the system clock is set to a time value outside of the |
| 400 | /// range `-009999-01-01T00:00:00Z..=9999-12-31T11:59:59.999999999Z`. The |
| 401 | /// justification here is that it is reasonable to expect the system clock |
| 402 | /// to be set to a somewhat sane, if imprecise, value. |
| 403 | /// |
| 404 | /// If you want to get the current Unix time fallibly, use |
| 405 | /// [`Zoned::try_from`] with a `std::time::SystemTime` as input. |
| 406 | /// |
| 407 | /// This may also panic when `SystemTime::now()` itself panics. The most |
| 408 | /// common context in which this happens is on the `wasm32-unknown-unknown` |
| 409 | /// target. If you're using that target in the context of the web (for |
| 410 | /// example, via `wasm-pack`), and you're an application, then you should |
| 411 | /// enable Jiff's `js` feature. This will automatically instruct Jiff in |
| 412 | /// this very specific circumstance to execute JavaScript code to determine |
| 413 | /// the current time from the web browser. |
| 414 | /// |
| 415 | /// # Example |
| 416 | /// |
| 417 | /// ``` |
| 418 | /// use jiff::{Timestamp, Zoned}; |
| 419 | /// |
| 420 | /// assert!(Zoned::now().timestamp() > Timestamp::UNIX_EPOCH); |
| 421 | /// ``` |
| 422 | #[cfg (feature = "std" )] |
| 423 | #[inline ] |
| 424 | pub fn now() -> Zoned { |
| 425 | Zoned::try_from(crate::now::system_time()) |
| 426 | .expect("system time is valid" ) |
| 427 | } |
| 428 | |
| 429 | /// Creates a new `Zoned` value from a specific instant in a particular |
| 430 | /// time zone. The time zone determines how to render the instant in time |
| 431 | /// into civil time. (Also known as "clock," "wall," "local" or "naive" |
| 432 | /// time.) |
| 433 | /// |
| 434 | /// To create a new zoned datetime from another with a particular field |
| 435 | /// value, use the methods on [`ZonedWith`] via [`Zoned::with`]. |
| 436 | /// |
| 437 | /// # Construction from civil time |
| 438 | /// |
| 439 | /// A `Zoned` value can also be created from a civil time via the following |
| 440 | /// methods: |
| 441 | /// |
| 442 | /// * [`DateTime::in_tz`] does a Time Zone Database lookup given a time |
| 443 | /// zone name string. |
| 444 | /// * [`DateTime::to_zoned`] accepts a `TimeZone`. |
| 445 | /// * [`Date::in_tz`] does a Time Zone Database lookup given a time zone |
| 446 | /// name string and attempts to use midnight as the clock time. |
| 447 | /// * [`Date::to_zoned`] accepts a `TimeZone` and attempts to use midnight |
| 448 | /// as the clock time. |
| 449 | /// |
| 450 | /// Whenever one is converting from civil time to a zoned |
| 451 | /// datetime, it is possible for the civil time to be ambiguous. |
| 452 | /// That is, it might be a clock reading that could refer to |
| 453 | /// multiple possible instants in time, or it might be a clock |
| 454 | /// reading that never exists. The above routines will use a |
| 455 | /// [`Disambiguation::Compatible`] |
| 456 | /// strategy to automatically resolve these corner cases. |
| 457 | /// |
| 458 | /// If one wants to control how ambiguity is resolved (including |
| 459 | /// by returning an error), use [`TimeZone::to_ambiguous_zoned`] |
| 460 | /// and select the desired strategy via a method on |
| 461 | /// [`AmbiguousZoned`](crate::tz::AmbiguousZoned). |
| 462 | /// |
| 463 | /// # Example: What was the civil time in Tasmania at the Unix epoch? |
| 464 | /// |
| 465 | /// ``` |
| 466 | /// use jiff::{tz::TimeZone, Timestamp, Zoned}; |
| 467 | /// |
| 468 | /// let tz = TimeZone::get("Australia/Tasmania" )?; |
| 469 | /// let zdt = Zoned::new(Timestamp::UNIX_EPOCH, tz); |
| 470 | /// assert_eq!( |
| 471 | /// zdt.to_string(), |
| 472 | /// "1970-01-01T11:00:00+11:00[Australia/Tasmania]" , |
| 473 | /// ); |
| 474 | /// |
| 475 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 476 | /// ``` |
| 477 | /// |
| 478 | /// # Example: What was the civil time in New York when World War 1 ended? |
| 479 | /// |
| 480 | /// ``` |
| 481 | /// use jiff::civil::date; |
| 482 | /// |
| 483 | /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris" )?; |
| 484 | /// let zdt2 = zdt1.in_tz("America/New_York" )?; |
| 485 | /// assert_eq!( |
| 486 | /// zdt2.to_string(), |
| 487 | /// "1918-11-11T06:00:00-05:00[America/New_York]" , |
| 488 | /// ); |
| 489 | /// |
| 490 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 491 | /// ``` |
| 492 | #[inline ] |
| 493 | pub fn new(timestamp: Timestamp, time_zone: TimeZone) -> Zoned { |
| 494 | let offset = time_zone.to_offset(timestamp); |
| 495 | let datetime = offset.to_datetime(timestamp); |
| 496 | let inner = ZonedInner { timestamp, datetime, offset, time_zone }; |
| 497 | Zoned { inner } |
| 498 | } |
| 499 | |
| 500 | /// A crate internal constructor for building a `Zoned` from its |
| 501 | /// constituent parts. |
| 502 | /// |
| 503 | /// This should basically never be exposed, because it can be quite tricky |
| 504 | /// to get the parts correct. |
| 505 | /// |
| 506 | /// See `civil::DateTime::to_zoned` for a use case for this routine. (Why |
| 507 | /// do you think? Perf!) |
| 508 | #[inline ] |
| 509 | pub(crate) fn from_parts( |
| 510 | timestamp: Timestamp, |
| 511 | time_zone: TimeZone, |
| 512 | offset: Offset, |
| 513 | datetime: DateTime, |
| 514 | ) -> Zoned { |
| 515 | let inner = ZonedInner { timestamp, datetime, offset, time_zone }; |
| 516 | Zoned { inner } |
| 517 | } |
| 518 | |
| 519 | /// Create a builder for constructing a new `DateTime` from the fields of |
| 520 | /// this datetime. |
| 521 | /// |
| 522 | /// See the methods on [`ZonedWith`] for the different ways one can set |
| 523 | /// the fields of a new `Zoned`. |
| 524 | /// |
| 525 | /// Note that this doesn't support changing the time zone. If you want a |
| 526 | /// `Zoned` value of the same instant but in a different time zone, use |
| 527 | /// [`Zoned::in_tz`] or [`Zoned::with_time_zone`]. If you want a `Zoned` |
| 528 | /// value of the same civil datetime (assuming it isn't ambiguous) but in |
| 529 | /// a different time zone, then use [`Zoned::datetime`] followed by |
| 530 | /// [`DateTime::in_tz`] or [`DateTime::to_zoned`]. |
| 531 | /// |
| 532 | /// # Example |
| 533 | /// |
| 534 | /// The builder ensures one can chain together the individual components |
| 535 | /// of a zoned datetime without it failing at an intermediate step. For |
| 536 | /// example, if you had a date of `2024-10-31T00:00:00[America/New_York]` |
| 537 | /// and wanted to change both the day and the month, and each setting was |
| 538 | /// validated independent of the other, you would need to be careful to set |
| 539 | /// the day first and then the month. In some cases, you would need to set |
| 540 | /// the month first and then the day! |
| 541 | /// |
| 542 | /// But with the builder, you can set values in any order: |
| 543 | /// |
| 544 | /// ``` |
| 545 | /// use jiff::civil::date; |
| 546 | /// |
| 547 | /// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 548 | /// let zdt2 = zdt1.with().month(11).day(30).build()?; |
| 549 | /// assert_eq!( |
| 550 | /// zdt2, |
| 551 | /// date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 552 | /// ); |
| 553 | /// |
| 554 | /// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 555 | /// let zdt2 = zdt1.with().day(31).month(7).build()?; |
| 556 | /// assert_eq!( |
| 557 | /// zdt2, |
| 558 | /// date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 559 | /// ); |
| 560 | /// |
| 561 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 562 | /// ``` |
| 563 | #[inline ] |
| 564 | pub fn with(&self) -> ZonedWith { |
| 565 | ZonedWith::new(self.clone()) |
| 566 | } |
| 567 | |
| 568 | /// Return a new zoned datetime with precisely the same instant in a |
| 569 | /// different time zone. |
| 570 | /// |
| 571 | /// The zoned datetime returned is guaranteed to have an equivalent |
| 572 | /// [`Timestamp`]. However, its civil [`DateTime`] may be different. |
| 573 | /// |
| 574 | /// # Example: What was the civil time in New York when World War 1 ended? |
| 575 | /// |
| 576 | /// ``` |
| 577 | /// use jiff::{civil::date, tz::TimeZone}; |
| 578 | /// |
| 579 | /// let from = TimeZone::get("Europe/Paris" )?; |
| 580 | /// let to = TimeZone::get("America/New_York" )?; |
| 581 | /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).to_zoned(from)?; |
| 582 | /// // Switch zdt1 to a different time zone, but keeping the same instant |
| 583 | /// // in time. The civil time changes, but not the instant! |
| 584 | /// let zdt2 = zdt1.with_time_zone(to); |
| 585 | /// assert_eq!( |
| 586 | /// zdt2.to_string(), |
| 587 | /// "1918-11-11T06:00:00-05:00[America/New_York]" , |
| 588 | /// ); |
| 589 | /// |
| 590 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 591 | /// ``` |
| 592 | #[inline ] |
| 593 | pub fn with_time_zone(&self, time_zone: TimeZone) -> Zoned { |
| 594 | Zoned::new(self.timestamp(), time_zone) |
| 595 | } |
| 596 | |
| 597 | /// Return a new zoned datetime with precisely the same instant in a |
| 598 | /// different time zone. |
| 599 | /// |
| 600 | /// The zoned datetime returned is guaranteed to have an equivalent |
| 601 | /// [`Timestamp`]. However, its civil [`DateTime`] may be different. |
| 602 | /// |
| 603 | /// The name given is resolved to a [`TimeZone`] by using the default |
| 604 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by |
| 605 | /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function for |
| 606 | /// [`DateTime::to_zoned`] where the time zone database lookup is done |
| 607 | /// automatically. |
| 608 | /// |
| 609 | /// # Errors |
| 610 | /// |
| 611 | /// This returns an error when the given time zone name could not be found |
| 612 | /// in the default time zone database. |
| 613 | /// |
| 614 | /// # Example: What was the civil time in New York when World War 1 ended? |
| 615 | /// |
| 616 | /// ``` |
| 617 | /// use jiff::civil::date; |
| 618 | /// |
| 619 | /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris" )?; |
| 620 | /// // Switch zdt1 to a different time zone, but keeping the same instant |
| 621 | /// // in time. The civil time changes, but not the instant! |
| 622 | /// let zdt2 = zdt1.in_tz("America/New_York" )?; |
| 623 | /// assert_eq!( |
| 624 | /// zdt2.to_string(), |
| 625 | /// "1918-11-11T06:00:00-05:00[America/New_York]" , |
| 626 | /// ); |
| 627 | /// |
| 628 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 629 | /// ``` |
| 630 | #[inline ] |
| 631 | pub fn in_tz(&self, name: &str) -> Result<Zoned, Error> { |
| 632 | let tz = crate::tz::db().get(name)?; |
| 633 | Ok(self.with_time_zone(tz)) |
| 634 | } |
| 635 | |
| 636 | /// Returns the time zone attached to this [`Zoned`] value. |
| 637 | /// |
| 638 | /// A time zone is more than just an offset. A time zone is a series of |
| 639 | /// rules for determining the civil time for a corresponding instant. |
| 640 | /// Indeed, a zoned datetime uses its time zone to perform zone-aware |
| 641 | /// arithmetic, rounding and serialization. |
| 642 | /// |
| 643 | /// # Example |
| 644 | /// |
| 645 | /// ``` |
| 646 | /// use jiff::Zoned; |
| 647 | /// |
| 648 | /// let zdt: Zoned = "2024-07-03 14:31[america/new_york]" .parse()?; |
| 649 | /// assert_eq!(zdt.time_zone().iana_name(), Some("America/New_York" )); |
| 650 | /// |
| 651 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 652 | /// ``` |
| 653 | #[inline ] |
| 654 | pub fn time_zone(&self) -> &TimeZone { |
| 655 | &self.inner.time_zone |
| 656 | } |
| 657 | |
| 658 | /// Returns the year for this zoned datetime. |
| 659 | /// |
| 660 | /// The value returned is guaranteed to be in the range `-9999..=9999`. |
| 661 | /// |
| 662 | /// # Example |
| 663 | /// |
| 664 | /// ``` |
| 665 | /// use jiff::civil::date; |
| 666 | /// |
| 667 | /// let zdt1 = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 668 | /// assert_eq!(zdt1.year(), 2024); |
| 669 | /// |
| 670 | /// let zdt2 = date(-2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 671 | /// assert_eq!(zdt2.year(), -2024); |
| 672 | /// |
| 673 | /// let zdt3 = date(0, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 674 | /// assert_eq!(zdt3.year(), 0); |
| 675 | /// |
| 676 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 677 | /// ``` |
| 678 | #[inline ] |
| 679 | pub fn year(&self) -> i16 { |
| 680 | self.date().year() |
| 681 | } |
| 682 | |
| 683 | /// Returns the year and its era. |
| 684 | /// |
| 685 | /// This crate specifically allows years to be negative or `0`, where as |
| 686 | /// years written for the Gregorian calendar are always positive and |
| 687 | /// greater than `0`. In the Gregorian calendar, the era labels `BCE` and |
| 688 | /// `CE` are used to disambiguate between years less than or equal to `0` |
| 689 | /// and years greater than `0`, respectively. |
| 690 | /// |
| 691 | /// The crate is designed this way so that years in the latest era (that |
| 692 | /// is, `CE`) are aligned with years in this crate. |
| 693 | /// |
| 694 | /// The year returned is guaranteed to be in the range `1..=10000`. |
| 695 | /// |
| 696 | /// # Example |
| 697 | /// |
| 698 | /// ``` |
| 699 | /// use jiff::civil::{Era, date}; |
| 700 | /// |
| 701 | /// let zdt = date(2024, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 702 | /// assert_eq!(zdt.era_year(), (2024, Era::CE)); |
| 703 | /// |
| 704 | /// let zdt = date(1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 705 | /// assert_eq!(zdt.era_year(), (1, Era::CE)); |
| 706 | /// |
| 707 | /// let zdt = date(0, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 708 | /// assert_eq!(zdt.era_year(), (1, Era::BCE)); |
| 709 | /// |
| 710 | /// let zdt = date(-1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 711 | /// assert_eq!(zdt.era_year(), (2, Era::BCE)); |
| 712 | /// |
| 713 | /// let zdt = date(-10, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 714 | /// assert_eq!(zdt.era_year(), (11, Era::BCE)); |
| 715 | /// |
| 716 | /// let zdt = date(-9_999, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 717 | /// assert_eq!(zdt.era_year(), (10_000, Era::BCE)); |
| 718 | /// |
| 719 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 720 | /// ``` |
| 721 | #[inline ] |
| 722 | pub fn era_year(&self) -> (i16, Era) { |
| 723 | self.date().era_year() |
| 724 | } |
| 725 | |
| 726 | /// Returns the month for this zoned datetime. |
| 727 | /// |
| 728 | /// The value returned is guaranteed to be in the range `1..=12`. |
| 729 | /// |
| 730 | /// # Example |
| 731 | /// |
| 732 | /// ``` |
| 733 | /// use jiff::civil::date; |
| 734 | /// |
| 735 | /// let zdt = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 736 | /// assert_eq!(zdt.month(), 3); |
| 737 | /// |
| 738 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 739 | /// ``` |
| 740 | #[inline ] |
| 741 | pub fn month(&self) -> i8 { |
| 742 | self.date().month() |
| 743 | } |
| 744 | |
| 745 | /// Returns the day for this zoned datetime. |
| 746 | /// |
| 747 | /// The value returned is guaranteed to be in the range `1..=31`. |
| 748 | /// |
| 749 | /// # Example |
| 750 | /// |
| 751 | /// ``` |
| 752 | /// use jiff::civil::date; |
| 753 | /// |
| 754 | /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 755 | /// assert_eq!(zdt.day(), 29); |
| 756 | /// |
| 757 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 758 | /// ``` |
| 759 | #[inline ] |
| 760 | pub fn day(&self) -> i8 { |
| 761 | self.date().day() |
| 762 | } |
| 763 | |
| 764 | /// Returns the "hour" component of this zoned datetime. |
| 765 | /// |
| 766 | /// The value returned is guaranteed to be in the range `0..=23`. |
| 767 | /// |
| 768 | /// # Example |
| 769 | /// |
| 770 | /// ``` |
| 771 | /// use jiff::civil::date; |
| 772 | /// |
| 773 | /// let zdt = date(2000, 1, 2) |
| 774 | /// .at(3, 4, 5, 123_456_789) |
| 775 | /// .in_tz("America/New_York" )?; |
| 776 | /// assert_eq!(zdt.hour(), 3); |
| 777 | /// |
| 778 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 779 | /// ``` |
| 780 | #[inline ] |
| 781 | pub fn hour(&self) -> i8 { |
| 782 | self.time().hour() |
| 783 | } |
| 784 | |
| 785 | /// Returns the "minute" component of this zoned datetime. |
| 786 | /// |
| 787 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 788 | /// |
| 789 | /// # Example |
| 790 | /// |
| 791 | /// ``` |
| 792 | /// use jiff::civil::date; |
| 793 | /// |
| 794 | /// let zdt = date(2000, 1, 2) |
| 795 | /// .at(3, 4, 5, 123_456_789) |
| 796 | /// .in_tz("America/New_York" )?; |
| 797 | /// assert_eq!(zdt.minute(), 4); |
| 798 | /// |
| 799 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 800 | /// ``` |
| 801 | #[inline ] |
| 802 | pub fn minute(&self) -> i8 { |
| 803 | self.time().minute() |
| 804 | } |
| 805 | |
| 806 | /// Returns the "second" component of this zoned datetime. |
| 807 | /// |
| 808 | /// The value returned is guaranteed to be in the range `0..=59`. |
| 809 | /// |
| 810 | /// # Example |
| 811 | /// |
| 812 | /// ``` |
| 813 | /// use jiff::civil::date; |
| 814 | /// |
| 815 | /// let zdt = date(2000, 1, 2) |
| 816 | /// .at(3, 4, 5, 123_456_789) |
| 817 | /// .in_tz("America/New_York" )?; |
| 818 | /// assert_eq!(zdt.second(), 5); |
| 819 | /// |
| 820 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 821 | /// ``` |
| 822 | #[inline ] |
| 823 | pub fn second(&self) -> i8 { |
| 824 | self.time().second() |
| 825 | } |
| 826 | |
| 827 | /// Returns the "millisecond" component of this zoned datetime. |
| 828 | /// |
| 829 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 830 | /// |
| 831 | /// # Example |
| 832 | /// |
| 833 | /// ``` |
| 834 | /// use jiff::civil::date; |
| 835 | /// |
| 836 | /// let zdt = date(2000, 1, 2) |
| 837 | /// .at(3, 4, 5, 123_456_789) |
| 838 | /// .in_tz("America/New_York" )?; |
| 839 | /// assert_eq!(zdt.millisecond(), 123); |
| 840 | /// |
| 841 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 842 | /// ``` |
| 843 | #[inline ] |
| 844 | pub fn millisecond(&self) -> i16 { |
| 845 | self.time().millisecond() |
| 846 | } |
| 847 | |
| 848 | /// Returns the "microsecond" component of this zoned datetime. |
| 849 | /// |
| 850 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 851 | /// |
| 852 | /// # Example |
| 853 | /// |
| 854 | /// ``` |
| 855 | /// use jiff::civil::date; |
| 856 | /// |
| 857 | /// let zdt = date(2000, 1, 2) |
| 858 | /// .at(3, 4, 5, 123_456_789) |
| 859 | /// .in_tz("America/New_York" )?; |
| 860 | /// assert_eq!(zdt.microsecond(), 456); |
| 861 | /// |
| 862 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 863 | /// ``` |
| 864 | #[inline ] |
| 865 | pub fn microsecond(&self) -> i16 { |
| 866 | self.time().microsecond() |
| 867 | } |
| 868 | |
| 869 | /// Returns the "nanosecond" component of this zoned datetime. |
| 870 | /// |
| 871 | /// The value returned is guaranteed to be in the range `0..=999`. |
| 872 | /// |
| 873 | /// # Example |
| 874 | /// |
| 875 | /// ``` |
| 876 | /// use jiff::civil::date; |
| 877 | /// |
| 878 | /// let zdt = date(2000, 1, 2) |
| 879 | /// .at(3, 4, 5, 123_456_789) |
| 880 | /// .in_tz("America/New_York" )?; |
| 881 | /// assert_eq!(zdt.nanosecond(), 789); |
| 882 | /// |
| 883 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 884 | /// ``` |
| 885 | #[inline ] |
| 886 | pub fn nanosecond(&self) -> i16 { |
| 887 | self.time().nanosecond() |
| 888 | } |
| 889 | |
| 890 | /// Returns the fractional nanosecond for this `Zoned` value. |
| 891 | /// |
| 892 | /// If you want to set this value on `Zoned`, then use |
| 893 | /// [`ZonedWith::subsec_nanosecond`] via [`Zoned::with`]. |
| 894 | /// |
| 895 | /// The value returned is guaranteed to be in the range `0..=999_999_999`. |
| 896 | /// |
| 897 | /// Note that this returns the fractional second associated with the civil |
| 898 | /// time on this `Zoned` value. This is distinct from the fractional |
| 899 | /// second on the underlying timestamp. A timestamp, for example, may be |
| 900 | /// negative to indicate time before the Unix epoch. But a civil datetime |
| 901 | /// can only have a negative year, while the remaining values are all |
| 902 | /// semantically positive. See the examples below for how this can manifest |
| 903 | /// in practice. |
| 904 | /// |
| 905 | /// # Example |
| 906 | /// |
| 907 | /// This shows the relationship between constructing a `Zoned` value |
| 908 | /// with routines like `with().millisecond()` and accessing the entire |
| 909 | /// fractional part as a nanosecond: |
| 910 | /// |
| 911 | /// ``` |
| 912 | /// use jiff::civil::date; |
| 913 | /// |
| 914 | /// let zdt1 = date(2000, 1, 2) |
| 915 | /// .at(3, 4, 5, 123_456_789) |
| 916 | /// .in_tz("America/New_York" )?; |
| 917 | /// assert_eq!(zdt1.subsec_nanosecond(), 123_456_789); |
| 918 | /// |
| 919 | /// let zdt2 = zdt1.with().millisecond(333).build()?; |
| 920 | /// assert_eq!(zdt2.subsec_nanosecond(), 333_456_789); |
| 921 | /// |
| 922 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 923 | /// ``` |
| 924 | /// |
| 925 | /// # Example: nanoseconds from a timestamp |
| 926 | /// |
| 927 | /// This shows how the fractional nanosecond part of a `Zoned` value |
| 928 | /// manifests from a specific timestamp. |
| 929 | /// |
| 930 | /// ``` |
| 931 | /// use jiff::Timestamp; |
| 932 | /// |
| 933 | /// // 1,234 nanoseconds after the Unix epoch. |
| 934 | /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC" )?; |
| 935 | /// assert_eq!(zdt.subsec_nanosecond(), 1_234); |
| 936 | /// // N.B. The timestamp's fractional second and the civil datetime's |
| 937 | /// // fractional second happen to be equal here: |
| 938 | /// assert_eq!(zdt.timestamp().subsec_nanosecond(), 1_234); |
| 939 | /// |
| 940 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 941 | /// ``` |
| 942 | /// |
| 943 | /// # Example: fractional seconds can differ between timestamps and civil time |
| 944 | /// |
| 945 | /// This shows how a timestamp can have a different fractional second |
| 946 | /// value than its corresponding `Zoned` value because of how the sign |
| 947 | /// is handled: |
| 948 | /// |
| 949 | /// ``` |
| 950 | /// use jiff::{civil, Timestamp}; |
| 951 | /// |
| 952 | /// // 1,234 nanoseconds before the Unix epoch. |
| 953 | /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC" )?; |
| 954 | /// // The timestamp's fractional second is what was given: |
| 955 | /// assert_eq!(zdt.timestamp().subsec_nanosecond(), -1_234); |
| 956 | /// // But the civil datetime's fractional second is equal to |
| 957 | /// // `1_000_000_000 - 1_234`. This is because civil datetimes |
| 958 | /// // represent times in strictly positive values, like it |
| 959 | /// // would read on a clock. |
| 960 | /// assert_eq!(zdt.subsec_nanosecond(), 999998766); |
| 961 | /// // Looking at the other components of the time value might help. |
| 962 | /// assert_eq!(zdt.hour(), 23); |
| 963 | /// assert_eq!(zdt.minute(), 59); |
| 964 | /// assert_eq!(zdt.second(), 59); |
| 965 | /// |
| 966 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 967 | /// ``` |
| 968 | #[inline ] |
| 969 | pub fn subsec_nanosecond(&self) -> i32 { |
| 970 | self.time().subsec_nanosecond() |
| 971 | } |
| 972 | |
| 973 | /// Returns the weekday corresponding to this zoned datetime. |
| 974 | /// |
| 975 | /// # Example |
| 976 | /// |
| 977 | /// ``` |
| 978 | /// use jiff::civil::{Weekday, date}; |
| 979 | /// |
| 980 | /// // The Unix epoch was on a Thursday. |
| 981 | /// let zdt = date(1970, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 982 | /// assert_eq!(zdt.weekday(), Weekday::Thursday); |
| 983 | /// // One can also get the weekday as an offset in a variety of schemes. |
| 984 | /// assert_eq!(zdt.weekday().to_monday_zero_offset(), 3); |
| 985 | /// assert_eq!(zdt.weekday().to_monday_one_offset(), 4); |
| 986 | /// assert_eq!(zdt.weekday().to_sunday_zero_offset(), 4); |
| 987 | /// assert_eq!(zdt.weekday().to_sunday_one_offset(), 5); |
| 988 | /// |
| 989 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 990 | /// ``` |
| 991 | #[inline ] |
| 992 | pub fn weekday(&self) -> Weekday { |
| 993 | self.date().weekday() |
| 994 | } |
| 995 | |
| 996 | /// Returns the ordinal day of the year that this zoned datetime resides |
| 997 | /// in. |
| 998 | /// |
| 999 | /// For leap years, this always returns a value in the range `1..=366`. |
| 1000 | /// Otherwise, the value is in the range `1..=365`. |
| 1001 | /// |
| 1002 | /// # Example |
| 1003 | /// |
| 1004 | /// ``` |
| 1005 | /// use jiff::civil::date; |
| 1006 | /// |
| 1007 | /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1008 | /// assert_eq!(zdt.day_of_year(), 236); |
| 1009 | /// |
| 1010 | /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1011 | /// assert_eq!(zdt.day_of_year(), 365); |
| 1012 | /// |
| 1013 | /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1014 | /// assert_eq!(zdt.day_of_year(), 366); |
| 1015 | /// |
| 1016 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1017 | /// ``` |
| 1018 | #[inline ] |
| 1019 | pub fn day_of_year(&self) -> i16 { |
| 1020 | self.date().day_of_year() |
| 1021 | } |
| 1022 | |
| 1023 | /// Returns the ordinal day of the year that this zoned datetime resides |
| 1024 | /// in, but ignores leap years. |
| 1025 | /// |
| 1026 | /// That is, the range of possible values returned by this routine is |
| 1027 | /// `1..=365`, even if this date resides in a leap year. If this date is |
| 1028 | /// February 29, then this routine returns `None`. |
| 1029 | /// |
| 1030 | /// The value `365` always corresponds to the last day in the year, |
| 1031 | /// December 31, even for leap years. |
| 1032 | /// |
| 1033 | /// # Example |
| 1034 | /// |
| 1035 | /// ``` |
| 1036 | /// use jiff::civil::date; |
| 1037 | /// |
| 1038 | /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1039 | /// assert_eq!(zdt.day_of_year_no_leap(), Some(236)); |
| 1040 | /// |
| 1041 | /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1042 | /// assert_eq!(zdt.day_of_year_no_leap(), Some(365)); |
| 1043 | /// |
| 1044 | /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1045 | /// assert_eq!(zdt.day_of_year_no_leap(), Some(365)); |
| 1046 | /// |
| 1047 | /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1048 | /// assert_eq!(zdt.day_of_year_no_leap(), None); |
| 1049 | /// |
| 1050 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1051 | /// ``` |
| 1052 | #[inline ] |
| 1053 | pub fn day_of_year_no_leap(&self) -> Option<i16> { |
| 1054 | self.date().day_of_year_no_leap() |
| 1055 | } |
| 1056 | |
| 1057 | /// Returns the beginning of the day, corresponding to `00:00:00` civil |
| 1058 | /// time, that this datetime resides in. |
| 1059 | /// |
| 1060 | /// While in nearly all cases the time returned will be `00:00:00`, it is |
| 1061 | /// possible for the time to be different from midnight if there is a time |
| 1062 | /// zone transition at midnight. |
| 1063 | /// |
| 1064 | /// # Example |
| 1065 | /// |
| 1066 | /// ``` |
| 1067 | /// use jiff::{civil::date, Zoned}; |
| 1068 | /// |
| 1069 | /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/New_York" )?; |
| 1070 | /// assert_eq!( |
| 1071 | /// zdt.start_of_day()?.to_string(), |
| 1072 | /// "2015-10-18T00:00:00-04:00[America/New_York]" , |
| 1073 | /// ); |
| 1074 | /// |
| 1075 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1076 | /// ``` |
| 1077 | /// |
| 1078 | /// # Example: start of day may not be midnight |
| 1079 | /// |
| 1080 | /// In some time zones, gap transitions may begin at midnight. This implies |
| 1081 | /// that `00:xx:yy` does not exist on a clock in that time zone for that |
| 1082 | /// day. |
| 1083 | /// |
| 1084 | /// ``` |
| 1085 | /// use jiff::{civil::date, Zoned}; |
| 1086 | /// |
| 1087 | /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/Sao_Paulo" )?; |
| 1088 | /// assert_eq!( |
| 1089 | /// zdt.start_of_day()?.to_string(), |
| 1090 | /// // not midnight! |
| 1091 | /// "2015-10-18T01:00:00-02:00[America/Sao_Paulo]" , |
| 1092 | /// ); |
| 1093 | /// |
| 1094 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1095 | /// ``` |
| 1096 | /// |
| 1097 | /// # Example: error because of overflow |
| 1098 | /// |
| 1099 | /// In some cases, it's possible for `Zoned` value to be able to represent |
| 1100 | /// an instant in time later in the day for a particular time zone, but not |
| 1101 | /// earlier in the day. This can only occur near the minimum datetime value |
| 1102 | /// supported by Jiff. |
| 1103 | /// |
| 1104 | /// ``` |
| 1105 | /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned}; |
| 1106 | /// |
| 1107 | /// // While -9999-01-03T04:00:00+25:59:59 is representable as a Zoned |
| 1108 | /// // value, the start of the corresponding day is not! |
| 1109 | /// let tz = TimeZone::fixed(Offset::MAX); |
| 1110 | /// let zdt = date(-9999, 1, 3).at(4, 0, 0, 0).to_zoned(tz.clone())?; |
| 1111 | /// assert!(zdt.start_of_day().is_err()); |
| 1112 | /// // The next day works fine since -9999-01-04T00:00:00+25:59:59 is |
| 1113 | /// // representable. |
| 1114 | /// let zdt = date(-9999, 1, 4).at(15, 0, 0, 0).to_zoned(tz)?; |
| 1115 | /// assert_eq!( |
| 1116 | /// zdt.start_of_day()?.datetime(), |
| 1117 | /// date(-9999, 1, 4).at(0, 0, 0, 0), |
| 1118 | /// ); |
| 1119 | /// |
| 1120 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1121 | /// ``` |
| 1122 | #[inline ] |
| 1123 | pub fn start_of_day(&self) -> Result<Zoned, Error> { |
| 1124 | self.datetime().start_of_day().to_zoned(self.time_zone().clone()) |
| 1125 | } |
| 1126 | |
| 1127 | /// Returns the end of the day, corresponding to `23:59:59.999999999` civil |
| 1128 | /// time, that this datetime resides in. |
| 1129 | /// |
| 1130 | /// While in nearly all cases the time returned will be |
| 1131 | /// `23:59:59.999999999`, it is possible for the time to be different if |
| 1132 | /// there is a time zone transition covering that time. |
| 1133 | /// |
| 1134 | /// # Example |
| 1135 | /// |
| 1136 | /// ``` |
| 1137 | /// use jiff::civil::date; |
| 1138 | /// |
| 1139 | /// let zdt = date(2024, 7, 3) |
| 1140 | /// .at(7, 30, 10, 123_456_789) |
| 1141 | /// .in_tz("America/New_York" )?; |
| 1142 | /// assert_eq!( |
| 1143 | /// zdt.end_of_day()?, |
| 1144 | /// date(2024, 7, 3) |
| 1145 | /// .at(23, 59, 59, 999_999_999) |
| 1146 | /// .in_tz("America/New_York" )?, |
| 1147 | /// ); |
| 1148 | /// |
| 1149 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1150 | /// ``` |
| 1151 | /// |
| 1152 | /// # Example: error because of overflow |
| 1153 | /// |
| 1154 | /// In some cases, it's possible for `Zoned` value to be able to represent |
| 1155 | /// an instant in time earlier in the day for a particular time zone, but |
| 1156 | /// not later in the day. This can only occur near the maximum datetime |
| 1157 | /// value supported by Jiff. |
| 1158 | /// |
| 1159 | /// ``` |
| 1160 | /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned}; |
| 1161 | /// |
| 1162 | /// // While 9999-12-30T01:30-04 is representable as a Zoned |
| 1163 | /// // value, the start of the corresponding day is not! |
| 1164 | /// let tz = TimeZone::get("America/New_York" )?; |
| 1165 | /// let zdt = date(9999, 12, 30).at(1, 30, 0, 0).to_zoned(tz.clone())?; |
| 1166 | /// assert!(zdt.end_of_day().is_err()); |
| 1167 | /// // The previous day works fine since 9999-12-29T23:59:59.999999999-04 |
| 1168 | /// // is representable. |
| 1169 | /// let zdt = date(9999, 12, 29).at(1, 30, 0, 0).to_zoned(tz.clone())?; |
| 1170 | /// assert_eq!( |
| 1171 | /// zdt.end_of_day()?, |
| 1172 | /// date(9999, 12, 29) |
| 1173 | /// .at(23, 59, 59, 999_999_999) |
| 1174 | /// .in_tz("America/New_York" )?, |
| 1175 | /// ); |
| 1176 | /// |
| 1177 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1178 | /// ``` |
| 1179 | #[inline ] |
| 1180 | pub fn end_of_day(&self) -> Result<Zoned, Error> { |
| 1181 | let end_of_civil_day = self.datetime().end_of_day(); |
| 1182 | let ambts = self.time_zone().to_ambiguous_timestamp(end_of_civil_day); |
| 1183 | // I'm not sure if there are any real world cases where this matters, |
| 1184 | // but this is basically the reverse of `compatible`, so we write |
| 1185 | // it out ourselves. Basically, if the last civil datetime is in a |
| 1186 | // gap, then we want the earlier instant since the later instant must |
| 1187 | // necessarily be in the next day. And if the last civil datetime is |
| 1188 | // in a fold, then we want the later instant since both the earlier |
| 1189 | // and later instants are in the same calendar day and the later one |
| 1190 | // must be, well, later. In contrast, compatible mode takes the later |
| 1191 | // instant in a gap and the earlier instant in a fold. So we flip that |
| 1192 | // here. |
| 1193 | let offset = match ambts.offset() { |
| 1194 | AmbiguousOffset::Unambiguous { offset } => offset, |
| 1195 | AmbiguousOffset::Gap { after, .. } => after, |
| 1196 | AmbiguousOffset::Fold { after, .. } => after, |
| 1197 | }; |
| 1198 | offset |
| 1199 | .to_timestamp(end_of_civil_day) |
| 1200 | .map(|ts| ts.to_zoned(self.time_zone().clone())) |
| 1201 | } |
| 1202 | |
| 1203 | /// Returns the first date of the month that this zoned datetime resides |
| 1204 | /// in. |
| 1205 | /// |
| 1206 | /// In most cases, the time in the zoned datetime returned remains |
| 1207 | /// unchanged. In some cases, the time may change if the time |
| 1208 | /// on the previous date was unambiguous (always true, since a |
| 1209 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1210 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1211 | /// [`Disambiguation::Compatible`] |
| 1212 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1213 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1214 | /// to get the civil datetime, then use [`DateTime::first_of_month`], |
| 1215 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1216 | /// disambiguation strategy. |
| 1217 | /// |
| 1218 | /// # Example |
| 1219 | /// |
| 1220 | /// ``` |
| 1221 | /// use jiff::civil::date; |
| 1222 | /// |
| 1223 | /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1224 | /// assert_eq!( |
| 1225 | /// zdt.first_of_month()?, |
| 1226 | /// date(2024, 2, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1227 | /// ); |
| 1228 | /// |
| 1229 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1230 | /// ``` |
| 1231 | #[inline ] |
| 1232 | pub fn first_of_month(&self) -> Result<Zoned, Error> { |
| 1233 | self.datetime().first_of_month().to_zoned(self.time_zone().clone()) |
| 1234 | } |
| 1235 | |
| 1236 | /// Returns the last date of the month that this zoned datetime resides in. |
| 1237 | /// |
| 1238 | /// In most cases, the time in the zoned datetime returned remains |
| 1239 | /// unchanged. In some cases, the time may change if the time |
| 1240 | /// on the previous date was unambiguous (always true, since a |
| 1241 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1242 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1243 | /// [`Disambiguation::Compatible`] |
| 1244 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1245 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1246 | /// to get the civil datetime, then use [`DateTime::last_of_month`], |
| 1247 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1248 | /// disambiguation strategy. |
| 1249 | /// |
| 1250 | /// # Example |
| 1251 | /// |
| 1252 | /// ``` |
| 1253 | /// use jiff::civil::date; |
| 1254 | /// |
| 1255 | /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1256 | /// assert_eq!( |
| 1257 | /// zdt.last_of_month()?, |
| 1258 | /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1259 | /// ); |
| 1260 | /// |
| 1261 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1262 | /// ``` |
| 1263 | #[inline ] |
| 1264 | pub fn last_of_month(&self) -> Result<Zoned, Error> { |
| 1265 | self.datetime().last_of_month().to_zoned(self.time_zone().clone()) |
| 1266 | } |
| 1267 | |
| 1268 | /// Returns the ordinal number of the last day in the month in which this |
| 1269 | /// zoned datetime resides. |
| 1270 | /// |
| 1271 | /// This is phrased as "the ordinal number of the last day" instead of "the |
| 1272 | /// number of days" because some months may be missing days due to time |
| 1273 | /// zone transitions. However, this is extraordinarily rare. |
| 1274 | /// |
| 1275 | /// This is guaranteed to always return one of the following values, |
| 1276 | /// depending on the year and the month: 28, 29, 30 or 31. |
| 1277 | /// |
| 1278 | /// # Example |
| 1279 | /// |
| 1280 | /// ``` |
| 1281 | /// use jiff::civil::date; |
| 1282 | /// |
| 1283 | /// let zdt = date(2024, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1284 | /// assert_eq!(zdt.days_in_month(), 29); |
| 1285 | /// |
| 1286 | /// let zdt = date(2023, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1287 | /// assert_eq!(zdt.days_in_month(), 28); |
| 1288 | /// |
| 1289 | /// let zdt = date(2024, 8, 15).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1290 | /// assert_eq!(zdt.days_in_month(), 31); |
| 1291 | /// |
| 1292 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1293 | /// ``` |
| 1294 | /// |
| 1295 | /// # Example: count of days in month |
| 1296 | /// |
| 1297 | /// In `Pacific/Apia`, December 2011 did not have a December 30. Instead, |
| 1298 | /// the calendar [skipped from December 29 right to December 31][samoa]. |
| 1299 | /// |
| 1300 | /// If you really do need the count of days in a month in a time zone |
| 1301 | /// aware fashion, then it's possible to achieve through arithmetic: |
| 1302 | /// |
| 1303 | /// ``` |
| 1304 | /// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference}; |
| 1305 | /// |
| 1306 | /// let first_of_month = date(2011, 12, 1).in_tz("Pacific/Apia" )?; |
| 1307 | /// assert_eq!(first_of_month.days_in_month(), 31); |
| 1308 | /// let one_month_later = first_of_month.checked_add(1.month())?; |
| 1309 | /// |
| 1310 | /// let options = ZonedDifference::new(&one_month_later) |
| 1311 | /// .largest(Unit::Hour) |
| 1312 | /// .smallest(Unit::Hour) |
| 1313 | /// .mode(RoundMode::HalfExpand); |
| 1314 | /// let span = first_of_month.until(options)?; |
| 1315 | /// let days = ((span.get_hours() as f64) / 24.0).round() as i64; |
| 1316 | /// // Try the above in a different time zone, like America/New_York, and |
| 1317 | /// // you'll get 31 here. |
| 1318 | /// assert_eq!(days, 30); |
| 1319 | /// |
| 1320 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1321 | /// ``` |
| 1322 | /// |
| 1323 | /// [samoa]: https://en.wikipedia.org/wiki/Time_in_Samoa#2011_time_zone_change |
| 1324 | #[inline ] |
| 1325 | pub fn days_in_month(&self) -> i8 { |
| 1326 | self.date().days_in_month() |
| 1327 | } |
| 1328 | |
| 1329 | /// Returns the first date of the year that this zoned datetime resides in. |
| 1330 | /// |
| 1331 | /// In most cases, the time in the zoned datetime returned remains |
| 1332 | /// unchanged. In some cases, the time may change if the time |
| 1333 | /// on the previous date was unambiguous (always true, since a |
| 1334 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1335 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1336 | /// [`Disambiguation::Compatible`] |
| 1337 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1338 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1339 | /// to get the civil datetime, then use [`DateTime::first_of_year`], |
| 1340 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1341 | /// disambiguation strategy. |
| 1342 | /// |
| 1343 | /// # Example |
| 1344 | /// |
| 1345 | /// ``` |
| 1346 | /// use jiff::civil::date; |
| 1347 | /// |
| 1348 | /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1349 | /// assert_eq!( |
| 1350 | /// zdt.first_of_year()?, |
| 1351 | /// date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1352 | /// ); |
| 1353 | /// |
| 1354 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1355 | /// ``` |
| 1356 | #[inline ] |
| 1357 | pub fn first_of_year(&self) -> Result<Zoned, Error> { |
| 1358 | self.datetime().first_of_year().to_zoned(self.time_zone().clone()) |
| 1359 | } |
| 1360 | |
| 1361 | /// Returns the last date of the year that this zoned datetime resides in. |
| 1362 | /// |
| 1363 | /// In most cases, the time in the zoned datetime returned remains |
| 1364 | /// unchanged. In some cases, the time may change if the time |
| 1365 | /// on the previous date was unambiguous (always true, since a |
| 1366 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1367 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1368 | /// [`Disambiguation::Compatible`] |
| 1369 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1370 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1371 | /// to get the civil datetime, then use [`DateTime::last_of_year`], |
| 1372 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1373 | /// disambiguation strategy. |
| 1374 | /// |
| 1375 | /// # Example |
| 1376 | /// |
| 1377 | /// ``` |
| 1378 | /// use jiff::civil::date; |
| 1379 | /// |
| 1380 | /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1381 | /// assert_eq!( |
| 1382 | /// zdt.last_of_year()?, |
| 1383 | /// date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1384 | /// ); |
| 1385 | /// |
| 1386 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1387 | /// ``` |
| 1388 | #[inline ] |
| 1389 | pub fn last_of_year(&self) -> Result<Zoned, Error> { |
| 1390 | self.datetime().last_of_year().to_zoned(self.time_zone().clone()) |
| 1391 | } |
| 1392 | |
| 1393 | /// Returns the ordinal number of the last day in the year in which this |
| 1394 | /// zoned datetime resides. |
| 1395 | /// |
| 1396 | /// This is phrased as "the ordinal number of the last day" instead of "the |
| 1397 | /// number of days" because some years may be missing days due to time |
| 1398 | /// zone transitions. However, this is extraordinarily rare. |
| 1399 | /// |
| 1400 | /// This is guaranteed to always return either `365` or `366`. |
| 1401 | /// |
| 1402 | /// # Example |
| 1403 | /// |
| 1404 | /// ``` |
| 1405 | /// use jiff::civil::date; |
| 1406 | /// |
| 1407 | /// let zdt = date(2024, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1408 | /// assert_eq!(zdt.days_in_year(), 366); |
| 1409 | /// |
| 1410 | /// let zdt = date(2023, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1411 | /// assert_eq!(zdt.days_in_year(), 365); |
| 1412 | /// |
| 1413 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1414 | /// ``` |
| 1415 | #[inline ] |
| 1416 | pub fn days_in_year(&self) -> i16 { |
| 1417 | self.date().days_in_year() |
| 1418 | } |
| 1419 | |
| 1420 | /// Returns true if and only if the year in which this zoned datetime |
| 1421 | /// resides is a leap year. |
| 1422 | /// |
| 1423 | /// # Example |
| 1424 | /// |
| 1425 | /// ``` |
| 1426 | /// use jiff::civil::date; |
| 1427 | /// |
| 1428 | /// let zdt = date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1429 | /// assert!(zdt.in_leap_year()); |
| 1430 | /// |
| 1431 | /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1432 | /// assert!(!zdt.in_leap_year()); |
| 1433 | /// |
| 1434 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1435 | /// ``` |
| 1436 | #[inline ] |
| 1437 | pub fn in_leap_year(&self) -> bool { |
| 1438 | self.date().in_leap_year() |
| 1439 | } |
| 1440 | |
| 1441 | /// Returns the zoned datetime with a date immediately following this one. |
| 1442 | /// |
| 1443 | /// In most cases, the time in the zoned datetime returned remains |
| 1444 | /// unchanged. In some cases, the time may change if the time |
| 1445 | /// on the previous date was unambiguous (always true, since a |
| 1446 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1447 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1448 | /// [`Disambiguation::Compatible`] |
| 1449 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1450 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1451 | /// to get the civil datetime, then use [`DateTime::tomorrow`], |
| 1452 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1453 | /// disambiguation strategy. |
| 1454 | /// |
| 1455 | /// # Errors |
| 1456 | /// |
| 1457 | /// This returns an error when one day following this zoned datetime would |
| 1458 | /// exceed the maximum `Zoned` value. |
| 1459 | /// |
| 1460 | /// # Example |
| 1461 | /// |
| 1462 | /// ``` |
| 1463 | /// use jiff::{civil::date, Timestamp}; |
| 1464 | /// |
| 1465 | /// let zdt = date(2024, 2, 28).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1466 | /// assert_eq!( |
| 1467 | /// zdt.tomorrow()?, |
| 1468 | /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1469 | /// ); |
| 1470 | /// |
| 1471 | /// // The max doesn't have a tomorrow. |
| 1472 | /// assert!(Timestamp::MAX.in_tz("America/New_York" )?.tomorrow().is_err()); |
| 1473 | /// |
| 1474 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1475 | /// ``` |
| 1476 | /// |
| 1477 | /// # Example: ambiguous datetimes are automatically resolved |
| 1478 | /// |
| 1479 | /// ``` |
| 1480 | /// use jiff::{civil::date, Timestamp}; |
| 1481 | /// |
| 1482 | /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York" )?; |
| 1483 | /// assert_eq!( |
| 1484 | /// zdt.tomorrow()?, |
| 1485 | /// date(2024, 3, 10).at(3, 30, 0, 0).in_tz("America/New_York" )?, |
| 1486 | /// ); |
| 1487 | /// |
| 1488 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1489 | /// ``` |
| 1490 | #[inline ] |
| 1491 | pub fn tomorrow(&self) -> Result<Zoned, Error> { |
| 1492 | self.datetime().tomorrow()?.to_zoned(self.time_zone().clone()) |
| 1493 | } |
| 1494 | |
| 1495 | /// Returns the zoned datetime with a date immediately preceding this one. |
| 1496 | /// |
| 1497 | /// In most cases, the time in the zoned datetime returned remains |
| 1498 | /// unchanged. In some cases, the time may change if the time |
| 1499 | /// on the previous date was unambiguous (always true, since a |
| 1500 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1501 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1502 | /// [`Disambiguation::Compatible`] |
| 1503 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1504 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1505 | /// to get the civil datetime, then use [`DateTime::yesterday`], |
| 1506 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1507 | /// disambiguation strategy. |
| 1508 | /// |
| 1509 | /// # Errors |
| 1510 | /// |
| 1511 | /// This returns an error when one day preceding this zoned datetime would |
| 1512 | /// be less than the minimum `Zoned` value. |
| 1513 | /// |
| 1514 | /// # Example |
| 1515 | /// |
| 1516 | /// ``` |
| 1517 | /// use jiff::{civil::date, Timestamp}; |
| 1518 | /// |
| 1519 | /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1520 | /// assert_eq!( |
| 1521 | /// zdt.yesterday()?, |
| 1522 | /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1523 | /// ); |
| 1524 | /// |
| 1525 | /// // The min doesn't have a yesterday. |
| 1526 | /// assert!(Timestamp::MIN.in_tz("America/New_York" )?.yesterday().is_err()); |
| 1527 | /// |
| 1528 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1529 | /// ``` |
| 1530 | /// |
| 1531 | /// # Example: ambiguous datetimes are automatically resolved |
| 1532 | /// |
| 1533 | /// ``` |
| 1534 | /// use jiff::{civil::date, Timestamp}; |
| 1535 | /// |
| 1536 | /// let zdt = date(2024, 11, 4).at(1, 30, 0, 0).in_tz("America/New_York" )?; |
| 1537 | /// assert_eq!( |
| 1538 | /// zdt.yesterday()?.to_string(), |
| 1539 | /// // Consistent with the "compatible" disambiguation strategy, the |
| 1540 | /// // "first" 1 o'clock hour is selected. You can tell this because |
| 1541 | /// // the offset is -04, which corresponds to DST time in New York. |
| 1542 | /// // The second 1 o'clock hour would have offset -05. |
| 1543 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
| 1544 | /// ); |
| 1545 | /// |
| 1546 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1547 | /// ``` |
| 1548 | #[inline ] |
| 1549 | pub fn yesterday(&self) -> Result<Zoned, Error> { |
| 1550 | self.datetime().yesterday()?.to_zoned(self.time_zone().clone()) |
| 1551 | } |
| 1552 | |
| 1553 | /// Returns the "nth" weekday from the beginning or end of the month in |
| 1554 | /// which this zoned datetime resides. |
| 1555 | /// |
| 1556 | /// The `nth` parameter can be positive or negative. A positive value |
| 1557 | /// computes the "nth" weekday from the beginning of the month. A negative |
| 1558 | /// value computes the "nth" weekday from the end of the month. So for |
| 1559 | /// example, use `-1` to "find the last weekday" in this date's month. |
| 1560 | /// |
| 1561 | /// In most cases, the time in the zoned datetime returned remains |
| 1562 | /// unchanged. In some cases, the time may change if the time |
| 1563 | /// on the previous date was unambiguous (always true, since a |
| 1564 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1565 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1566 | /// [`Disambiguation::Compatible`] |
| 1567 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1568 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1569 | /// to get the civil datetime, then use [`DateTime::nth_weekday_of_month`], |
| 1570 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1571 | /// disambiguation strategy. |
| 1572 | /// |
| 1573 | /// # Errors |
| 1574 | /// |
| 1575 | /// This returns an error when `nth` is `0`, or if it is `5` or `-5` and |
| 1576 | /// there is no 5th weekday from the beginning or end of the month. This |
| 1577 | /// could also return an error if the corresponding datetime could not be |
| 1578 | /// represented as an instant for this `Zoned`'s time zone. (This can only |
| 1579 | /// happen close the boundaries of an [`Timestamp`].) |
| 1580 | /// |
| 1581 | /// # Example |
| 1582 | /// |
| 1583 | /// This shows how to get the nth weekday in a month, starting from the |
| 1584 | /// beginning of the month: |
| 1585 | /// |
| 1586 | /// ``` |
| 1587 | /// use jiff::civil::{Weekday, date}; |
| 1588 | /// |
| 1589 | /// let zdt = date(2017, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1590 | /// let second_friday = zdt.nth_weekday_of_month(2, Weekday::Friday)?; |
| 1591 | /// assert_eq!( |
| 1592 | /// second_friday, |
| 1593 | /// date(2017, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1594 | /// ); |
| 1595 | /// |
| 1596 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1597 | /// ``` |
| 1598 | /// |
| 1599 | /// This shows how to do the reverse of the above. That is, the nth _last_ |
| 1600 | /// weekday in a month: |
| 1601 | /// |
| 1602 | /// ``` |
| 1603 | /// use jiff::civil::{Weekday, date}; |
| 1604 | /// |
| 1605 | /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1606 | /// let last_thursday = zdt.nth_weekday_of_month(-1, Weekday::Thursday)?; |
| 1607 | /// assert_eq!( |
| 1608 | /// last_thursday, |
| 1609 | /// date(2024, 3, 28).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1610 | /// ); |
| 1611 | /// |
| 1612 | /// let second_last_thursday = zdt.nth_weekday_of_month( |
| 1613 | /// -2, |
| 1614 | /// Weekday::Thursday, |
| 1615 | /// )?; |
| 1616 | /// assert_eq!( |
| 1617 | /// second_last_thursday, |
| 1618 | /// date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1619 | /// ); |
| 1620 | /// |
| 1621 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1622 | /// ``` |
| 1623 | /// |
| 1624 | /// This routine can return an error if there isn't an `nth` weekday |
| 1625 | /// for this month. For example, March 2024 only has 4 Mondays: |
| 1626 | /// |
| 1627 | /// ``` |
| 1628 | /// use jiff::civil::{Weekday, date}; |
| 1629 | /// |
| 1630 | /// let zdt = date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1631 | /// let fourth_monday = zdt.nth_weekday_of_month(4, Weekday::Monday)?; |
| 1632 | /// assert_eq!( |
| 1633 | /// fourth_monday, |
| 1634 | /// date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1635 | /// ); |
| 1636 | /// // There is no 5th Monday. |
| 1637 | /// assert!(zdt.nth_weekday_of_month(5, Weekday::Monday).is_err()); |
| 1638 | /// // Same goes for counting backwards. |
| 1639 | /// assert!(zdt.nth_weekday_of_month(-5, Weekday::Monday).is_err()); |
| 1640 | /// |
| 1641 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1642 | /// ``` |
| 1643 | #[inline ] |
| 1644 | pub fn nth_weekday_of_month( |
| 1645 | &self, |
| 1646 | nth: i8, |
| 1647 | weekday: Weekday, |
| 1648 | ) -> Result<Zoned, Error> { |
| 1649 | self.datetime() |
| 1650 | .nth_weekday_of_month(nth, weekday)? |
| 1651 | .to_zoned(self.time_zone().clone()) |
| 1652 | } |
| 1653 | |
| 1654 | /// Returns the "nth" weekday from this zoned datetime, not including |
| 1655 | /// itself. |
| 1656 | /// |
| 1657 | /// The `nth` parameter can be positive or negative. A positive value |
| 1658 | /// computes the "nth" weekday starting at the day after this date and |
| 1659 | /// going forwards in time. A negative value computes the "nth" weekday |
| 1660 | /// starting at the day before this date and going backwards in time. |
| 1661 | /// |
| 1662 | /// For example, if this zoned datetime's weekday is a Sunday and the first |
| 1663 | /// Sunday is asked for (that is, `zdt.nth_weekday(1, Weekday::Sunday)`), |
| 1664 | /// then the result is a week from this zoned datetime corresponding to the |
| 1665 | /// following Sunday. |
| 1666 | /// |
| 1667 | /// In most cases, the time in the zoned datetime returned remains |
| 1668 | /// unchanged. In some cases, the time may change if the time |
| 1669 | /// on the previous date was unambiguous (always true, since a |
| 1670 | /// `Zoned` is a precise instant in time) and the same clock time |
| 1671 | /// on the returned zoned datetime is ambiguous. In this case, the |
| 1672 | /// [`Disambiguation::Compatible`] |
| 1673 | /// strategy will be used to turn it into a precise instant. If you want to |
| 1674 | /// use a different disambiguation strategy, then use [`Zoned::datetime`] |
| 1675 | /// to get the civil datetime, then use [`DateTime::nth_weekday`], |
| 1676 | /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred |
| 1677 | /// disambiguation strategy. |
| 1678 | /// |
| 1679 | /// # Errors |
| 1680 | /// |
| 1681 | /// This returns an error when `nth` is `0`, or if it would otherwise |
| 1682 | /// result in a date that overflows the minimum/maximum values of |
| 1683 | /// `Zoned`. |
| 1684 | /// |
| 1685 | /// # Example |
| 1686 | /// |
| 1687 | /// This example shows how to find the "nth" weekday going forwards in |
| 1688 | /// time: |
| 1689 | /// |
| 1690 | /// ``` |
| 1691 | /// use jiff::civil::{Weekday, date}; |
| 1692 | /// |
| 1693 | /// // Use a Sunday in March as our start date. |
| 1694 | /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1695 | /// assert_eq!(zdt.weekday(), Weekday::Sunday); |
| 1696 | /// |
| 1697 | /// // The first next Monday is tomorrow! |
| 1698 | /// let next_monday = zdt.nth_weekday(1, Weekday::Monday)?; |
| 1699 | /// assert_eq!( |
| 1700 | /// next_monday, |
| 1701 | /// date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1702 | /// ); |
| 1703 | /// |
| 1704 | /// // But the next Sunday is a week away, because this doesn't |
| 1705 | /// // include the current weekday. |
| 1706 | /// let next_sunday = zdt.nth_weekday(1, Weekday::Sunday)?; |
| 1707 | /// assert_eq!( |
| 1708 | /// next_sunday, |
| 1709 | /// date(2024, 3, 17).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1710 | /// ); |
| 1711 | /// |
| 1712 | /// // "not this Thursday, but next Thursday" |
| 1713 | /// let next_next_thursday = zdt.nth_weekday(2, Weekday::Thursday)?; |
| 1714 | /// assert_eq!( |
| 1715 | /// next_next_thursday, |
| 1716 | /// date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1717 | /// ); |
| 1718 | /// |
| 1719 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1720 | /// ``` |
| 1721 | /// |
| 1722 | /// This example shows how to find the "nth" weekday going backwards in |
| 1723 | /// time: |
| 1724 | /// |
| 1725 | /// ``` |
| 1726 | /// use jiff::civil::{Weekday, date}; |
| 1727 | /// |
| 1728 | /// // Use a Sunday in March as our start date. |
| 1729 | /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1730 | /// assert_eq!(zdt.weekday(), Weekday::Sunday); |
| 1731 | /// |
| 1732 | /// // "last Saturday" was yesterday! |
| 1733 | /// let last_saturday = zdt.nth_weekday(-1, Weekday::Saturday)?; |
| 1734 | /// assert_eq!( |
| 1735 | /// last_saturday, |
| 1736 | /// date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1737 | /// ); |
| 1738 | /// |
| 1739 | /// // "last Sunday" was a week ago. |
| 1740 | /// let last_sunday = zdt.nth_weekday(-1, Weekday::Sunday)?; |
| 1741 | /// assert_eq!( |
| 1742 | /// last_sunday, |
| 1743 | /// date(2024, 3, 3).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1744 | /// ); |
| 1745 | /// |
| 1746 | /// // "not last Thursday, but the one before" |
| 1747 | /// let prev_prev_thursday = zdt.nth_weekday(-2, Weekday::Thursday)?; |
| 1748 | /// assert_eq!( |
| 1749 | /// prev_prev_thursday, |
| 1750 | /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1751 | /// ); |
| 1752 | /// |
| 1753 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1754 | /// ``` |
| 1755 | /// |
| 1756 | /// This example shows that overflow results in an error in either |
| 1757 | /// direction: |
| 1758 | /// |
| 1759 | /// ``` |
| 1760 | /// use jiff::{civil::Weekday, Timestamp}; |
| 1761 | /// |
| 1762 | /// let zdt = Timestamp::MAX.in_tz("America/New_York" )?; |
| 1763 | /// assert_eq!(zdt.weekday(), Weekday::Thursday); |
| 1764 | /// assert!(zdt.nth_weekday(1, Weekday::Saturday).is_err()); |
| 1765 | /// |
| 1766 | /// let zdt = Timestamp::MIN.in_tz("America/New_York" )?; |
| 1767 | /// assert_eq!(zdt.weekday(), Weekday::Monday); |
| 1768 | /// assert!(zdt.nth_weekday(-1, Weekday::Sunday).is_err()); |
| 1769 | /// |
| 1770 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1771 | /// ``` |
| 1772 | /// |
| 1773 | /// # Example: getting the start of the week |
| 1774 | /// |
| 1775 | /// Given a date, one can use `nth_weekday` to determine the start of the |
| 1776 | /// week in which the date resides in. This might vary based on whether |
| 1777 | /// the weeks start on Sunday or Monday. This example shows how to handle |
| 1778 | /// both. |
| 1779 | /// |
| 1780 | /// ``` |
| 1781 | /// use jiff::civil::{Weekday, date}; |
| 1782 | /// |
| 1783 | /// let zdt = date(2024, 3, 15).at(7, 30, 0, 0).in_tz("America/New_York" )?; |
| 1784 | /// // For weeks starting with Sunday. |
| 1785 | /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
| 1786 | /// assert_eq!( |
| 1787 | /// start_of_week, |
| 1788 | /// date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1789 | /// ); |
| 1790 | /// // For weeks starting with Monday. |
| 1791 | /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Monday)?; |
| 1792 | /// assert_eq!( |
| 1793 | /// start_of_week, |
| 1794 | /// date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York" )?, |
| 1795 | /// ); |
| 1796 | /// |
| 1797 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1798 | /// ``` |
| 1799 | /// |
| 1800 | /// In the above example, we first get the date after the current one |
| 1801 | /// because `nth_weekday` does not consider itself when counting. This |
| 1802 | /// works as expected even at the boundaries of a week: |
| 1803 | /// |
| 1804 | /// ``` |
| 1805 | /// use jiff::civil::{Time, Weekday, date}; |
| 1806 | /// |
| 1807 | /// // The start of the week. |
| 1808 | /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 1809 | /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?; |
| 1810 | /// assert_eq!( |
| 1811 | /// start_of_week, |
| 1812 | /// date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 1813 | /// ); |
| 1814 | /// // The end of the week. |
| 1815 | /// let zdt = date(2024, 3, 16) |
| 1816 | /// .at(23, 59, 59, 999_999_999) |
| 1817 | /// .in_tz("America/New_York" )?; |
| 1818 | /// let start_of_week = zdt |
| 1819 | /// .tomorrow()? |
| 1820 | /// .nth_weekday(-1, Weekday::Sunday)? |
| 1821 | /// .with().time(Time::midnight()).build()?; |
| 1822 | /// assert_eq!( |
| 1823 | /// start_of_week, |
| 1824 | /// date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 1825 | /// ); |
| 1826 | /// |
| 1827 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1828 | /// ``` |
| 1829 | #[inline ] |
| 1830 | pub fn nth_weekday( |
| 1831 | &self, |
| 1832 | nth: i32, |
| 1833 | weekday: Weekday, |
| 1834 | ) -> Result<Zoned, Error> { |
| 1835 | self.datetime() |
| 1836 | .nth_weekday(nth, weekday)? |
| 1837 | .to_zoned(self.time_zone().clone()) |
| 1838 | } |
| 1839 | |
| 1840 | /// Returns the precise instant in time referred to by this zoned datetime. |
| 1841 | /// |
| 1842 | /// # Example |
| 1843 | /// |
| 1844 | /// ``` |
| 1845 | /// use jiff::civil::date; |
| 1846 | /// |
| 1847 | /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1848 | /// assert_eq!(zdt.timestamp().as_second(), 1_710_456_300); |
| 1849 | /// |
| 1850 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1851 | /// ``` |
| 1852 | #[inline ] |
| 1853 | pub fn timestamp(&self) -> Timestamp { |
| 1854 | self.inner.timestamp |
| 1855 | } |
| 1856 | |
| 1857 | /// Returns the civil datetime component of this zoned datetime. |
| 1858 | /// |
| 1859 | /// # Example |
| 1860 | /// |
| 1861 | /// ``` |
| 1862 | /// use jiff::civil::date; |
| 1863 | /// |
| 1864 | /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1865 | /// assert_eq!(zdt.datetime(), date(2024, 3, 14).at(18, 45, 0, 0)); |
| 1866 | /// |
| 1867 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1868 | /// ``` |
| 1869 | #[inline ] |
| 1870 | pub fn datetime(&self) -> DateTime { |
| 1871 | self.inner.datetime |
| 1872 | } |
| 1873 | |
| 1874 | /// Returns the civil date component of this zoned datetime. |
| 1875 | /// |
| 1876 | /// # Example |
| 1877 | /// |
| 1878 | /// ``` |
| 1879 | /// use jiff::civil::date; |
| 1880 | /// |
| 1881 | /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1882 | /// assert_eq!(zdt.date(), date(2024, 3, 14)); |
| 1883 | /// |
| 1884 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1885 | /// ``` |
| 1886 | #[inline ] |
| 1887 | pub fn date(&self) -> Date { |
| 1888 | self.datetime().date() |
| 1889 | } |
| 1890 | |
| 1891 | /// Returns the civil time component of this zoned datetime. |
| 1892 | /// |
| 1893 | /// # Example |
| 1894 | /// |
| 1895 | /// ``` |
| 1896 | /// use jiff::civil::{date, time}; |
| 1897 | /// |
| 1898 | /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1899 | /// assert_eq!(zdt.time(), time(18, 45, 0, 0)); |
| 1900 | /// |
| 1901 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1902 | /// ``` |
| 1903 | #[inline ] |
| 1904 | pub fn time(&self) -> Time { |
| 1905 | self.datetime().time() |
| 1906 | } |
| 1907 | |
| 1908 | /// Construct a civil [ISO 8601 week date] from this zoned datetime. |
| 1909 | /// |
| 1910 | /// The [`ISOWeekDate`] type describes itself in more detail, but in |
| 1911 | /// brief, the ISO week date calendar system eschews months in favor of |
| 1912 | /// weeks. |
| 1913 | /// |
| 1914 | /// This routine is equivalent to |
| 1915 | /// [`ISOWeekDate::from_date(zdt.date())`](ISOWeekDate::from_date). |
| 1916 | /// |
| 1917 | /// [ISO 8601 week date]: https://en.wikipedia.org/wiki/ISO_week_date |
| 1918 | /// |
| 1919 | /// # Example |
| 1920 | /// |
| 1921 | /// This shows a number of examples demonstrating the conversion from a |
| 1922 | /// Gregorian date to an ISO 8601 week date: |
| 1923 | /// |
| 1924 | /// ``` |
| 1925 | /// use jiff::civil::{Date, Time, Weekday, date}; |
| 1926 | /// |
| 1927 | /// let zdt = date(1995, 1, 1).at(18, 45, 0, 0).in_tz("US/Eastern" )?; |
| 1928 | /// let weekdate = zdt.iso_week_date(); |
| 1929 | /// assert_eq!(weekdate.year(), 1994); |
| 1930 | /// assert_eq!(weekdate.week(), 52); |
| 1931 | /// assert_eq!(weekdate.weekday(), Weekday::Sunday); |
| 1932 | /// |
| 1933 | /// let zdt = date(1996, 12, 31).at(18, 45, 0, 0).in_tz("US/Eastern" )?; |
| 1934 | /// let weekdate = zdt.iso_week_date(); |
| 1935 | /// assert_eq!(weekdate.year(), 1997); |
| 1936 | /// assert_eq!(weekdate.week(), 1); |
| 1937 | /// assert_eq!(weekdate.weekday(), Weekday::Tuesday); |
| 1938 | /// |
| 1939 | /// let zdt = date(2019, 12, 30).at(18, 45, 0, 0).in_tz("US/Eastern" )?; |
| 1940 | /// let weekdate = zdt.iso_week_date(); |
| 1941 | /// assert_eq!(weekdate.year(), 2020); |
| 1942 | /// assert_eq!(weekdate.week(), 1); |
| 1943 | /// assert_eq!(weekdate.weekday(), Weekday::Monday); |
| 1944 | /// |
| 1945 | /// let zdt = date(2024, 3, 9).at(18, 45, 0, 0).in_tz("US/Eastern" )?; |
| 1946 | /// let weekdate = zdt.iso_week_date(); |
| 1947 | /// assert_eq!(weekdate.year(), 2024); |
| 1948 | /// assert_eq!(weekdate.week(), 10); |
| 1949 | /// assert_eq!(weekdate.weekday(), Weekday::Saturday); |
| 1950 | /// |
| 1951 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1952 | /// ``` |
| 1953 | #[inline ] |
| 1954 | pub fn iso_week_date(self) -> ISOWeekDate { |
| 1955 | self.date().iso_week_date() |
| 1956 | } |
| 1957 | |
| 1958 | /// Returns the time zone offset of this zoned datetime. |
| 1959 | /// |
| 1960 | /// # Example |
| 1961 | /// |
| 1962 | /// ``` |
| 1963 | /// use jiff::civil::date; |
| 1964 | /// |
| 1965 | /// let zdt = date(2024, 2, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1966 | /// // -05 because New York is in "standard" time at this point. |
| 1967 | /// assert_eq!(zdt.offset(), jiff::tz::offset(-5)); |
| 1968 | /// |
| 1969 | /// let zdt = date(2024, 7, 14).at(18, 45, 0, 0).in_tz("America/New_York" )?; |
| 1970 | /// // But we get -04 once "summer" or "daylight saving time" starts. |
| 1971 | /// assert_eq!(zdt.offset(), jiff::tz::offset(-4)); |
| 1972 | /// |
| 1973 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1974 | /// ``` |
| 1975 | #[inline ] |
| 1976 | pub fn offset(&self) -> Offset { |
| 1977 | self.inner.offset |
| 1978 | } |
| 1979 | |
| 1980 | /// Add the given span of time to this zoned datetime. If the sum would |
| 1981 | /// overflow the minimum or maximum zoned datetime values, then an error is |
| 1982 | /// returned. |
| 1983 | /// |
| 1984 | /// This operation accepts three different duration types: [`Span`], |
| 1985 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
| 1986 | /// `From` trait implementations for the [`ZonedArithmetic`] type. |
| 1987 | /// |
| 1988 | /// # Properties |
| 1989 | /// |
| 1990 | /// This routine is _not_ reversible because some additions may |
| 1991 | /// be ambiguous. For example, adding `1 month` to the zoned |
| 1992 | /// datetime `2024-03-31T00:00:00[America/New_York]` will produce |
| 1993 | /// `2024-04-30T00:00:00[America/New_York]` since April has |
| 1994 | /// only 30 days in a month. Moreover, subtracting `1 month` |
| 1995 | /// from `2024-04-30T00:00:00[America/New_York]` will produce |
| 1996 | /// `2024-03-30T00:00:00[America/New_York]`, which is not the date we |
| 1997 | /// started with. |
| 1998 | /// |
| 1999 | /// A similar argument applies for days, since with zoned datetimes, |
| 2000 | /// different days can be different lengths. |
| 2001 | /// |
| 2002 | /// If spans of time are limited to units of hours (or less), then this |
| 2003 | /// routine _is_ reversible. This also implies that all operations with a |
| 2004 | /// [`SignedDuration`] or a [`std::time::Duration`] are reversible. |
| 2005 | /// |
| 2006 | /// # Errors |
| 2007 | /// |
| 2008 | /// If the span added to this zoned datetime would result in a zoned |
| 2009 | /// datetime that exceeds the range of a `Zoned`, then this will return an |
| 2010 | /// error. |
| 2011 | /// |
| 2012 | /// # Example |
| 2013 | /// |
| 2014 | /// This shows a few examples of adding spans of time to various zoned |
| 2015 | /// datetimes. We make use of the [`ToSpan`](crate::ToSpan) trait for |
| 2016 | /// convenient creation of spans. |
| 2017 | /// |
| 2018 | /// ``` |
| 2019 | /// use jiff::{civil::date, ToSpan}; |
| 2020 | /// |
| 2021 | /// let zdt = date(1995, 12, 7) |
| 2022 | /// .at(3, 24, 30, 3_500) |
| 2023 | /// .in_tz("America/New_York" )?; |
| 2024 | /// let got = zdt.checked_add(20.years().months(4).nanoseconds(500))?; |
| 2025 | /// assert_eq!( |
| 2026 | /// got, |
| 2027 | /// date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York" )?, |
| 2028 | /// ); |
| 2029 | /// |
| 2030 | /// let zdt = date(2019, 1, 31).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 2031 | /// let got = zdt.checked_add(1.months())?; |
| 2032 | /// assert_eq!( |
| 2033 | /// got, |
| 2034 | /// date(2019, 2, 28).at(15, 30, 0, 0).in_tz("America/New_York" )?, |
| 2035 | /// ); |
| 2036 | /// |
| 2037 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2038 | /// ``` |
| 2039 | /// |
| 2040 | /// # Example: available via addition operator |
| 2041 | /// |
| 2042 | /// This routine can be used via the `+` operator. Note though that if it |
| 2043 | /// fails, it will result in a panic. Note that we use `&zdt + ...` instead |
| 2044 | /// of `zdt + ...` since `Add` is implemented for `&Zoned` and not `Zoned`. |
| 2045 | /// This is because `Zoned` is not `Copy`. |
| 2046 | /// |
| 2047 | /// ``` |
| 2048 | /// use jiff::{civil::date, ToSpan}; |
| 2049 | /// |
| 2050 | /// let zdt = date(1995, 12, 7) |
| 2051 | /// .at(3, 24, 30, 3_500) |
| 2052 | /// .in_tz("America/New_York" )?; |
| 2053 | /// let got = &zdt + 20.years().months(4).nanoseconds(500); |
| 2054 | /// assert_eq!( |
| 2055 | /// got, |
| 2056 | /// date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York" )?, |
| 2057 | /// ); |
| 2058 | /// |
| 2059 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2060 | /// ``` |
| 2061 | /// |
| 2062 | /// # Example: zone aware arithmetic |
| 2063 | /// |
| 2064 | /// This example demonstrates the difference between "add 1 day" and |
| 2065 | /// "add 24 hours." In the former case, 1 day might not correspond to 24 |
| 2066 | /// hours if there is a time zone transition in the intervening period. |
| 2067 | /// However, adding 24 hours always means adding exactly 24 hours. |
| 2068 | /// |
| 2069 | /// ``` |
| 2070 | /// use jiff::{civil::date, ToSpan}; |
| 2071 | /// |
| 2072 | /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 2073 | /// |
| 2074 | /// let one_day_later = zdt.checked_add(1.day())?; |
| 2075 | /// assert_eq!( |
| 2076 | /// one_day_later.to_string(), |
| 2077 | /// "2024-03-11T00:00:00-04:00[America/New_York]" , |
| 2078 | /// ); |
| 2079 | /// |
| 2080 | /// let twenty_four_hours_later = zdt.checked_add(24.hours())?; |
| 2081 | /// assert_eq!( |
| 2082 | /// twenty_four_hours_later.to_string(), |
| 2083 | /// "2024-03-11T01:00:00-04:00[America/New_York]" , |
| 2084 | /// ); |
| 2085 | /// |
| 2086 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2087 | /// ``` |
| 2088 | /// |
| 2089 | /// # Example: automatic disambiguation |
| 2090 | /// |
| 2091 | /// This example demonstrates what happens when adding a span |
| 2092 | /// of time results in an ambiguous zoned datetime. Zone aware |
| 2093 | /// arithmetic uses automatic disambiguation corresponding to the |
| 2094 | /// [`Disambiguation::Compatible`] |
| 2095 | /// strategy for resolving an ambiguous datetime to a precise instant. |
| 2096 | /// For example, in the case below, there is a gap in the clocks for 1 |
| 2097 | /// hour starting at `2024-03-10 02:00:00` in `America/New_York`. The |
| 2098 | /// "compatible" strategy chooses the later time in a gap:. |
| 2099 | /// |
| 2100 | /// ``` |
| 2101 | /// use jiff::{civil::date, ToSpan}; |
| 2102 | /// |
| 2103 | /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York" )?; |
| 2104 | /// let one_day_later = zdt.checked_add(1.day())?; |
| 2105 | /// assert_eq!( |
| 2106 | /// one_day_later.to_string(), |
| 2107 | /// "2024-03-10T03:30:00-04:00[America/New_York]" , |
| 2108 | /// ); |
| 2109 | /// |
| 2110 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2111 | /// ``` |
| 2112 | /// |
| 2113 | /// And this example demonstrates the "compatible" strategy when arithmetic |
| 2114 | /// results in an ambiguous datetime in a fold. In this case, we make use |
| 2115 | /// of the fact that the 1 o'clock hour was repeated on `2024-11-03`. |
| 2116 | /// |
| 2117 | /// ``` |
| 2118 | /// use jiff::{civil::date, ToSpan}; |
| 2119 | /// |
| 2120 | /// let zdt = date(2024, 11, 2).at(1, 30, 0, 0).in_tz("America/New_York" )?; |
| 2121 | /// let one_day_later = zdt.checked_add(1.day())?; |
| 2122 | /// assert_eq!( |
| 2123 | /// one_day_later.to_string(), |
| 2124 | /// // This corresponds to the first iteration of the 1 o'clock hour, |
| 2125 | /// // i.e., when DST is still in effect. It's the earlier time. |
| 2126 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
| 2127 | /// ); |
| 2128 | /// |
| 2129 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2130 | /// ``` |
| 2131 | /// |
| 2132 | /// # Example: negative spans are supported |
| 2133 | /// |
| 2134 | /// ``` |
| 2135 | /// use jiff::{civil::date, ToSpan}; |
| 2136 | /// |
| 2137 | /// let zdt = date(2024, 3, 31) |
| 2138 | /// .at(19, 5, 59, 999_999_999) |
| 2139 | /// .in_tz("America/New_York" )?; |
| 2140 | /// assert_eq!( |
| 2141 | /// zdt.checked_add(-1.months())?, |
| 2142 | /// date(2024, 2, 29). |
| 2143 | /// at(19, 5, 59, 999_999_999) |
| 2144 | /// .in_tz("America/New_York" )?, |
| 2145 | /// ); |
| 2146 | /// |
| 2147 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2148 | /// ``` |
| 2149 | /// |
| 2150 | /// # Example: error on overflow |
| 2151 | /// |
| 2152 | /// ``` |
| 2153 | /// use jiff::{civil::date, ToSpan}; |
| 2154 | /// |
| 2155 | /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York" )?; |
| 2156 | /// assert!(zdt.checked_add(9000.years()).is_err()); |
| 2157 | /// assert!(zdt.checked_add(-19000.years()).is_err()); |
| 2158 | /// |
| 2159 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2160 | /// ``` |
| 2161 | /// |
| 2162 | /// # Example: adding absolute durations |
| 2163 | /// |
| 2164 | /// This shows how to add signed and unsigned absolute durations to a |
| 2165 | /// `Zoned`. |
| 2166 | /// |
| 2167 | /// ``` |
| 2168 | /// use std::time::Duration; |
| 2169 | /// |
| 2170 | /// use jiff::{civil::date, SignedDuration}; |
| 2171 | /// |
| 2172 | /// let zdt = date(2024, 2, 29).at(0, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2173 | /// |
| 2174 | /// let dur = SignedDuration::from_hours(25); |
| 2175 | /// assert_eq!( |
| 2176 | /// zdt.checked_add(dur)?, |
| 2177 | /// date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern" )?, |
| 2178 | /// ); |
| 2179 | /// assert_eq!( |
| 2180 | /// zdt.checked_add(-dur)?, |
| 2181 | /// date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern" )?, |
| 2182 | /// ); |
| 2183 | /// |
| 2184 | /// let dur = Duration::from_secs(25 * 60 * 60); |
| 2185 | /// assert_eq!( |
| 2186 | /// zdt.checked_add(dur)?, |
| 2187 | /// date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern" )?, |
| 2188 | /// ); |
| 2189 | /// // One cannot negate an unsigned duration, |
| 2190 | /// // but you can subtract it! |
| 2191 | /// assert_eq!( |
| 2192 | /// zdt.checked_sub(dur)?, |
| 2193 | /// date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern" )?, |
| 2194 | /// ); |
| 2195 | /// |
| 2196 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2197 | /// ``` |
| 2198 | #[inline ] |
| 2199 | pub fn checked_add<A: Into<ZonedArithmetic>>( |
| 2200 | &self, |
| 2201 | duration: A, |
| 2202 | ) -> Result<Zoned, Error> { |
| 2203 | let duration: ZonedArithmetic = duration.into(); |
| 2204 | duration.checked_add(self) |
| 2205 | } |
| 2206 | |
| 2207 | #[inline ] |
| 2208 | fn checked_add_span(&self, span: Span) -> Result<Zoned, Error> { |
| 2209 | let span_calendar = span.only_calendar(); |
| 2210 | // If our duration only consists of "time" (hours, minutes, etc), then |
| 2211 | // we can short-circuit and do timestamp math. This also avoids dealing |
| 2212 | // with ambiguity and time zone bullshit. |
| 2213 | if span_calendar.is_zero() { |
| 2214 | return self |
| 2215 | .timestamp() |
| 2216 | .checked_add(span) |
| 2217 | .map(|ts| ts.to_zoned(self.time_zone().clone())) |
| 2218 | .with_context(|| { |
| 2219 | err!( |
| 2220 | "failed to add span {span} to timestamp {timestamp} \ |
| 2221 | from zoned datetime {zoned}" , |
| 2222 | timestamp = self.timestamp(), |
| 2223 | zoned = self, |
| 2224 | ) |
| 2225 | }); |
| 2226 | } |
| 2227 | let span_time = span.only_time(); |
| 2228 | let dt = |
| 2229 | self.datetime().checked_add(span_calendar).with_context(|| { |
| 2230 | err!( |
| 2231 | "failed to add span {span_calendar} to datetime {dt} \ |
| 2232 | from zoned datetime {zoned}" , |
| 2233 | dt = self.datetime(), |
| 2234 | zoned = self, |
| 2235 | ) |
| 2236 | })?; |
| 2237 | |
| 2238 | let tz = self.time_zone(); |
| 2239 | let mut ts = |
| 2240 | tz.to_ambiguous_timestamp(dt).compatible().with_context(|| { |
| 2241 | err!( |
| 2242 | "failed to convert civil datetime {dt} to timestamp \ |
| 2243 | with time zone {tz}" , |
| 2244 | tz = self.time_zone().diagnostic_name(), |
| 2245 | ) |
| 2246 | })?; |
| 2247 | ts = ts.checked_add(span_time).with_context(|| { |
| 2248 | err!( |
| 2249 | "failed to add span {span_time} to timestamp {ts} \ |
| 2250 | (which was created from {dt})" |
| 2251 | ) |
| 2252 | })?; |
| 2253 | Ok(ts.to_zoned(tz.clone())) |
| 2254 | } |
| 2255 | |
| 2256 | #[inline ] |
| 2257 | fn checked_add_duration( |
| 2258 | &self, |
| 2259 | duration: SignedDuration, |
| 2260 | ) -> Result<Zoned, Error> { |
| 2261 | self.timestamp() |
| 2262 | .checked_add(duration) |
| 2263 | .map(|ts| ts.to_zoned(self.time_zone().clone())) |
| 2264 | } |
| 2265 | |
| 2266 | /// This routine is identical to [`Zoned::checked_add`] with the |
| 2267 | /// duration negated. |
| 2268 | /// |
| 2269 | /// # Errors |
| 2270 | /// |
| 2271 | /// This has the same error conditions as [`Zoned::checked_add`]. |
| 2272 | /// |
| 2273 | /// # Example |
| 2274 | /// |
| 2275 | /// This routine can be used via the `-` operator. Note though that if it |
| 2276 | /// fails, it will result in a panic. Note that we use `&zdt - ...` instead |
| 2277 | /// of `zdt - ...` since `Sub` is implemented for `&Zoned` and not `Zoned`. |
| 2278 | /// This is because `Zoned` is not `Copy`. |
| 2279 | /// |
| 2280 | /// ``` |
| 2281 | /// use std::time::Duration; |
| 2282 | /// |
| 2283 | /// use jiff::{civil::date, SignedDuration, ToSpan}; |
| 2284 | /// |
| 2285 | /// let zdt = date(1995, 12, 7) |
| 2286 | /// .at(3, 24, 30, 3_500) |
| 2287 | /// .in_tz("America/New_York" )?; |
| 2288 | /// let got = &zdt - 20.years().months(4).nanoseconds(500); |
| 2289 | /// assert_eq!( |
| 2290 | /// got, |
| 2291 | /// date(1975, 8, 7).at(3, 24, 30, 3_000).in_tz("America/New_York" )?, |
| 2292 | /// ); |
| 2293 | /// |
| 2294 | /// let dur = SignedDuration::new(24 * 60 * 60, 500); |
| 2295 | /// assert_eq!( |
| 2296 | /// &zdt - dur, |
| 2297 | /// date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York" )?, |
| 2298 | /// ); |
| 2299 | /// |
| 2300 | /// let dur = Duration::new(24 * 60 * 60, 500); |
| 2301 | /// assert_eq!( |
| 2302 | /// &zdt - dur, |
| 2303 | /// date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York" )?, |
| 2304 | /// ); |
| 2305 | /// |
| 2306 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2307 | /// ``` |
| 2308 | #[inline ] |
| 2309 | pub fn checked_sub<A: Into<ZonedArithmetic>>( |
| 2310 | &self, |
| 2311 | duration: A, |
| 2312 | ) -> Result<Zoned, Error> { |
| 2313 | let duration: ZonedArithmetic = duration.into(); |
| 2314 | duration.checked_neg().and_then(|za| za.checked_add(self)) |
| 2315 | } |
| 2316 | |
| 2317 | /// This routine is identical to [`Zoned::checked_add`], except the |
| 2318 | /// result saturates on overflow. That is, instead of overflow, either |
| 2319 | /// [`Timestamp::MIN`] or [`Timestamp::MAX`] (in this `Zoned` value's time |
| 2320 | /// zone) is returned. |
| 2321 | /// |
| 2322 | /// # Properties |
| 2323 | /// |
| 2324 | /// The properties of this routine are identical to [`Zoned::checked_add`], |
| 2325 | /// except that if saturation occurs, then the result is not reversible. |
| 2326 | /// |
| 2327 | /// # Example |
| 2328 | /// |
| 2329 | /// ``` |
| 2330 | /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan}; |
| 2331 | /// |
| 2332 | /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York" )?; |
| 2333 | /// assert_eq!(Timestamp::MAX, zdt.saturating_add(9000.years()).timestamp()); |
| 2334 | /// assert_eq!(Timestamp::MIN, zdt.saturating_add(-19000.years()).timestamp()); |
| 2335 | /// assert_eq!(Timestamp::MAX, zdt.saturating_add(SignedDuration::MAX).timestamp()); |
| 2336 | /// assert_eq!(Timestamp::MIN, zdt.saturating_add(SignedDuration::MIN).timestamp()); |
| 2337 | /// assert_eq!(Timestamp::MAX, zdt.saturating_add(std::time::Duration::MAX).timestamp()); |
| 2338 | /// |
| 2339 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2340 | /// ``` |
| 2341 | #[inline ] |
| 2342 | pub fn saturating_add<A: Into<ZonedArithmetic>>( |
| 2343 | &self, |
| 2344 | duration: A, |
| 2345 | ) -> Zoned { |
| 2346 | let duration: ZonedArithmetic = duration.into(); |
| 2347 | self.checked_add(duration).unwrap_or_else(|_| { |
| 2348 | let ts = if duration.is_negative() { |
| 2349 | Timestamp::MIN |
| 2350 | } else { |
| 2351 | Timestamp::MAX |
| 2352 | }; |
| 2353 | ts.to_zoned(self.time_zone().clone()) |
| 2354 | }) |
| 2355 | } |
| 2356 | |
| 2357 | /// This routine is identical to [`Zoned::saturating_add`] with the span |
| 2358 | /// parameter negated. |
| 2359 | /// |
| 2360 | /// # Example |
| 2361 | /// |
| 2362 | /// ``` |
| 2363 | /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan}; |
| 2364 | /// |
| 2365 | /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York" )?; |
| 2366 | /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(19000.years()).timestamp()); |
| 2367 | /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(-9000.years()).timestamp()); |
| 2368 | /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(SignedDuration::MAX).timestamp()); |
| 2369 | /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(SignedDuration::MIN).timestamp()); |
| 2370 | /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(std::time::Duration::MAX).timestamp()); |
| 2371 | /// |
| 2372 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2373 | /// ``` |
| 2374 | #[inline ] |
| 2375 | pub fn saturating_sub<A: Into<ZonedArithmetic>>( |
| 2376 | &self, |
| 2377 | duration: A, |
| 2378 | ) -> Zoned { |
| 2379 | let duration: ZonedArithmetic = duration.into(); |
| 2380 | let Ok(duration) = duration.checked_neg() else { |
| 2381 | return Timestamp::MIN.to_zoned(self.time_zone().clone()); |
| 2382 | }; |
| 2383 | self.saturating_add(duration) |
| 2384 | } |
| 2385 | |
| 2386 | /// Returns a span representing the elapsed time from this zoned datetime |
| 2387 | /// until the given `other` zoned datetime. |
| 2388 | /// |
| 2389 | /// When `other` occurs before this datetime, then the span returned will |
| 2390 | /// be negative. |
| 2391 | /// |
| 2392 | /// Depending on the input provided, the span returned is rounded. It may |
| 2393 | /// also be balanced up to bigger units than the default. By default, the |
| 2394 | /// span returned is balanced such that the biggest possible unit is hours. |
| 2395 | /// This default is an API guarantee. Users can rely on the default not |
| 2396 | /// returning any calendar units in the default configuration. |
| 2397 | /// |
| 2398 | /// This operation is configured by providing a [`ZonedDifference`] |
| 2399 | /// value. Since this routine accepts anything that implements |
| 2400 | /// `Into<ZonedDifference>`, once can pass a `&Zoned` directly. |
| 2401 | /// One can also pass a `(Unit, &Zoned)`, where `Unit` is treated as |
| 2402 | /// [`ZonedDifference::largest`]. |
| 2403 | /// |
| 2404 | /// # Properties |
| 2405 | /// |
| 2406 | /// It is guaranteed that if the returned span is subtracted from `other`, |
| 2407 | /// and if no rounding is requested, and if the largest unit requested |
| 2408 | /// is at most `Unit::Hour`, then the original zoned datetime will be |
| 2409 | /// returned. |
| 2410 | /// |
| 2411 | /// This routine is equivalent to `self.since(other).map(|span| -span)` |
| 2412 | /// if no rounding options are set. If rounding options are set, then |
| 2413 | /// it's equivalent to |
| 2414 | /// `self.since(other_without_rounding_options).map(|span| -span)`, |
| 2415 | /// followed by a call to [`Span::round`] with the appropriate rounding |
| 2416 | /// options set. This is because the negation of a span can result in |
| 2417 | /// different rounding results depending on the rounding mode. |
| 2418 | /// |
| 2419 | /// # Errors |
| 2420 | /// |
| 2421 | /// An error can occur in some cases when the requested configuration |
| 2422 | /// would result in a span that is beyond allowable limits. For example, |
| 2423 | /// the nanosecond component of a span cannot represent the span of |
| 2424 | /// time between the minimum and maximum zoned datetime supported by Jiff. |
| 2425 | /// Therefore, if one requests a span with its largest unit set to |
| 2426 | /// [`Unit::Nanosecond`], then it's possible for this routine to fail. |
| 2427 | /// |
| 2428 | /// An error can also occur if `ZonedDifference` is misconfigured. For |
| 2429 | /// example, if the smallest unit provided is bigger than the largest unit. |
| 2430 | /// |
| 2431 | /// An error can also occur if units greater than `Unit::Hour` are |
| 2432 | /// requested _and_ if the time zones in the provided zoned datetimes |
| 2433 | /// are distinct. (See [`TimeZone`]'s section on equality for details on |
| 2434 | /// how equality is determined.) This error occurs because the length of |
| 2435 | /// a day may vary depending on the time zone. To work around this |
| 2436 | /// restriction, convert one or both of the zoned datetimes into the same |
| 2437 | /// time zone. |
| 2438 | /// |
| 2439 | /// It is guaranteed that if one provides a datetime with the default |
| 2440 | /// [`ZonedDifference`] configuration, then this routine will never |
| 2441 | /// fail. |
| 2442 | /// |
| 2443 | /// # Example |
| 2444 | /// |
| 2445 | /// ``` |
| 2446 | /// use jiff::{civil::date, ToSpan}; |
| 2447 | /// |
| 2448 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York" )?; |
| 2449 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
| 2450 | /// assert_eq!( |
| 2451 | /// earlier.until(&later)?, |
| 2452 | /// 109_031.hours().minutes(30).fieldwise(), |
| 2453 | /// ); |
| 2454 | /// |
| 2455 | /// // Flipping the dates is fine, but you'll get a negative span. |
| 2456 | /// assert_eq!( |
| 2457 | /// later.until(&earlier)?, |
| 2458 | /// -109_031.hours().minutes(30).fieldwise(), |
| 2459 | /// ); |
| 2460 | /// |
| 2461 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2462 | /// ``` |
| 2463 | /// |
| 2464 | /// # Example: using bigger units |
| 2465 | /// |
| 2466 | /// This example shows how to expand the span returned to bigger units. |
| 2467 | /// This makes use of a `From<(Unit, &Zoned)> for ZonedDifference` |
| 2468 | /// trait implementation. |
| 2469 | /// |
| 2470 | /// ``` |
| 2471 | /// use jiff::{civil::date, Unit, ToSpan}; |
| 2472 | /// |
| 2473 | /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York" )?; |
| 2474 | /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 2475 | /// |
| 2476 | /// // The default limits durations to using "hours" as the biggest unit. |
| 2477 | /// let span = zdt1.until(&zdt2)?; |
| 2478 | /// assert_eq!(span.to_string(), "PT202956H5M29.9999965S" ); |
| 2479 | /// |
| 2480 | /// // But we can ask for units all the way up to years. |
| 2481 | /// let span = zdt1.until((Unit::Year, &zdt2))?; |
| 2482 | /// assert_eq!(format!("{span:#}" ), "23y 1mo 24d 12h 5m 29s 999ms 996µs 500ns" ); |
| 2483 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2484 | /// ``` |
| 2485 | /// |
| 2486 | /// # Example: rounding the result |
| 2487 | /// |
| 2488 | /// This shows how one might find the difference between two zoned |
| 2489 | /// datetimes and have the result rounded such that sub-seconds are |
| 2490 | /// removed. |
| 2491 | /// |
| 2492 | /// In this case, we need to hand-construct a [`ZonedDifference`] |
| 2493 | /// in order to gain full configurability. |
| 2494 | /// |
| 2495 | /// ``` |
| 2496 | /// use jiff::{civil::date, Unit, ToSpan, ZonedDifference}; |
| 2497 | /// |
| 2498 | /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York" )?; |
| 2499 | /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 2500 | /// |
| 2501 | /// let span = zdt1.until( |
| 2502 | /// ZonedDifference::from(&zdt2).smallest(Unit::Second), |
| 2503 | /// )?; |
| 2504 | /// assert_eq!(format!("{span:#}" ), "202956h 5m 29s" ); |
| 2505 | /// |
| 2506 | /// // We can combine smallest and largest units too! |
| 2507 | /// let span = zdt1.until( |
| 2508 | /// ZonedDifference::from(&zdt2) |
| 2509 | /// .smallest(Unit::Second) |
| 2510 | /// .largest(Unit::Year), |
| 2511 | /// )?; |
| 2512 | /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29S" ); |
| 2513 | /// |
| 2514 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2515 | /// ``` |
| 2516 | /// |
| 2517 | /// # Example: units biggers than days inhibit reversibility |
| 2518 | /// |
| 2519 | /// If you ask for units bigger than hours, then adding the span returned |
| 2520 | /// to the `other` zoned datetime is not guaranteed to result in the |
| 2521 | /// original zoned datetime. For example: |
| 2522 | /// |
| 2523 | /// ``` |
| 2524 | /// use jiff::{civil::date, Unit, ToSpan}; |
| 2525 | /// |
| 2526 | /// let zdt1 = date(2024, 3, 2).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 2527 | /// let zdt2 = date(2024, 5, 1).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 2528 | /// |
| 2529 | /// let span = zdt1.until((Unit::Month, &zdt2))?; |
| 2530 | /// assert_eq!(span, 1.month().days(29).fieldwise()); |
| 2531 | /// let maybe_original = zdt2.checked_sub(span)?; |
| 2532 | /// // Not the same as the original datetime! |
| 2533 | /// assert_eq!( |
| 2534 | /// maybe_original, |
| 2535 | /// date(2024, 3, 3).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 2536 | /// ); |
| 2537 | /// |
| 2538 | /// // But in the default configuration, hours are always the biggest unit |
| 2539 | /// // and reversibility is guaranteed. |
| 2540 | /// let span = zdt1.until(&zdt2)?; |
| 2541 | /// assert_eq!(span.to_string(), "PT1439H" ); |
| 2542 | /// let is_original = zdt2.checked_sub(span)?; |
| 2543 | /// assert_eq!(is_original, zdt1); |
| 2544 | /// |
| 2545 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2546 | /// ``` |
| 2547 | /// |
| 2548 | /// This occurs because spans are added as if by adding the biggest units |
| 2549 | /// first, and then the smaller units. Because months vary in length, |
| 2550 | /// their meaning can change depending on how the span is added. In this |
| 2551 | /// case, adding one month to `2024-03-02` corresponds to 31 days, but |
| 2552 | /// subtracting one month from `2024-05-01` corresponds to 30 days. |
| 2553 | #[inline ] |
| 2554 | pub fn until<'a, A: Into<ZonedDifference<'a>>>( |
| 2555 | &self, |
| 2556 | other: A, |
| 2557 | ) -> Result<Span, Error> { |
| 2558 | let args: ZonedDifference = other.into(); |
| 2559 | let span = args.until_with_largest_unit(self)?; |
| 2560 | if args.rounding_may_change_span() { |
| 2561 | span.round(args.round.relative(self)) |
| 2562 | } else { |
| 2563 | Ok(span) |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | /// This routine is identical to [`Zoned::until`], but the order of the |
| 2568 | /// parameters is flipped. |
| 2569 | /// |
| 2570 | /// # Errors |
| 2571 | /// |
| 2572 | /// This has the same error conditions as [`Zoned::until`]. |
| 2573 | /// |
| 2574 | /// # Example |
| 2575 | /// |
| 2576 | /// This routine can be used via the `-` operator. Since the default |
| 2577 | /// configuration is used and because a `Span` can represent the difference |
| 2578 | /// between any two possible zoned datetimes, it will never panic. Note |
| 2579 | /// that we use `&zdt1 - &zdt2` instead of `zdt1 - zdt2` since `Sub` is |
| 2580 | /// implemented for `&Zoned` and not `Zoned`. This is because `Zoned` is |
| 2581 | /// not `Copy`. |
| 2582 | /// |
| 2583 | /// ``` |
| 2584 | /// use jiff::{civil::date, ToSpan}; |
| 2585 | /// |
| 2586 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York" )?; |
| 2587 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York" )?; |
| 2588 | /// assert_eq!(&later - &earlier, 109_031.hours().minutes(30).fieldwise()); |
| 2589 | /// |
| 2590 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2591 | /// ``` |
| 2592 | #[inline ] |
| 2593 | pub fn since<'a, A: Into<ZonedDifference<'a>>>( |
| 2594 | &self, |
| 2595 | other: A, |
| 2596 | ) -> Result<Span, Error> { |
| 2597 | let args: ZonedDifference = other.into(); |
| 2598 | let span = -args.until_with_largest_unit(self)?; |
| 2599 | if args.rounding_may_change_span() { |
| 2600 | span.round(args.round.relative(self)) |
| 2601 | } else { |
| 2602 | Ok(span) |
| 2603 | } |
| 2604 | } |
| 2605 | |
| 2606 | /// Returns an absolute duration representing the elapsed time from this |
| 2607 | /// zoned datetime until the given `other` zoned datetime. |
| 2608 | /// |
| 2609 | /// When `other` occurs before this zoned datetime, then the duration |
| 2610 | /// returned will be negative. |
| 2611 | /// |
| 2612 | /// Unlike [`Zoned::until`], this always returns a duration |
| 2613 | /// corresponding to a 96-bit integer of nanoseconds between two |
| 2614 | /// zoned datetimes. |
| 2615 | /// |
| 2616 | /// # Fallibility |
| 2617 | /// |
| 2618 | /// This routine never panics or returns an error. Since there are no |
| 2619 | /// configuration options that can be incorrectly provided, no error is |
| 2620 | /// possible when calling this routine. In contrast, [`Zoned::until`] |
| 2621 | /// can return an error in some cases due to misconfiguration. But like |
| 2622 | /// this routine, [`Zoned::until`] never panics or returns an error in |
| 2623 | /// its default configuration. |
| 2624 | /// |
| 2625 | /// # When should I use this versus [`Zoned::until`]? |
| 2626 | /// |
| 2627 | /// See the type documentation for [`SignedDuration`] for the section on |
| 2628 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
| 2629 | /// In short, use `Span` (and therefore `Timestamp::until`) unless you have |
| 2630 | /// a specific reason to do otherwise. |
| 2631 | /// |
| 2632 | /// # Example |
| 2633 | /// |
| 2634 | /// ``` |
| 2635 | /// use jiff::{civil::date, SignedDuration}; |
| 2636 | /// |
| 2637 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern" )?; |
| 2638 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2639 | /// assert_eq!( |
| 2640 | /// earlier.duration_until(&later), |
| 2641 | /// SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30), |
| 2642 | /// ); |
| 2643 | /// |
| 2644 | /// // Flipping the dates is fine, but you'll get a negative span. |
| 2645 | /// assert_eq!( |
| 2646 | /// later.duration_until(&earlier), |
| 2647 | /// -SignedDuration::from_hours(109_031) + -SignedDuration::from_mins(30), |
| 2648 | /// ); |
| 2649 | /// |
| 2650 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2651 | /// ``` |
| 2652 | /// |
| 2653 | /// # Example: difference with [`Zoned::until`] |
| 2654 | /// |
| 2655 | /// The main difference between this routine and `Zoned::until` is that |
| 2656 | /// the latter can return units other than a 96-bit integer of nanoseconds. |
| 2657 | /// While a 96-bit integer of nanoseconds can be converted into other units |
| 2658 | /// like hours, this can only be done for uniform units. (Uniform units are |
| 2659 | /// units for which each individual unit always corresponds to the same |
| 2660 | /// elapsed time regardless of the datetime it is relative to.) This can't |
| 2661 | /// be done for units like years, months or days. |
| 2662 | /// |
| 2663 | /// ``` |
| 2664 | /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit}; |
| 2665 | /// |
| 2666 | /// let zdt1 = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2667 | /// let zdt2 = date(2024, 3, 11).at(0, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2668 | /// |
| 2669 | /// let span = zdt1.until((Unit::Day, &zdt2))?; |
| 2670 | /// assert_eq!(format!("{span:#}" ), "1d" ); |
| 2671 | /// |
| 2672 | /// let duration = zdt1.duration_until(&zdt2); |
| 2673 | /// // This day was only 23 hours long! |
| 2674 | /// assert_eq!(duration, SignedDuration::from_hours(23)); |
| 2675 | /// // There's no way to extract years, months or days from the signed |
| 2676 | /// // duration like one might extract hours (because every hour |
| 2677 | /// // is the same length). Instead, you actually have to convert |
| 2678 | /// // it to a span and then balance it by providing a relative date! |
| 2679 | /// let options = SpanRound::new().largest(Unit::Day).relative(&zdt1); |
| 2680 | /// let span = Span::try_from(duration)?.round(options)?; |
| 2681 | /// assert_eq!(format!("{span:#}" ), "1d" ); |
| 2682 | /// |
| 2683 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2684 | /// ``` |
| 2685 | /// |
| 2686 | /// # Example: getting an unsigned duration |
| 2687 | /// |
| 2688 | /// If you're looking to find the duration between two zoned datetimes as |
| 2689 | /// a [`std::time::Duration`], you'll need to use this method to get a |
| 2690 | /// [`SignedDuration`] and then convert it to a `std::time::Duration`: |
| 2691 | /// |
| 2692 | /// ``` |
| 2693 | /// use std::time::Duration; |
| 2694 | /// |
| 2695 | /// use jiff::civil::date; |
| 2696 | /// |
| 2697 | /// let zdt1 = date(2024, 7, 1).at(0, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2698 | /// let zdt2 = date(2024, 8, 1).at(0, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2699 | /// let duration = Duration::try_from(zdt1.duration_until(&zdt2))?; |
| 2700 | /// assert_eq!(duration, Duration::from_secs(31 * 24 * 60 * 60)); |
| 2701 | /// |
| 2702 | /// // Note that unsigned durations cannot represent all |
| 2703 | /// // possible differences! If the duration would be negative, |
| 2704 | /// // then the conversion fails: |
| 2705 | /// assert!(Duration::try_from(zdt2.duration_until(&zdt1)).is_err()); |
| 2706 | /// |
| 2707 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2708 | /// ``` |
| 2709 | #[inline ] |
| 2710 | pub fn duration_until(&self, other: &Zoned) -> SignedDuration { |
| 2711 | SignedDuration::zoned_until(self, other) |
| 2712 | } |
| 2713 | |
| 2714 | /// This routine is identical to [`Zoned::duration_until`], but the |
| 2715 | /// order of the parameters is flipped. |
| 2716 | /// |
| 2717 | /// # Example |
| 2718 | /// |
| 2719 | /// ``` |
| 2720 | /// use jiff::{civil::date, SignedDuration}; |
| 2721 | /// |
| 2722 | /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern" )?; |
| 2723 | /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern" )?; |
| 2724 | /// assert_eq!( |
| 2725 | /// later.duration_since(&earlier), |
| 2726 | /// SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30), |
| 2727 | /// ); |
| 2728 | /// |
| 2729 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2730 | /// ``` |
| 2731 | #[inline ] |
| 2732 | pub fn duration_since(&self, other: &Zoned) -> SignedDuration { |
| 2733 | SignedDuration::zoned_until(other, self) |
| 2734 | } |
| 2735 | |
| 2736 | /// Rounds this zoned datetime according to the [`ZonedRound`] |
| 2737 | /// configuration given. |
| 2738 | /// |
| 2739 | /// The principal option is [`ZonedRound::smallest`], which allows one to |
| 2740 | /// configure the smallest units in the returned zoned datetime. Rounding |
| 2741 | /// is what determines whether that unit should keep its current value |
| 2742 | /// or whether it should be incremented. Moreover, the amount it should |
| 2743 | /// be incremented can be configured via [`ZonedRound::increment`]. |
| 2744 | /// Finally, the rounding strategy itself can be configured via |
| 2745 | /// [`ZonedRound::mode`]. |
| 2746 | /// |
| 2747 | /// Note that this routine is generic and accepts anything that |
| 2748 | /// implements `Into<ZonedRound>`. Some notable implementations are: |
| 2749 | /// |
| 2750 | /// * `From<Unit> for ZonedRound`, which will automatically create a |
| 2751 | /// `ZonedRound::new().smallest(unit)` from the unit provided. |
| 2752 | /// * `From<(Unit, i64)> for ZonedRound`, which will automatically |
| 2753 | /// create a `ZonedRound::new().smallest(unit).increment(number)` from |
| 2754 | /// the unit and increment provided. |
| 2755 | /// |
| 2756 | /// # Errors |
| 2757 | /// |
| 2758 | /// This returns an error if the smallest unit configured on the given |
| 2759 | /// [`ZonedRound`] is bigger than days. An error is also returned if |
| 2760 | /// the rounding increment is greater than 1 when the units are days. |
| 2761 | /// (Currently, rounding to the nearest week, month or year is not |
| 2762 | /// supported.) |
| 2763 | /// |
| 2764 | /// When the smallest unit is less than days, the rounding increment must |
| 2765 | /// divide evenly into the next highest unit after the smallest unit |
| 2766 | /// configured (and must not be equivalent to it). For example, if the |
| 2767 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 2768 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 2769 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 2770 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 2771 | /// |
| 2772 | /// This can also return an error in some cases where rounding would |
| 2773 | /// require arithmetic that exceeds the maximum zoned datetime value. |
| 2774 | /// |
| 2775 | /// # Example |
| 2776 | /// |
| 2777 | /// This is a basic example that demonstrates rounding a zoned datetime |
| 2778 | /// to the nearest day. This also demonstrates calling this method with |
| 2779 | /// the smallest unit directly, instead of constructing a `ZonedRound` |
| 2780 | /// manually. |
| 2781 | /// |
| 2782 | /// ``` |
| 2783 | /// use jiff::{civil::date, Unit}; |
| 2784 | /// |
| 2785 | /// // rounds up |
| 2786 | /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York" )?; |
| 2787 | /// assert_eq!( |
| 2788 | /// zdt.round(Unit::Day)?, |
| 2789 | /// date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 2790 | /// ); |
| 2791 | /// |
| 2792 | /// // rounds down |
| 2793 | /// let zdt = date(2024, 6, 19).at(10, 0, 0, 0).in_tz("America/New_York" )?; |
| 2794 | /// assert_eq!( |
| 2795 | /// zdt.round(Unit::Day)?, |
| 2796 | /// date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 2797 | /// ); |
| 2798 | /// |
| 2799 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2800 | /// ``` |
| 2801 | /// |
| 2802 | /// # Example: changing the rounding mode |
| 2803 | /// |
| 2804 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
| 2805 | /// breaks ties by rounding away from zero. But other modes like |
| 2806 | /// [`RoundMode::Trunc`] can be used too: |
| 2807 | /// |
| 2808 | /// ``` |
| 2809 | /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound}; |
| 2810 | /// |
| 2811 | /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York" )?; |
| 2812 | /// assert_eq!( |
| 2813 | /// zdt.round(Unit::Day)?, |
| 2814 | /// date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 2815 | /// ); |
| 2816 | /// // The default will round up to the next day for any time past noon (as |
| 2817 | /// // shown above), but using truncation rounding will always round down. |
| 2818 | /// assert_eq!( |
| 2819 | /// zdt.round( |
| 2820 | /// ZonedRound::new().smallest(Unit::Day).mode(RoundMode::Trunc), |
| 2821 | /// )?, |
| 2822 | /// date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 2823 | /// ); |
| 2824 | /// |
| 2825 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2826 | /// ``` |
| 2827 | /// |
| 2828 | /// # Example: rounding to the nearest 5 minute increment |
| 2829 | /// |
| 2830 | /// ``` |
| 2831 | /// use jiff::{civil::date, Unit}; |
| 2832 | /// |
| 2833 | /// // rounds down |
| 2834 | /// let zdt = date(2024, 6, 19) |
| 2835 | /// .at(15, 27, 29, 999_999_999) |
| 2836 | /// .in_tz("America/New_York" )?; |
| 2837 | /// assert_eq!( |
| 2838 | /// zdt.round((Unit::Minute, 5))?, |
| 2839 | /// date(2024, 6, 19).at(15, 25, 0, 0).in_tz("America/New_York" )?, |
| 2840 | /// ); |
| 2841 | /// // rounds up |
| 2842 | /// let zdt = date(2024, 6, 19) |
| 2843 | /// .at(15, 27, 30, 0) |
| 2844 | /// .in_tz("America/New_York" )?; |
| 2845 | /// assert_eq!( |
| 2846 | /// zdt.round((Unit::Minute, 5))?, |
| 2847 | /// date(2024, 6, 19).at(15, 30, 0, 0).in_tz("America/New_York" )?, |
| 2848 | /// ); |
| 2849 | /// |
| 2850 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2851 | /// ``` |
| 2852 | /// |
| 2853 | /// # Example: behavior near time zone transitions |
| 2854 | /// |
| 2855 | /// When rounding this zoned datetime near time zone transitions (such as |
| 2856 | /// DST), the "sensible" thing is done by default. Namely, rounding will |
| 2857 | /// jump to the closest instant, even if the change in civil clock time is |
| 2858 | /// large. For example, when rounding up into a gap, the civil clock time |
| 2859 | /// will jump over the gap, but the corresponding change in the instant is |
| 2860 | /// as one might expect: |
| 2861 | /// |
| 2862 | /// ``` |
| 2863 | /// use jiff::{Unit, Zoned}; |
| 2864 | /// |
| 2865 | /// let zdt1: Zoned = "2024-03-10T01:59:00-05[America/New_York]" .parse()?; |
| 2866 | /// let zdt2 = zdt1.round(Unit::Hour)?; |
| 2867 | /// assert_eq!( |
| 2868 | /// zdt2.to_string(), |
| 2869 | /// "2024-03-10T03:00:00-04:00[America/New_York]" , |
| 2870 | /// ); |
| 2871 | /// |
| 2872 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2873 | /// ``` |
| 2874 | /// |
| 2875 | /// Similarly, when rounding inside a fold, rounding will respect whether |
| 2876 | /// it's the first or second time the clock has repeated the hour. For the |
| 2877 | /// DST transition in New York on `2024-11-03` from offset `-04` to `-05`, |
| 2878 | /// here is an example that rounds the first 1 o'clock hour: |
| 2879 | /// |
| 2880 | /// ``` |
| 2881 | /// use jiff::{Unit, Zoned}; |
| 2882 | /// |
| 2883 | /// let zdt1: Zoned = "2024-11-03T01:59:01-04[America/New_York]" .parse()?; |
| 2884 | /// let zdt2 = zdt1.round(Unit::Minute)?; |
| 2885 | /// assert_eq!( |
| 2886 | /// zdt2.to_string(), |
| 2887 | /// "2024-11-03T01:59:00-04:00[America/New_York]" , |
| 2888 | /// ); |
| 2889 | /// |
| 2890 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2891 | /// ``` |
| 2892 | /// |
| 2893 | /// And now the second 1 o'clock hour. Notice how the rounded result stays |
| 2894 | /// in the second 1 o'clock hour. |
| 2895 | /// |
| 2896 | /// ``` |
| 2897 | /// use jiff::{Unit, Zoned}; |
| 2898 | /// |
| 2899 | /// let zdt1: Zoned = "2024-11-03T01:59:01-05[America/New_York]" .parse()?; |
| 2900 | /// let zdt2 = zdt1.round(Unit::Minute)?; |
| 2901 | /// assert_eq!( |
| 2902 | /// zdt2.to_string(), |
| 2903 | /// "2024-11-03T01:59:00-05:00[America/New_York]" , |
| 2904 | /// ); |
| 2905 | /// |
| 2906 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2907 | /// ``` |
| 2908 | /// |
| 2909 | /// # Example: rounding to nearest day takes length of day into account |
| 2910 | /// |
| 2911 | /// Some days are shorter than 24 hours, and so rounding down will occur |
| 2912 | /// even when the time is past noon: |
| 2913 | /// |
| 2914 | /// ``` |
| 2915 | /// use jiff::{Unit, Zoned}; |
| 2916 | /// |
| 2917 | /// let zdt1: Zoned = "2025-03-09T12:15-04[America/New_York]" .parse()?; |
| 2918 | /// let zdt2 = zdt1.round(Unit::Day)?; |
| 2919 | /// assert_eq!( |
| 2920 | /// zdt2.to_string(), |
| 2921 | /// "2025-03-09T00:00:00-05:00[America/New_York]" , |
| 2922 | /// ); |
| 2923 | /// |
| 2924 | /// // For 23 hour days, 12:30 is the tipping point to round up in the |
| 2925 | /// // default rounding configuration: |
| 2926 | /// let zdt1: Zoned = "2025-03-09T12:30-04[America/New_York]" .parse()?; |
| 2927 | /// let zdt2 = zdt1.round(Unit::Day)?; |
| 2928 | /// assert_eq!( |
| 2929 | /// zdt2.to_string(), |
| 2930 | /// "2025-03-10T00:00:00-04:00[America/New_York]" , |
| 2931 | /// ); |
| 2932 | /// |
| 2933 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2934 | /// ``` |
| 2935 | /// |
| 2936 | /// And some days are longer than 24 hours, and so rounding _up_ will occur |
| 2937 | /// even when the time is before noon: |
| 2938 | /// |
| 2939 | /// ``` |
| 2940 | /// use jiff::{Unit, Zoned}; |
| 2941 | /// |
| 2942 | /// let zdt1: Zoned = "2025-11-02T11:45-05[America/New_York]" .parse()?; |
| 2943 | /// let zdt2 = zdt1.round(Unit::Day)?; |
| 2944 | /// assert_eq!( |
| 2945 | /// zdt2.to_string(), |
| 2946 | /// "2025-11-03T00:00:00-05:00[America/New_York]" , |
| 2947 | /// ); |
| 2948 | /// |
| 2949 | /// // For 25 hour days, 11:30 is the tipping point to round up in the |
| 2950 | /// // default rounding configuration. So 11:29 will round down: |
| 2951 | /// let zdt1: Zoned = "2025-11-02T11:29-05[America/New_York]" .parse()?; |
| 2952 | /// let zdt2 = zdt1.round(Unit::Day)?; |
| 2953 | /// assert_eq!( |
| 2954 | /// zdt2.to_string(), |
| 2955 | /// "2025-11-02T00:00:00-04:00[America/New_York]" , |
| 2956 | /// ); |
| 2957 | /// |
| 2958 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2959 | /// ``` |
| 2960 | /// |
| 2961 | /// # Example: overflow error |
| 2962 | /// |
| 2963 | /// This example demonstrates that it's possible for this operation to |
| 2964 | /// result in an error from zoned datetime arithmetic overflow. |
| 2965 | /// |
| 2966 | /// ``` |
| 2967 | /// use jiff::{Timestamp, Unit}; |
| 2968 | /// |
| 2969 | /// let zdt = Timestamp::MAX.in_tz("America/New_York" )?; |
| 2970 | /// assert!(zdt.round(Unit::Day).is_err()); |
| 2971 | /// |
| 2972 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2973 | /// ``` |
| 2974 | /// |
| 2975 | /// This occurs because rounding to the nearest day for the maximum |
| 2976 | /// timestamp would result in rounding up to the next day. But the next day |
| 2977 | /// is greater than the maximum, and so this returns an error. |
| 2978 | #[inline ] |
| 2979 | pub fn round<R: Into<ZonedRound>>( |
| 2980 | &self, |
| 2981 | options: R, |
| 2982 | ) -> Result<Zoned, Error> { |
| 2983 | let options: ZonedRound = options.into(); |
| 2984 | options.round(self) |
| 2985 | } |
| 2986 | |
| 2987 | /* |
| 2988 | /// Return an iterator of periodic zoned datetimes determined by the given |
| 2989 | /// span. |
| 2990 | /// |
| 2991 | /// The given span may be negative, in which case, the iterator will move |
| 2992 | /// backwards through time. The iterator won't stop until either the span |
| 2993 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
| 2994 | /// `Zoned` value. |
| 2995 | /// |
| 2996 | /// # Example: when to check a glucose monitor |
| 2997 | /// |
| 2998 | /// When my cat had diabetes, my veterinarian installed a glucose monitor |
| 2999 | /// and instructed me to scan it about every 5 hours. This example lists |
| 3000 | /// all of the times I need to scan it for the 2 days following its |
| 3001 | /// installation: |
| 3002 | /// |
| 3003 | /// ``` |
| 3004 | /// use jiff::{civil::datetime, ToSpan}; |
| 3005 | /// |
| 3006 | /// let start = datetime(2023, 7, 15, 16, 30, 0, 0).in_tz("America/New_York")?; |
| 3007 | /// let end = start.checked_add(2.days())?; |
| 3008 | /// let mut scan_times = vec![]; |
| 3009 | /// for zdt in start.series(5.hours()).take_while(|zdt| zdt <= end) { |
| 3010 | /// scan_times.push(zdt.datetime()); |
| 3011 | /// } |
| 3012 | /// assert_eq!(scan_times, vec![ |
| 3013 | /// datetime(2023, 7, 15, 16, 30, 0, 0), |
| 3014 | /// datetime(2023, 7, 15, 21, 30, 0, 0), |
| 3015 | /// datetime(2023, 7, 16, 2, 30, 0, 0), |
| 3016 | /// datetime(2023, 7, 16, 7, 30, 0, 0), |
| 3017 | /// datetime(2023, 7, 16, 12, 30, 0, 0), |
| 3018 | /// datetime(2023, 7, 16, 17, 30, 0, 0), |
| 3019 | /// datetime(2023, 7, 16, 22, 30, 0, 0), |
| 3020 | /// datetime(2023, 7, 17, 3, 30, 0, 0), |
| 3021 | /// datetime(2023, 7, 17, 8, 30, 0, 0), |
| 3022 | /// datetime(2023, 7, 17, 13, 30, 0, 0), |
| 3023 | /// ]); |
| 3024 | /// |
| 3025 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3026 | /// ``` |
| 3027 | /// |
| 3028 | /// # Example |
| 3029 | /// |
| 3030 | /// BREADCRUMBS: Maybe just remove ZonedSeries for now..? |
| 3031 | /// |
| 3032 | /// ``` |
| 3033 | /// use jiff::{civil::date, ToSpan}; |
| 3034 | /// |
| 3035 | /// let zdt = date(2011, 12, 28).in_tz("Pacific/Apia")?; |
| 3036 | /// let mut it = zdt.series(1.day()); |
| 3037 | /// assert_eq!(it.next(), Some(date(2011, 12, 28).in_tz("Pacific/Apia")?)); |
| 3038 | /// assert_eq!(it.next(), Some(date(2011, 12, 29).in_tz("Pacific/Apia")?)); |
| 3039 | /// assert_eq!(it.next(), Some(date(2011, 12, 30).in_tz("Pacific/Apia")?)); |
| 3040 | /// assert_eq!(it.next(), Some(date(2011, 12, 31).in_tz("Pacific/Apia")?)); |
| 3041 | /// assert_eq!(it.next(), Some(date(2012, 01, 01).in_tz("Pacific/Apia")?)); |
| 3042 | /// |
| 3043 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3044 | /// ``` |
| 3045 | #[inline] |
| 3046 | pub fn series(self, period: Span) -> ZonedSeries { |
| 3047 | ZonedSeries { start: self, period, step: 0 } |
| 3048 | } |
| 3049 | */ |
| 3050 | |
| 3051 | #[inline ] |
| 3052 | fn into_parts(self) -> (Timestamp, DateTime, Offset, TimeZone) { |
| 3053 | let inner = self.inner; |
| 3054 | let ZonedInner { timestamp, datetime, offset, time_zone } = inner; |
| 3055 | (timestamp, datetime, offset, time_zone) |
| 3056 | } |
| 3057 | } |
| 3058 | |
| 3059 | /// Parsing and formatting using a "printf"-style API. |
| 3060 | impl Zoned { |
| 3061 | /// Parses a zoned datetime in `input` matching the given `format`. |
| 3062 | /// |
| 3063 | /// The format string uses a "printf"-style API where conversion |
| 3064 | /// specifiers can be used as place holders to match components of |
| 3065 | /// a datetime. For details on the specifiers supported, see the |
| 3066 | /// [`fmt::strtime`] module documentation. |
| 3067 | /// |
| 3068 | /// # Warning |
| 3069 | /// |
| 3070 | /// The `strtime` module APIs do not require an IANA time zone identifier |
| 3071 | /// to parse a `Zoned`. If one is not used, then if you format a zoned |
| 3072 | /// datetime in a time zone like `America/New_York` and then parse it back |
| 3073 | /// again, the zoned datetime you get back will be a "fixed offset" zoned |
| 3074 | /// datetime. This in turn means it will not perform daylight saving time |
| 3075 | /// safe arithmetic. |
| 3076 | /// |
| 3077 | /// However, the `%Q` directive may be used to both format and parse an |
| 3078 | /// IANA time zone identifier. It is strongly recommended to use this |
| 3079 | /// directive whenever one is formatting or parsing `Zoned` values. |
| 3080 | /// |
| 3081 | /// # Errors |
| 3082 | /// |
| 3083 | /// This returns an error when parsing failed. This might happen because |
| 3084 | /// the format string itself was invalid, or because the input didn't match |
| 3085 | /// the format string. |
| 3086 | /// |
| 3087 | /// This also returns an error if there wasn't sufficient information to |
| 3088 | /// construct a zoned datetime. For example, if an offset wasn't parsed. |
| 3089 | /// |
| 3090 | /// # Example |
| 3091 | /// |
| 3092 | /// This example shows how to parse a zoned datetime: |
| 3093 | /// |
| 3094 | /// ``` |
| 3095 | /// use jiff::Zoned; |
| 3096 | /// |
| 3097 | /// let zdt = Zoned::strptime("%F %H:%M %:Q" , "2024-07-14 21:14 US/Eastern" )?; |
| 3098 | /// assert_eq!(zdt.to_string(), "2024-07-14T21:14:00-04:00[US/Eastern]" ); |
| 3099 | /// |
| 3100 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3101 | /// ``` |
| 3102 | #[inline ] |
| 3103 | pub fn strptime( |
| 3104 | format: impl AsRef<[u8]>, |
| 3105 | input: impl AsRef<[u8]>, |
| 3106 | ) -> Result<Zoned, Error> { |
| 3107 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_zoned()) |
| 3108 | } |
| 3109 | |
| 3110 | /// Formats this zoned datetime according to the given `format`. |
| 3111 | /// |
| 3112 | /// The format string uses a "printf"-style API where conversion |
| 3113 | /// specifiers can be used as place holders to format components of |
| 3114 | /// a datetime. For details on the specifiers supported, see the |
| 3115 | /// [`fmt::strtime`] module documentation. |
| 3116 | /// |
| 3117 | /// # Warning |
| 3118 | /// |
| 3119 | /// The `strtime` module APIs do not support parsing or formatting with |
| 3120 | /// IANA time zone identifiers. This means that if you format a zoned |
| 3121 | /// datetime in a time zone like `America/New_York` and then parse it back |
| 3122 | /// again, the zoned datetime you get back will be a "fixed offset" zoned |
| 3123 | /// datetime. This in turn means it will not perform daylight saving time |
| 3124 | /// safe arithmetic. |
| 3125 | /// |
| 3126 | /// The `strtime` modules APIs are useful for ad hoc formatting and |
| 3127 | /// parsing, but they shouldn't be used as an interchange format. For |
| 3128 | /// an interchange format, the default `std::fmt::Display` and |
| 3129 | /// `std::str::FromStr` trait implementations on `Zoned` are appropriate. |
| 3130 | /// |
| 3131 | /// # Errors and panics |
| 3132 | /// |
| 3133 | /// While this routine itself does not error or panic, using the value |
| 3134 | /// returned may result in a panic if formatting fails. See the |
| 3135 | /// documentation on [`fmt::strtime::Display`] for more information. |
| 3136 | /// |
| 3137 | /// To format in a way that surfaces errors without panicking, use either |
| 3138 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
| 3139 | /// |
| 3140 | /// # Example |
| 3141 | /// |
| 3142 | /// While the output of the Unix `date` command is likely locale specific, |
| 3143 | /// this is what it looks like on my system: |
| 3144 | /// |
| 3145 | /// ``` |
| 3146 | /// use jiff::civil::date; |
| 3147 | /// |
| 3148 | /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York" )?; |
| 3149 | /// let string = zdt.strftime("%a %b %e %I:%M:%S %p %Z %Y" ).to_string(); |
| 3150 | /// assert_eq!(string, "Mon Jul 15 04:24:59 PM EDT 2024" ); |
| 3151 | /// |
| 3152 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3153 | /// ``` |
| 3154 | #[inline ] |
| 3155 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
| 3156 | &self, |
| 3157 | format: &'f F, |
| 3158 | ) -> fmt::strtime::Display<'f> { |
| 3159 | fmt::strtime::Display { fmt: format.as_ref(), tm: self.into() } |
| 3160 | } |
| 3161 | } |
| 3162 | |
| 3163 | impl Default for Zoned { |
| 3164 | #[inline ] |
| 3165 | fn default() -> Zoned { |
| 3166 | Zoned::new(Timestamp::default(), time_zone:TimeZone::UTC) |
| 3167 | } |
| 3168 | } |
| 3169 | |
| 3170 | /// Converts a `Zoned` datetime into a human readable datetime string. |
| 3171 | /// |
| 3172 | /// (This `Debug` representation currently emits the same string as the |
| 3173 | /// `Display` representation, but this is not a guarantee.) |
| 3174 | /// |
| 3175 | /// Options currently supported: |
| 3176 | /// |
| 3177 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 3178 | /// of the fractional second component. |
| 3179 | /// |
| 3180 | /// # Example |
| 3181 | /// |
| 3182 | /// ``` |
| 3183 | /// use jiff::civil::date; |
| 3184 | /// |
| 3185 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern" )?; |
| 3186 | /// assert_eq!( |
| 3187 | /// format!("{zdt:.6?}" ), |
| 3188 | /// "2024-06-15T07:00:00.123000-04:00[US/Eastern]" , |
| 3189 | /// ); |
| 3190 | /// // Precision values greater than 9 are clamped to 9. |
| 3191 | /// assert_eq!( |
| 3192 | /// format!("{zdt:.300?}" ), |
| 3193 | /// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]" , |
| 3194 | /// ); |
| 3195 | /// // A precision of 0 implies the entire fractional |
| 3196 | /// // component is always truncated. |
| 3197 | /// assert_eq!( |
| 3198 | /// format!("{zdt:.0?}" ), |
| 3199 | /// "2024-06-15T07:00:00-04:00[US/Eastern]" , |
| 3200 | /// ); |
| 3201 | /// |
| 3202 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3203 | /// ``` |
| 3204 | impl core::fmt::Debug for Zoned { |
| 3205 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 3206 | core::fmt::Display::fmt(self, f) |
| 3207 | } |
| 3208 | } |
| 3209 | |
| 3210 | /// Converts a `Zoned` datetime into a RFC 9557 compliant string. |
| 3211 | /// |
| 3212 | /// Options currently supported: |
| 3213 | /// |
| 3214 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 3215 | /// of the fractional second component. |
| 3216 | /// |
| 3217 | /// # Example |
| 3218 | /// |
| 3219 | /// ``` |
| 3220 | /// use jiff::civil::date; |
| 3221 | /// |
| 3222 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern" )?; |
| 3223 | /// assert_eq!( |
| 3224 | /// format!("{zdt:.6}" ), |
| 3225 | /// "2024-06-15T07:00:00.123000-04:00[US/Eastern]" , |
| 3226 | /// ); |
| 3227 | /// // Precision values greater than 9 are clamped to 9. |
| 3228 | /// assert_eq!( |
| 3229 | /// format!("{zdt:.300}" ), |
| 3230 | /// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]" , |
| 3231 | /// ); |
| 3232 | /// // A precision of 0 implies the entire fractional |
| 3233 | /// // component is always truncated. |
| 3234 | /// assert_eq!( |
| 3235 | /// format!("{zdt:.0}" ), |
| 3236 | /// "2024-06-15T07:00:00-04:00[US/Eastern]" , |
| 3237 | /// ); |
| 3238 | /// |
| 3239 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3240 | /// ``` |
| 3241 | impl core::fmt::Display for Zoned { |
| 3242 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 3243 | use crate::fmt::StdFmtWrite; |
| 3244 | |
| 3245 | let precision: Option = |
| 3246 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
| 3247 | temporal::DateTimePrinter::new() |
| 3248 | .precision(precision) |
| 3249 | .print_zoned(self, StdFmtWrite(f)) |
| 3250 | .map_err(|_| core::fmt::Error) |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | /// Parses a zoned timestamp from the Temporal datetime format. |
| 3255 | /// |
| 3256 | /// See the [`fmt::temporal`](crate::fmt::temporal) for more information on |
| 3257 | /// the precise format. |
| 3258 | /// |
| 3259 | /// Note that this is only enabled when the `std` feature |
| 3260 | /// is enabled because it requires access to a global |
| 3261 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase). |
| 3262 | impl core::str::FromStr for Zoned { |
| 3263 | type Err = Error; |
| 3264 | |
| 3265 | fn from_str(string: &str) -> Result<Zoned, Error> { |
| 3266 | DEFAULT_DATETIME_PARSER.parse_zoned(input:string) |
| 3267 | } |
| 3268 | } |
| 3269 | |
| 3270 | impl Eq for Zoned {} |
| 3271 | |
| 3272 | impl PartialEq for Zoned { |
| 3273 | #[inline ] |
| 3274 | fn eq(&self, rhs: &Zoned) -> bool { |
| 3275 | self.timestamp().eq(&rhs.timestamp()) |
| 3276 | } |
| 3277 | } |
| 3278 | |
| 3279 | impl<'a> PartialEq<Zoned> for &'a Zoned { |
| 3280 | #[inline ] |
| 3281 | fn eq(&self, rhs: &Zoned) -> bool { |
| 3282 | (**self).eq(rhs) |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | impl Ord for Zoned { |
| 3287 | #[inline ] |
| 3288 | fn cmp(&self, rhs: &Zoned) -> core::cmp::Ordering { |
| 3289 | self.timestamp().cmp(&rhs.timestamp()) |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | impl PartialOrd for Zoned { |
| 3294 | #[inline ] |
| 3295 | fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> { |
| 3296 | Some(self.cmp(rhs)) |
| 3297 | } |
| 3298 | } |
| 3299 | |
| 3300 | impl<'a> PartialOrd<Zoned> for &'a Zoned { |
| 3301 | #[inline ] |
| 3302 | fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> { |
| 3303 | (**self).partial_cmp(rhs) |
| 3304 | } |
| 3305 | } |
| 3306 | |
| 3307 | impl core::hash::Hash for Zoned { |
| 3308 | #[inline ] |
| 3309 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
| 3310 | self.timestamp().hash(state); |
| 3311 | } |
| 3312 | } |
| 3313 | |
| 3314 | #[cfg (feature = "std" )] |
| 3315 | impl TryFrom<std::time::SystemTime> for Zoned { |
| 3316 | type Error = Error; |
| 3317 | |
| 3318 | #[inline ] |
| 3319 | fn try_from(system_time: std::time::SystemTime) -> Result<Zoned, Error> { |
| 3320 | let timestamp: Timestamp = Timestamp::try_from(system_time)?; |
| 3321 | Ok(Zoned::new(timestamp, TimeZone::system())) |
| 3322 | } |
| 3323 | } |
| 3324 | |
| 3325 | #[cfg (feature = "std" )] |
| 3326 | impl From<Zoned> for std::time::SystemTime { |
| 3327 | #[inline ] |
| 3328 | fn from(time: Zoned) -> std::time::SystemTime { |
| 3329 | time.timestamp().into() |
| 3330 | } |
| 3331 | } |
| 3332 | |
| 3333 | /// Adds a span of time to a zoned datetime. |
| 3334 | /// |
| 3335 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3336 | /// without panics, use [`Zoned::checked_add`]. |
| 3337 | impl<'a> core::ops::Add<Span> for &'a Zoned { |
| 3338 | type Output = Zoned; |
| 3339 | |
| 3340 | #[inline ] |
| 3341 | fn add(self, rhs: Span) -> Zoned { |
| 3342 | self.checked_add(rhs) |
| 3343 | .expect(msg:"adding span to zoned datetime overflowed" ) |
| 3344 | } |
| 3345 | } |
| 3346 | |
| 3347 | /// Adds a span of time to a zoned datetime in place. |
| 3348 | /// |
| 3349 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3350 | /// without panics, use [`Zoned::checked_add`]. |
| 3351 | impl core::ops::AddAssign<Span> for Zoned { |
| 3352 | #[inline ] |
| 3353 | fn add_assign(&mut self, rhs: Span) { |
| 3354 | *self = &*self + rhs |
| 3355 | } |
| 3356 | } |
| 3357 | |
| 3358 | /// Subtracts a span of time from a zoned datetime. |
| 3359 | /// |
| 3360 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3361 | /// without panics, use [`Zoned::checked_sub`]. |
| 3362 | impl<'a> core::ops::Sub<Span> for &'a Zoned { |
| 3363 | type Output = Zoned; |
| 3364 | |
| 3365 | #[inline ] |
| 3366 | fn sub(self, rhs: Span) -> Zoned { |
| 3367 | self.checked_sub(rhs) |
| 3368 | .expect(msg:"subtracting span from zoned datetime overflowed" ) |
| 3369 | } |
| 3370 | } |
| 3371 | |
| 3372 | /// Subtracts a span of time from a zoned datetime in place. |
| 3373 | /// |
| 3374 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3375 | /// without panics, use [`Zoned::checked_sub`]. |
| 3376 | impl core::ops::SubAssign<Span> for Zoned { |
| 3377 | #[inline ] |
| 3378 | fn sub_assign(&mut self, rhs: Span) { |
| 3379 | *self = &*self - rhs |
| 3380 | } |
| 3381 | } |
| 3382 | |
| 3383 | /// Computes the span of time between two zoned datetimes. |
| 3384 | /// |
| 3385 | /// This will return a negative span when the zoned datetime being subtracted |
| 3386 | /// is greater. |
| 3387 | /// |
| 3388 | /// Since this uses the default configuration for calculating a span between |
| 3389 | /// two zoned datetimes (no rounding and largest units is hours), this will |
| 3390 | /// never panic or fail in any way. It is guaranteed that the largest non-zero |
| 3391 | /// unit in the `Span` returned will be hours. |
| 3392 | /// |
| 3393 | /// To configure the largest unit or enable rounding, use [`Zoned::since`]. |
| 3394 | impl<'a> core::ops::Sub for &'a Zoned { |
| 3395 | type Output = Span; |
| 3396 | |
| 3397 | #[inline ] |
| 3398 | fn sub(self, rhs: &'a Zoned) -> Span { |
| 3399 | self.since(rhs).expect(msg:"since never fails when given Zoned" ) |
| 3400 | } |
| 3401 | } |
| 3402 | |
| 3403 | /// Adds a signed duration of time to a zoned datetime. |
| 3404 | /// |
| 3405 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3406 | /// without panics, use [`Zoned::checked_add`]. |
| 3407 | impl<'a> core::ops::Add<SignedDuration> for &'a Zoned { |
| 3408 | type Output = Zoned; |
| 3409 | |
| 3410 | #[inline ] |
| 3411 | fn add(self, rhs: SignedDuration) -> Zoned { |
| 3412 | self.checked_add(rhs) |
| 3413 | .expect(msg:"adding signed duration to zoned datetime overflowed" ) |
| 3414 | } |
| 3415 | } |
| 3416 | |
| 3417 | /// Adds a signed duration of time to a zoned datetime in place. |
| 3418 | /// |
| 3419 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3420 | /// without panics, use [`Zoned::checked_add`]. |
| 3421 | impl core::ops::AddAssign<SignedDuration> for Zoned { |
| 3422 | #[inline ] |
| 3423 | fn add_assign(&mut self, rhs: SignedDuration) { |
| 3424 | *self = &*self + rhs |
| 3425 | } |
| 3426 | } |
| 3427 | |
| 3428 | /// Subtracts a signed duration of time from a zoned datetime. |
| 3429 | /// |
| 3430 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3431 | /// without panics, use [`Zoned::checked_sub`]. |
| 3432 | impl<'a> core::ops::Sub<SignedDuration> for &'a Zoned { |
| 3433 | type Output = Zoned; |
| 3434 | |
| 3435 | #[inline ] |
| 3436 | fn sub(self, rhs: SignedDuration) -> Zoned { |
| 3437 | self.checked_sub(rhs).expect( |
| 3438 | msg:"subtracting signed duration from zoned datetime overflowed" , |
| 3439 | ) |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | /// Subtracts a signed duration of time from a zoned datetime in place. |
| 3444 | /// |
| 3445 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3446 | /// without panics, use [`Zoned::checked_sub`]. |
| 3447 | impl core::ops::SubAssign<SignedDuration> for Zoned { |
| 3448 | #[inline ] |
| 3449 | fn sub_assign(&mut self, rhs: SignedDuration) { |
| 3450 | *self = &*self - rhs |
| 3451 | } |
| 3452 | } |
| 3453 | |
| 3454 | /// Adds an unsigned duration of time to a zoned datetime. |
| 3455 | /// |
| 3456 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3457 | /// without panics, use [`Zoned::checked_add`]. |
| 3458 | impl<'a> core::ops::Add<UnsignedDuration> for &'a Zoned { |
| 3459 | type Output = Zoned; |
| 3460 | |
| 3461 | #[inline ] |
| 3462 | fn add(self, rhs: UnsignedDuration) -> Zoned { |
| 3463 | self.checked_add(rhs) |
| 3464 | .expect(msg:"adding unsigned duration to zoned datetime overflowed" ) |
| 3465 | } |
| 3466 | } |
| 3467 | |
| 3468 | /// Adds an unsigned duration of time to a zoned datetime in place. |
| 3469 | /// |
| 3470 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3471 | /// without panics, use [`Zoned::checked_add`]. |
| 3472 | impl core::ops::AddAssign<UnsignedDuration> for Zoned { |
| 3473 | #[inline ] |
| 3474 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
| 3475 | *self = &*self + rhs |
| 3476 | } |
| 3477 | } |
| 3478 | |
| 3479 | /// Subtracts an unsigned duration of time from a zoned datetime. |
| 3480 | /// |
| 3481 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3482 | /// without panics, use [`Zoned::checked_sub`]. |
| 3483 | impl<'a> core::ops::Sub<UnsignedDuration> for &'a Zoned { |
| 3484 | type Output = Zoned; |
| 3485 | |
| 3486 | #[inline ] |
| 3487 | fn sub(self, rhs: UnsignedDuration) -> Zoned { |
| 3488 | self.checked_sub(rhs).expect( |
| 3489 | msg:"subtracting unsigned duration from zoned datetime overflowed" , |
| 3490 | ) |
| 3491 | } |
| 3492 | } |
| 3493 | |
| 3494 | /// Subtracts an unsigned duration of time from a zoned datetime in place. |
| 3495 | /// |
| 3496 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 3497 | /// without panics, use [`Zoned::checked_sub`]. |
| 3498 | impl core::ops::SubAssign<UnsignedDuration> for Zoned { |
| 3499 | #[inline ] |
| 3500 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
| 3501 | *self = &*self - rhs |
| 3502 | } |
| 3503 | } |
| 3504 | |
| 3505 | #[cfg (feature = "serde" )] |
| 3506 | impl serde::Serialize for Zoned { |
| 3507 | #[inline ] |
| 3508 | fn serialize<S: serde::Serializer>( |
| 3509 | &self, |
| 3510 | serializer: S, |
| 3511 | ) -> Result<S::Ok, S::Error> { |
| 3512 | serializer.collect_str(self) |
| 3513 | } |
| 3514 | } |
| 3515 | |
| 3516 | #[cfg (feature = "serde" )] |
| 3517 | impl<'de> serde::Deserialize<'de> for Zoned { |
| 3518 | #[inline ] |
| 3519 | fn deserialize<D: serde::Deserializer<'de>>( |
| 3520 | deserializer: D, |
| 3521 | ) -> Result<Zoned, D::Error> { |
| 3522 | use serde::de; |
| 3523 | |
| 3524 | struct ZonedVisitor; |
| 3525 | |
| 3526 | impl<'de> de::Visitor<'de> for ZonedVisitor { |
| 3527 | type Value = Zoned; |
| 3528 | |
| 3529 | fn expecting( |
| 3530 | &self, |
| 3531 | f: &mut core::fmt::Formatter, |
| 3532 | ) -> core::fmt::Result { |
| 3533 | f.write_str("a zoned datetime string" ) |
| 3534 | } |
| 3535 | |
| 3536 | #[inline ] |
| 3537 | fn visit_bytes<E: de::Error>( |
| 3538 | self, |
| 3539 | value: &[u8], |
| 3540 | ) -> Result<Zoned, E> { |
| 3541 | DEFAULT_DATETIME_PARSER |
| 3542 | .parse_zoned(value) |
| 3543 | .map_err(de::Error::custom) |
| 3544 | } |
| 3545 | |
| 3546 | #[inline ] |
| 3547 | fn visit_str<E: de::Error>(self, value: &str) -> Result<Zoned, E> { |
| 3548 | self.visit_bytes(value.as_bytes()) |
| 3549 | } |
| 3550 | } |
| 3551 | |
| 3552 | deserializer.deserialize_str(ZonedVisitor) |
| 3553 | } |
| 3554 | } |
| 3555 | |
| 3556 | #[cfg (test)] |
| 3557 | impl quickcheck::Arbitrary for Zoned { |
| 3558 | fn arbitrary(g: &mut quickcheck::Gen) -> Zoned { |
| 3559 | let timestamp = Timestamp::arbitrary(g); |
| 3560 | let tz = TimeZone::UTC; // TODO: do something better here? |
| 3561 | Zoned::new(timestamp, tz) |
| 3562 | } |
| 3563 | |
| 3564 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
| 3565 | let timestamp = self.timestamp(); |
| 3566 | alloc::boxed::Box::new( |
| 3567 | timestamp |
| 3568 | .shrink() |
| 3569 | .map(|timestamp| Zoned::new(timestamp, TimeZone::UTC)), |
| 3570 | ) |
| 3571 | } |
| 3572 | } |
| 3573 | |
| 3574 | /* |
| 3575 | /// An iterator over periodic zoned datetimes, created by [`Zoned::series`]. |
| 3576 | /// |
| 3577 | /// It is exhausted when the next value would exceed a [`Span`] or [`Zoned`] |
| 3578 | /// value. |
| 3579 | #[derive(Clone, Debug)] |
| 3580 | pub struct ZonedSeries { |
| 3581 | start: Zoned, |
| 3582 | period: Span, |
| 3583 | step: i64, |
| 3584 | } |
| 3585 | |
| 3586 | impl Iterator for ZonedSeries { |
| 3587 | type Item = Zoned; |
| 3588 | |
| 3589 | #[inline] |
| 3590 | fn next(&mut self) -> Option<Zoned> { |
| 3591 | // let this = self.start.clone(); |
| 3592 | // self.start = self.start.checked_add(self.period).ok()?; |
| 3593 | // Some(this) |
| 3594 | // This is how civil::DateTime series works. But this has a problem |
| 3595 | // for Zoned when there are time zone transitions that skip an entire |
| 3596 | // day. For example, Pacific/Api doesn't have a December 30, 2011. |
| 3597 | // For that case, the code above works better. But if you do it that |
| 3598 | // way, then you get the `jan31 + 1 month = feb28` and |
| 3599 | // `feb28 + 1 month = march28` problem. Where you would instead |
| 3600 | // expect jan31, feb28, mar31... I think. |
| 3601 | // |
| 3602 | // So I'm not quite sure how to resolve this particular conundrum. |
| 3603 | // And this is why ZonedSeries is currently not available. |
| 3604 | let span = self.period.checked_mul(self.step).ok()?; |
| 3605 | self.step = self.step.checked_add(1)?; |
| 3606 | let zdt = self.start.checked_add(span).ok()?; |
| 3607 | Some(zdt) |
| 3608 | } |
| 3609 | } |
| 3610 | */ |
| 3611 | |
| 3612 | /// Options for [`Timestamp::checked_add`] and [`Timestamp::checked_sub`]. |
| 3613 | /// |
| 3614 | /// This type provides a way to ergonomically add one of a few different |
| 3615 | /// duration types to a [`Timestamp`]. |
| 3616 | /// |
| 3617 | /// The main way to construct values of this type is with its `From` trait |
| 3618 | /// implementations: |
| 3619 | /// |
| 3620 | /// * `From<Span> for ZonedArithmetic` adds (or subtracts) the given span |
| 3621 | /// to the receiver timestamp. |
| 3622 | /// * `From<SignedDuration> for ZonedArithmetic` adds (or subtracts) |
| 3623 | /// the given signed duration to the receiver timestamp. |
| 3624 | /// * `From<std::time::Duration> for ZonedArithmetic` adds (or subtracts) |
| 3625 | /// the given unsigned duration to the receiver timestamp. |
| 3626 | /// |
| 3627 | /// # Example |
| 3628 | /// |
| 3629 | /// ``` |
| 3630 | /// use std::time::Duration; |
| 3631 | /// |
| 3632 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
| 3633 | /// |
| 3634 | /// let ts: Timestamp = "2024-02-28T00:00:00Z" .parse()?; |
| 3635 | /// assert_eq!( |
| 3636 | /// ts.checked_add(48.hours())?, |
| 3637 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3638 | /// ); |
| 3639 | /// assert_eq!( |
| 3640 | /// ts.checked_add(SignedDuration::from_hours(48))?, |
| 3641 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3642 | /// ); |
| 3643 | /// assert_eq!( |
| 3644 | /// ts.checked_add(Duration::from_secs(48 * 60 * 60))?, |
| 3645 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3646 | /// ); |
| 3647 | /// |
| 3648 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3649 | /// ``` |
| 3650 | #[derive (Clone, Copy, Debug)] |
| 3651 | pub struct ZonedArithmetic { |
| 3652 | duration: Duration, |
| 3653 | } |
| 3654 | |
| 3655 | impl ZonedArithmetic { |
| 3656 | #[inline ] |
| 3657 | fn checked_add(self, zdt: &Zoned) -> Result<Zoned, Error> { |
| 3658 | match self.duration.to_signed()? { |
| 3659 | SDuration::Span(span: Span) => zdt.checked_add_span(span), |
| 3660 | SDuration::Absolute(sdur: SignedDuration) => zdt.checked_add_duration(sdur), |
| 3661 | } |
| 3662 | } |
| 3663 | |
| 3664 | #[inline ] |
| 3665 | fn checked_neg(self) -> Result<ZonedArithmetic, Error> { |
| 3666 | let duration: Duration = self.duration.checked_neg()?; |
| 3667 | Ok(ZonedArithmetic { duration }) |
| 3668 | } |
| 3669 | |
| 3670 | #[inline ] |
| 3671 | fn is_negative(&self) -> bool { |
| 3672 | self.duration.is_negative() |
| 3673 | } |
| 3674 | } |
| 3675 | |
| 3676 | impl From<Span> for ZonedArithmetic { |
| 3677 | fn from(span: Span) -> ZonedArithmetic { |
| 3678 | let duration: Duration = Duration::from(span); |
| 3679 | ZonedArithmetic { duration } |
| 3680 | } |
| 3681 | } |
| 3682 | |
| 3683 | impl From<SignedDuration> for ZonedArithmetic { |
| 3684 | fn from(sdur: SignedDuration) -> ZonedArithmetic { |
| 3685 | let duration: Duration = Duration::from(sdur); |
| 3686 | ZonedArithmetic { duration } |
| 3687 | } |
| 3688 | } |
| 3689 | |
| 3690 | impl From<UnsignedDuration> for ZonedArithmetic { |
| 3691 | fn from(udur: UnsignedDuration) -> ZonedArithmetic { |
| 3692 | let duration: Duration = Duration::from(udur); |
| 3693 | ZonedArithmetic { duration } |
| 3694 | } |
| 3695 | } |
| 3696 | |
| 3697 | impl<'a> From<&'a Span> for ZonedArithmetic { |
| 3698 | fn from(span: &'a Span) -> ZonedArithmetic { |
| 3699 | ZonedArithmetic::from(*span) |
| 3700 | } |
| 3701 | } |
| 3702 | |
| 3703 | impl<'a> From<&'a SignedDuration> for ZonedArithmetic { |
| 3704 | fn from(sdur: &'a SignedDuration) -> ZonedArithmetic { |
| 3705 | ZonedArithmetic::from(*sdur) |
| 3706 | } |
| 3707 | } |
| 3708 | |
| 3709 | impl<'a> From<&'a UnsignedDuration> for ZonedArithmetic { |
| 3710 | fn from(udur: &'a UnsignedDuration) -> ZonedArithmetic { |
| 3711 | ZonedArithmetic::from(*udur) |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | /// Options for [`Zoned::since`] and [`Zoned::until`]. |
| 3716 | /// |
| 3717 | /// This type provides a way to configure the calculation of spans between two |
| 3718 | /// [`Zoned`] values. In particular, both `Zoned::since` and `Zoned::until` |
| 3719 | /// accept anything that implements `Into<ZonedDifference>`. There are a few |
| 3720 | /// key trait implementations that make this convenient: |
| 3721 | /// |
| 3722 | /// * `From<&Zoned> for ZonedDifference` will construct a configuration |
| 3723 | /// consisting of just the zoned datetime. So for example, `zdt1.since(zdt2)` |
| 3724 | /// returns the span from `zdt2` to `zdt1`. |
| 3725 | /// * `From<(Unit, &Zoned)>` is a convenient way to specify the largest units |
| 3726 | /// that should be present on the span returned. By default, the largest units |
| 3727 | /// are days. Using this trait implementation is equivalent to |
| 3728 | /// `ZonedDifference::new(&zdt).largest(unit)`. |
| 3729 | /// |
| 3730 | /// One can also provide a `ZonedDifference` value directly. Doing so |
| 3731 | /// is necessary to use the rounding features of calculating a span. For |
| 3732 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
| 3733 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
| 3734 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
| 3735 | /// |
| 3736 | /// Rounding a span as part of calculating it is provided as a convenience. |
| 3737 | /// Callers may choose to round the span as a distinct step via |
| 3738 | /// [`Span::round`], but callers may need to provide a reference date |
| 3739 | /// for rounding larger units. By coupling rounding with routines like |
| 3740 | /// [`Zoned::since`], the reference date can be set automatically based on |
| 3741 | /// the input to `Zoned::since`. |
| 3742 | /// |
| 3743 | /// # Example |
| 3744 | /// |
| 3745 | /// This example shows how to round a span between two zoned datetimes to the |
| 3746 | /// nearest half-hour, with ties breaking away from zero. |
| 3747 | /// |
| 3748 | /// ``` |
| 3749 | /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference}; |
| 3750 | /// |
| 3751 | /// let zdt1 = "2024-03-15 08:14:00.123456789[America/New_York]" .parse::<Zoned>()?; |
| 3752 | /// let zdt2 = "2030-03-22 15:00[America/New_York]" .parse::<Zoned>()?; |
| 3753 | /// let span = zdt1.until( |
| 3754 | /// ZonedDifference::new(&zdt2) |
| 3755 | /// .smallest(Unit::Minute) |
| 3756 | /// .largest(Unit::Year) |
| 3757 | /// .mode(RoundMode::HalfExpand) |
| 3758 | /// .increment(30), |
| 3759 | /// )?; |
| 3760 | /// assert_eq!(span, 6.years().days(7).hours(7).fieldwise()); |
| 3761 | /// |
| 3762 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3763 | /// ``` |
| 3764 | #[derive (Clone, Copy, Debug)] |
| 3765 | pub struct ZonedDifference<'a> { |
| 3766 | zoned: &'a Zoned, |
| 3767 | round: SpanRound<'static>, |
| 3768 | } |
| 3769 | |
| 3770 | impl<'a> ZonedDifference<'a> { |
| 3771 | /// Create a new default configuration for computing the span between the |
| 3772 | /// given zoned datetime and some other zoned datetime (specified as the |
| 3773 | /// receiver in [`Zoned::since`] or [`Zoned::until`]). |
| 3774 | #[inline ] |
| 3775 | pub fn new(zoned: &'a Zoned) -> ZonedDifference<'a> { |
| 3776 | // We use truncation rounding by default since it seems that's |
| 3777 | // what is generally expected when computing the difference between |
| 3778 | // datetimes. |
| 3779 | // |
| 3780 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
| 3781 | let round = SpanRound::new().mode(RoundMode::Trunc); |
| 3782 | ZonedDifference { zoned, round } |
| 3783 | } |
| 3784 | |
| 3785 | /// Set the smallest units allowed in the span returned. |
| 3786 | /// |
| 3787 | /// When a largest unit is not specified and the smallest unit is hours |
| 3788 | /// or greater, then the largest unit is automatically set to be equal to |
| 3789 | /// the smallest unit. |
| 3790 | /// |
| 3791 | /// # Errors |
| 3792 | /// |
| 3793 | /// The smallest units must be no greater than the largest units. If this |
| 3794 | /// is violated, then computing a span with this configuration will result |
| 3795 | /// in an error. |
| 3796 | /// |
| 3797 | /// # Example |
| 3798 | /// |
| 3799 | /// This shows how to round a span between two zoned datetimes to the |
| 3800 | /// nearest number of weeks. |
| 3801 | /// |
| 3802 | /// ``` |
| 3803 | /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference}; |
| 3804 | /// |
| 3805 | /// let zdt1 = "2024-03-15 08:14[America/New_York]" .parse::<Zoned>()?; |
| 3806 | /// let zdt2 = "2030-11-22 08:30[America/New_York]" .parse::<Zoned>()?; |
| 3807 | /// let span = zdt1.until( |
| 3808 | /// ZonedDifference::new(&zdt2) |
| 3809 | /// .smallest(Unit::Week) |
| 3810 | /// .largest(Unit::Week) |
| 3811 | /// .mode(RoundMode::HalfExpand), |
| 3812 | /// )?; |
| 3813 | /// assert_eq!(format!("{span:#}" ), "349w" ); |
| 3814 | /// |
| 3815 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3816 | /// ``` |
| 3817 | #[inline ] |
| 3818 | pub fn smallest(self, unit: Unit) -> ZonedDifference<'a> { |
| 3819 | ZonedDifference { round: self.round.smallest(unit), ..self } |
| 3820 | } |
| 3821 | |
| 3822 | /// Set the largest units allowed in the span returned. |
| 3823 | /// |
| 3824 | /// When a largest unit is not specified and the smallest unit is hours |
| 3825 | /// or greater, then the largest unit is automatically set to be equal to |
| 3826 | /// the smallest unit. Otherwise, when the largest unit is not specified, |
| 3827 | /// it is set to hours. |
| 3828 | /// |
| 3829 | /// Once a largest unit is set, there is no way to change this rounding |
| 3830 | /// configuration back to using the "automatic" default. Instead, callers |
| 3831 | /// must create a new configuration. |
| 3832 | /// |
| 3833 | /// # Errors |
| 3834 | /// |
| 3835 | /// The largest units, when set, must be at least as big as the smallest |
| 3836 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
| 3837 | /// then computing a span with this configuration will result in an error. |
| 3838 | /// |
| 3839 | /// # Example |
| 3840 | /// |
| 3841 | /// This shows how to round a span between two zoned datetimes to units no |
| 3842 | /// bigger than seconds. |
| 3843 | /// |
| 3844 | /// ``` |
| 3845 | /// use jiff::{ToSpan, Unit, Zoned, ZonedDifference}; |
| 3846 | /// |
| 3847 | /// let zdt1 = "2024-03-15 08:14[America/New_York]" .parse::<Zoned>()?; |
| 3848 | /// let zdt2 = "2030-11-22 08:30[America/New_York]" .parse::<Zoned>()?; |
| 3849 | /// let span = zdt1.until( |
| 3850 | /// ZonedDifference::new(&zdt2).largest(Unit::Second), |
| 3851 | /// )?; |
| 3852 | /// assert_eq!(span.to_string(), "PT211079760S" ); |
| 3853 | /// |
| 3854 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3855 | /// ``` |
| 3856 | #[inline ] |
| 3857 | pub fn largest(self, unit: Unit) -> ZonedDifference<'a> { |
| 3858 | ZonedDifference { round: self.round.largest(unit), ..self } |
| 3859 | } |
| 3860 | |
| 3861 | /// Set the rounding mode. |
| 3862 | /// |
| 3863 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
| 3864 | /// rounding "up" in the context of computing the span between |
| 3865 | /// two zoned datetimes could be surprising in a number of cases. The |
| 3866 | /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you |
| 3867 | /// might have learned about in school. But a variety of other rounding |
| 3868 | /// modes exist. |
| 3869 | /// |
| 3870 | /// # Example |
| 3871 | /// |
| 3872 | /// This shows how to always round "up" towards positive infinity. |
| 3873 | /// |
| 3874 | /// ``` |
| 3875 | /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference}; |
| 3876 | /// |
| 3877 | /// let zdt1 = "2024-03-15 08:10[America/New_York]" .parse::<Zoned>()?; |
| 3878 | /// let zdt2 = "2024-03-15 08:11[America/New_York]" .parse::<Zoned>()?; |
| 3879 | /// let span = zdt1.until( |
| 3880 | /// ZonedDifference::new(&zdt2) |
| 3881 | /// .smallest(Unit::Hour) |
| 3882 | /// .mode(RoundMode::Ceil), |
| 3883 | /// )?; |
| 3884 | /// // Only one minute elapsed, but we asked to always round up! |
| 3885 | /// assert_eq!(span, 1.hour().fieldwise()); |
| 3886 | /// |
| 3887 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
| 3888 | /// // flips for a negative span. |
| 3889 | /// let span = zdt1.since( |
| 3890 | /// ZonedDifference::new(&zdt2) |
| 3891 | /// .smallest(Unit::Hour) |
| 3892 | /// .mode(RoundMode::Ceil), |
| 3893 | /// )?; |
| 3894 | /// assert_eq!(span, 0.hour().fieldwise()); |
| 3895 | /// |
| 3896 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3897 | /// ``` |
| 3898 | #[inline ] |
| 3899 | pub fn mode(self, mode: RoundMode) -> ZonedDifference<'a> { |
| 3900 | ZonedDifference { round: self.round.mode(mode), ..self } |
| 3901 | } |
| 3902 | |
| 3903 | /// Set the rounding increment for the smallest unit. |
| 3904 | /// |
| 3905 | /// The default value is `1`. Other values permit rounding the smallest |
| 3906 | /// unit to the nearest integer increment specified. For example, if the |
| 3907 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 3908 | /// `30` would result in rounding in increments of a half hour. That is, |
| 3909 | /// the only minute value that could result would be `0` or `30`. |
| 3910 | /// |
| 3911 | /// # Errors |
| 3912 | /// |
| 3913 | /// When the smallest unit is less than days, the rounding increment must |
| 3914 | /// divide evenly into the next highest unit after the smallest unit |
| 3915 | /// configured (and must not be equivalent to it). For example, if the |
| 3916 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 3917 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 3918 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 3919 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 3920 | /// |
| 3921 | /// The error will occur when computing the span, and not when setting |
| 3922 | /// the increment here. |
| 3923 | /// |
| 3924 | /// # Example |
| 3925 | /// |
| 3926 | /// This shows how to round the span between two zoned datetimes to the |
| 3927 | /// nearest 5 minute increment. |
| 3928 | /// |
| 3929 | /// ``` |
| 3930 | /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference}; |
| 3931 | /// |
| 3932 | /// let zdt1 = "2024-03-15 08:19[America/New_York]" .parse::<Zoned>()?; |
| 3933 | /// let zdt2 = "2024-03-15 12:52[America/New_York]" .parse::<Zoned>()?; |
| 3934 | /// let span = zdt1.until( |
| 3935 | /// ZonedDifference::new(&zdt2) |
| 3936 | /// .smallest(Unit::Minute) |
| 3937 | /// .increment(5) |
| 3938 | /// .mode(RoundMode::HalfExpand), |
| 3939 | /// )?; |
| 3940 | /// assert_eq!(format!("{span:#}" ), "4h 35m" ); |
| 3941 | /// |
| 3942 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3943 | /// ``` |
| 3944 | #[inline ] |
| 3945 | pub fn increment(self, increment: i64) -> ZonedDifference<'a> { |
| 3946 | ZonedDifference { round: self.round.increment(increment), ..self } |
| 3947 | } |
| 3948 | |
| 3949 | /// Returns true if and only if this configuration could change the span |
| 3950 | /// via rounding. |
| 3951 | #[inline ] |
| 3952 | fn rounding_may_change_span(&self) -> bool { |
| 3953 | self.round.rounding_may_change_span_ignore_largest() |
| 3954 | } |
| 3955 | |
| 3956 | /// Returns the span of time from `dt1` to the datetime in this |
| 3957 | /// configuration. The biggest units allowed are determined by the |
| 3958 | /// `smallest` and `largest` settings, but defaults to `Unit::Day`. |
| 3959 | #[inline ] |
| 3960 | fn until_with_largest_unit(&self, zdt1: &Zoned) -> Result<Span, Error> { |
| 3961 | let zdt2 = self.zoned; |
| 3962 | |
| 3963 | let sign = t::sign(zdt2, zdt1); |
| 3964 | if sign == C(0) { |
| 3965 | return Ok(Span::new()); |
| 3966 | } |
| 3967 | |
| 3968 | let largest = self |
| 3969 | .round |
| 3970 | .get_largest() |
| 3971 | .unwrap_or_else(|| self.round.get_smallest().max(Unit::Hour)); |
| 3972 | if largest < Unit::Day { |
| 3973 | return zdt1.timestamp().until((largest, zdt2.timestamp())); |
| 3974 | } |
| 3975 | if zdt1.time_zone() != zdt2.time_zone() { |
| 3976 | return Err(err!( |
| 3977 | "computing the span between zoned datetimes, with \ |
| 3978 | {largest} units, requires that the time zones are \ |
| 3979 | equivalent, but {zdt1} and {zdt2} have distinct \ |
| 3980 | time zones" , |
| 3981 | largest = largest.singular(), |
| 3982 | )); |
| 3983 | } |
| 3984 | let tz = zdt1.time_zone(); |
| 3985 | |
| 3986 | let (dt1, mut dt2) = (zdt1.datetime(), zdt2.datetime()); |
| 3987 | |
| 3988 | let mut day_correct: t::SpanDays = C(0).rinto(); |
| 3989 | if -sign == dt1.time().until_nanoseconds(dt2.time()).signum() { |
| 3990 | day_correct += C(1); |
| 3991 | } |
| 3992 | |
| 3993 | let mut mid = dt2 |
| 3994 | .date() |
| 3995 | .checked_add(Span::new().days_ranged(day_correct * -sign)) |
| 3996 | .with_context(|| { |
| 3997 | err!( |
| 3998 | "failed to add {days} days to date in {dt2}" , |
| 3999 | days = day_correct * -sign, |
| 4000 | ) |
| 4001 | })? |
| 4002 | .to_datetime(dt1.time()); |
| 4003 | let mut zmid: Zoned = mid.to_zoned(tz.clone()).with_context(|| { |
| 4004 | err!( |
| 4005 | "failed to convert intermediate datetime {mid} \ |
| 4006 | to zoned timestamp in time zone {tz}" , |
| 4007 | tz = tz.diagnostic_name(), |
| 4008 | ) |
| 4009 | })?; |
| 4010 | if t::sign(zdt2, &zmid) == -sign { |
| 4011 | if sign == C(-1) { |
| 4012 | panic!("this should be an error" ); |
| 4013 | } |
| 4014 | day_correct += C(1); |
| 4015 | mid = dt2 |
| 4016 | .date() |
| 4017 | .checked_add(Span::new().days_ranged(day_correct * -sign)) |
| 4018 | .with_context(|| { |
| 4019 | err!( |
| 4020 | "failed to add {days} days to date in {dt2}" , |
| 4021 | days = day_correct * -sign, |
| 4022 | ) |
| 4023 | })? |
| 4024 | .to_datetime(dt1.time()); |
| 4025 | zmid = mid.to_zoned(tz.clone()).with_context(|| { |
| 4026 | err!( |
| 4027 | "failed to convert intermediate datetime {mid} \ |
| 4028 | to zoned timestamp in time zone {tz}" , |
| 4029 | tz = tz.diagnostic_name(), |
| 4030 | ) |
| 4031 | })?; |
| 4032 | if t::sign(zdt2, &zmid) == -sign { |
| 4033 | panic!("this should be an error too" ); |
| 4034 | } |
| 4035 | } |
| 4036 | let remainder_nano = zdt2.timestamp().as_nanosecond_ranged() |
| 4037 | - zmid.timestamp().as_nanosecond_ranged(); |
| 4038 | dt2 = mid; |
| 4039 | |
| 4040 | let date_span = dt1.date().until((largest, dt2.date()))?; |
| 4041 | Ok(Span::from_invariant_nanoseconds( |
| 4042 | Unit::Hour, |
| 4043 | remainder_nano.rinto(), |
| 4044 | ) |
| 4045 | .expect("difference between time always fits in span" ) |
| 4046 | .years_ranged(date_span.get_years_ranged()) |
| 4047 | .months_ranged(date_span.get_months_ranged()) |
| 4048 | .weeks_ranged(date_span.get_weeks_ranged()) |
| 4049 | .days_ranged(date_span.get_days_ranged())) |
| 4050 | } |
| 4051 | } |
| 4052 | |
| 4053 | impl<'a> From<&'a Zoned> for ZonedDifference<'a> { |
| 4054 | #[inline ] |
| 4055 | fn from(zdt: &'a Zoned) -> ZonedDifference<'a> { |
| 4056 | ZonedDifference::new(zoned:zdt) |
| 4057 | } |
| 4058 | } |
| 4059 | |
| 4060 | impl<'a> From<(Unit, &'a Zoned)> for ZonedDifference<'a> { |
| 4061 | #[inline ] |
| 4062 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> ZonedDifference<'a> { |
| 4063 | ZonedDifference::new(zdt).largest(unit:largest) |
| 4064 | } |
| 4065 | } |
| 4066 | |
| 4067 | /// Options for [`Zoned::round`]. |
| 4068 | /// |
| 4069 | /// This type provides a way to configure the rounding of a zoned datetime. In |
| 4070 | /// particular, `Zoned::round` accepts anything that implements the |
| 4071 | /// `Into<ZonedRound>` trait. There are some trait implementations that |
| 4072 | /// therefore make calling `Zoned::round` in some common cases more |
| 4073 | /// ergonomic: |
| 4074 | /// |
| 4075 | /// * `From<Unit> for ZonedRound` will construct a rounding |
| 4076 | /// configuration that rounds to the unit given. Specifically, |
| 4077 | /// `ZonedRound::new().smallest(unit)`. |
| 4078 | /// * `From<(Unit, i64)> for ZonedRound` is like the one above, but also |
| 4079 | /// specifies the rounding increment for [`ZonedRound::increment`]. |
| 4080 | /// |
| 4081 | /// Note that in the default configuration, no rounding occurs. |
| 4082 | /// |
| 4083 | /// # Example |
| 4084 | /// |
| 4085 | /// This example shows how to round a zoned datetime to the nearest second: |
| 4086 | /// |
| 4087 | /// ``` |
| 4088 | /// use jiff::{civil::date, Unit, Zoned}; |
| 4089 | /// |
| 4090 | /// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]" .parse()?; |
| 4091 | /// assert_eq!( |
| 4092 | /// zdt.round(Unit::Second)?, |
| 4093 | /// // The second rounds up and causes minutes to increase. |
| 4094 | /// date(2024, 6, 20).at(16, 25, 0, 0).in_tz("America/New_York" )?, |
| 4095 | /// ); |
| 4096 | /// |
| 4097 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4098 | /// ``` |
| 4099 | /// |
| 4100 | /// The above makes use of the fact that `Unit` implements |
| 4101 | /// `Into<ZonedRound>`. If you want to change the rounding mode to, say, |
| 4102 | /// truncation, then you'll need to construct a `ZonedRound` explicitly |
| 4103 | /// since there are no convenience `Into` trait implementations for |
| 4104 | /// [`RoundMode`]. |
| 4105 | /// |
| 4106 | /// ``` |
| 4107 | /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound}; |
| 4108 | /// |
| 4109 | /// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]" .parse()?; |
| 4110 | /// assert_eq!( |
| 4111 | /// zdt.round( |
| 4112 | /// ZonedRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
| 4113 | /// )?, |
| 4114 | /// // The second just gets truncated as if it wasn't there. |
| 4115 | /// date(2024, 6, 20).at(16, 24, 59, 0).in_tz("America/New_York" )?, |
| 4116 | /// ); |
| 4117 | /// |
| 4118 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4119 | /// ``` |
| 4120 | #[derive (Clone, Copy, Debug)] |
| 4121 | pub struct ZonedRound { |
| 4122 | round: DateTimeRound, |
| 4123 | } |
| 4124 | |
| 4125 | impl ZonedRound { |
| 4126 | /// Create a new default configuration for rounding a [`Zoned`]. |
| 4127 | #[inline ] |
| 4128 | pub fn new() -> ZonedRound { |
| 4129 | ZonedRound { round: DateTimeRound::new() } |
| 4130 | } |
| 4131 | |
| 4132 | /// Set the smallest units allowed in the zoned datetime returned after |
| 4133 | /// rounding. |
| 4134 | /// |
| 4135 | /// Any units below the smallest configured unit will be used, along |
| 4136 | /// with the rounding increment and rounding mode, to determine |
| 4137 | /// the value of the smallest unit. For example, when rounding |
| 4138 | /// `2024-06-20T03:25:30[America/New_York]` to the nearest minute, the `30` |
| 4139 | /// second unit will result in rounding the minute unit of `25` up to `26` |
| 4140 | /// and zeroing out everything below minutes. |
| 4141 | /// |
| 4142 | /// This defaults to [`Unit::Nanosecond`]. |
| 4143 | /// |
| 4144 | /// # Errors |
| 4145 | /// |
| 4146 | /// The smallest units must be no greater than [`Unit::Day`]. And when the |
| 4147 | /// smallest unit is `Unit::Day`, the rounding increment must be equal to |
| 4148 | /// `1`. Otherwise an error will be returned from [`Zoned::round`]. |
| 4149 | /// |
| 4150 | /// # Example |
| 4151 | /// |
| 4152 | /// ``` |
| 4153 | /// use jiff::{civil::date, Unit, ZonedRound}; |
| 4154 | /// |
| 4155 | /// let zdt = date(2024, 6, 20).at(3, 25, 30, 0).in_tz("America/New_York" )?; |
| 4156 | /// assert_eq!( |
| 4157 | /// zdt.round(ZonedRound::new().smallest(Unit::Minute))?, |
| 4158 | /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York" )?, |
| 4159 | /// ); |
| 4160 | /// // Or, utilize the `From<Unit> for ZonedRound` impl: |
| 4161 | /// assert_eq!( |
| 4162 | /// zdt.round(Unit::Minute)?, |
| 4163 | /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York" )?, |
| 4164 | /// ); |
| 4165 | /// |
| 4166 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4167 | /// ``` |
| 4168 | #[inline ] |
| 4169 | pub fn smallest(self, unit: Unit) -> ZonedRound { |
| 4170 | ZonedRound { round: self.round.smallest(unit) } |
| 4171 | } |
| 4172 | |
| 4173 | /// Set the rounding mode. |
| 4174 | /// |
| 4175 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
| 4176 | /// zero. It matches the kind of rounding you might have been taught in |
| 4177 | /// school. |
| 4178 | /// |
| 4179 | /// # Example |
| 4180 | /// |
| 4181 | /// This shows how to always round zoned datetimes up towards positive |
| 4182 | /// infinity. |
| 4183 | /// |
| 4184 | /// ``` |
| 4185 | /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound}; |
| 4186 | /// |
| 4187 | /// let zdt: Zoned = "2024-06-20 03:25:01[America/New_York]" .parse()?; |
| 4188 | /// assert_eq!( |
| 4189 | /// zdt.round( |
| 4190 | /// ZonedRound::new() |
| 4191 | /// .smallest(Unit::Minute) |
| 4192 | /// .mode(RoundMode::Ceil), |
| 4193 | /// )?, |
| 4194 | /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York" )?, |
| 4195 | /// ); |
| 4196 | /// |
| 4197 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4198 | /// ``` |
| 4199 | #[inline ] |
| 4200 | pub fn mode(self, mode: RoundMode) -> ZonedRound { |
| 4201 | ZonedRound { round: self.round.mode(mode) } |
| 4202 | } |
| 4203 | |
| 4204 | /// Set the rounding increment for the smallest unit. |
| 4205 | /// |
| 4206 | /// The default value is `1`. Other values permit rounding the smallest |
| 4207 | /// unit to the nearest integer increment specified. For example, if the |
| 4208 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 4209 | /// `30` would result in rounding in increments of a half hour. That is, |
| 4210 | /// the only minute value that could result would be `0` or `30`. |
| 4211 | /// |
| 4212 | /// # Errors |
| 4213 | /// |
| 4214 | /// When the smallest unit is `Unit::Day`, then the rounding increment must |
| 4215 | /// be `1` or else [`Zoned::round`] will return an error. |
| 4216 | /// |
| 4217 | /// For other units, the rounding increment must divide evenly into the |
| 4218 | /// next highest unit above the smallest unit set. The rounding increment |
| 4219 | /// must also not be equal to the next highest unit. For example, if the |
| 4220 | /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values |
| 4221 | /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`. |
| 4222 | /// Namely, any integer that divides evenly into `1,000` nanoseconds since |
| 4223 | /// there are `1,000` nanoseconds in the next highest unit (microseconds). |
| 4224 | /// |
| 4225 | /// # Example |
| 4226 | /// |
| 4227 | /// This example shows how to round a zoned datetime to the nearest 10 |
| 4228 | /// minute increment. |
| 4229 | /// |
| 4230 | /// ``` |
| 4231 | /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound}; |
| 4232 | /// |
| 4233 | /// let zdt: Zoned = "2024-06-20 03:24:59[America/New_York]" .parse()?; |
| 4234 | /// assert_eq!( |
| 4235 | /// zdt.round((Unit::Minute, 10))?, |
| 4236 | /// date(2024, 6, 20).at(3, 20, 0, 0).in_tz("America/New_York" )?, |
| 4237 | /// ); |
| 4238 | /// |
| 4239 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4240 | /// ``` |
| 4241 | #[inline ] |
| 4242 | pub fn increment(self, increment: i64) -> ZonedRound { |
| 4243 | ZonedRound { round: self.round.increment(increment) } |
| 4244 | } |
| 4245 | |
| 4246 | /// Does the actual rounding. |
| 4247 | /// |
| 4248 | /// Most of the work is farmed out to civil datetime rounding. |
| 4249 | pub(crate) fn round(&self, zdt: &Zoned) -> Result<Zoned, Error> { |
| 4250 | let start = zdt.datetime(); |
| 4251 | if self.round.get_smallest() == Unit::Day { |
| 4252 | return self.round_days(zdt); |
| 4253 | } |
| 4254 | let end = self.round.round(start)?; |
| 4255 | // Like in the ZonedWith API, in order to avoid small changes to clock |
| 4256 | // time hitting a 1 hour disambiguation shift, we use offset conflict |
| 4257 | // resolution to do our best to "prefer" the offset we already have. |
| 4258 | let amb = OffsetConflict::PreferOffset.resolve( |
| 4259 | end, |
| 4260 | zdt.offset(), |
| 4261 | zdt.time_zone().clone(), |
| 4262 | )?; |
| 4263 | amb.compatible() |
| 4264 | } |
| 4265 | |
| 4266 | /// Does rounding when the smallest unit is equal to days. We don't reuse |
| 4267 | /// civil datetime rounding for this since the length of a day for a zoned |
| 4268 | /// datetime might not be 24 hours. |
| 4269 | /// |
| 4270 | /// Ref: https://tc39.es/proposal-temporal/#sec-temporal.zoneddatetime.prototype.round |
| 4271 | fn round_days(&self, zdt: &Zoned) -> Result<Zoned, Error> { |
| 4272 | debug_assert_eq!(self.round.get_smallest(), Unit::Day); |
| 4273 | |
| 4274 | // Rounding by days requires an increment of 1. We just re-use the |
| 4275 | // civil datetime rounding checks, which has the same constraint |
| 4276 | // although it does check for other things that aren't relevant here. |
| 4277 | increment::for_datetime(Unit::Day, self.round.get_increment())?; |
| 4278 | |
| 4279 | // FIXME: We should be doing this with a &TimeZone, but will need a |
| 4280 | // refactor so that we do zone-aware arithmetic using just a Timestamp |
| 4281 | // and a &TimeZone. Fixing just this should just be some minor annoying |
| 4282 | // work. The grander refactor is something like an `Unzoned` type, but |
| 4283 | // I'm not sure that's really worth it. ---AG |
| 4284 | let start = zdt.start_of_day().with_context(move || { |
| 4285 | err!("failed to find start of day for {zdt}" ) |
| 4286 | })?; |
| 4287 | let end = start |
| 4288 | .checked_add(Span::new().days_ranged(C(1).rinto())) |
| 4289 | .with_context(|| { |
| 4290 | err!("failed to add 1 day to {start} to find length of day" ) |
| 4291 | })?; |
| 4292 | let span = start |
| 4293 | .timestamp() |
| 4294 | .until((Unit::Nanosecond, end.timestamp())) |
| 4295 | .with_context(|| { |
| 4296 | err!( |
| 4297 | "failed to compute span in nanoseconds \ |
| 4298 | from {start} until {end}" |
| 4299 | ) |
| 4300 | })?; |
| 4301 | let nanos = span.get_nanoseconds_ranged(); |
| 4302 | let day_length = |
| 4303 | ZonedDayNanoseconds::try_rfrom("nanoseconds-per-zoned-day" , nanos) |
| 4304 | .with_context(|| { |
| 4305 | err!( |
| 4306 | "failed to convert span between {start} until {end} \ |
| 4307 | to nanoseconds" , |
| 4308 | ) |
| 4309 | })?; |
| 4310 | let progress = zdt.timestamp().as_nanosecond_ranged() |
| 4311 | - start.timestamp().as_nanosecond_ranged(); |
| 4312 | let rounded = self.round.get_mode().round(progress, day_length); |
| 4313 | let nanos = start |
| 4314 | .timestamp() |
| 4315 | .as_nanosecond_ranged() |
| 4316 | .try_checked_add("timestamp-nanos" , rounded)?; |
| 4317 | Ok(Timestamp::from_nanosecond_ranged(nanos) |
| 4318 | .to_zoned(zdt.time_zone().clone())) |
| 4319 | } |
| 4320 | } |
| 4321 | |
| 4322 | impl Default for ZonedRound { |
| 4323 | #[inline ] |
| 4324 | fn default() -> ZonedRound { |
| 4325 | ZonedRound::new() |
| 4326 | } |
| 4327 | } |
| 4328 | |
| 4329 | impl From<Unit> for ZonedRound { |
| 4330 | #[inline ] |
| 4331 | fn from(unit: Unit) -> ZonedRound { |
| 4332 | ZonedRound::default().smallest(unit) |
| 4333 | } |
| 4334 | } |
| 4335 | |
| 4336 | impl From<(Unit, i64)> for ZonedRound { |
| 4337 | #[inline ] |
| 4338 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> ZonedRound { |
| 4339 | ZonedRound::from(unit).increment(increment) |
| 4340 | } |
| 4341 | } |
| 4342 | |
| 4343 | /// A builder for setting the fields on a [`Zoned`]. |
| 4344 | /// |
| 4345 | /// This builder is constructed via [`Zoned::with`]. |
| 4346 | /// |
| 4347 | /// # Example |
| 4348 | /// |
| 4349 | /// The builder ensures one can chain together the individual components of a |
| 4350 | /// zoned datetime without it failing at an intermediate step. For example, |
| 4351 | /// if you had a date of `2024-10-31T00:00:00[America/New_York]` and wanted |
| 4352 | /// to change both the day and the month, and each setting was validated |
| 4353 | /// independent of the other, you would need to be careful to set the day first |
| 4354 | /// and then the month. In some cases, you would need to set the month first |
| 4355 | /// and then the day! |
| 4356 | /// |
| 4357 | /// But with the builder, you can set values in any order: |
| 4358 | /// |
| 4359 | /// ``` |
| 4360 | /// use jiff::civil::date; |
| 4361 | /// |
| 4362 | /// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 4363 | /// let zdt2 = zdt1.with().month(11).day(30).build()?; |
| 4364 | /// assert_eq!( |
| 4365 | /// zdt2, |
| 4366 | /// date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 4367 | /// ); |
| 4368 | /// |
| 4369 | /// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 4370 | /// let zdt2 = zdt1.with().day(31).month(7).build()?; |
| 4371 | /// assert_eq!( |
| 4372 | /// zdt2, |
| 4373 | /// date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York" )?, |
| 4374 | /// ); |
| 4375 | /// |
| 4376 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4377 | /// ``` |
| 4378 | #[derive (Clone, Debug)] |
| 4379 | pub struct ZonedWith { |
| 4380 | original: Zoned, |
| 4381 | datetime_with: DateTimeWith, |
| 4382 | offset: Option<Offset>, |
| 4383 | disambiguation: Disambiguation, |
| 4384 | offset_conflict: OffsetConflict, |
| 4385 | } |
| 4386 | |
| 4387 | impl ZonedWith { |
| 4388 | #[inline ] |
| 4389 | fn new(original: Zoned) -> ZonedWith { |
| 4390 | let datetime_with = original.datetime().with(); |
| 4391 | ZonedWith { |
| 4392 | original, |
| 4393 | datetime_with, |
| 4394 | offset: None, |
| 4395 | disambiguation: Disambiguation::default(), |
| 4396 | offset_conflict: OffsetConflict::PreferOffset, |
| 4397 | } |
| 4398 | } |
| 4399 | |
| 4400 | /// Create a new `Zoned` from the fields set on this configuration. |
| 4401 | /// |
| 4402 | /// An error occurs when the fields combine to an invalid zoned datetime. |
| 4403 | /// |
| 4404 | /// For any fields not set on this configuration, the values are taken from |
| 4405 | /// the [`Zoned`] that originally created this configuration. When no |
| 4406 | /// values are set, this routine is guaranteed to succeed and will always |
| 4407 | /// return the original zoned datetime without modification. |
| 4408 | /// |
| 4409 | /// # Example |
| 4410 | /// |
| 4411 | /// This creates a zoned datetime corresponding to the last day in the year |
| 4412 | /// at noon: |
| 4413 | /// |
| 4414 | /// ``` |
| 4415 | /// use jiff::civil::date; |
| 4416 | /// |
| 4417 | /// let zdt = date(2023, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York" )?; |
| 4418 | /// assert_eq!( |
| 4419 | /// zdt.with().day_of_year_no_leap(365).build()?, |
| 4420 | /// date(2023, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York" )?, |
| 4421 | /// ); |
| 4422 | /// |
| 4423 | /// // It also works with leap years for the same input: |
| 4424 | /// let zdt = date(2024, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York" )?; |
| 4425 | /// assert_eq!( |
| 4426 | /// zdt.with().day_of_year_no_leap(365).build()?, |
| 4427 | /// date(2024, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York" )?, |
| 4428 | /// ); |
| 4429 | /// |
| 4430 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4431 | /// ``` |
| 4432 | /// |
| 4433 | /// # Example: error for invalid zoned datetime |
| 4434 | /// |
| 4435 | /// If the fields combine to form an invalid datetime, then an error is |
| 4436 | /// returned: |
| 4437 | /// |
| 4438 | /// ``` |
| 4439 | /// use jiff::civil::date; |
| 4440 | /// |
| 4441 | /// let zdt = date(2024, 11, 30).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 4442 | /// assert!(zdt.with().day(31).build().is_err()); |
| 4443 | /// |
| 4444 | /// let zdt = date(2024, 2, 29).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 4445 | /// assert!(zdt.with().year(2023).build().is_err()); |
| 4446 | /// |
| 4447 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4448 | /// ``` |
| 4449 | #[inline ] |
| 4450 | pub fn build(self) -> Result<Zoned, Error> { |
| 4451 | let dt = self.datetime_with.build()?; |
| 4452 | let (_, _, offset, time_zone) = self.original.into_parts(); |
| 4453 | let offset = self.offset.unwrap_or(offset); |
| 4454 | let ambiguous = self.offset_conflict.resolve(dt, offset, time_zone)?; |
| 4455 | ambiguous.disambiguate(self.disambiguation) |
| 4456 | } |
| 4457 | |
| 4458 | /// Set the year, month and day fields via the `Date` given. |
| 4459 | /// |
| 4460 | /// This overrides any previous year, month or day settings. |
| 4461 | /// |
| 4462 | /// # Example |
| 4463 | /// |
| 4464 | /// This shows how to create a new zoned datetime with a different date: |
| 4465 | /// |
| 4466 | /// ``` |
| 4467 | /// use jiff::civil::date; |
| 4468 | /// |
| 4469 | /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 4470 | /// let zdt2 = zdt1.with().date(date(2017, 10, 31)).build()?; |
| 4471 | /// // The date changes but the time remains the same. |
| 4472 | /// assert_eq!( |
| 4473 | /// zdt2, |
| 4474 | /// date(2017, 10, 31).at(15, 30, 0, 0).in_tz("America/New_York" )?, |
| 4475 | /// ); |
| 4476 | /// |
| 4477 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4478 | /// ``` |
| 4479 | #[inline ] |
| 4480 | pub fn date(self, date: Date) -> ZonedWith { |
| 4481 | ZonedWith { datetime_with: self.datetime_with.date(date), ..self } |
| 4482 | } |
| 4483 | |
| 4484 | /// Set the hour, minute, second, millisecond, microsecond and nanosecond |
| 4485 | /// fields via the `Time` given. |
| 4486 | /// |
| 4487 | /// This overrides any previous hour, minute, second, millisecond, |
| 4488 | /// microsecond, nanosecond or subsecond nanosecond settings. |
| 4489 | /// |
| 4490 | /// # Example |
| 4491 | /// |
| 4492 | /// This shows how to create a new zoned datetime with a different time: |
| 4493 | /// |
| 4494 | /// ``` |
| 4495 | /// use jiff::civil::{date, time}; |
| 4496 | /// |
| 4497 | /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 4498 | /// let zdt2 = zdt1.with().time(time(23, 59, 59, 123_456_789)).build()?; |
| 4499 | /// // The time changes but the date remains the same. |
| 4500 | /// assert_eq!( |
| 4501 | /// zdt2, |
| 4502 | /// date(2005, 11, 5) |
| 4503 | /// .at(23, 59, 59, 123_456_789) |
| 4504 | /// .in_tz("America/New_York" )?, |
| 4505 | /// ); |
| 4506 | /// |
| 4507 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4508 | /// ``` |
| 4509 | #[inline ] |
| 4510 | pub fn time(self, time: Time) -> ZonedWith { |
| 4511 | ZonedWith { datetime_with: self.datetime_with.time(time), ..self } |
| 4512 | } |
| 4513 | |
| 4514 | /// Set the year field on a [`Zoned`]. |
| 4515 | /// |
| 4516 | /// One can access this value via [`Zoned::year`]. |
| 4517 | /// |
| 4518 | /// This overrides any previous year settings. |
| 4519 | /// |
| 4520 | /// # Errors |
| 4521 | /// |
| 4522 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4523 | /// given year is outside the range `-9999..=9999`. This can also return an |
| 4524 | /// error if the resulting date is otherwise invalid. |
| 4525 | /// |
| 4526 | /// # Example |
| 4527 | /// |
| 4528 | /// This shows how to create a new zoned datetime with a different year: |
| 4529 | /// |
| 4530 | /// ``` |
| 4531 | /// use jiff::civil::date; |
| 4532 | /// |
| 4533 | /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York" )?; |
| 4534 | /// assert_eq!(zdt1.year(), 2005); |
| 4535 | /// let zdt2 = zdt1.with().year(2007).build()?; |
| 4536 | /// assert_eq!(zdt2.year(), 2007); |
| 4537 | /// |
| 4538 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4539 | /// ``` |
| 4540 | /// |
| 4541 | /// # Example: only changing the year can fail |
| 4542 | /// |
| 4543 | /// For example, while `2024-02-29T01:30:00[America/New_York]` is valid, |
| 4544 | /// `2023-02-29T01:30:00[America/New_York]` is not: |
| 4545 | /// |
| 4546 | /// ``` |
| 4547 | /// use jiff::civil::date; |
| 4548 | /// |
| 4549 | /// let zdt = date(2024, 2, 29).at(1, 30, 0, 0).in_tz("America/New_York" )?; |
| 4550 | /// assert!(zdt.with().year(2023).build().is_err()); |
| 4551 | /// |
| 4552 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4553 | /// ``` |
| 4554 | #[inline ] |
| 4555 | pub fn year(self, year: i16) -> ZonedWith { |
| 4556 | ZonedWith { datetime_with: self.datetime_with.year(year), ..self } |
| 4557 | } |
| 4558 | |
| 4559 | /// Set the year of a zoned datetime via its era and its non-negative |
| 4560 | /// numeric component. |
| 4561 | /// |
| 4562 | /// One can access this value via [`Zoned::era_year`]. |
| 4563 | /// |
| 4564 | /// # Errors |
| 4565 | /// |
| 4566 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4567 | /// year is outside the range for the era specified. For [`Era::BCE`], the |
| 4568 | /// range is `1..=10000`. For [`Era::CE`], the range is `1..=9999`. |
| 4569 | /// |
| 4570 | /// # Example |
| 4571 | /// |
| 4572 | /// This shows that `CE` years are equivalent to the years used by this |
| 4573 | /// crate: |
| 4574 | /// |
| 4575 | /// ``` |
| 4576 | /// use jiff::civil::{Era, date}; |
| 4577 | /// |
| 4578 | /// let zdt1 = date(2005, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York" )?; |
| 4579 | /// assert_eq!(zdt1.year(), 2005); |
| 4580 | /// let zdt2 = zdt1.with().era_year(2007, Era::CE).build()?; |
| 4581 | /// assert_eq!(zdt2.year(), 2007); |
| 4582 | /// |
| 4583 | /// // CE years are always positive and can be at most 9999: |
| 4584 | /// assert!(zdt1.with().era_year(-5, Era::CE).build().is_err()); |
| 4585 | /// assert!(zdt1.with().era_year(10_000, Era::CE).build().is_err()); |
| 4586 | /// |
| 4587 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4588 | /// ``` |
| 4589 | /// |
| 4590 | /// But `BCE` years always correspond to years less than or equal to `0` |
| 4591 | /// in this crate: |
| 4592 | /// |
| 4593 | /// ``` |
| 4594 | /// use jiff::civil::{Era, date}; |
| 4595 | /// |
| 4596 | /// let zdt1 = date(-27, 7, 1).at(8, 22, 30, 0).in_tz("America/New_York" )?; |
| 4597 | /// assert_eq!(zdt1.year(), -27); |
| 4598 | /// assert_eq!(zdt1.era_year(), (28, Era::BCE)); |
| 4599 | /// |
| 4600 | /// let zdt2 = zdt1.with().era_year(509, Era::BCE).build()?; |
| 4601 | /// assert_eq!(zdt2.year(), -508); |
| 4602 | /// assert_eq!(zdt2.era_year(), (509, Era::BCE)); |
| 4603 | /// |
| 4604 | /// let zdt2 = zdt1.with().era_year(10_000, Era::BCE).build()?; |
| 4605 | /// assert_eq!(zdt2.year(), -9_999); |
| 4606 | /// assert_eq!(zdt2.era_year(), (10_000, Era::BCE)); |
| 4607 | /// |
| 4608 | /// // BCE years are always positive and can be at most 10000: |
| 4609 | /// assert!(zdt1.with().era_year(-5, Era::BCE).build().is_err()); |
| 4610 | /// assert!(zdt1.with().era_year(10_001, Era::BCE).build().is_err()); |
| 4611 | /// |
| 4612 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4613 | /// ``` |
| 4614 | /// |
| 4615 | /// # Example: overrides `ZonedWith::year` |
| 4616 | /// |
| 4617 | /// Setting this option will override any previous `ZonedWith::year` |
| 4618 | /// option: |
| 4619 | /// |
| 4620 | /// ``` |
| 4621 | /// use jiff::civil::{Era, date}; |
| 4622 | /// |
| 4623 | /// let zdt1 = date(2024, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York" )?; |
| 4624 | /// let zdt2 = zdt1.with().year(2000).era_year(1900, Era::CE).build()?; |
| 4625 | /// assert_eq!( |
| 4626 | /// zdt2, |
| 4627 | /// date(1900, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York" )?, |
| 4628 | /// ); |
| 4629 | /// |
| 4630 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4631 | /// ``` |
| 4632 | /// |
| 4633 | /// Similarly, `ZonedWith::year` will override any previous call to |
| 4634 | /// `ZonedWith::era_year`: |
| 4635 | /// |
| 4636 | /// ``` |
| 4637 | /// use jiff::civil::{Era, date}; |
| 4638 | /// |
| 4639 | /// let zdt1 = date(2024, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York" )?; |
| 4640 | /// let zdt2 = zdt1.with().era_year(1900, Era::CE).year(2000).build()?; |
| 4641 | /// assert_eq!( |
| 4642 | /// zdt2, |
| 4643 | /// date(2000, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York" )?, |
| 4644 | /// ); |
| 4645 | /// |
| 4646 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4647 | /// ``` |
| 4648 | #[inline ] |
| 4649 | pub fn era_year(self, year: i16, era: Era) -> ZonedWith { |
| 4650 | ZonedWith { |
| 4651 | datetime_with: self.datetime_with.era_year(year, era), |
| 4652 | ..self |
| 4653 | } |
| 4654 | } |
| 4655 | |
| 4656 | /// Set the month field on a [`Zoned`]. |
| 4657 | /// |
| 4658 | /// One can access this value via [`Zoned::month`]. |
| 4659 | /// |
| 4660 | /// This overrides any previous month settings. |
| 4661 | /// |
| 4662 | /// # Errors |
| 4663 | /// |
| 4664 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4665 | /// given month is outside the range `1..=12`. This can also return an |
| 4666 | /// error if the resulting date is otherwise invalid. |
| 4667 | /// |
| 4668 | /// # Example |
| 4669 | /// |
| 4670 | /// This shows how to create a new zoned datetime with a different month: |
| 4671 | /// |
| 4672 | /// ``` |
| 4673 | /// use jiff::civil::date; |
| 4674 | /// |
| 4675 | /// let zdt1 = date(2005, 11, 5) |
| 4676 | /// .at(18, 3, 59, 123_456_789) |
| 4677 | /// .in_tz("America/New_York" )?; |
| 4678 | /// assert_eq!(zdt1.month(), 11); |
| 4679 | /// |
| 4680 | /// let zdt2 = zdt1.with().month(6).build()?; |
| 4681 | /// assert_eq!(zdt2.month(), 6); |
| 4682 | /// |
| 4683 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4684 | /// ``` |
| 4685 | /// |
| 4686 | /// # Example: only changing the month can fail |
| 4687 | /// |
| 4688 | /// For example, while `2024-10-31T00:00:00[America/New_York]` is valid, |
| 4689 | /// `2024-11-31T00:00:00[America/New_York]` is not: |
| 4690 | /// |
| 4691 | /// ``` |
| 4692 | /// use jiff::civil::date; |
| 4693 | /// |
| 4694 | /// let zdt = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 4695 | /// assert!(zdt.with().month(11).build().is_err()); |
| 4696 | /// |
| 4697 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4698 | /// ``` |
| 4699 | #[inline ] |
| 4700 | pub fn month(self, month: i8) -> ZonedWith { |
| 4701 | ZonedWith { datetime_with: self.datetime_with.month(month), ..self } |
| 4702 | } |
| 4703 | |
| 4704 | /// Set the day field on a [`Zoned`]. |
| 4705 | /// |
| 4706 | /// One can access this value via [`Zoned::day`]. |
| 4707 | /// |
| 4708 | /// This overrides any previous day settings. |
| 4709 | /// |
| 4710 | /// # Errors |
| 4711 | /// |
| 4712 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4713 | /// given given day is outside of allowable days for the corresponding year |
| 4714 | /// and month fields. |
| 4715 | /// |
| 4716 | /// # Example |
| 4717 | /// |
| 4718 | /// This shows some examples of setting the day, including a leap day: |
| 4719 | /// |
| 4720 | /// ``` |
| 4721 | /// use jiff::civil::date; |
| 4722 | /// |
| 4723 | /// let zdt1 = date(2024, 2, 5).at(21, 59, 1, 999).in_tz("America/New_York" )?; |
| 4724 | /// assert_eq!(zdt1.day(), 5); |
| 4725 | /// let zdt2 = zdt1.with().day(10).build()?; |
| 4726 | /// assert_eq!(zdt2.day(), 10); |
| 4727 | /// let zdt3 = zdt1.with().day(29).build()?; |
| 4728 | /// assert_eq!(zdt3.day(), 29); |
| 4729 | /// |
| 4730 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4731 | /// ``` |
| 4732 | /// |
| 4733 | /// # Example: changing only the day can fail |
| 4734 | /// |
| 4735 | /// This shows some examples that will fail: |
| 4736 | /// |
| 4737 | /// ``` |
| 4738 | /// use jiff::civil::date; |
| 4739 | /// |
| 4740 | /// let zdt1 = date(2023, 2, 5) |
| 4741 | /// .at(22, 58, 58, 9_999) |
| 4742 | /// .in_tz("America/New_York" )?; |
| 4743 | /// // 2023 is not a leap year |
| 4744 | /// assert!(zdt1.with().day(29).build().is_err()); |
| 4745 | /// |
| 4746 | /// // September has 30 days, not 31. |
| 4747 | /// let zdt1 = date(2023, 9, 5).in_tz("America/New_York" )?; |
| 4748 | /// assert!(zdt1.with().day(31).build().is_err()); |
| 4749 | /// |
| 4750 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4751 | /// ``` |
| 4752 | #[inline ] |
| 4753 | pub fn day(self, day: i8) -> ZonedWith { |
| 4754 | ZonedWith { datetime_with: self.datetime_with.day(day), ..self } |
| 4755 | } |
| 4756 | |
| 4757 | /// Set the day field on a [`Zoned`] via the ordinal number of a day |
| 4758 | /// within a year. |
| 4759 | /// |
| 4760 | /// When used, any settings for month are ignored since the month is |
| 4761 | /// determined by the day of the year. |
| 4762 | /// |
| 4763 | /// The valid values for `day` are `1..=366`. Note though that `366` is |
| 4764 | /// only valid for leap years. |
| 4765 | /// |
| 4766 | /// This overrides any previous day settings. |
| 4767 | /// |
| 4768 | /// # Errors |
| 4769 | /// |
| 4770 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4771 | /// given day is outside the allowed range of `1..=366`, or when a value of |
| 4772 | /// `366` is given for a non-leap year. |
| 4773 | /// |
| 4774 | /// # Example |
| 4775 | /// |
| 4776 | /// This demonstrates that if a year is a leap year, then `60` corresponds |
| 4777 | /// to February 29: |
| 4778 | /// |
| 4779 | /// ``` |
| 4780 | /// use jiff::civil::date; |
| 4781 | /// |
| 4782 | /// let zdt = date(2024, 1, 1) |
| 4783 | /// .at(23, 59, 59, 999_999_999) |
| 4784 | /// .in_tz("America/New_York" )?; |
| 4785 | /// assert_eq!( |
| 4786 | /// zdt.with().day_of_year(60).build()?, |
| 4787 | /// date(2024, 2, 29) |
| 4788 | /// .at(23, 59, 59, 999_999_999) |
| 4789 | /// .in_tz("America/New_York" )?, |
| 4790 | /// ); |
| 4791 | /// |
| 4792 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4793 | /// ``` |
| 4794 | /// |
| 4795 | /// But for non-leap years, day 60 is March 1: |
| 4796 | /// |
| 4797 | /// ``` |
| 4798 | /// use jiff::civil::date; |
| 4799 | /// |
| 4800 | /// let zdt = date(2023, 1, 1) |
| 4801 | /// .at(23, 59, 59, 999_999_999) |
| 4802 | /// .in_tz("America/New_York" )?; |
| 4803 | /// assert_eq!( |
| 4804 | /// zdt.with().day_of_year(60).build()?, |
| 4805 | /// date(2023, 3, 1) |
| 4806 | /// .at(23, 59, 59, 999_999_999) |
| 4807 | /// .in_tz("America/New_York" )?, |
| 4808 | /// ); |
| 4809 | /// |
| 4810 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4811 | /// ``` |
| 4812 | /// |
| 4813 | /// And using `366` for a non-leap year will result in an error, since |
| 4814 | /// non-leap years only have 365 days: |
| 4815 | /// |
| 4816 | /// ``` |
| 4817 | /// use jiff::civil::date; |
| 4818 | /// |
| 4819 | /// let zdt = date(2023, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 4820 | /// assert!(zdt.with().day_of_year(366).build().is_err()); |
| 4821 | /// // The maximal year is not a leap year, so it returns an error too. |
| 4822 | /// let zdt = date(9999, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" )?; |
| 4823 | /// assert!(zdt.with().day_of_year(366).build().is_err()); |
| 4824 | /// |
| 4825 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4826 | /// ``` |
| 4827 | #[inline ] |
| 4828 | pub fn day_of_year(self, day: i16) -> ZonedWith { |
| 4829 | ZonedWith { |
| 4830 | datetime_with: self.datetime_with.day_of_year(day), |
| 4831 | ..self |
| 4832 | } |
| 4833 | } |
| 4834 | |
| 4835 | /// Set the day field on a [`Zoned`] via the ordinal number of a day |
| 4836 | /// within a year, but ignoring leap years. |
| 4837 | /// |
| 4838 | /// When used, any settings for month are ignored since the month is |
| 4839 | /// determined by the day of the year. |
| 4840 | /// |
| 4841 | /// The valid values for `day` are `1..=365`. The value `365` always |
| 4842 | /// corresponds to the last day of the year, even for leap years. It is |
| 4843 | /// impossible for this routine to return a zoned datetime corresponding to |
| 4844 | /// February 29. (Unless there is a relevant time zone transition that |
| 4845 | /// provokes disambiguation that shifts the datetime into February 29.) |
| 4846 | /// |
| 4847 | /// This overrides any previous day settings. |
| 4848 | /// |
| 4849 | /// # Errors |
| 4850 | /// |
| 4851 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4852 | /// given day is outside the allowed range of `1..=365`. |
| 4853 | /// |
| 4854 | /// # Example |
| 4855 | /// |
| 4856 | /// This demonstrates that `60` corresponds to March 1, regardless of |
| 4857 | /// whether the year is a leap year or not: |
| 4858 | /// |
| 4859 | /// ``` |
| 4860 | /// use jiff::civil::date; |
| 4861 | /// |
| 4862 | /// let zdt = date(2023, 1, 1) |
| 4863 | /// .at(23, 59, 59, 999_999_999) |
| 4864 | /// .in_tz("America/New_York" )?; |
| 4865 | /// assert_eq!( |
| 4866 | /// zdt.with().day_of_year_no_leap(60).build()?, |
| 4867 | /// date(2023, 3, 1) |
| 4868 | /// .at(23, 59, 59, 999_999_999) |
| 4869 | /// .in_tz("America/New_York" )?, |
| 4870 | /// ); |
| 4871 | /// |
| 4872 | /// let zdt = date(2024, 1, 1) |
| 4873 | /// .at(23, 59, 59, 999_999_999) |
| 4874 | /// .in_tz("America/New_York" )?; |
| 4875 | /// assert_eq!( |
| 4876 | /// zdt.with().day_of_year_no_leap(60).build()?, |
| 4877 | /// date(2024, 3, 1) |
| 4878 | /// .at(23, 59, 59, 999_999_999) |
| 4879 | /// .in_tz("America/New_York" )?, |
| 4880 | /// ); |
| 4881 | /// |
| 4882 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4883 | /// ``` |
| 4884 | /// |
| 4885 | /// And using `365` for any year will always yield the last day of the |
| 4886 | /// year: |
| 4887 | /// |
| 4888 | /// ``` |
| 4889 | /// use jiff::civil::date; |
| 4890 | /// |
| 4891 | /// let zdt = date(2023, 1, 1) |
| 4892 | /// .at(23, 59, 59, 999_999_999) |
| 4893 | /// .in_tz("America/New_York" )?; |
| 4894 | /// assert_eq!( |
| 4895 | /// zdt.with().day_of_year_no_leap(365).build()?, |
| 4896 | /// zdt.last_of_year()?, |
| 4897 | /// ); |
| 4898 | /// |
| 4899 | /// let zdt = date(2024, 1, 1) |
| 4900 | /// .at(23, 59, 59, 999_999_999) |
| 4901 | /// .in_tz("America/New_York" )?; |
| 4902 | /// assert_eq!( |
| 4903 | /// zdt.with().day_of_year_no_leap(365).build()?, |
| 4904 | /// zdt.last_of_year()?, |
| 4905 | /// ); |
| 4906 | /// |
| 4907 | /// // Careful at the boundaries. The last day of the year isn't |
| 4908 | /// // representable with all time zones. For example: |
| 4909 | /// let zdt = date(9999, 1, 1) |
| 4910 | /// .at(23, 59, 59, 999_999_999) |
| 4911 | /// .in_tz("America/New_York" )?; |
| 4912 | /// assert!(zdt.with().day_of_year_no_leap(365).build().is_err()); |
| 4913 | /// // But with other time zones, it works okay: |
| 4914 | /// let zdt = date(9999, 1, 1) |
| 4915 | /// .at(23, 59, 59, 999_999_999) |
| 4916 | /// .to_zoned(jiff::tz::TimeZone::fixed(jiff::tz::Offset::MAX))?; |
| 4917 | /// assert_eq!( |
| 4918 | /// zdt.with().day_of_year_no_leap(365).build()?, |
| 4919 | /// zdt.last_of_year()?, |
| 4920 | /// ); |
| 4921 | /// |
| 4922 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4923 | /// ``` |
| 4924 | /// |
| 4925 | /// A value of `366` is out of bounds, even for leap years: |
| 4926 | /// |
| 4927 | /// ``` |
| 4928 | /// use jiff::civil::date; |
| 4929 | /// |
| 4930 | /// let zdt = date(2024, 1, 1).at(5, 30, 0, 0).in_tz("America/New_York" )?; |
| 4931 | /// assert!(zdt.with().day_of_year_no_leap(366).build().is_err()); |
| 4932 | /// |
| 4933 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4934 | /// ``` |
| 4935 | #[inline ] |
| 4936 | pub fn day_of_year_no_leap(self, day: i16) -> ZonedWith { |
| 4937 | ZonedWith { |
| 4938 | datetime_with: self.datetime_with.day_of_year_no_leap(day), |
| 4939 | ..self |
| 4940 | } |
| 4941 | } |
| 4942 | |
| 4943 | /// Set the hour field on a [`Zoned`]. |
| 4944 | /// |
| 4945 | /// One can access this value via [`Zoned::hour`]. |
| 4946 | /// |
| 4947 | /// This overrides any previous hour settings. |
| 4948 | /// |
| 4949 | /// # Errors |
| 4950 | /// |
| 4951 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4952 | /// given hour is outside the range `0..=23`. |
| 4953 | /// |
| 4954 | /// # Example |
| 4955 | /// |
| 4956 | /// ``` |
| 4957 | /// use jiff::civil::time; |
| 4958 | /// |
| 4959 | /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 4960 | /// assert_eq!(zdt1.hour(), 15); |
| 4961 | /// let zdt2 = zdt1.with().hour(3).build()?; |
| 4962 | /// assert_eq!(zdt2.hour(), 3); |
| 4963 | /// |
| 4964 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4965 | /// ``` |
| 4966 | #[inline ] |
| 4967 | pub fn hour(self, hour: i8) -> ZonedWith { |
| 4968 | ZonedWith { datetime_with: self.datetime_with.hour(hour), ..self } |
| 4969 | } |
| 4970 | |
| 4971 | /// Set the minute field on a [`Zoned`]. |
| 4972 | /// |
| 4973 | /// One can access this value via [`Zoned::minute`]. |
| 4974 | /// |
| 4975 | /// This overrides any previous minute settings. |
| 4976 | /// |
| 4977 | /// # Errors |
| 4978 | /// |
| 4979 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 4980 | /// given minute is outside the range `0..=59`. |
| 4981 | /// |
| 4982 | /// # Example |
| 4983 | /// |
| 4984 | /// ``` |
| 4985 | /// use jiff::civil::time; |
| 4986 | /// |
| 4987 | /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 4988 | /// assert_eq!(zdt1.minute(), 21); |
| 4989 | /// let zdt2 = zdt1.with().minute(3).build()?; |
| 4990 | /// assert_eq!(zdt2.minute(), 3); |
| 4991 | /// |
| 4992 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 4993 | /// ``` |
| 4994 | #[inline ] |
| 4995 | pub fn minute(self, minute: i8) -> ZonedWith { |
| 4996 | ZonedWith { datetime_with: self.datetime_with.minute(minute), ..self } |
| 4997 | } |
| 4998 | |
| 4999 | /// Set the second field on a [`Zoned`]. |
| 5000 | /// |
| 5001 | /// One can access this value via [`Zoned::second`]. |
| 5002 | /// |
| 5003 | /// This overrides any previous second settings. |
| 5004 | /// |
| 5005 | /// # Errors |
| 5006 | /// |
| 5007 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 5008 | /// given second is outside the range `0..=59`. |
| 5009 | /// |
| 5010 | /// # Example |
| 5011 | /// |
| 5012 | /// ``` |
| 5013 | /// use jiff::civil::time; |
| 5014 | /// |
| 5015 | /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 5016 | /// assert_eq!(zdt1.second(), 59); |
| 5017 | /// let zdt2 = zdt1.with().second(3).build()?; |
| 5018 | /// assert_eq!(zdt2.second(), 3); |
| 5019 | /// |
| 5020 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5021 | /// ``` |
| 5022 | #[inline ] |
| 5023 | pub fn second(self, second: i8) -> ZonedWith { |
| 5024 | ZonedWith { datetime_with: self.datetime_with.second(second), ..self } |
| 5025 | } |
| 5026 | |
| 5027 | /// Set the millisecond field on a [`Zoned`]. |
| 5028 | /// |
| 5029 | /// One can access this value via [`Zoned::millisecond`]. |
| 5030 | /// |
| 5031 | /// This overrides any previous millisecond settings. |
| 5032 | /// |
| 5033 | /// Note that this only sets the millisecond component. It does |
| 5034 | /// not change the microsecond or nanosecond components. To set |
| 5035 | /// the fractional second component to nanosecond precision, use |
| 5036 | /// [`ZonedWith::subsec_nanosecond`]. |
| 5037 | /// |
| 5038 | /// # Errors |
| 5039 | /// |
| 5040 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 5041 | /// given millisecond is outside the range `0..=999`, or if both this and |
| 5042 | /// [`ZonedWith::subsec_nanosecond`] are set. |
| 5043 | /// |
| 5044 | /// # Example |
| 5045 | /// |
| 5046 | /// This shows the relationship between [`Zoned::millisecond`] and |
| 5047 | /// [`Zoned::subsec_nanosecond`]: |
| 5048 | /// |
| 5049 | /// ``` |
| 5050 | /// use jiff::civil::time; |
| 5051 | /// |
| 5052 | /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 5053 | /// let zdt2 = zdt1.with().millisecond(123).build()?; |
| 5054 | /// assert_eq!(zdt2.subsec_nanosecond(), 123_000_000); |
| 5055 | /// |
| 5056 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5057 | /// ``` |
| 5058 | #[inline ] |
| 5059 | pub fn millisecond(self, millisecond: i16) -> ZonedWith { |
| 5060 | ZonedWith { |
| 5061 | datetime_with: self.datetime_with.millisecond(millisecond), |
| 5062 | ..self |
| 5063 | } |
| 5064 | } |
| 5065 | |
| 5066 | /// Set the microsecond field on a [`Zoned`]. |
| 5067 | /// |
| 5068 | /// One can access this value via [`Zoned::microsecond`]. |
| 5069 | /// |
| 5070 | /// This overrides any previous microsecond settings. |
| 5071 | /// |
| 5072 | /// Note that this only sets the microsecond component. It does |
| 5073 | /// not change the millisecond or nanosecond components. To set |
| 5074 | /// the fractional second component to nanosecond precision, use |
| 5075 | /// [`ZonedWith::subsec_nanosecond`]. |
| 5076 | /// |
| 5077 | /// # Errors |
| 5078 | /// |
| 5079 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 5080 | /// given microsecond is outside the range `0..=999`, or if both this and |
| 5081 | /// [`ZonedWith::subsec_nanosecond`] are set. |
| 5082 | /// |
| 5083 | /// # Example |
| 5084 | /// |
| 5085 | /// This shows the relationship between [`Zoned::microsecond`] and |
| 5086 | /// [`Zoned::subsec_nanosecond`]: |
| 5087 | /// |
| 5088 | /// ``` |
| 5089 | /// use jiff::civil::time; |
| 5090 | /// |
| 5091 | /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 5092 | /// let zdt2 = zdt1.with().microsecond(123).build()?; |
| 5093 | /// assert_eq!(zdt2.subsec_nanosecond(), 123_000); |
| 5094 | /// |
| 5095 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5096 | /// ``` |
| 5097 | #[inline ] |
| 5098 | pub fn microsecond(self, microsecond: i16) -> ZonedWith { |
| 5099 | ZonedWith { |
| 5100 | datetime_with: self.datetime_with.microsecond(microsecond), |
| 5101 | ..self |
| 5102 | } |
| 5103 | } |
| 5104 | |
| 5105 | /// Set the nanosecond field on a [`Zoned`]. |
| 5106 | /// |
| 5107 | /// One can access this value via [`Zoned::nanosecond`]. |
| 5108 | /// |
| 5109 | /// This overrides any previous nanosecond settings. |
| 5110 | /// |
| 5111 | /// Note that this only sets the nanosecond component. It does |
| 5112 | /// not change the millisecond or microsecond components. To set |
| 5113 | /// the fractional second component to nanosecond precision, use |
| 5114 | /// [`ZonedWith::subsec_nanosecond`]. |
| 5115 | /// |
| 5116 | /// # Errors |
| 5117 | /// |
| 5118 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 5119 | /// given nanosecond is outside the range `0..=999`, or if both this and |
| 5120 | /// [`ZonedWith::subsec_nanosecond`] are set. |
| 5121 | /// |
| 5122 | /// # Example |
| 5123 | /// |
| 5124 | /// This shows the relationship between [`Zoned::nanosecond`] and |
| 5125 | /// [`Zoned::subsec_nanosecond`]: |
| 5126 | /// |
| 5127 | /// ``` |
| 5128 | /// use jiff::civil::time; |
| 5129 | /// |
| 5130 | /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 5131 | /// let zdt2 = zdt1.with().nanosecond(123).build()?; |
| 5132 | /// assert_eq!(zdt2.subsec_nanosecond(), 123); |
| 5133 | /// |
| 5134 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5135 | /// ``` |
| 5136 | #[inline ] |
| 5137 | pub fn nanosecond(self, nanosecond: i16) -> ZonedWith { |
| 5138 | ZonedWith { |
| 5139 | datetime_with: self.datetime_with.nanosecond(nanosecond), |
| 5140 | ..self |
| 5141 | } |
| 5142 | } |
| 5143 | |
| 5144 | /// Set the subsecond nanosecond field on a [`Zoned`]. |
| 5145 | /// |
| 5146 | /// If you want to access this value on `Zoned`, then use |
| 5147 | /// [`Zoned::subsec_nanosecond`]. |
| 5148 | /// |
| 5149 | /// This overrides any previous subsecond nanosecond settings. |
| 5150 | /// |
| 5151 | /// Note that this sets the entire fractional second component to |
| 5152 | /// nanosecond precision, and overrides any individual millisecond, |
| 5153 | /// microsecond or nanosecond settings. To set individual components, |
| 5154 | /// use [`ZonedWith::millisecond`], [`ZonedWith::microsecond`] or |
| 5155 | /// [`ZonedWith::nanosecond`]. |
| 5156 | /// |
| 5157 | /// # Errors |
| 5158 | /// |
| 5159 | /// This returns an error when [`ZonedWith::build`] is called if the |
| 5160 | /// given subsecond nanosecond is outside the range `0..=999,999,999`, |
| 5161 | /// or if both this and one of [`ZonedWith::millisecond`], |
| 5162 | /// [`ZonedWith::microsecond`] or [`ZonedWith::nanosecond`] are set. |
| 5163 | /// |
| 5164 | /// # Example |
| 5165 | /// |
| 5166 | /// This shows the relationship between constructing a `Zoned` value |
| 5167 | /// with subsecond nanoseconds and its individual subsecond fields: |
| 5168 | /// |
| 5169 | /// ``` |
| 5170 | /// use jiff::civil::time; |
| 5171 | /// |
| 5172 | /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York" )?; |
| 5173 | /// let zdt2 = zdt1.with().subsec_nanosecond(123_456_789).build()?; |
| 5174 | /// assert_eq!(zdt2.millisecond(), 123); |
| 5175 | /// assert_eq!(zdt2.microsecond(), 456); |
| 5176 | /// assert_eq!(zdt2.nanosecond(), 789); |
| 5177 | /// |
| 5178 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5179 | /// ``` |
| 5180 | #[inline ] |
| 5181 | pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> ZonedWith { |
| 5182 | ZonedWith { |
| 5183 | datetime_with: self |
| 5184 | .datetime_with |
| 5185 | .subsec_nanosecond(subsec_nanosecond), |
| 5186 | ..self |
| 5187 | } |
| 5188 | } |
| 5189 | |
| 5190 | /// Set the offset to use in the new zoned datetime. |
| 5191 | /// |
| 5192 | /// This can be used in some cases to explicitly disambiguate a datetime |
| 5193 | /// that could correspond to multiple instants in time. |
| 5194 | /// |
| 5195 | /// How the offset is used to construct a new zoned datetime |
| 5196 | /// depends on the offset conflict resolution strategy |
| 5197 | /// set via [`ZonedWith::offset_conflict`]. The default is |
| 5198 | /// [`OffsetConflict::PreferOffset`], which will always try to use the |
| 5199 | /// offset to resolve a datetime to an instant, unless the offset is |
| 5200 | /// incorrect for this zoned datetime's time zone. In which case, only the |
| 5201 | /// time zone is used to select the correct offset (which may involve using |
| 5202 | /// the disambiguation strategy set via [`ZonedWith::disambiguation`]). |
| 5203 | /// |
| 5204 | /// # Example |
| 5205 | /// |
| 5206 | /// This example shows parsing the first time the 1 o'clock hour appeared |
| 5207 | /// on a clock in New York on 2024-11-03, and then changing only the |
| 5208 | /// offset to flip it to the second time 1 o'clock appeared on the clock: |
| 5209 | /// |
| 5210 | /// ``` |
| 5211 | /// use jiff::{tz, Zoned}; |
| 5212 | /// |
| 5213 | /// let zdt1: Zoned = "2024-11-03 01:30-04[America/New_York]" .parse()?; |
| 5214 | /// let zdt2 = zdt1.with().offset(tz::offset(-5)).build()?; |
| 5215 | /// assert_eq!( |
| 5216 | /// zdt2.to_string(), |
| 5217 | /// // Everything stays the same, except for the offset. |
| 5218 | /// "2024-11-03T01:30:00-05:00[America/New_York]" , |
| 5219 | /// ); |
| 5220 | /// |
| 5221 | /// // If we use an invalid offset for the America/New_York time zone, |
| 5222 | /// // then it will be ignored and the disambiguation strategy set will |
| 5223 | /// // be used. |
| 5224 | /// let zdt3 = zdt1.with().offset(tz::offset(-12)).build()?; |
| 5225 | /// assert_eq!( |
| 5226 | /// zdt3.to_string(), |
| 5227 | /// // The default disambiguation is Compatible. |
| 5228 | /// "2024-11-03T01:30:00-04:00[America/New_York]" , |
| 5229 | /// ); |
| 5230 | /// // But we could change the disambiguation strategy to reject such |
| 5231 | /// // cases! |
| 5232 | /// let result = zdt1 |
| 5233 | /// .with() |
| 5234 | /// .offset(tz::offset(-12)) |
| 5235 | /// .disambiguation(tz::Disambiguation::Reject) |
| 5236 | /// .build(); |
| 5237 | /// assert!(result.is_err()); |
| 5238 | /// |
| 5239 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5240 | /// ``` |
| 5241 | #[inline ] |
| 5242 | pub fn offset(self, offset: Offset) -> ZonedWith { |
| 5243 | ZonedWith { offset: Some(offset), ..self } |
| 5244 | } |
| 5245 | |
| 5246 | /// Set the conflict resolution strategy for when an offset is inconsistent |
| 5247 | /// with the time zone. |
| 5248 | /// |
| 5249 | /// See the documentation on [`OffsetConflict`] for more details about the |
| 5250 | /// different strategies one can choose. |
| 5251 | /// |
| 5252 | /// Unlike parsing (where the default is `OffsetConflict::Reject`), the |
| 5253 | /// default for `ZonedWith` is [`OffsetConflict::PreferOffset`], which |
| 5254 | /// avoids daylight saving time disambiguation causing unexpected 1-hour |
| 5255 | /// shifts after small changes to clock time. |
| 5256 | /// |
| 5257 | /// # Example |
| 5258 | /// |
| 5259 | /// ``` |
| 5260 | /// use jiff::Zoned; |
| 5261 | /// |
| 5262 | /// // Set to the "second" time 1:30 is on the clocks in New York on |
| 5263 | /// // 2024-11-03. The offset in the datetime string makes this |
| 5264 | /// // unambiguous. |
| 5265 | /// let zdt1 = "2024-11-03T01:30-05[America/New_York]" .parse::<Zoned>()?; |
| 5266 | /// // Now we change the minute field: |
| 5267 | /// let zdt2 = zdt1.with().minute(34).build()?; |
| 5268 | /// assert_eq!( |
| 5269 | /// zdt2.to_string(), |
| 5270 | /// // Without taking the offset of the `Zoned` value into account, |
| 5271 | /// // this would have defaulted to using the "compatible" |
| 5272 | /// // disambiguation strategy, which would have selected the earlier |
| 5273 | /// // offset of -04 instead of sticking with the later offset of -05. |
| 5274 | /// "2024-11-03T01:34:00-05:00[America/New_York]" , |
| 5275 | /// ); |
| 5276 | /// |
| 5277 | /// // But note that if we change the clock time such that the previous |
| 5278 | /// // offset is no longer valid (by moving back before DST ended), then |
| 5279 | /// // the default strategy will automatically adapt and change the offset. |
| 5280 | /// let zdt2 = zdt1.with().hour(0).build()?; |
| 5281 | /// assert_eq!( |
| 5282 | /// zdt2.to_string(), |
| 5283 | /// "2024-11-03T00:30:00-04:00[America/New_York]" , |
| 5284 | /// ); |
| 5285 | /// |
| 5286 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5287 | /// ``` |
| 5288 | #[inline ] |
| 5289 | pub fn offset_conflict(self, strategy: OffsetConflict) -> ZonedWith { |
| 5290 | ZonedWith { offset_conflict: strategy, ..self } |
| 5291 | } |
| 5292 | |
| 5293 | /// Set the disambiguation strategy for when a zoned datetime falls into a |
| 5294 | /// time zone transition "fold" or "gap." |
| 5295 | /// |
| 5296 | /// The most common manifestation of such time zone transitions is daylight |
| 5297 | /// saving time. In most cases, the transition into daylight saving time |
| 5298 | /// moves the civil time ("the time you see on the clock") ahead one hour. |
| 5299 | /// This is called a "gap" because an hour on the clock is skipped. While |
| 5300 | /// the transition out of daylight saving time moves the civil time back |
| 5301 | /// one hour. This is called a "fold" because an hour on the clock is |
| 5302 | /// repeated. |
| 5303 | /// |
| 5304 | /// In the case of a gap, an ambiguous datetime manifests as a time that |
| 5305 | /// never appears on a clock. (For example, `02:30` on `2024-03-10` in New |
| 5306 | /// York.) In the case of a fold, an ambiguous datetime manifests as a |
| 5307 | /// time that repeats itself. (For example, `01:30` on `2024-11-03` in New |
| 5308 | /// York.) So when a fold occurs, you don't know whether it's the "first" |
| 5309 | /// occurrence of that time or the "second." |
| 5310 | /// |
| 5311 | /// Time zone transitions are not just limited to daylight saving time, |
| 5312 | /// although those are the most common. In other cases, a transition occurs |
| 5313 | /// because of a change in the offset of the time zone itself. (See the |
| 5314 | /// examples below.) |
| 5315 | /// |
| 5316 | /// # Example: time zone offset change |
| 5317 | /// |
| 5318 | /// In this example, we explore a time zone offset change in Hawaii that |
| 5319 | /// occurred on `1947-06-08`. Namely, Hawaii went from a `-10:30` offset |
| 5320 | /// to a `-10:00` offset at `02:00`. This results in a 30 minute gap in |
| 5321 | /// civil time. |
| 5322 | /// |
| 5323 | /// ``` |
| 5324 | /// use jiff::{civil::date, tz, ToSpan, Zoned}; |
| 5325 | /// |
| 5326 | /// // This datetime is unambiguous... |
| 5327 | /// let zdt1 = "1943-06-02T02:05[Pacific/Honolulu]" .parse::<Zoned>()?; |
| 5328 | /// // but... 02:05 didn't exist on clocks on 1947-06-08. |
| 5329 | /// let zdt2 = zdt1 |
| 5330 | /// .with() |
| 5331 | /// .disambiguation(tz::Disambiguation::Later) |
| 5332 | /// .year(1947) |
| 5333 | /// .day(8) |
| 5334 | /// .build()?; |
| 5335 | /// // Our parser is configured to select the later time, so we jump to |
| 5336 | /// // 02:35. But if we used `Disambiguation::Earlier`, then we'd get |
| 5337 | /// // 01:35. |
| 5338 | /// assert_eq!(zdt2.datetime(), date(1947, 6, 8).at(2, 35, 0, 0)); |
| 5339 | /// assert_eq!(zdt2.offset(), tz::offset(-10)); |
| 5340 | /// |
| 5341 | /// // If we subtract 10 minutes from 02:35, notice that we (correctly) |
| 5342 | /// // jump to 01:55 *and* our offset is corrected to -10:30. |
| 5343 | /// let zdt3 = zdt2.checked_sub(10.minutes())?; |
| 5344 | /// assert_eq!(zdt3.datetime(), date(1947, 6, 8).at(1, 55, 0, 0)); |
| 5345 | /// assert_eq!(zdt3.offset(), tz::offset(-10).saturating_sub(30.minutes())); |
| 5346 | /// |
| 5347 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5348 | /// ``` |
| 5349 | /// |
| 5350 | /// # Example: offset conflict resolution and disambiguation |
| 5351 | /// |
| 5352 | /// This example shows how the disambiguation configuration can |
| 5353 | /// interact with the default offset conflict resolution strategy of |
| 5354 | /// [`OffsetConflict::PreferOffset`]: |
| 5355 | /// |
| 5356 | /// ``` |
| 5357 | /// use jiff::{civil::date, tz, Zoned}; |
| 5358 | /// |
| 5359 | /// // This datetime is unambiguous. |
| 5360 | /// let zdt1 = "2024-03-11T02:05[America/New_York]" .parse::<Zoned>()?; |
| 5361 | /// assert_eq!(zdt1.offset(), tz::offset(-4)); |
| 5362 | /// // But the same time on March 10 is ambiguous because there is a gap! |
| 5363 | /// let zdt2 = zdt1 |
| 5364 | /// .with() |
| 5365 | /// .disambiguation(tz::Disambiguation::Earlier) |
| 5366 | /// .day(10) |
| 5367 | /// .build()?; |
| 5368 | /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0)); |
| 5369 | /// assert_eq!(zdt2.offset(), tz::offset(-5)); |
| 5370 | /// |
| 5371 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5372 | /// ``` |
| 5373 | /// |
| 5374 | /// Namely, while we started with an offset of `-04`, it (along with all |
| 5375 | /// other offsets) are considered invalid during civil time gaps due to |
| 5376 | /// time zone transitions (such as the beginning of daylight saving time in |
| 5377 | /// most locations). |
| 5378 | /// |
| 5379 | /// The default disambiguation strategy is |
| 5380 | /// [`Disambiguation::Compatible`], which in the case of gaps, chooses the |
| 5381 | /// time after the gap: |
| 5382 | /// |
| 5383 | /// ``` |
| 5384 | /// use jiff::{civil::date, tz, Zoned}; |
| 5385 | /// |
| 5386 | /// // This datetime is unambiguous. |
| 5387 | /// let zdt1 = "2024-03-11T02:05[America/New_York]" .parse::<Zoned>()?; |
| 5388 | /// assert_eq!(zdt1.offset(), tz::offset(-4)); |
| 5389 | /// // But the same time on March 10 is ambiguous because there is a gap! |
| 5390 | /// let zdt2 = zdt1 |
| 5391 | /// .with() |
| 5392 | /// .day(10) |
| 5393 | /// .build()?; |
| 5394 | /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(3, 5, 0, 0)); |
| 5395 | /// assert_eq!(zdt2.offset(), tz::offset(-4)); |
| 5396 | /// |
| 5397 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5398 | /// ``` |
| 5399 | /// |
| 5400 | /// Alternatively, one can choose to always respect the offset, and thus |
| 5401 | /// civil time for the provided time zone will be adjusted to match the |
| 5402 | /// instant prescribed by the offset. In this case, no disambiguation is |
| 5403 | /// performed: |
| 5404 | /// |
| 5405 | /// ``` |
| 5406 | /// use jiff::{civil::date, tz, Zoned}; |
| 5407 | /// |
| 5408 | /// // This datetime is unambiguous. But `2024-03-10T02:05` is! |
| 5409 | /// let zdt1 = "2024-03-11T02:05[America/New_York]" .parse::<Zoned>()?; |
| 5410 | /// assert_eq!(zdt1.offset(), tz::offset(-4)); |
| 5411 | /// // But the same time on March 10 is ambiguous because there is a gap! |
| 5412 | /// let zdt2 = zdt1 |
| 5413 | /// .with() |
| 5414 | /// .offset_conflict(tz::OffsetConflict::AlwaysOffset) |
| 5415 | /// .day(10) |
| 5416 | /// .build()?; |
| 5417 | /// // Why do we get this result? Because `2024-03-10T02:05-04` is |
| 5418 | /// // `2024-03-10T06:05Z`. And in `America/New_York`, the civil time |
| 5419 | /// // for that timestamp is `2024-03-10T01:05-05`. |
| 5420 | /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0)); |
| 5421 | /// assert_eq!(zdt2.offset(), tz::offset(-5)); |
| 5422 | /// |
| 5423 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 5424 | /// ``` |
| 5425 | #[inline ] |
| 5426 | pub fn disambiguation(self, strategy: Disambiguation) -> ZonedWith { |
| 5427 | ZonedWith { disambiguation: strategy, ..self } |
| 5428 | } |
| 5429 | } |
| 5430 | |
| 5431 | #[cfg (test)] |
| 5432 | mod tests { |
| 5433 | use std::io::Cursor; |
| 5434 | |
| 5435 | use alloc::string::ToString; |
| 5436 | |
| 5437 | use crate::{ |
| 5438 | civil::{date, datetime}, |
| 5439 | span::span_eq, |
| 5440 | tz, ToSpan, |
| 5441 | }; |
| 5442 | |
| 5443 | use super::*; |
| 5444 | |
| 5445 | #[test ] |
| 5446 | fn until_with_largest_unit() { |
| 5447 | if crate::tz::db().is_definitively_empty() { |
| 5448 | return; |
| 5449 | } |
| 5450 | |
| 5451 | let zdt1: Zoned = date(1995, 12, 7) |
| 5452 | .at(3, 24, 30, 3500) |
| 5453 | .in_tz("Asia/Kolkata" ) |
| 5454 | .unwrap(); |
| 5455 | let zdt2: Zoned = |
| 5456 | date(2019, 1, 31).at(15, 30, 0, 0).in_tz("Asia/Kolkata" ).unwrap(); |
| 5457 | let span = zdt1.until(&zdt2).unwrap(); |
| 5458 | span_eq!( |
| 5459 | span, |
| 5460 | 202956 |
| 5461 | .hours() |
| 5462 | .minutes(5) |
| 5463 | .seconds(29) |
| 5464 | .milliseconds(999) |
| 5465 | .microseconds(996) |
| 5466 | .nanoseconds(500) |
| 5467 | ); |
| 5468 | let span = zdt1.until((Unit::Year, &zdt2)).unwrap(); |
| 5469 | span_eq!( |
| 5470 | span, |
| 5471 | 23.years() |
| 5472 | .months(1) |
| 5473 | .days(24) |
| 5474 | .hours(12) |
| 5475 | .minutes(5) |
| 5476 | .seconds(29) |
| 5477 | .milliseconds(999) |
| 5478 | .microseconds(996) |
| 5479 | .nanoseconds(500) |
| 5480 | ); |
| 5481 | |
| 5482 | let span = zdt2.until((Unit::Year, &zdt1)).unwrap(); |
| 5483 | span_eq!( |
| 5484 | span, |
| 5485 | -23.years() |
| 5486 | .months(1) |
| 5487 | .days(24) |
| 5488 | .hours(12) |
| 5489 | .minutes(5) |
| 5490 | .seconds(29) |
| 5491 | .milliseconds(999) |
| 5492 | .microseconds(996) |
| 5493 | .nanoseconds(500) |
| 5494 | ); |
| 5495 | let span = zdt1.until((Unit::Nanosecond, &zdt2)).unwrap(); |
| 5496 | span_eq!(span, 730641929999996500i64.nanoseconds()); |
| 5497 | |
| 5498 | let zdt1: Zoned = |
| 5499 | date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York" ).unwrap(); |
| 5500 | let zdt2: Zoned = date(2020, 4, 24) |
| 5501 | .at(21, 0, 0, 0) |
| 5502 | .in_tz("America/New_York" ) |
| 5503 | .unwrap(); |
| 5504 | let span = zdt1.until(&zdt2).unwrap(); |
| 5505 | span_eq!(span, 2756.hours()); |
| 5506 | let span = zdt1.until((Unit::Year, &zdt2)).unwrap(); |
| 5507 | span_eq!(span, 3.months().days(23).hours(21)); |
| 5508 | |
| 5509 | let zdt1: Zoned = date(2000, 10, 29) |
| 5510 | .at(0, 0, 0, 0) |
| 5511 | .in_tz("America/Vancouver" ) |
| 5512 | .unwrap(); |
| 5513 | let zdt2: Zoned = date(2000, 10, 29) |
| 5514 | .at(23, 0, 0, 5) |
| 5515 | .in_tz("America/Vancouver" ) |
| 5516 | .unwrap(); |
| 5517 | let span = zdt1.until((Unit::Day, &zdt2)).unwrap(); |
| 5518 | span_eq!(span, 24.hours().nanoseconds(5)); |
| 5519 | } |
| 5520 | |
| 5521 | #[cfg (target_pointer_width = "64" )] |
| 5522 | #[test ] |
| 5523 | fn zoned_size() { |
| 5524 | #[cfg (debug_assertions)] |
| 5525 | { |
| 5526 | #[cfg (feature = "alloc" )] |
| 5527 | { |
| 5528 | assert_eq!(96, core::mem::size_of::<Zoned>()); |
| 5529 | } |
| 5530 | #[cfg (all(target_pointer_width = "64" , not(feature = "alloc" )))] |
| 5531 | { |
| 5532 | assert_eq!(96, core::mem::size_of::<Zoned>()); |
| 5533 | } |
| 5534 | } |
| 5535 | #[cfg (not(debug_assertions))] |
| 5536 | { |
| 5537 | #[cfg (feature = "alloc" )] |
| 5538 | { |
| 5539 | assert_eq!(40, core::mem::size_of::<Zoned>()); |
| 5540 | } |
| 5541 | #[cfg (all(target_pointer_width = "64" , not(feature = "alloc" )))] |
| 5542 | { |
| 5543 | // This asserts the same value as the alloc value above, but |
| 5544 | // it wasn't always this way, which is why it's written out |
| 5545 | // separately. Moreover, in theory, I'd be open to regressing |
| 5546 | // this value if it led to an improvement in alloc-mode. But |
| 5547 | // more likely, it would be nice to decrease this size in |
| 5548 | // non-alloc modes. |
| 5549 | assert_eq!(40, core::mem::size_of::<Zoned>()); |
| 5550 | } |
| 5551 | } |
| 5552 | } |
| 5553 | |
| 5554 | /// A `serde` deserializer compatibility test. |
| 5555 | /// |
| 5556 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 5557 | /// as deserializing from bytes is not supported by the deserializer. |
| 5558 | /// |
| 5559 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 5560 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 5561 | #[test ] |
| 5562 | fn zoned_deserialize_yaml() { |
| 5563 | if crate::tz::db().is_definitively_empty() { |
| 5564 | return; |
| 5565 | } |
| 5566 | |
| 5567 | let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789) |
| 5568 | .in_tz("UTC" ) |
| 5569 | .unwrap(); |
| 5570 | |
| 5571 | let deserialized: Zoned = |
| 5572 | serde_yaml::from_str("2024-10-31T16:33:53.123456789+00:00[UTC]" ) |
| 5573 | .unwrap(); |
| 5574 | |
| 5575 | assert_eq!(deserialized, expected); |
| 5576 | |
| 5577 | let deserialized: Zoned = serde_yaml::from_slice( |
| 5578 | "2024-10-31T16:33:53.123456789+00:00[UTC]" .as_bytes(), |
| 5579 | ) |
| 5580 | .unwrap(); |
| 5581 | |
| 5582 | assert_eq!(deserialized, expected); |
| 5583 | |
| 5584 | let cursor = Cursor::new(b"2024-10-31T16:33:53.123456789+00:00[UTC]" ); |
| 5585 | let deserialized: Zoned = serde_yaml::from_reader(cursor).unwrap(); |
| 5586 | |
| 5587 | assert_eq!(deserialized, expected); |
| 5588 | } |
| 5589 | |
| 5590 | /// This is a regression test for a case where changing a zoned datetime |
| 5591 | /// to have a time of midnight ends up producing a counter-intuitive |
| 5592 | /// result. |
| 5593 | /// |
| 5594 | /// See: <https://github.com/BurntSushi/jiff/issues/211> |
| 5595 | #[test ] |
| 5596 | fn zoned_with_time_dst_after_gap() { |
| 5597 | if crate::tz::db().is_definitively_empty() { |
| 5598 | return; |
| 5599 | } |
| 5600 | |
| 5601 | let zdt1: Zoned = "2024-03-31T12:00[Atlantic/Azores]" .parse().unwrap(); |
| 5602 | assert_eq!( |
| 5603 | zdt1.to_string(), |
| 5604 | "2024-03-31T12:00:00+00:00[Atlantic/Azores]" |
| 5605 | ); |
| 5606 | |
| 5607 | let zdt2 = zdt1.with().time(Time::midnight()).build().unwrap(); |
| 5608 | assert_eq!( |
| 5609 | zdt2.to_string(), |
| 5610 | "2024-03-31T01:00:00+00:00[Atlantic/Azores]" |
| 5611 | ); |
| 5612 | } |
| 5613 | |
| 5614 | /// Similar to `zoned_with_time_dst_after_gap`, but tests what happens |
| 5615 | /// when moving from/to both sides of the gap. |
| 5616 | /// |
| 5617 | /// See: <https://github.com/BurntSushi/jiff/issues/211> |
| 5618 | #[test ] |
| 5619 | fn zoned_with_time_dst_us_eastern() { |
| 5620 | if crate::tz::db().is_definitively_empty() { |
| 5621 | return; |
| 5622 | } |
| 5623 | |
| 5624 | let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]" .parse().unwrap(); |
| 5625 | assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]" ); |
| 5626 | let zdt2 = zdt1.with().hour(2).build().unwrap(); |
| 5627 | assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]" ); |
| 5628 | |
| 5629 | let zdt1: Zoned = "2024-03-10T03:30[US/Eastern]" .parse().unwrap(); |
| 5630 | assert_eq!(zdt1.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]" ); |
| 5631 | let zdt2 = zdt1.with().hour(2).build().unwrap(); |
| 5632 | assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]" ); |
| 5633 | |
| 5634 | // I originally thought that this was difference from Temporal. Namely, |
| 5635 | // I thought that Temporal ignored the disambiguation setting (and the |
| 5636 | // bad offset). But it doesn't. I was holding it wrong. |
| 5637 | // |
| 5638 | // See: https://github.com/tc39/proposal-temporal/issues/3078 |
| 5639 | let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]" .parse().unwrap(); |
| 5640 | assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]" ); |
| 5641 | let zdt2 = zdt1 |
| 5642 | .with() |
| 5643 | .offset(tz::offset(10)) |
| 5644 | .hour(2) |
| 5645 | .disambiguation(Disambiguation::Earlier) |
| 5646 | .build() |
| 5647 | .unwrap(); |
| 5648 | assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]" ); |
| 5649 | |
| 5650 | // This should also respect the disambiguation setting even without |
| 5651 | // explicitly specifying an invalid offset. This is becaue `02:30-05` |
| 5652 | // is regarded as invalid since `02:30` isn't a valid civil time on |
| 5653 | // this date in this time zone. |
| 5654 | let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]" .parse().unwrap(); |
| 5655 | assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]" ); |
| 5656 | let zdt2 = zdt1 |
| 5657 | .with() |
| 5658 | .hour(2) |
| 5659 | .disambiguation(Disambiguation::Earlier) |
| 5660 | .build() |
| 5661 | .unwrap(); |
| 5662 | assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]" ); |
| 5663 | } |
| 5664 | |
| 5665 | #[test ] |
| 5666 | fn zoned_precision_loss() { |
| 5667 | if crate::tz::db().is_definitively_empty() { |
| 5668 | return; |
| 5669 | } |
| 5670 | |
| 5671 | let zdt1: Zoned = "2025-01-25T19:32:21.783444592+01:00[Europe/Paris]" |
| 5672 | .parse() |
| 5673 | .unwrap(); |
| 5674 | let span = 1.second(); |
| 5675 | let zdt2 = &zdt1 + span; |
| 5676 | assert_eq!( |
| 5677 | zdt2.to_string(), |
| 5678 | "2025-01-25T19:32:22.783444592+01:00[Europe/Paris]" |
| 5679 | ); |
| 5680 | assert_eq!(zdt1, &zdt2 - span, "should be reversible" ); |
| 5681 | } |
| 5682 | |
| 5683 | // See: https://github.com/BurntSushi/jiff/issues/290 |
| 5684 | #[test ] |
| 5685 | fn zoned_roundtrip_regression() { |
| 5686 | if crate::tz::db().is_definitively_empty() { |
| 5687 | return; |
| 5688 | } |
| 5689 | |
| 5690 | let zdt: Zoned = |
| 5691 | "2063-03-31T10:00:00+11:00[Australia/Sydney]" .parse().unwrap(); |
| 5692 | assert_eq!(zdt.offset(), super::Offset::constant(11)); |
| 5693 | let roundtrip = zdt.time_zone().to_zoned(zdt.datetime()).unwrap(); |
| 5694 | assert_eq!(zdt, roundtrip); |
| 5695 | } |
| 5696 | |
| 5697 | // See: https://github.com/BurntSushi/jiff/issues/305 |
| 5698 | #[test ] |
| 5699 | fn zoned_round_dst_day_length() { |
| 5700 | if crate::tz::db().is_definitively_empty() { |
| 5701 | return; |
| 5702 | } |
| 5703 | |
| 5704 | let zdt1: Zoned = |
| 5705 | "2025-03-09T12:15[America/New_York]" .parse().unwrap(); |
| 5706 | let zdt2 = zdt1.round(Unit::Day).unwrap(); |
| 5707 | // Since this day is only 23 hours long, it should round down instead |
| 5708 | // of up (as it would on a normal 24 hour day). Interestingly, the bug |
| 5709 | // was causing this to not only round up, but to a datetime that wasn't |
| 5710 | // the start of a day. Specifically, 2025-03-10T01:00:00-04:00. |
| 5711 | assert_eq!( |
| 5712 | zdt2.to_string(), |
| 5713 | "2025-03-09T00:00:00-05:00[America/New_York]" |
| 5714 | ); |
| 5715 | } |
| 5716 | |
| 5717 | #[test ] |
| 5718 | fn zoned_round_errors() { |
| 5719 | if crate::tz::db().is_definitively_empty() { |
| 5720 | return; |
| 5721 | } |
| 5722 | |
| 5723 | let zdt: Zoned = "2025-03-09T12:15[America/New_York]" .parse().unwrap(); |
| 5724 | |
| 5725 | insta::assert_snapshot!( |
| 5726 | zdt.round(Unit::Year).unwrap_err(), |
| 5727 | @"datetime rounding does not support years" |
| 5728 | ); |
| 5729 | insta::assert_snapshot!( |
| 5730 | zdt.round(Unit::Month).unwrap_err(), |
| 5731 | @"datetime rounding does not support months" |
| 5732 | ); |
| 5733 | insta::assert_snapshot!( |
| 5734 | zdt.round(Unit::Week).unwrap_err(), |
| 5735 | @"datetime rounding does not support weeks" |
| 5736 | ); |
| 5737 | |
| 5738 | let options = ZonedRound::new().smallest(Unit::Day).increment(2); |
| 5739 | insta::assert_snapshot!( |
| 5740 | zdt.round(options).unwrap_err(), |
| 5741 | @"increment 2 for rounding datetime to days must be 1) less than 2, 2) divide into it evenly and 3) greater than zero" |
| 5742 | ); |
| 5743 | } |
| 5744 | } |
| 5745 | |